Sample records for target arsenic species

  1. METHYLATION INACTIVATES PENTAVALENT ARSENIC SPECIES BUT ACTIVATES TRIVALENT ARSENIC SPECIES TO POTENT GENOTOXICANTS

    EPA Science Inventory

    Methylation Inactivates Pentavalent Arsenic Species but Activates Trivalent Arsenic Species to Potent Genotoxicants

    The sensitivity ofhumans to arsenic-induced cancer is thought to be related in part to the limited ability of humans to detoxify arsenic. Recently, methyl- ...

  2. Arsenic Detoxification by Geobacter Species.

    PubMed

    Dang, Yan; Walker, David J F; Vautour, Kaitlin E; Dixon, Steven; Holmes, Dawn E

    2017-02-15

    Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found

  3. Arsenic Detoxification by Geobacter Species

    PubMed Central

    Walker, David J. F.; Vautour, Kaitlin E.; Dixon, Steven

    2016-01-01

    ABSTRACT Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. IMPORTANCE This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different

  4. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    PubMed

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  5. Selective Sensitization of Zinc Finger Protein Oxidation by Reactive Oxygen Species through Arsenic Binding*

    PubMed Central

    Zhou, Xixi; Cooper, Karen L.; Sun, Xi; Liu, Ke J.; Hudson, Laurie G.

    2015-01-01

    Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation. PMID:26063799

  6. Arsenic Toxicity to Juvenile Fish: Effects of Exposure Route, Arsenic Speciation, and Fish Species

    EPA Science Inventory

    Arsenic toxicity to juvenile rainbow trout and fathead minnows was evaluated in 28-day tests using both dietborne and waterborne exposures, both inorganic and organic arsenic species, and both a live diet and an arsenic-spiked pellet diet. Effects of inorganic arsenic on rainbow...

  7. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). Rece...

  8. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVIE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES. CAUSE RELEASE OF IRON , FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). R...

  9. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    PubMed

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Assessment of total arsenic and arsenic species stability in alga samples and their aqueous extracts.

    PubMed

    García Salgado, S; Quijano Nieto, M A; Bonilla Simón, M M

    2008-05-30

    In order to achieve reliable information on speciation analysis, it is necessary to assess previously the species stability in the sample to analyse. Furthermore, in those cases where the sample treatment for species extraction is time-consuming, an assessment of the species integrity in the extracts is of paramount importance. Thus, the present paper reports total arsenic and arsenic species stability in alga samples (Sargassum fulvellum and Hizikia fusiformis), as well as in their aqueous extracts, which were stored in amber glass and polystyrene containers at different temperatures. Total arsenic determination was carried out by inductively coupled plasma atomic emission spectroscopy (ICP-AES), after sample acid digestion in a microwave oven, while arsenic speciation was conducted by anion exchange high performance liquid chromatography on-line coupled to ICP-AES, with and without sample introduction by hydride generation (HPLC-ICP-AES and HPLC-HG-ICP-AES), after aqueous microwave-assisted extraction. The results obtained for solid alga samples showed that total arsenic (for Hijiki alga) and arsenic species present (As(V) for Hijiki and NIES No. 9 Sargasso) are stable for at least 12 months when samples are stored in polystyrene containers at +20 degrees C. On the other hand, a different behaviour was observed in the stability of total arsenic and As(V) species in aqueous extracts for both samples, being the best storage conditions for Sargasso extracts a temperature of -18 degrees C and polystyrene containers, under which they are stable for at least 15 days, while Hijiki extracts must be stored in polystyrene containers at +4 degrees C in order to ensure the stability for 10 days.

  11. Methylation of inorganic arsenic in different mammalian species and population groups.

    PubMed

    Vahter, M

    1999-01-01

    Thousands of people in different parts of the world are exposed to arsenic via drinking water or contaminated soil or food. The high general toxic of arsenic has been known for centuries, and research during the last decades has shown that arsenic is a potent human carcinogen. However, most experimental cancer studies have failed to demonstrate carcinogenicity in experimental animals, indicating marked variation in sensitivity towards arsenic toxicity between species. It has also been suggested that there is a variation in susceptibility among human individuals. One reason for such variability in toxic response may be variation in metabolism. Inorganic arsenic is methylated in humans as well as animals and micro-organisms, but there are considerable differences between species and individuals. In many, but not all, mammalian species, inorganic arsenic is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA), which are more rapidly excreted in urine than is the inorganic arsenic, especially the trivalent form (AsIII, arsenite) which is highly reactive with tissue components. Absorbed arsenate (AsV) is reduced to trivalent arsenic (AsIII) before the methyl groups are attached. It has been estimated that as much as 50-70% of absorbed AsV is rapidly reduced to AsIII, a reaction which seems to be common for most species. In most experimental animal species, DMA is the main metabolite excreted in urine. Compared to human subjects, very little MMA is produced. However, the rate of methylation varies considerably between species, and several species, e.g. the marmoset monkey and the chimpanzee have been shown not to methylate inorganic arsenic at all. In addition, the marmoset monkey accumulates arsenic in the liver. The rat, on the other hand, has an efficient methylation of arsenic but the formed DMA is to a large extent accumulated in the red blood cells. As a result, the rat shows a low rate of excretion of arsenic. In both human subjects and rodents

  12. PROXIMATE OR ULTIMATE GENOTOXIC FORMS OF ARSENIC: METHYLATED ARSENIC(III) SPECIES THAT REACT DIRECTLY WITH DNA

    EPA Science Inventory


    PROXIMATE OR ULTIMATE GENOTOXIC FORMS OF ARSENIC: METHYLATED ARSENIC(III) SPECIES THAT REACT DIRECTL Y WITH DNA.

    Abstract:

    Although inorganic arsenic (iAs), arsenite or arsenate, is genotoxic, there has been no demonstration that iAs or a methylated metabolite...

  13. Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study

    PubMed Central

    Gribble, Matthew O.; Voruganti, Venkata Saroja; Cole, Shelley A.; Haack, Karin; Balakrishnan, Poojitha; Laston, Sandra L.; Tellez-Plaza, Maria; Francesconi, Kevin A.; Goessler, Walter; Umans, Jason G.; Thomas, Duncan C.; Gilliland, Frank; North, Kari E.; Franceschini, Nora; Navas-Acien, Ana

    2015-01-01

    Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study participants 18 years of age and older with data on ∼400 genome-wide microsatellite markers spaced ∼10 cM and arsenic speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species). This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering % arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel approach that considers % arsenic species jointly. PMID:26209557

  14. Bioaccumulation of arsenic species in rays from the northern Adriatic Sea.

    PubMed

    Šlejkovec, Zdenka; Stajnko, Anja; Falnoga, Ingrid; Lipej, Lovrenc; Mazej, Darja; Horvat, Milena; Faganeli, Jadran

    2014-12-01

    The difference in arsenic concentration and speciation between benthic (Pteromylaeus bovinus, Myliobatis aquila) and pelagic rays (Pteroplatytrygon violacea) from the northern Adriatic Sea (Gulf of Trieste) in relation to their size (age) was investigated. High arsenic concentrations were found in both groups with tendency of more efficient arsenic accumulation in benthic species, particularly in muscle (32.4 to 362 µg·g-1 of total arsenic). This was attributed to species differences in arsenic access, uptake and retention. In liver most arsenic was present in a form of arsenobetaine, dimethylarsinic acid and arsenoipids, whereas in muscle mainly arsenobetaine was found. The good correlations between total arsenic/arsenobetaine and size reflect the importance of accumulation of arsenobetaine with age. Arsenobetaine is an analogue of glycine betaine, a known osmoregulator in marine animals and both are very abundant in mussels, representing an important source of food for benthic species P. bovinus and M. aquila.

  15. Bioaccumulation of Arsenic Species in Rays from the Northern Adriatic Sea

    PubMed Central

    Šlejkovec, Zdenka; Stajnko, Anja; Falnoga, Ingrid; Lipej, Lovrenc; Mazej, Darja; Horvat, Milena; Faganeli, Jadran

    2014-01-01

    The difference in arsenic concentration and speciation between benthic (Pteromylaeus bovinus, Myliobatis aquila) and pelagic rays (Pteroplatytrygon violacea) from the northern Adriatic Sea (Gulf of Trieste) in relation to their size (age) was investigated. High arsenic concentrations were found in both groups with tendency of more efficient arsenic accumulation in benthic species, particularly in muscle (32.4 to 362 µg·g−1 of total arsenic). This was attributed to species differences in arsenic access, uptake and retention. In liver most arsenic was present in a form of arsenobetaine, dimethylarsinic acid and arsenoipids, whereas in muscle mainly arsenobetaine was found. The good correlations between total arsenic/arsenobetaine and size reflect the importance of accumulation of arsenobetaine with age. Arsenobetaine is an analogue of glycine betaine, a known osmoregulator in marine animals and both are very abundant in mussels, representing an important source of food for benthic species P. bovinus and M. aquila. PMID:25470025

  16. Arsenic accumulation in three species of sea turtles.

    PubMed

    Saeki, K; Sakakibara, H; Sakai, H; Kunito, T; Tanabe, S

    2000-09-01

    Arsenic in the liver, kidney and muscle of three species of sea turtles, e.g., green turtles (Chelonia mydas), loggerhead turtles (Caretta caretta) and hawksbill turtles (Eretmochelys imbricata), were determined using HG-AAS, followed by arsenic speciation analysis using HPLC-ICP-MS. The order of arsenic concentration in tissues was muscle > kidney > liver. Unexpectedly, the arsenic concentrations in the hawksbill turtles feeding mainly on sponges were higher than the two other turtles primarily eating algae and mollusk which accumulate a large amount of arsenic. Especially, the muscles of the hawksbill turtles contained remarkably high arsenic concentrations averaging 153 mg kg(-1) dry weight with the range of 23.1-205 mg kg(-1) (n = 4), even in comparison with the data from other organisms. The arsenic concentrations in the tissues of the green turtles were significantly decreased with standard carapace length as an indicator of growth. In arsenic compounds, arsenobetaine was mostly detected in the tissues of all the turtles. Besides arsenobetaine, a small amount of dimethylarsinic acid was also observed in the hawksbill turtles.

  17. ARSENIC (III) METHYLATED SPECIES REACT WITH DNA DIRECTLY AND COULD BE PROXIMATED/ULTIMATE GENOTOXIC FORMS OF ARSENIC

    EPA Science Inventory


    ARSENIC(III) METHYLATED SPECIES REACT WITH DNA DIRECTL Y AND COULD BE PROXIMATE/ULTIMATE GENOTOXIC FORMS OF ARSENIC


    Arsenite and arsenate (iAs, inorganic arsenic) have been thought to act as genotoxicants without reacting directly with DNA; neither iAs nor As(V) m...

  18. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    PubMed

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (P<0.0001) predictor of SumAs (R(2)=0.18). Associations improved (R(2)=0.29, P<0.0001) when individuals with less than 1 μg/l of arsenic in drinking water were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, P<0.0001). A separate analysis indicated that AsB and DMA[V] were significantly correlated with fish and shellfish consumption, which may suggest that seafood intake influences DMA[V] excretion. The Spearman correlation between arsenic concentration in toenails and SumAs was 0.36 and between arsenic concentration in toenails and arsenic concentration in water was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  19. Determination of arsenic species in marine samples by HPLC-ICP-MS.

    PubMed

    Hirata, Shizuko; Toshimitsu, Hideki; Aihara, Masato

    2006-01-01

    Arsenic speciation analysis in marine samples was performed using high performance liquid chromatography (HPLC) with ICP-MS detection. The separation of eight arsenic species viz. arsenite (As(III)), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), arsenobetaine, trimethylarsine oxide (TMAO), arsenocholine and tetramethylarsonium ion (TeMAs) was achieved on a Shiseido Capcell Pak C18 column by using an isocratic eluent (pH 3.0), in which condition As(III) and MMA were co-eluted. The entire separation was accomplished in 15 min. The detection limits for 8 arsenic species by HPLC/ICP-MS were in the range of 0.02 - 0.10 microg L(-1) based on 3sigma of blank response (n=9). The precision was calculated to be 3.1-7.3% (RSD) for all eight species. The method then successfully applied to several marine samples e.g., oyster, scallop, fish, and shrimps. For the extraction of arsenic species from seafood products, the low power microwave digestion was employed. The extraction efficiency was in the range of 52.9 - 112.3%. Total arsenic concentrations were analyzed by using the microwave acid digestion. The total arsenics in the certified reference materials (DORM-2 and TORT-2) were analyzed and agreed with the certified values. The concentrations of arsenics in marine samples were in the range 6.6 - 35.1 microg g(-1).

  20. Interactions between arsenic species and marine algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J.G.

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surroundingmore » media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)« less

  1. Quantifying Inorganic Arsenic and Other Water-Soluble Arsenic Species in Human Milk by HPLC/ICPMS.

    PubMed

    Stiboller, Michael; Raber, Georg; Gjengedal, Elin Lovise Folven; Eggesbø, Merete; Francesconi, Kevin A

    2017-06-06

    Because the toxicity of arsenic depends on its chemical form, risk assessments of arsenic exposure must consider the type of arsenic compound, and hence they require sensitive and robust methods for their determination. Furthermore, the assessment should include studies on the most vulnerable people within a population, such as newborns and infants, and thus there is a need to quantify arsenic species in human milk. Herein we report a method for the determination of arsenic species at low concentrations in human milk by HPLC/ICPMS. Comparison of single and triple quadrupole mass analysers showed comparable performance, although the triple quadrupole instrument more efficiently overcame the problem of ArCl + interference, from the natural chloride present in milk, without the need for gradient elution HPLC conditions. The method incorporates a protein precipitation step with trifluoroacetic acid followed by addition of dichloromethane or dibromomethane to remove the lipids. The aqueous phase was subjected to anion-exchange and cation-exchange/mixed mode chromatography with aqueous ammonium bicarbonate and pyridine buffer solutions as mobile phases, respectively. For method validation, a human milk sample was spiked with defined amounts of dimethylarsinate, arsenobetaine, and arsenate. The method showed good recoveries (99-103%) with detection limits (in milk) in the range of 10 ng As kg -1 . The method was further tested by analyzing two Norwegian human milk samples where arsenobetaine, dimethylarsinate, and a currently unknown As species were found, but iAs was not detected.

  2. Grain Unloading Of Arsenic Species In Rice

    EPA Science Inventory

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dim...

  3. Arsenic species separation by IELC-ICP/OES: Arsenocholine behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio, R.; Peralta, I.; Alberti, J.

    1993-01-01

    In the literature an increasing interest is observed in developing methods to determine arsenobetaine, arsenocholine and related compounds in sea food and in reference materials. The separation conditions and quantification of As(III), As(V), monomethylarsenate (MMA), dimethylarsinate (DMA), arsenobetaine (AsBet) and arsenocholine (AsChol) are studied by Liquid Chromatography (LC) coupled directly to an Inductively Coupled Plasma Optical Emission Spectroscopy (ICP/OES) system. The separation conditions are optimized to improve the resolution of the six arsenic species. Arsenocholine shows a particular pattern of behavior when phosphate is used as eluent: two peaks are observed in the chromatogram, thus a systematic study assaying differentmore » pH and concentration of phosphate is carried out to improve resolution and analysis time when the six arsenic compounds are analyzed in a mixture. Boric acid as mobile phase avoids the splitting of the arsenocholine peak and leads to a good separation of the six arsenic compounds. Detection limits are established for the six arsenic species.« less

  4. Arsenic Species in Chicken Breast: Temporal Variations of Metabolites, Elimination Kinetics, and Residual Concentrations

    PubMed Central

    Liu, Qingqing; Peng, Hanyong; Lu, Xiufen; Zuidhof, Martin J.; Li, Xing-Fang; Le, X. Chris

    2016-01-01

    Background: Chicken meat has the highest per capita consumption among all meat types in North America. The practice of feeding 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, Rox) to chickens lasted for more than 60 years. However, the fate of Rox and arsenic metabolites remaining in chicken are poorly understood. Objectives: We aimed to determine the elimination of Rox and metabolites from chickens and quantify the remaining arsenic species in chicken meat, providing necessary information for meaningful exposure assessment. Methods: We have conducted a 35-day feeding experiment involving 1,600 chickens, of which half were control and the other half were fed a Rox-supplemented diet for the first 28 days and then a Rox-free diet for the final 7 days. We quantified the concentrations of individual arsenic species in the breast meat of 229 chickens. Results: Rox, arsenobetaine, arsenite, monomethylarsonic acid, dimethylarsinic acid, and a new arsenic metabolite, were detected in breast meat from chickens fed Rox. The concentrations of arsenic species, except arsenobetaine, were significantly higher in the Rox-fed than in the control chickens. The half-lives of elimination of these arsenic species were 0.4–1 day. Seven days after termination of Rox feeding, the concentrations of arsenite (3.1 μg/kg), Rox (0.4 μg/kg), and a new arsenic metabolite (0.8 μg/kg) were significantly higher in the Rox-fed chickens than in the control. Conclusion: Feeding of Rox to chickens increased the concentrations of five arsenic species in breast meat. Although most arsenic species were excreted rapidly when the feeding of Rox stopped, arsenic species remaining in the Rox-fed chickens were higher than the background levels. Citation: Liu Q, Peng H, Lu X, Zuidhof MJ, Li XF, Le XC. 2016. Arsenic species in chicken breast: temporal variations of metabolites, elimination kinetics, and residual concentrations. Environ Health Perspect 124:1174–1181; http://dx.doi.org/10.1289/ehp

  5. Arsenic Species in Chicken Breast: Temporal Variations of Metabolites, Elimination Kinetics, and Residual Concentrations.

    PubMed

    Liu, Qingqing; Peng, Hanyong; Lu, Xiufen; Zuidhof, Martin J; Li, Xing-Fang; Le, X Chris

    2016-08-01

    Chicken meat has the highest per capita consumption among all meat types in North America. The practice of feeding 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, Rox) to chickens lasted for more than 60 years. However, the fate of Rox and arsenic metabolites remaining in chicken are poorly understood. We aimed to determine the elimination of Rox and metabolites from chickens and quantify the remaining arsenic species in chicken meat, providing necessary information for meaningful exposure assessment. We have conducted a 35-day feeding experiment involving 1,600 chickens, of which half were control and the other half were fed a Rox-supplemented diet for the first 28 days and then a Rox-free diet for the final 7 days. We quantified the concentrations of individual arsenic species in the breast meat of 229 chickens. Rox, arsenobetaine, arsenite, monomethylarsonic acid, dimethylarsinic acid, and a new arsenic metabolite, were detected in breast meat from chickens fed Rox. The concentrations of arsenic species, except arsenobetaine, were significantly higher in the Rox-fed than in the control chickens. The half-lives of elimination of these arsenic species were 0.4-1 day. Seven days after termination of Rox feeding, the concentrations of arsenite (3.1 μg/kg), Rox (0.4 μg/kg), and a new arsenic metabolite (0.8 μg/kg) were significantly higher in the Rox-fed chickens than in the control. Feeding of Rox to chickens increased the concentrations of five arsenic species in breast meat. Although most arsenic species were excreted rapidly when the feeding of Rox stopped, arsenic species remaining in the Rox-fed chickens were higher than the background levels. Liu Q, Peng H, Lu X, Zuidhof MJ, Li XF, Le XC. 2016. Arsenic species in chicken breast: temporal variations of metabolites, elimination kinetics, and residual concentrations. Environ Health Perspect 124:1174-1181; http://dx.doi.org/10.1289/ehp.1510530.

  6. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation.

    PubMed

    Sultana, Razia; Kobayashi, Katsuichiro; Kim, Ki-Hyun

    2015-01-01

    In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L(-1) to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.

  7. Assessment of chemical and biological significance of arsenical species in the Maurice River drainage basin (N. J. ). Part II. Partitioning of arsenic into bottom sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faust, S.D.; Winka, A.J.; Belton, T.

    1987-01-01

    A laboratory study was conducted on the partitioning of four arsenical species onto organic and sandy bottom sediments of Union Lake, N.J. Sandy sediments released more arsenic and sorbed less arsenic than the organic sediments. Organic sediments generally sorbed inorganic As species better than organic As species.

  8. Roxarsone, inorganic arsenic, and other arsenic species in chicken: a U.S.-based market basket sample.

    PubMed

    Nachman, Keeve E; Baron, Patrick A; Raber, Georg; Francesconi, Kevin A; Navas-Acien, Ana; Love, David C

    2013-07-01

    Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. Conventional chicken meat had higher iAs concentrations than did conventional antibiotic

  9. METHYLATED ARSENICIII SPECIES ARE POTENTIAL PROXIMATE OR ULTIMATE GENOTOXIC FORMS OF ARSENIC

    EPA Science Inventory

    METHYLATED ARSENIC(III) SPECIES ARE POTENTIAL PROXIMATE OR UL TIMA TE GENOTOXIC FORMS OF ARSENIC

    Inorganic arsenic (iAs, arsenite and arsenate) has been thought to act as a genotoxicant without reacting directly with DNA; neither iAs nor As(V) methylated metabolites are e...

  10. Accumulation features of arsenic species in various fishes collected from coastal cities in Korea

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Deuk; Son, Hee-Sik; Choi, Minkyu; Park, Min-Kyu

    2015-12-01

    In this study, 36 fish species were collected from three coastal cities in Korea to investigate levels and patterns of six arsenicals (arsenite: As (III), arsenate: As (V), arsenocholine: AsC, arsenobetaine: AsB, monomethylarsonic acid: MMA, and dimethylarsinic acid: DMA). The levels of ∑6 As in the different fish species varied substantially, ranging from 0.02 μg As/g ww (Islaeli carp) to 9.65 μg As/g ww (Skate ray) with a median of 0.40 μg As/g ww. All the arsenicals in marine fishes showed higher levels than those in freshwater fishes due to fish feed living in saline water. Overall, marine carnivorous fishes seem to be more contaminated with arsenic. For all the fish samples, AsB (mean fraction: 90.6%) was dominant among the six arsenicals, indicating biomethylation of inorganic arsenic and accumulation of AsB. Fish species with high water contents showed elevated levels of As (III), but there was no further significant correlations between arsenicals and water/lipid contents. Concentrations of As (V) were significantly lower than those of As (III), which implies that As (V) is reduced during biomethylation of inorganic arsenic. Consequently, we hypothesize that the toxicity of arsenic (mainly derived from As (III)) can be increased by the reduction of As (V), especially for the fish species with higher water contents.

  11. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia provinces, Poland.

    PubMed

    Komorowicz, Izabela; Barałkiewicz, Danuta

    2016-09-01

    Arsenic is a ubiquitous element which may be found in surface water, groundwater, and drinking water. In higher concentrations, this element is considered genotoxic and carcinogenic; thus, its level must be strictly controlled. We investigated the concentration of total arsenic and arsenic species: As(III), As(V), MMA, DMA, and AsB in drinking water, surface water, wastewater, and snow collected from the provinces of Wielkopolska, Kujawy-Pomerania, and Lower Silesia (Poland). The total arsenic was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), and arsenic species were analyzed with use of high-performance liquid chromatography inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Obtained results revealed that maximum total arsenic concentration determined in drinking water samples was equal to 1.01 μg L(-1). The highest concentration of total arsenic in surface water, equal to 3778 μg L(-1) was determined in Trująca Stream situated in the area affected by geogenic arsenic contamination. Total arsenic concentration in wastewater samples was comparable to those determined in drinking water samples. However, significantly higher arsenic concentration, equal to 83.1 ± 5.9 μg L(-1), was found in a snow sample collected in Legnica. As(V) was present in all of the investigated samples, and in most of them, it was the sole species observed. However, in snow sample collected in Legnica, more than 97 % of the determined concentration, amounting to 81 ± 11 μg L(-1), was in the form of As(III), the most toxic arsenic species.

  12. Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample

    PubMed Central

    Baron, Patrick A.; Raber, Georg; Francesconi, Kevin A.; Navas-Acien, Ana; Love, David C.

    2013-01-01

    Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. Results: The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. Conclusions: Conventional chicken meat had higher i

  13. HPLC-HG-AFS determination of arsenic species in acute promyelocytic leukemia (APL) plasma and blood cells.

    PubMed

    Guo, Meihua; Wang, Wenjing; Hai, Xin; Zhou, Jin

    2017-10-25

    Arsenic trioxide (ATO) has been successfully used in the treatment of acute promyelocytic leukemia (APL). To clarify the arsenic species in APL patients, high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS) and HG-AFS methods were developed and validated to quantify the plasma concentrations of inorganic arsenic (As(III) and As(V)) and methylated metabolites (MMA and DMA), and the total amounts of arsenic in blood cells and plasma. Blood cells and plasma were digested with mixtures of HNO 3 H 2 O 2 and analyzed by HG-AFS. For arsenic speciation, plasma samples were prepared with perchloric acid to precipitate protein. The supernatant was separated on an anion-exchange column within 6min with isocratic elution using 13mM CH 3 COONa, 3mM NaH 2 PO 4 , 4mM KNO 3 and 0.2mM EDTA-2Na. The methods provided linearity range of 0.2-20ng/mL for total arsenic and 2.0-50ng/mL for four arsenic species. The developed methods for total arsenic and arsenic species determination were precise and accurate. The spiked recoveries ranged from 81.2%-108.6% and the coefficients of variation for intra- and inter-batch precision were less than 9.3% and 12.5%, respectively. The developed methods were applied successfully for the assay of total arsenic and arsenic species in 5 APL patients. The HPLC-HG-AFS may be a good alternative for arsenic species determination in APL patients with its simplicity and low-cost in comparison with HPLC-ICP-MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. COMPARISON OF IN VITRO AND IN VIVO RESPONSES TO ARSENIC: GENE EXPRESSION PROFILING IN NORMAL HUMAN EPIDERMAL KERATINOCYTES AND HYPERKERATOSES FROM ARSENIC-EXPOSED HUMANS

    EPA Science Inventory

    Chronic exposure to arsenic is positively associated with skin, urinary bladder, lung, liver and kidney cancer development in humans. Elucidating the mode of action of arsenic carcinogenesis is a complicated issue as target cells are exposed to different toxic species of arsenic....

  15. Oxidation and detoxification of trivalent arsenic species.

    PubMed

    Aposhian, H Vasken; Zakharyan, Robert A; Avram, Mihaela D; Kopplin, Michael J; Wollenberg, Michael L

    2003-11-15

    Arsenic compounds with a +3 oxidation state are more toxic than analogous compounds with a +5 oxidation state, for example, arsenite versus arsenate, monomethylarsonous acid (MMA(III)) versus monomethylarsonic acid (MMA(V)), and dimethylarsinous acid (DMA(III)) versus dimethylarsinic acid (DMA(V)). It is no longer believed that the methylation of arsenite is the beginning of a methylation-mediated detoxication pathway. The oxidation of these +3 compounds to their less toxic +5 analogs by hydrogen peroxide needs investigation and consideration as a potential mechanism for detoxification. Xanthine oxidase uses oxygen to oxidize hypoxanthine to xanthine to uric acid. Hydrogen peroxide and reactive oxygen are also products. The oxidation of +3 arsenicals by the hydrogen peroxide produced in the xanthine oxidase reaction was blocked by catalase or allopurinol but not by scavengers of the hydroxy radical, e.g., mannitol or potassium iodide. Melatonin, the singlet oxygen radical scavenger, did not inhibit the oxidation. The production of H2O2 by xanthine oxidase may be an important route for decreasing the toxicity of trivalent arsenic species by oxidizing them to their less toxic pentavalent analogs. In addition, there are many other reactions that produce hydrogen peroxide in the cell. Although chemists have used hydrogen peroxide for the oxidation of arsenite to arsenate to purify water, we are not aware of any published account of its potential importance in the detoxification of trivalent arsenicals in biological systems. At present, this oxidation of the +3 oxidation state arsenicals is based on evidence from in vitro experiments. In vivo experiments are needed to substantiate the role and importance of H2O2 in arsenic detoxication in mammals.

  16. IN-FIELD PRESERVATION OF ARSENIC SPECIES IN DRINKING WATER USING EDTA

    EPA Science Inventory

    The two predominant inorganic arsenic species found in drinking waters are As(III) and As(V). As(III) is commonly associated with ground waters while As(V) is associated with surface waters. The efficiency of arsenic removal from a drinking water supply is dependent on the oxid...

  17. Arsenic Species in Drinking Water Wells in the USA with High Arsenic Concentrations

    EPA Science Inventory

    As part of the United States Environmental Protection Agency (USEPA) arsenic treatment demonstration program, 65 five well waters scattered across the US were speciated for As(III) and As(V). The speciation test data showed that most (60) well waters had one dominant species, but...

  18. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    NASA Astrophysics Data System (ADS)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio

  19. COMPLEMENTARY APPROACHES TO THE DETERMINATION OF ARSENIC SPECIES RELEVANT TO CONCENTRATED ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    Ion-exchange chromatography is the most often used analytical approach for arsenic

    speciation, due to the weak-acid nature of several of its species. However, no single

    technique can determine all potentially occurring arsenic species, especially in complex

    e...

  20. Performance of aquatic plant species for phytoremediation of arsenic-contaminated water

    NASA Astrophysics Data System (ADS)

    Jasrotia, Shivakshi; Kansal, Arun; Mehra, Aradhana

    2017-05-01

    This study investigates the effectiveness of aquatic macrophyte and microphyte for phytoremediation of water bodies contaminated with high arsenic concentration. Water hyacinth ( Eichhornia crassipes) and two algae ( Chlorodesmis sp. and Cladophora sp.) found near arsenic-enriched water bodies were used to determine their tolerance toward arsenic and their effectiveness to uptake arsenic thereby reducing organic pollution in arsenic-enriched wastewater of different concentrations. Parameters like pH, chemical oxygen demand (COD), and arsenic concentration were monitored. The pH of wastewater during the course of phytoremediation remained constant in the range of 7.3-8.4, whereas COD reduced by 50-65 % in a period of 15 days. Cladophora sp. was found to survive up to an arsenic concentration of 6 mg/L, whereas water hyacinth and Chlorodesmis sp. could survive up to arsenic concentrations of 2 and 4 mg/L, respectively. It was also found that during a retention period of 10 days under ambient temperature conditions, Cladophora sp. could bring down arsenic concentration from 6 to <0.1 mg/L, Chlorodesmis sp. was able to reduce arsenic by 40-50 %; whereas, water hyacinth could reduce arsenic by only 20 %. Cladophora sp. is thus suitable for co-treatment of sewage and arsenic-enriched brine in an algal pond having a retention time of 10 days. The identified plant species provides a simple and cost-effective method for application in rural areas affected with arsenic problem. The treated water can be used for irrigation.

  1. Enzyme-assisted extraction and liquid chromatography mass spectrometry for the determination of arsenic species in chicken meat.

    PubMed

    Liu, Qingqing; Peng, Hanyong; Lu, Xiufen; Le, X Chris

    2015-08-12

    Chicken is the most consumed meat in North America. Concentrations of arsenic in chicken range from μg kg(-1) to mg kg(-1). However, little is known about the speciation of arsenic in chicken meat. The objective of this research was to develop a method enabling determination of arsenic species in chicken breast muscle. We report here enzyme-enhanced extraction of arsenic species from chicken meat, separation using anion exchange chromatography (HPLC), and simultaneous detection with both inductively coupled plasma mass spectrometry (ICPMS) and electrospray ionization tandem mass spectrometry (ESIMS). We compared the extraction of arsenic species using several proteolytic enzymes: bromelain, papain, pepsin, proteinase K, and trypsin. With the use of papain-assisted extraction, 10 arsenic species were extracted and detected, as compared to 8 detectable arsenic species in the water/methanol extract. The overall extraction efficiency was also improved using a combination of ultrasonication and papain digestion, as compared to the conventional water/methanol extraction. Detection limits were in the range of 1.0-1.8 μg arsenic per kg chicken breast meat (dry weight) for seven arsenic species: arsenobetaine (AsB), inorganic arsenite (As(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), inorganic arsenate (As(V)), 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone), and N-acetyl-4-hydroxy-m-arsanilic acid (NAHAA). Analysis of breast meat samples from six chickens receiving feed containing Roxarsone showed the presence of (mean±standard deviation μg kg(-1)) AsB (107±4), As(III) (113±7), As(V) (7±2), MMA (51±5), DMA (64±6), Roxarsone (18±1), and four unidentified arsenic species (approximate concentration 1-10 μg kg(-1)). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Determination of arsenic species and arsenosugars in marine samples by HPLC-ICP-MS.

    PubMed

    Hirata, Shizuko; Toshimitsu, Hideki

    2005-10-01

    Arsenic-speciation analysis in marine samples was performed by high-pressure liquid chromatography (HPLC) with ICP-MS detection. Separation of eight arsenic species--As(III), MMA, DMA, As(V), AB, TMAO, AC and TeMAs(+)--was achieved on a C(18) column with isocratic elution (pH 3.0), under which conditions As(III) and MMA co-eluted. The entire separation was accomplished in 15 min. The HPLC-ICP-MS detection limits for the eight arsenic species were in the range 0.03-0.23 microg L(-1) based on 3 sigma for the blank response (n=5). The precision was calculated to be 2.4-8.0% (RSD) for the eight species. The method was successfully applied to several marine samples, e.g. oysters, fish, shrimps, and marine algae. Low-power microwave digestion was employed for extraction of arsenic from seafood products; ultrasonic extraction was employed for the extraction of arsenic from seaweeds. Separation of arsenosugars was achieved on an anion-exchange column. Concentrations of arsenosugars 2, 3, and 4 in marine algae were in the range 0.18-9.59 microg g(-1).

  3. [Determination of five arsenic species in rice by liquid chromatography-inductively coupled plasma-mass spectrometry].

    PubMed

    Gong, Jiadi; Cao, Xiaolin; Cao, Zhaoyun; Bian, Yingfang; Yu, Shasha; Chen, Mingxue

    2014-07-01

    A method was developed for the simultaneous determination of arsenic acid [As (V)], arsenious acid [As (III)], arsenobetaine (AsB), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in rice by liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS). The extraction reagent was 0.3 mol/L nitric acid with heat-assistant condition for 1.5 h at 95 degrees C. Then, the five arsenic species were separated by an anion exchange column (Dionex IonPac AS19, 250 mm x 4 mm) and detected by ICP-MS. Four kinds of extracted solutions were compared through the extraction efficiency. The concentration of nitric acid, the temperature and the extraction time were optimized. The recoveries of the five arsenic species spiked in rice at two levels ranged from 89.6% to 99.5% with the relative standard deviations (RSDs, n = 5) of 0.6% - 3.6%. The measured values of the arsenic species in standard rice materials were consistent with their standard values. The linear ranges were 0.05 - 200 microg/L for AsB and DMA, 0.10-400 microg/L for As (III) and MMA, 0.15-600 microg/L for As (V). The limits of detection for the five arsenic species were 0.15-0.45 microg/kg. The results showed that the method is much more precise for the risk assessment of the rice. This method is simple, accurate and durable for the determination of arsenic species in rice.

  4. Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles.

    PubMed

    Hu, Qingsong; Liu, Yuling; Gu, Xueyuan; Zhao, Yaping

    2017-08-01

    Arsenic pollution poses severe threat to human health, therefore dealing with the problem of arsenic contamination in water bodies is extremely important. The adsorption behaviors of different arsenic species, such as arsenate (As(V)), p-arsanilic acid (p-ASA), roxarsone (ROX), dimethylarsenate (DMA) from water using mesoporous bimetal oxide magnetic manganese ferrite nanoparticles (MnFe 2 O 4 ) have been detailedly investigated. The adsorbent was synthesized via a facile co-precipitation approach and recovered conveniently owing to its strong magnetic properties. The obtained MnFe 2 O 4 with large surface area and abundant hydroxyly functional groups exhibited excellent adsorption performance for As(V) and p-ASA, in contrast to ROX and DMA with the maximum adsorption capacities of As(V), p-ASA, ROX and DMA of 68.25 mg g -1 , 59.45 mg g -1 , 51.49 mg g -1 , and 35.77 mg g -1 , respectively. The Langmuir model and the pseudo-second-order kinetic model correlated satisfactorily with the adsorption thermodynamics and kinetics, and thermodynamic parameters depicted the spontaneous endothermic nature for the adsorption of different arsenic species. The adsorption mechanism of different arsenic species onto MnFe 2 O 4 nanoparticles at various pH values could be explained by surface complexation and molecular structural variations. Attenuated Total internal Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) further proved that arsenic species were bonded to the surface of MnFe 2 O 4 through the formation of an inner-sphere complex between the arsenic acid moiety and surface metal centers. The results would help to know the interaction of arsenic species with iron-manganese minerals and the mobility of arsenic species in natural environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Report of the key comparison CCQM-K108 determination of arsenic species, total arsenic and cadmium in brown rice flour

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Narukawa, Tomohiro; Inagaki, Kazumi; Miyashita, Shinichi; Kotzeva, Boriana; Kakoulides, Elias; Sxoina, Vasiliki; Fung, W. H.; Choi, Y. Y.; Yau, H. P.; Tsoi, Y. T.; Lee, C. L.; Kong, M. F.; Shin, Richard; Juan, Wang; Sin Yee, Ng; Uribe, Christian; Marques Rodrigues, Janaína; Caciano de Sena, Rodrigo; Silva Dutra, Emily; Bergamaschi, Luigi; Giordani, Laura; D'Agostino, Giancarlo; Valiente, Liliana; Horvat, Milena; Jacimovic, Radojko; Oduor Okumu, Tom; Kang'Iri, Jacqueline; Owiti Orwa, Tabitha; Chao, Wei; Jingbo, Chao; Taebunpakul, Sutthinun; Yafa, Charun; Kaewkhomdee, Nattikarn; Chailap, Benjamat; Pharat, Yanee; Phukphattanachai, Pranee; Turk, Gregory C.; Long, Stephen; Murphy, K. E.; Davis, Clay; Ellisor, Michael; Merrick, Jeffrey; White, Ian; Saxby, David; Linsky, S. M.; Barzev, A.; Botha, A.

    2015-01-01

    The CCQM-K108 key comparison was organised by the Inorganic Analysis Working Group (IAWG) of CCQM to test the abilities of national metrology institutes (NMIs) or designated institutes (DIs) to measure the mass fractions of arsenic species, total arsenic and cadmium in brown rice flour. The National Metrology Institute of Japan (NMIJ) acted as the coordinating laboratory. The participants used different measurement methods, though most of them used inductively coupled plasma mass spectrometry (ICP-MS) or isotope-dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) for Cd and ICP-MS for total arsenic. Regarding arsenic speciation, all participants used ICP-MS coupled with liquid chromatography (LC). Accounting for relative expanded uncertainty, comparability of measurement results for each of total arsenic and cadmium was successfully demonstrated by the participating NMIs or DIs for the measurement of the measurand at the level of less than 0.5 mg/kg. Regarding arsenic species (inorganic arsenic and dimethylarsinic acid (DMAA)), there was, however, a measurement problem still to be solved and that part of CCQM-K108 will be repeated. It is expected that arsenic, cadmium and other metals at mass fractions greater than approximately 0.1 mg/kg in rice flour can be determined by each participant using the same technique(s) employed for this key comparison to achieve similar uncertainties mentioned in the present report. Furthermore, the results of this key comparison can be utilised along with the IAWG core capability approach. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  6. Titanium dioxide solid phase for inorganic species adsorption and determination: the case of arsenic.

    PubMed

    Vera, R; Fontàs, C; Anticó, E

    2017-04-01

    We have evaluated a new titanium dioxide (Adsorbsia As600) for the adsorption of both inorganic As (V) and As (III) species. In order to characterize the sorbent, batch experiments were undertaken to determine the capacities of As (III) and As (V) at pH 7.3, which were found to be 0.21 and 0.14 mmol g -1 , respectively. Elution of adsorbed species was only possible using basic solutions, and arsenic desorbed under batch conditions was 50 % when 60 mg of loaded titanium dioxide was treated with 0.5 M NaOH solution. Moreover, its use as a sorbent for solid-phase extraction and preconcentration of arsenic species from well waters has been investigated, without any previous pretreatment of the sample. Solid-phase extraction was implemented by packing several minicolumns with Adsorbsia As600. The method has been validated showing good accuracy and precision. Acceptable recoveries were obtained when spiked waters at 100-200 μg L -1 were measured. The presence of major anions commonly found in waters did not affect arsenic adsoption, and only silicate at 100 mg L -1 level severely competed with arsenic species to bind to the material. Finally, the measured concentrations in water samples containing arsenic from the Pyrinees (Catalonia, Spain) showed good agreement with the ICP-MS results.

  7. Establishment of a method for determination of arsenic species in seafood by LC-ICP-MS.

    PubMed

    Zmozinski, Ariane V; Llorente-Mirandes, Toni; López-Sánchez, José F; da Silva, Márcia M

    2015-04-15

    An analytical method for determination of arsenic species (inorganic arsenic (iAs), methylarsonic acid (MA), dimethylarsinic acid (DMA), arsenobetaine (AB), trimethylarsine oxide (TMAO) and arsenocholine (AC)) in Brazilian and Spanish seafood samples is reported. This study was focused on extraction and quantification of inorganic arsenic (iAs), the most toxic form. Arsenic speciation was carried out via LC with both anionic and cationic exchange with ICP-MS detection (LC-ICP-MS). The detection limits (LODs), quantification limits (LOQs), precision and accuracy for arsenic species were established. The proposed method was evaluated using eight reference materials (RMs). Arsenobetaine was the main species found in all samples. The total and iAs concentration in 22 seafood samples and RMs ranged between 0.27-35.2 and 0.02-0.71 mg As kg(-1), respectively. Recoveries ranging from 100% to 106% for iAs, based on spikes, were achieved. The proposed method provides reliable iAs data for future risk assessment analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene.

    PubMed

    Yuan, Chungang; Lu, Xiufen; Qin, Jie; Rosen, Barry P; Le, X Chris

    2008-05-01

    Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400-500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems.

  9. Volatile Arsenic Species Released from Escherichia coli Expressing the AsIII S-adenosylmethionine Methyltransferase Gene

    PubMed Central

    YUAN, CHUNGANG; LU, XIUFEN; QIN, JIE; ROSEN, BARRY P.; LE, X. CHRIS

    2015-01-01

    Biological systems, ranging from bacteria and fungi to humans, can methylate arsenic. Recent studies have suggested that the AsIII S-adenosylmethionine methyltransferase (arsM) gene in bacteria was responsible for the removal of arsenic as the volatile arsines from the bacteria. However, there has been no direct measure of the arsines released from bacteria cultures. We describe here an integrated system incorporating the bacterial incubation and volatile arsenic species analysis, and we demonstrate its application to the identification of the volatile arsines produced in bacterial cultures. The headspace of the bacterial cultures was purged with helium, and the volatile arsenic species were trapped in a chromatographic column immersed in liquid nitrogen. The cryogenically trapped arsines [AsH3, (CH3)AsH2, (CH3)2AsH, and (CH3)3As] were separated by gas chromatography and were detected by inductively coupled plasma mass spectrometry. A hydride generation system was coupled to the bacterial culture system, allowing for spiking standards and for generating calibration arsines necessary for quantitative analysis. Both bacteria containing the arsM gene or its variant arsMC2 gene were able to produce 400–500 ng of trimethylarsine. No trimethylarsine was detectable in bacteria lacking the arsM gene (containing the vector plasmid as negative control). These results confirm that arsM is responsible for releasing arsenic as volatile species from the arsenic-resistant bacteria. Our results also show traces of AsH3, CH3AsH2, and (CH3)2AsH in cultures of bacteria expressing arsM. The method detection limits for AsH3, CH3AsH2, (CH3)2AsH, and (CH3)3As were 0.5, 0.5, 0.7, and 0.6 pg, respectively. The ability to quantify trace levels of these volatile arsenic species makes it possible to study the biotransformation and biochemical roles of the evolution of these volatile arsenic species by biological systems. PMID:18522094

  10. Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients.

    PubMed

    Chávez-Capilla, Teresa; Maher, William; Kelly, Tamsin; Foster, Simon

    2016-11-01

    Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species. Copyright © 2016. Published by Elsevier B.V.

  11. An approach for identification and determination of arsenic species in the extract of kelp.

    PubMed

    Yu, Lee L; Wei, Chao; Zeisler, Rolf; Tong, Junting; Oflaz, Rabia; Bao, Haixia; Wang, Jun

    2015-05-01

    The National Institute of Standards and Technology is developing a kelp powder standard reference material (SRM) in support of dietary supplement measurements. Edible seaweeds such as kelp and laver consumed as diet or dietary supplement contain tens of mg/kg arsenic. The speciation information of arsenic in the seaweed should be provided because the total arsenic alone does not fully address the safety issue of the dietary supplement as the value assignment is originally intended. The inability to avail all arsenic species for value assignment measurements prevented the certification of arsenic species in the candidate SRM; however, approximately 70 % of total arsenic extracted with a 1:1 volume fraction of methanol:water mixture allowed arsenic speciation values to be assigned to a procedure-defined extract, which may be used for method validation in research to improve upon current extraction and measurement practices. Arsenic species in kelp and laver were identified using electrospray ionization ion trap time of flight mass spectrometry (ESI-IT-TOF). Arsenosugars As(328), As(482), and As(392) were found in the kelp candidate SRM while As(328) and As(482) were found in GBW 08521, a certified reference material (CRM) of laver produced by the National Institute of Metrology of China (NIM). A discovery that the digests of kelp and laver contained only dimethylarsinic acid led to the conclusion that the seaweeds did not contain detectible levels of arsenobetaine, arsenocholine or trimethylarsine oxide that could overlap with the peaks of arsenosugars in the separation. The mean ± s of (5.68 ± 0.28) mg/kg and (13.43 ± 0.31) mg/kg found for As(482) and As(392) in kelp, respectively, using instrumental neutron activation analysis (INAA) demonstrated that value assignment measurement of arsenosugars was possible without arsenosugar calibration standards.

  12. Stability of toxic arsenic species and arsenosugars found in the dry alga Hijiki and its water extracts.

    PubMed

    García-Salgado, Sara; Quijano, M Ángeles

    2014-10-01

    The achievement of reliable results in speciation analysis requires not only sensitive techniques but also sureness of species stability. Therefore, it is necessary to carry out stability studies because it is important to know with absolute certainty that there is not any species transformation during sample treatment and/or storage. Although several procedures have been recommended for the preservation of species integrity, there is no general agreement, as arsenic species stability depends on the sample matrix, the concentration level and the sample treatment procedure, so it is necessary to assess the arsenic species stability for each case. Thus, the present paper reports the stability tests of arsenic species carried out on the commercially available edible alga Hijiki (Hizikia fusiformis), from Japan, in both the dry sample and its water extracts, which were stored in amber glass and polystyrene containers at -18 and +4°C in the dark. Extractions were carried out with deionized water by microwave-assisted extraction, at a temperature of 90°C and three extraction steps of 5 min each, whereas arsenic speciation analysis was performed by anion exchange high performance liquid chromatography-photo-oxidation-hydride generation-atomic fluorescence spectrometry. The results obtained for the dry alga showed that the arsenic species present in it (arsenate (As(V)), dimethylarsinic acid (DMA) and the arsenosugars glycerol (Gly-sug), phosphate (PO4-sug), sulfonate (SO3-sug) and sulfate (SO4-sug)) were stable for at least 12 months when the sample was stored in polystyrene containers at +20°C in the dark. Regarding water extracts, the best storage conditions consisted of the use of polystyrene containers and a temperature of +4°C, for a maximum storage time of seven days. Therefore, the immediate analysis of Hijiki water extracts would not be necessary, and they could be stored for one week before analysis, ensuring arsenic species stability. This information about

  13. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species.

    PubMed

    de Melo, Rangel Wesley; Schneider, Jerusa; de Souza, Costa Enio Tarso; Sousa, Soares Cláudio Roberto Fonsêca; Guimarães, Guilherme Luiz Roberto; de Souza, Moreira Fatima Maria

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF) improve the tolerance of hosting plants to arsenic (As) in contaminated soils. This work assessed the phytoprotective effect of Glomus etunicatum, Acaulospora morrowiae, Gigaspora gigantea, and Acaulospora sp. on four leguminous species (Acacia mangium, Crotalaria juncea, Enterolobium contortisiliquum, and Stizolobium aterrimum) in an As-contaminated soil from a gold mining area. AMF root colonization, biomass production, As and P accumulation, as well as arsenic translocation index (TI) from roots to shoots were measured. The AMF phytoprotective effect was assessed by the P/As ratio and the activity of plant antioxidant enzymes. The AMF colonization ranged from 24 to 28%. In general, all leguminous species had low As TI when inoculated with AMF species. Inoculation of C. juncea with Acaulospora sp. improved significantly As accumulation in roots, and decreased the activity of ascorbate peroxidase (APX) and superoxide dismutase (SOD), highlighting its phytoprotective effect and the potential use of this symbiosis for phytoremediation of As-contaminated soils. However, S. aterrimum has also shown a potential for phytoremediation irrespectively of AMF inoculation. APX was a good indicator of the phytoprotective effect against As contamination in C. juncea and A. mangium. In general P/As ratio in shoots was the best indicator of the phytoprotective effect of all AMF species in all plant species.

  14. Determination of arsenic species in edible periwinkles (Littorina littorea) by HPLC-ICPMS and XAS along a contamination gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whaley-Martin, K. J.; Koch, I.; Reimer, K. J.

    Arsenic is naturally found in the tissues of marine animals, usually as the non-toxic arsenical arsenobetaine, but exposure to elevated arsenic concentrations in the environment may alter the arsenic species distribution within tissues of the organism. This study examined the arsenic species in the tissues of the marine periwinkle (Littorina littorea) along an arsenic concentration gradient in the sediment. The arsenicals in L. littorea were examined using the complementary analytical methods high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC–ICPMS) and X-ray absorption spectroscopy (XAS). Total arsenic concentrations in the periwinkle tissues ranged from 56 to 840more » mg · kg -1 dry weight (equivalent to 13 to 190 mg · kg -1 wet weight). Inorganic arsenicals were found to be positively correlated with total arsenic concentrations (R 2 = 0.993) and reached 600 mg · kg -1 dry weight, the highest reported to date in marine organisms. These high inorganic arsenic concentrations within this low trophic organism pose a potential toxicological risk to higher trophic consumers.« less

  15. Inductively coupled plasma mass spectrometry study of the retention behavior of arsenic species on various solid phase extraction cartridges and its application in arsenic speciation

    NASA Astrophysics Data System (ADS)

    Yu, Chunhai; Cai, Qiantao; Guo, Zhong-Xian; Yang, Zhaoguang; Khoo, Soo Beng

    2003-07-01

    Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the retention behavior of arsenite, arsenate, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), arsenocholine (AsC), trimethylarsine oxide (TMAO) and tetramethylarsonium ion (TMAI) on various silica-based solid phase extraction (SPE) cartridges. A method for arsenic speciation is then developed on the basis of selective SPE separation of arsenic species and highly sensitive ICP-MS detection. Factors affecting the retention and elution of arsenic species were examined. Results showed that the retention of arsenic species depended on the chemical characteristics of arsenic species and the types of sorbent materials. Change of pH in the range of 2.0-9.0 did not show significant effects on the retention of DMA, AsB, AsC, TMAI and TMAO on an ethylbenzene sulfonic acid-based strong cation exchange (SCX-3) cartridge. pH also did not influence the retention of AsB, AsC, TMAI and TMAO on a mixed-mode (M-M) cartridge containing non-polar, strong cation exchange and strong anion exchange (SAX) functional groups. However, the retentions of As(V) and MMA on the SAX and the M-M cartridge changed with pH. As(V) and MMA were completely retained on the SAX cartridge and sequentially selectively eluted with 1.0 mol l -1 acetic acid (for MMA). DMA, AsB, AsC, TMAI and TMAO were completely retained on the SCX-3 cartridge and sequentially selectively eluted with 1.0 mol l -1 HNO 3 (for DMA). As(V), MMA, AsB, AsC, TMAI and TMAO were completely retained on the M-M cartridge. As(III) was not retained on either cartridge and remained in solution. Arsenic species in solution and those eluted from the cartridges were subsequently determined by ICP-MS. A detection limit of 8 ng l -1 arsenic in water sample was obtained. This method was successfully applied to arsenic speciation in various sources of water samples (drinking water, waste water, raw water, etc.) and US National Institute of

  16. Extraction techniques for arsenic species in rice flour and their speciation by HPLC-ICP-MS.

    PubMed

    Narukawa, Tomohiro; Suzuki, Toshihiro; Inagaki, Kazumi; Hioki, Akiharu

    2014-12-01

    The extraction of arsenic (As) species present in rice flour samples was investigated using different extracting solvents, and the concentration of each species was determined by HPLC-ICP-MS after heat-assisted extraction. The extraction efficiencies for total arsenic species and especially for arsenite [As(III)] and arsenate [As(V)] were investigated. As(III), As(V) and dimethylarsinic acid (DMAA) were found in the samples, and the concentration of DMAA did not vary with treatment conditions. However, the concentrations of extracted total arsenic and those of As(III) and As(V) depended on the extracting solvents. When an extracting solvent was highly acidic, the concentrations of extracted total arsenic were in good agreement with the total arsenic concentration determined by ICP-MS after microwave-assisted digestion, though a part of the As(V) was reduced to As(III) during the highly acidic extraction process. Extraction under neutral conditions increased the extracted As(V), but extracted total arsenic was decreased because a part of the As(III) could not be extracted. Optimum conditions for the extraction of As(III) and As(V) from rice flour samples are discussed to allow the accurate determinations of As(III), As(V) and DMAA in the rice flour samples. Heat block extraction techniques using 0.05 mol L(-1) HClO4 and silver-containing 0.15 mol L(-1) HNO3 were also developed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Nitarsone, Inorganic Arsenic, and Other Arsenic Species in Turkey Meat: Exposure and Risk Assessment Based on a 2014 U.S. Market Basket Sample

    PubMed Central

    Nachman, Keeve E.; Love, David C.; Baron, Patrick A.; Nigra, Anne E.; Murko, Manuela; Raber, Georg; Francesconi, Kevin A.; Navas-Acien, Ana

    2016-01-01

    Background: Use of nitarsone, an arsenic-based poultry drug, may result in dietary exposures to inorganic arsenic (iAs) and other arsenic species. Nitarsone was withdrawn from the U.S. market in 2015, but its use in other countries may continue. Objectives: We characterized the impact of nitarsone use on arsenic species in turkey meat and arsenic exposures among turkey consumers, and we estimated cancer risk increases from consuming turkey treated with nitarsone before its 2015 U.S. withdrawal. Methods: Turkey from three cities was analyzed for total arsenic, iAs, methylarsonate (MA), dimethylarsinate, and nitarsone, which were compared across label type and month of purchase. Turkey consumption was estimated from NHANES data to estimate daily arsenic exposures for adults and children 4–30 months of age and cancer risks among adult consumers. Results: Turkey meat from conventional producers not prohibiting nitarsone use showed increased mean levels of iAs (0.64 μg/kg) and MA (5.27 μg/kg) compared with antibiotic-free and organic meat (0.39 μg/kg and 1.54 μg/kg, respectively) and meat from conventional producers prohibiting nitarsone use (0.33 μg/kg and 0.28 μg/kg, respectively). Samples with measurable nitarsone had the highest mean iAs and MA (0.92 μg/kg and 10.96 μg/kg, respectively). Nitarsone was higher in October samples than in March samples, possibly resulting from increased summer use. Based on mean iAs concentrations in samples from conventional producers with no known policy versus policies prohibiting nitarsone, estimated lifetime daily consumption by an 80-kg adult, and a recently proposed cancer slope factor, we estimated that use of nitarsone by all turkey producers would result in 3.1 additional cases of bladder or lung cancer per 1,000,000 consumers. Conclusions: Nitarsone use can expose turkey consumers to iAs and MA. The results of our study support the U.S. Food and Drug Administration’s removal of nitarsone from the U.S. market and

  18. Nitarsone, Inorganic Arsenic, and Other Arsenic Species in Turkey Meat: Exposure and Risk Assessment Based on a 2014 U.S. Market Basket Sample.

    PubMed

    Nachman, Keeve E; Love, David C; Baron, Patrick A; Nigra, Anne E; Murko, Manuela; Raber, Georg; Francesconi, Kevin A; Navas-Acien, Ana

    2017-03-01

    Use of nitarsone, an arsenic-based poultry drug, may result in dietary exposures to inorganic arsenic (iAs) and other arsenic species. Nitarsone was withdrawn from the U.S. market in 2015, but its use in other countries may continue. We characterized the impact of nitarsone use on arsenic species in turkey meat and arsenic exposures among turkey consumers, and we estimated cancer risk increases from consuming turkey treated with nitarsone before its 2015 U.S. withdrawal. Turkey from three cities was analyzed for total arsenic, iAs, methylarsonate (MA), dimethylarsinate, and nitarsone, which were compared across label type and month of purchase. Turkey consumption was estimated from NHANES data to estimate daily arsenic exposures for adults and children 4-30 months of age and cancer risks among adult consumers. Turkey meat from conventional producers not prohibiting nitarsone use showed increased mean levels of iAs (0.64 μg/kg) and MA (5.27 μg/kg) compared with antibiotic-free and organic meat (0.39 μg/kg and 1.54 μg/kg, respectively) and meat from conventional producers prohibiting nitarsone use (0.33 μg/kg and 0.28 μg/kg, respectively). Samples with measurable nitarsone had the highest mean iAs and MA (0.92 μg/kg and 10.96 μg/kg, respectively). Nitarsone was higher in October samples than in March samples, possibly resulting from increased summer use. Based on mean iAs concentrations in samples from conventional producers with no known policy versus policies prohibiting nitarsone, estimated lifetime daily consumption by an 80-kg adult, and a recently proposed cancer slope factor, we estimated that use of nitarsone by all turkey producers would result in 3.1 additional cases of bladder or lung cancer per 1,000,000 consumers. Nitarsone use can expose turkey consumers to iAs and MA. The results of our study support the U.S. Food and Drug Administration's removal of nitarsone from the U.S. market and further support its removal from the global marketplace

  19. Targeting Low-arsenic Groundwater with Mobile-phone Technology in Araihazar, Bangladesh

    PubMed Central

    Trevisani, M.; Immel, J.; Jakariya, Md.; Osman, N.; Cheng, Z.; Gelman, A.; Ahmed, K.M.

    2006-01-01

    The Bangladesh Arsenic Mitigation and Water Supply Program (BAMWSP) has compiled field-kit measurements of the arsenic content of groundwater for nearly five million wells. By comparing the spatial distribution of arsenic inferred from these field-kit measurements with geo-referenced laboratory data in a portion of Araihazar upazila, it is shown here that the BAMWSP data could be used for targeting safe aquifers for the installation of community wells in many villages of Bangladesh. Recent experiences with mobile-phone technology to access and update the BAMWSP data in the field are also described. It is shown that the technology, without guaranteeing success, could optimize interventions by guiding the choice of the drilling method that is likely to reach a safe aquifer and identifying those villages where exploratory drilling is needed. PMID:17366770

  20. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    EPA Science Inventory

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  1. Determination of trace metals and analysis of arsenic species in tropical marine fishes from Spratly islands.

    PubMed

    Li, Jingxi; Sun, Chengjun; Zheng, Li; Jiang, Fenghua; Wang, Shuai; Zhuang, Zhixia; Wang, Xiaoru

    2017-09-15

    Trace metal contents in 38 species of tropical marine fishes harvested from the Spratly islands of China were determined by microwave digestion and inductively coupled plasma mass spectrometry analysis. Arsenic species were determined by high-performance liquid chromatography and inductively coupled plasma mass spectrometry analysis. The average levels of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb, and U in the fish samples were 1.683, 0.350, 0.367, 2.954, 36.615, 0.087, 0.319, 1.566, 21.946, 20.845, 2.526, 3.583, 0.225, 0.140, and 0.061mg·kg -1 , respectively; Fe, Zn, and As were found at high concentrations. The trace metals exhibited significant positive correlation between each other, with r value of 0.610-0.852. Further analysis indicated that AsB (8.560-31.020mg·kg -1 ) was the dominant arsenic species in the fish samples and accounted for 31.48% to 47.24% of the total arsenic. As(III) and As(V) were detected at low concentrations, indicating minimal arsenic toxicity. Copyright © 2017. Published by Elsevier Ltd.

  2. METHYLATED TRIVALENT ARSENIC SPECIES ARE GENOTOXIC

    EPA Science Inventory

    ABSTRACT

    The genotoxic effects of arsenic compounds are generally believed to result from other than direct interacton with DNA. The reactivties of methyloxarsine (MAsIII) and iododimethylarsine (DMAsIII), two methylated trivalent arsenicals, toward supercoiled X174 RFI ...

  3. Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2002-01-01

    The distribution of inorganic arsenic species must be preserved in the field to eliminate changes caused by metal oxyhydroxide precipitation, photochemical oxidation, and redox reactions. Arsenic species sorb to iron and manganese oxyhydroxide precipitates, and arsenite can be oxidized to arsenate by photolytically produced free radicals in many sample matrices. Several preservatives were evaluated to minimize metal oxyhydroxide precipitation, such as inorganic acids and ethylenediaminetetraacetic acid (EDTA). EDTA was found to work best for all sample matrices tested. Storing samples in opaque polyethylene bottles eliminated the effects of photochemical reactions. The preservation technique was tested on 71 groundwater and six acid mine drainage samples. Concentrations in groundwater samples reached 720 ??g-As/L for arsenite and 1080 ??g-As/L for arsenate, and acid mine drainage samples reached 13 000 ??g-As/L for arsenite and 3700 ??g-As/L for arsenate. The arsenic species distribution in the samples ranged from 0 to 90% arsenite. The stability of the preservation technique was established by comparing laboratory arsenic speciation results for samples preserved in the field to results for subsamples speciated onsite. Statistical analyses indicated that the difference between arsenite and arsenate concentrations for samples preserved with EDTA in opaque bottles and field speciation results were analytically insignificant. The percentage change in arsenite:arsenate ratios for a preserved acid mine drainage sample and groundwater sample during a 3-month period was -5 and +3%, respectively.

  4. Arsenic Species in the Ground Water

    EPA Science Inventory

    Abstract Arsenic concentrations in ground varies widely and regionally across the United States and exists as oxyanions having two oxidation states: As(+III) and As(+V). As(V) is effectively removed by most arsenic treatment processes whereas uncharged As(III) is poorly removed...

  5. Arsenic Release from Foodstuffs upon Food Preparation.

    PubMed

    Cheyns, Karlien; Waegeneers, Nadia; Van de Wiele, Tom; Ruttens, Ann

    2017-03-22

    In this study the concentration of total arsenic (As) and arsenic species (inorganic As, arsenobetaine, dimethylarsinate, and methylarsonate) was monitored in different foodstuffs (rice, vegetables, algae, fish, crustacean, molluscs) before and after preparation using common kitchen practices. By measuring the water content of the foodstuff and by reporting arsenic concentrations on a dry weight base, we were able to distinguish between As release effects due to food preparation and As decrease due to changes in moisture content upon food preparation. Arsenic species were released to the broth during boiling, steaming, frying, or soaking of the food. Concentrations declined with maxima of 57% for total arsenic, 65% for inorganic As, and 32% for arsenobetaine. On the basis of a combination of our own results and literature data, we conclude that the extent of this release of arsenic species is species specific, with inorganic arsenic species being released most easily, followed by the small organic As species and the large organic As species.

  6. A Population-based Case–Control Study of Urinary Arsenic Species and Squamous Cell Carcinoma in New Hampshire, USA

    PubMed Central

    Li, Zhigang; Perry, Ann E.; Spencer, Steven K.; Gandolfi, A. Jay; Karagas, Margaret R.

    2013-01-01

    Background: Chronic high arsenic exposure is associated with squamous cell carcinoma (SCC) of the skin, and inorganic arsenic (iAs) metabolites may play an important role in this association. However, little is known about the carcinogenicity of arsenic at levels commonly observed in the United States. Objective: We estimated associations between total urinary arsenic and arsenic species and SCC in a U.S. population. Methods: We conducted a population-based case–control SCC study (470 cases, 447 controls) in a U.S. region with moderate arsenic exposure through private well water and diet. We measured urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA), and summed these arsenic species (ΣAs). Because seafood contains arsenolipids and arsenosugars that metabolize into DMA through alternate pathways, participants who reported seafood consumption within 2 days before urine collection were excluded from the analyses. Results: In adjusted logistic regression analyses (323 cases, 319 controls), the SCC odds ratio (OR) was 1.37 for each ln-transformed microgram per liter increase in ln-transformed ΣAs concentration [ln(ΣAs)] (95% CI: 1.04, 1.80). Urinary ln(MMA) and ln(DMA) also were positively associated with SCC (OR = 1.34; 95% CI: 1.04, 1.71 and OR = 1.34; 95% CI: 1.03, 1.74, respectively). A similar trend was observed for ln(iAs) (OR = 1.20; 95% CI: 0.97, 1.49). Percent iAs, MMA, and DMA were not associated with SCC. Conclusions: These results suggest that arsenic exposure at levels common in the United States relates to SCC and that arsenic metabolism ability does not modify the association. Citation: Gilbert-Diamond D, Li Z, Perry AE, Spencer SK, Gandolfi AJ, Karagas MR. 2013. A population-based case–control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ Health Perspect 121:1154–1160; http://dx.doi.org/10.1289/ehp.1206178 PMID:23872349

  7. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design.

    PubMed

    Tanboonchuy, Visanu; Grisdanurak, Nurak; Liao, Chih-Hsiang

    2012-02-29

    This study describes the removal of arsenic species in groundwater by nano zero-valent iron process, including As(III) and As(V). Since the background species may inhibit or promote arsenic removal. The influence of several common ions such as phosphate (PO4(3-)), bicarbonate (HCO3-)), sulfate (SO4(2-)), calcium (Ca2+), chloride (Cl-), and humic acid (HA) were selected to evaluate their effects on arsenic removal. In particular, a 2(6-2) fractional factorial design (FFD) was employed to identify major or interacting factors, which affect arsenic removal in a significant way. As a result of FFD evaluation, PO4(3-) and HA play the role of inhibiting arsenic removal, while Ca2+ was observed to play the promoting one. As for HCO3- and Cl-, the former one inhibits As(III) removal, whereas the later one enhances its removal; on the other hand, As(V) removal was affected only slightly in the presence of HCO3- or Cl-. Hence, it was suggested that the arsenic removal by the nanoiron process can be improved through pretreatment of PO4(3-) and HA. In addition, for the groundwater with high hardness, the nanoiron process can be an advantageous option because of enhancing characteristics of Ca2+. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Comparison of Translocation and Transformation from Soil to Rice and Metabolism in Rats for Four Arsenic Species.

    PubMed

    Wang, Xu; Geng, Anjing; Dong, Yan; Fu, Chongyun; Li, Hanmin; Zhao, Yarong; Li, Qing X; Wang, Fuhua

    2017-10-18

    Arsenic (As) is ubiquitously present in the environment. The toxicity of As is related to its forms. This study was designed to compare the translocation and transformation of four As species from soil to rice, and metabolism in rats for four arsenic species. A set of 26550 data was obtained from pot experiments of rice plants grown in soil fortified with four As species, and 4050 data were obtained from rat experiments in which 81 rats were administered with the four As species. The total As in grain from the methyl arsenate fortified soil was 6.1, 4.9, and 5.2 times that from As(III), As(V), and dimethyl arsenate fortified soil, respectively. The total As in husk was 1.2-7.8 times greater than that in grain. After oral administration of each As species to rats, 83-96% was accumulatively excreted via feces and urine, while 0.1-16% was detected in blood. The translocation, transformation, and metabolism of different forms of arsenic vary greatly.

  9. Arsenic behavior in newly drilled wells.

    PubMed

    Kim, Myoung-Jin; Nriagu, Jerome; Haack, Sheridan

    2003-07-01

    In the present paper, inorganic arsenic species and chemical parameters in groundwater were determined to investigate the factors related to the distribution of arsenic species and their dissolution from rock into groundwater. For the study, groundwater and core samples were taken at different depths of two newly drilled wells in Huron and Lapeer Counties, Michigan. Results show that total arsenic concentrations in the core samples varied, ranging from 0.8 to 70.7 mg/kg. Iron concentration in rock was about 1800 times higher than that of arsenic, and there was no correlation between arsenic and iron occurrences in the rock samples. Arsenic concentrations in groundwater ranged from <1 to 171 microg/l. The arsenic concentration in groundwater depended on the amount of arsenic in aquifer rocks, and as well decreased with increasing depth. Over 90% of arsenic existed in the form of As(III), implying that the groundwater systems were in the reduced condition. The results such as high ferrous ion, low redox potential and low dissolved oxygen supported the observed arsenic species distribution. There was no noticeable difference in the total arsenic concentration and arsenic species ratio between unfiltered and filtered (0.45 microm) waters, indicating that the particulate form of arsenic was negligible in the groundwater samples. There were correlations between water sampling depth and chemical parameters, and between arsenic concentration and chemical parameters, however, the trends were not always consistent in both wells.

  10. [Simultaneous determination of 7 arsenic species in chicken muscle and chicken liver with high performance liquid chromatography-inductively coupled plasma mass spectrometry].

    PubMed

    Yang, Lijun; Hu, Qiaoru; Guo, Wei; Liu, Yumin; Song, Xiaohua; Zhang, Pengcheng

    2011-05-01

    A method for the simultaneous determination of 7 arsenic species was developed with high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS). The sample was extracted with artificial gastric juice. The HPLC separation was performed on an anion analytical column utilizing a gradient elution program of ammonium carbonate and water as the mobile phase. Identification and quantification were achieved by ICP-MS. Good linearities of 7 arsenic species were observed in the range from 1 microg/kg to 50 microg/kg with the correlation coefficients greater than 0.999. The average recoveries of 7 arsenic species spiked at the three levels of 1, 2 and 10 microg/kg ranged from 84.3% to 106.6% with the relative standard deviations of 1.4%-4.2%. The quantification limits of 7 arsenic species were 1 microg/kg. The method was proved to be good reproducibility, high sensitivity and simple preprocessing. This method is suitable for the simultaneous determination of 7 arsenic species in chicken muscle and chicken liver.

  11. Arsenic and arsenic species in shellfish and finfish from the western Arabian Gulf and consumer health risk assessment.

    PubMed

    Krishnakumar, Periyadan K; Qurban, Mohammad A; Stiboller, Michael; Nachman, Keeve E; Joydas, Thadickal V; Manikandan, Karuppasamy P; Mushir, Shemsi Ahsan; Francesconi, Kevin A

    2016-10-01

    This study reports the levels of total arsenic and arsenic species in marine biota such as clams (Meretrix meretrix; N=21) and pearl oyster (Pinctada radiata; N=5) collected from nine costal sites in Jan 2014, and cuttlefish (Sepia pharaonis; N=8), shrimp (Penaeus semisulcatus; N=1), and seven commercially important finfish species (N=23) collected during Apr-May 2013 from seven offshore sites in the western Arabian Gulf. Total As and As species such as dimethylarsinic acid (DMA), arsenobetaine (AB), trimethylarsine oxide (TMAO), arsenocholine (AC), tetramethylarsonium ion (Tetra), arsenosugar-glycerol (As-Gly) and inorganic As (iAs) were determined by using ICPMS and HPLC/ICPMS. In bivalves, the total As concentrations ranged from 16 to 118mg/kg dry mass; the toxic iAs fraction contributed on average less than 0.8% of the total As, while the nontoxic AB fraction formed around 58%. Total As concentrations for the remaining seafood (cuttlefish, shrimp and finfish) ranged from 11 to 134mg/kg dry mass and the iAs and AB fractions contributed on average 0.03% and 81% respectively of the total As. There was no significant relationship between the tissue concentrations of total As and iAs in the samples. There was also no significant relationship between As levels in seafood and geographical location or salinity of the waters from which samples were collected. Based on our results, we recommend introducing a maximum permissible level of arsenic in seafood from the Gulf based on iAs content rather than based on total As. Our analyses of cancer risks and non-cancer hazards identified non-negligible risks and the potential for hazards; the greatest risks were identified for expatriate consumers of bivalves and high-end consumers of seafood. Despite this, many uncertainties remain that would be best addressed by further analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. DIRECT-ACTING, DNA-DAMAGING AS (III)-METHYLATED SPECIES: IMPLICATIONS FOR A CARCINOGENIC MECHANISM OF ACTION OF ARSENICALS

    EPA Science Inventory

    Direct-acting, DNA-damaging As (III)-methylated species: implications for a carcinogenic . mechanism of action of arsenicals

    Inorganic arsenic (iAs, arsenite and arsenate) has been thought to act as a carcinogen without reacting directly with DNA; neither iAs nor the As(...

  13. Arsenic species in wheat, raw and cooked rice: Exposure and associated health implications.

    PubMed

    Rasheed, Hifza; Kay, Paul; Slack, Rebecca; Gong, Yun Yun

    2018-09-01

    Arsenic concentrations above 10μgL -1 were previously found in 89% of ground water sources in six villages of Pakistan. The present study has ascertained the health risks associated with exposure to total arsenic (tAs) and its species in most frequently consumed foods. Inorganic arsenic (iAs) concentrations were found to be 92.5±41.88μgkg -1 , 79.21±76.42μgkg -1 , and 116.38±51.38μgkg -1 for raw rice, cooked rice and wheat respectively. The mean tAs concentrations were 47.47±30.72μgkg -1 , 71.65±74.7μgkg -1 , 105±61.47μgkg -1 . Wheat is therefore demonstrated to be a significant source of arsenic exposure. Dimethylarsinic acid was the main organic species detected in rice, whilst monomethylarsonic acid was only found at trace levels. Total daily intake of iAs exceeded the provisional tolerable daily intake of 2.1μgkg -1 day -1 body weight in 74% of study participants due to concurrent intake from water (94%), wheat (5%) and raw rice (1%). A significant association between tAs in cooked rice and cooking water resulted in tAs intake 43% higher in cooked rice compared to raw rice. The study suggests that arsenic intake from food, particularly from wheat consumption, holds particular significance where iAs is relatively low in water. Chronic health risks were found to be significantly higher from wheat intake than rice, whilst the risk in terms of acute effects was below the USEPA's limit of 1.0. Children were at significantly higher health risk than adults due to iAs exposure from rice and/or wheat. The dietary exposure of participants to tAs was attributable to staple food intake with ground water iAs <10μgL -1 , however the preliminary advisory level (200μgkg -1 ) was achievable with rice consumption of ≤200gday -1 and compliance with ≤10μgL -1 iAs in drinking water. Although the daily iAs intake from food was lower than total water intake, the potential health risk from exposure to arsenic and its species still exists and requires exposure

  14. TISSUE DISTRIBUTION OF ARSENIC SPECIES IN MICE CHRONICALLY EXPOSED TO METHYLARSONOUS ACID

    EPA Science Inventory

    The metabolism of inorganic arsenic (iAs) in humans yields toxic and carcinogenic methyl-As (MAs) and dimethyl-As (DMAs) intermediates. Methylarsonous acid (MAsIII) is the most acutely toxic species of characterized iAs metabolites. Here, we examined the concentrations of As spec...

  15. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Fang, Yong; Pan, Yushi; Li, Peng; Xue, Mei; Pei, Fei; Yang, Wenjian; Ma, Ning; Hu, Qiuhui

    2016-12-15

    An analytical method using reversed phase chromatography-inductively coupled plasma mass spectrometry for arsenic and mercury speciation analysis was described. The effect of ion-pairing reagent on simultaneous separation of four arsenic (arsenite, arsenate, monomethlyarsonate and dimethylarsinate) and three mercury species (inorganic mercury (Hg(II)), methylmecury and ethylmercury) was investigated. Parameters including concentrations and pH of the mobile phase were optimized. The separation and re-equilibration time was attained within 20min. Meanwhile, a sequential extraction method for arsenic and mercury in rice was tested. Subsequently, 1% HNO3 microwave-assisted extraction was chosen. Calibration curves based on peak area measurements were linear with correlation coefficient greater than 0.9958 for each species in the range studied. The detection limits of the species were in the range of 0.84-2.41μg/L for arsenic and 0.01-0.04μg/L for mercury, respectively. The proposed method was then successfully applied for the simultaneous determination of arsenic and mercury species in rice flour standard material and two kinds of rice from local markets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. T05 DETERMINATION OF REDUCED ARSENIC-THIO SPECIES IN WATERS BY ION CHROMATOGRAPHY-INDUCTIVELY-COUPLED PLASMA-MASS SSPECTROMETRY (IC-ICP-MS).

    EPA Science Inventory

    Elevated arsenic concentrations in ground water are a significant concern for human health, because they may lead to increased arsenic exposure via drinking water. As the inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) are known carcinogens, it is desirable to r...

  17. Arsenic-induced PML targeting onto nuclear bodies: Implications for the treatment of acute promyelocytic leukemia

    PubMed Central

    Zhu, Jun; Koken, Marcel H. M.; Quignon, Frédérique; Chelbi-Alix, Mounira K.; Degos, Laurent; Wang, Zhen Yi; Chen, Zhu; de Thé, Hugues

    1997-01-01

    Acute promyelocytic leukemia (APL) is associated with the t(15;17) translocation, which generates a PML/RARα fusion protein between PML, a growth suppressor localized on nuclear matrix-associated bodies, and RARα, a nuclear receptor for retinoic acid (RA). PML/RARα was proposed to block myeloid differentiation through inhibition of nuclear receptor response, as does a dominant negative RARα mutant. In addition, in APL cells, PML/RARα displaces PML and other nuclear body (NB) antigens onto nuclear microspeckles, likely resulting in the loss of PML and/or NB functions. RA leads to clinical remissions through induction of terminal differentiation, for which the respective contributions of RARα (or PML/RARα) activation, PML/RARα degradation, and restoration of NB antigens localization are poorly determined. Arsenic trioxide also leads to remissions in APL patients, presumably through induction of apoptosis. We demonstrate that in non-APL cells, arsenic recruits the nucleoplasmic form of several NB antigens onto NB, but induces the degradation of PML only, identifying a powerful tool to approach NB function. In APL cells, arsenic targets PML and PML/RARα onto NB and induces their degradation. Thus, RA and arsenic target RARα and PML, respectively, but both induce the degradation of the PML/RARα fusion protein, which should contribute to their therapeutic effects. The difference in the cellular events triggered by these two agents likely stems from RA-induced transcriptional activation and arsenic effects on NB proteins. PMID:9108090

  18. A population-based case-control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA.

    PubMed

    Gilbert-Diamond, Diane; Li, Zhigang; Perry, Ann E; Spencer, Steven K; Gandolfi, A Jay; Karagas, Margaret R

    2013-10-01

    Chronic high arsenic exposure is associated with squamous cell carcinoma (SCC) of the skin, and inorganic arsenic (iAs) metabolites may play an important role in this association. However, little is known about the carcinogenicity of arsenic at levels commonly observed in the United States. We estimated associations between total urinary arsenic and arsenic species and SCC in a U.S. population. We conducted a population-based case-control SCC study (470 cases, 447 controls) in a U.S. region with moderate arsenic exposure through private well water and diet. We measured urinary iAs, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA), and summed these arsenic species (ΣAs). Because seafood contains arsenolipids and arsenosugars that metabolize into DMA through alternate pathways, participants who reported seafood consumption within 2 days before urine collection were excluded from the analyses. In adjusted logistic regression analyses (323 cases, 319 controls), the SCC odds ratio (OR) was 1.37 for each ln-transformed microgram per liter increase in ln-transformed ΣAs concentration [ln(ΣAs)] (95% CI: 1.04, 1.80). Urinary ln(MMA) and ln(DMA) also were positively associated with SCC (OR = 1.34; 95% CI: 1.04, 1.71 and OR = 1.34; 95% CI: 1.03, 1.74, respectively). A similar trend was observed for ln(iAs) (OR = 1.20; 95% CI: 0.97, 1.49). Percent iAs, MMA, and DMA were not associated with SCC. These results suggest that arsenic exposure at levels common in the United States relates to SCC and that arsenic metabolism ability does not modify the association.

  19. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp ofmore » Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate.« less

  20. Phloem Transport Of Arsenic Species From Flag Leaf To Grain During Grain Filling

    EPA Science Inventory

    Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was ...

  1. Association between maternal urinary arsenic species and infant cord blood leptin levels in a New Hampshire Pregnancy Cohort.

    PubMed

    Gossai, Anala; Lesseur, Corina; Farzan, Shohreh; Marsit, Carmen; Karagas, Margaret R; Gilbert-Diamond, Diane

    2015-01-01

    Leptin is an important pleiotropic hormone involved in the regulation of nutrient intake and energy expenditure, and is known to influence body weight in infants and adults. High maternal levels of arsenic have been associated with reduced infant birth weight, but the mechanism of action is not yet understood. This study aimed to investigate the association between in utero arsenic exposure and infant cord blood leptin concentrations within 156 mother-infant pairs from the New Hampshire Birth Cohort Study (NHBCS) who were exposed to low to moderate levels of arsenic through well water and diet. In utero arsenic exposure was obtained from maternal second trimester urinary arsenic concentration, and plasma leptin levels were assessed through immunoassay. Results indicate that urinary arsenic species concentrations were predictive of infant cord blood leptin levels following adjustment for creatinine, infant birth weight for gestational age percentile, infant sex, maternal pregnancy-related weight gain, and maternal education level amongst 149 white mother-infant pairs in multivariate linear regression models. A doubling or 100% increase in total urinary arsenic concentration (iAs+MMA+DMA) was associated with a 10.3% (95% CI: 0.8-20.7%) increase in cord blood leptin levels. A 100% increase in either monomethylarsonic acid (MMA) or dimethylarsinic acid (DMA) was also associated with an 8.3% (95% CI: -1.0-18.6%) and 10.3% (95% CI: 1.2-20.2%) increase in cord blood leptin levels, respectively. The association between inorganic arsenic (iAs) and cord blood leptin was of similar magnitude and direction as other arsenic species (a 100% increase in iAs was associated with a 6.5% (95% CI: -3.4-17.5%) increase in cord blood leptin levels), albeit not significant. These results suggest in utero exposure to low levels of arsenic influences cord blood leptin concentration and presents a potential mechanism by which arsenic may impact early childhood growth. Copyright © 2014

  2. Concentrations of urinary arsenic species in relation to rice and seafood consumption among children living in Spain.

    PubMed

    Signes-Pastor, Antonio J; Vioque, Jesus; Navarrete-Muñoz, Eva M; Carey, Manus; García de la Hera, Manoli; Sunyer, Jordi; Casas, Maribel; Riaño-Galán, Isolina; Tardón, Adonina; Llop, Sabrina; Amorós, Rubén; Amiano, Pilar; Bilbao, José R; Karagas, Margaret R; Meharg, Andrew A

    2017-11-01

    Inorganic arsenic (i-As) has been related to wide-ranging health effects in children, leading to lifelong concerns. Proportionally, dietary i-As exposure dominates in regions with low arsenic drinking water. This study aims to investigate the relation between rice and seafood consumption and urinary arsenic species during childhood and to assess the proportion of urinary i-As metabolites. Urinary arsenic species concentration in 400 4-year-old children living in four geographical areas of Spain, in addition to repeated measures from 100 children at 7 years of age are included in this study. Rice and seafood products intake was collected from children's parents using a validated food frequency questionnaire (FFQ). At 4 years of age, children's urine i-As and monomethylarsonic acid (MMA) concentrations increased with rice product consumption (p-value = 0.010 and 0.018, respectively), and urinary arsenobetaine (AsB) with seafood consumption (p = 0.002). Four-year-old children had a higher consumption of both rice and seafood per body weight and a higher urinary %MMA (p-value = 0.001) and lower % dimethylarsinic acid (DMA) (p-value = 0.017). This study suggests increased dietary i-As exposure related to rice product consumption among children living in Spain, and the younger ones may be especially vulnerable to the health impacts of this exposure also considering that they might have a lower i-As methylation capacity than older children. In contrast, seafood consumption did not appear to influence the presence of potentially toxic arsenic species in this population of children. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Arsenic Concentrations and Speciation in Shellfishes from Korea

    NASA Astrophysics Data System (ADS)

    Yoon, C.; Yoon, H.

    2005-12-01

    Speciation of arsenic has received significant attention over the past 20 years in both mechanistic and exposure assessment research. Because the toxicity of arsenic is related to its oxidation state and its chemical forms, the determination of the total arsenic contents in a sample is not adequate to allow its impact on living organisms to be estimated. The inorganic arsenic species, arsenite (As3+) and arsenate (As5+), have been classified as carcinogenic and the methylated forms, monomethyl arsonic acid (MMA) and dimethyl arsinic acid (DMA) have recently been identified as cancer promoters. The highly methylated compounds like as arsenobetaine (AsB) and arsenocholine (AsC) are considered to be nontoxic. Although organisms in marine environment contain high amounts of total arsenic (ppm level), it is not usually present as inorganic arsenic or simple methylated forms well known as one of the toxic species. Arsenobetaine is the dominant species in marine animals and arsenosugars are most abundant in marine algae. This study aims to clarify those arsenic species present in the whole body of eleven different shellfishes from Korea. And those arsenic species were separated and measured by characterization using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) coupled system. The separation of arsenic species was achieved on anion exchange column and cation exchange column using phosphate and pyridine eluent, respectively. The ultrasonic extraction was employed for extraction of arsenic from whole body of shellfishes. The method was validated by analyzing three certified reference materials (DORM-2, TORT-2, 1566b). Total arsenic concentrations ranged from 0.1 mg/kg dry mass to 21.7 mg/kg dry mass. Most marine shellfishes contained higher arsenobetaine and arsenocholine with the exception of two shellfishes living in river. The lower amounts of inorganic arsenic species were also found in the some sample extracts

  4. Hazardous impact of arsenic on tissues of same fish species collected from two ecosystem.

    PubMed

    Shah, Abdul Qadir; Kazi, Tasneem Gul; Arain, Mohammad Balal; Baig, Jameel Ahmed; Afridi, Hassan Imran; Kandhro, Ghulam Abbas; Khan, Sumaira; Jamali, Mohammad Khan

    2009-08-15

    The purpose of this paper is to develop a database of fish tissues and to evaluate concentration of arsenic (As) in five tissues of fish species collected from Manchar Lake Pakistan and to compare concentration of As in fish tissues of same fish species collected from the Indus River, Pakistan. A sensitive and precise, hydride generation atomic absorption spectrometry (HG AAS) method is presented for the determination of total Arsenic (As). Microwave acid-assisted digestion (MAD) procedure based on the mixture HNO(3)/H(2)O(2) was evaluated. The method was successfully validated against CRM DORM-2 (dogfish muscle). Quantitative As recovery in CRM (DORM-2) was obtained and no statistical differences were found at 95% level by applying the t-test. The limit of detection (LOD) and limit of quantitation (LOQ), for As were established as 0.022 and 0.063 microg g(-1), respectively. The results of this study indicated that As concentration in fish tissues from the Indus River are generally lower than in tissues of fishes from Manchar Lake. Arsenic concentrations in fish tissues of Indus River are although above the respective human health-based concentrations.

  5. Water-supply options in arsenic-affected regions in Cambodia: targeting the bottom income quintiles.

    PubMed

    Chamberlain, Jim F; Sabatini, David A

    2014-08-01

    In arsenic-affected regions of Cambodia, rural water committees and planners can choose to promote various arsenic-avoidance and/or arsenic-removal water supply systems. Each of these has different costs of providing water, subsequently born by the consumer in order to be sustainable. On a volumetric basis ($/m3-yr) and of the arsenic-avoidance options considered, small-scale public water supply - e.g., treated water provided to a central tap stand - is the most expensive option on a life-cycle cost basis. Rainwater harvesting, protected hand dug wells, and vendor-supplied water are the cheapest with a normalized present worth value, ranging from $2 to $10 per cubic meter per year of water delivered. Subsidization of capital costs is needed to make even these options affordable to the lowest (Q5) quintile. The range of arsenic-removal systems considered here, using adsorptive media, is competitive with large-scale public water supply and deep tube well systems. Both community level and household-scale systems are in a range that is affordable to the Q4 quintile, though more research and field trials are needed. At a target cost of $5.00/m3, arsenic removal systems will compete with the OpEx costs for most of the arsenic-safe water systems that are currently available. The life-cycle cost approach is a valuable method for comparing alternatives and for assessing current water supply practices as these relate to equity and the ability to pay. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Strain differences in arsenic-induced oxidative lesion via arsenic biomethylation between C57BL/6J and 129X1/SvJ mice

    NASA Astrophysics Data System (ADS)

    Wu, Ruirui; Wu, Xiafang; Wang, Huihui; Fang, Xin; Li, Yongfang; Gao, Lanyue; Sun, Guifan; Pi, Jingbo; Xu, Yuanyuan

    2017-03-01

    Arsenic is a common environmental and occupational toxicant with dramatic species differences in its susceptibility and metabolism. Mouse strain variability may provide a better understanding of the arsenic pathological profile but is largely unknown. Here we investigated oxidative lesion induced by acute arsenic exposure in the two frequently used mouse strains C57BL/6J and 129X1/SvJ in classical gene targeting technique. A dose of 5 mg/kg body weight arsenic led to a significant alteration of blood glutathione towards oxidized redox potential and increased hepatic malondialdehyde content in C57BL/6J mice, but not in 129X1/SvJ mice. Hepatic antioxidant enzymes were induced by arsenic in transcription in both strains and many were higher in C57BL/6J than 129X1/SvJ mice. Arsenic profiles in the liver, blood and urine and transcription of genes encoding enzymes involved in arsenic biomethylation all indicate a higher arsenic methylation capacity, which contributes to a faster hepatic arsenic excretion, in 129X1/SvJ mice than C57BL/6J mice. Taken together, C57BL/6J mice are more susceptible to oxidative hepatic injury compared with 129X1/SvJ mice after acute arsenic exposure, which is closely associated with arsenic methylation pattern of the two strains.

  7. Determination and identification of hydrophilic and hydrophobic arsenic species in methanol extract of fresh cod liver by RP-HPLC with simultaneous ICP-MS and ESI-Q-TOF-MS detection.

    PubMed

    Arroyo-Abad, Uriel; Lischka, Susanne; Piechotta, Christian; Mattusch, Jürgen; Reemtsma, Thorsten

    2013-12-01

    The present study was focused on the determination and identification of arsenic species in methanolic extracts of cod liver. Arsenic species were fractionated and the fractions analysed by RP-HPLC-ICP-MS coupled with ESI-Q-TOF-MS. The total concentration of arsenic in the fresh cod liver was analysed by ICP-MS to be 1.53±0.02 mg As kg(-1)w.w. and the extraction recovery was ca. 100% and the column recovery >93%. Besides polar inorganic and methylated arsenic species (>70%) more hydrophobic arsenic-containing fatty acids and hydrocarbons occurred. Based on the mass spectrometric data proposals for molecular structures were elaborated for 20 of the organic As species included 10 arsenic-containing fatty acids (AsFA) and an arsenic-containing hydrocarbon (AsHC) mentioned for the first time in fresh cod liver. Arsenobetaine was found as main water-soluble arsenic compound in cod liver followed by higher molecular mass arsenic-containing fatty acids and hydrocarbons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory



    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder
    and kidney. At this time, there is not a scientific consensus on the
    mechanisms/modes of action for arsenic carcinogenesis. Proposed
    mechanisms/modes of action for arsenic carcinogenesi...

  9. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    PubMed

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years.

  10. ARSENIC SPECIES THAT CAUSE RELEASE OF IRON FROM FERRITIN AND GENERATION OF ACTIVATED OXYGEN

    EPA Science Inventory


    ABSTRACT

    The in vitro effects of four different species of arsenic { arsenate, arsenite, monomethylarsonic acid and dimethylarsinic acid) in mobilizing iron from horse spleen ferritin under aerobic and anaerobic conditions were investigated. Dimethylarsinicacid {DMA(V...

  11. Binational arsenic exposure survey: methodology and estimated arsenic intake from drinking water and urinary arsenic concentrations.

    PubMed

    Roberge, Jason; O'Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L; Harris, Robin B

    2012-04-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  12. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    PubMed Central

    Roberge, Jason; O’Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L.; Harris, Robin B.

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated. PMID:22690182

  13. Arsenic speciation analysis of urine samples from individuals living in an arsenic-contaminated area in Bangladesh.

    PubMed

    Hata, Akihisa; Yamanaka, Kenzo; Habib, Mohamed Ahsan; Endo, Yoko; Fujitani, Noboru; Endo, Ginji

    2012-05-01

    Chronic inorganic arsenic (iAs) exposure currently affects tens of millions of people worldwide. To accurately determine the proportion of urinary arsenic metabolites in residents continuously exposed to iAs, we performed arsenic speciation analysis of the urine of these individuals and determined whether a correlation exists between the concentration of iAs in drinking water and the urinary arsenic species content. The subjects were 165 married couples who had lived in the Pabna District in Bangladesh for more than 5 years. Arsenic species were measured using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. The median iAs concentration in drinking water was 55 μgAs/L (range <0.5-332 μgAs/L). Speciation analysis revealed the presence of arsenite, arsenate, monomethylarsonic acid (MMA), and dimethylarsinic acid in urine samples with medians (range) of 16.8 (7.7-32.3), 1.8 (<0.5-3.3), 13.7 (5.6-25.0), and 88.6 μgAs/L (47.9-153.4 μgAs/L), respectively. No arsenobetaine or arsenocholine was detected. The concentrations of the 4 urinary arsenic species were significantly and linearly related to each other. The urinary concentrations of total arsenic and each species were significantly correlated with the iAs concentration of drinking water. All urinary arsenic species are well correlated with each other and with iAs in drinking water. The most significant linear relationship existed between the iAs concentration in drinking water and urinary iAs + MMA concentration. From these results, combined with the effects of seafood ingestion, the best biomarker of iAs exposure is urinary iAs + MMA concentration.

  14. COMMONALITIES IN METABOLISM OF ARSENICALS

    EPA Science Inventory

    Elucidating the pathway of inorganic arsenic metabolism shows that some of methylated arsenicals formed as intermediates and products are reactive and toxic species. Hence, methylated arsenicals likely mediate at least some of the toxic and carcinogenic effects associated with e...

  15. Simultaneously removal of inorganic arsenic species from stored rainwater in arsenic endemic area by leaves of Tecomella undulata: a multivariate study.

    PubMed

    Brahman, Kapil Dev; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Abro, Muhammad Ishaque; Arain, Sadaf Sadia; Ali, Jamshed; Khan, Sumaira

    2016-08-01

    In the present study, an indigenous biosorbent (leaves of Tecomella undulata) was used for the simultaneous removal of inorganic arsenic species (As(III) and As(V)) from the stored rainwater in Tharparkar, Pakistan. The Plackett-Burman experimental design was used as a multivariate strategy for the evaluation of the effects of six factors/variables on the biosorption of inorganic arsenic species, simultaneously. Central composite design (CCD) was used to found the optimum values of significant factors for the removal of As(III) and As(V). Initial concentrations of both inorganic As species, pH, biosorbent dose, and contact time were selected as independent factors in CCD, while the adsorption capacity (q e) was considered as a response function. The separation of inorganic As species in water samples before and after biosorption was carried out by cloud point and solid-phase extraction methods. Theoretical values of pH, concentration of analytes, biosorbent dose, and contact time were calculated by quadratic equation for 100 % biosorption of both inorganic As species in aqueous media. Experimental data were modeled by Langmuir and Freundlich isotherms. Thermodynamic and kinetic study indicated that the biosorption of As(III) and As(V) was followed by pseudo second order. It was concluded that the indigenous biosorbent material efficiently and simultaneously removed both As species in the range of 70.8 to 98.5 % of total contents in studied ground water samples. Graphical abstract Optimizing the significant varable by central 2(3) + star orthogonal composite design.

  16. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    USGS Publications Warehouse

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  17. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    PubMed

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported.

  18. Determination of arsenic species in fish, crustacean and sediment samples from Thailand using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Rattanachongkiat, S; Millward, G E; Foulkes, M E

    2004-04-01

    Suitable techniques have been developed for the extraction of arsenic species in a variety of biological and environmental samples from the Pak Pa-Nang Estuary and catchment, located in Southern Thailand, and for their determination using HPLC directly coupled with ICP-MS. The estuary catchment comprises a tin mining area and inhabitants of the region can suffer from various stages of arsenic poisoning. The important arsenic species, AsB, DMA, MMA, and inorganic arsenic (As III and V) have been determined in fish and crustacean samples to provide toxicological information on those fauna which contribute to the local diet. A Hamilton PRP-X100 anion-exchange HPLC system employing a step elution has been used successfully to achieve separation of the arsenic species. A nitric acid microwave digestion procedure, followed by carrier gas nitrogen addition- (N2)-ICP-MS analysis was used to measure total arsenic in sample digests and extracts. The arsenic speciation of the biological samples was preserved using a Trypsin enzymatic extraction procedure. Extraction efficiencies were high, with values of 82-102%(As) for fish and crustacean samples. Validation for these procedures was carried out using certified reference materials. Fish and crustacean samples from the Pak Pa-Nang Estuary showed a range for total arsenic concentration, up to 17 microg g(-1) dry mass. The major species of arsenic in all fauna samples taken was AsB, together with smaller quantities of DMA and, more importantly, inorganic As. For sediment samples, arsenic species were determined following phosphoric acid (1 M H3PO4) extraction in an open focused microwave system. A phosphate-based eluant, pH 6-7.5, with anion exchange HPLC coupled with ICP-MS was used for separation and detection of AsIII, AsV, MMA and DMA. The optimum conditions, identified using an estuarine sediment reference material (LGC), were achieved using 45 W power and a 20 minute heating period for extraction of 0.5 g sediment. The

  19. TISSUE DISTRIBUTION OF ARSENIC SPECIES IN MICE CHRONICALLY EXPOSED TO ARSENITE OR METHYLARSONOUS ACID

    EPA Science Inventory

    e metabolism of inorganic arsenic (iAs) in humans yields toxic and carcinogenic methyl-As (MAs) and dimethyl-As (DMAs) intermediates. Methylarsonous acid (MAsIII) is the most acutely toxic species among known iAs metabolites. In this study, we examined the concentrations of As sp...

  20. Effect of replacing a hydroxyl group with a methyl group on arsenic (V) species adsorption on goethite (alpha-FeOOH).

    PubMed

    Zhang, J S; Stanforth, R S; Pehkonen, S O

    2007-02-01

    Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but

  1. Arsenic in Drinking Water—A Global Environmental Problem

    NASA Astrophysics Data System (ADS)

    Shaofen Wang, Joanna; Wai, Chien M.

    2004-02-01

    Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.

  2. SPECIES SPECIFIC DIETARY ARSENIC EXPOSURE ASSESSMENT: THE NEED TO ESTIMATE BIOACCESSIBILITY AND ASSESSING THE IMPLIED PRESYSTEMIC METABOLISM IMPLICATIONS

    EPA Science Inventory

    The chemical form specific toxicity of arsenic dictates the need for species specific quantification in order to accurately assess the risk from an exposure. The literature has begun to produce preliminary species specific databases for certain dietary sources, but a quantitativ...

  3. Arsenic and its compounds in mushrooms: A review.

    PubMed

    Falandysz, Jerzy; Rizal, Leela M

    2016-10-01

    The purpose of this article is to review the detail concentration of arsenic in some species of mushrooms as well as organic and inorganic forms of arsenic in the substrates where wild and cultivated edible mushrooms grow. We also briefly review the molecular forms of arsenic in mushrooms. There is still a lack of experimental data from the environment for a variety of species from different habitats and for different levels of geogenic arsenic in soil. This information will be useful for mushrooms consumers, nutritionists, and food regulatory agencies by describing ways to minimize arsenic content in edible mushrooms and arsenic intake from mushroom meals.

  4. Substantial contribution of biomethylation to aquifer arsenic cycling

    USGS Publications Warehouse

    Maguffin, Scott C.; Kirk, Matthew F.; Daigle, Ashley R.; Hinkle, Stephen R.; Jin, Qusheng

    2015-01-01

    Microbes play a prominent role in transforming arsenic to and from immobile forms in aquifers1. Much of this cycling involves inorganic forms of arsenic2, but microbes can also generate organic forms through methylation3, although this process is often considered insignificant in aquifers4, 5, 6, 7. Here we identify the presence of dimethylarsinate and other methylated arsenic species in an aquifer hosted in volcaniclastic sedimentary rocks. We find that dimethylarsinate is widespread in the aquifer and its concentration correlates strongly with arsenite concentration. We use laboratory incubation experiments and an aquifer injection test to show that aquifer microbes can produce dimethylarsinate at rates of about 0.1% of total dissolved arsenic per day, comparable to rates of dimethylarsinate production in surface environments. Based on these results, we estimate that globally, biomethylation in aquifers has the potential to transform 100 tons of inorganic arsenic to methylated arsenic species per year, compared with the 420–1,250 tons of inorganic arsenic that undergoes biomethylation in soils8. We therefore conclude that biomethylation could contribute significantly to aquifer arsenic cycling. Because biomethylation yields arsine and methylarsines, which are more volatile and prone to diffusion than other arsenic species, we further suggest that biomethylation may serve as a link between surface and subsurface arsenic cycling.

  5. Preconcentration determination of arsenic species by sorption of As(V) on Amberlite IRA-410 coupled with fluorescence quenching of L-cysteine capped CdS nanoparticles.

    PubMed

    Hosseini, Mohammad Saeid; Nazemi, Sahar

    2013-10-07

    A simple and accurate method for arsenic speciation analysis in natural and drinking water samples is described in which preconcentration of arsenic as As(V) was coupled with spectrofluorometric determination. The extracted As(V) species with a column containing Amberlite IRA-410 were subjected to L-cysteine capped CdS quantum dots (QDs) and the fluorescence quenching of the QDs due to reduction of As(V) by L-cysteine was considered as a signal relevant to As(V) concentration. The As(III) species were also determined after oxidation of As(III) ions to As(V) with H2O2 and measurement of the total arsenic content. In treatment with 400 mL portions of water samples containing 30 μg L(-1) As(V), the relative standard deviation was 2.8%. The detection limit of arsenic was also found to be 0.75 μg L(-1) (1 × 10(-8) M). The reliability of proposed method was confirmed using certified reference materials. The trace amounts of arsenic species were then determined in different water samples, satisfactorily.

  6. Blood Pressure Associated with Arsenic Methylation and Arsenic Metabolism Caused by Chronic Exposure to Arsenic in Tube Well Water.

    PubMed

    Wei, Bing Gan; Ye, Bi Xiong; Yu, Jiang Ping; Yang, Lin Sheng; Li, Hai Rong; Xia, Ya Juan; Wu, Ke Gong

    2017-05-01

    The effects of arsenic exposure from drinking water, arsenic metabolism, and arsenic methylation on blood pressure (BP) were observed in this study. The BP and arsenic species of 560 participants were determined. Logistic regression analysis was applied to estimate the odds ratios of BP associated with arsenic metabolites and arsenic methylation capability. BP was positively associated with cumulative arsenic exposure (CAE). Subjects with abnormal diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) usually had higher urinary iAs (inorganic arsenic), MMA (monomethylated arsenic), DMA (dimethylated arsenic), and TAs (total arsenic) than subjects with normal DBP, SBP, and PP. The iAs%, MMA%, and DMA% differed slightly between subjects with abnormal BP and those with normal BP. The PMI and SMI were slightly higher in subjects with abnormal PP than in those with normal PP. Our findings suggest that higher CAE may elevate BP. Males may have a higher risk of abnormal DBP, whereas females have a higher risk of abnormal SBP and PP. Higher urinary iAs may increase the risk of abnormal BP. Lower PMI may elevate the BP. However, higher SMI may increase the DBP and SBP, and lower SMI may elevate the PP. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  7. Human exposure to organic arsenic species from seafood.

    PubMed

    Taylor, Vivien; Goodale, Britton; Raab, Andrea; Schwerdtle, Tanja; Reimer, Ken; Conklin, Sean; Karagas, Margaret R; Francesconi, Kevin A

    2017-02-15

    Seafood, including finfish, shellfish, and seaweed, is the largest contributor to arsenic (As) exposure in many human populations. In contrast to the predominance of inorganic As in water and many terrestrial foods, As in marine-derived foods is present primarily in the form of organic compounds. To date, human exposure and toxicological assessments have focused on inorganic As, while organic As has generally been considered to be non-toxic. However, the high concentrations of organic As in seafood, as well as the often complex As speciation, can lead to complications in assessing As exposure from diet. In this report, we evaluate the presence and distribution of organic As species in seafood, and combined with consumption data, address the current capabilities and needs for determining human exposure to these compounds. The analytical approaches and shortcomings for assessing these compounds are reviewed, with a focus on the best practices for characterization and quantitation. Metabolic pathways and toxicology of two important classes of organic arsenicals, arsenolipids and arsenosugars, are examined, as well as individual variability in absorption of these compounds. Although determining health outcomes or assessing a need for regulatory policies for organic As exposure is premature, the extensive consumption of seafood globally, along with the preliminary toxicological profiles of these compounds and their confounding effect on assessing exposure to inorganic As, suggests further investigations and process-level studies on organic As are needed to fill the current gaps in knowledge. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Intercomparison of analytical methods for arsenic speciation in human urine.

    PubMed Central

    Crecelius, E; Yager, J

    1997-01-01

    An intercomparison exercise was conducted for the quantification of arsenic species in spiked human urine. The primary objective of the exercise was to determine the variance among laboratories in the analysis of arsenic species such as inorganic As (As+3 and As+5), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Laboratories that participated had previous experience with arsenic speciation analysis. The results of this interlaboratory comparison are encouraging. There is relatively good agreement on the concentrations of these arsenic species in urine at concentrations that are relevant to research on the metabolism of arsenic in humans and other mammals. Both the accuracy and precision are relatively poor for arsenic concentrations of less than about 5 micrograms/l. PMID:9288500

  9. Intercomparison of analytical methods for arsenic speciation in human urine.

    PubMed

    Crecelius, E; Yager, J

    1997-06-01

    An intercomparison exercise was conducted for the quantification of arsenic species in spiked human urine. The primary objective of the exercise was to determine the variance among laboratories in the analysis of arsenic species such as inorganic As (As+3 and As+5), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Laboratories that participated had previous experience with arsenic speciation analysis. The results of this interlaboratory comparison are encouraging. There is relatively good agreement on the concentrations of these arsenic species in urine at concentrations that are relevant to research on the metabolism of arsenic in humans and other mammals. Both the accuracy and precision are relatively poor for arsenic concentrations of less than about 5 micrograms/l.

  10. REACTION PROCESSES OF ARSENIC IN SULFIDIC SOLUTIONS

    EPA Science Inventory

    The fate of arsenic in the environment is fundamentally linked to its speciation. Arsenic in aerobic environments is predominantly arsenate, however under reducing conditions arsenite species dominate. In anoxic or sulfidic environments thioarsenite ((As(OH)x(SH)yz-) species alon...

  11. Role of complex organic arsenicals in food in aggregate exposure to arsenic.

    PubMed

    Thomas, David J; Bradham, Karen

    2016-11-01

    For much of the world's population, food is the major source of exposure to arsenic. Exposure to this non-essential metalloid at relatively low levels may be linked to a wide range of adverse health effects. Thus, evaluating foods as sources of exposure to arsenic is important in assessing risk and developing strategies that protect public health. Although most emphasis has been placed on inorganic arsenic as human carcinogen and toxicant, an array of arsenic-containing species are found in plants and animals used as foods. Here, we 2evaluate the contribution of complex organic arsenicals (arsenosugars, arsenolipids, and trimethylarsonium compounds) that are found in foods and consider their origins, metabolism, and potential toxicity. Commonalities in the metabolism of arsenosugars and arsenolipids lead to the production of di-methylated arsenicals which are known to exert many toxic effects. Evaluating foods as sources of exposure to these complex organic arsenicals and understanding the formation of reactive metabolites may be critical in assessing their contribution to aggregate exposure to arsenic. Copyright © 2016. Published by Elsevier B.V.

  12. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking.

    PubMed

    Rahman, M Azizur; Hasegawa, H

    2011-10-15

    Rice is the staple food for the people of arsenic endemic South (S) and South-East (SE) Asian countries. In this region, arsenic contaminated groundwater has been used not only for drinking and cooking purposes but also for rice cultivation during dry season. Irrigation of arsenic-contaminated groundwater for rice cultivation has resulted high deposition of arsenic in topsoil and uptake in rice grain posing a serious threat to the sustainable agriculture in this region. In addition, cooking rice with arsenic-contaminated water also increases arsenic burden in cooked rice. Inorganic arsenic is the main species of S and SE Asian rice (80 to 91% of the total arsenic), and the concentration of this toxic species is increased in cooked rice from inorganic arsenic-rich cooking water. The people of Bangladesh and West Bengal (India), the arsenic hot spots in the world, eat an average of 450g rice a day. Therefore, in addition to drinking water, dietary intake of arsenic from rice is supposed to be another potential source of exposure, and to be a new disaster for the population of S and SE Asian countries. Arsenic speciation in raw and cooked rice, its bioavailability and the possible health hazard of inorganic arsenic in rice for the population of S and SE Asia have been discussed in this review. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Arsenic Speciation in Blue Mussels (Mytilus edulis) Along a Highly Contaminated Arsenic Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whaley-Martin, K.J.; Koch, I.; Moriarty, M.

    2012-11-01

    Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strongmore » arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R{sup 2} = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R{sup 2} = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.« less

  14. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu; Pratheeshkumar, Poyil; Budhraja, Amit

    Highlights: • Short term exposure of cells to arsenic causes ROS generation. • Chronical exposure of cells to arsenic causes malignant cell transformation. • Inhibition of ROS generation reduces cell transformation by arsenic. • Arsenic-transformed cells exhibit reduced capacity of generating ROS. • Arsenic-transformed cells exhibit increased levels of antioxidants. - Abstract: Arsenic is an environmental carcinogen, its mechanisms of carcinogenesis remain to be investigated. Reactive oxygen species (ROS) are considered to be important. A previous study (Carpenter et al., 2011) has measured ROS level in human lung bronchial epithelial (BEAS-2B) cells and arsenic-transformed BEAS-2B cells and found that ROSmore » levels were higher in transformed cells than that in parent normal cells. Based on these observations, the authors concluded that cell transformation induced by arsenic is mediated by increased cellular levels of ROS. This conclusion is problematic because this study only measured the basal ROS levels in transformed and parent cells and did not investigate the role of ROS in the process of arsenic-induced cell transformation. The levels of ROS in arsenic-transformed cells represent the result and not the cause of cell transformation. Thus question concerning whether ROS are important in arsenic-induced cell transformation remains to be answered. In the present study, we used expressions of catalase (antioxidant against H{sub 2}O{sub 2}) and superoxide dismutase 2 (SOD2, antioxidant against O{sub 2}{sup ·−}) to decrease ROS level and investigated their role in the process of arsenic-induced cell transformation. Our results show that inhibition of ROS by antioxidant enzymes decreased arsenic-induced cell transformation, demonstrating that ROS are important in this process. We have also shown that in arsenic-transformed cells, ROS generation was lower and levels of antioxidants are higher than those in parent cells, in a disagreement with the

  15. CCQM-K108.2014: determination of arsenic species and total arsenic in brown rice flour

    NASA Astrophysics Data System (ADS)

    Inagaki, K.; Narukawa, T.; Hioki, A.; Miyashita, S.; Long, S. E.; Ellisor, M. B.; Peng, S. L.; Dewi, F.; Shin, R.; Kapp, T.; Wai-hong, F.; Hei-shing, C.; Chao, W.; Kaewkhomdee, N.; Taebunpakul, S.; Thiengmanee, U.; Yafa, C.

    2017-01-01

    The key comparison CCQM-K108.2014 was organised by the Inorganic Analysis Working Group (IAWG) of CCQM to test the abilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of inorganic arsenic (i-As, sum of the amount of arsenite [As(III)] and arsenate [As(V)]), dimethylarsinic acid (DMAA), and total arsenic (total As) in brown rice flour. This was the follow-up comparison for the CCQM-K108 & CCQM-P147 (Cd, As, inorganic arsenic, and DMAA in brown rice flour). For total As, no strong outliers among the reported values were observed, and the distribution of the results was narrow, within 3% around the median. For i-As and DMAA, the distributions of the results were slightly wider than that for total arsenic, but no strong outliers among the reported values of i-As and DMAA were observed. Two potentially bias sources, an extraction efficiency of As species (the ratio of the sum of i-As and DMAA to total As) and the quality of primary standard of DMAA, were discussed. The extraction efficiency was estimated as the ratio of the sum of i-As and DMAA to total As. In the previous comparison (CCQM-K108 & CCQM-P147), the extraction efficiency was one of the largest bias sources for i-As and DMAA. However, in this study, all the extraction efficiencies estimated from the reported values were close to 100 %. Regarding the quality of the primary standard solutions, no significant difference was observed among the primary standard solution used by the participants. These results suggest the two potential bias sources mentioned above would not have been majors in this study, and then the technical issues in the previous comparison had been overcome. Accounting for relative expanded uncertainty, a comparability of measurement was successfully demonstrated by the participating NMIs and DIs for the measurement of total As at the level of less than 0.7 mg/kg, i-As at the level of less than 0.6 mg/kg, and DMAA at the level

  16. Environmental arsenic exposure and serum matrix metalloproteinase-9.

    PubMed

    Burgess, Jefferey L; Kurzius-Spencer, Margaret; O'Rourke, Mary Kay; Littau, Sally R; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B

    2013-03-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake was estimated. Urine was speciated for arsenic, and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking, and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike's Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9 than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure evaluated using all three exposure metrics was positively associated with MMP-9.

  17. Environmental arsenic exposure and serum matrix metalloproteinase-9

    PubMed Central

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B.

    2014-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike’s Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9, than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure was positively associated with MMP-9 using all three exposure metrics evaluated. PMID:23232971

  18. Field Deployable Method for Arsenic Speciation in Water.

    PubMed

    Voice, Thomas C; Flores Del Pino, Lisveth V; Havezov, Ivan; Long, David T

    2011-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance.The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78-112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  19. Field Deployable Method for Arsenic Speciation in Water

    PubMed Central

    Voice, Thomas C.; Flores del Pino, Lisveth V.; Havezov, Ivan; Long, David T.

    2010-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance. The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78–112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  20. Uptake Kinetics of Arsenic Species in Rice Plants

    PubMed Central

    Abedin, Mohammed Joinal; Feldmann, Jörg; Meharg, Andy A.

    2002-01-01

    Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0–0.0532 mm) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid. PMID:11891266

  1. THE REACTIVE OXYGEN SPECIES (ROS) THEORY OF ARSENIC CARCINOGENESIS

    EPA Science Inventory

    At this time, there is not a scientific consensus on the mechanisms/modes of action for arsenic carcinogenesis. Proposed mechanisms/modes of action for arsenic carcinogenesis include but are not limited to clastogenic effects, mutation, oxidative stress (via ROS and other chemic...

  2. Arsenic speciation and fucoxanthin analysis from seaweed dietary supplements using LC-MS

    USDA-ARS?s Scientific Manuscript database

    Inorganic species are considered more toxic to humans than organic arsenic and total arsenic. Analysis of total arsenic in metallic form, organic and inorganic arsenic species from seaweeds and dietary supplements using LC-ICP-MS was developed. Solvent extraction with sonication and microwave extr...

  3. Arsenic metabolism by microbial communities from an arsenic-rich shallow-water hydrothermal system in Ambitle Island, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Ruiz Chancho, M.; Pichler, T.; Amend, J. P.; Akerman, N. H.

    2011-12-01

    Arsenic, although toxic, is used as an energy source by certain microbes, some of which can catalyse the reduction of arsenate by using different electron donors, while others oxidize arsenite with oxygen or nitrate as electron acceptors. The marine shallow-water hydrothermal system in Tutum Bay, Ambitle Island, Papua New Guinea is ideal for investigating the metabolism of microbes involved in arsenic cycling, because there hydrothermal vents discharge fluids with arsenite concentrations as high as 950 μg/L. Vent fluids are hot (˜100°C), slightly acidic (pH˜6) and reducing. Upon mixing with colder and oxygen-rich seawater the fluid chemistry changes rapidly within a few meters from the hydrothermal source. The objective of this work was to study arsenic metabolism due to microbial activity in Tutum Bay. Sediments collected at 7.5 and 30 m along a transect beginning at a hydrothermal vent were used as inocula in the microbial culturing experiments. Media were designed using chemical analyses of the hydrothermal fluids. Following culture experiments, arsenic species identification and quantification were performed for the growth media with HPLC-ICP(HR)MS, using anion exchange and reversed phase chromatography. Quality control included mass balance calculations and spiking experiments. A fast reduction of arsenate to arsenite was observed in the first 24 hours leading to the conclusion that the microbial communities were capable of reducing arsenic. However, mass balance calculations revealed that more than 30% of the arsenic had been transformed to one or more unknown species, which could not be detected by ion exchange chromatography. The addition of peroxide combined with reversed phase chromatography revealed the presence of several unknown species. Following the addition of peroxide some of the unknown species were identified to be thio-arsenic compounds, because they were oxidized to their oxo-analogues. Nevertheless, a significant fraction of unknown

  4. A rapid monitoring method for inorganic arsenic in rice flour using reversed phase-high performance liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Narukawa, Tomohiro; Chiba, Koichi; Sinaviwat, Savarin; Feldmann, Jörg

    2017-01-06

    A new rapid monitoring method by means of high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) following the heat-assisted extraction was developed for measurement of total inorganic arsenic species in rice flour. As(III) and As(V) eluted at the same retention time and completely separated from organoarsenic species by an isocratic elution program on a reversed phase column. Therefore, neither ambiguous oxidation of arsenite to arsenate nor the integration of two peaks were necessary to determine directly the target analyte inorganic arsenic. Rapid injection allowed measuring 3 replicates within 6min and this combined with a quantitative extraction of all arsenic species from rice flour by a 15min HNO 3 -H 2 O 2 extraction makes this the fastest laboratory based method for inorganic arsenic in rice flour. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Total and inorganic arsenic in freshwater fish and prawn in Thailand.

    PubMed

    Saipan, Piyawat; Ruangwises, Suthep; Tengjaroenkul, Bundit; Ruangwises, Nongluck

    2012-10-01

    Total and inorganic arsenic levels were determined in 120 samples of eight freshwater animal species collected from five distribution centers in the central region of Thailand between January and March 2011. Eight species with the highest annual catch, consisting of seven fish species and one prawn species, were analyzed. Concentrations of inorganic arsenic (on a wet weight basis) ranged from 0.010 μg/g in giant prawn (Macrobrachium rosenbergii) to 0.230 μg/g in striped snakehead (Channa striata). Climbing perch (Anabas testudineus) exhibited the highest mean concentrations of total arsenic (0.459 ± 0.137 μg/g), inorganic arsenic (0.121 ± 0.044 μg/g), and percentage of inorganic arsenic (26.2%). Inorganic arsenic levels found in freshwater animals in this study were much lower than the Thai regulatory standard of 2 μg/g.

  6. Cancer in Experimental Animals Exposed to Arsenic and Arsenic Compounds

    PubMed Central

    Tokar, Erik J.; Benbrahim-Tallaa, Lamia; Ward, Jerold M.; Lunn, Ruth; Sams, Reeder L.; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic is a ubiquitous environmental contaminant that has long been considered a human carcinogen. Recent studies raise further concern about the metalloid as a major, naturally occurring carcinogen in the environment. However, during this same period it has proven difficult to provide experimental evidence of the carcinogenicity of inorganic arsenic in laboratory animals and, until recently, there was considered to be a lack of clear evidence for carcinogenicity of any arsenical in animals. More recent work with arsenical methylation metabolites and early life exposures to inorganic arsenic has now provided evidence of carcinogenicity in rodents. Given that tens of millions of people worldwide are exposed to potentially unhealthy levels of environmental arsenic, in vivo rodent models of arsenic carcinogenesis are a clear necessity for resolving critical issues, like mechanisms of action, target tissue specificity, and sensitive subpopulations, and in developing strategies to reduce cancers in exposed human populations. This work reviews the available rodent studies considered relevant to carcinogenic assessment of arsenicals, taking advantage of the most recent review by the International Agency for Research on Cancer (IARC) that has not yet appeared as a full monograph but has been summarized (IARC 2009). Many valid studies show that arsenic can interact with other carcinogens/agents to enhance oncogenesis, and help elucidate mechanisms, and these too are summarized in this review. Finally, this body of rodent work is discussed in light of its impact on mechanisms and in the context of the persistent argument that arsenic is not carcinogenic in animals. PMID:20812815

  7. Enhanced Detoxification of Arsenic Under Carbon Starvation: A New Insight into Microbial Arsenic Physiology.

    PubMed

    Nandre, Vinod S; Bachate, Sachin P; Salunkhe, Rahul C; Bagade, Aditi V; Shouche, Yogesh S; Kodam, Kisan M

    2017-05-01

    Nutrient availability in nature influenced the microbial ecology and behavior present in existing environment. In this study, we have focused on isolation of arsenic-oxidizing cultures from arsenic devoid environment and studied effect of carbon starvation on rate of arsenite oxidation. In spite of the absence of arsenic, a total of 40 heterotrophic, aerobic, arsenic-transforming bacterial strains representing 18 different genera were identified. Nineteen bacterial species were isolated from tannery effluent and twenty-one from tannery soil. A strong co-relation between the carbon starvation and arsenic oxidation potential of the isolates obtained from the said niche was observed. Interestingly, low carbon content enhanced the arsenic oxidation ability of the strains across different genera in Proteobacteria obtained. This represents the impact of physiological response of carbon metabolism under metal stress conditions. Enhanced arsenic-oxidizing ability of the strains was validated by the presence of aio gene and RT-PCR, where 0.5- to 26-fold up-regulation of arsenite oxidase gene in different genera was observed. The cultures isolated from tannery environment in this study show predominantly arsenic oxidation ability. This detoxification of arsenic in lack of carbon content can aid in effective in situ arsenic bioremediation.

  8. Investigation of biomethylation of arsenic and tellurium during composting.

    PubMed

    Diaz-Bone, Roland A; Raabe, Maren; Awissus, Simone; Keuter, Bianca; Menzel, Bernd; Küppers, Klaus; Widmann, Renatus; Hirner, Alfred V

    2011-05-30

    Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg(-1) methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg(-1) methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Arsenic Speciation of Terrestrial Invertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriarty, M.M.; Koch, I.; Gordon, R.A.

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorptionmore » spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.« less

  10. Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management.

    PubMed

    Dhuldhaj, Umesh Praveen; Yadav, Ishwar Chandra; Singh, Surendra; Sharma, Naveen Kumar

    2013-01-01

    Arsenic (As) is a nonessential element that is often present in plants and in other organisms. However, it is one of the most hazardous of toxic elements globally. In many parts of the world, arsenic contamination in groundwater is a serious and continuing threat to human health. Microbes play an important role in regulating the environmental fate of arsenic. Different microbial processes influence the biogeochemical cycling of arsenic in ways that affect the accumulation of different arsenic species in various ecosystem compartments. For example, in soil, there are bacteria that methylate arsenite to trimethylarsine gas, thereby releasing arsenic to the atmosphere.In marine ecosystems, microbes exist that can convert inorganic arsenicals to organic arsenicals (e.g., di- and tri-methylated arsenic derivatives, arsenocholine,arsenobetaine, arsenosugars, arsenolipids). The organo arsenicals are further metabolized to complete the arsenic cycle.Microbes have developed various strategies that enable them to tolerate arsenic and to survive in arsenic-rich environments. Such strategies include As exclusion from cells by establishing permeability barrier, intra- and extracellular sequestration,active efflux pumps, enzymatic reduction, and reduction in the sensitivity of cellular targets. These strategies are used either singly or in combination. In bacteria,the genes for arsenic resistance/detoxification are encoded by the arsenic resistance operons (ars operon).In this review, we have addressed and emphasized the impact of different microbial processes (e.g., arsenite oxidation, cytoplasmic arsenate reduction, respiratory arsenate reduction, arsenite methylation) on the arsenic cycle. Microbes are the only life forms reported to exist in heavy arsenic-contaminated environments. Therefore,an understanding of the strategies adopted by microbes to cope with arsenic stress is important in managing such arsenic-contaminated sites. Further future insights into the different

  11. Urinary Trivalent Methylated Arsenic Species in a Population Chronically Exposed to Inorganic Arsenic

    PubMed Central

    Valenzuela, Olga L.; Borja-Aburto, Victor H.; Garcia-Vargas, Gonzalo G.; Cruz-Gonzalez, Martha B.; Garcia-Montalvo, Eliud A.; Calderon-Aranda, Emma S.; Del Razo, Luz M.

    2005-01-01

    Chronic exposure to inorganic arsenic (iAs) has been associated with increased risk of various forms of cancer and of noncancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. In this study we examined the relationship between urinary profiles of MAsIII and DMAsIII and skin lesion markers of iAs toxicity in individuals exposed to iAs in drinking water. The study subjects were recruited among the residents of an endemic region of central Mexico. Drinking-water reservoirs in this region are heavily contaminated with iAs. Previous studies carried out in the local populations have found an increased incidence of pathologies, primarily skin lesions, that are characteristic of arseniasis. The goal of this study was to investigate the urinary profiles for the trivalent and pentavalent As metabolites in both high- and low-iAs–exposed subjects. Notably, methylated trivalent arsenicals were detected in 98% of analyzed urine samples. On average, the major metabolite, DMAsIII, represented 49% of total urinary As, followed by DMAsV (23.7%), iAsV (8.6%), iAsIII (8.5%), MAsIII (7.4%), and MAsV (2.8%). More important, the average MAsIII concentration was significantly higher in the urine of exposed individuals with skin lesions compared with those who drank iAs-contaminated water but had no skin lesions. These data suggest that urinary levels of MAsIII, the most toxic species among identified metabolites of iAs, may serve as an indicator to identify individuals with increased susceptibility to toxic and cancer-promoting effects of arseniasis. PMID:15743710

  12. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    PubMed

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  13. Arsenic species analysis in porewaters and sediments using hydride generation atomic fluorescence spectrometry.

    PubMed

    Liao, Meng-xia; Deng, Tian-long

    2006-01-01

    It was observed that the atomic fluorescence emission due to As(V) could has a 10% to 40% of fluorescence emission signal during the determination of As(III) in the mixture of As(III) and As(V). Besides, interferes from heavy metals such as Pb(lIl), Cu(ll) can cause severe increase of the signals as compared to the insignificant effects caused by Cd(II), Zn(ll), Mn(II) and Fe(Ill). On the basis of further studies, the masking agent of 8-hydroxyquinoline was used as an efficient agent to eliminate interference of As(V) emission and the heavy metal of Cu2+ and Pb2+ in the measurements of arsenic species. After a series standard additions and CRM researches, a sensitive and interference-free analytical procedure was developed for the speciation of arsenic in samples of porewaters and sediments in Poyang Lake, China.

  14. Methylated Arsenic in the Southern North Sea

    NASA Astrophysics Data System (ADS)

    Millward, G. E.; Kitts, H. J.; Comber, S. D. W.; Ebdon, L.; Howard, A. G.

    1996-07-01

    Water samples collected in the southern North Sea in August 1988 (mid-summer), April 1989 (spring), September/October 1989 (late summer) and May 1990 were analysed for dissolved inorganic arsenic, monomethylarsenic (MMA) and dimethylarsenic (DMA). In mid-summer 1988, both MMA and DMA were observed throughout the southern North Sea, with lowest concentrations of dissolved inorganic arsenic (mean 6·48 nmol l -1) and the highest proportions of methylated arsenic (29%) being found in highly productive continental coastal waters. In April 1989, waters of the North Sea had a mean inorganic arsenic concentration of 12 nmol l -1and methylated species were not detected, even though phytoplankton blooms were present. Shipboard phytoplankton incubation studies (in May 1990) revealed that uptake of dissolved inorganic arsenic occurred at a rate of 0·57 nmol l -1 day -1, but the appearance of dissolved methylated species was not observed. During September/October 1989, while MMA and DMA were present in all sectors of the North Sea, the relative proportion of methylated compounds (11%) in continental coastal waters was less than mid-summer 1988. It was shown that estuarine, porewater and atmospheric inputs of arsenic species were relatively small during the observational periods, and that almost all of the methylated compounds originated from decaying algal tissue. Demethylation of DMA and MMA throughout winter contributed to the dissolved inorganic arsenic pool. The results are discussed in the context of the development of a predictive model for the cycling of arsenic in the North Sea.

  15. Arsenic pollution sources.

    PubMed

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  16. Determination of inorganic arsenic species in natural waters--benefits of separation and preconcentration on ion exchange and hybrid resins.

    PubMed

    Ben Issa, Nureddin; Rajaković-Ognjanović, Vladana N; Jovanović, Branislava M; Rajaković, Ljubinka V

    2010-07-19

    A simple method for the separation and determination of inorganic arsenic (iAs) species in natural and drinking water was developed. Procedures for sample preparation, separation of As(III) and As(V) species and preconcentration of the total iAs on fixed bed columns were defined. Two resins, a strong base anion exchange (SBAE) resin and a hybrid (HY) resin were utilized. The inductively-coupled plasma-mass spectrometry method was applied as the analytical method for the determination of the arsenic concentration in water. The governing factors for the ion exchange/sorption of arsenic on resins in a batch and a fixed bed flow system were analyzed and compared. Acidity of the water, which plays an important role in the control of the ionic or molecular forms of arsenic species, was beneficial for the separation; by adjusting the pH values to less than 8.00, the SBAE resin separated As(V) from As(III) in water by retaining As(V) and allowing As(III) to pass through. The sorption activity of the hydrated iron oxide particles integrated into the HY resin was beneficial for bonding of all iAs species over a wide range of pH values from 5.00 to 11.00. The resin capacities were calculated according to the breakthrough points in a fixed bed flow system. At pH 7.50, the SBAE resin bound more than 370 microg g(-1) of As(V) while the HY resin bound more than 4150 microg g(-1) of As(III) and more than 3500 microg g(-1) of As(V). The high capacities and selectivity of the resins were considered as advantageous for the development and application of two procedures, one for the separation and determination of As(III) (with SBAE) and the other for the preconcentration and determination of the total arsenic (with HY resin). Methods were established through basic analytical procedures (with external standards, certified reference materials and the standard addition method) and by the parallel analysis of some samples using the atomic absorption spectrometry-hydride generation

  17. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu; Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214; Gaile, Daniel P.

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenicmore » exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression

  18. Arsenic Transport and Transformation Associated with MSMA Application on a Golf Course Green

    PubMed Central

    Feng, Min; Schrlau, Jill E.; Snyder, Raymond; Snyder, George H.; Chen, Ming; Cisar, John L.; Cai, Yong

    2008-01-01

    The impact of extensively used arsenic-containing herbicides on groundwater beneath golf courses has become a topic of interest. Although currently used organoarsenicals are less toxic, their application into the environment may produce the more toxic inorganic arsenicals. The objective of this work was to understand the behavior of arsenic species in percolate water from monosodium methanearsonate (MSMA) applied golf course greens, as well as to determine the influences of root-zone media for United State Golf Association (USGA) putting green construction on arsenic retention and species conversion. The field test was established at the Fort Lauderdale Research and Education Center (FLREC), University of Florida. Percolate water was collected after MSMA application for speciation and total arsenic analyses. The results showed that the substrate composition significantly influenced arsenic mobility and arsenic species transformation in the percolate water. In comparison to uncoated sands (S) and uncoated sands and peat (S + P), naturally coated sands and peat (NS + P) showed a higher capacity of preventing arsenic from leaching into percolate water, implying that the coatings of sands with clay reduce arsenic leaching. Arsenic species transformation occurred in soil, resulting in co-occurrence of four arsenic species, arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in percolate water. The results indicated that substrate composition can significantly affect both arsenic retention in soil and arsenic speciation in percolate water. The clay coatings on the soil particles and the addition of peat in the soil changed the arsenic bioavailability, which in turn controlled the microorganism-mediated arsenic transformation. To better explain and understand arsenic transformation and transport after applying MSMA in golf green, a conceptual model was proposed. PMID:15853401

  19. SPECIATION OF ARSENIC IN TARGET FOODS AND COMPOSITE DIET SAMPLES

    EPA Science Inventory

    For the general population, food may surpass drinking water as the major source of ingestion of total elemental arsenic. Accurate assessments of inorganic arsenic intake via food are needed to understand the relative contributions of drinking water and foods to human exposures t...

  20. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Victor H.

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-{alpha}) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAs{sup III}, MAs{sup V}, DMAs{sup III}, DMAs{sup V}). This study examines the relationship between TGF-{alpha} concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) frommore » areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-{alpha} in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-{alpha} concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-{alpha} levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-{alpha} concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p < 0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-{alpha} than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p = 0.003). These results suggest that TGF-{alpha} in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas.« less

  1. Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene.

    PubMed

    Chen, Jian; Sun, Guo-Xin; Wang, Xiao-Xue; Lorenzo, Víctor de; Rosen, Barry P; Zhu, Yong-Guan

    2014-09-02

    Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically engineered the P. putida KT2440 with stable expression of an arsM-gfp fusion gene (GE P. putida), which was inserted into the bacterial chromosome. GE P. putida showed high arsenic methylation and volatilization activity. When exposed to 25 μM arsenite or arsenate overnight, most inorganic arsenic was methylated to the less toxic methylated arsenicals methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAs(V)O). Of total added arsenic, the species were about 62 ± 2.2% DMAs(V), 25 ± 1.4% MAs(V) and 10 ± 1.2% TMAs(V)O. Volatilized arsenicals were trapped, and the predominant species were dimethylarsine (Me2AsH) (21 ± 1.0%) and trimethylarsine (TMAs(III)) (10 ± 1.2%). At later times, more DMAs(V) and volatile species were produced. Volatilization of Me2AsH and TMAs(III) from contaminated soil is thus possible with this genetically engineered bacterium and could be instrumental as an agent for reducing the inorganic arsenic content of soil and agricultural products.

  2. Unusual arsenic metabolism in Giant Pandas.

    PubMed

    Braeuer, Simone; Dungl, Eveline; Hoffmann, Wiebke; Li, Desheng; Wang, Chengdong; Zhang, Hemin; Goessler, Walter

    2017-12-01

    The total arsenic concentration and the arsenic speciation in urine and feces samples of the two Giant Pandas living at Vienna zoo and of their feed, bamboo, were determined with ICPMS and HPLC-ICPMS. Urine was the main excretion route and accounted for around 90% of the ingested arsenic. The urinary arsenic concentrations were very high, namely up to 179 μg/L. Dimethylarsinic acid (DMA) was the dominating arsenic compound in the urine samples and ranged from 73 to 92% of the total arsenic, which is unusually high for a terrestrial mammal. The feces samples contained around 70% inorganic arsenic and 30% DMA. The arsenic concentrations in the bamboo samples were between 16 and 920 μg/kg dry mass. The main arsenic species in the bamboo extracts was inorganic arsenic. This indicates that the Giant Panda possesses a unique way of very efficiently methylating and excreting the provided inorganic arsenic. This could be essential for the survival of the animal in its natural habitat, because parts of this area are contaminated with arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats.

    PubMed

    Xi, Shuhua; Jin, Yaping; Lv, Xiuqiang; Sun, Guifan

    2010-04-01

    The amount of arsenic compounds was determined in the liver and brain of pups and in breast milk in the pup's stomach in relation to the route of exposure: transplacental, breast milk, or drinking water. Forty-eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO(2) from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic-containing water as the dams. Contents of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and trimethylarsenic acid (TMA) in livers and brains of the pups on PND 0, 15, 28, and 42 and breast milk taken from the pup's stomach on PND 0 and 15 were detected using the hydride generation atomic absorption spectroscopy method. Concentrations of iAs, MMA, and DMA in the breast milk, the brain, and the liver of the pups increased with the concentration of arsenic in drinking water on PND 0, 15, 28, and 42. Compared to the liver or brain, breast milk had the lowest arsenic concentrations. There was a significant decrease in the levels of arsenic species on PND 15 compared to PND 0, 28, or 42. It was confirmed that arsenic species can pass through the placental barrier from dams to offspring and across the blood-brain barrier in the pups, and breast milk from dams exposed to arsenic in drinking water contains less arsenic than the liver and brain of pups.

  4. Arsenic speciation in fish from Greek coastal areas.

    PubMed

    Kalantzi, Ioanna; Mylona, Kyriaki; Sofoulaki, Katerina; Tsapakis, Manolis; Pergantis, Spiros A

    2017-06-01

    Arsenic speciation analysis was conducted on fish samples (sardine and anchovy) collected from six areas along the Greek coastline, i.e. Artemisium Straits, Thermaikos Gulf, Amvrakikos Gulf, Strymonian Gulf, Thracian Sea, and Elefsina Gulf. Total arsenic levels ranging from 11.8 to 62.6mg As/kg dry weight were determined. Arsenobetaine, a non-toxic form of arsenic, was found to be the main arsenic species, present at 8.6 to 58.8mg As/kg dry weight, accounting for 67-95% of the total arsenic. Also detected in all fish samples was dimethylarsinic acid, although at considerably lower concentrations, ranging from 0.072-0.956mg As/kg dry weight. Monomethylarsonic acid was detected at low levels in all anchovy samples, and only in sardines from one area. Finally, inorganic arsenic in the form of arsenate was detected only in fish at one area, indicating the possible effect of an environmental parameter on its presence at detectable amounts. Statistical analysis revealed the environmental variables, such as salinity, total organic carbon and nitrogen, ammonium, phosphate, total phosphorus, dissolved oxygen and pressure index, are potentially correlated to As species concentrations. Furthermore, based on factor analysis, the biological parameters, such as fish weight, lipids, protein and ash content, that are correlated to As species concentrations of fish were also identified. The interrelationship of arsenobetaine and dimethylarsinic acid concentrations within each fish species was evaluated. Copyright © 2017. Published by Elsevier B.V.

  5. Associations between Arsenic Species in Exfoliated Urothelial Cells and Prevalence of Diabetes among Residents of Chihuahua, Mexico

    PubMed Central

    Currier, Jenna M.; Ishida, María C.; González-Horta, Carmen; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Gutiérrez-Torres, Daniela S.; Cerón, Roberto Hernández; Morales, Damián Viniegra; Terrazas, Francisco A. Baeza; Del Razo, Luz M.; García-Vargas, Gonzalo G.; Saunders, R. Jesse; Drobná, Zuzana; Fry, Rebecca C.; Matoušek, Tomáš; Buse, John B.; Mendez, Michelle A.; Loomis, Dana

    2014-01-01

    Background: A growing number of studies link chronic exposure to inorganic arsenic (iAs) with the risk of diabetes. Many of these studies assessed iAs exposure by measuring arsenic (As) species in urine. However, this approach has been criticized because of uncertainties associated with renal function and urine dilution in diabetic individuals. Objectives: Our goal was to examine associations between the prevalence of diabetes and concentrations of As species in exfoliated urothelial cells (EUC) as an alternative to the measures of As in urine. Methods: We measured concentrations of trivalent and pentavalent iAs methyl-As (MAs) and dimethyl-As (DMAs) species in EUC from 374 residents of Chihuahua, Mexico, who were exposed to iAs in drinking water. We used fasting plasma glucose, glucose tolerance tests, and self-reported diabetes diagnoses or medication to identify diabetic participants. Associations between As species in EUC and diabetes were estimated using logistic and linear regression, adjusting for age, sex, and body mass index. Results: Interquartile-range increases in trivalent, but not pentavalent, As species in EUC were positively and significantly associated with diabetes, with ORs of 1.57 (95% CI: 1.19, 2.07) for iAsIII, 1.63 (1.24, 2.15) for MAsIII, and 1.31 (0.96, 1.84) for DMAsIII. DMAs/MAs and DMAs/iAs ratios were negatively associated with diabetes (OR = 0.62; 95% CI: 0.47, 0.83 and OR = 0.72; 95% CI: 0.55, 0.96, respectively). Conclusions: Our data suggest that uncertainties associated with measures of As species in urine may be avoided by using As species in EUC as markers of iAs exposure and metabolism. Our results provide additional support to previous findings suggesting that trivalent As species may be responsible for associations between diabetes and chronic iAs exposure. Citation: Currier JM, Ishida MC, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Gutiérrez-Torres DS, Hernández Cerón R, Viniegra Morales D, Baeza

  6. Microbial-driven arsenic cycling in rice paddies amended with monosodium methanearsonate

    NASA Astrophysics Data System (ADS)

    Maguffin, S. C.; McClung, A.; Rohila, J. S.; Derry, L. A.; Huang, R.; Reid, M. C.

    2017-12-01

    Rice consumption is the second largest contributor to human arsenic exposure worldwide and is linked to many serious diseases. Because rice is uniquely adapted for agricultural production under flooded soils, arsenic species solubilized in such environments can be effectively transported into plant tissue via root transporters. Through this process, both inorganic and organic (methylated) arsenic species can accumulate to problematic concentrations and may affect grain yield as well as crop value. The distribution of these species in plant tissue is determined by arsenic sources, as well as enzymatic redox and methylation-demethylation reactions in soils and pore water. Historic use of organoarsenic-based pesticides in US agriculture may provide an enduring source of arsenic in rice paddies. However, it is unclear how persistent these organic species are in the adsorbed phase or how available they remain to rice cultivars throughout the growing season. We conducted a field experiment in a 2x2 factorial design examining the effects of irrigation methods (continuous flooding and alternate wetting and drying) and monosodium methanearsonate (MSMA) application on the abundance and speciation of arsenic in pore water, soil, and rice plant tissues. We monitored arsenic speciation and partitioning between these reservoirs at semi-weekly to semi-monthly frequencies. Pore water arsenic speciation was determined using LC-ICP-MS, and X-ray absorption near-edge structure (XANES) analysis was employed to speciate the arsenic within solid-phase soil and plant tissue throughout the growing season. These data help clarify the role of two irrigation methods and MSMA amendments for arsenic bioavailability and speciation in rice. Furthermore, the study illuminates the significance of microbial metabolism in the reapportionment of arsenic within the soil-plant-water system and its impact on arsenic levels in rice grains.

  7. Volatilization of Arsenic from Polluted Soil by Pseudomonas putida Engineered for Expression of the arsM Arsenic(III) S-Adenosine Methyltransferase Gene

    PubMed Central

    2015-01-01

    Even though arsenic is one of the most widespread environmental carcinogens, methods of remediation are still limited. In this report we demonstrate that a strain of Pseudomonas putida KT2440 endowed with chromosomal expression of the arsM gene encoding the As(III) S-adenosylmethionine (SAM) methyltransfase from Rhodopseudomonas palustris to remove arsenic from contaminated soil. We genetically engineered the P. putida KT2440 with stable expression of an arsM-gfp fusion gene (GE P. putida), which was inserted into the bacterial chromosome. GE P. putida showed high arsenic methylation and volatilization activity. When exposed to 25 μM arsenite or arsenate overnight, most inorganic arsenic was methylated to the less toxic methylated arsenicals methylarsenate (MAs(V)), dimethylarsenate (DMAs(V)) and trimethylarsine oxide (TMAs(V)O). Of total added arsenic, the species were about 62 ± 2.2% DMAs(V), 25 ± 1.4% MAs(V) and 10 ± 1.2% TMAs(V)O. Volatilized arsenicals were trapped, and the predominant species were dimethylarsine (Me2AsH) (21 ± 1.0%) and trimethylarsine (TMAs(III)) (10 ± 1.2%). At later times, more DMAs(V) and volatile species were produced. Volatilization of Me2AsH and TMAs(III) from contaminated soil is thus possible with this genetically engineered bacterium and could be instrumental as an agent for reducing the inorganic arsenic content of soil and agricultural products. PMID:25122054

  8. Assessment of potential indigenous plant species for the phytoremediation of arsenic-contaminated areas of Bangladesh.

    PubMed

    Mahmud, Rezwanul; Inoue, Naoto; Kasajima, Shin-Ya; Shaheen, Riffat

    2008-01-01

    Soil and water contaminated with arsenic (As) pose a major environmental and human health problem in Bangladesh. Phytoremediation, a plant-based technology, may provide an economically viable solution for remediating the As-polluted sites. The use of indigenous plants with a high tolerance and accumulation capacity for As may be a very convenient approach for phytoremediation. To assess the potential of native plant species for phytoremediation, plant and soil samples were collected from four As-contaminated (groundwater) districts in Bangladesh. The main criteria used for selecting plants for phytoremediation were high bioconcentration factors (BCFs) and translocation factors (TFs) of As. From the results of a screening of 49 plant species belonging to 29 families, only one species of fern (Dryopteris filix-mas), three herbs (Blumea lacera, Mikania cordata, and Ageratum conyzoides), and two shrubs (Clerodendrum trichotomum and Ricinus communis) were found to be suitable for phytoremediation. Arsenic bioconcentration and translocation factors > 1 suggest that these plants are As-tolerant accumulators with potential use in phytoextraction. Three floating plants (Eichhornia crassipes, Spirodela polyrhiza, and Azolla pinnata) and a common wetland weed (Monochoria vaginalis) also showed high BCF and TF values; therefore, these plants may be promising candidates for cleaningup As-contaminated surface water and wetland areas. The BCF of Oryza sativa, obtained from As-contaminated districts was > 1, which highlights possible food-chain transfer issues for As-contaminated areas in Bangladesh.

  9. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Liu, S. X.; Waldren, C.

    1998-01-01

    Arsenite, the trivalent form of arsenic present in the environment, is a known human carcinogen that lacked mutagenic activity in bacterial and standard mammalian cell mutation assays. We show herein that when evaluated in an assay (AL cell assay), in which both intragenic and multilocus mutations are detectable, that arsenite is in fact a strong dose-dependent mutagen and that it induces mostly large deletion mutations. Cotreatment of cells with the oxygen radical scavenger dimethyl sulfoxide significantly reduces the mutagenicity of arsenite. Thus, the carcinogenicity of arsenite can be explained at least in part by it being a mutagen that depends on reactive oxygen species for its activity.

  10. Arsenic speciation in hair and nails of acute promyelocytic leukemia (APL) patients undergoing arsenic trioxide treatment.

    PubMed

    Chen, Baowei; Cao, Fenglin; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X Chris

    2018-07-01

    Arsenic in hair and nails has been used to assess chronic exposure of humans to environmental arsenic. However, it remains to be seen whether it is appropriate to evaluate acute exposure to sub-lethal doses of arsenic typically used in therapeutics. In this study, hair, fingernail and toenail samples were collected from nine acute promyelocytic leukemia (APL) patients who were administered intravenously the daily dose of 10 mg arsenic trioxide (7.5 mg arsenic) for up to 54 days. These hair and nail samples were analyzed for arsenic species using high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection (HPLC-ICPMS). Inorganic arsenite was the predominant form among water-extractable arsenicals. Dimethylarsinic acid (DMA V ), monomethylarsonic acid (MMA V ), monomethylarsonous acid (MMA III ), monomethylmonothioarsonic acid (MMMTA V ), and dimethylmonothioarsinic acid (DMMTA V ) were also detected in both hair and nail samples. This is the first report of the detection of MMA III and MMMTA V as metabolites of arsenic in hair and nails of APL patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Arsenic in marine mammals, seabirds, and sea turtles.

    PubMed

    Kunito, Takashi; Kubota, Reiji; Fujihara, Junko; Agusa, Tetsuro; Tanabe, Shinsuke

    2008-01-01

    Although there have been numerous studies on arsenic in low-trophic-level marine organisms, few studies exist on arsenic in marine mammals, seabirds, and sea turtles. Studies on arsenic species and their concentrations in these animals are needed to evaluate their possible health effects and to deepen our understanding of how arsenic behaves and cycles in marine ecosystems. Most arsenic in the livers of marine mammals, seabirds, and sea turtles is AB, but this form is absent or occurs at surprisingly low levels in the dugong. Although arsenic levels were low in marine mammals, some seabirds, and some sea turtles, the black-footed albatross and hawksbill and loggerhead turtles showed high concentrations, comparable to those in marine organisms at low trophic levels. Hence, these animals may have a specific mechanism for accumulating arsenic. Osmoregulation in these animals may play a role in the high accumulation of AB. Highly toxic inorganic arsenic is found in some seabirds and sea turtles, and some evidence suggests it may act as an endocrine disruptor, requiring new and more detailed studies for confirmation. Furthermore, DMA(V) and arsenosugars, which are commonly found in marine animals and marine algae, respectively, might pose risks to highly exposed animals because of their tendency to form reactive oxygen species. In marine mammals, arsenic is thought to be mainly stored in blubber as lipid-soluble arsenicals. Because marine mammals occupy the top levels of their food chain, work to characterize the lipid-soluble arsenicals and how they cycle in marine ecosystems is needed. These lipid-soluble arsenicals have DMA precursors, the exact structures of which remain to be determined. Because many more arsenicals are assumed to be present in the marine environment, further advances in analytical capabilities can and will provide useful future information on the transformation and cycling of arsenic in the marine environment.

  12. Is arsenobetaine the major arsenic compound in the liver of birds marine mammals, and sea turtles?

    NASA Astrophysics Data System (ADS)

    Kubota, R.; Kunito, T.; Tanabe, S.

    2003-05-01

    Concentrations of total arsenic and individual arsenic compounds were determined in the livers of birds, marine mammals, and sea turtles by using hydride generation-atomic absorption spectrometry (HG-AAS) and high performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS). Marine mammals feeding on cephalopods and crustaceans accumulated higher arsenic concentrations than the species feeding on fishes. No significant age and gender differences in arsenic concentrations were observed for most of the species of marine mammals. Elevated total arsenic concentrations were found in livers of black-footed albatross and loggerhead turtles and these values were comparable to those of lower trophic marine animals. Arsenobetaine was the major arsenical in the livers of most of the species examined. Particularly, in seabirds, mean proportions of arsenobetaine was more than90% of total extractable arsenic In contast, arsenobetaine was a minor constituent in dugong. The compositions of arsenic compounds were different among the species examined. These results might be due to the differences in the metabolic capacity among species and/or the different compositions of arsenic compounds in their preys.

  13. Grain Unloading of Arsenic Species in Rice1[W

    PubMed Central

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Charnock, John M.; Feldmann, Joerg; Price, Adam H.; Meharg, Andrew A.

    2010-01-01

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a ± stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols. PMID:19880610

  14. Transcriptomic Response of Purple Willow (Salix purpurea) to Arsenic Stress

    PubMed Central

    Yanitch, Aymeric; Brereton, Nicholas J. B.; Gonzalez, Emmanuel; Labrecque, Michel; Joly, Simon; Pitre, Frederic E.

    2017-01-01

    Arsenic (As) is a toxic element for plants and one of the most common anthropogenic pollutants found at contaminated sites. Despite its severe effects on plant metabolism, several species can accumulate substantial amounts of arsenic and endure the associated stress. However, the genetic mechanisms involved in arsenic tolerance remains obscure in many model plant species used for land decontamination (phytoremediation), including willows. The present study assesses the potential of Salix purpurea cv. ‘Fish Creek’ for arsenic phytoextraction and reveals the genetic responses behind arsenic tolerance, phytoextraction and metabolism. Four weeks of hydroponic exposure to 0, 5, 30 and 100 mg/L revealed that plants were able to tolerate up to 5 mg/L arsenic. Concentrations of 0 and 5 mg/L of arsenic treatment were then used to compare alterations in gene expression of roots, stems and leaves using RNA sequencing. Differential gene expression revealed transcripts encoding proteins putatively involved in entry of arsenic into the roots, storage in vacuoles and potential transport through the plant as well as primary and secondary (indirect) toxicity tolerance mechanisms. A major role for tannin as a compound used to relieve cellular toxicity is implicated as well as unexpected expression of the cadmium transporter CAX2, providing a potential means for internal arsenic mobility. These insights into the underpinning genetics of a successful phytoremediating species present novel opportunities for selection of dedicated arsenic tolerant crops as well as the potential to integrate such tolerances into a wider Salix ideotype alongside traits including biomass yield, biomass quality, low agricultural inputs and phytochemical production. PMID:28702037

  15. Arsenic biotransformation and volatilization in transgenic rice

    PubMed Central

    Meng, Xiang-Yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P.; Zhu, Yong-Guan

    2011-01-01

    Summary Biotransformation of arsenic includes oxidation, reduction, methylation and conversion to more complex organic arsenicals. Members of the class of arsenite [As(III)] S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di- and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants. Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica rice (Oryza sativa L.) cultivar Nipponbare, and the transgenic rice produced methylated arsenic species, which were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Both monomethylarsenate [MAs(V)] and dimethylarsenate [DMAs(V)] were detected in the root and shoot of transgenic rice. After 12-d exposure to As(III), the transgenic rice gave off 10-fold more volatile arsenicals. The present study demonstrates that expression of an arsM gene in rice induces arsenic methylation and volatilization, providing a potential stratagem for phytoremediation theoretically. PMID:21517874

  16. Arsenic metabolism and one-carbon metabolism at low-moderate arsenic exposure: Evidence from the Strong Heart Study.

    PubMed

    Spratlen, Miranda Jones; Gamble, Mary V; Grau-Perez, Maria; Kuo, Chin-Chi; Best, Lyle G; Yracheta, Joseph; Francesconi, Kevin; Goessler, Walter; Mossavar-Rahmani, Yasmin; Hall, Meghan; Umans, Jason G; Fretts, Amanda; Navas-Acien, Ana

    2017-07-01

    B-vitamins involved in one-carbon metabolism (OCM) can affect arsenic metabolism efficiency in highly arsenic exposed, undernourished populations. We evaluated whether dietary intake of OCM nutrients (including vitamins B2, B6, folate (B9), and B12) was associated with arsenic metabolism in a more nourished population exposed to lower arsenic than previously studied. Dietary intake of OCM nutrients and urine arsenic was evaluated in 405 participants from the Strong Heart Study. Arsenic exposure was measured as the sum of iAs, monomethylarsonate (MMA) and dimethylarsenate (DMA) in urine. Arsenic metabolism was measured as the individual percentages of each metabolite over their sum (iAs%, MMA%, DMA%). In adjusted models, increasing intake of vitamins B2 and B6 was associated with modest but significant decreases in iAs% and MMA% and increases in DMA%. A significant interaction was found between high folate and B6 with enhanced arsenic metabolism efficiency. Our findings suggest OCM nutrients may influence arsenic metabolism in populations with moderate arsenic exposure. Stronger and independent associations were observed with B2 and B6, vitamins previously understudied in relation to arsenic. Research is needed to evaluate whether targeting B-vitamin intake can serve as a strategy for the prevention of arsenic-related health effects at low-moderate arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sequestration of arsenic in ombrotrophic peatlands

    NASA Astrophysics Data System (ADS)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  18. Evaluation of arsenic speciation in rainbow trout and fathead minnows from dietary exposure

    EPA Science Inventory

    The concentration of total arsenic and various arsenic species were measured in food and fish tissue samples from two dietary arsenic exposures to juvenile fish. For arsenic speciation, samples were extracted with 10% MeOH and analyzed by HPLC/ICPMS. Total arsenic concentration...

  19. A STUDY OF THE INTERCONVERSION OF METHYLATED ARSENIC OXIDES TO METHYLATED ARSENIC SULFIDES IN SOLUTIONS CONTAINING FREE SULFIDE

    EPA Science Inventory

    Evidence suggests that thiolated arsenicals are urinary metabolites in both humans and rats. These thiolated species may be formed in the digestive system or as metabolites within the body. The role they may play in the overall toxicity of arsenic is an active area of research....

  20. Arsenic speciation in edible mushrooms.

    PubMed

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered.

  1. Arsenic species determination in human scalp hair by pressurized hot water extraction and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Morado Piñeiro, Andrés; Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2013-02-15

    Analytical methods for the determination of total arsenic and arsenic species (mainly As(III) and As(V)) in human scalp hair have been developed. Inductively coupled plasma-mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) coupled to ICP-MS have been used for total arsenic and arsenic species determination, respectively. The proposed methods include a "green", fast, high efficient and automated species leaching procedure by pressurized hot water extraction (PHWE). The operating parameters for PHWE including modifier concentration, extraction temperature, static time, extraction steps, pressure, mean particle size, diatomaceous earth (DE) mass/sample mass ratio and flush volume were studied using design of experiments (Plackett-Burman design PBD). Optimum condition implies a modifier concentration (acetic acid) of 150 mM and powdered hair samples fully mixed with diatomaceous earth (DE) as a dispersing agent at a DE mass/sample mass ratio of 5. The extraction has been carried out at 100°C and at an extraction pressure of 1500 psi for 5 min in four extraction step. Under optimised conditions, limits of quantification of 7.0, 6.3 and 50.3 ng g(-1) for total As, As(III) and As(V), respectively were achieved. Repeatability of the overall procedure (4.4, 7.2 and 2.1% for total As, As(III) and As(V), respectively) was achieved. The analysis of GBW-07601 (human hair) certified reference material was used for validation. The optimised method has been finally applied to several human scalp hair samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. LC-ICP-MS analysis of arsenic compounds in dominant seaweeds from the Thermaikos Gulf (Northern Aegean Sea, Greece).

    PubMed

    Pell, Albert; Kokkinis, Giannis; Malea, Paraskevi; Pergantis, Spiros A; Rubio, Roser; López-Sánchez, José Fermín

    2013-11-01

    The content of total arsenic and arsenic compounds in the dominant seaweed species in the Thermaikos Gulf, Northern Aegean Sea was determined in samples collected in different seasons. Total arsenic was determined by acid digestion followed by ICP-MS. Arsenic speciation was analyzed by water extraction followed by LC-ICP-MS. Total arsenic concentrations in the seaweeds ranged from 1.39 to 55.0 mg kg(-1). Cystoseira species and Codium fragile showed the highest total As contents, while Ulva species (U. intestinalis, U. rigida,U. fasciata) had the lowest Arsenosugars, the most common arsenic species in seaweeds, were found in all samples, and glycerol-arsenosugar was the most common form; however, phosphate-arsenosugar and sulfate-arsenosugar were also present. Inorganic arsenic was measured in seven algae species and detected in another. Arsenate was the most abundant species in Cystoseira barbata (27.0 mg kg(-1)). Arsenobetaine was measured in only one sample. Methylated arsenic species were measured at very low concentrations. The information should contribute to further understanding the presence of arsenic compounds in dominant seaweeds from the Thermaikos Gulf. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Species Specific Bio-accessibility Estimates of Arsenic in US Consumed Rice

    EPA Science Inventory

    Inorganic arsenic (iAs) has been classified as a Class I carcinogen by the International Agency for Research on Cancer (IARC). For non-occupationally exposed individuals, the two predominant exposure routes for arsenic are drinking water and diet. Drinking water exposures conta...

  4. Solid materials for removing arsenic and method thereof

    DOEpatents

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2010-09-28

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  5. Solid materials for removing arsenic and method thereof

    DOEpatents

    Coronado, Paul R [Livermore, CA; Coleman, Sabre J [Oakland, CA; Sanner, Robert D [Livermore, CA; Dias, Victoria L [Livermore, CA; Reynolds, John G [San Ramon, CA

    2008-07-01

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  6. SPECIATION OF ARSENIC IN SULFIDIC SOLUTIONS USING X-RAY ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    The fate of arsenic in the environment is fundamentally linked to its speciation. Arsenic in aerobic environments is predominantly arsenate, however under reducing conditions arsenite species dominate. In sulfidic environments, thioarsenic species are known to exist and play key...

  7. Metabolism and disposition of arsenic species after repeated oral dosing with sodium arsenite in drinking water. II. Measurements in pregnant and fetal CD-1 mice.

    PubMed

    Twaddle, Nathan C; Vanlandingham, Michelle; Beland, Frederick A; Doerge, Daniel R

    2018-05-01

    Arsenic is ubiquitous in the earth's crust, and human diseases are linked with exposures that are similar to dietary intake estimates. Metabolic methylation of inorganic arsenic facilitates excretion of pentavalent metabolites and decreases acute toxicity; however, tissue binding of trivalent arsenic intermediates is evidence for concomitant metabolic activation. Pregnant and fetal CD-1 mice comprise a key animal model for arsenic carcinogenesis since adult-only exposures have minimal effects. This study evaluated inorganic arsenic and its metabolites in pentavalent and trivalent states in blood and tissues from maternal and fetal CD-1 mice after repeated administration of arsenite through drinking water. After 8 days of exposure, DMA species were ubiquitous in dams and fetuses. Despite the presence of MMA III in dams, none was observed in any fetal sample. This difference may be important in assessing fetal susceptibility to arsenic toxicity because MMA production has been linked with human disease. Binding of DMA III in fetal tissues provided evidence for metabolic activation, although the role for such binding in arsenic toxicity is unclear. This study provides links between administered dose, metabolism, and internal exposures from a key animal model of arsenic toxicity to better understand risks from human exposure to environmental arsenic. Copyright © 2018. Published by Elsevier Ltd.

  8. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROSmore » in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.« less

  9. Modes of action for arsenic carcinogenesis and toxicity

    EPA Science Inventory

    There are three principal ways in which arsenic species can interact with important biological molecules. First, trivalent arsenicals can bind to macromolecule sites, principally the sulfhydryls of peptides and proteins. Selenocysteines, selenium atoms and molybdenum atoms are al...

  10. Extraction and determination of arsenic species in leafy vegetables: Method development and application.

    PubMed

    Ma, Li; Yang, Zhaoguang; Kong, Qian; Wang, Lin

    2017-02-15

    Extraction of arsenic (As) species in leafy vegetables was investigated by different combinations of methods and extractants. The extracted As species were separated and determined by HPLC-ICP-MS method. The microwave assisted method using 1% HNO3 as the extractant exhibited satisfactory efficiency (>90%) at 90°C for 1.5h. The proposed method was applied for extracting As species from real leafy vegetables. Thirteen cultivars of leafy vegetables were collected and analyzed. The predominant species in all the investigated vegetable samples were As(III) and As(V). Moreover, both As(III) and As(V) concentrations were positive significant (p<0.01) correlated with total As (tAs) concentration. However, the percentage of As(V) reduced with tAs concentration increasing probably due to the conversion and transformation of As(V) to As(III) after uptake. The hazard quotient results indicated no particular risk to 94.6% of local consumers. Considerably carcinogenic risk by consumption of the leafy vegetables was observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sample preparation and storage can change arsenic speciation in human urine.

    PubMed

    Feldmann, J; Lai, V W; Cullen, W R; Ma, M; Lu, X; Le, X C

    1999-11-01

    Stability of chemical speciation during sample handling and storage is a prerequisite to obtaining reliable results of trace element speciation analysis. There is no comprehensive information on the stability of common arsenic species, such as inorganic arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine, in human urine. We compared the effects of the following storage conditions on the stability of these arsenic species: temperature (25, 4, and -20 degrees C), storage time (1, 2, 4, and 8 months), and the use of additives (HCl, sodium azide, benzoic acid, benzyltrimethylammonium chloride, and cetylpyridinium chloride). HPLC with both inductively coupled plasma mass spectrometry and hydride generation atomic fluorescence detection techniques were used for the speciation of arsenic. We found that all five of the arsenic species were stable for up to 2 months when urine samples were stored at 4 and -20 degrees C without any additives. For longer period of storage (4 and 8 months), the stability of arsenic species was dependent on urine matrices. Whereas the arsenic speciation in some urine samples was stable for the entire 8 months at both 4 and -20 degrees C, other urine samples stored under identical conditions showed substantial changes in the concentration of As(III), As(V), monomethylarsonic acid, and dimethylarsinic acid. The use of additives did not improve the stability of arsenic speciation in urine. The addition of 0.1 mol/L HCl (final concentration) to urine samples produced relative changes in inorganic As(III) and As(V) concentrations. Low temperature (4 and -20 degrees C) conditions are suitable for the storage of urine samples for up to 2 months. Untreated samples maintain their concentration of arsenic species, and additives have no particular benefit. Strong acidification is not appropriate for speciation analysis.

  12. Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo

    PubMed Central

    Rao, Chinthalapally V.; Pal, Sanya; Mohammed, Altaf; Farooqui, Mudassir; Doescher, Mark P.; Asch, Adam S.; Yamada, Hiroshi Y.

    2017-01-01

    Through contaminated diet, water, and other forms of environmental exposure, arsenic affects human health. There are many U.S. and worldwide “hot spots” where the arsenic level in public water exceeds the maximum exposure limit. The biological effects of chronic arsenic exposure include generation of reactive oxygen species (ROS), leading to oxidative stress and DNA damage, epigenetic DNA modification, induction of genomic instability, and inflammation and immunomodulation, all of which can initiate carcinogenesis. High arsenic exposure is epidemiologically associated with skin, lung, bladder, liver, kidney and pancreatic cancer, and cardiovascular, neuronal, and other diseases. This review briefly summarizes the biological effects of arsenic exposure and epidemiological cancer studies worldwide, and provides an overview for emerging rodent-based studies of reagents that can ameliorate the effects of arsenic exposure in vivo. These reagents may be translated to human populations for disease prevention. We propose the importance of developing a biomarker-based precision prevention approach for the health issues associated with arsenic exposure that affects millions of people worldwide. PMID:28915699

  13. Speciated arsenic in air: measurement methodology and risk assessment considerations.

    PubMed

    Lewis, Ari S; Reid, Kim R; Pollock, Margaret C; Campleman, Sharan L

    2012-01-01

    Accurate measurement of arsenic (As) in air is critical to providing a more robust understanding of arsenic exposures and associated human health risks. Although there is extensive information available on total arsenic in air, less is known on the relative contribution of each arsenic species. To address this data gap, the authors conducted an in-depth review of available information on speciated arsenic in air. The evaluation included the type of species measured and the relative abundance, as well as an analysis of the limitations of current analytical methods. Despite inherent differences in the procedures, most techniques effectively separated arsenic species in the air samples. Common analytical techniques such as inductively coupled plasma mass spectrometry (ICP-MS) and/or hydride generation (HG)- or quartz furnace (GF)-atomic absorption spectrometry (AAS) were used for arsenic measurement in the extracts, and provided some of the most sensitive detection limits. The current analysis demonstrated that, despite limited comparability among studies due to differences in seasonal factors, study duration, sample collection methods, and analytical methods, research conducted to date is adequate to show that arsenic in air is mainly in the inorganic form. Reported average concentrations of As(III) and As(V) ranged up to 7.4 and 10.4 ng/m3, respectively, with As(V) being more prevalent than As(III) in most studies. Concentrations of the organic methylated arsenic compounds are negligible (in the pg/m3 range). However because of the variability in study methods and measurement methodology, the authors were unable to determine the variation in arsenic composition as a function of source or particulate matter (PM) fraction. In this work, the authors include the implications of arsenic speciation in air on potential exposure and risks. The authors conclude that it is important to synchronize sample collection, preparation, and analytical techniques in order to generate

  14. Field and laboratory arsenic speciation methods and their application to natural-water analysis

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Burkhardt, M.R.; Ranville, J.F.; Wildeman, T.R.

    2004-01-01

    The toxic and carcinogenic properties of inorganic and organic arsenic species make their determination in natural water vitally important. Determination of individual inorganic and organic arsenic species is critical because the toxicology, mobility, and adsorptivity vary substantially. Several methods for the speciation of arsenic in groundwater, surface-water, and acid mine drainage sample matrices using field and laboratory techniques are presented. The methods provide quantitative determination of arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA), dimethylarsinate (DMA), and roxarsone in 2-8min at detection limits of less than 1??g arsenic per liter (??g AsL-1). All the methods use anion exchange chromatography to separate the arsenic species and inductively coupled plasma-mass spectrometry as an arsenic-specific detector. Different methods were needed because some sample matrices did not have all arsenic species present or were incompatible with particular high-performance liquid chromatography (HPLC) mobile phases. The bias and variability of the methods were evaluated using total arsenic, As(III), As(V), DMA, and MMA results from more than 100 surface-water, groundwater, and acid mine drainage samples, and reference materials. Concentrations in test samples were as much as 13,000??g AsL-1 for As(III) and 3700??g AsL-1 for As(V). Methylated arsenic species were less than 100??g AsL-1 and were found only in certain surface-water samples, and roxarsone was not detected in any of the water samples tested. The distribution of inorganic arsenic species in the test samples ranged from 0% to 90% As(III). Laboratory-speciation method variability for As(III), As(V), MMA, and DMA in reagent water at 0.5??g AsL-1 was 8-13% (n=7). Field-speciation method variability for As(III) and As(V) at 1??g AsL-1 in reagent water was 3-4% (n=3). ?? 2003 Elsevier Ltd. All rights reserved.

  15. [Influencing factors and mechanism of arsenic removal during the aluminum coagulation process].

    PubMed

    Chen, Gui-Xia; Hu, Cheng-Zhi; Zhu, Ling-Feng; Tong, Hua-Qing

    2013-04-01

    Aluminum coagulants are widely used in arsenic (As) removal during the drinking water treatment process. Aluminium chloride (AlCl3) and polyaluminium chloride (PACl) which contains high content of Al13 were used as coagulants. The effects of aluminum species, pH, humic acid (HA) and coexisting anions on arsenic removal were investigated. Results showed that AlCl3 and PACl were almost ineffective in As(II) removal while the As(V) removal efficiency reached almost 100%. pH was an important influencing factor on the arsenic removal efficiency, because pH influenced the distribution of aluminum species during the coagulation process. The efficiency of arsenic removal by aluminum coagulants was positively correlated with the content of Al13 species. HA and some coexisting anions showed negative impact on arsenic removal because of the competitive adsorption. The negative influence of HA was more pronounced at low coagulant dosages. PO4(3-) and F(-) showed marked influence during arsenic removal, but there was no obvious influence when SiO3(2-), CO3(2-) and SO4(2-) coexisted. The present study would be helpful to direct arsenic removal by enhanced coagulation during the drinking water treatment.

  16. Urinary arsenic levels influenced by abandoned mine tailings in the Southernmost Baja California Peninsula, Mexico.

    PubMed

    Colín-Torres, Carlos G; Murillo-Jiménez, Janette M; Del Razo, Luz M; Sánchez-Peña, Luz C; Becerra-Rueda, Oscar F; Marmolejo-Rodríguez, Ana J

    2014-10-01

    Gold has been mined at San Antonio-El Triunfo, (Baja California Sur, Mexico) since the 18th century. This area has approximately 5,700 inhabitants living in the San Juan de Los Planes and El Carrizal hydrographic basins, close to more than 100 abandoned mining sites containing tailings contaminated with potentially toxic elements such as arsenic. To evaluate the arsenic exposure of humans living in the surrounding areas, urinary arsenic species, such as inorganic arsenic (iAs) and the metabolites mono-methylated (MMA) and di-methylated arsenic acids (DMA), were evaluated in 275 residents (18-84 years of age). Arsenic species in urine were analyzed by hydride generation-cryotrapping-atomic absorption spectrometry, which excludes the non-toxic forms of arsenic such as those found in seafood. Urinary samples contained a total arsenic concentration (sum of arsenical species) which ranged from 1.3 to 398.7 ng mL(-1), indicating 33% of the inhabitants exceeded the biological exposition index (BEI = 35 ng mL(-1)), the permissible limit for occupational exposure. The mean relative urinary arsenic species were 9, 11 and 80% for iAs, MMA and DMA, respectively, in the Los Planes basin, and 17, 10 and 73%, respectively, in the El Carrizal basin. These data indicated that environmental intervention is required to address potential health issues in this area.

  17. The Investigation of Unexpected Arsenic Compounds Observed in Routine Biological Monitoring Urinary Speciation Analysis

    PubMed Central

    Leese, Elizabeth; Clench, Malcolm; Morton, Jackie; Gardiner, Philip H.E.; Carolan, Vikki A.

    2017-01-01

    This study investigates the identity of two unexpected arsenic species found separately in a number of urine samples sent to the Health and Safety Executive’s Health and Safety Laboratory for arsenic speciation (arsenobetaine, AB; arsenite, As3+; arsenate, As5+; monomethylarsonic acid, MMA5+; and dimethylarsinic acid, DMA5+). Micro liquid chromatography coupled to inductively coupled plasma mass spectrometry (µLC-ICP-MS) and electrospray time of flight tandem mass spectrometry (ESI-QqTOF-MS/MS) were used to identify the two arsenic peaks by comparison to several characterized arsenicals: arsenocholine, AC; trimethyl arsine oxide, TMAO; dimethylarsenoacetate, DMAA; dimethylarsenoethanol, DMAE; thio-dimethylarsinate, thio-DMA; thio-dimethylarsenoacetate, thio-DMAA and thio-dimethylarsenoethanol, thio-DMAE. The results from both the ICP-MS and ESI-QqTOF-MS/MS investigations indicate that the unexpected arsenic species termed peak 1 was thio-DMA. While the unexpected arsenic species termed peak 2 has yet to be identified, this investigation shows that it was not AC, TMAO, DMAA, DMAE, thio-DMA, thio-DMAA or thio-DMAE. This study demonstrates the incidence of unexpected arsenic species in both routine and non-routine urine samples from both workers and hospital patients. PMID:29051444

  18. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    PubMed

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security. Copyright © 2015

  19. THE CELLULAR METABOLISM AND SYSTEMIC TOXICITY OF ARSENIC

    EPA Science Inventory

    Abstract

    Toxic Consequences of the Metabolism of Arsenic. David J. Thomas, Miroslav Styblo, and Shan Lin. (2001). Toxicol. Appl. Pharmacol. 000, xxx-yyy.
    Although it has been known for decades that humans and many other species metabolize inorganic arsenic to methyl ...

  20. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.

    PubMed

    Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya

    2016-12-01

    Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols. Copyright

  1. Raman spectra of thiolated arsenicals with biological importance.

    PubMed

    Yang, Mingwei; Sun, Yuzhen; Zhang, Xiaobin; McCord, Bruce; McGoron, Anthony J; Mebel, Alexander; Cai, Yong

    2018-03-01

    Surface enhanced Raman scattering (SERS) has great potential as an alternative tool for arsenic speciation in biological matrices. SERS measurements have advantages over other techniques due to its ability to maintain the integrity of arsenic species and its minimal requirements for sample preparation. Up to now, very few Raman spectra of arsenic compounds have been reported. This is particularly true for thiolated arsenicals, which have recently been found to be widely present in humans. The lack of data for Raman spectra in arsenic speciation hampers the development of new tools using SERS. Herein, we report the results of a study combining the analysis of experimental Raman spectra with that obtained from density functional calculations for some important arsenic metabolites. The results were obtained with a hybrid functional B3LYP approach using different basis sets to calculate Raman spectra of the selected arsenicals. By comparing experimental and calculated spectra of dimethylarsinic acid (DMA V ), the basis set 6-311++G** was found to provide computational efficiency and precision in vibrational frequency prediction. The Raman frequencies for the rest of organoarsenicals were studied using this basis set, including monomethylarsonous acid (MMA III ), dimethylarsinous acid (DMA III ), dimethylmonothioarinic acid (DMMTA V ), dimethyldithioarsinic acid (DMDTA V ), S-(Dimethylarsenic) cysteine (DMA III (Cys)) and dimethylarsinous glutathione (DMA III GS). The results were compared with fingerprint Raman frequencies from As─O, As─C, and As─S obtained under different chemical environments. These fingerprint vibrational frequencies should prove useful in future measurements of different species of arsenic using SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction.

    PubMed

    Pierce, Brandon L; Tong, Lin; Argos, Maria; Gao, Jianjun; Farzana, Jasmine; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K; Alam, Shafiul; Islam, Tariqul; Harjes, Judith; Sarwar, Golam; Slavkovich, Vesna; Gamble, Mary V; Chen, Yu; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A; Graziano, Joseph H; Ahsan, Habibul

    2013-12-01

    Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.

  3. Evaluation of Exposure to Arsenic in Residential Soil

    PubMed Central

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda S.; Scrafford, Carolyn G.; Mink, Pamela J.; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-01-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89–17.7 μg/L, respectively) and older participants (3.8, 1.9, 0.91–19.9 μg/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background. PMID:16330356

  4. Important considerations in the development of public health advisories for arsenic and arsenic-containing compounds in drinking water.

    PubMed

    Tchounwou, P B; Wilson, B; Ishaque, A

    1999-01-01

    Drinking water contamination by arsenic remains a major public health problem. Acute and chronic arsenic exposure via drinking water has been reported in many countries of the world; especially in Argentina, Bangladesh, India, Mexico, Thailand, and Taiwan, where a large proportion of drinking water (ground water) is contaminated with a high concentration of arsenic. Research has also pointed out significantly higher standardized mortality ratios and cumulative mortality rates for cancers of the bladder, kidney, skin, liver, and colon in many areas of arsenic pollution. General health effects that are associated with arsenic exposure include cardiovascular and peripheral vascular disease, developmental anomalies, neurologic and neurobehavioral disorders, diabetes, hearing loss, portal fibrosis of the liver, lung fibrosis, hematologic disorders (anemia, leukopenia, and eosinophilia), and carcinoma. Although, the clinical manifestations of arsenic poisoning appear similar, the toxicity of arsenic compounds depends largely u[on the chemical species and the form of arsenic involved. On the basis of its high degree of toxicity to humans, and the non-threshold dose-response assumption, a zero level exposure is recommended for arsenic, even though this level is practically non-attainable. In this review, we provide and discuss important information on the physical and chemical properties, production and use, fate and transport, toxicokinetics, systemic and carcinogenic health effects, regulatory and health guidelines, analytical methods, and treatment technologies that are applied to arsenic pollution. Such information is critical in assisting the federal, state and local officials who are responsible for protecting public health in dealing with the problem of drinking water contamination by arsenic and arsenic-containing compounds.

  5. Mobilization of arsenic from contaminated sediment by anionic and nonionic surfactants.

    PubMed

    Liang, Chuan; Peng, Xianjia

    2017-06-01

    The increasing manufacture of surfactants and their wide application in industry, agriculture and household detergents have resulted in large amounts of surfactant residuals being discharged into water and distributed into sediment. Surfactants have the potential to enhance arsenic mobility, leading to risks to the environment and even human beings. In this study, batch and column experiments were conducted to investigate arsenic mobilization from contaminated sediment by the commercial anionic surfactants sodium dodecylbenzenesulfonate (SDBS), sodium dodecyl sulfate (SDS), sodium laureth sulfate (AES) and nonionic surfactants phenyl-polyethylene glycol (Triton X-100) and polyethylene glycol sorbitan monooleate (Tween-80). The ability of surfactants to mobilize arsenic followed the order AES>SDBS>SDS≈Triton X-100>Tween 80. Arsenic mobilization by AES and Triton X-100 increased greatly with the increase of surfactant concentration and pH, while arsenic release by SDBS, SDS and Tween-80 slightly increased. The divalent ion Ca 2+ caused greater reduction of arsenic mobilization than Na + . Sequential extraction experiments showed that the main fraction of arsenic mobilized was the specifically adsorbed fraction. Solid phase extraction showed that arsenate (As(V)) was the main species mobilized by surfactants, accounting for 65.05%-77.68% of the total mobilized arsenic. The mobilization of arsenic was positively correlated with the mobilization of iron species. The main fraction of mobilized arsenic was the dissolved fraction, accounting for 70% of total mobilized arsenic. Copyright © 2016. Published by Elsevier B.V.

  6. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Iris; Sylvester, Steven; Lai, Vivian W.-M.

    2007-08-01

    Traditional Chinese medicines (TCMs) often contain significant levels of potentially toxic elements, including arsenic. Niu Huang Jie Du Pian pills were analyzed to determine the concentration, bioaccessibility (arsenic fraction soluble in the human gastrointestinal system) and chemical form (speciation) of arsenic. Arsenic excretion in urine (including speciation) and facial hair were studied after a one-time ingestion. The pills contained arsenic in the form of realgar, and although the total arsenic that was present in a single pill was high (28 mg), the low bioaccessibility of this form of arsenic predicted that only 4% of it was available for absorption intomore » the bloodstream (1 mg of arsenic per pill). The species of arsenic that were solubilized were inorganic arsenate (As(V)) and arsenite (As(III)) but DMAA and MMAA were detected in urine. Two urinary arsenic excretion peaks were observed: an initial peak several (4-8) hours after ingestion corresponding to the excretion of predominantly As(III), and a larger peak at 14 h corresponding predominantly to DMAA and MMAA. No methylated As(III) species were observed. Facial hair analysis revealed that arsenic concentrations did not increase significantly as a result of the ingestion. Arsenic is incompletely soluble under human gastrointestinal conditions, and is metabolized from the inorganic to organic forms found in urine. Bioaccessible arsenic is comparable to the quantity excreted. Facial hair as a bio-indicator should be further tested.« less

  7. Total and inorganic arsenic in natural and aquacultural freshwater fish in Thailand: a comparative study.

    PubMed

    Ruangwises, Nongluck; Saipan, Piyawat; Ruangwises, Suthep

    2012-12-01

    Total and inorganic arsenic were determined in 108 samples of four freshwater fish species collected from natural water sources and aquaculture systems in the central region of Thailand between March and May 2010. Concentrations of total and inorganic arsenic (dry wt) and percentages of inorganic arsenic in four aquacultural fish species were not significantly different from those found in natural fish. Inorganic arsenic levels found in the four fish species from both sources in this study were much lower than the Thai regulatory standard of 2 μg/g, and hence are considered safe for human consumption.

  8. Assessment of chemical and biological significance of arsenical species in the Maurice River drainage basin (N. J. ). Part I. Distribution in water and river and lake sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faust, S.D.; Winka, A.J.; Belton, T.

    1987-01-01

    Levels of arsenic were determined in the bottom sediments and waters of the Maurice River, Blackwater Branch, and Union Lake, (N.J.) that were contaminated by a local chemical industry. This was the only known source of the arsenic. Levels of total arsenic in the sediments and waters were determined quarterly over the course of one year. Sediments were extracted for water soluble and total extractable arsenic fractions and partitioned into four species: monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), arsenite (As(III)), and arsenate (As(V)). In Union Lake at a shallow sandy sediment site, As (V) predominates. In organic sediments, As (III)more » or (V) predominate depending upon the dissolved oxygen content of the overlying waters. The oxidations state of the arsenic was affected also by the seasonal lake cycles of stratifying or mixing.« less

  9. Hijacking membrane transporters for arsenic phytoextraction

    PubMed Central

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  10. Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii.

    PubMed

    Das, Joyati; Sarkar, Priyabrata

    2018-05-15

    Arsenic, a carcinogenic and toxic contaminant of soil and water, affects human health adversely. During last few decades, it has been an important global environmental issue. Among several arsenic detoxification methods remediation using arsenic resistant microbes is proved to be environment-friendly and cost-effective. This study aimed to test the effects of arsenic utilizing bacterial strain Acinetobacter lwoffii (RJB-2) on arsenic uptake and growth of mung bean plants (Vigna radiata). RJB-2 exhibited tolerance up to 125mM of arsenic (V) and 50mM of arsenic (III). RJB-2 produced plant growth promoting substances e.g. indole acetic acid (IAA), siderophores, exopolysaccharide (EPS) and phosphate solubilization in the absence and in presence of arsenic. Pot experiments were used to scrutinize the role of RJB-2 on arsenic uptake and growth of mung bean plants grown in soil amended with 22.5mgkg -1 of sodium arsenate (Na 2 HAsO 4 ·7H 2 O). RJB-2 could arrest arsenic uptake in just 7days and increase plant growth, number of plants per pot, chlorophyll and carotenoid content of the mung bean plants. RJB-2 formed biofilm and its root-association helped to abate arsenic uptake in mung bean. Confocal and light microscopic studies also revealed the abatement of arsenic uptake and increase in chlorophyll content in mung bean plants in presence of RJB-2. RJB-2 was also responsible for less production of reactive oxygen species (ROS) in mung bean plants reducing the oxidative damage caused by arsenic. The lower percentage of electrolytic leakage (EL) in RJB-2 inoculated mung bean plants proved arsenic abatement. The study also reported the distribution of arsenic in various parts of mung bean plant. RJB-2 owing to its intrinsic abilities of plant growth promotion even in presence of high concentrations of arsenic could inhibit arsenic uptake completely and therefore it could be used in large-scale cultivation for phytostabilization of plants. Copyright © 2017 Elsevier B

  11. Arsenic speciation in food chains from mid-Atlantic hydrothermal vents

    USGS Publications Warehouse

    Taylor, Vivien F.; Jackson, Brian P.; Siegfried, Matthew R.; Navratilova, Jana; Francesconi, Kevin A.; Kirshtein, Julie; Voytek, Mary

    2012-01-01

    Arsenic concentration and speciation were determined in benthic fauna collected from the Mid-Atlantic Ridge hydrothermal vents. The shrimp species, Rimicaris exoculata, the vent chimney-dwelling mussel, Bathymodiolus azoricus, Branchipolynoe seepensis, a commensal worm of B. azoricus and the gastropod Peltospira smaragdina showed variations in As concentration and in stable isotope (δ13C and δ15N) signature between species, suggesting different sources of As uptake. Arsenic speciation showed arsenobetaine to be the dominant species in R. exoculata, whereas in B. azoricus and B. seepensis arsenosugars were most abundant, although arsenobetaine, dimethylarsinate and inorganic arsenic were also observed, along with several unidentified species. Scrape samples from outside the vent chimneys covered with microbial mat, which is a presumed food source for many vent organisms, contained high levels of total As, but organic species were not detectable. The formation of arsenosugars in pelagic environments is typically attributed to marine algae, and the pathway to arsenobetaine is still unknown. The occurrence of arsenosugars and arsenobetaine in these deep sea organisms, where primary production is chemolithoautotrophic and stable isotope analyses indicate food sources are of vent origin, suggests that organic arsenicals can occur in a foodweb without algae or other photosynthetic life.

  12. Arsenic speciation in food chains from mid-Atlantic hydrothermal vents.

    PubMed

    Taylor, Vivien F; Jackson, Brian P; Siegfried, Matthew; Navratilova, Jana; Francesconi, Kevin A; Kirshtein, Julie; Voytek, Mary

    2012-05-04

    Arsenic concentration and speciation were determined in benthic fauna collected from the Mid-Atlantic Ridge hydrothermal vents. The shrimp species, Rimicaris exoculata , the vent chimney-dwelling mussel, Bathymodiolus azoricus , Branchipolynoe seepensis , a commensal worm of B. azoricus , and the gastropod Peltospira smaragdina showed variations in As concentration and in stable isotope (δ 13 C and δ 15 N) signature between species, suggesting different sources of As uptake. Arsenic speciation showed arsenobetaine to be the dominant species in R. exoculata , whereas in B. azoricus and B. seepensis arsenosugars were most abundant, although arsenobetaine, dimethylarsinate, and inorganic arsenic were also observed, along with several unidentified species. Scrape samples from outside the vent chimneys, covered with microbial mat, which is a presumed food source for many vent organisms, contained high levels of total As, but organic species were not detectable. The formation of arsenosugars in pelagic environments is typically attributed to marine algae, and the pathway to arsenobetaine is still unknown. The occurrence of arsenosugars and arsenobetaine in these deep sea organisms, where primary production is chemolithoautotrophic and stable isotope analyses indicate food sources are of vent origin, suggests that organic arsenicals can occur in a food web without algae or other photosynthetic life.

  13. Identification of Novel Gene Targets and Putative Regulators of Arsenic-Associated DNA Methylation in Human Urothelial Cells and Bladder Cancer

    PubMed Central

    Rager, Julia E.; Miller, Sloane; Tulenko, Samantha E.; Smeester, Lisa; Ray, Paul D.; Yosim, Andrew; Currier, Jenna M.; Ishida, María C.; González-Horta, Maria del Carmen; Sánchez-Ramírez, Blanca; Ballinas-Casarrubias, Lourdes; Gutiérrez-Torres, Daniela S.; Drobná, Zuzana; Del Razo, Luz M.; García-Vargas, Gonzalo G.; Kim, William Y.; Zhou, Yi-Hui; Wright, Fred A.; Stýblo, Miroslav; Fry, Rebecca C.

    2016-01-01

    There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to a myriad of adverse health effects, including cancer of the bladder. The present study set out to identify DNA methylation patterns associated with iAs and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic (As)-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total As (tAs) and As species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 As-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the As- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer. PMID:26039340

  14. Effects of biological and behavioral factors on urinary arsenic ...

    EPA Pesticide Factsheets

    Abstract In older men and women who were long-term residents of Churchill County, Nevada, we examined the relation between arsenic exposure from home tap water and urinary levels of inorganic arsenic and its methylated metabolites. Over a wide exposure range (up to 1850 ug of arsenic per liter), urinary concentrations of inorganic, monomethylated, and dimethylated arsenicals strongly correlated with home tap water arsenic concentrations. However, percentages of summed urinary concentrations of inorganic, monomethylated, and dimethylated arsenicals accounted for by each arsenical species were unaffected by arsenic concentration in home tap water, suggesting thc1t capacity for formation and excretion of methylated metabolites was not exceeded. Biological factors (gender, age, body mass index, and genotype) and a behavioral factor (smoking) influenced absolute and relative levels of arsenicals in urine. A multivariate regression model showed that both biological and behavioral factors were significant predictors of absolute and relative concentrations of inorganic arsenic and its methylated metabolites in urine. These findings suggest that analyses of dose-response relations in arsenic-exposed populations should account for these biological and behavioral factors. Furthermore, evidence of significant effects of these factors on arsenic metabolism may support mode of action studies in appropriate experimental models. Running title- Methylated arsenicals as urinary b

  15. Arsenic behavior in river sediments under redox gradient: a review.

    PubMed

    Gorny, Josselin; Billon, Gabriel; Lesven, Ludovic; Dumoulin, David; Madé, Benoît; Noiriel, Catherine

    2015-02-01

    The fate of arsenic - a redox sensitive metalloid - in surface sediments is closely linked to early diagenetic processes. The review presents the main redox mechanisms and final products of As that have been evidenced over the last years. Oxidation of organic matter and concomitant reduction of oxidants by bacterial activity result in redox transformations of As species. The evolution of the sediment reactivity will also induce secondary abiotic reactions like complexation/de-complexation, sorption, precipitation/dissolution and biotic reactions that could, for instance, lead to the detoxification of some As species. Overall, abiotic redox reactions that govern the speciation of As mostly involve manganese (hydr)-oxides and reduced sulfur species produced by the sulfate-reducing bacteria. Bacterial activity is also responsible for the inter-conversion between As(V) and As(III), as well as for the production of methylated arsenic species. In surficial sediments, sorption processes also control the fate of inorganic As(V), through the formation of inner sphere complexes with iron (hydr)-oxides, that are biologically reduced in buried sediment. Arsenic species can also be bound to organic matter, either directly to functional groups or indirectly through metal complexes. Finally, even if the role of reduced sulfur species in the cycling of arsenic in sediments has been evidenced, some of the transformations remain hypothetical and deserve further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Arsenic oxidation by UV radiation combined with hydrogen peroxide.

    PubMed

    Sorlini, S; Gialdini, F; Stefan, M

    2010-01-01

    Arsenic is a widespread contaminant in the environment around the world. The most abundant species of arsenic in groundwater are arsenite [As(III)] and arsenate [As(V)]. Several arsenic removal processes can reach good removal yields only if arsenic is present as As(V). For this reason it is often necessary to proceed with a preliminary oxidation of As(III) to As(V) prior to the removal technology. Several studies have focused on arsenic oxidation with conventional reagents and advanced oxidation processes. In the present study the arsenic oxidation was evaluated using hydrogen peroxide, UV radiation and their combination in distilled and in real groundwater samples. Hydrogen peroxide and UV radiation alone are not effective at the arsenic oxidation. Good arsenic oxidation yields can be reached in presence of hydrogen peroxide combined with a high UV radiation dose (2,000 mJ/cm(2)). The quantum efficiencies for As(III) oxidation were calculated for both the UV photolysis and the UV/H(2)O(2) processes.

  17. Heat-assisted aqueous extraction of rice flour for arsenic speciation analysis.

    PubMed

    Narukawa, Tomohiro; Chiba, Koichi

    2010-07-28

    A versatile heat-assisted pretreatment aqueous extraction method for the analysis of arsenic species in rice was developed. Rice flour certified reference materials NIST SRM1568a and NMIJ CRM 7503-a and a flour made from polished rice were used as samples, and HPLC-ICP-MS was employed for the determination of arsenic species. Arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) were detected in NIST SRM, and As(III), As(V) and DMAA were found in NMIJ CRM and the prepared polished rice flour. The sums of the concentrations of all species in each rice flour sample were 97-102% of the total arsenic concentration in each sample.

  18. A Phytoremediation Strategy for Arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousandmore » pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic

  19. Arsenic hazards to humans, plants, and animals from gold mining

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    Arsenic sources to the biosphere associated with gold mining include waste soil and rocks, residual water from ore concentrations, roasting of some types of gold-containing ores to remove sulfur and sulfur oxides, and bacterially-enhanced leaching. Arsenic concentrations near gold mining operations were elevated in abiotic materials and biota: maximum total arsenic concentrations measured were 560 ug/L in surface waters, 5.16 mg/L in sediment pore waters, 5.6 mg/kg dry weight (DW) in bird liver, 27 mg/kg DW in terrestrial grasses, 50 mg/kg DW in soils, 79 mg/kg DW in aquatic plants, 103 mg/kg DW in bird diets, 225 mg/kg DW in soft parts of bivalve molluscs, 324 mg/L in mine drainage waters, 625 mg/kg DW in aquatic insects, 7700 mg/kg DW in sediments, and 21,000 mg/kg DW in tailings. Single oral doses of arsenicals that were fatal to 50% of tested species ranged from 17 to 48 mg/kg body weight (BW) in birds and from 2.5 to 33 mg/kg BW in mammals. Susceptible species of mammals were adversely affected at chronic doses of 1 to 10 mg As/kg BW, or 50 mg As/kg diet. Sensitive aquatic species were damaged at water concentrations of 19 to 48 ug As/L, 120 mg As/kg diet, or tissue residues (in the case of freshwater fish) >1.3 mg/kg fresh weight. Adverse effects to crops and vegetation were recorded at 3 to 28 mg of water-soluble As/L (equivalent to about 25 to 85 mg total As/kg soil) and at atmospheric concentrations >3.9 ug As/m3. Gold miners had a number of arsenic-associated health problems including excess mortality from cancer of the lung, stomach, and respiratory tract. Miners and schoolchildren in the vicinity of gold mining activities had elevated urine arsenic of 25.7 ug/L (range 2.2-106.0 ug/L). Of the total population at this location, 20% showed elevated urine arsenic concentrations associated with future adverse health effects; arsenic-contaminated drinking water is the probable causative factor of elevated arsenic in urine. Proposed arsenic criteria to protect

  20. Arsenic hazards to humans, plants, and animals from gold mining.

    PubMed

    Eisler, Ronald

    2004-01-01

    Arsenic sources to the biosphere associated with gold mining include waste soil and rocks, residual water from ore concentrations, roasting of some types of gold-containing ores to remove sulfur and sulfur oxides, and bacterially enhanced leaching. Arsenic concentrations near gold mining operations are elevated in abiotic materials and biota: maximum total arsenic concentrations measured were 560 microg/L in surface waters, 5.16 mg/L in sediment pore waters, 5.6 mg/kg DW in bird liver, 27 mg/kg DW in terrestrial grasses, 50 mg/kg DW in soils, 79 mg/kg DW in aquatic plants, 103 mg/kg DW in bird diets, 225 mg/kg DW in soft parts of bivalve molluscs, 324 mg/L in mine drainage waters, 625 mg/kg DW in aquatic insects, 7,700 mg/kg DW in sediments, and 21,000 mg/ kg DW in tailings. Single oral doses of arsenicals that were fatal to 50% of tested species ranged from 17 to 48 mg/kg BW in birds and from 2.5 to 33 mg/kg BW in mammals. Susceptible species of mammals were adversely affected at chronic doses of 1-10 mg As/kg BW or 50 mg As/kg diet. Sensitive aquatic species were damaged at water concentrations of 19-48 microg As/L, 120 mg As/kg diet, or tissue residues (in the case of freshwater fish) > 1.3 mg/kg fresh weight. Adverse effects to crops and vegetation were recorded at 3-28 mg of water-soluble As/L (equivalent to about 25-85 mg total As/kg soil) and at atmospheric concentrations > 3.9 microg As/m3. Gold miners had a number of arsenic-associated health problems, including excess mortality from cancer of the lung, stomach, and respiratory tract. Miners and schoolchildren in the vicinity of gold mining activities had elevated urine arsenic of 25.7 microg/L (range, 2.2-106.0 microg/L). Of the total population at this location, 20% showed elevated urine arsenic concentrations associated with future adverse health effects; arsenic-contaminated drinking water is the probable causative factor of elevated arsenic in their urine. Proposed arsenic criteria to protect human

  1. Speciation and monitoring test for inorganic arsenic in white rice flour.

    PubMed

    Narukawa, Tomohiro; Hioki, Akiharu; Chiba, Koichi

    2012-02-01

    A monitoring test for arsenic species in white rice flour was developed and applied to flours made from 20 samples of polished rice collected from locations all over Japan. The arsenic species in white rice flour made from five samples each of four types of rice were analyzed by HPLC-ICP-MS after a heat-assisted aqueous extraction. The total arsenic and major and minor element concentrations in the white rice flours were measured by ICP-MS and ICP-OES after microwave-assisted digestion. 91 ± 1% of the arsenic in the flours was extractable. Concentrations of arsenite [As(III)], arsenate [As(V)], and dimethylarsinic acid (DMAA) were closely positively correlated with the total arsenic concentrations. The total arsenic concentration in flours made from rice collected around Japan was 0.15 ± 0.07 mg kg(-1) (highest, 0.32 mg kg(-1)), which is very low. It was thus confirmed that the white rice flour samples collected in this experiment were not suffered from noticeable As contamination.

  2. Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication.

    PubMed

    Favas, Paulo J C; Pratas, João; Prasad, M N V

    2012-09-01

    This work focuses on the potential of aquatic plants for bioindication and/or phytofiltration of arsenic from contaminated water. More than 71 species of aquatic plants were collected at 200 sampling points in running waters. The results for the 18 most representative plant species are presented here. The species Ranunculus trichophyllus, Ranunculus peltatus subsp. saniculifolius, Lemna minor, Azolla caroliniana and the leaves of Juncus effusus showed a very highly significant (P<0.001) positive correlation with the presence of arsenic in the water. These species may serve as arsenic indicators. The highest concentration of arsenic was found in Callitriche lusitanica (2346 mg/kg DW), Callitriche brutia (523 mg/kg DW), L. minor (430 mg/kg DW), A. caroliniana (397 mg/kg DW), R. trichophyllus (354 mg/kg DW), Callitriche stagnalis (354 mg/kg DW) and Fontinalis antipyretica (346 mg/kg DW). These results indicate the potential application of these species for phytofiltration of arsenic through constructed treatment wetlands or introduction of these plant species into natural water bodies. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. ACCELERATED SOLVENT EXTRACTION OF ARSENICALS FROM SEAFOOD MATRICES WITH ION CHROMATOGRAPHY AND ICP-MS DETECTION

    EPA Science Inventory

    The two major sources of arsenic exposure are water and diet. Dietary exposure is considerably more difficult to assess because of the diversity of arsenicals present in dietary matrices coupled with species dependent toxicity of arsenic. Dietary arsenic assessments are further c...

  4. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.

    PubMed

    Hatayama, Masayoshi; Sato, Takahiko; Shinoda, Kozo; Inoue, Chihiro

    2011-03-01

    The physiological responses of the arsenic-hyperaccumulator, Pteris vittata, such as arsenic uptake and chemical transformation in the fern, have been investigated. However, a few questions remain regarding arsenic treatment in hydroponics. Incubation conditions such as aeration, arsenic concentration, and incubation period might affect those responses of P. vittata in hydroponics. Arsenite uptake was low under anaerobic conditions, as previously reported. However, in an arsenite uptake experiment, phosphorous (P) starvation-dependent uptake of arsenate was observed under aerobic conditions. Time course-dependent analysis of arsenite oxidation showed that arsenite was gradually oxidized to arsenate during incubation. Arsenite oxidation was not observed in any of the control conditions, such as exposure to a nutrient solution or to culture medium only, or with the use of dried root; arsenite oxidation was only observed when live root was used. This result suggests that sufficient aeration allows the rhizosphere system to oxidize arsenite and enables the fern to efficiently take up arsenite as arsenate. X-ray absorption near edge structure (XANES) analyses showed that long-duration exposure to arsenic using a hydroponic system led to the accumulation of arsenate as the dominant species in the root tips, but not in the whole roots, partly because up-regulation of arsenate uptake by P starvation of the fern was caused and retained by long-time incubation. Analysis of concentration-dependent arsenate uptake by P. vittata showed that the uptake switched from a high-affinity transport system to a low-affinity system at high arsenate concentrations, which partially explains the increased arsenate abundance in the whole root. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Determination of sixteen elements and arsenic species in brown, polished and milled rice.

    PubMed

    Narukawa, Tomohiro; Matsumoto, Eri; Nishimura, Tsutomu; Hioki, Akiharu

    2014-01-01

    The concentrations of 16 elements in 10 rice flour samples and the distribution of the elements in the rice grains from which the flour were made were determined by ICP-MS and ICP-OES after microwave-assisted digestion of the samples. Arsenic speciation analysis was carried out by HPLC-ICP-MS following heat-assisted extraction of the sample. The concentrations of inorganic As (As(III) and As(V)), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) and their distribution in the rice grains were determined. Portions of the brown rice were polished/milled to different degrees to yield milled off samples and polished rice samples. All samples were powdered and analyzed for 16 elements and for As species. The recoveries and mass balances for all elements in all samples showed good agreements with the starting materials. As(III), As(V), MMAA and DMAA were detected, and the sums of the concentrations of all species in the extract were 86-105% of the total As concentration in each case.

  6. Correlation of Breastmilk Arsenic With Maternal, Infant Urinary Arsenic and Drinking Water Arsenic in an Arsenic Affected Area of Bangladesh

    NASA Astrophysics Data System (ADS)

    Alauddin, M.; Islam, M. R.; Milton, A. H.; Alauddin, S. T.; Mouly, T.; Behri, E.; Ayesha, A.; Akter, S.; Islam, M. M.

    2016-12-01

    About 97% of population in Bangladesh depend on groundwater as the principle source of drinking water and this water is highly contaminated with inorganic arsenic. Consumption of arsenic contaminated drinking water by pregnant women raises the prospect of early life exposure to inorganic arsenic for newborn which may be lead to adverse health effect in later life. This work was carried out in parts of Gopalganj district in Bangladesh, a region affected by arsenic contamination in groundwater. The objective of the work was to assess potential early life exposure to arsenic for infants through breastfeeding by mothers who were drinking water with arsenic levels ranging from 100 to 300 µg/l. A cohort of 30 mother-baby pairs were selected for the current study. Breastmilk samples from mothers, urine samples from each pair of subjects at 1, 6 and 9 month age of infant were collected and total arsenic were determined in these samples. In addition speciation of urinary arsenic and metabolites were carried out in 12 mother-baby pairs. Median level for breastmilk arsenic were 0.50 µg/l. Urinary arsenic of infants did not correlate with breastmilk arsenic with progressing age of infants. Maternal and infant urinary total arsenic at 1 month age of infant showed some positive correlation (r = 0.39). In infant urine major metabolite were dimethyl arsenic acid (DMA) (approximately 70%) indicating good methylating capacity for infants at 1 and 6 months of age. In conclusion, infants were not exposed to arsenic through breastfeeding even though mothers were exposed to significant levels of arsenic through drinking water.

  7. DNA DAMAGE INDUCED BY METHYLATED TRIVALENT ARSENICALS IS MEDIATED BY REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    Abstract
    Arsenic is a human carcinogen; however, the mechanisms of arsenic's induction of carcinogenic effects have not been identified clearly. We have shown previously that monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMAIII ) are genotoxic and can damage supe...

  8. From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia

    PubMed Central

    Zhou, Guang-Biao; Zhang, Xiao-Wei; Mao, Jian-Hua; de Thé, Hugues

    2011-01-01

    Arsenic had been used in treating malignancies from the 18th to mid-20th century. In the past 3 decades, arsenic was revived and shown to be able to induce complete remission and to achieve, when combined with all-trans retinoic acid and chemotherapy, a 5-year overall survival of 90% in patients with acute promyelocytic leukemia driven by the t(15;17) translocation-generated promyelocytic leukemia–retinoic acid receptor α (PML-RARα) fusion. Molecularly, arsenic binds thiol residues and induces the formation of reactive oxygen species, thus affecting numerous signaling pathways. Interestingly, arsenic directly binds the C3HC4 zinc finger motif in the RBCC domain of PML and PML-RARα, induces their homodimerization and multimerization, and enhances their interaction with the SUMO E2 conjugase Ubc9, facilitating subsequent sumoylation/ubiquitination and proteasomal degradation. Arsenic-caused intermolecular disulfide formation in PML also contributes to PML-multimerization. All-trans retinoic acid, which targets PML-RARα for degradation through its RARα moiety, synergizes with arsenic in eliminating leukemia-initiating cells. Arsenic perturbs a number of proteins involved in other hematologic malignancies, including chronic myeloid leukemia and adult T-cell leukemia/lymphoma, whereby it may bring new therapeutic benefits. The successful revival of arsenic in acute promyelocytic leukemia, together with modern mechanistic studies, has thus allowed a new paradigm to emerge in translational medicine. PMID:21422471

  9. METABOLISM AS A DETERMINING FACTOR IN ACUTE AND CHRONIC TOXICITY OF INORGANIC ARSENIC

    EPA Science Inventory

    The metabolism of inorganic arsenic (iAs) in humans involves reduction of As(V)-species to trivalency and oxidative methylation of As(III)-species. In this pathway, iAs is converted to methylarsenic (MAs) and dimethyl arsenic (DMAs) metabolites that contain As(III) or As(V). Rec...

  10. DNA DAMAGE INDUCED BY METHYLATED TRIVALENT ARSENICALS IS MEDIATED BY REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    Abstract

    Arsenic is a human carcinogen; however; the mechanisms of arsenic's induction of carcinogenic effects have not been identified clearly. We have shown previously that
    monomethylarsonous acid (MMAIII) and dimethylarsinous acid (DMA III) are genotoxic and can d...

  11. Physical, Chemical, and Biological Methods for the Removal of Arsenic Compounds

    PubMed Central

    Lim, K. T.; Shukor, M. Y.; Wasoh, H.

    2014-01-01

    Arsenic is a toxic metalloid which is widely distributed in nature. It is normally present as arsenate under oxic conditions while arsenite is predominant under reducing condition. The major discharges of arsenic in the environment are mainly due to natural sources such as aquifers and anthropogenic sources. It is known that arsenite salts are more toxic than arsenate as it binds with vicinal thiols in pyruvate dehydrogenase while arsenate inhibits the oxidative phosphorylation process. The common mechanisms for arsenic detoxification are uptaken by phosphate transporters, aquaglyceroporins, and active extrusion system and reduced by arsenate reductases via dissimilatory reduction mechanism. Some species of autotrophic and heterotrophic microorganisms use arsenic oxyanions for their regeneration of energy. Certain species of microorganisms are able to use arsenate as their nutrient in respiratory process. Detoxification operons are a common form of arsenic resistance in microorganisms. Hence, the use of bioremediation could be an effective and economic way to reduce this pollutant from the environment. PMID:24696853

  12. Arsenic Induces p62 Expression to Form a Positive Feedback Loop with Nrf2 in Human Epidermal Keratinocytes: Implications for Preventing Arsenic-Induced Skin Cancer.

    PubMed

    Shah, Palak; Trinh, Elaine; Qiang, Lei; Xie, Lishi; Hu, Wen-Yang; Prins, Gail S; Pi, Jingbo; He, Yu-Ying

    2017-01-24

    Exposure to inorganic arsenic in contaminated drinking water poses an environmental public health threat for hundreds of millions of people in the US and around the world. Arsenic is a known carcinogen for skin cancer. However, the mechanism by which arsenic induces skin cancer remains poorly understood. Here, we have shown that arsenic induces p62 expression in an autophagy-independent manner in human HaCaT keratinocytes. In mouse skin, chronic arsenic exposure through drinking water increases p62 protein levels in the epidermis. Nrf2 is required for basal and arsenic-induced p62 up-regulation. p62 knockdown reduces arsenic-induced Nrf2 activity, and induces sustained p21 up-regulation. p62 induction is associated with increased proliferation in mouse epidermis. p62 knockdown had little effect on arsenic-induced apoptosis, while it decreased cell proliferation following arsenic treatment. Our findings indicate that arsenic induces p62 expression to regulate the Nrf2 pathway in human keratinocytes and suggest that targeting p62 may help prevent arsenic-induced skin cancer.

  13. GLUTATHIONE MODULATES RECOMBINANT RAT ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE-CATALYZED FORMATION OF TRIMETHYLARSINE OXIDE AND TRIMETHYLARSINE

    EPA Science Inventory


    Humans and other species enzymatically convert inorganic arsenic into methylated metabolites. Although the major metabolites are mono- and dimethylated arsenicals, trimethylated arsenicals have been detected in urine following exposure to inorganic arsenic. The AS3MT gene e...

  14. Total arsenic determination and speciation in infant food products by ion chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Vela, Nohora P; Heitkemper, Douglas T

    2004-01-01

    Health risk associated with dietary arsenic intake may be different for infants and adults. Seafood is the main contributor to arsenic intake for adults while terrestrial-based food is the primary source for infants. Processed infant food products such as rice-based cereals, mixed rice/formula cereals, milk-based infant formula, applesauce and puree of peaches, pears, carrots, sweet potatoes, green beans, and squash were evaluated for total and speciated arsenic content. Arsenic concentrations found in rice-based cereals (63-320 ng/g dry weight) were similar to those reported for raw rice. Results for the analysis of powdered infant formula by inductively coupled plasma-mass spectrometry (ICP-MS) indicated a narrow and low arsenic concentration range (12 to 17 ng/g). Arsenic content in puree infant food products, including rice cereals, fruits, and vegetables, varies from <1 to 24 ng/g wet weight. Sample treatment with trifluoroacetic acid at 100 degrees C were an efficient and mild method for extraction of arsenic species present in different food matrixes as compared to alternative methods that included sonication and accelerated solvent extraction. Extraction recoveries from 94 to 128% were obtained when the summation of species was compared to total arsenic. The ion chromatography (IC)-ICP-MS method selected for arsenic speciation allowed for the quantitative determination of inorganic arsenic [As(III) + As(V)], dimethylarsinic acid (DMA), and methylarsonic acid (MMA). Inorganic arsenic and DMA are the main species found in rice-based and mixed rice/formula cereals, although traces of MMA were also detected. Inorganic arsenic was present in freeze-dried sweet potatoes, carrots, green beans, and peaches. MMA and DMA were not detected in these samples. Arsenic species in squash, pears, and applesauce were not detected above the method detection limit [5 ng/g dry weight for As(III), MMA, and DMA and 10 ng/g dry weight for As(V)].

  15. Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand.

    PubMed

    Chintakovid, Watchara; Visoottiviseth, Pornsawan; Khokiattiwong, Somkiat; Lauengsuchonkul, Siriporn

    2008-02-01

    Nugget marigold, a triploid hybrid between American (Tagetes erecta L.) and French (Tagetes patula) marigolds, is a marketed flowering plant with a good ability in arsenic phytoremediation. During field trial in an arsenic-polluted area in Thailand, arsenic was found mostly in leaves (46.2%) while flowers contained the lowest arsenic content (5.8%). Arsenic species in aqueous extracts of nugget marigolds were determined by HPLC-UV-HG-QF-AAS. Inorganic arsenics, arsenite and arsenate, were the main arsenic chemical species found in roots, stems, and leaves of marigolds with accumulated arsenic. Nugget marigolds from experimental plots not only accumulated high levels of arsenic but also grew well in arsenic-contaminated areas. Phosphate fertilizer enhanced arsenic uptake when the plants were in the flowering stage. Arsenic remediation using nugget marigolds could also provide economic benefits to the remediators through marketing flowers. Therefore, marigolds should be considered as a potential economic crop for phytoremediation.

  16. The case for visual analytics of arsenic concentrations in foods.

    PubMed

    Johnson, Matilda O; Cohly, Hari H P; Isokpehi, Raphael D; Awofolu, Omotayo R

    2010-05-01

    Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species.

  17. The Case for Visual Analytics of Arsenic Concentrations in Foods

    PubMed Central

    Johnson, Matilda O.; Cohly, Hari H.P.; Isokpehi, Raphael D.; Awofolu, Omotayo R.

    2010-01-01

    Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species. PMID:20623005

  18. Total and inorganic arsenic in fish samples from Norwegian waters.

    PubMed

    Julshamn, Kaare; Nilsen, Bente M; Frantzen, Sylvia; Valdersnes, Stig; Maage, Amund; Nedreaas, Kjell; Sloth, Jens J

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Artic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography-ICP-MS following microwave-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg(-1) wet weight. For inorganic arsenic, the concentrations found were very low (<0.006 mg kg(-1)) in all cases. The obtained results question the assumptions made by the European Food Safety Authority (EFSA) on the inorganic arsenic level in fish used in the recent EFSA opinion on arsenic in food.

  19. Characteristics of the trace elements and arsenic, iodine and bromine species in snow in east-central China

    NASA Astrophysics Data System (ADS)

    Gao, Yunchuan; Yang, Chao; Ma, Jin; Yin, Meixue

    2018-02-01

    Fifty-five snow samples were collected from 11 cities in east-central China. These sampling sites cover the areas with the most snowfall in 2014, there were only two snowfalls from June 2013 to May 2014 in east-central China. Twenty-three trace elements in the filtered snow samples were measured with inductively coupled plasma-mass spectrometry (ICP-MS). Statistical analysis of the results show that the total concentrations of elements in the samples from different cities are in the order of SJZ > LZ > XA > ZZ > GD > NJ > QD > JX > WH > HZ > LA, which are closely related to the levels of AQI, PM2.5 and PM10 in these cities, and their correlation coefficients are 0.93, 0.76 and 0.93. The concentration of elements in snow samples is highly correlated with air pollution and reflects the magnitude of the local atmospheric deposition. The concentrations of Fe, Al, Zn, Ba, and P are over 10.0 μg/L, the concentrations of Mn, Cu, Pb, As, Br and I are between 1.0 μg/L to 10.0 μg/L, the concentrations of V, Cr, Co, Ni, Se, Mo, Cd and Sb are less than 1.0 μg/L in snow samples in east-central China, and Rh, Pd, Pt, Hg were not detected. Iodine and bromine species in all samples and arsenic species (As(III), As(V), dimethylarsinic acid (DMA) and monomethyl arsenic (MMA)) in some samples were separated and measured successfully by HPLC-ICP-MS. The majority of arsenic in the snow samples is inorganic arsenic, and the concentration of As(III) (0.104-1.400 μg/L) is higher than that of As(V) (0.012-0.180 μg/L), while methyl arsenicals, such as DMA and MMA, were almost not detected. The concentration of I- (Br-) is much higher than that of IO3- (BrO3-). The mean concentration of soluble organic iodine (SOI) (1.64 μg/L) is higher than that of I- (1.27 μg/L), however the concentration of Br- (5.58 μg/L) is higher than that of soluble organic bromine (SOBr) (2.90 μg/L). The data presented here shows that SOI is the most abundant species and the majority of the total bromine is

  20. On the fate of arsenic in the Menez Gwen hydrothermal system, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Breuer, C.; Ruiz Chancho, M.; Pichler, T.

    2011-12-01

    Samples of hydrothermal fluids and on-site associated mussels (Bathymodiolus azoricus) were collected during the M 82/3 cruise of RV Meteor at the Menez Gwen hydrothermal field (37° 50' N, MAR) and analyzed for total and arsenic species (arsenite, arsenate and organorarsenicals) with ICP-(HR)MS and HPLC-ICP-(HR)MS respectively. Fluids emitting with temperatures of up to 280 °C and at 840 - 865 m depth contained total endmember As concentrations between 9.5 and 19.23 μg L-1 while local seawater concentrations varied around 1.5 μg L-1. The most important factors controlling the amount of As in these fluids are the E-MORB host rock composition and temperature of the fluids leading to phase separation or not. Regarding arsenic speciation in the fluids, there is discrepancy about the best method of preservation for water samples when speciation analysis of arsenic species must be carried out and a lack of information is especially relevant when marine hydrothermal vent samples have to be preserved. For this, one of the objectives of the present study was the comparison of different preservation methods of fluid samples collected at the Menez Gwen hydrothermal field. The methods used in the present study were: freezing at -20 °C, acidification with HCl and addition of EDTA. Most of these have been used by different authors for the preservation of inorganic arsenic species but organic arsenic species have not been taken into account and particularly hydrothermal fluids were not investigated. The results show very different proportions of arsenite and arsenate depending on the preservation procedure but the presence of methylated arsenic species or arsenosugars was not detected. The highest proportions of arsenite were found in the samples preserved with HCl. The presence of thio-arsenic species was tested with the addition of hydrogen peroxide. Moreover, mass balance calculations showed the presence of one or more species, which could not be detected with the

  1. ACCELERATED SOLVENT EXTRACTION OF ARSENICALS FROM ENVIRONMENTAL MATRICES WITH ION CHROMATOGRAPHY SEPARATION AND ICP-MS DETECTION

    EPA Science Inventory

    The two major sources of arsenic exposure used in an arsenic risk assessment are water and diet. The extraction, separation and quantification of individual arsenic species from dietary sources is considered an area of uncertainty within the arsenic risk assessment. The uncertain...

  2. Magentite nanoparticle for arsenic remotion.

    NASA Astrophysics Data System (ADS)

    Viltres, H.; Odio, O. F.; Borja, R.; Aguilera, Y.; Reguera, E.

    2017-01-01

    Inorganic As (V) and As (III) species are commonly found in groundwater in many countries around the world. It is known that arsenic is highly toxic and carcinogenic, at present exist reports of diverse countries with arsenic concentrations in drinking water higher than those proposed by the World Health Organization (10 μg/L). It has been reported that adsorption strategies using magnetic nanoparticles as magnetite (<20 nm) proved to be very efficient for the removal of arsenic in drinking water. Magnetic nanoparticles (magnetite) were prepared using a co-precipitation method with FeCl3 and FeCl2 as metal source and NaOH aqueous solution as precipitating agent. Magnetite nanoparticles synthesized were put in contact with As2O3 and As2O5 solutions at room temperature to pH 4 and 7. The nanoparticles were characterized by FT-IR, DRX, UV-vis, and XRF. The results showed that synthesized magnetite had an average diameter of 11 nm and a narrow size distribution. The presence of arsenic on magnetite nanoparticles surface was confirmed, which is more remarkable when As (V) is employed. Besides, it is possible to observe that no significant changes in the band gap values after adsorption of arsenic in the nanoparticles.

  3. Arsenic Speciation of Solvent-Extracted Leachate from New and Weathered CCA-Treated Wood

    PubMed Central

    KHAN, BERNINE I.; SOLO - GABRIELE, HELENA M.; DUBEY, BRAJESH K.; TOWNSEND, TIMOTHY G.; CAI, YONG

    2009-01-01

    For the past 60 yr, chromate-copper-arsenate (CCA) has been used to pressure-treat millions of cubic meters of wood in the United States for the construction of many outdoor structures. Leaching of arsenic from these structures is a possible health concern as there exists the potential for soil and groundwater contamination. While previous studies have focused on total arsenic concentrations leaching from CCA-treated wood, information pertaining to the speciation of arsenic leached is limited. Since arsenic toxicity is dependent upon speciation, the objective of this study was to identify and quantify arsenic species leaching from new and weathered CCA-treated wood and CCA-treated wood ash. Solvent-extraction experiments were carried out by subjecting the treated wood and the ash to solvents of varying pH values, solvents defined in the EPA’s Synthetic Precipitation Leaching Procedure (SPLP) and Toxicity Characteristic Leaching Procedure (TCLP), rainwater, deionized water, and seawater. The generated leachates were analyzed for inorganic As(III) and As(V) and the organoarsenic species, monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), using high-performance liquid chromatography followed by hydride generation and atomic fluorescence spectrometry (HPLC–HG-AFS). Only the inorganic species were detected in any of the wood leachates; no organoarsenic species were found. Inorganic As(V) was the major detectable species leaching from both new and weathered wood. The weathered wood leached relatively more overall arsenic and was attributed to increased inorganic As(III) leaching. The greater presence of As(III) in the weathered wood samples as compared to the new wood samples may be due to natural chemical and biological transformations during the weathering process. CCA-treated wood ash leached more arsenic than unburned wood using the SPLP and TCLP, and ash samples leached more inorganic As(III) than the unburned counterparts. Increased leaching was due

  4. Arsenic contamination of natural waters in San Juan and La Pampa, Argentina.

    PubMed

    O'Reilly, J; Watts, M J; Shaw, R A; Marcilla, A L; Ward, N I

    2010-12-01

    Arsenic (As) speciation in surface and groundwater from two provinces in Argentina (San Juan and La Pampa) was investigated using solid phase extraction (SPE) cartridge methodology with comparison to total arsenic concentrations. A third province, Río Negro, was used as a control to the study. Strong cation exchange (SCX) and strong anion exchange (SAX) cartridges were utilised in series for the separation and preservation of arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MA(V)) and dimethylarsinic acid (DMA(V)). Samples were collected from a range of water outlets (rivers/streams, wells, untreated domestic taps, well water treatment works) to assess the relationship between total arsenic and arsenic species, water type and water parameters (pH, conductivity and total dissolved solids, TDS). Analysis of the waters for arsenic (total and species) was performed by inductively coupled plasma mass spectrometry (ICP-MS) in collision cell mode. Total arsenic concentrations in the surface and groundwater from Encon and the San José de Jáchal region of San Juan (north-west Argentina within the Cuyo region) ranged from 9 to 357 μg l(-1) As. Groundwater from Eduardo Castex (EC) and Ingeniero Luiggi (LU) in La Pampa (central Argentina within the Chaco-Pampean Plain) ranged from 3 to 1326 μg l(-1) As. The pH range for the provinces of San Juan (7.2-9.7) and La Pampa (7.0-9.9) are in agreement with other published literature. The highest total arsenic concentrations were found in La Pampa well waters (both rural farms and pre-treated urban sources), particularly where there was high pH (typically > 8.2), conductivity (>2,600 μS cm(-1)) and TDS (>1,400 mg l(-1)). Reverse osmosis (RO) treatment of well waters in La Pampa for domestic drinking water in EC and LU significantly reduced total arsenic concentrations from a range of 216-224 μg l(-1) As to 0.3-0.8 μg l(-1) As. Arsenic species for both provinces were predominantly As(III) and As(V). As

  5. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain.

    PubMed

    Sun, Guo-Xin; Williams, Paul N; Carey, Anne-Marie; Zhu, Yong-Guan; Deacon, Claire; Raab, Andrea; Feldmann, Joerg; Islam, Rafiqul M; Meharg, Andrew A

    2008-10-01

    Rice is more elevated in arsenic than all other grain crops tested to date, with whole grain (brown) rice having higher arsenic levels than polished (white). It is reported here that rice bran, both commercially purchased and specifically milled for this study, have levels of inorganic arsenic, a nonthreshold, class 1 carcinogen, reaching concentrations of approximately 1 mg/kg dry weight, around 10-20 fold higher than concentrations found in bulk grain. Although pure rice bran is used as a health food supplement, perhaps of more concern is rice bran solubles, which are marketed as a superfood and as a supplement to malnourished children in international aid programs. Five rice bran solubles products were tested, sourced from the United States and Japan, and were found to have 0.61-1.9 mg/kg inorganic arsenic. Manufactures recommend approximately 20 g servings of the rice bran solubles per day, which equates to a 0.012-0.038 mg intake of inorganic arsenic. There are no maximum concentration levels (MCLs) set for arsenic or its species in food stuffs. EU and U.S. water regulations, set at 0.01 mg/L total or inorganic arsenic, respectively, are based on the assumption that 1 L of water per day is consumed, i.e., 0.01 mg of arsenic/ day. At the manufacturers recommended rice bran solubles consumption rate, inorganic arsenic intake exceeds 0.01 mg/ day, remembering that rice bran solubles are targeted at malnourished children and that actual risk is based on mg kg(-1) day(-1) intake.

  6. Development of an enumeration method for arsenic methylating bacteria from mixed culture samples.

    PubMed

    Islam, S M Atiqul; Fukushi, Kensuke; Yamamoto, Kazuo

    2005-12-01

    Bacterial methylation of arsenic converts inorganic arsenic into volatile and non-volatile methylated species. It plays an important role in the arsenic cycle in the environment. Despite the potential environmental significance of AsMB, an assessment of their population size and activity remains unknown. This study has now established a protocol for enumeration of AsMB by means of the anaerobic-culture-tube, most probable number (MPN) method. Direct detection of volatile arsenic species is then done by GC-MS. This method is advantageous as it can simultaneously enumerate AsMB and acetate and formate-utilizing methanogens. The incubation time for this method was determined to be 6 weeks, sufficient time for AsMB growth.

  7. Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation

    PubMed Central

    Giloteaux, Ludovic; Holmes, Dawn E; Williams, Kenneth H; Wrighton, Kelly C; Wilkins, Michael J; Montgomery, Alison P; Smith, Jessica A; Orellana, Roberto; Thompson, Courtney A; Roper, Thomas J; Long, Philip E; Lovley, Derek R

    2013-01-01

    The possibility of arsenic release and the potential role of Geobacter in arsenic biogeochemistry during in situ uranium bioremediation was investigated because increased availability of organic matter has been associated with substantial releases of arsenic in other subsurface environments. In a field experiment conducted at the Rifle, CO study site, groundwater arsenic concentrations increased when acetate was added. The number of transcripts from arrA, which codes for the α-subunit of dissimilatory As(V) reductase, and acr3, which codes for the arsenic pump protein Acr3, were determined with quantitative reverse transcription-PCR. Most of the arrA (>60%) and acr3-1 (>90%) sequences that were recovered were most similar to Geobacter species, while the majority of acr3-2 (>50%) sequences were most closely related to Rhodoferax ferrireducens. Analysis of transcript abundance demonstrated that transcription of acr3-1 by the subsurface Geobacter community was correlated with arsenic concentrations in the groundwater. In contrast, Geobacter arrA transcript numbers lagged behind the major arsenic release and remained high even after arsenic concentrations declined. This suggested that factors other than As(V) availability regulated the transcription of arrA in situ, even though the presence of As(V) increased the transcription of arrA in cultures of Geobacter lovleyi, which was capable of As(V) reduction. These results demonstrate that subsurface Geobacter species can tightly regulate their physiological response to changes in groundwater arsenic concentrations. The transcriptomic approach developed here should be useful for the study of a diversity of other environments in which Geobacter species are considered to have an important influence on arsenic biogeochemistry. PMID:23038171

  8. Characterization and Transcription of Arsenic Respiration and Resistance Genes During In Situ Uranium Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giloteaux, L.; Holmes, Dawn E.; Williams, Kenneth H.

    2013-02-04

    The possibility of arsenic release and the potential role of Geobacter in arsenic biogeochemistry during in situ uranium bioremediation was investigated because increased availability of organic matter has been associated with substantial releases of arsenic in other subsurface environments. In a field experiment conducted at the Rifle, CO study site, groundwater arsenic concentrations increased when acetate was added. The number of transcripts from arrA, which codes for the alpha subunit of dissimilatory As(V) reductase, and acr3, which codes for the arsenic pump protein Acr3, were determined with quantitative RT-PCR. Most of the arrA (> 60%) and acr3-1 (> 90%) sequencesmore » that were recovered were most similar to Geobacter species, while the majority of acr3-2 (>50%) sequences were most closely related to Rhodoferax ferrireducens. Analysis of transcript abundance demonstrated that transcription of acr3-1 by the subsurface Geobacter community was correlated with arsenic concentrations in the groundwater. In contrast, Geobacter arrA transcript numbers lagged behind the major arsenic release and remained high even after arsenic concentrations declined. This suggested that factors other than As(V) availability regulated transcription of arrA in situ even though the presence of As(V) increased transcription of arrA in cultures of G. lovleyi, which was capable of As(V) reduction. These results demonstrate that subsurface Geobacter species can tightly regulate their physiological response to changes in groundwater arsenic concentrations. The transcriptomic approach developed here should be useful for the study of a diversity of other environments in which Geobacter species are considered to have an important influence on arsenic biogeochemistry.« less

  9. Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA.

    PubMed

    Foster, Andrea L; Ashley, Roger P; Rytuba, James J

    2011-01-24

    A realistic estimation of the health risk of human exposure to solid-phase arsenic (As) derived from historic mining operations is a major challenge to redevelopment of California's famed "Mother Lode" region. Arsenic, a known carcinogen, occurs in multiple solid forms that vary in bioaccessibility. X-ray absorption fine-structure spectroscopy (XAFS) was used to identify and quantify the forms of As in mine wastes and biogenic solids at the Lava Cap Mine Superfund (LCMS) site, a historic "Mother Lode" gold mine. Principal component analysis (PCA) was used to assess variance within water chemistry, solids chemistry, and XAFS spectral datasets. Linear combination, least-squares fits constrained in part by PCA results were then used to quantify arsenic speciation in XAFS spectra of tailings and biogenic solids. The highest dissolved arsenic concentrations were found in Lost Lake porewater and in a groundwater-fed pond in the tailings deposition area. Iron, dissolved oxygen, alkalinity, specific conductivity, and As were the major variables in the water chemistry PCA. Arsenic was, on average, 14 times more concentrated in biologically-produced iron (hydr)oxide than in mine tailings. Phosphorous, manganese, calcium, aluminum, and As were the major variables in the solids chemistry PCA. Linear combination fits to XAFS spectra indicate that arsenopyrite (FeAsS), the dominant form of As in ore material, remains abundant (average: 65%) in minimally-weathered ore samples and water-saturated tailings at the bottom of Lost Lake. However, tailings that underwent drying and wetting cycles contain an average of only 30% arsenopyrite. The predominant products of arsenopyrite weathering were identified by XAFS to be As-bearing Fe (hydr)oxide and arseniosiderite (Ca2Fe(AsO4)3O3•3H2O). Existence of the former species is not in question, but the presence of the latter species was not confirmed by additional measurements, so its identification is less certain. The linear combination

  10. ASSESSING ARSENIC EXPOSURE AND SKIN HYPERKERATOSIS IN INNER MONGOLIA, CHINA

    EPA Science Inventory

    Arsenic is a known human carcinogen. The inorganic forms, especially arsenite (As+3), are believed to be the most toxic species. Methylation is often considered to be the
    detoxification pathway for the metabolism of inorganic arsenic. The ground water in Ba
    Men, Inner Mo...

  11. Time to revisit arsenic regulations: comparing drinking water and rice.

    PubMed

    Sauvé, Sébastien

    2014-05-17

    Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l(-1) was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l(-1). Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water.

  12. Time to revisit arsenic regulations: comparing drinking water and rice

    PubMed Central

    2014-01-01

    Background Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Discussion Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l-1 was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l-1. Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Summary Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water. PMID:24884827

  13. Microwave plasma generation of arsine from hydrogen and solid arsenic

    NASA Astrophysics Data System (ADS)

    Omstead, Thomas R.; Annapragada, Ananth V.; Jensen, Klavs F.

    1990-12-01

    The generation of arsine from the reactions of hydrogen and elemental arsenic in a microwave plasma reactor is described. The arsenic is evaporated from a solid source upstream and carried into the microwave plasma region by a mixture of hydrogen and argon. Stable reaction products, arsine and diarsine are observed by molecular beam sampled mass spectroscopy along with partially hydrogenated species (e.g., AsH and AsH2). The effect of composition and flow rate of the argon/hydrogen carrier gas mixture on the amount of arsine generated is investigated. The arsine production reaches a maximum for an argon-to-hydrogen ratio of unity indicating that metastable argon species act as energy transfer intermediates in the overall reaction. The generation of arsine and diarsine from easily handled solid arsenic by this technique makes it attractive as a possible arsenic source for the growth of compound semiconductors by low-pressure metalorganic chemical vapor deposition.

  14. Arsenic rich iron plaque on macrophyte roots--an ecotoxicological risk?

    PubMed

    Taggart, M A; Mateo, R; Charnock, J M; Bahrami, F; Green, A J; Meharg, A A

    2009-03-01

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcóllar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root+plaque' material in excess of 1000 mg kg(-1), and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcóllar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque.

  15. Transplacental Arsenic Carcinogenesis in Mice

    PubMed Central

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from day 8 to 18 of gestation, and the offspring were observed for up to two years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans and

  16. Total and inorganic arsenic in fish, seafood and seaweeds--exposure assessment.

    PubMed

    Mania, Monika; Rebeniak, Małgorzata; Szynal, Tomasz; Wojciechowska-Mazurek, Maria; Starska, Krystyna; Ledzion, Ewa; Postupolski, Jacek

    2015-01-01

    According to the European Food Safety Authority (EFSA), fish, seafood and seaweeds are foodstuffs that significantly contribute to dietary arsenic intake. With the exception of some algal species, the dominant compounds of arsenic in such food products are the less toxic organic forms. Both the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and EFSA recommend that speciation studies be performed to determine the different chemical forms in which arsenic is present in food due to the differences in their toxicity. Knowing such compositions can thus enable a complete exposure assessment to be made. Determination of total and inorganic arsenic contents in fish, their products, seafood and seaweeds present on the Polish market. This was then followed by an exposure assessment of consumers to inorganic arsenic in these foodstuffs. Total and inorganic arsenic was determined in 55 samples of fish, their products, seafood as well as seaweeds available on the market. The analytical method was hydride generation atomic absorption spectrometry (HGAAS), after dry ashing of samples and reduction of arsenic to arsenic hydride using sodium borohydride. In order to isolate only the inorganic forms of arsenic prior to mineralisation, samples were subjected to concentrated HCl hydrolysis, followed by reduction with hydrobromic acid and hydrazine sulphate after which triple chloroform extractions and triple 1M HCl re-extractions were performed. Exposure of adults was estimated in relation to the Benchmark Dose Lower Confidence Limit (BMDL0.5) as set by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) that resulted in a 0.5% increase in lung cancer (3.0 μg/kg body weight (b.w.) per day). Mean total arsenic content from all investigated fish samples was 0.46 mg/kg (90th percentile 0.94 mg/kg), whilst the inorganic arsenic content never exceeded the detection limit of the analytical method used (0.025 mg/kg). In fish products, mean total arsenic concentration was

  17. Chronic Arsenic Exposure and Angiogenesis in Human Bronchial Epithelial Cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway

    PubMed Central

    He, Jun; Wang, Min; Jiang, Yue; Chen, Qiudan; Xu, Shaohua; Xu, Qing; Jiang, Bing-Hua

    2014-01-01

    Background: Environmental and occupational exposure to arsenic is a major public health concern. Although it has been identified as a human carcinogen, the molecular mechanism underlying the arsenic-induced carcinogenesis is not well understood. Objectives: We aimed to determine the role and mechanisms of miRNAs in arsenic-induced tumor angiogenesis and tumor growth. Methods: We utilized an in vitro model in which human lung epithelial BEAS-2B cells were transformed through long-term exposure to arsenic. A human xenograft tumor model was established to assess tumor angiogenesis and tumor growth in vivo. Tube formation assay and chorioallantoic membranes assay were used to assess tumor angiogenesis. Results: We found that miR-199a-5p expression levels were more than 100-fold lower in arsenic-transformed cells than parental cells. Re-expression of miR-199a-5p impaired arsenic-induced angiogenesis and tumor growth through its direct targets HIF-1α and COX-2. We further showed that arsenic induced COX-2 expression through HIF-1 regulation at the transcriptional level. In addition, we demonstrated that reactive oxygen species are an upstream event of miR-199a-5p/ HIF-1α/COX-2 pathway in arsenic-induced carcinogenesis. Conclusion: The findings establish critical roles of miR-199a-5p and its downstream targets HIF-1/COX-2 in arsenic-induced tumor growth and angiogenesis. Citation: He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ. 2014. Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 Pathway. Environ Health Perspect 122:255–261; http://dx.doi.org/10.1289/ehp.1307545 PMID:24413338

  18. Arsenic contamination in the Kanker district of central-east India: geology and health effects.

    PubMed

    Pandey, P K; Sharma, R; Roy, M; Roy, S; Pandey, M

    2006-10-01

    This paper identifies newer areas of arsenic contamination in the District Kanker, which adjoins the District Rajnandgaon where high contamination has been reported earlier. A correlation with the mobile phase episodes of arsenic contamination has been identified, which further hinges on the complex geology of the area. Arsenic concentrations in both surface and groundwater, aquatic organisms (snail and water weeds) soil and vegetation of Kanker district and its adjoining area have been reported here. The region has been found to contain an elevated level of arsenic. All segments of the ecoysystem are contaminated with arsenic at varying degrees. The levels of arsenic vary constantly depending on the season and location. An analysis of groundwater from 89 locations in the Kanker district has shown high values of arsenic, iron and manganese (mean: 144, 914 and 371 microg L(-1), respectively). The surface water of the region shows elevated levels of arsenic, which is influenced by the geological mineralised zonation. The most prevalent species in the groundwater is As(III), whereas the surface water of the rivers shows a significant contamination with the As(V) species. The analysis shows a bio-concentration of the toxic metals arsenic, nickel, copper and chromium. Higher arsenic concentrations (groundwater concentrations greater than 50 microg L(-1)) are associated with sedimentary deposits derived from volcanic rocks, hence mineral leaching appears to be the source of arsenic contamination. Higher levels of arsenic and manganese in the Kanker district have been found to cause impacts on the flora and fauna. A case study of episodic arsenical diarrhoea is presented.

  19. Variations of arsenic species content in edible Boletus badius growing at polluted sites over four years.

    PubMed

    Mleczek, Mirosław; Niedzielski, Przemysław; Rzymski, Piotr; Siwulski, Marek; Gąsecka, Monika; Kozak, Lidia

    2016-07-02

    The content of arsenic (As) in mushrooms can vary depending on the concentration level of this metalloid in the soil/substrate. The present study evaluated the content of arsenic in Boletus badius fruiting bodies collected from polluted and non-polluted sites in relation to the content of this element in overgrown substrate. It was found that mushrooms from the arsenic-polluted sites contained mean concentrations from 49 to 450 mg As kg(-1) dry matter (d.m.), with the greatest content found for specimens growing in close proximity of sludge deposits (490±20 mg As kg(-1)d.m.). The mean content of total arsenic in mushrooms from clean sites ranged from 0.03 to 0.37 mg kg(-1) It was found that B. badius could tolerate arsenic in soil substrate at concentrations of up to 2500 mg kg(-1), at least. In different years of investigation, shifts in particular arsenic forms, as well as a general increase in the accumulation of organic arsenic content, were observed. The results of this study clearly indicate that B. badius should not be collected for culinary purposes from any sites that may be affected by pollution.

  20. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin

    2015-11-17

    The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis.

  1. Association of Cardiometabolic Genes with Arsenic Metabolism Biomarkers in American Indian Communities: The Strong Heart Family Study (SHFS)

    PubMed Central

    Balakrishnan, Poojitha; Vaidya, Dhananjay; Franceschini, Nora; Voruganti, V. Saroja; Gribble, Matthew O.; Haack, Karin; Laston, Sandra; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; North, Kari E.; Lee, Elisa; Yracheta, Joseph; Best, Lyle G.; MacCluer, Jean W.; Kent, Jack; Cole, Shelley A.; Navas-Acien, Ana

    2016-01-01

    Background: Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. Objectives: We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). Methods: We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography–inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. Results: Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p < 9.33 × 10–5). Conclusions: This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24. Citation: Balakrishnan P, Vaidya D, Franceschini N, Voruganti

  2. Association of Cardiometabolic Genes with Arsenic Metabolism Biomarkers in American Indian Communities: The Strong Heart Family Study (SHFS).

    PubMed

    Balakrishnan, Poojitha; Vaidya, Dhananjay; Franceschini, Nora; Voruganti, V Saroja; Gribble, Matthew O; Haack, Karin; Laston, Sandra; Umans, Jason G; Francesconi, Kevin A; Goessler, Walter; North, Kari E; Lee, Elisa; Yracheta, Joseph; Best, Lyle G; MacCluer, Jean W; Kent, Jack; Cole, Shelley A; Navas-Acien, Ana

    2017-01-01

    Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p < 9.33 × 10-5). This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24. Citation: Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO, Haack K, Laston S, Umans JG, Francesconi

  3. Contamination status of arsenic in fish and shellfish from three river basins in Ghana.

    PubMed

    Gbogbo, Francis; Otoo, Samuel Darlynton; Asomaning, Obed; Huago, Robert Quaye

    2017-08-01

    Fish and shellfish are regularly consumed and sold in Ghana, yet studies on arsenic pollution in Ghana are limited largely to ground water. This study evaluated arsenic concentrations in seven species of shellfish and 10 species of fish inhabiting the mouth of Ankobra, Densu and Volta basins in Ghana and assessed the public health implications. Arsenic levels varied from 0.2 to 2.2 mg L -1 in the three rivers and were higher than WHO recommended values of 10 μg L -1 for drinking water. Except for Periophthalmus sp. and Tympanotonus fuscatus from the Ankobra in which arsenic was not detected, concentrations in the organisms ranged from 0.2 to 2.8 mg kg -1 . The maximum quantities of the organisms considered safe for consumption ranged from 375 to 5250 g per week. Caution however needs to be exercised as PTWI for arsenic needs revision, and some heavy metals such as mercury are more toxic than arsenic.

  4. Microbial-driven arsenic cycling in rice paddies amended with monosodium methanearsonate

    USDA-ARS?s Scientific Manuscript database

    Rice consumption is the second largest contributor to human arsenic exposure worldwide and is linked to many serious diseases. Because rice is uniquely adapted for agricultural production under flooded soils, arsenic species solubilized in such environments can be effectively transported into plant ...

  5. THE ROLE OF FLAVONOIDS IN MODULATION OF THE METABOLISM OF ARSENIC

    EPA Science Inventory

    The biotransformation of inorganic arsenic (iAs) in humans produces trivalent and pentavalent methylated species. The pattern and extent of iAs conversion is critical for the overall toxicity and adverse health effects associated with arsenic exposure. Our previous work showed a ...

  6. Arsenic

    MedlinePlus

    ... and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can ... Breathing sawdust or burning smoke from arsenic-treated wood Living in an area with high levels of ...

  7. Speciation of arsenic in biological samples.

    PubMed

    Mandal, Badal Kumar; Ogra, Yasumitsu; Anzai, Kazunori; Suzuki, Kazuo T

    2004-08-01

    Speciation of arsenicals in biological samples is an essential tool to gain insight into its distribution in tissues and its species-specific toxicity to target organs. Biological samples (urine, hair, fingernail) examined in the present study were collected from 41 people of West Bengal, India, who were drinking arsenic (As)-contaminated water, whereas 25 blood and urine samples were collected from a population who stopped drinking As contaminated water 2 years before the blood collection. Speciation of arsenicals in urine, water-methanol extract of freeze-dried red blood cells (RBCs), trichloroacetic acid treated plasma, and water extract of hair and fingernail was carried out by high-performance liquid chromatography (HPLC)-inductively coupled argon plasma mass spectrometry (ICP MS). Urine contained arsenobetaine (AsB, 1.0%), arsenite (iAs(III), 11.3), arsenate (iAs(V), 10.1), monomethylarsonous acid (MMA(III), 6.6), monomethylarsonic acid (MMA(V), 10.5), dimethylarsinous acid (DMA(III), 13.0), and dimethylarsinic acid (DMA(V), 47.5); fingernail contained iAs(III) (62.4%), iAs(V) (20.2), MMA(V) (5.7), DMA(III) (8.9), and DMA(V) (2.8); hair contained iAs(III) (58.9%), iAs(V) (34.8), MMA(V) (2.9), and DMA(V) (3.4); RBCs contained AsB (22.5%) and DMA(V) (77.5); and blood plasma contained AsB (16.7%), iAs(III) (21.1), MMA(V) (27.1), and DMA(V) (35.1). MMA(III), DMA(III), and iAs(V) were not found in any plasma and RBCs samples, but urine contained all of them. Arsenic in urine, fingernails, and hair are positively correlated with water As, suggesting that any of these measurements could be considered as a biomarker to As exposure. Status of urine and exogenous contamination of hair urgently need speciation of As in these samples, but speciation of As in nail is related to its total As (tAs) concentration. Therefore, total As concentrations of nails could be considered as biomarker to As exposure in the endemic areas.

  8. Speciation analysis of arsenic compounds in seafood by ion chromatography-atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Han, Tingting; Ji, Hongwei; Li, Huixin; Cui, He; Song, Tian; Duan, Xiaojuan; Zhu, Qianlin; Cai, Feng; Zhang, Li

    2017-06-01

    Ion chromatography-ultra violet-hydride generation-Atomic Florescence Spectrometry was applied to detect 5 arsenic species in seafoods. The arsenic species studied include arsenobetaine (AsB), arsenite (As(III)), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and arsenate (As(V)), which were extracted from samples using 2% formic acid. Gradient elution using 33 mmol L-1 CH3COONH4 and 15 mmol L-1 Na2CO3 with 10 mL CH3CH2OH at pH 8.4 allowed the chromatographic separation of all the species on a Hamilton PRP-X100 anion-exchange column in less than 8 min. In this study, an ultrasound extraction method was used to extract arsenic species from seafood. The extraction efficiency was good and the recoveries from spiked samples were in the range of 72.6%-109%; the precision between sample replicates was higher than 3.6% for all determinations. The detection limits were 3.543 μg L-1 for AsB, 0.426 μg L-1 for As(III), 0.216 μg L-1 for DMA, 0.211 μg L-1 for MMA, and 0.709 μg L-1 for As(V), and the linear coefficients were greater than 0.999. We also developed an application of this method for the determination of arsenic species in bonito, Euphausia superba, and Enteromorpha with satisfactory results. Therefore, it was confirmed that this method was appropriate for the detection of arsenic species in seafood.

  9. BIOMARKERS OF EXPOSURE: A CASE STUDY WITH INORGANIC ARSENIC

    EPA Science Inventory

    Inorganic arsenic (iAs) is a human toxicant and carcinogen that is found in the environment as a natural contaminant and from anthropogenic sources. Most mammalian species metabolize iAs by reduction to trivalent species followed by oxidative methylation to pentavalent species. ...

  10. ARSENIC SPECIATION IN PROBLEMATIC SEAFOOD MATRICES: THE IMPORTANCE OF A SPECIES SPECIFIC MASS BALANCE

    EPA Science Inventory

    Arsenic has two major exposure routes: dietary and drinking water ingestion. Dietary exposures can easily exceed those typically associated with drinking water but the risk associated with these exposures is strongly influenced by the toxicity of the arsenicals present in the s...

  11. Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor.

    PubMed

    Rofkar, Jordan R; Dwyer, Daryl F; Bobak, Deanna M

    2014-01-01

    Here we report on the analysis of two aquatic plant species, Azolla caroliniana and Lemna minor, with respect to tolerance and uptake of co-occurring arsenic, copper, and silicon for use in engineered wetlands. Plants were cultured in nutrient solution that was amended with arsenic (0 or 20 microM), copper (2 or 78 microM), and silicon (0 or 1.8 mM) either singly or in combination. We hypothesized that arsenic and copper would negatively affect the uptake of metals, growth, and pigmentation and that silicon would mitigate those stresses. Tolerance was assessed by measuring growth of biomass and concentrations of chlorophyll and anthocyanins. Both plant species accumulated arsenic, copper, and silicon; L. minor generally had higher levels on a per biomass basis. Arsenic negatively impacted A. caroliniana, causing a 30% decrease in biomass production and an increase in the concentration of anthocyanin. Copper negatively impacted L. minor, causing a 60% decrease in biomass production and a 45% decrease in chlorophyll content. Silicon augmented the impact of arsenic on biomass production in A. caroliniana but mitigated the effect of copper on L. minor. Our results suggest that mixtures of plant species may be needed to maximize uptake of multiple contaminants in engineered wetlands.

  12. Controversies in targeted therapy of adult T cell leukemia/lymphoma: ON target or OFF target effects?

    PubMed

    Nasr, Rihab; El Hajj, Hiba; Kfoury, Youmna; de Thé, Hugues; Hermine, Olivier; Bazarbachi, Ali

    2011-06-01

    Adult T cell leukemia/lymphoma (ATL) represents an ideal model for targeted therapy because of intrinsic chemo-resistance of ATL cells and the presence of two well identified targets: the HTLV-I retrovirus and the viral oncoprotein Tax. The combination of zidovudine (AZT) and interferon-alpha (IFN) has a dramatic impact on survival of ATL patients. Although the mechanism of action remains unclear, arguments in favor or against a direct antiviral effect will be discussed. Yet, most patients relapse and alternative therapies are mandatory. IFN and arsenic trioxide induce Tax proteolysis, synergize to induce apoptosis in ATL cells and cure Tax-driven ATL in mice through specific targeting of leukemia initiating cell activity. These results provide a biological basis for the clinical success of arsenic/IFN/AZT therapy in ATL patients and suggest that both extinction of viral replication (AZT) and Tax degradation (arsenic/IFN) are needed to cure ATL.

  13. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost.

  14. Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora, Mexico.

    PubMed

    Meza, Maria Mercedes; Kopplin, Michael J; Burgess, Jefferey L; Gandolfi, A Jay

    2004-10-01

    The objective of this study was to determine arsenic exposure via drinking water and to characterize urinary arsenic excretion among adults in the Yaqui Valley, Sonora, Mexico. A cross-sectional study was conducted from July 2001 to May 2002. Study subjects were from the Yaqui Valley, Sonora, Mexico, residents of four towns with different arsenic concentrations in their drinking water. Arsenic exposure was estimated through water intake over 24 h. Arsenic excretion was assessed in the first morning void urine. Total arsenic concentrations and their species arsenate (As V), arsenite (As III), monomethyl arsenic (MMA), and dimethyl arsenic (DMA) were determined by HPLC/ICP-MS. The town of Esperanza with the highest arsenic concentration in water had the highest daily mean intake of arsenic through drinking water, the mean value was 65.5 microg/day. Positive correlation between total arsenic intake by drinking water/day and the total arsenic concentration in urine (r = 0.50, P < 0.001) was found. Arsenic excreted in urine ranged from 18.9 to 93.8 microg/L. The people from Esperanza had the highest geometric mean value of arsenic in urine, 65.1 microg/L, and it was statistically significantly different from those of the other towns (P < 0.005). DMA was the major arsenic species in urine (47.7-67.1%), followed by inorganic arsenic (16.4-25.4%), and MMA (7.5-15%). In comparison with other reports the DMA and MMA distribution was low, 47.7-55.6% and 7.5-9.7%, respectively, in the urine from the Yaqui Valley population (except the town of Cocorit). The difference in the proportion of urinary arsenic metabolites in those towns may be due to genetic polymorphisms in the As methylating enzymes of these populations.

  15. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives.

    PubMed

    Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs

    2015-12-22

    This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested.

  16. Arsenic and lead in foods: a potential threat to human health in Bangladesh.

    PubMed

    Islam, Md Saiful; Ahmed, Md Kawser; Habibullah-Al-Mamun, Md; Islam, Kazi Nazrul; Ibrahim, Md; Masunaga, Shigeki

    2014-01-01

    The non-carcinogenic and carcinogenic risk of arsenic and lead to adults and children via daily dietary intake of food composites in Bangladesh was estimated. The target hazard quotients (THQs), hazard index (HI) and target carcinogenic risk (TR) were calculated to evaluate the non-carcinogenic and carcinogenic health risk from arsenic and lead. Most of the individual food composites contain a considerable amount of arsenic and lead. The highest mean concentrations of arsenic were found in cereals (0.254 mg kg⁻¹ fw) and vegetables (0.250 mg kg⁻¹ fw), and lead in vegetables (0.714 mg kg⁻¹ fw) and fish (0.326 mg kg⁻¹ fw). The results showed the highest THQs of arsenic in cereals and lead in vegetables for both adults and children which exceeded the safe limit (> 1) indicating that cereals and vegetables are the main food items contributing to the potential health risk. The estimated TR from ingesting dietary arsenic and lead from most of the foods exceeded 10⁻⁶, indicating carcinogenic risks for all adult people of the study area.

  17. Potential arsenic exposures in 25 species of zoo animals living in CCA-wood enclosures.

    PubMed

    Gress, J; da Silva, E B; de Oliveira, L M; Zhao, Di; Anderson, G; Heard, D; Stuchal, L D; Ma, L Q

    2016-05-01

    Animal enclosures are often constructed from wood treated with the pesticide chromated copper arsenate (CCA), which leaches arsenic (As) into adjacent soil during normal weathering. This study evaluated potential pathways of As exposure in 25 species of zoo animals living in CCA-wood enclosures. We analyzed As speciation in complete animal foods, dislodgeable As from CCA-wood, and As levels in enclosure soils, as well as As levels in biomarkers of 9 species of crocodilians (eggs), 4 species of birds (feathers), 1 primate species (hair), and 1 porcupine species (quills). Elevated soil As in samples from 17 enclosures was observed at 1.0-110mg/kg, and enclosures housing threatened and endangered species had As levels higher than USEPA's risk-based Eco-SSL for birds and mammals of 43 and 46mg/kg. Wipe samples of CCA-wood on which primates sit had dislodgeable As residues of 4.6-111μg/100cm(2), typical of unsealed CCA-wood. Inorganic As doses from animal foods were estimated at 0.22-7.8μg/kg bw/d. Some As levels in bird feathers and crocodilian eggs were higher than prior studies on wild species. However, hair from marmosets had 6.37mg/kg As, 30-fold greater than the reference value, possibly due to their inability to methylate inorganic As. Our data suggested that elevated As in soils and dislodgeable As from CCA-wood could be important sources of As exposure for zoo animals. Published by Elsevier B.V.

  18. Changes in serum thioredoxin among individuals chronically exposed to arsenic in drinking water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuanyuan; Gao, Yanhui; Zhao, Lijun

    2012-02-15

    It is well known that oxidative damage plays a key role in the development of chronic arsenicosis. There is a complex set of mechanisms of redox cycling in vivo to protect cells from the damage. In this study, we examined the differences in the levels of serum thioredoxin1 (TRX1) among individuals exposed to different levels of arsenic in drinking water and detected early biomarkers of arsenic poisoning before the appearance of skin lesions. A total of 157 subjects from endemic regions of China were selected and divided into arsenicosis group with skin lesions (total intake of arsenic: 8.68–45.71 mg-year) andmore » non-arsenicosis group without skin lesions, which further divided into low (0.00–1.06 mg-year), medium (1.37–3.55 mg-year), and high (4.26–48.13 mg-year) arsenic exposure groups. Concentrations of serum TRX1 were analyzed by an ELISA method. Levels of water arsenic and urinary speciated arsenics, including inorganic arsenic (iAs), monomethylated arsenic (MMA), and dimethylated arsenic (DMA), were determined by hydride generation atomic absorption spectrometry. Our results showed that the levels of serum TRX1 in arsenicosis patients were significantly higher than that of the subjects who were chronically exposed to arsenic, but without skin lesions. A positive correlation was seen between the levels of serum TRX1 and the total water arsenic intake or the levels of urinary arsenic species. The results of this study indicate that arsenic exposure could significantly change the levels of human serum TRX1, which can be detected before arsenic-specific dermatological symptoms occur. This study provides further evidence on revealing the mechanism of arsenic toxicity. -- Highlights: ► Three regions are selected as the areas affected by endemic arsenicosis of China. ► We first examine changes in serum TRX1 among individuals exposed to arsenic. ► A positive correlation was seen between serum TRX1 and total water arsenic intake. ► The same

  19. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, Dora C.; Dowling, Kim; Gerson, Andrea R.

    2010-05-04

    Arsenic is naturally associated with gold mineralization and elevated in some soils and mine waste around historical gold mining activity in Victoria, Australia. To explore uptake, arsenic concentrations in children's toenail clippings and household soils were measured, and the microdistribution and speciation of arsenic in situ in toenail clipping thin sections investigated using synchrotron-based X-ray microprobe techniques. The ability to differentiate exogenous arsenic was explored by investigating surface contamination on cleaned clippings using depth profiling, and direct diffusion of arsenic into incubated clippings. Total arsenic concentrations ranged from 0.15 to 2.1 {micro}g/g (n = 29) in clipping samples and frommore » 3.3 to 130 {micro}g/g (n = 22) in household soils, with significant correlation between transformed arsenic concentrations (Pearson's r = 0.42, P = 0.023) when household soil was treated as independent. In clipping thin sections (n = 2), X-ray fluorescence (XRF) mapping showed discrete layering of arsenic consistent with nail structure, and irregular arsenic incorporation along the nail growth axis. Arsenic concentrations were heterogeneous at 10 x 10 {micro}m microprobe spot locations investigated (< 0.1 to 13.3 {micro}g/g). X-ray absorption near-edge structure (XANES) spectra suggested the presence of two distinct arsenic species: a lower oxidation state species, possibly with mixed sulphur and methyl coordination (denoted As{sub (-S, -ch3)}{sup {approx}III}); and a higher oxidation state species (denoted As{sub (-O)}{sup {approx}V}). Depth profiling suggested that surface contamination was unlikely (n = 4), and XRF and XANES analyses of thin sections of clippings incubated in dry or wet mine waste, or untreated, suggested direct diffusion of arsenic occurred under moist conditions. These findings suggest that arsenic in soil contributes to some systemic absorption associated with periodic exposures among children resident in areas of

  20. Genomic-wide analysis of BEAS-2B cells exposed to Trivalent Arsenicals and Dimethylthioarsinic acid

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans by both oral and inhalation routes. However, the carcinogenic mode of action of arsenicals is unknown. We investigated the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsinous acid (D...

  1. The Association of Arsenic Exposure and Arsenic Metabolism with the Metabolic Syndrome and its Individual Components: Prospective Evidence from the Strong Heart Family Study.

    PubMed

    Spratlen, Miranda J; Grau-Perez, Maria; Best, Lyle G; Yracheta, Joseph; Lazo, Mariana; Vaidya, Dhananjay; Balakrishnan, Poojitha; Gamble, Mary V; Francesconi, Kevin A; Goessler, Walter; Cole, Shelley A; Umans, Jason G; Howard, Barbara V; Navas-Acien, Ana

    2018-03-15

    Inorganic arsenic exposure is ubiquitous and both exposure and inter-individual differences in its metabolism have been associated with cardiometabolic risk. The association between arsenic exposure and arsenic metabolism with metabolic syndrome and its individual components, however, is relatively unknown. We used poisson regression with robust variance to evaluate the association between baseline arsenic exposure (urine arsenic levels) and metabolism (relative percentage of arsenic species over their sum) with incident metabolic syndrome and its individual components (elevated waist circumference, elevated triglycerides, reduced HDL, hypertension, elevated fasting plasma glucose) in 1,047 participants from the Strong Heart Family Study, a prospective family-based cohort in American Indian communities (baseline visits in 1998-1999 and 2001-2003, follow-up visits in 2001-2003 and 2006-2009). 32% of participants developed metabolic syndrome over follow-up. An IQR increase in arsenic exposure was associated with 1.19 (95% CI: 1.01, 1.41) greater risk for elevated fasting plasma glucose but not with other individual components or overall metabolic syndrome. Arsenic metabolism, specifically lower MMA% and higher DMA% was associated with higher risk of overall metabolic syndrome and elevated waist circumference, but not with any other component. These findings support there is a contrasting and independent association between arsenic exposure and arsenic metabolism with metabolic outcomes which may contribute to overall diabetes risk.

  2. Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA

    PubMed Central

    2011-01-01

    Background A realistic estimation of the health risk of human exposure to solid-phase arsenic (As) derived from historic mining operations is a major challenge to redevelopment of California's famed "Mother Lode" region. Arsenic, a known carcinogen, occurs in multiple solid forms that vary in bioaccessibility. X-ray absorption fine-structure spectroscopy (XAFS) was used to identify and quantify the forms of As in mine wastes and biogenic solids at the Lava Cap Mine Superfund (LCMS) site, a historic "Mother Lode" gold mine. Principal component analysis (PCA) was used to assess variance within water chemistry, solids chemistry, and XAFS spectral datasets. Linear combination, least-squares fits constrained in part by PCA results were then used to quantify arsenic speciation in XAFS spectra of tailings and biogenic solids. Results The highest dissolved arsenic concentrations were found in Lost Lake porewater and in a groundwater-fed pond in the tailings deposition area. Iron, dissolved oxygen, alkalinity, specific conductivity, and As were the major variables in the water chemistry PCA. Arsenic was, on average, 14 times more concentrated in biologically-produced iron (hydr)oxide than in mine tailings. Phosphorous, manganese, calcium, aluminum, and As were the major variables in the solids chemistry PCA. Linear combination fits to XAFS spectra indicate that arsenopyrite (FeAsS), the dominant form of As in ore material, remains abundant (average: 65%) in minimally-weathered ore samples and water-saturated tailings at the bottom of Lost Lake. However, tailings that underwent drying and wetting cycles contain an average of only 30% arsenopyrite. The predominant products of arsenopyrite weathering were identified by XAFS to be As-bearing Fe (hydr)oxide and arseniosiderite (Ca2Fe(AsO4)3O3•3H2O). Existence of the former species is not in question, but the presence of the latter species was not confirmed by additional measurements, so its identification is less certain. The

  3. Arsenic in North Carolina: Public Health Implications

    PubMed Central

    Sanders, Alison P.; Messier, Kyle P.; Shehee, Mina; Rudo, Kenneth; Serre, Marc L.; Fry, Rebecca C.

    2012-01-01

    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services (NCDHHS) database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System (GIS) techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7,712 showed detectable arsenic concentrations that ranged between 1 and 806 μg/L. Additionally, 1,436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes. PMID:21982028

  4. Arsenic in North Carolina: public health implications.

    PubMed

    Sanders, Alison P; Messier, Kyle P; Shehee, Mina; Rudo, Kenneth; Serre, Marc L; Fry, Rebecca C

    2012-01-01

    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7712 showed detectable arsenic concentrations that ranged between 1 and 806μg/L. Additionally, 1436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Biological monitoring and the influence of genetic polymorphism of As3MT and GSTs on distribution of urinary arsenic species in occupational exposure workers.

    PubMed

    Janasik, Beata; Reszka, Edyta; Stanislawska, Magdalena; Wieczorek, Edyta; Fendler, Wojciech; Wasowicz, Wojciech

    2015-08-01

    To examine the differences in urinary arsenic metabolism patterns in men affected by occupational exposure, we performed a study on 149 participants—workers of a copper mill and 52 healthy controls without occupational exposure. To elucidate the role of genetic factors in arsenic (As) metabolism, we studied the associations of six polymorphisms: As3MT Met287Thr (T>C) in exon 9; As3MT A>G in 5'UTR; As3MT C>G in intron 6; As3MT T>G in intron 1; GSTP1 Ile105Val and GSTO2 T>C. Air samples were collected using individual samplers during work shift. Urine samples were analyzed for total arsenic and arsenic chemical forms (As(III); As(V), MMA, DMA, AsB) using HPLC-ICP-MS. A specific polymerase chain reaction was done for the amplification of exons and flanking regions of As3MT and GSTs. The geometric mean arsenic concentrations in the air were 27.6 ± 4.9 µg/m(3). A significant correlation (p < 0.05) was observed between arsenic in air and sum of iAs +MMA and iAs. As3MT (rs3740400) GG homozygotes showed significantly (p < 0.05) higher %iAs (21.8 ± 2.0) in urine than GC+CC heterozygotes (16.0 ± 2.1). A strong association between the gene variants and As species in urine was observed for GSTO2 (rs156697) polymorphism. The findings of the study point out that the concentration of iAs or the sum of iAs + MMA in urine can be a reliable biological indicator of occupational exposure to arsenic. This study demonstrates that As3MT and/or GSTs genotype may influence As metabolism. Nevertheless, further studies investigating genetic polymorphism in occupational conditions are required.

  6. [Chronic arsenicism].

    PubMed

    Bourgeais, A M; Avenel-Audran, M; Le Bouil, A; Bouyx, C; Allain, P; Verret, J L

    2001-04-01

    Arsenic is an ubiquitous natural element. Chronic and low level ingestion or inhalation may result in chronic arsenicism first characterized by skin changes. A 75 year old man, non-insulin-dependent diabetic, presented a diffuse hyperpigmentation with scattered white spots on the trunk. He complained of asthenia. Clinical diagnosis of chronic arsenicism was confirmed by arsenic determination in urine, plasma and phaneres. Thorough investigations led to discover very high arsenic levels in the own wine of the patient. This was probably the result of a wrong use of sodium arsenite-based fungicide, for cultivating his vine yard. Chronic arsenicism has become rare but it should always be kept in mind. Clinical presentation, with particular cutaneous features and routes of exposure are reviewed. Treatment is symptomatic. As arsenic is known to be a strong carcinogenic agent, patients with chronic arsenicism have to be followed up during a long time.

  7. Modelling the arsenic (V) and (III) adsorption

    NASA Astrophysics Data System (ADS)

    Rau, I.; Meghea, A.; Peleanu, I.; Gonzalo, A.; Valiente, M.; Zaharescu, M.

    2003-01-01

    Arsenic has gained great notoriety historically for its toxic properties. In aquatic environment, arsenic can exist in several oxidation states, as both inorganic and organometallic species. As (V) is less toxic than As (III). Most research has been directed to the control of arsenic pollution of potable water. Various techniques such as precipitation with iron and aluminium hydroxides, ion exchange, reverse osmosis, and adsorption are used for As (V) removal from surface and waste waters. Because of the easy handling of sludge, its free operation and regeneration capability, the adsorption technique has secured a place as one of the advanced methods of arsenic removal. A study of As (III) and As (V) sorption onto some different adsorbents (Fe (III) — iminodiacetate resin, nanocomposite materials, Fe(III) — forager sponge) referring to kinetic considerations and modelling of the process will be presented. All the systems studied are better described by Freundlich-Langmuir isotherm and the rate constant evaluation shows a sub-unitary order for the adsorption process.

  8. Aquatic arsenic: phytoremediation using floating macrophytes.

    PubMed

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. [Effect of arsenic and its compounds on the circulatory system].

    PubMed

    Sieradzki, A; Skoczyńska, A; Andrzejak, R

    2000-01-01

    Arsenic is a metal which occurs widely in both occupational and physical environments. Therefore, its easy accessibility and high toxicity raise the question on whether arsenic, particularly in relatively small doses, can cause damage of relevant molecular, biochemical and clinical significance to the cardiovascular system. The present review is focused on the confirmed and potential mechanisms of arsenic effect on the function and structure of vascular endothelium (nitric oxide, peroxynitrite), its role in stimulating the oxidative species formation (hydroxyperoxide, superoxide and lipid peroxide formation), as well as in decreasing the antioxidative response (enzymes: superoxide dysmutase, catalase, glutation peroxidase), its cytotoxic effects, including immunotoxic properties, arsenic action in the signal transduction pathways network (kinases and DNA transcription factors), impact on cell proliferation, differentiation and apoptosis, not to mention its interference with DNA synthesis and repair processes. Apart from mechanisms of arsenic action, the article provides the up-to-date information on various cardiovascular diseases of the established or presumed arsenic origin.

  10. Glutathione Modulates Recominant Rat Arsenic (+3 Oxidation State) Methyltransferase-Catalyzed Formation of Trimethylarsine Oxide and Trimethylarsine

    EPA Science Inventory

    Humans and other species enzymatically convert inorganic arsenic (iAs) into methylated metabolites. Although the major metabolites are mono- and dimethylated arsenicals, trimethylated arsenicals have been detected in urine following exposure to iAs. The AS3MT gene encodes an ars...

  11. Technologies for Arsenic Removal from Water: Current Status and Future Perspectives

    PubMed Central

    Nicomel, Nina Ricci; Leus, Karen; Folens, Karel; Van Der Voort, Pascal; Du Laing, Gijs

    2015-01-01

    This review paper presents an overview of the available technologies used nowadays for the removal of arsenic species from water. Conventionally applied techniques to remove arsenic species include oxidation, coagulation-flocculation, and membrane techniques. Besides, progress has recently been made on the utility of various nanoparticles for the remediation of contaminated water. A critical analysis of the most widely investigated nanoparticles is presented and promising future research on novel porous materials, such as metal organic frameworks, is suggested. PMID:26703687

  12. Controversies in Targeted Therapy of Adult T Cell Leukemia/Lymphoma: ON Target or OFF Target Effects?

    PubMed Central

    Nasr, Rihab; Hajj, Hiba El; Kfoury, Youmna; de Thé, Hugues; Hermine, Olivier; Bazarbachi, Ali

    2011-01-01

    Adult T cell leukemia/lymphoma (ATL) represents an ideal model for targeted therapy because of intrinsic chemo-resistance of ATL cells and the presence of two well identified targets: the HTLV-I retrovirus and the viral oncoprotein Tax. The combination of zidovudine (AZT) and interferon-alpha (IFN) has a dramatic impact on survival of ATL patients. Although the mechanism of action remains unclear, arguments in favor or against a direct antiviral effect will be discussed. Yet, most patients relapse and alternative therapies are mandatory. IFN and arsenic trioxide induce Tax proteolysis, synergize to induce apoptosis in ATL cells and cure Tax-driven ATL in mice through specific targeting of leukemia initiating cell activity. These results provide a biological basis for the clinical success of arsenic/IFN/AZT therapy in ATL patients and suggest that both extinction of viral replication (AZT) and Tax degradation (arsenic/IFN) are needed to cure ATL. PMID:21994752

  13. Arsenic Hyper-tolerance in Four Microbacterium Species Isolated from Soil Contaminated with Textile Effluent

    PubMed Central

    Kaushik, Pallavi; Rawat, Neha; Mathur, Megha; Raghuvanshi, Priyanka; Bhatnagar, Pradeep; Swarnkar, Harimohan; Flora, Swaran

    2012-01-01

    Arsenic-contaminated areas of Sanganer, Jaipur, Rajasthan, India were surveyed for the presence of metal resistant bacteria contaminated with textile effluent. Samples were collected from soil receiving regular effluent from the textile industries located at Sanganer area. The properties like pH, electrical conductivity, organic carbon, organic matter, exchangeable calcium, water holding capacity and metals like arsenic, iron, magnesium, lead and zinc were estimated in the contaminated soil. In total, nine bacterial strains were isolated which exhibited minimum inhibitory concentration (MIC) of arsenic ranging between 23.09 and 69.2mM. Four out of nine arsenic contaminated soil samples exhibited the presence of arsenite hyper-tolerant bacteria. Four high arsenite tolerant bacteria were characterized by 16S rDNA gene sequencing which revealed their similarity to Microbacterium paraoxydans strain 3109, Microbacterium paraoxydans strain CF36, Microbacterium sp. CQ0110Y, Microbacterium sp. GE1017. The above results were confirmed as per Bergey's Manual of Determinative Bacteriology. All the four Microbacterium strains were found to be resistant to 100μg/ml concentration of cobalt, nickel, zinc, chromium selenium and stannous and also exhibited variable sensitivity to mercury, cadmium, lead and antimony. These results indicate that the arsenic polluted soil harbors arsenite hyper-tolerant bacteria like Microbacterium which might play a role in bioremediation of the soil. PMID:22778519

  14. Evaluation of the fate of arsenic-contaminated groundwater at different aquifers of Thar coalfield Pakistan.

    PubMed

    Ali, Jamshed; Kazi, Tasneem G; Baig, Jameel A; Afridi, Hassan I; Arain, Mariam S; Ullah, Naeem; Brahman, Kapil D; Arain, Sadaf S; Panhwar, Abdul H

    2015-12-01

    In present study, the ground water at different aquifers was evaluated for physicochemical parameters, iron, total arsenic, total inorganic arsenic and arsenic species (arsenite and arsenate). The samples of groundwater were collected at different depths, first aquifer (AQ1) 50-60 m, second aquifer (AQ2) 100-120 m, and third aquifer (AQ3) 200-250 m of Thar coalfield, Pakistan. Total inorganic arsenic was determined by solid phase extraction using titanium dioxide as an adsorbent. The arsenite was determined by cloud point extraction using ammonium pyrrolidinedithiocarbamate as a chelating reagent, and resulted complex was extracted by Triton X-114. The resulted data of groundwater were reported in terms of basic statistical parameters, principal component, and cluster analysis. The resulted data indicated that physicochemical parameters of groundwater of different aquifers were exceeded the World Health Organization provisional guideline for drinking water except pH and SO4(2-). The positive correlation was observed between arsenic species and physicochemical parameters of groundwater except F(-) and K(+), which might be caused by geochemical minerals. Results of cluster analysis indicated that groundwater samples of AQ1 was highly contaminated with arsenic species as compared to AQ2 and AQ3 (p > 0.05).

  15. Anticancer Activity of Small Molecule and Nanoparticulate Arsenic(III) Complexes

    PubMed Central

    Swindell, Elden P.; Hankins, Patrick L.; Chen, Haimei; Miodragović, Ðenana U.; O'Halloran, Thomas V.

    2014-01-01

    Starting in ancient China and Greece, arsenic-containing compounds have been used in the treatment of disease for over 3000 years. They were used for a variety of diseases in the 20th century, including parasitic and sexually transmitted illnesses. A resurgence of interest in the therapeutic application of arsenicals has been driven by the discovery that low doses of a 1% aqueous solution of arsenic trioxide (i.e. arsenous acid) leads to complete remission of certain types of leukemia. Since FDA approval of arsenic trioxide (As2O3) for treatment of acute promyelocytic leukemia (APL) in 2000, it has become a front line therapy in this indication. There are currently over 100 active clinical trials involving inorganic arsenic or organoarsenic compounds registered with the FDA for the treatment of cancers. New generations of inorganic and organometallic arsenic compounds with enhanced activity or targeted cytotoxicity are being developed to overcome some of the shortcomings of arsenic therapeutics, namely short plasma half-lives and narrow therapeutic window. PMID:24147771

  16. Separation of arsenic(III) and arsenic(V) in ground waters by ion-exchange

    USGS Publications Warehouse

    Ficklin, W.H.

    1983-01-01

    The predominant species of arsenic in ground water are probably arsenite and arsenate. These can be separated with a strong anion-exchange resin (Dowex 1 ?? 8; 100-200 mesh, acetate form) in a 10 cm ?? 7 mm column. Samples are filtered and acidified with concentrated hydrochloric acid (1 ml per 100 ml of sample) at the sample site. Five ml of the acidified sample are used for the separation. At this acidity, As(III) passes through the acetate-form resin, and As(V) is retained. As(V) is eluted by passage of 0.12M hydrochloric acid through the column (resulting in conversion of the resin back into the chloride form). Samples are collected in 5-ml portions up to a total of 20 ml. The arsenic concentration in each portion is determined by graphite-furnace atomic-absorption spectrophotometry. The first two fractions give the As(III) concentration and the last two the As(V) concentration. The detection limit for the concentration of each species is 1 ??g l. ?? 1983.

  17. Behavioral Determinants of Switching to Arsenic-Safe Water Wells.

    PubMed

    George, Christine Marie; Inauen, Jennifer; Perin, Jamie; Tighe, Jennifer; Hasan, Khaled; Zheng, Yan

    2017-02-01

    More than 100 million people globally are estimated to be exposed to arsenic in drinking water that exceeds the World Health Organization guideline of 10 µg/L. In an effort to develop and test a low-cost sustainable approach for water arsenic testing in Bangladesh, we conducted a randomized controlled trial which found arsenic educational interventions when combined with fee-based water arsenic testing programs led to nearly all households buying an arsenic test for their drinking water sources (93%) compared with only 53% when fee-based arsenic testing alone was offered. The aim of the present study was to build on the findings of this trial by investigating prospectively the psychological factors that were most strongly associated with switching to arsenic-safe wells in response to these interventions. Our theoretical framework was the RANAS (risk, attitude, norm, ability, and self-regulation) model of behavior change. In the multivariate logistic regression model of 285 baseline unsafe well users, switching to an arsenic-safe water source was significantly associated with increased instrumental attitude (odds ratio [OR] = 9.12; 95% confidence interval [CI] = [1.85, 45.00]), descriptive norm (OR = 34.02; 95% CI = [6.11, 189.45]), coping planning (OR = 11.59; 95% CI = [3.82, 35.19]), and commitment (OR = 10.78; 95% CI = [2.33, 49.99]). In addition, each additional minute from the nearest arsenic-safe drinking water source reduced the odds of switching to an arsenic-safe well by more than 10% (OR = 0.89; 95% CI = [0.87, 0.92]). Future arsenic mitigation programs should target these behavioral determinants of switching to arsenic-safe water sources.

  18. Electrochemical determination of inorganic mercury and arsenic--A review.

    PubMed

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Development of a simple, sensitive and inexpensive ion-pairing cloud point extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV-Vis spectrophotometry.

    PubMed

    Gürkan, Ramazan; Kır, Ufuk; Altunay, Nail

    2015-08-01

    The determination of inorganic arsenic species in water, beverages and foods become crucial in recent years, because arsenic species are considered carcinogenic and found at high concentrations in the samples. This communication describes a new cloud-point extraction (CPE) method for the determination of low quantity of arsenic species in the samples, purchased from the local market by UV-Visible Spectrophotometer (UV-Vis). The method is based on selective ternary complex of As(V) with acridine orange (AOH(+)) being a versatile fluorescence cationic dye in presence of tartaric acid and polyethylene glycol tert-octylphenyl ether (Triton X-114) at pH 5.0. Under the optimized conditions, a preconcentration factor of 65 and detection limit (3S blank/m) of 1.14 μg L(-1) was obtained from the calibration curve constructed in the range of 4-450 μg L(-1) with a correlation coefficient of 0.9932 for As(V). The method is validated by the analysis of certified reference materials (CRMs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chao-Yuan; Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan; Su, Chien-Tien

    2012-08-01

    8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography withmore » tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.« less

  1. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens.

    PubMed

    Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris

    2016-07-05

    The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.

  2. Arsenic speciation and trace element analysis of the volcanic río Agrio and the geothermal waters of Copahue, Argentina.

    PubMed

    Farnfield, Hannah R; Marcilla, Andrea L; Ward, Neil I

    2012-09-01

    Surface water originating from the Copahue volcano crater-lake was analysed for total arsenic and four arsenic species: arsenite (iAs(III)), arsenate (iAs(V)), monomethylarsonic acid (MA(V)) and dimethylarsinic acid (DMA(V)) and other trace elements (Fe, Mn, V, Cr, Ni, Zn). A novel in-field technique for the preconcentration and separation of four arsenic species was, for the first time, used for the analysis of geothermal and volcanic waters. Total arsenic levels along the río Agrio ranged from <0.2-3783 μg/l As(T). The highest arsenic levels were recorded in the el Vertedero spring (3783 μg/l As(T)) on the flank of the Copahue volcano, which feeds the acidic río Agrio. Arsenite (H(3)AsO(3)) predominated along the upper río Agrio (78.9-81.2% iAs(III)) but the species distribution changed at lago Caviahue and arsenate (H(2)AsO(4)(-)) became the main species (51.4-61.4% iAs(V)) up until Salto del Agrio. The change in arsenic species is potentially a result of an increase in redox potential and the formation of iron-based precipitates. Arsenic speciation showed a statistically significant correlation with redox potential (r=0.9697, P=0.01). Both total arsenic and arsenic speciation displayed a statistically significant correlation with vanadium levels along the river (r=0.9961, P=0.01 and r=0.8488, P=0.05, respectively). This study highlights that chemical speciation analysis of volcanic waters is important in providing ideas on potential chemical toxicity. Furthermore there is a need for further work evaluating how arsenic (and other trace elements), released in volcanic and geothermal streams/vents, impacts on both biota and humans (via exposure in thermal pools or consuming commercial drinking water). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Diverse arsenic- and iron-cycling microbial communities in arsenic-contaminated aquifers used for drinking water in Bangladesh.

    PubMed

    Hassan, Zahid; Sultana, Munawar; van Breukelen, Boris M; Khan, Sirajul I; Röling, Wilfred F M

    2015-04-01

    Subsurface removal of arsenic by injection with oxygenated groundwater has been proposed as a viable technology for obtaining 'safe' drinking water in Bangladesh. While the oxidation of ferrous iron to solid ferric iron minerals, to which arsenic adsorbs, is assumed to be driven by abiotic reactions, metal-cycling microorganisms may potentially affect arsenic removal. A cultivation-independent survey covering 24 drinking water wells in several geographical regions in Bangladesh was conducted to obtain information on microbial community structure and diversity in general, and on specific functional groups capable of the oxidation or reduction of arsenic or iron. Each functional group, targeted by either group-specific 16S rRNA or functional gene amplification, occurred in at least 79% of investigated samples. Putative arsenate reducers and iron-oxidizing Gallionellaceae were present at low diversity, while more variation in potentially arsenite-oxidizing microorganisms and iron-reducing Desulfuromonadales was revealed within and between samples. Relations between community composition on the one hand and hydrochemistry on the other hand were in general not evident, apart from an impact of salinity on iron-cycling microorganisms. Our data suggest widespread potential for a positive contribution of arsenite and iron oxidizers to arsenic removal upon injection with oxygenated water, but also indicate a potential risk for arsenic re-mobilization by anaerobic arsenate and iron reducers once injection is halted. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Arsenic (+3 Oxidation State) Methyltransferase and the Methylation of Arsenicals

    PubMed Central

    Thomas, David J.; Li, Jiaxin; Waters, Stephen B.; Xing, Weibing; Adair, Blakely M.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav

    2008-01-01

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono-, di-, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification process. Intermediates and products formed in this pathway may be more reactive and toxic than inorganic arsenic. Like all metabolic pathways, understanding the pathway for arsenic methylation involves identification of each individual step in the process and the characterization of the molecules which participate in each step. Among several arsenic methyltransferases that have been identified, arsenic (+3 oxidation state) methyltransferase is the one best characterized at the genetic and functional levels. This review focuses on phylogenetic relationships in the deuterostomal lineage for this enzyme and on the relation between genotype for arsenic (+3 oxidation state) methyltransferase and phenotype for conversion of inorganic arsenic to methylated metabolites. Two conceptual models for function of arsenic (+3 oxidation state) methyltransferase which posit different roles for cellular reductants in the conversion of inorganic arsenic to methylated metabolites are compared. Although each model accurately represents some aspects of enzyme’s role in the pathway for arsenic methylation, neither model is a fully satisfactory representation of all the steps in this metabolic pathway. Additional information on the structure and function of the enzyme will be needed to develop a more comprehensive model for this pathway. PMID:17202581

  5. GENE EXPRESSION PROFILING OF NORMAL HUMAN BRONCHIAL EPITHELIAL CELLS EXPOSED TO TRIVALENT ARSENICALS AND DIMETHYLTHIOARSINIC ACID

    EPA Science Inventory

    Lung is a major target for arsenic carcinogenesis in humans. However, the carcinogenic mode of action of arsenicals is unknown. We investigated, in human bronchial epithelial (BEAS2B) cells, the effects of inorganic arsenic (iAsIII), monomethylarsonous acid (MMAIII), dimethylarsi...

  6. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raml, Reingard; Rumpler, Alice; Goessler, Walter

    2007-08-01

    Over the last 6 years, much work on arsenic species in urine samples has been directed toward the determination of the reduced dimethylated arsenic species, DMA(III), because of its high toxicity and perceived key role in the metabolism of inorganic arsenic. Recent work, however, has suggested that DMA(III) may at times have been misidentified because its chromatographic properties can be similar to those of thio-dimethylarsinate (thio-DMA). We analyzed by HPLC-ICPMS (inductively coupled plasma mass spectrometry) urine samples from 75 arsenic-exposed women from Bangladesh with total arsenic concentrations ranging from 8 to 1034 {mu}g As/L and found that thio-DMA was presentmore » in 44% of the samples at concentrations ranging mostly from trace amounts to 24 {mu}g As/L (one sample contained 123 {mu}g As/L). Cytotoxicity testing with HepG2 cells derived from human hepatocarcinoma indicated that thio-DMA was about 10-fold more cytotoxic than dimethylarsinate (DMA). The widespread occurrence of thio-DMA in urine from these arsenic-exposed women suggests that this arsenical may also be present in other urine samples and has so far escaped detection. The work highlights the need for analytical methods providing specific determinations of arsenic compounds in future studies on arsenic metabolism and toxicology.« less

  7. Bacterial respiration of arsenic and selenium

    USGS Publications Warehouse

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  8. Mechanism of groundwater arsenic removal by goethite-coated mineral sand

    NASA Astrophysics Data System (ADS)

    Cashion, J. D.; Khan, S. A.; Patti, A. F.; Adeloju, S.; Gates, W. P.

    2017-11-01

    Skye sand (Vic, Australia) has been considered for arsenic removal from groundwater. Analysis showed that the silica sand is coated with poorly crystalline goethite, hematite and clay minerals. Mössbauer spectra taken following arsenic adsorption revealed changes in the recoilless fraction and relaxation behaviour of the goethite compared to the original state, showing that the goethite is the main active species.

  9. Poultry Consumption and Arsenic Exposure in the U.S. Population.

    PubMed

    Nigra, Anne E; Nachman, Keeve E; Love, David C; Grau-Perez, Maria; Navas-Acien, Ana

    2017-03-01

    Arsenicals (roxarsone and nitarsone) used in poultry production likely increase inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and roxarsone or nitarsone concentrations in poultry meat. However, the association between poultry intake and exposure to these arsenic species, as reflected in elevated urinary arsenic concentrations, is unknown. Our aim was to evaluate the association between 24-hr dietary recall of poultry consumption and arsenic exposure in the U.S. population. We hypothesized first, that poultry intake would be associated with higher urine arsenic concentrations and second, that the association between turkey intake and increased urine arsenic concentrations would be modified by season, reflecting seasonal use of nitarsone. We evaluated 3,329 participants ≥ 6 years old from the 2003-2010 National Health and Nutrition Examination Survey (NHANES) with urine arsenic available and undetectable urine arsenobetaine levels. Geometric mean ratios (GMR) of urine total arsenic and DMA were compared across increasing levels of poultry intake. After adjustment, participants in the highest quartile of poultry consumption had urine total arsenic 1.12 (95% CI: 1.04, 1.22) and DMA 1.13 (95% CI: 1.06, 1.20) times higher than nonconsumers. During the fall/winter, participants in the highest quartile of turkey intake had urine total arsenic and DMA 1.17 (95% CI: 0.99, 1.39; p -trend = 0.02) and 1.13 (95% CI: 0.99, 1.30; p -trend = 0.03) times higher, respectively, than nonconsumers. Consumption of turkey during the past 24 hr was not associated with total arsenic or DMA during the spring/summer. Poultry intake was associated with increased urine total arsenic and DMA in NHANES 2003-2010, reflecting arsenic exposure. Seasonally stratified analyses by poultry type provide strong suggestive evidence that the historical use of arsenic-based poultry drugs contributed to arsenic exposure in the U.S. Nigra AE, Nachman KE, Love DC, Grau

  10. Speciation of arsenic in exfoliated urinary bladder epithelial cells from individuals exposed to arsenic in drinking water.

    PubMed

    Hernández-Zavala, Araceli; Valenzuela, Olga L; Matousek, Tomás; Drobná, Zuzana; Dĕdina, Jirí; García-Vargas, Gonzalo G; Thomas, David J; Del Razo, Luz M; Stýblo, Miroslav

    2008-12-01

    The concentration of arsenic in urine has been used as a marker of exposure to inorganic As (iAs). Relative proportions of urinary metabolites of iAs have been identified as potential biomarkers of susceptibility to iAs toxicity. However, the adverse effects of iAs exposure are ultimately determined by the concentrations of iAs metabolites in target tissues. In this study we examined the feasibility of analyzing As species in cells that originate in the urinary bladder, a target organ for As-induced cancer in humans. Exfoliated bladder epithelial cells (BECs) were collected from urine of 21 residents of Zimapan, Mexico, who were exposed to iAs in drinking water. We determined concentrations of iAs, methyl-As (MAs), and dimethyl-As (DMAs) in urine using conventional hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS). We used an optimized HG-CT-AAS technique with detection limits of 12-17 pg As for analysis of As species in BECs. All urine samples and 20 of 21 BEC samples contained detectable concentrations of iAs, MAs, and DMAs. Sums of concentrations of these As species in BECs ranged from 0.18 to 11.4 ng As/mg protein and in urine from 4.8 to 1,947 ng As/mL. We found no correlations between the concentrations or ratios of As species in BECs and in urine. These results suggest that urinary levels of iAs metabolites do not necessarily reflect levels of these metabolites in the bladder epithelium. Thus, analysis of As species in BECs may provide a more effective tool for risk assessment of bladder cancer and other urothelial diseases associated with exposures to iAs.

  11. The die is cast: arsenic exposure in early life and disease susceptibility.

    PubMed

    Thomas, David J

    2013-12-16

    Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for the development and progression of disease in both species. Mode of action and dosimetric studies in the mouse may help assess the role of age at exposure as a factor in susceptibility to the toxic and carcinogenic effects of arsenic in humans.

  12. Determination of Arsenic Species in Ophiocordyceps sinensis from Major Habitats in China by HPLC-ICP-MS and the Edible Hazard Assessment.

    PubMed

    Guo, Lian-Xian; Zhang, Gui-Wei; Wang, Jia-Ting; Zhong, Yue-Ping; Huang, Zhi-Gang

    2018-04-26

    This study sought to determine the concentration and distribution of arsenic (As) species in Ophiocordyceps sinensis ( O. sinensis ), and to assess its edible hazard for long term consumption. The total arsenic concentrations, measured through inductively coupled plasma mass spectrometry (ICP-MS), ranged from 4.00 mg/kg to 5.25 mg/kg. As determined by HPLC-ICP-MS, the most concerning arsenic species—AsB, MMA V , DMA V , As V , and As Ш —were either not detected (MMA V and DMA V ) or were detected as minor As species (AsB: 1.4⁻2.9%; As V : 1.3⁻3.2%, and As Ш : 4.1⁻6.0%). The major components were a cluster of unknown organic As (uAs) compounds with As Ш , which accounted for 91.7⁻94.0% of the As content. Based on the H₂O₂ test and the chromatography behavior, it can be inferred that, the uAs might not be toxic organic As. Estimated daily intake ( EDI) , hazard quotient ( HQ ), and cancer risk ( CR ) caused by the total As content; the sum of inorganic As (iAs) and uAs, namely i+uAs; and iAs exposure from long term O. sinensis consumption were calculated and evaluated through equations from the US Environmental Protection Agency and the uncertainties were analyzed by Monte-Carlo Simulation (MCS). EDI total As and EDI i+uAs are approximately ten times more than EDI iAs ; HQ total As and HQ i+u As > 1 while HQ i As < 1; and CR total As and CR i+uAs > 1 × 10 −4 while CR iAs < 1 × 10 −4 . Thus, if the uAs is non-toxic, there is no particular risk to local consumers and the carcinogenic risk is acceptable for consumption of O. sinensis because the concentration of toxic iAs is very low.

  13. Folate and Cobalamin Modify Associations between S-adenosylmethionine and Methylated Arsenic Metabolites in Arsenic-Exposed Bangladeshi Adults123

    PubMed Central

    Howe, Caitlin G.; Niedzwiecki, Megan M.; Hall, Megan N.; Liu, Xinhua; Ilievski, Vesna; Slavkovich, Vesna; Alam, Shafiul; Siddique, Abu B.; Graziano, Joseph H.; Gamble, Mary V.

    2014-01-01

    Chronic exposure to inorganic arsenic (InAs) through drinking water is a major problem worldwide. InAs undergoes hepatic methylation to form mono- and dimethyl arsenical species (MMA and DMA, respectively), facilitating arsenic elimination. Both reactions are catalyzed by arsenic (+3 oxidation state) methyltransferase (AS3MT) using S-adenosylmethionine (SAM) as the methyl donor, yielding the methylated product and S-adenosylhomocysteine (SAH), a potent product-inhibitor of AS3MT. SAM biosynthesis depends on folate- and cobalamin-dependent one-carbon metabolism. With the use of samples from 353 participants in the Folate and Oxidative Stress Study, our objective was to test the hypotheses that blood SAM and SAH concentrations are associated with arsenic methylation and that these associations differ by folate and cobalamin nutritional status. Blood SAM and SAH were measured by HPLC. Arsenic metabolites in blood and urine were measured by HPLC coupled to dynamic reaction cell inductively coupled plasma MS. In linear regression analyses, SAH was not associated with any of the arsenic metabolites. However, log(SAM) was negatively associated with log(% urinary InAs) (β: −0.11; 95% CI: −0.19, −0.02; P = 0.01), and folate and cobalamin nutritional status significantly modified associations between SAM and percentage of blood MMA (%bMMA) and percentage of blood DMA (%bDMA) (P = 0.02 and P = 0.01, respectively). In folate- and cobalamin-deficient individuals, log(SAM) was positively associated with %bMMA (β: 6.96; 95% CI: 1.86, 12.05; P < 0.01) and negatively associated with %bDMA (β: −6.19; 95% CI: −12.71, 0.32; P = 0.06). These findings suggest that when exposure to InAs is high, and methyl groups are limiting, SAM is used primarily for MMA synthesis rather than for DMA synthesis, contributing additional evidence that nutritional status may explain some of the interindividual differences in arsenic metabolism and, consequently, susceptibility to arsenic

  14. Zirconium-modified materials for selective adsorption and removal of aqueous arsenic

    DOEpatents

    Zhao, Hongting; Moore, Robert C.

    2004-11-30

    A method, composition, and apparatus for removing contaminant species from an aqueous medium comprising: providing a material to which zirconium has been added, the material selected from one or more of zeolites, cation-exchangeable clay minerals, fly ash, mesostructured materials, activated carbons, cellulose acetate, and like porous and/or fibrous materials; and contacting the aqueous medium with the material to which zirconium has been added. The invention operates on all arsenic species in the form of arsenate, arsenite and organometallic arsenic, with no pretreatment necessary (e.g., oxidative conversion of arsenite to arsenate).

  15. Determination of arsenic species in solid matrices utilizing supercritical fluid extraction coupled with gas chromatography after derivatization with thioglycolic acid n-butyl ester.

    PubMed

    Wang, Zhifeng; Cui, Zhaojie

    2016-12-01

    A method using derivatization and supercritical fluid extraction coupled with gas chromatography was developed for the analysis of dimethylarsinate, monomethylarsonate and inorganic arsenic simultaneously in solid matrices. Thioglycolic acid n-butyl ester was used as a novel derivatizing reagent. A systematic discussion was made to investigate the effects of pressure, temperature, flow rate of the supercritical CO 2 , extraction time, concentration of the modifier, and microemulsion on extraction efficiency. The application for real environmental samples was also studied. Results showed that thioglycolic acid n-butyl ester was an effective derivatizing reagent that could be applied for arsenic speciation. Using methanol as modifier of the supercritical CO 2 can raise the extraction efficiency, which can be further enhanced by adding a microemulsion that contains Triton X-405. The optimum extraction conditions were: 25 MPa, 90°C, static extraction for 10 min, dynamic extraction for 25 min with a flow rate of 2.0 mL/min of supercritical CO 2 modified by 5% v/v methanol and microemulsion. The detection limits of dimethylarsinate, monomethylarsonate, and inorganic arsenic in solid matrices were 0.12, 0.26, and 1.1 mg/kg, respectively. The optimized method was sensitive, convenient, and reliable for the extraction and analysis of different arsenic species in solid samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Individual variability in the human metabolism of an arsenic-containing carbohydrate, 2',3'-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside, a naturally occurring arsenical in seafood.

    PubMed

    Raml, Reingard; Raber, Georg; Rumpler, Alice; Bauernhofer, Thomas; Goessler, Walter; Francesconi, Kevin A

    2009-09-01

    We report studies on the variability in human metabolism of an oxo-arsenosugar involving the ingestion of a chemically synthesized arsenosugar and quantitative determination of the arsenic metabolites in urine and serum by HPLC coupled with arsenic-selective mass spectrometric detection (ICPMS, inductively coupled plasma mass spectrometry). The total, four-day, urinary excretion of arsenic for six volunteers ranged widely from ca. 4-95%. The arsenic metabolites present in the urine also showed great variability: high arsenic excretion was accompanied by almost complete biotransformation of the ingested oxo-arsenosugar into a multitude of metabolites (>10), whereas the subjects that excreted low amounts of arsenic produced low quantities of metabolites relative to unchanged oxo-arsenosugar and its thio-analogue. Major arsenic urinary metabolites were dimethylarsinate (DMA) and possible intermediates in the degradation of arsenosugar to DMA, namely, dimethylarsinoylethanol (DMAE) and dimethylarsinoylacetate (DMAA) present both as their oxo- and thio-analogues. Thio-DMAE and thio-DMAA were also found in blood serum indicating that these species were formed in the liver rather than on storage of the urine in the bladder. The large variability in the way individuals metabolize arsenosugars has implications for risk assessment of arsenic intake from seafood.

  17. Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, Adam C.; Stolz, Donna B.; Vin, Harina

    2007-08-01

    The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels, and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration were observed in Matrigel plugs implanted in C57BL/6 mice following 5-week exposures to 5-500 ppb arsenic [Soucy, N.V., Mayka, D., Klei,more » L.R., Nemec, A.A., Bauer, J.A., Barchowsky, A., 2005. Neovascularization and angiogenic gene expression following chronic arsenic exposure in mice. Cardiovasc.Toxicol 5, 29-42]. Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68-positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased, indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic.« less

  18. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    PubMed

    Zhu, Yong-Guan; Rosen, Barry P

    2009-04-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization.

  19. Leaching of Arsenic from Granular Ferric Hydroxide Residuals under Mature Landfill Conditions

    PubMed Central

    Ghosh, Amlan; Mukiibi, Muhammed; Sáez, A. Eduardo; Ela, Wendell P.

    2008-01-01

    Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in non-hazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill. The column operated for approximately 900 days and the mode of transport as well as chemical speciation of iron and arsenic changed with column age. Both iron and arsenic were readily mobilized under the anaerobic, reducing conditions. During the early stages of operation, most arsenic and iron leaching (80% and 65%, respectively) was associated with suspended particulate matter and iron was lost proportionately faster than arsenic. In later stages, while the rate of iron leaching declined, the arsenic leaching rate increased greater than 7-fold. The final phase was characterized by dissolved species leaching. Future work on the development of standard batch leaching tests should take into account the dominant mobilization mechanisms identified in this work: solid associated transport, reductive sorbent dissolution, and microbially mediated arsenic reduction. PMID:17051802

  20. Leaching of arsenic from granular ferric hydroxide residuals under mature landfill conditions.

    PubMed

    Ghosh, Amlan; Mukiibi, Muhammed; Sáez, A Eduardo; Ela, Wendell P

    2006-10-01

    Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in nonhazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill. The column operated for approximately 900 days and the mode of transport as well as chemical speciation of iron and arsenic changed with column age. Both iron and arsenic were readily mobilized under the anaerobic, reducing conditions. During the early stages of operation, most arsenic and iron leaching (80% and 65%, respectively) was associated with suspended particulate matter, and iron was lost proportionately faster than arsenic. In later stages, while the rate of iron leaching declined, the arsenic leaching rate increased greater than 7-fold. The final phase was characterized by dissolved species leaching. Future work on the development of standard batch leaching tests should take into account the dominant mobilization mechanisms identified in this work: solid associated transport, reductive sorbent dissolution, and microbially mediated arsenic reduction.

  1. Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea.

    PubMed

    Grifoni, Martina; Schiavon, Michela; Pezzarossa, Beatrice; Petruzzelli, Gianniantonio; Malagoli, Mario

    2015-02-01

    Arsenic (As) is recognized as a toxic pollutant in soils of many countries. Since phosphorus (P) and sulphur (S) can influence arsenic mobility and bioavailability, as well as the plant tolerance to As, phytoremediation techniques employed to clean-up As-contaminated areas should consider the interaction between As and these two nutrients. In this study, the bioavailability and accumulation of arsenate in the species Brassica juncea were compared between soil system and hydroponics in relation to P and S concentration of the growth substrate. In one case, plants were grown in pots filled with soil containing 878 mg As kg(-1). The addition of P to soil resulted in increased As desorption and significantly higher As accumulation in plants, with no effect on growth. The absence of toxic effects on plants was likely due to high S in soil, which could efficiently mitigate metal toxicity. In the hydroponic experiment, plants were grown with different combinations of As (0 or 100 μM) and P (56 or 112 μM). S at 400 μM was also added to the nutrient solution of control (-As) and As-treated plants, either individually or in combination with P. The addition of P reduced As uptake by plants, while high S resulted in higher As accumulation and lower P content. These results suggest that S can influence the interaction between P and As for the uptake by plants. The combined increase of P and S in the nutrient solution did not lead to higher accumulation of As, but enhanced As translocation from the root to the shoot. This aspect is of relevance for the phytoremediation of As-contaminated sites.

  2. Phytoremediation assessment of Gomphrena globosa and Zinnia elegans grown in arsenic-contaminated hydroponic conditions as a safe and feasible alternative to be applied in arsenic-contaminated soils of the Bengal Delta.

    PubMed

    Signes-Pastor, A J; Munera-Picazo, S; Burló, F; Cano-Lamadrid, M; Carbonell-Barrachina, A A

    2015-06-01

    Several agricultural fields show high contents of arsenic because of irrigation with arsenic-contaminated groundwater. Vegetables accumulate arsenic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic endemic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L(-1)) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumulation were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spectrometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (<1 %). The flowering plants studied did not show as high phytoremediation capacities as other wild species, such as ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to improve food safety and also food security by increasing farmer's revenue.

  3. Occurrence of inorganic arsenic in edible Shiitake (Lentinula edodes) products.

    PubMed

    Llorente-Mirandes, Toni; Barbero, Mercedes; Rubio, Roser; López-Sánchez, José Fermín

    2014-09-01

    The present study reports arsenic speciation analysis in edible Shiitake (Lentinula edodes) products. The study focused on the extraction, and accurate quantification of inorganic arsenic (iAs), the most toxic form of arsenic, which was selectively separated and determined using anion exchange LC-ICPMS. A wide variety of edible Shiitake products (fresh mushrooms, food supplements, canned and dehydrated) were purchased and analysed. A cultivated Shiitake grown under controlled conditions was also analysed. The extraction method showed satisfactory extraction efficiencies (>90%) and column recoveries (>85%) for all samples. Arsenic speciation revealed that iAs was the major As compound up to 1.38 mg As kg(-1) dm (with a mean percentage of 84% of the total arsenic) and other organoarsenicals were found as minor species. Shiitake products had high proportions of iAs and therefore should not be ignored as potential contributors to dietary iAs exposure in populations with a high intake of Shiitake products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of Inorganic Arsenic, Methylated Arsenicals, and Arsenobetaine on Atherosclerosis in the apoE−/− Mouse Model and the Role of As3mt-Mediated Methylation

    PubMed Central

    Negro Silva, Luis Fernando; Lemaire, Maryse; Lemarié, Catherine A.; Plourde, Dany; Bolt, Alicia M.; Chiavatti, Christopher; Bohle, D. Scott; Slavkovich, Vesna; Graziano, Joseph H.; Lehoux, Stéphanie

    2017-01-01

    Background: Arsenic is metabolized through a series of oxidative methylation reactions by arsenic (3) methyltransferase (As3MT) to yield methylated intermediates. Although arsenic exposure is known to increase the risk of atherosclerosis, the contribution of arsenic methylation and As3MT remains undefined. Objectives: Our objective was to define whether methylated arsenic intermediates were proatherogenic and whether arsenic biotransformation by As3MT was required for arsenic-enhanced atherosclerosis. Methods: We utilized the apoE−/− mouse model to compare atherosclerotic plaque size and composition after inorganic arsenic, methylated arsenical, or arsenobetaine exposure in drinking water. We also generated apoE−/−/As3mt−/− double knockout mice to test whether As3MT-mediated biotransformation was required for the proatherogenic effects of inorganic arsenite. Furthermore, As3MT expression and function were assessed in in vitro cultures of plaque-resident cells. Finally, bone marrow transplantation studies were performed to define the contribution of As3MT-mediated methylation in different cell types to the development of atherosclerosis after inorganic arsenic exposure. Results: We found that methylated arsenicals, but not arsenobetaine, are proatherogenic and that As3MT is required for arsenic to induce reactive oxygen species and promote atherosclerosis. Importantly, As3MT was expressed and functional in multiple plaque-resident cell types, and transplant studies indicated that As3MT is required in extrahepatic tissues to promote atherosclerosis. Conclusion: Taken together, our findings indicate that As3MT acts to promote cardiovascular toxicity of arsenic and suggest that human AS3MT SNPs that correlate with enzyme function could predict those most at risk to develop atherosclerosis among the millions that are exposed to arsenic. https://doi.org/10.1289/EHP806 PMID:28728140

  5. Proteomic profiling reveals candidate markers for arsenic-induced skin keratosis.

    PubMed

    Guo, Zhiling; Hu, Qin; Tian, Jijing; Yan, Li; Jing, Chuanyong; Xie, Heidi Qunhui; Bao, Wenjun; Rice, Robert H; Zhao, Bin; Jiang, Guibin

    2016-11-01

    Proteomics technology is an attractive biomarker candidate discovery tool that can be applied to study large sets of biological molecules. To identify novel biomarkers and molecular targets in arsenic-induced skin lesions, we have determined the protein profile of arsenic-affected human epidermal stratum corneum by shotgun proteomics. Samples of palm and foot sole from healthy subjects were analyzed, demonstrating similar protein patterns in palm and sole. Samples were collected from the palms of subjects with arsenic keratosis (lesional and adjacent non-lesional samples) and arsenic-exposed subjects without lesions (normal). Samples from non-exposed healthy individuals served as controls. We found that three proteins in arsenic-exposed lesional epidermis were consistently distinguishably expressed from the unaffected epidermis. One of these proteins, the cadherin-like transmembrane glycoprotein, desmoglein 1 (DSG1) was suppressed. Down-regulation of DSG1 may lead to reduced cell-cell adhesion, resulting in abnormal epidermal differentiation. The expression of keratin 6c (KRT6C) and fatty acid binding protein 5 (FABP5) were significantly increased. FABP5 is an intracellular lipid chaperone that plays an essential role in fatty acid metabolism in human skin. This raises a possibility that overexpression of FABP5 may affect the proliferation or differentiation of keratinocytes by altering lipid metabolism. KRT6C is a constituent of the cytoskeleton that maintains epidermal integrity and cohesion. Abnormal expression of KRT6C may affect its structural role in the epidermis. Our findings suggest an important approach for future studies of arsenic-mediated toxicity and skin cancer, where certain proteins may represent useful biomarkers of early diagnoses in high-risk populations and hopefully new treatment targets. Further studies are required to understand the biological role of these markers in skin pathogenesis from arsenic exposure. Copyright © 2016 Elsevier Ltd

  6. The potential of Thelypteris palustris and Asparagus sprengeri in phytoremediation of arsenic contamination.

    PubMed

    Anderson, LaShunda L; Walsh, Maud; Roy, Amitava; Bianchetti, Christopher M; Merchan, Gregory

    2011-02-01

    The potential of two plants, Thelypteris palustris (marsh fern) and Asparagus sprengeri (asparagus fern), for phytoremediation of arsenic contamination was evaluated. The plants were chosen for this study because of the discovery of the arsenic hyperaccumulating fern, Pteris vittata (Ma et al., 2001) and previous research indicating asparagus fern's ability to tolerate > 1200 ppm soil arsenic. Objectives were (1) to assess if selected plants are arsenic hyperaccumulators; and (2) to assess changes in the species of arsenic upon accumulation in selected plants. Greenhouse hydroponic experiments arsenic treatment levels were established by adding potassium arsenate to solution. All plants were placed into the hydroponic experiments while still potted in their growth media. Marsh fern and Asparagus fern can both accumulate arsenic. Marsh fern bioaccumulation factors (> 10) are in the range of known hyperaccumulator, Pteris vittata Therefore, Thelypteris palustris is may be a good candidate for remediation of arsenic soil contamination levels of < or = 500 microg/L arsenic. Total oxidation of As (III) to As (V) does not occur in asparagus fern. The asparagus fern is arsenic tolerant (bioaccumulation factors < 10), but is not considered a good potential phytoremediation candidate.

  7. Development and application of a robust speciation method for determination of six arsenic compounds present in human urine.

    PubMed Central

    Milstein, Lisa S; Essader, Amal; Pellizzari, Edo D; Fernando, Reshan A; Raymer, James H; Levine, Keith E; Akinbo, Olujide

    2003-01-01

    Six arsenic species [arsenate, arsenite, arsenocholine, arsenobetaine, monomethyl arsonic acid, and dimethyl arsinic acid] present in human urine were determined using ion-exchange chromatography combined with inductively coupled plasma mass spectrometry (IC-ICP-MS). Baseline separation was achieved for all six species as well as for the internal standard (potassium hexahydroxy antimonate V) in a single chromatographic run of less than 30 min, using an ammonium carbonate buffer gradient (between 10 and 50 mM) at ambient temperature, in conjunction with cation- and anion-exchange columns in series. The performance of the method was evaluated with respect to linearity, precision, accuracy, and detection limits. This method was applied to determine the concentration of these six arsenic species in human urine samples (n = 251) collected from a population-based exposure assessment survey. Method precision was demonstrated by the analysis of duplicate samples that were prepared over a 2-year analysis period. Total arsenic was also determined for the urine samples using flow injection analysis coupled to ICP-MS. The summed concentration of the arsenic species was compared with the measured arsenic total to demonstrate mass balance. PMID:12611657

  8. Low-level inorganic arsenic exposure and neuropsychological functioning in American Indian elders.

    PubMed

    Carroll, Clint R; Noonan, Carolyn; Garroutte, Eva M; Navas-Acien, Ana; Verney, Steven P; Buchwald, Dedra

    2017-07-01

    Inorganic arsenic at high and prolonged doses is highly neurotoxic. Few studies have evaluated whether long-term, low-level arsenic exposure is associated with neuropsychological functioning in adults. To investigate the association between long-term, low-level inorganic arsenic exposure and neuropsychological functioning among American Indians aged 64-95. We assessed 928 participants in the Strong Heart Study by using data on arsenic species in urine samples collected at baseline (1989-1991) and results of standardized tests of global cognition, executive functioning, verbal learning and memory, fine motor functioning, and speed of mental processing administered during comprehensive follow-up evaluations in 2009-2013. We calculated the difference in neuropsychological functioning for a 10% increase in urinary arsenic with adjustment for sex, age, education, and study site. The sum of inorganic and methylated arsenic species (∑As) in urine was associated with limited fine motor functioning and processing speed. A 10% increase in ∑As was associated with a .10 (95% CI -.20, -.01) decrease on the Finger Tapping Test for the dominant hand and a .13 decrease (95% CI -.21, -.04) for the non-dominant hand. Similarly, a 10% increase in ∑As was associated with a .15 (95% CI -.29, .00) decrease on the Wechsler Adult Intelligence Scale-Fourth Edition Coding Subtest. ∑As was not associated with other neuropsychological functions. Findings indicate an adverse association between increased urinary arsenic fine motor functioning and processing speed, but not with other neuropsychological functioning, among elderly American Indians. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Geographical variation in total and inorganic arsenic content of polished (white) rice.

    PubMed

    Meharg, Andrew A; Williams, Paul N; Adomako, Eureka; Lawgali, Youssef Y; Deacon, Claire; Villada, Antia; Cambell, Robert C J; Sun, Guoxin; Zhu, Yong-Guan; Feldmann, Joerg; Raab, Andrea; Zhao, Fang-Jie; Islam, Rafiqul; Hossain, Shahid; Yanai, Junta

    2009-03-01

    An extensive data set of total arsenic analysis for 901 polished (white) grain samples, originating from 10 countries from 4 continents, was compiled. The samples represented the baseline (i.e., notspecifically collected from arsenic contaminated areas), and all were for market sale in major conurbations. Median total arsenic contents of rice varied 7-fold, with Egypt (0.04 mg/kg) and India (0.07 mg/kg) having the lowest arsenic content while the U.S. (0.25 mg/kg) and France (0.28 mg/kg) had the highest content. Global distribution of total arsenic in rice was modeled by weighting each country's arsenic distribution by that country's contribution to global production. A subset of 63 samples from Bangladesh, China, India, Italy, and the U.S. was analyzed for arsenic species. The relationship between inorganic arsenic contentversus total arsenic contentsignificantly differed among countries, with Bangladesh and India having the steepest slope in linear regression, and the U.S. having the shallowest slope. Using country-specific rice consumption data, daily intake of inorganic arsenic was estimated and the associated internal cancer risk was calculated using the U.S. Environmental Protection Agency (EPA) cancer slope. Median excess internal cancer risks posed by inorganic arsenic ranged 30-fold for the 5 countries examined, being 0.7 per 10,000 for Italians to 22 per 10,000 for Bangladeshis, when a 60 kg person was considered.

  10. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngalame, Ntube N.O., E-mail: ngalamenn@niehs.nih.g

    Inorganic arsenic, an environmental contaminant and a human carcinogen is associated with prostate cancer. Emerging evidence suggests that cancer stem cells (CSCs) are the driving force of carcinogenesis. Chronic arsenic exposure malignantly transforms the human normal prostate stem/progenitor cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs), through unknown mechanisms. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. In prior work, miR-143 was markedly downregulated in As-CSCs, suggesting a role in arsenic-induced malignant transformation. In the present study, we investigated whether loss of miR-143 expression is important in arsenic-induced transformation of prostate SCs. Restorationmore » of miR-143 in As-CSCs was achieved by lentivirus-mediated miR-143 overexpression. Cells were assessed bi-weekly for up to 30 weeks to examine mitigation of cancer phenotype. Secreted matrix metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but miR-143 restoration decreased secreted MMP-2 and MMP-9 enzyme activities compared with scramble controls. Increased cell proliferation and apoptotic resistance, two hallmarks of cancer, were decreased upon miR-143 restoration. Increased apoptosis was associated with decreased BCL2 and BCL-XL expression. miR-143 restoration dysregulated the expression of SC/CSC self-renewal genes including NOTCH-1, BMI-1, OCT4 and ABCG2. The anticancer effects of miR-143 overexpression appeared to be mediated by targeting and inhibiting LIMK1 protein, and the phosphorylation of cofilin, a LIMK1 substrate. These findings clearly show that miR-143 restoration mitigated multiple cancer characteristics in the As-CSCs, suggesting a potential role in arsenic-induced transformation of prostate SCs. Thus, miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer. - Highlights: • Chronic arsenic exposure

  11. DIMETHYLITHIOARSINIC ANHYDRIDE: A STANDARD FOR ARSENIC SPECIATION

    EPA Science Inventory

    Recently, sulfar analogs of well know arsenicals have been identfied in biolgical, dietary and environmental matrices. These discoveries have generated a need for stable species-specific standards. This presentation will forcus on the isolation and characterization of a standar...

  12. Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions.

    PubMed

    Huang, Zhi; Pei, Qiuling; Sun, Guifan; Zhang, Sichum; Liang, Jiang; Gao, Yi; Zhang, Xinrong

    2008-01-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low selenium status plays important roles in arsenism development. However, no study has been reported for humans suffering from chronic arsenic exposure with low selenium status. Sixty-three subjects were divided into 2 experimental groups by skin lesions (including hyperkeratosis, depigmentation, and hyperpigmentation). Total urine and serum concentrations of arsenic and selenium were determined by ICP-MS with collision/reaction cell. Arsenic species were analysed by ICP-MS coupled with HPLC. The mean concentration of As in the drinking waters was 41.5 microg/l. The selenium dietary intake for the studied population was 31.7 microg Se/d, and which for the cases and controls were 25.9 and 36.3 microg Se/d, respectively. Compared with the controls, the skin lesions cases had lower selenium concentrations in serum and urine (41.4 vs 49.6 microg/l and 71.0 vs 78.8 microg/l, respectively), higher inorganic arsenic (iAs) in serum (5.2 vs 3.4 microg/l, P<0.01), higher percentages of iAs in serum and urine (20.2) vs 16.9% and 18.3 vs 14.5%, respectively, P<0.01) but lower percentages of monomethylarsonate (MMA) in serum (15.5 vs 18.8%, P<0.01) ans dimethylarsinate acid (DMA) in urine (65.1 vs 69.8%, P<0.01). Subjects with lower selenium concentrations in serum (<50 microg/l) had a stronger tendency to the risk of skin lesions than individual having higher selenium concentrations [odd ratio (OR), 7.3; 95% confidence interval (95% CI), 1.5-35.7; P=0.014]. This OR estimation was confirmed in those subjects having higher ratios of As/Se in urine and serum, with OR as high as 10.3 and 3.8 respectively. Lower serum selenium status (<50 microg/l) is significantly correlated to the arsenic-associated skin lesions in the arsenic exposed population. The accumulation of iAs and its inhibition to be biotransformed to DMA occurred in human due to chronic exposure of low selenium status.

  13. Earth Abides Arsenic Biotransformations

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  14. ARSENIC REMOVAL

    EPA Science Inventory

    Presentation covered five topics; arsenic chemistry, best available technology (BAT), surface water technology, ground water technology and case studies of arsenic removal. The discussion on arsenic chemistry focused on the need and method of speciation for AsIII and AsV. BAT me...

  15. Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil.

    PubMed

    Schneider, Jerusa; Stürmer, Sidney Luiz; Guilherme, Luiz Roberto Guimarães; de Souza Moreira, Fatima Maria; Soares, Claudio Roberto Fonsêca de Sousa

    2013-11-15

    Arbuscular mycorrhizal fungi (AMF) are ubiquitous and establish important symbiotic relationships with the majority of the plants, even in soils contaminated with arsenic (As). In order to better understand the ecological relationships of these fungi with excess As in soils and their effects on plants in tropical conditions, occurrence and diversity of AMF were evaluated in areas affected by gold mining activity in Minas Gerais State, Brazil. Soils of four areas with different As concentrations (mg dm(-3)) were sampled: reference Area (10); B1 (subsuperficial layer) (396); barren material (573), and mine waste (1046). Soil sampling was carried out in rainy and dry seasons, including six composite samples per area (n = 24). AMF occurred widespread in all areas, being influenced by As concentrations and sampling periods. A total of 23 species were identified, belonging to the following genus: Acaulospora (10 species), Scutellospora (4 species), Racocetra (3 species), Glomus (4 species), Gigaspora (1 species) and Paraglomus (1 species). The most frequent species occurring in all areas were Paraglomus occultum, Acaulospora morrowiae and Glomus clarum. The predominance of these species indicates their high tolerance to excess As. Although arsenic contamination reduced AMF species richness, presence of host plants tended to counterbalance this reduction. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Effective targeting of chronic myeloid leukemia initiating activity with the combination of arsenic trioxide and interferon alpha.

    PubMed

    El Eit, Rabab M; Iskandarani, Ahmad N; Saliba, Jessica L; Jabbour, Mark N; Mahfouz, Rami A; Bitar, Nizar M A; Ayoubi, Hanadi R El; Zaatari, Ghazi S; Mahon, Francois-Xavier; De Thé, Hugues B; Bazarbachi, Ali A; Nasr, Rihab R

    2014-02-15

    Imatinib is the standard of care in chronic meloid leukemia (CML) therapy. However, imatinib is not curative since most patients who discontinue therapy relapse indicating that leukemia initiating cells (LIC) are resistant. Interferon alpha (IFN) induces hematologic and cytogenetic remissions and interestingly, improved outcome was reported with the combination of interferon and imatinib. Arsenic trioxide was suggested to decrease CML LIC. We investigated the effects of arsenic and IFN on human CML cell lines or primary cells and the bone marrow retroviral transduction/transplantation murine CML model. In vitro, the combination of arsenic and IFN inhibited proliferation and activated apoptosis. Importantly, arsenic and IFN synergistically reduced the clonogenic activity of primary bone marrow cells derived from CML patients. Finally, in vivo, combined interferon and arsenic treatment, but not single agents, prolonged the survival of primary CML mice. Importantly, the combination severely impaired engraftment into untreated secondary recipients, with some recipients never developing the disease, demonstrating a dramatic decrease in CML LIC activity. Arsenic/IFN effect on CML LIC activity was significantly superior to that of imatinib. These results support further exploration of this combination, alone or with imatinib aiming at achieving CML eradication rather than long-term disease control. © 2013 UICC.

  17. THE IMPORTANCE OF ARSENIC SPECIES SPECIFIC MASS BALANCE ON THE EVALUATION OF ARSENIC SPECIATION RESULTS IN SEAFOOD MATRICES

    EPA Science Inventory

    The two predominant pathways to arsenic exposure are drinking water and dietary ingestion. A large percentage of the dietary exposure component is associated with a few food groups. For example, seafood alone represents over 50% of the total dietary exposure. From a daily dose...

  18. Arsenic speciation in manufactured seafood products.

    PubMed

    Vélez, D; Montoro, R

    1998-09-01

    The literature on the speciation of arsenic (As) in seafoods was critically reviewed. Most research has been directed toward fresh seafood products with few papers dealing with As speciation in manufactured seafoods. Predictions concerning As species made on the basis of fresh seafood products cannot be extrapolated to manufactured seafoods. Therefore, due to the numerous species of As, the scarcity of data concerning their presence in foods, the transformations each species may undergo during industrial processing and cooking, and the lack of legislation on permitted As levels in seafood products, As species in manufactured seafood products need to be determined and quantified.

  19. Poultry Consumption and Arsenic Exposure in the U.S. Population

    PubMed Central

    Nigra, Anne E.; Nachman, Keeve E.; Love, David C.; Grau-Perez, Maria; Navas-Acien, Ana

    2016-01-01

    Background: Arsenicals (roxarsone and nitarsone) used in poultry production likely increase inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and roxarsone or nitarsone concentrations in poultry meat. However, the association between poultry intake and exposure to these arsenic species, as reflected in elevated urinary arsenic concentrations, is unknown. Objectives: Our aim was to evaluate the association between 24-hr dietary recall of poultry consumption and arsenic exposure in the U.S. population. We hypothesized first, that poultry intake would be associated with higher urine arsenic concentrations and second, that the association between turkey intake and increased urine arsenic concentrations would be modified by season, reflecting seasonal use of nitarsone. Methods: We evaluated 3,329 participants ≥ 6 years old from the 2003–2010 National Health and Nutrition Examination Survey (NHANES) with urine arsenic available and undetectable urine arsenobetaine levels. Geometric mean ratios (GMR) of urine total arsenic and DMA were compared across increasing levels of poultry intake. Results: After adjustment, participants in the highest quartile of poultry consumption had urine total arsenic 1.12 (95% CI: 1.04, 1.22) and DMA 1.13 (95% CI: 1.06, 1.20) times higher than nonconsumers. During the fall/winter, participants in the highest quartile of turkey intake had urine total arsenic and DMA 1.17 (95% CI: 0.99, 1.39; p-trend = 0.02) and 1.13 (95% CI: 0.99, 1.30; p-trend = 0.03) times higher, respectively, than nonconsumers. Consumption of turkey during the past 24 hr was not associated with total arsenic or DMA during the spring/summer. Conclusions: Poultry intake was associated with increased urine total arsenic and DMA in NHANES 2003–2010, reflecting arsenic exposure. Seasonally stratified analyses by poultry type provide strong suggestive evidence that the historical use of arsenic-based poultry drugs contributed to arsenic

  20. Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721; Tao, Shasha

    2012-12-15

    Exposure to arsenic is associated with an increased risk of lung disease. Novel strategies are needed to reduce the adverse health effects associated with arsenic exposure in the lung. Nrf2, a transcription factor that mediates an adaptive cellular defense response, is effective in detoxifying environmental insults and prevents a broad spectrum of diseases induced by environmental exposure to harmful substances. In this report, we tested whether Nrf2 activation protects mice from arsenic-induced toxicity. We used an in vivo arsenic inhalation model that is highly relevant to low environmental human exposure to arsenic-containing dusts. Two-week exposure to arsenic-containing dust resulted inmore » pathological alterations, oxidative DNA damage, and mild apoptotic cell death in the lung; all of which were blocked by sulforaphane (SF) in an Nrf2-dependent manner. Mechanistically, SF-mediated activation of Nrf2 alleviated inflammatory responses by modulating cytokine production. This study provides strong evidence that dietary intervention targeting Nrf2 activation is a feasible approach to reduce adverse health effects associated with arsenic exposure. -- Highlights: ► Exposed to arsenic particles and/or SF have elevated Nrf2 and its target genes. ► Sulforaphane prevents pathological alterations, oxidative damage and cell death. ► Sulforaphane alleviates infiltration of inflammatory cells into the lungs. ► Sulforaphane suppresses arsenic-induced proinflammatory cytokine production.« less

  1. Arsenic surveillance program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background information about arsenic is presented including forms, common sources, and clinical symptoms of arsenic exposure. The purpose of the Arsenic Surveillance Program and LeRC is outlined, and the specifics of the Medical Surveillance Program for Arsenic Exposure at LeRC are discussed.

  2. Speciation of volatile arsenic at geothermal features in Yellowstone National Park

    USGS Publications Warehouse

    Planer-Friedrich, B.; Lehr, C.; Matschullat, J.; Merkel, B.J.; Nordstrom, D. Kirk; Sandstrom, M.W.

    2006-01-01

    Geothermal features in the Yellowstone National Park contain up to several milligram per liter of aqueous arsenic. Part of this arsenic is volatilized and released into the atmosphere. Total volatile arsenic concentrations of 0.5-200 mg/m3 at the surface of the hot springs were found to exceed the previously assumed nanogram per cubic meter range of background concentrations by orders of magnitude. Speciation of the volatile arsenic was performed using solid-phase micro-extraction fibers with analysis by GC-MS. The arsenic species most frequently identified in the samples is (CH3)2AsCl, followed by (CH3)3As, (CH3)2AsSCH3, and CH3AsCl2 in decreasing order of frequency. This report contains the first documented occurrence of chloro- and thioarsines in a natural environment. Toxicity, mobility, and degradation products are unknown. ?? 2006 Elsevier Inc. All rights reserved.

  3. Investigating the biogeochemical interactions involved in simultaneous TCE and Arsenic in situ bioremediation

    NASA Astrophysics Data System (ADS)

    Cook, E.; Troyer, E.; Keren, R.; Liu, T.; Alvarez-Cohen, L.

    2016-12-01

    The in situ bioremediation of contaminated sediment and groundwater is often focused on one toxin, even though many of these sites contain multiple contaminants. This reductionist approach neglects how other toxins may affect the biological and chemical conditions, or vice versa. Therefore, it is of high value to investigate the concurrent bioremediation of multiple contaminants while studying the microbial activities affected by biogeochemical factors. A prevalent example is the bioremediation of arsenic at sites co-contaminated with trichloroethene (TCE). The conditions used to promote a microbial community to dechlorinate TCE often has the adverse effect of inducing the release of previously sequestered arsenic. The overarching goal of our study is to simultaneously evaluate the bioremediation of arsenic and TCE. Although TCE bioremediation is a well-understood process, there is still a lack of thorough understanding of the conditions necessary for effective and stable arsenic bioremediation in the presence of TCE. The objective of this study is to promote bacterial activity that stimulates the precipitation of stable arsenic-bearing minerals while providing anaerobic, non-extreme conditions necessary for TCE dechlorination. To that end, endemic microbial communities were examined under various conditions to attempt successful sequestration of arsenic in addition to complete TCE dechlorination. Tested conditions included variations of substrates, carbon source, arsenate and sulfate concentrations, and the presence or absence of TCE. Initial arsenic-reducing enrichments were unable to achieve TCE dechlorination, probably due to low abundance of dechlorinating bacteria in the culture. However, favorable conditions for arsenic precipitation in the presence of TCE were eventually discovered. This study will contribute to the understanding of the key species in arsenic cycling, how they are affected by various concentrations of TCE, and how they interact with the key

  4. Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?

    PubMed Central

    Zhu, Yong-Guan; Rosen, Barry P

    2015-01-01

    Phytoremediation to clean up arsenic-contaminated environments has been widely hailed as environmentally friendly and cost effective, and genetic engineering is believed to improve the efficiency and versatility of phytoremediation. Successful genetic engineering requires the thorough understanding of the mechanisms involved in arsenic tolerance and accumulation by natural plant species. Key mechanisms include arsenate reduction, arsenic sequestration in vacuoles of root or shoot, arsenic loading to the xylem, and volatilization through the leaves. Key advances include the identification of arsenic (As) translocation from root to shoot in the As hyperaccumulator, Pteris vittata, and the characterization of related key genes from hyperaccumulator and nonaccumulators. In this paper we have proposed three pathways for genetic engineering: arsenic sequestration in the root, hyperaccumulation of arsenic in aboveground tissues, and phytovolatilization. PMID:19303764

  5. Biological removal of arsenic pollution by soil fungi.

    PubMed

    Srivastava, Pankaj Kumar; Vaish, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Singh, Nandita; Tripathi, Rudra Deo

    2011-05-15

    Fifteen fungal strains were isolated from arsenic contaminated (range 9.45-15.63 mg kg(-1)) agricultural soils from the state of West Bengal, India. Five fungal strains were belonged to the Aspergillus and Trichoderma group each, however, remaining five were identified as the Neocosmospora, Sordaria, Rhizopus, Penicillium and sterile mycelial strain. All these fungal strains were cultivated on medium supplemented with 100, 500, 1000, 5000 and 10,000 mg l(-1) of sodium arsenate. After 30-day cultivation under laboratory conditions, radial growth of these strains was determined and compared with control. Toxicity and tolerance of these strains to arsenate were evaluated on the basis of tolerance index. Out of fifteen, only five fungal strains were found resistant and survived with tolerance index pattern as 0.956 (sterile mycelial strain)>0.311 (Rhizopus sp.)>0.306 (Neocosmospora sp.)>0.212 (Penicillium sp.)>0.189 (Aspergillus sp.) at 10,000 mg l(-1) of arsenate. The arsenic removal efficacy of ten fungal strains, tolerant to 5000 mg l(-1) arsenate, was also assayed under laboratory conditions for 21 days. All these strains were cultivated individually on mycological broth enriched with 10 mg l(-1) of arsenic. The initial and final pH of cultivating medium, fungal biomass and removal of arsenic by each fungal strain were evaluated. Fungal biomass of ten strains removed arsenic biologically from the medium which were ranged from 10.92 to 65.81% depending on fungal species. The flux of biovolatilized arsenic was determined indirectly by estimating the sum of arsenic content in fungal biomass and medium. The mean percent removal as flux of biovolatilized arsenic ranged from 3.71 to 29.86%. The most effective removal of arsenic was observed in the Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal strains. These fungal strains can be effectively used for the bioremediation of arsenic-contaminated agricultural soils. Copyright © 2011

  6. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry.

    PubMed

    Çiftçi, Tülin Deniz; Henden, Emur

    2016-08-01

    Arsenic in drinking water is a serious problem for human health. Since the toxicity of arsenic species As(III) and As(V) is different, it is important to determine the concentrations separately. Therefore, it is necessary to develop an accurate and sensitive method for the speciation of arsenic. It was intended with this work to determine the concentrations of arsenic species in water samples collected from Izmir, Manisa and nearby areas. A batch type hydride generation atomic absorption spectrometer was used. As(V) gave no signal under the optimal measurement conditions of As(III). A certified reference drinking water was analyzed by the method and the results showed excellent agreement with the reported values. The procedure was applied to 34 water samples. Eleven tap water, two spring water, 19 artesian well water and two thermal water samples were analyzed under the optimal conditions.

  7. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jui Tung; Bain, Lisa J., E-mail: lbain@clemson.edu; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mousemore » embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  8. Arsenic methylation by micro-organisms isolated from sheepskin bedding materials.

    PubMed

    Lehr, Corinne R; Polishchuk, Elena; Delisle, Marie-Chantal; Franz, Catherine; Cullen, William R

    2003-06-01

    Sudden infant death syndrome (SIDS) has been associated with the volatilization of arsenic, antimony or phosphorus compounds from infants' bedding material by micro-organisms, the so-called 'toxic gas hypothesis'. The volatilization of arsenic by aerobic micro-organisms isolated from new sheepskin bedding material, as well as on material used by a healthy infant and by an infant who perished of SIDS, was examined. Three fungi were isolated from a piece of sheepskin bedding material on which an infant perished of SIDS, which methylated arsenic to form trimethylarsenic(V) species, precursors to volatile trimethylarsine. These three fungi were identified as Scopulariopsis koningii, Fomitopsis pinicola and Penicillium gladioli by their 26S-ribosomal RNA polymerase chain reaction products. These fungi were not previously known to methylate arsenic. The volatilization of arsenic by these three fungi was then examined. Only P. gladioli volatilized arsenic and only under conditions such that the production of sufficient trimethylarsine to be acutely toxic to an infant is unlikely. S. brevicaulis grew on the sheepskin bedding material and evolved a trace amount of trimethylarsine. Known human pathogens such as Mycobacterium neoaurum and Acinetobacter junii were isolated from used bedding.

  9. The fate of arsenic in soil-plant systems.

    PubMed

    Moreno-Jiménez, Eduardo; Esteban, Elvira; Peñalosa, Jesús M

    2012-01-01

    Arsenic is a natural trace element found in the environment. In some cases and places, human activities have increased the soil concentration of As to levels that exceed hazard thresholds. Amongst the main contributing sources of As contamination of soil and water are the following: geologic origin, pyriticmining, agriculture, and coal burning. Arsenic speciation in soils occurs and is relatively complex. Soils contain both organic and inorganic arsenic species. Inorganic As species include arsenite and arsenate, which are the most abundant forms found in the environment. The majority of As in aerated soils exists as H₂AsO₄- (acid soils) or HAsO₄²- (neutral species and basic). However, HA₃sO₃ is the predomiant anaerobic soils, where arsenic availability is higher and As(III) is more weakly retained in the soil matrix than is As(V). The availability of As in soils is usually driven by multiple factors. Among these factors is the presence of Fe-oxides and/or phosphorus, (co)precipitation in salts, pH, organic matter, clay content, rainfall amount, etc. The available and most labile As fraction can potentially be taken up by plant roots, although the concentration of this fraction is usually low. Arsenic has no known biological function in plants. Once inside root cells, As(V) is quickly reduced to As(III), and, in many plant species, becomes complexed. Phosphorus nutrition influences As(V) uptake and toxicity in plants, whilst silicon has similar influences on As(III). Plants cope with As contamination in their tissues by possessing detoxification mechanisms. Such mechanisms include complexation and compartmentalization. However, once these mechanisms are saturated, symptoms of phytotoxicity appear. Phytotoxic effects commonly observed from As exposure includes growth inhibition, chlorophyll degradation, nutrient depletion and oxidative stress. Plants vary in their ability to accumulate and tolerate As (from tolerant hyperaccumulators to sensitive

  10. Malaria Elimination: Time to Target All Species.

    PubMed

    Lover, Andrew A; Baird, J Kevin; Gosling, Roly; Price, Ric

    2018-05-14

    Important strides have been made within the past decade toward malaria elimination in many regions, and with this progress, the feasibility of eradication is once again under discussion. If the ambitious goal of eradication is to be achieved by 2040, all species of Plasmodium infecting humans will need to be targeted with evidence-based and concerted interventions. In this perspective, the potential barriers to achieving global malaria elimination are discussed with respect to the related diversities in host, parasite, and vector populations. We argue that control strategies need to be reorientated from a sequential attack on each species, dominated by Plasmodium falciparum to one that targets all species in parallel. A set of research themes is proposed to mitigate the potential setbacks on the pathway to a malaria-free world.

  11. Ultra-Sensitive Elemental Analysis Using Plasmas 5.Speciation of Arsenic Compounds in Biological Samples by High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry System

    NASA Astrophysics Data System (ADS)

    Kaise, Toshikazu

    Arsenic originating from the lithosphere is widely distributed in the environment. Many arsenicals in the environment are in organic and methylated species. These arsenic compounds in drinking water or food products of marine origin are absorbed in human digestive tracts, metabolized in the human body, and excreted viatheurine. Because arsenic shows varying biological a spects depending on its chemical species, the biological characteristics of arsenic must be determined. It is thought that some metabolic pathways for arsenic and some arsenic circulation exist in aqueous ecosystems. In this paper, the current status of the speciation analysis of arsenic by HPLC/ICP-MS (High Performance Liquid Chromatography-Inductively Coupled Plasma Mass spectrometry) in environmental and biological samples is summarized using recent data.

  12. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic☆

    PubMed Central

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Víctor H.; Contreras-Ruiz, José; García-Vargas, Gonzalo G.; Del Razo, Luz M.

    2009-01-01

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-α) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAsIII, MAsV, DMAsIII, DMAsV). This study examines the relationship between TGF-α concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-α in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-α concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-α levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-α concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p<0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-α than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p=0.003). These results suggest that TGF-α in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas. PMID:17267001

  13. Arsenic accumulation in livers of pinnipeds, seabirds and sea turtles: subcellular distribution and interaction between arsenobetaine and glycine betaine.

    PubMed

    Fujihara, Junko; Kunito, Takashi; Kubota, Reiji; Tanabe, Shinsuke

    2003-12-01

    Concentrations of total arsenic and individual arsenic compounds were determined in liver samples of pinnipeds (northern fur seal Callorhinus ursinus and ringed seal Pusa hispida), seabirds (black-footed albatross Diomedea nigripes and black-tailed gull Larus crassirostris) and sea turtles (hawksbill turtle Eretmochelys imbricata and green turtle Chelonia mydas). Among these species, the black-footed albatross contained the highest hepatic arsenic concentration (5.8+/-3.7 microg/g wet mass). Arsenobetaine was the major arsenic species found in the liver of all these higher tropic marine animals. To investigate the cause of high accumulation of arsenobetaine, subcellular distribution of arsenic and relationship between arsenobetaine and glycine betaine concentrations were examined in the livers of these animals. There was no relationship between total arsenic concentration and its subcellular distribution in liver tissues. However, a significant negative correlation was found between arsenobetaine and glycine betaine concentrations in the liver of six species examined. This result may indicate that arsenobetaine is accumulated in these marine animals as an osmolyte along with glycine betaine, which is a predominant osmolyte in marine animals because the chemical structure and properties of arsenobetaine are similar to those of glycine betaine.

  14. Trivalent methylated arsenical-induced phosphatidylserine exposure and apoptosis in platelets may lead to increased thrombus formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Ok-Nam; Lim, Kyung-Min; AMOREPACIFIC CO/R and D Center, Gyeonggi-do 446-729

    2009-09-01

    Trivalent methylated metabolites of arsenic, monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}), have been found highly reactive and toxic in various cells and in vivo animal models, suggesting their roles in the arsenic-associated toxicity. However, their effects on cardiovascular system including blood cells, one of the most important targets for arsenic toxicity, remain poorly understood. Here we found that MMA{sup III} and DMA{sup III} could induce procoagulant activity and apoptosis in platelets, which play key roles in the development of various cardiovascular diseases (CVDs) through excessive thrombus formation. In freshly isolated human platelets, treatment of MMA{sup III} resultedmore » in phosphatidylserine (PS) exposure, a hallmark of procoagulant activation, accompanied by distinctive apoptotic features including mitochondrial membrane potential disruption, cytochrome c release, and caspase-3 activation. These procoagulant activation and apoptotic features were found to be mediated by the depletion of protein thiol and intracellular ATP, and flippase inhibition by MMA{sup III}, while the intracellular calcium increase or reactive oxygen species generation was not involved. Importantly, increased platelet procoagulant activity by MMA{sup III} resulted in enhanced blood coagulation and excessive thrombus formation in a rat in vivo venous thrombosis model. DMA{sup III} also induced PS-exposure with apoptotic features mediated by protein thiol depletion, which resulted in enhanced thrombin generation. In summary, we believe that this study provides an important evidence for the role of trivalent methylated arsenic metabolites in arsenic-associated CVDs, giving a novel insight into the role of platelet apoptosis in toxicant-induced cardiovascular toxicity.« less

  15. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators.

    PubMed

    Mogren, Christina L; Walton, William E; Parker, David R; Trumble, John T

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1) arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1) of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1)). Buenoa scimitra accumulated 5120±406 ng g(-1) of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1) arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies.

  16. Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators

    PubMed Central

    Mogren, Christina L.; Walton, William E.; Parker, David R.; Trumble, John T.

    2013-01-01

    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l−1 arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g−1 of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142–290 ng g−1). Buenoa scimitra accumulated 5120±406 ng g−1 of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l−1 arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies. PMID:23826344

  17. Characterizing arsenic in preserved hair for assessing exposure potential and discriminating poisoning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempson, Ivan M.; Henry, Dermot; Francis, James

    Advanced analytical techniques have been used to characterize arsenic in taxidermy specimens. Arsenic was examined to aid in discriminating its use as a preservative from that incorporated by ingestion and hence indicate poisoning (in the case of historical figures). The results are relevant to museum curators, occupational and environmental exposure concerns, toxicological and anthropological investigations. Hair samples were obtained from six taxidermy specimens preserved with arsenic in the late 1800s and early 1900s to investigate the arsenic incorporation. The presence of arsenic poses a potential hazard in museum and private collections. For one sample, arsenic was confirmed to be presentmore » on the hair with time-of-flight secondary ion mass spectrometry and then measured with neutron activation analysis to comprise 176 {mu}g g{sup -1}. The hair cross section was analysed with synchrotron micro-X-ray fluorescence to investigate the transverse distribution of topically applied arsenic. It was found that the arsenic had significantly penetrated all hair samples. Association with melanin clusters and the medulla was observed. Lead and mercury were also identified in one sample. X-ray absorption near-edge spectroscopy of the As K-edge indicated that an arsenate species predominantly existed in all samples; however, analysis was hindered by very rapid photoreduction of the arsenic. It would be difficult to discriminate arsenic consumption from topically applied arsenic based on the physical transverse distribution. Longitudinal distributions and chemical speciation may still allow differentiation.« less

  18. GENE EXPRESSION PROFILING OF HYPERKERATOTIC SKIN FROM INNER MONGOLIANS CHRONICALLY EXPOSED TO ARSENIC

    EPA Science Inventory

    Millions of people worldwide have been chronically exposed to arsenic levels in drinking water that greatly exceed the current World Health Organization¿s recommended limit of 10 µg/ml. The skin is a major target of arsenic toxicity, and some of the first clinical signs of chroni...

  19. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice

    PubMed Central

    Chen, Yanshan; Han, Yong-He; Cao, Yue; Zhu, Yong-Guan; Rathinasabapathi, Bala; Ma, Lena Q.

    2017-01-01

    Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As) pollution in paddy soils and its efficient plant uptake, As in rice grains presents health risks. Genetic manipulation may offer an effective approach to reduce As accumulation in rice grains. The genetics of As uptake and metabolism have been elucidated and target genes have been identified for genetic engineering to reduce As accumulation in grains. Key processes controlling As in grains include As uptake, arsenite (AsIII) efflux, arsenate (AsV) reduction and AsIII sequestration, and As methylation and volatilization. Recent advances, including characterization of AsV uptake transporter OsPT8, AsV reductase OsHAC1;1 and OsHAC1;2, rice glutaredoxins, and rice ABC transporter OsABCC1, make many possibilities to develop low-arsenic rice. PMID:28298917

  20. Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120.

    PubMed

    Xue, Xi-Mei; Yan, Yu; Xiong, Chan; Raber, Georg; Francesconi, Kevin; Pan, Ting; Ye, Jun; Zhu, Yong-Guan

    2017-09-01

    Nostoc sp. PCC 7120 (Nostoc), a typical filamentous cyanobacterium ubiquitous in aquatic system, is recognized as a model organism to study prokaryotic cell differentiation and nitrogen fixation. In this study, Nostoc cells incubated with arsenite (As(III)) for two weeks were extracted with dichloromethane/methanol (DCM/MeOH) and the extract was partitioned between water and DCM. Arsenic species in aqueous and DCM layers were determined using high performance liquid chromatography - inductively coupled plasma mass spectrometer/electrospray tandem mass spectrometry (HPLC-ICPMS/ESIMSMS). In addition to inorganic arsenic (iAs), the aqueous layer also contained monomethylarsonate (MAs(V)), dimethylarsinate (DMAs(V)), and the two arsenosugars, namely a glycerol arsenosugar (Oxo-Gly) and a phosphate arsenosugar (Oxo-PO4). Two major arsenosugar phospholipids (AsSugPL982 and AsSugPL984) were detected in DCM fraction. Arsenic in the growth medium was also investigated by HPLC/ICPMS and shown to be present mainly as the inorganic forms As(III) and As(V) accounting for 29%-38% and 29%-57% of the total arsenic respectively. The total arsenic of methylated arsenic, arsenosugars, and arsenosugar phospholipids in Nostoc cells with increasing As(III) exposure were not markedly different, indicating that the transformation to organoarsenic in Nostoc was not dependent on As(III) concentration in the medium. Our results provide new insights into the role of cyanobacteria in the biogeochemical cycling of arsenic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant

    PubMed Central

    Afton, Scott E.; Catron, Brittany; Caruso, Joseph A.

    2009-01-01

    Although many studies have investigated the metabolism of selenium and arsenic in hyperaccumulating plants for phytoremediation purposes, few have explored non-hyperaccumulating plants as a model for general contaminant exposure to plants. In addition, the result of simultaneous supplementation with selenium and arsenic has not been investigated in plants. In this study, Chlorophytum comosum, commonly known as the spider plant, was used to investigate the metabolism of selenium and arsenic after single and simultaneous supplementation. Size exclusion and ion-pairing reversed phase liquid chromatography were coupled to an inductively coupled plasma mass spectrometer to obtain putative metabolic information of the selenium and arsenic species in C. comosum after a mild aqueous extraction. The chromatographic results depict that selenium and arsenic species were sequestered in the roots and generally conserved upon translocation to the leaves. The data suggest that selenium was directly absorbed by C. comosum roots when supplemented with SeVI, but a combination of passive and direct absorption occurred when supplemented with SeIV due to the partial oxidation of SeIV to SeVI in the rhizosphere. Higher molecular weight selenium species were more prevalent in the roots of plants supplemented with SeIV, but in the leaves of plants supplemented with SeVI due to an increased translocation rate. When supplemented as AsIII, arsenic is proposed to be passively absorbed as AsIII and partially oxidized to AsV in the plant root. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not present in the general aqueous extract of the plant. PMID:19273464

  2. Arsenic Toxicity: The Effects on Plant Metabolism

    PubMed Central

    Finnegan, Patrick M.; Chen, Weihua

    2012-01-01

    The two forms of inorganic arsenic, arsenate (AsV) and arsenite (AsIII), are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analog of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or dithiol co-factors. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified. PMID:22685440

  3. SHRNA SILENCING OF AS3MT EXPRESSION MINIMIZES ARSENIC METHYLATION CAPACITY OF HEPG2 CELLS

    EPA Science Inventory

    Several methyltransferases have been shown to catalyze the oxidative methylation of inorganic arsenic (iAs) in mammalian species. However, the relative contributions of these enzymes to the overall capacity of cells to methylate iAs have not been characterized. Arsenic (+3 oxidat...

  4. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE METHYLATION OF ARSENICALS

    EPA Science Inventory

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono, di, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification...

  5. Weight dependence of arsenic concentration in the Arabian Sea tuna fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashraf, M.; Jaffar, M.

    1988-02-01

    The objective of the present investigation was to estimate the arsenic concentration in the edible muscle of Thunnus thynnus and Thunnus toggel (hereafter called tuna and longtail tune) as they have great commercial value. These fish are widely available along the coastal line of Pakistan and are consumed abundantly in large bulk. Thus, it was felt justifiable on the basis of safety of human health that data, in the first instance, be obtained on arsenic concentration in tuna as a function of weight to check whether the metal distribution was species-specific or it depended on individual mode of development. Themore » data, the first of the kind so far presented on the Arabian Sea tuna, would thus provide the required baseline quantitative information needed in future studies on the physiological processes regulating the distribution and uptake of arsenic by these and other species of fish common to the region.« less

  6. IRIS Toxicological Review of Ingested Inorganic Arsenic (2005 ...

    EPA Pesticide Factsheets

    EPA's Office of Research and Development (ORD), Office of Pesticide Programs (OPP), and Office of Water (OW) requested the SAB to provide advice to the Agency on several issues about the mode of carcinogenic action of various arsenic species and the implications of these issues for EPA's assessment of the cancer hazard and risks of organic and inorganic arsenic. The panel will review an OPP Science Issue Paper (with an attachment prepared by ORD) and a revised hazard and dose response assessment/characterization for inclusion in the Integrated Risk Information System (IRIS) prepared by OW. Inorganic arsenic is used for hardening copper and lead alloys. It also is used in glass manufacturing as a decolorizing and refining agent, as a component of electrical devices, in the semiconductor industry, and as a catalyst in the production of ethylene oxide.

  7. Arsenic Exposure and Cancer Mortality in a US-based Prospective Cohort: the Strong Heart Study

    PubMed Central

    García-Esquinas, Esther; Pollán, Marina; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; Guallar, Eliseo; Howard, Barbara; Farley, John; Yeh, Jeunliang; Best, Lyle G.; Navas-Acien, Ana

    2013-01-01

    Background Inorganic arsenic, a carcinogen at high exposure levels, is a major global health problem. Prospective studies on carcinogenic effects at low-moderate arsenic levels are lacking. Methods We evaluated the association between baseline arsenic exposure and cancer mortality in 3,932 American Indians 45–74 years from Arizona, Oklahoma and North/South Dakota who participated in the Strong Heart Study in 1989–1991 and were followed through 2008. We estimated inorganic arsenic exposure as the sum of inorganic and methylated species in urine. Cancer deaths (386 overall, 78 lung, 34 liver, 18 prostate, 26 kidney, 24 esophagus/stomach, 25 pancreas, 32 colon/rectal, 26 breast, 40 lymphatic/hematopoietic) were assessed by mortality surveillance reviews. We hypothesized an association with lung, liver, prostate and kidney cancer. Results Median (interquartile range) urine concentration for inorganic plus methylated arsenic species was 9.7 (5.8–15.6) μg/g creatinine. The adjusted hazard ratios (95% CI) comparing the 80th versus 20th percentiles of arsenic were 1.14 (0.92–1.41) for overall cancer, 1.56 (1.02–2.39) for lung cancer, 1.34 (0.66, 2.72) for liver cancer, 3.30 (1.28–8.48) for prostate cancer, and 0.44 (0.14, 1.14) for kidney cancer. The corresponding hazard ratios were 2.46 (1.09–5.58) for pancreatic cancer, and 0.46 (0.22–0.96) for lymphatic and hematopoietic cancers. Arsenic was not associated with cancers of the esophagus and stomach, colon and rectum, and breast. Conclusions Low to moderate exposure to inorganic arsenic was prospectively associated with increased mortality for cancers of the lung, prostate and pancreas. Impact These findings support the role of low-moderate arsenic exposure in lung, prostate and pancreas cancer development and can inform arsenic risk assessment. PMID:23800676

  8. The Association of Urine Arsenic with Prevalent and Incident Chronic Kidney Disease: Evidence from the Strong Heart Study

    PubMed Central

    Zheng, Laura Y.; Umans, Jason G.; Yeh, Fawn; Francesconi, Kevin A.; Goessler, Walter; Silbergeld, Ellen K; Bandeen-Roche, Karen; Guallar, Eliseo; Howard, Barbara V.; Weaver, Virginia M.; Navas-Acien, Ana

    2016-01-01

    Background Few studies have evaluated associations between low to moderate arsenic levels and chronic kidney disease (CKD). The objective was to evaluate the associations of inorganic arsenic exposure with prevalent and incident CKD in American Indian adults. Methods We evaluated the associations of inorganic arsenic exposure with CKD in American Indians who participated in the Strong Heart Study (SHS) in 3,851 adults aged 45–74 years in a cross-sectional analysis, and 3,119 adults with follow-up data in a prospective analysis. Inorganic arsenic, monomethylarsonate, and dimethylarsinate were measured in urine at baseline. CKD was defined as eGFR≤60 mL/min/1.73m2, kidney transplant or dialysis. Results CKD prevalence was 10.3%. The median (IQR) concentration of inorganic plus methylated arsenic species (total arsenic) in urine was 9.7 (5.8, 15.7) μg/L. The adjusted OR (95% CI) of prevalent CKD for an interquartile range in total arsenic was 0.7 (0.6, 0.8), mostly due to an inverse association with inorganic arsenic (OR 0.4 (0.3, 0.4)). Monomethylarsonate and dimethylarsinate were positively associated with prevalent CKD after adjustment for inorganic arsenic (OR 3.8 and 1.8). The adjusted HR of incident CKD for an IQR in ΣAs was 1.2 (1.03, 1.41). The corresponding HR for inorganic arsenic, monomethylarsonate and dimethylarsinate were 1.0 (0.9, 1.2), 1.2 (1.00, 1.3) and 1.2 (1.0, 1.4). Conclusions The inverse association of urine inorganic arsenic with prevalent CKD suggests that kidney disease affects excretion of inorganic arsenic. Arsenic species were positively associated with incident CKD. Studies with repeated measures are needed to further characterize the relationship between arsenic and kidney disease development. PMID:25929811

  9. Reconnaissance of arsenic concentrations in ground water from bedrock and unconsolidated aquifers in eight northern-tier counties of Pennsylvania

    USGS Publications Warehouse

    Low, Dennis J.; Galeone, Daniel G.

    2007-01-01

    . Water samples representing the unconsolidated glacial sediments were collected from 17 wells; 2 wells had water with detectable concentrations of total arsenic. Contingency tables tested for significant differences in total arsenic between aquifers, topographic settings, and well depths. Concentrations of total arsenic were significantly greater (95-percent confidence level) in the Lock Haven Formation than in the other bedrock units. Concentrations of total arsenic also varied significantly by topographic setting. Wells completed in the Lock Haven Formation and located in valleys had significantly greater concentrations of total arsenic than similar wells located on hilltops or slopes. Concentrations of total arsenic did not vary significantly by topographic setting in the Catskill Formation. Concentrations of total arsenic did not vary significantly by well depth for any aquifer. Iron staining, hydrogen-sulfide odor, or both were common complaints of well owners. Iron staining was a complaint of 44 well owners. Hydrogen-sulfide odor was a complaint of 35 well owners. Fourteen well owners complained of both iron staining and hydrogen sulfide. No correlation to the presence of arsenic in the wells sampled was found with iron staining, hydrogen-sulfide odor, or both. Water from 8 of the 10 wells that contained concentrations of total arsenic greater than 10 µg/L were sampled by USGS personnel for the determination of concentrations of dissolved arsenic (minimum reporting level 0.3 µg/L) and arsenic species {arsenite [As (III)], arsenate [As (V)], monomethylarsonate (MMA), and dimethylarsinate (DMA)} at the USGS National Water Quality Laboratory. Analytical results from these samples showed a median concentration of 38.7 µg/L dissolved arsenic in water and a maximum of 178 µg/L. As (III) was the most common arsenic species present in the water for seven of the eight wells and was found in water characteristic of reducing environments [pH 8.2 to 9.1, dissolved oxygen 0

  10. Determinants and Consequences of Arsenic Metabolism Efficiency among 4,794 Individuals: Demographics, Lifestyle, Genetics, and Toxicity.

    PubMed

    Jansen, Rick J; Argos, Maria; Tong, Lin; Li, Jiabei; Rakibuz-Zaman, Muhammad; Islam, Md Tariqul; Slavkovich, Vesna; Ahmed, Alauddin; Navas-Acien, Ana; Parvez, Faruque; Chen, Yu; Gamble, Mary V; Graziano, Joseph H; Pierce, Brandon L; Ahsan, Habibul

    2016-02-01

    Exposure to inorganic arsenic (iAs), a class I carcinogen, affects several hundred million people worldwide. Once absorbed, iAs is converted to monomethylated (MMA) and then dimethylated forms (DMA), with methylation facilitating urinary excretion. The abundance of each species in urine relative to their sum (iAs%, MMA%, and DMA%) varies across individuals, reflecting differences in arsenic metabolism capacity. The association of arsenic metabolism phenotypes with participant characteristics and arsenical skin lesions was characterized among 4,794 participants in the Health Effects of Arsenic Longitudinal Study (Araihazar, Bangladesh). Metabolism phenotypes include those obtained from principal component (PC) analysis of arsenic species. Two independent PCs were identified: PC1 appears to represent capacity to produce DMA (second methylation step), and PC2 appears to represent capacity to convert iAs to MMA (first methylation step). PC1 was positively associated (P <0.05) with age, female sex, and BMI, while negatively associated with smoking, arsenic exposure, education, and land ownership. PC2 was positively associated with age and education but negatively associated with female sex and BMI. PC2 was positively associated with skin lesion status, while PC1 was not. 10q24.32/AS3MT region polymorphisms were strongly associated with PC1, but not PC2. Patterns of association for most variables were similar for PC1 and DMA%, and for PC2 and MMA% with the exception of arsenic exposure and SNP associations. Two distinct arsenic metabolism phenotypes show unique associations with age, sex, BMI, 10q24.32 polymorphisms, and skin lesions. This work enhances our understanding of arsenic metabolism kinetics and toxicity risk profiles. ©2015 American Association for Cancer Research.

  11. A Comparative Assessment of Arsenic Risks and the Nutritional Benefits of Fish Consumption in Kuwait: Arsenic Versus Omega 3-Fatty Acids.

    PubMed

    Husain, Adnan; Kannan, Kurunthachalam; Chan, Hing Man; Laird, Brian; Al-Amiri, Hanan; Dashti, Basma; Sultan, Anwar; Al-Othman, Amani; Mandekar, Bedraya

    2017-01-01

    Inorganic and organic forms of arsenic (As), as well as omega-3 fatty acids were measured in 578 fish/seafood samples that belong to 15 species of commonly consumed seafood in Kuwait. Arsenic speciation data, with the toxicological profile of inorganic arsenic (iAs) and fish consumption rates were applied in a probabilistic risk assessment to estimate the risk from exposure to iAs. The nutritional benefits of omega-3-fatty acid levels in various species of fish were taken into consideration. Results showed that the mean daily intake of iAs through fish consumption among the Kuwaiti population was 0.058 µg/kg/day, and the 95th percentile was 0.15 µg/kg/day. Although the mean intake level did not exceed the incremental lifetime cancer risk (ILCR) at 1 × 10 -4 , the 95th percentile of iAs intake showed an ILCR of 2.7 × 10 -4 . Kuwaiti children (aged 6-12 years) were found to have a higher mean intake of iAs at 0.10 µg/kg/day with 68% of children in this category, exceeding the risk specific dose associated with an ILCR of 1 × 10 -4 . The fish species, hammor (grouper; Epinephelus coioides), is the top contributor to iAs intake, and tuna is the major source of omega 3-fatty acids for the Kuwaiti population.

  12. Occurrence of organic arsenic species in a 4-m deep free-floating mire

    NASA Astrophysics Data System (ADS)

    Lobianco, Daniela; Zaccone, Claudio; Raber, Georg; D'Orazio, Valeria; Miano, Teodoro; Francesconi, Kevin

    2017-04-01

    Wetlands play a key role in the fate of major and trace elements, affecting their environmental mobility and ecotoxicity. Arsenic (As) is a chalcophile element that is recognized as a serious health risk worldwide. Inorganic forms of this metalloid are dominant in soils, whereas the organic forms generally occur only in trace amounts. Nevertheless, methylation processes are responsible for the mobilization of As in several ecosystems, especially in anoxic conditions. Peat cores from ombrotrophic bogs have been used to determine atmospheric depositional fluxes of total As over centuries, although the contribution of organic vs inorganic As species has been rarely considered. Here, 47 peat samples collected throughout a 400-cm deep, free-floating mire have been analysed for total As and for its organic species, including dimethylarsinic acid (DMA), methylarsonic acid (MA), trimethylarsine oxide (TMAO) and arsenobetaine (AB) by HPLC-ICP-MS. Total As concentration throughout the profile ranged between 0.20 and 9.79 mg/kg (1.41±1.36 mg/kg; mean ± st. dev.), showing values that are quite low compared to other mire ecosystems. Organic As species (DMA+MA+TMAO+AB) account, on average, for 28±10% of total As (range 6-47%; median 28%), and for 41±14% of the extracted As (range 7-73%; median 42%). The relative abundance of organoarsenicals generally followed the order DMA>TMAO˜MA>>AB, and was not correlated with main physical and chemical properties of peat, including its degree of decomposition. There was, however, a highly significant (p <0.001) statistical correlation among all organic As compounds. This result provides new insights into the occurrence of organic As species in floating mires, suggesting a possible common biological pathway for their formation.

  13. Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water

    PubMed Central

    2013-01-01

    Background Limited data exist on the contribution of dietary sources of arsenic to an individual’s total exposure, particularly in populations with exposure via drinking water. Here, the association between diet and toenail arsenic concentrations (a long-term biomarker of exposure) was evaluated for individuals with measured household tap water arsenic. Foods known to be high in arsenic, including rice and seafood, were of particular interest. Methods Associations between toenail arsenic and consumption of 120 individual diet items were quantified using general linear models that also accounted for household tap water arsenic and potentially confounding factors (e.g., age, caloric intake, sex, smoking) (n = 852). As part of the analysis, we assessed whether associations between log-transformed toenail arsenic and each diet item differed between subjects with household drinking water arsenic concentrations <1 μg/L versus ≥1 μg/L. Results As expected, toenail arsenic concentrations increased with household water arsenic concentrations. Among the foods known to be high in arsenic, no clear relationship between toenail arsenic and rice consumption was detected, but there was a positive association with consumption of dark meat fish, a category that includes tuna steaks, mackerel, salmon, sardines, bluefish, and swordfish. Positive associations between toenail arsenic and consumption of white wine, beer, and Brussels sprouts were also observed; these and most other associations were not modified by exposure via water. However, consumption of two foods cooked in water, beans/lentils and cooked oatmeal, was more strongly related to toenail arsenic among those with arsenic-containing drinking water (≥1 μg/L). Conclusions This study suggests that diet can be an important contributor to total arsenic exposure in U.S. populations regardless of arsenic concentrations in drinking water. Thus, dietary exposure to arsenic in the US warrants consideration as a potential

  14. Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water.

    PubMed

    Cottingham, Kathryn L; Karimi, Roxanne; Gruber, Joann F; Zens, M Scot; Sayarath, Vicki; Folt, Carol L; Punshon, Tracy; Morris, J Steven; Karagas, Margaret R

    2013-11-16

    Limited data exist on the contribution of dietary sources of arsenic to an individual's total exposure, particularly in populations with exposure via drinking water. Here, the association between diet and toenail arsenic concentrations (a long-term biomarker of exposure) was evaluated for individuals with measured household tap water arsenic. Foods known to be high in arsenic, including rice and seafood, were of particular interest. Associations between toenail arsenic and consumption of 120 individual diet items were quantified using general linear models that also accounted for household tap water arsenic and potentially confounding factors (e.g., age, caloric intake, sex, smoking) (n = 852). As part of the analysis, we assessed whether associations between log-transformed toenail arsenic and each diet item differed between subjects with household drinking water arsenic concentrations <1 μg/L versus ≥1 μg/L. As expected, toenail arsenic concentrations increased with household water arsenic concentrations. Among the foods known to be high in arsenic, no clear relationship between toenail arsenic and rice consumption was detected, but there was a positive association with consumption of dark meat fish, a category that includes tuna steaks, mackerel, salmon, sardines, bluefish, and swordfish. Positive associations between toenail arsenic and consumption of white wine, beer, and Brussels sprouts were also observed; these and most other associations were not modified by exposure via water. However, consumption of two foods cooked in water, beans/lentils and cooked oatmeal, was more strongly related to toenail arsenic among those with arsenic-containing drinking water (≥1 μg/L). This study suggests that diet can be an important contributor to total arsenic exposure in U.S. populations regardless of arsenic concentrations in drinking water. Thus, dietary exposure to arsenic in the US warrants consideration as a potential health risk.

  15. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    PubMed

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Comparison of three sequential extraction procedures for arsenic fractionation in highly polluted sites.

    PubMed

    Wan, Xiang; Dong, Haochen; Feng, Liu; Lin, Zhijia; Luo, Qiuchen

    2017-07-01

    Three sequential extraction procedures (SEPs) including Tessier, Rauret, and Shiowatana SEPs, were compared for arsenic fractionation using highly polluted soils. In the definition context of exchangeable, reducible, oxidizable and residual fractions, with similar arsenic recovery and reproducibility, Tessier and Rauret SEPs were comparable to each other, whereas Shiowatana SEP showed higher extraction efficiency in all the first three arsenic fractions, although it might overestimate the reducible arsenic. Pot experiment indicated three SEPs all could provide an estimation of the most bioavailable arsenic fraction, and the application of Shiowatana SEP should be preferred. Accordingly, a case study with Shiowatana SEP for a site near a realgar mine area is conducted. The results show that although arsenic in this area presents predominantly in the stable fractions, the sum of most bioavailable fractions was accounted around 11% of total arsenic, and moreover, about another 10% of the total arsenic, the fourth fraction in Shiowatana SEP is likely to be transferred into bioavailable species under suitable conditions, such as strong acid impact, revealing a real major risk source being formed. The study indicated that Shiowatana should be more suitable for arsenic fractionation to provide valuable information in the framework of risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. HEALTH EFFECTS AND RISK ASSESSMENT OF ARSENIC

    EPA Science Inventory

    Abstract - In this review, we will focus on the effects of arsenic (As) exposure from drinking water sources. The primary inorganic As species in water are arsenate (V) and/or arsenite (III); their proportions depend on the water's redox potential and pH. Many As contamination...

  18. Release of Arsenic to the Environment from CCA-Treated Wood: Part II – Leaching and Speciation during Disposal

    PubMed Central

    KHAN, BERNINE I.; JAMBECK, JENNA; SOLO-GABRIELE, HELENA M.; TOWNSEND, TIMOTHY G.; CAI, YONG

    2008-01-01

    Wood treated with chromated copper arsenate (CCA) is primarily disposed within construction and demolition (C&D) debris landfills, with wood monofills and municipal solid waste (MSW) landfills as alternative disposal options. This study evaluated the extent and speciation of arsenic leaching from landfills containing CCA-treated wood. In control lysimeters where untreated wood was used, DMAA represented the major arsenic species. The dominant arsenic species differed in the lysimeters containing CCA-treated wood, with As(V) greatest in the monofill and C&D lysimeters and As(III) greatest in the MSW lysimeters. In CCA-containing lysimeters, the organoarsenic species MMAA and DMAA were virtually absent in the monofill lysimeter and observed in the C&D and MSW lysimeters. Overall arsenic leaching rate varied for the wood monofill (0.69% per meter of water added), C&D (0.36% per m), and MSW (0.84% per m) lysimeters. Utilizing these rates with annual disposal data, a mathematical model was developed to quantify arsenic leaching from CCA-treated wood disposed to Florida landfills. Model findings showed between 20 to 50 metric tons of arsenic (depending on lysimeter type) had leached prior to 2000 with an expected increase between 350 to 830 metric tons by 2040. Groundwater analysis from 21 Florida C&D landfills suspected of accepting CCA-treated wood showed that groundwater at 3 landfills were characterized by elevated arsenic concentrations with only 1 showing impacts from the C&D waste. The slow release of arsenic from disposed treated wood may account for the lack of significant impact to groundwater near most C&D facilities at this time. However, greater impacts are anticipated in the future given that the maximum releases of arsenic are expected by the year 2100. PMID:16509348

  19. Total and inorganic arsenic in Mid-Atlantic marine fish and shellfish and implications for fish advisories.

    PubMed

    Greene, Richard; Crecelius, Eric

    2006-10-01

    Sampling was conducted in 2002 to determine the total concentration and chemical speciation of arsenic in several marine fish and shellfish species collected from the Delaware Inland Bays and the Delaware Estuary, both of which are important estuarine waterbodies in the US Mid-Atlantic region that support recreational and commercial fishing. Edible meats from summer flounder (Paralicthys dentatus), striped bass (Marone saxatilis), Atlantic croaker (Micropogonias undulates), and hard clam (Mercenaria mercenaria) were tested. Total arsenic was highest in summer flounder, followed by hard clam, then striped bass, and finally, Atlantic croaker. Total arsenic was higher in summer flounder collected during the spring, as these fish migrated into the Inland Bays from the continental shelf, compared with levels in summer flounder collected during the fall, after these fish had spent the summer in the Inland Bays. Similarly, striped bass collected in the early spring close to the ocean had higher total arsenic levels compared with levels detected in striped bass collected later during the year in waters with lower salinity. Speciation of arsenic revealed low concentrations (0.00048-0.02 microg/g wet wt) of toxic inorganic arsenic. Dimethylarsinic acid was more than an order of magnitude greater in hard clam meats than in the other species tested, a finding that was attributed to arsenic uptake by phytoplankton and subsequent dietary uptake by the clam. Risk assessment using the inorganic arsenic concentrations was used to conclude that a fish consumption advisory is not warranted.

  20. Effectiveness of household reverse-osmosis systems in a Western U.S. region with high arsenic in groundwater

    USGS Publications Warehouse

    Walker, M.; Seiler, R.L.; Meinert, M.

    2008-01-01

    It is well known to the public in Lahontan Valley in rural Nevada, USA, that local aquifers produce water with varied, but sometimes very high concentrations of arsenic (> 4??ppm). As a result, many residents of the area have installed household reverse-osmosis (RO) systems to produce drinking water. We examined performance of RO systems and factors associated with arsenic removal efficiency in 59 households in Lahontan Valley. The sampling results indicated that RO systems removed an average of 80.2% of arsenic from well water. In 18 of the 59 households, arsenic concentrations exceeded 10??ppb in treated water, with a maximum in treated water of 180??ppb. In 3 of the 59 households, RO treatment had little effect on specific conductance, indicating that the RO system was not working properly. Two main factors lead to arsenic levels in treated water exceeding drinking-water standards in the study area. First, arsenic concentrations were high enough in some Lahontan Valley wells that arsenic levels exceeded 10??ppb even though RO treatment removed more than 95% of the arsenic. Second, trivalent As+ 3 was the dominant arsenic species in approximately 15% of the wells, which significantly reduced treatment efficiency. Measurements of specific conductance indicated that efficiency in reducing arsenic levels did not always correlate with reductions in total dissolved solids. As a consequence, improvements in taste of the water or simple measurements of specific conductance made by technicians to test RO systems can mislead the public into assuming the water meets safety standards. Actual measurements of treated water are necessary to assure that household RO systems are reducing arsenic concentrations to safe levels, particularly in areas where groundwater has high arsenic concentrations or where As+ 3 is the dominant species. ?? 2007 Elsevier B.V. All rights reserved.

  1. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species.

    PubMed

    Luo, Zhuanxi; Wang, Zhenhong; Yan, Yameng; Li, Jinli; Yan, Changzhou; Xing, Baoshan

    2018-07-01

    The effect of titanium dioxide nanoparticles (nano-TiO 2 ) on the bioaccumulation and biotransformation of arsenic (As) remains largely unknown. In this study, we exposed two freshwater algae (Microcystis aeruginosa and Scenedesmus obliquus) to inorganic As (arsenite and arsenate) with the aim of increasing our understanding on As bioaccumulation and methylation in the presence of nano-TiO 2 . Direct evidence from transmission electron microscope (TEM) images show that nano-TiO 2 (anatase) entered exposed algae. Thus, nano-TiO 2 as carriers boosted As accumulation and methylation in these two algae species, which varied between inorganic As speciation and algae species. Specifically, nano-TiO 2 could markedly enhance arsenate (As(V)) accumulation in M. aeruginosa and arsenite (As(III)) accumulation in S. obliquus. Similarly, we found evidence of higher As methylation activity in the M. aeruginosa of As(III) 2 mg L -1 nano-TiO 2 treatment. Although this was also true for the S. obliquus (As(V)) treatment, this species exhibited higher As methylation compared to M. aeruginosa, being more sensitive to As associated with nano-TiO 2 compared to M. aeruginosa. Due to changes in pH levels inside these exposed algae, As dissociation from nano-TiO 2 inside algal cells enhanced As methylation. Accordingly, the potential influence of nanoparticles on the bioaccumulation and biotransformation of their co-contaminants deserves more attention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells.

    PubMed

    Yajima, Ichiro; Uemura, Noriyuki; Nizam, Saika; Khalequzzaman, Md; Thang, Nguyen D; Kumasaka, Mayuko Y; Akhand, Anwarul A; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2012-06-01

    Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.

  3. Arsenic Speciation and Extraction and the Significance of Biodegradable Acid on Arsenic Removal—An Approach for Remediation of Arsenic-Contaminated Soil

    PubMed Central

    Nguyen Van, Thinh; Osanai, Yasuhito; Do Nguyen, Hai; Kurosawa, Kiyoshi

    2017-01-01

    A series of arsenic remediation tests were conducted using a washing method with biodegradable organic acids, including oxalic, citric and ascorbic acids. Approximately 80% of the arsenic in one sample was removed under the effect of the ascorbic and oxalic acid combination, which was roughly twice higher than the effectiveness of the ascorbic and citric acid combination under the same conditions. The soils treated using biodegradable acids had low remaining concentrations of arsenic that are primarily contained in the crystalline iron oxides and organic matter fractions. The close correlation between extracted arsenic and extracted iron/aluminum suggested that arsenic was removed via the dissolution of Fe/Al oxides in soils. The fractionation of arsenic in four contaminated soils was investigated using a modified sequential extraction method. Regarding fractionation, we found that most of the soil contained high proportions of arsenic (As) in exchangeable fractions with phosphorus, amorphous oxides, and crystalline iron oxides, while a small amount of the arsenic fraction was organic matter-bound. This study indicated that biodegradable organic acids can be considered as a means for arsenic-contaminated soil remediation.

  4. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    PubMed

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001) following arsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  5. Effects of arsenic on adipocyte metabolism: Is arsenic an obesogen?

    PubMed

    Ceja-Galicia, Zeltzin A; Daniel, Alberto; Salazar, Ana María; Pánico, Pablo; Ostrosky-Wegman, Patricia; Díaz-Villaseñor, Andrea

    2017-09-05

    The environmental obesogen model proposes that in addition to a high-calorie diet and diminished physical activity, other factors such as environmental pollutants and chemicals are involved in the development of obesity. Although arsenic has been recognized as a risk factor for Type 2 Diabetes with a specific mechanism, it is still uncertain whether arsenic is also an obesogen. The impairment of white adipose tissue (WAT) metabolism is crucial in the onset of obesity, and distinct studies have evaluated the effects of arsenic on it, however only in some of them for obesity-related purposes. Thus, the known effects of arsenic on WAT/adipocytes were integrated based on the diverse metabolic and physiological processes that occur in WAT and are altered in obesity, specifically: adipocyte growth, adipokine secretion, lipid metabolism, and glucose metabolism. The currently available information suggests that arsenic can negatively affect WAT metabolism, resulting in arsenic being a potential obesogen. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Arsenic removal from water

    DOEpatents

    Moore, Robert C [Edgewood, NM; Anderson, D Richard [Albuquerque, NM

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  7. Sustainable engineered processes to mitigate the global arsenic crisis in drinking water: challenges and progress.

    PubMed

    Sarkar, Sudipta; Greenleaf, John E; Gupta, Anirban; Uy, Davin; Sengupta, Arup K

    2012-01-01

    Millions of people around the world are currently living under the threat of developing serious health problems owing to ingestion of dangerous concentrations of arsenic through their drinking water. In many places, treatment of arsenic-contaminated water is an urgent necessity owing to a lack of safe alternative sources. Sustainable production of arsenic-safe water from an arsenic-contaminated raw water source is currently a challenge. Despite the successful development in the laboratory of technologies for arsenic remediation, few have been successful in the field. A sustainable arsenic-remediation technology should be robust, composed of local resources, and user-friendly as well as must attach special consideration to the social, economic, cultural, traditional, and environmental aspects of the target community. One such technology is in operation on the Indian subcontinent. Wide-scale replication of this technology with adequate improvisation can solve the arsenic crisis prevalent in the developing world.

  8. Changes in serum thioredoxin among individuals chronically exposed to arsenic in drinking water.

    PubMed

    Li, Yuanyuan; Gao, Yanhui; Zhao, Lijun; Wei, Yudan; Feng, Hongqi; Wang, Cheng; Wei, Wei; Ding, Yunpeng; Sun, Dianjun

    2012-02-15

    It is well known that oxidative damage plays a key role in the development of chronic arsenicosis. There is a complex set of mechanisms of redox cycling in vivo to protect cells from the damage. In this study, we examined the differences in the levels of serum thioredoxin1 (TRX1) among individuals exposed to different levels of arsenic in drinking water and detected early biomarkers of arsenic poisoning before the appearance of skin lesions. A total of 157 subjects from endemic regions of China were selected and divided into arsenicosis group with skin lesions (total intake of arsenic: 8.68-45.71mg-year) and non-arsenicosis group without skin lesions, which further divided into low (0.00-1.06mg-year), medium (1.37-3.55mg-year), and high (4.26-48.13mg-year) arsenic exposure groups. Concentrations of serum TRX1 were analyzed by an ELISA method. Levels of water arsenic and urinary speciated arsenics, including inorganic arsenic (iAs), monomethylated arsenic (MMA), and dimethylated arsenic (DMA), were determined by hydride generation atomic absorption spectrometry. Our results showed that the levels of serum TRX1 in arsenicosis patients were significantly higher than that of the subjects who were chronically exposed to arsenic, but without skin lesions. A positive correlation was seen between the levels of serum TRX1 and the total water arsenic intake or the levels of urinary arsenic species. The results of this study indicate that arsenic exposure could significantly change the levels of human serum TRX1, which can be detected before arsenic-specific dermatological symptoms occur. This study provides further evidence on revealing the mechanism of arsenic toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture.

    PubMed

    Taylor, Vivien F; Jackson, Brian P

    2016-11-01

    A survey of arsenic (As) concentrations and speciation was conducted on 10 species of seaweed from commercial harvesters and from collection at two sites in New England. Concentrations of As ranged from 4 to 106 mg/kg, mostly in the form of arsenosugars, with the distribution of arsenosugar analogs varying between taxa. In brown algae, As levels were correlated with phosphate concentrations, and arsenosugar speciation reflected differences in sulfur and phosphate concentrations between taxa. Several samples of the brown algae species Laminaria digitata contained significant levels of inorganic As (2.8-20 mg/kg), the most toxic form of As. A weak acid extraction with microwave heating was compared with a weaker methanol: water extraction method, and found to give slightly higher extraction efficiency with comparable relative concentrations of inorganic As, supporting the use of this faster and simpler extraction method for monitoring. Seaweed is a niche dietary item in the U.S. but its popularity is increasing; it is also used in agriculture and livestock farming which provide potential indirect routes for human exposure. The presence of occasional high concentrations of iAs, as well as the lack of toxicity studies on organic As species, suggest that monitoring of these high As foods is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. ORGANIC AND INORGANIC ARSENICALS SENSITIZE HUMAN BRONCHIAL EPITHELIAL CELLS TO HYDROGEN PEROXIDE-INDUCED DNA DAMAGE

    EPA Science Inventory

    The lungs are a target organ for arsenic carcinogenesis, however, its mechanism of action remains unclear. Furthermore, it has been suggested that inorganic arsenic (iAs) can potentiate DNA damage induced by other agents. Once inside the human body iAs generally undergoes two ...

  11. Multilaboratory Validation of First Action Method 2016.04 for Determination of Four Arsenic Species in Fruit Juice by High-Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry.

    PubMed

    Kubachka, Kevin; Heitkemper, Douglas T; Conklin, Sean

    2017-07-01

    Before being designated AOAC First Action Official MethodSM 2016.04, the U.S. Food and Drug Administration's method, EAM 4.10 High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometric Determination of Four Arsenic Species in Fruit Juice, underwent both a single-laboratory validation and a multilaboratory validation (MLV) study. Three federal and five state regulatory laboratories participated in the MLV study, which is the primary focus of this manuscript. The method was validated for inorganic arsenic (iAs) measured as the sum of the two iAs species arsenite [As(III)] and arsenate [As(V)], dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) by analyses of 13 juice samples, including three apple juice, three apple juice concentrate, four grape juice, and three pear juice samples. In addition, two water Standard Reference Materials (SRMs) were analyzed. The method LODs and LOQs obtained among the eight laboratories were approximately 0.3 and 2 ng/g, respectively, for each of the analytes and were adequate for the intended purpose of the method. Each laboratory analyzed method blanks, fortified method blanks, reference materials, triplicate portions of each juice sample, and duplicate fortified juice samples (one for each matrix type) at three fortification levels. In general, repeatability and reproducibility of the method was ≤15% RSD for each species present at a concentration >LOQ. The average recovery of fortified analytes for all laboratories ranged from 98 to 104% iAs, DMA, and MMA for all four juice sample matrixes. The average iAs results for SRMs 1640a and 1643e agreed within the range of 96-98% of certified values for total arsenic.

  12. Arsenic-induced cutaneous hyperplastic lesions are associated with the dysregulation of Yap, a Hippo signaling-related protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changzhao; Srivastava, Ritesh K.; Elmets, Craig A.

    2013-09-06

    Highlights: •Arsenic activates canonical Hippo signaling pathway and up-regulates αCatenin in the skin. •Arsenic activates transcriptional activity of Yap by its nuclear translocation. •Yap is involved in the disruption of tight/adherens junctions in arsenic-exposed animals. -- Abstract: Arsenic exposure in humans causes a number of toxic manifestations in the skin including cutaneous neoplasm. However, the mechanism of these alterations remains elusive. Here, we provide novel observations that arsenic induced Hippo signaling pathway in the murine skin. This pathway plays crucial roles in determining organ size during the embryonic development and if aberrantly activated in adults, contributes to the pathogenesis ofmore » epithelial neoplasm. Arsenic treatment enhanced phosphorylation-dependent activation of LATS1 kinase and other Hippo signaling regulatory proteins Sav1 and MOB1. Phospho-LATS kinase is known to catalyze the inactivation of a transcriptional co-activator, Yap. However, in arsenic-treated epidermis, we did not observed its inactivation. Thus, as expected, unphosphorylated-Yap was translocated to the nucleus in arsenic-treated epidermis. Yap by binding to the transcription factors TEADs induces transcription of its target genes. Consistently, an up-regulation of Yap-dependent target genes Cyr61, Gli2, Ankrd1 and Ctgf was observed in the skin of arsenic-treated mice. Phosphorylated Yap is important in regulating tight and adherens junctions through its binding to αCatenin. We found disruption of these junctions in the arsenic-treated mouse skin despite an increase in αCatenin. These data provide evidence that arsenic-induced canonical Hippo signaling pathway and Yap-mediated disruption of tight and adherens junctions are independently regulated. These effects together may contribute to the carcinogenic effects of arsenic in the skin.« less

  13. Simultaneous separation and determination of six arsenic species in Shiitake (Lentinus edodes) mushrooms: Method development and applications.

    PubMed

    Chen, Shuangyang; Yuan, Biao; Xu, Jiajia; Chen, Guitang; Hu, Qiuhui; Zhao, Liyan

    2018-10-01

    A method for simultaneously separating six arsenic (As) species was established by ultrasound-assisted extraction-anion exchange chromatography coupled with inductively coupled plasma mass spectrometry. Six As species could be well separated within 15 min when 0.3 M acetic acid and 25 mM NH 4 H 2 PO 4 were used as the extraction solvent and mobile phase, respectively. Under optimized conditions, the limits of detection and recovery of As species and the relative standard deviation were in the ranges of 0.31-0.59 μg/L, 94.30-102.75%, and 1.63-3.72%, respectively. Furthermore, the established method was successfully applied to fresh Shiitake (Lentinus edodes) mushrooms and processed products. The inorganic As contents of all samples ranged from 0.204 to 0.500 mg/kg, half of samples (>0.400 mg/kg) were close to the maximum contaminant level allowed by the Chinese (0.5 mg/kg). The health risk index estimation results indicated that no particular risk of As exposure to Chinese consumers existed in L. edodes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis

    PubMed Central

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-01-01

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001) following arsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60–1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21–0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: −0.57; 95% CI: −0.80–−0.31; p< 0.0001), primary methylation index (SMD: −0.57; 95% CI: −0.94–−0.20; p = 0.002), and secondary methylation index (SMD: −0.27; 95% CI: −0.46–−0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process. PMID:26861378

  15. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY...

    EPA Science Inventory

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV) by mixing the CE effluent with concentrated HCl. A microporou...

  16. Oxidative DNA damage of peripheral blood polymorphonuclear leukocytes, selectively induced by chronic arsenic exposure, is associated with extent of arsenic-related skin lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Qiuling, E-mail: 924969007@qq.com; Ma, Ning; Zhang, Jing

    There is increasing evidence that oxidative stress is an important risk factor for arsenic-related diseases. Peripheral blood leukocytes constitute an important defense against microorganisms or pathogens, while the research on the impact of chronic arsenic exposure on peripheral blood leukocytes is much more limited, especially at low level arsenic exposure. The purpose of the present study was to explore whether chronic arsenic exposure affects oxidative stress of peripheral blood leukocytes and possible linkages between oxidative stress and arsenic-induced skin lesions. 75 male inhabitants recruited from an As-endemic region of China were investigated in the present study. The classification of arsenicosismore » was based on the degree of skin lesions. Arsenic levels were measured in drinking water and urine by Atomic Fluorescence Spectroscopy. Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) was tested by Enzyme-Linked Immunosorbent Assay. 8-OHdG of peripheral blood leukocytes was evaluated using immunocytochemical staining. 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes (PMNs), but not in monocytes (MNs). The 8-OHdG staining of PMN cytoplasm was observed in all investigated populations, while the 8-OHdG staining of PMN nuclei was frequently found along with the elevated amounts of cell debris in individuals with skin lesion. Urinary arsenic levels were increased in the severe skin lesion group compared with the normal group. No relationship was observed between drinking water arsenic or urine 8-OHdG and the degree of skin lesions. These findings indicated that the target and persistent oxidative stress in peripheral blood PMNs may be employed as a sensitive biomarker directly to assess adverse health effects caused by chronic exposure to lower levels of arsenic. -- Highlights: ► Male inhabitants were investigated from an As-endemic region of China. ► 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes

  17. Presence of arsenic in pet food: a real hazard?

    PubMed

    Squadrone, Stefania; Brizio, Paola; Simone, Giuseppe; Benedetto, Alessandro; Monaco, Gabriella; Abete, Maria Cesarina

    2017-12-29

    In this study, arsenic content in 200 cat- and dog-food samples was estimated by means of electro thermal atomic absorption (Z-ETA-AAS), after using the wet digestion method, that were imported or commercialised in Italy from 2007 to 2012. The maximum value of total arsenic (As) in the samples was 12.5 mg kg-1. Some imported pet food was intercepted as a result of the Rapid Alert System for Food and Feed (RASFF) and rejected at the border or withdrawn from the Italian market, because they exceeded the maximum level of arsenic content imposed in Italy at the time of this study (2002/32/EC). All the samples with a signi cant arsenic level were sh-based. Recently, the 2013/1275/EC raised the maximum level of As permitted in sh-based pet food. However, the analysis of As species is required (EFSA 2014) in order to identify correctly the di erent contributions of dietary exposure to inorganic As and to assure pet food quality.

  18. Arsenic in glacial drift aquifers and the implication for drinking water - Lower Illinois River Basin

    USGS Publications Warehouse

    Warner, K.L.

    2001-01-01

    The lower Illinois River Basin (LIRB) covers 47,000 km2 of central and western Illinois. In the LIRB, 90% of the ground water supplies are from the deep and shallow glacial drift aquifers. The deep glacial drift aquifer (DGDA) is below 152 m altitude, a sand and gravel deposit that fills the Mahomet Buried Bedrock Valley, and overlain by more than 30.5 m of clayey till. The LIRB is part of the USGS National Water Quality Assessment program, which has an objective to describe the status and trends of surface and ground water quality. In the DGDA, 55 % of the wells used for public drinking-water supply and 43 % of the wells used for domestic drinking water supply have arsenic concentrations above 10 ??g/L (a new U.S. EPA drinking water standard). Arsenic concentrations greater than 25 ??g/L in ground water are mostly in the form of arsenite (AsIII). The proportion of arsenate (AsV) to arsenite does not change along the flowpath of the DGDA. Because of the limited number of arsenic species analyses, no clear relations between species and other trace elements, major ions, or physical parameters could be established. Arsenic and barium concentrations increase from east to west in the DGDA and are positively correlated. Chloride and arsenic are positively correlated and provide evidence that arsenic may be derived locally from underlying bedrock. Solid phase geochemical analysis of the till, sand and gravel, and bedrock show the highest presence of arsenic in the underlying organic-rich carbonate bedrock. The black shale or coal within the organic-rich carbonate bedrock is a potential source of arsenic. Most high arsenic concentrations found in the DGDA are west and downgradient of the bedrock structural features. Geologic structures in the bedrock are potential pathways for recharge to the DGDA from surrounding bedrock.

  19. The ecology of arsenic

    USGS Publications Warehouse

    Oremland, Ronald S.; Stolz, John F.

    2003-01-01

    Arsenic is a metalloid whose name conjures up images of murder. Nonetheless, certain prokaryotes use arsenic oxyanions for energy generation, either by oxidizing arsenite or by respiring arsenate. These microbes are phylogenetically diverse and occur in a wide range of habitats. Arsenic cycling may take place in the absence of oxygen and can contribute to organic matter oxidation. In aquifers, these microbial reactions may mobilize arsenic from the solid to the aqueous phase, resulting in contaminated drinking water. Here we review what is known about arsenic-metabolizing bacteria and their potential impact on speciation and mobilization of arsenic in nature.

  20. ARSENIC TREATMENT TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the state-of-the-art technology for removal of arsenic from drinking water. Presentation also includes results of several EPA field studies on removal of arsenic from existing arsenic removal plants and key results from several EPA sponsored research st...

  1. Arsenic Exposure in Relation to Ischemic Stroke: The Reasons for Geographic and Racial Differences in Stroke Study.

    PubMed

    Tsinovoi, Cari L; Xun, Pengcheng; McClure, Leslie A; Carioni, Vivian M O; Brockman, John D; Cai, Jianwen; Guallar, Eliseo; Cushman, Mary; Unverzagt, Frederick W; Howard, Virginia J; He, Ka

    2018-01-01

    The purpose of this case-cohort study was to examine urinary arsenic levels in relation to incident ischemic stroke in the United States. We performed a case-cohort study nested within the REGARDS (REasons for Geographic and Racial Differences in Stroke) cohort. A subcohort (n=2486) of controls was randomly sampled within region-race-sex strata while all incident ischemic stroke cases from the full REGARDS cohort (n=671) were included. Baseline urinary arsenic was measured by inductively coupled plasma-mass spectrometry. Arsenic species, including urinary inorganic arsenic and its metabolites monomethylarsonic acid and dimethylarsinic acid, were measured in a random subset (n=199). Weighted Cox's proportional hazards models were used to calculate hazard ratios and 95% confidence intervals of ischemic stroke by arsenic and its species. The average follow-up was 6.7 years. Although incident ischemic stroke showed no association with total arsenic or total inorganic arsenic, for each unit higher level of urinary monomethylarsonic acid on a log-scale, after adjustment for potential confounders, ischemic stroke risk increased ≈2-fold (hazard ratio=1.98; 95% confidence interval: 1.12-3.50). Effect modification by age, race, sex, or geographic region was not evident. A metabolite of arsenic was positively associated with incident ischemic stroke in this case-cohort study of the US general population, a low-to-moderate exposure area. Overall, these findings suggest a potential role for arsenic methylation in the pathogenesis of stroke, having important implications for future cerebrovascular research. © 2017 American Heart Association, Inc.

  2. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    PubMed

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks.

  3. Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Ladwig

    2005-12-31

    The overall objective of this project was to evaluate the impact of key constituents captured from power plant air streams (principally arsenic and selenium) on the disposal and utilization of coal combustion products (CCPs). Specific objectives of the project were: (1) to develop a comprehensive database of field leachate concentrations at a wide range of CCP management sites, including speciation of arsenic and selenium, and low-detection limit analyses for mercury; (2) to perform detailed evaluations of the release and attenuation of arsenic species at three CCP sites; and (3) to perform detailed evaluations of the release and attenuation of seleniummore » species at three CCP sites. Each of these objectives was accomplished using a combination of field sampling and laboratory analysis and experimentation. All of the methods used and results obtained are contained in this report. For ease of use, the report is subdivided into three parts. Volume 1 contains methods and results for the field leachate characterization. Volume 2 contains methods and results for arsenic adsorption. Volume 3 contains methods and results for selenium adsorption.« less

  4. Developmental and reproductive toxicity of inorganic arsenic: animal studies and human concerns.

    PubMed

    Golub, M S; Macintosh, M S; Baumrind, N

    1998-01-01

    Information on the reproductive and developmental toxicity of inorganic arsenic is available primarily from studies in animals using arsenite and arsenate salts and arsenic trioxide. Inorganic arsenic has been extensively studied as a teratogen in animals. Data from animal studies demonstrate that arsenic can produce developmental toxicity, including malformation, death, and growth retardation, in four species (hamsters, mice, rats, rabbits). A characteristic pattern of malformations is produced, and the developmental toxicity effects are dependent on dose, route, and the day of gestation when exposure occurs. Studies with gavage and diet administration indicate that death and growth retardation are produced by oral arsenic exposure. Arsenic is readily transferred to the fetus and produces developmental toxicity in embryo culture. Animal studies have not identified an effect of arsenic on fertility in males or females. When females were dosed chronically for periods that included pregnancy, the primary effect of arsenic on reproduction was a dose-dependent increase in conceptus mortality and in postnatal growth retardation. Human data are limited to a few studies of populations exposed to arsenic from drinking water or from working at or living near smelters. Associations with spontaneous abortion and stillbirth have been reported in more than one of these studies, but interpretation of these studies is complicated because study populations were exposed to multiple chemicals. Thus, animal studies suggest that environmental arsenic exposures are primarily a risk to the developing fetus. In order to understand the implications for humans, attention must be given to comparative pharmacokinetics and metabolism, likely exposure scenarios, possible mechanisms of action, and the potential role of arsenic as an essential nutrient.

  5. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    PubMed Central

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning knowledge of arsenic. Respondents were between 18 and 102 years of age, with an average age of 37 years; 99.9% were female. The knowledge of arsenic quiz scores for study participants were significantly higher at follow-up compared with baseline. The intervention was effective in increasing awareness of the safe uses of arsenic-contaminated water and dispelling the misconception that boiling water removes arsenic. At follow-up, nearly all respondents were able to correctly identify the meaning of a red (contaminated) and green (arsenic safe) well relative to arsenic (99%). The educational program also significantly increased the proportion of respondents who were able to correctly identify the health implications of arsenic exposure. However, the intervention was not effective in dispelling the misconceptions in the population that arsenicosis is contagious and that illnesses such as cholera, diarrhea, and vomiting could be caused by arsenic. Further research is needed to develop effective communication strategies to dispel these misconceptions. This study demonstrates that a household-level arsenic educational program can be used to significantly increase arsenic awareness in Bangladesh. PMID:22984214

  6. Approaches to increase arsenic awareness in Bangladesh: an evaluation of an arsenic education program.

    PubMed

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H

    2013-06-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning knowledge of arsenic. Respondents were between 18 and 102 years of age, with an average age of 37 years; 99.9% were female. The knowledge of arsenic quiz scores for study participants were significantly higher at follow-up compared with baseline. The intervention was effective in increasing awareness of the safe uses of arsenic-contaminated water and dispelling the misconception that boiling water removes arsenic. At follow-up, nearly all respondents were able to correctly identify the meaning of a red (contaminated) and green (arsenic safe) well relative to arsenic (99%). The educational program also significantly increased the proportion of respondents who were able to correctly identify the health implications of arsenic exposure. However, the intervention was not effective in dispelling the misconceptions in the population that arsenicosis is contagious and that illnesses such as cholera, diarrhea, and vomiting could be caused by arsenic. Further research is needed to develop effective communication strategies to dispel these misconceptions. This study demonstrates that a household-level arsenic educational program can be used to significantly increase arsenic awareness in Bangladesh.

  7. Inorganic arsenic levels in rice milk exceed EU and US drinking water standards.

    PubMed

    Meharg, Andrew A; Deacon, Claire; Campbell, Robert C J; Carey, Anne-Marie; Williams, Paul N; Feldmann, Joerg; Raab, Andrea

    2008-04-01

    Under EU legislation, total arsenic levels in drinking water should not exceed 10 microg l(-1), while in the US this figure is set at 10 microg l(-1) inorganic arsenic. All rice milk samples analysed in a supermarket survey (n = 19) would fail the EU limit with up to 3 times this concentration recorded, while out of the subset that had arsenic species determined (n = 15), 80% had inorganic arsenic levels above 10 microg l(-1), with the remaining 3 samples approaching this value. It is a point for discussion whether rice milk is seen as a water substitute or as a food, there are no EU or US food standards highlighting the disparity between water and food regulations in this respect.

  8. Heavy metal contamination and health risk assessment in three commercial fish species in the Persian Gulf.

    PubMed

    Keshavarzi, Behnam; Hassanaghaei, Mina; Moore, Farid; Rastegari Mehr, Meisam; Soltanian, Siyavash; Lahijanzadeh, Ahmad Reza; Sorooshian, Armin

    2018-04-01

    Five heavy metals/metalloids and related potential health risks were investigated in three commercially important fish species (Anodontostoma chacunda, Belangerii, and Cynoglossurs arel) in Musa Estuary and Mahshahr Harbour of the Persian Gulf. A total of 116 fish samples were collected, and their liver and muscle organs were separately analyzed using ICP-MS. Results revealed that studied metals concentrations (with some exceptions) varied among sampling stations, fish species and their organs. Human health risk is evaluated using different indices. The results indicated that arsenic and mercury are the most hazardous elements. Estimated daily intake (EDI) for the metals exceeded the provisional tolerable daily intake (PTDI) for all studied fish species. Also, target risk (TR) of arsenic indicated that consumption over a long period of time may result in a carcinogenic effect. The results are expected to create awareness among the public on the safety of consuming food products grown in particular areas. Copyright © 2018. Published by Elsevier Ltd.

  9. Direct comparison of XAFS spectroscopy and sequential extraction for arsenic speciation in coal

    USGS Publications Warehouse

    Huggins, Frank E.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.A.; Finkelman, R.B.

    2000-01-01

    The speciation of arsenic in an Ohio bituminous coal and a North Dakota lignite has been examined by the complementary methods of arsenic XAFS spectroscopy and sequential extraction by aqueous solutions of ammonium acetate, HCl, HF, and HNO3. In order to facilitate a more direct comparison of the two methods, the arsenic XAFS spectra were obtained from aliquots of the coal prepared after each stage of the leaching procedure. For the aliquots, approximately linear correlations (r2 > 0.98 for the Ohio coal, > 0.90 for the ND lignite) were observed between the height of the edge-step in the XAFS analysis and the concentration of arsenic measured by instrumental neutron activation analysis. Results from the leaching sequence indicate that there are two major arsenic forms present in both coals; one is removed by leaching with HCl and the other by HNO3. Whereas the XAFS spectral signatures of the arsenic leached by HCl are compatible with arsenate for both coals, the arsenic leached by HNO3 is identified as arsenic associated with pyrite for the Ohio coal and as an As3+ species for the North Dakota lignite. Minor arsenate forms persist in both coals after the final leaching with nitric acid. The arsenate forms extracted in HCl are believed to be oxidation products derived from the other major arsenic forms upon exposure of the pulverized coals to air.

  10. SPECIATION OF ARSENIC IN BIOLOGICAL MATRICES BY AUTOMATED HG-AAS WITH MULTIPLE MICROFLAME QUARTZ TUBE ATOMIZER (MULTIATOMIZER)

    EPA Science Inventory

    Analyses of arsenic (As) species in body fluids and tissues of individuals chronically exposed to inorganic arsenic (iAs) provide essential information about the exposure level and pattern of iAs metabolism. This information facilitates the risk assessment of disorders associated...

  11. How conservative is arsenic in coastal marine environments? A study in Irish coastal waters

    NASA Astrophysics Data System (ADS)

    Anninou, Pinelopi; Cave, Rachel R.

    2009-04-01

    The conservative potential of arsenic in the relatively pristine waters of Galway Bay, an estuarine system in the west of Ireland, is examined through the inter-seasonal variations in the distribution of its total, hydride and non-hydride fractions. The arsenic concentrations in Galway Bay and local fresh water sources at all seasons were lower than what is considered the natural seawater concentration of 2 μg L -1 (27 nM). The effects of physical mixing, biological uptake and regeneration of arsenic on its distribution are considered. The degree of biological uptake and regeneration of the element are determined by a first order speciation between total arsenic (a small part of which should be of organic origin) and hydride arsenic (mostly of inorganic origin). The structural similarity of arsenic species to phosphate in seawater causes arsenic to be taken up by biota, which then have to detoxify it, so results are presented against phosphate to determine the degree of biological transformation of arsenic at different seasons. An in-house, batch type system of hydride generation coupled to electro-thermal atomic absorption spectrometry is used for the analysis of arsenic; this is preceded by UV-digestion prior to the measurement of total arsenic. Results show only a small association of arsenic with phosphate but a near linear, positive distribution pattern between arsenic and salinity in Galway Bay ( R2 ˜ 0.6), which is reproducible among seasons, indicating that in this environment the biological uptake of arsenic is likely to be a much slower process than the physical mixing of the water masses.

  12. Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009

    PubMed Central

    Zhao, Chungui; Zhang, Yi; Chan, Zhuhua; Chen, Shicheng; Yang, Suping

    2015-01-01

    Arsenic (As) is widespread in the environment and causes numerous health problems. Rhodopseudomonas palustris has been regarded as a good model organism for studying arsenic detoxification since it was first demonstrated to methylate environmental arsenic by conversion to soluble or gaseous methylated species. However, the detailed arsenic resistance mechanisms remain unknown though there are at least three arsenic-resistance operons (ars1, ars2, and ars3) in R. palustris. In this study, we investigated how arsenic multi-operons contributed to arsenic detoxification in R. palustris. The expression of ars2 or ars3 operons increased with increasing environmental arsenite (As(III)) concentrations (up to 1.0 mM) while transcript of ars1 operon was not detected in the middle log-phase (55 h). ars2 operon was actively expressed even at the low concentration of As(III) (0.01 μM), whereas the ars3 operon was expressed at 1.0 μM of As(III), indicating that there was a differential regulation mechanism for the three arsenic operons. Furthermore, ars2 and ars3 operons were maximally transcribed in the early log-phase where ars2 operon was 5.4-fold higher than that of ars3 operon. A low level of ars1 transcript was only detected at 43 h (early log-phase). Arsenic speciation analysis demonstrated that R. palustris could reduce As(V) to As(III). Collectively, strain CGA009 detoxified arsenic by using arsenic reduction and methylating arsenic mechanism, while the latter might occur with the presence of higher concentrations of arsenic. PMID:26441915

  13. NEVADA ARSENIC STUDY

    EPA Science Inventory

    The effects of exposure to arsenic in U.S. drinking water at low levels are difficult to assess. In particular, studies of sufficient sample size on US populations exposed to arsenic in drinking water are few. Churchill County, NV (population 25000) has arsenic levels in drinki...

  14. Arsenic in Bangladesh Groundwater: from Science to Mitigation

    NASA Astrophysics Data System (ADS)

    van Geen, A.; Ahmed, K. M.; Graziano, J. H.

    2004-12-01

    A large proportion of the populations of Bangladesh and other South Asian countries is at risk of contracting cancers and other debilitating diseases due to exposure to high concentrations of naturally occurring arsenic in groundwater supplied by millions of tube wells. Starting in January 2000, and in partnership with several Bangladeshi institutions, an interdisciplinary team of health, earth, and social scientists from Columbia University has focused its efforts to address this crisis on a 25 km2 region in Araihazar upazila, about 20 km northeast of Dhaka. The project started with the recording of the position and depth of ~6600 wells in the area, the collection of groundwater samples from these wells, and laboratory analyses for arsenic and a suite of other constituents. This was followed by the recruitment of 12,000 adult inhabitants of the area for a long-term cohort study of the effects of arsenic exposure, as well as cross-sectional studies of their children. This presentation will focus on (1) the extreme degree of spatial variability of arsenic concentrations in Bangladesh groundwater, (2) the notion that spatial variability hampers mitigation in the sense that it complicates predictions but also offers an opportunity for mitigation because many households live within walking or drilling distance of safe water, and (3) the implication of recent advances in our understanding of the mechanisms of arsenic mobilization for potential temporal changes in groundwater arsenic. In addition, (4) a unique data set documenting the response of 6500 households to 4 years of mitigation in Araihazar, supported by documented reductions in exposure to arsenic based on urine analyses, will be presented. The presentation will conclude with (5) a proposal for scaling up mitigation efforts to the rest of the country by targeting safe aquifers with information transmitted to the village level from a central data base using cellular phones.

  15. Targeting Conserved Genes in Fusarium Species.

    PubMed

    Gil-Serna, Jéssica; Patiño, Belén; Jurado, Miguel; Mirete, Salvador; Vázquez, Covadonga; González-Jaén, M Teresa

    2017-01-01

    Fumonisins are important mycotoxins contaminating foods and feeds which are mainly produced by F. verticillioides and F. proliferatum. Additionally, both are pathogens of maize and other cereals. We describe two highly sensitive, rapid, and species-specific PCR protocols which enable detection and discrimination of these closely related species in cereal flour or grain samples. The specific primer pairs of these assays were based on the intergenic spacer region of the multicopy rDNA unit which highly improves the sensitivity of the PCR assay in comparison with single-copy target regions.

  16. Relation of polymorphism of arsenic metabolism genes to arsenic methylation capacity and developmental delay in preschool children in Taiwan.

    PubMed

    Hsieh, Ru-Lan; Su, Chien-Tien; Shiue, Horng-Sheng; Chen, Wei-Jen; Huang, Shiau-Rung; Lin, Ying-Chin; Lin, Ming-I; Mu, Shu-Chi; Chen, Ray-Jade; Hsueh, Yu-Mei

    2017-04-15

    Inefficient arsenic methylation capacity has been associated with developmental delay in children. The present study was designed to explore whether polymorphisms and haplotypes of arsenic methyltransferase (AS3MT), glutathione-S-transferase omegas (GSTOs), and purine nucleoside phosphorylase (PNP) affect arsenic methylation capacity and developmental delay. A case-control study was conducted from August 2010 to March 2014. All participants were recruited from the Shin Kong Wu Ho-Su Memorial Teaching Hospital. In total, 179 children with developmental delay and 88 children without delay were recruited. Urinary arsenic species, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ), and dimethylarsinic acid (DMA V ) were measured using a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphisms of AS3MT, GSTO, and PNP were performed using the Sequenom MassARRAY platform with iPLEX Gold chemistry. Polymorphisms of AS3MT genes were found to affect susceptibility to developmental delay in children, but GSTO and PNP polymorphisms were not. Participants with AS3MT rs3740392 A/G+G/G genotype, compared with AS3MT rs3740392 A/A genotype, had a significantly lower secondary methylation index. This may result in an increased OR for developmental delay. Participants with the AS3MT high-risk haplotype had a significantly higher OR than those with AS3MT low-risk haplotypes [OR and 95% CI, 1.59 (1.08-2.34)]. This is the first study to show a joint dose-response effect of this AS3MT high-risk haplotype and inefficient arsenic methylation capacity on developmental delay. Our data provide evidence that AS3MT genes are related to developmental delay and may partially influence arsenic methylation capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. HPLC-ICP-MS speciation analysis and risk assessment of arsenic in Cordyceps sinensis.

    PubMed

    Zuo, Tian-Tian; Li, Yao-Lei; Jin, Hong-Yu; Gao, Fei; Wang, Qi; Wang, Ya-Dan; Ma, Shuang-Cheng

    2018-01-01

    Cordyceps sinensis , one of the most valued traditional herbal medicines in China, contains high amount of arsenic. Considering the adverse health effects of arsenic, this is of particular concern. The aim of this study was to determine and analyze arsenic speciation in C. sinensis , and to measure the associated human health risks. We used microwave extraction and high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry to determine and analyze the arsenic content in C. sinensis , and measured the associated human health risks according to the hazard index (HI), lifetime cancer risk (CR), and target hazard quotient (THQ). The main arsenic speciation in C. sinensis were not the four organic arsenic compounds, including dimethyl arsenic, monomethyl arsenic, arsenobetaine, and arsenocholine, but comprised inorganic arsenic and other unknown risk arsenic compounds. HI scores indicated that the risk of C. sinensis was acceptable. CR results suggested that the cancer risk was greater than the acceptable lifetime risk of 10 -5 , even at low exposure levels. THQ results indicated that at the exposure level < 2.0 months/year, the arsenic was not likely to harm human health during a lifetime; however, if the exposure rate was > 3.0 months/year, the systemic effects of the arsenic in C. sinensis was of great concern. The arsenic in C. sinensis might not be free of risks. The suggested C. sinensis consumption rate of 2.0 months/year provided important insights into the ways by which to minimize potential health risks. Our study not only played the role of "cast a brick to attract jade" by which to analyze arsenic speciation in C. sinensis but also offered a promising strategy of risk assessment for harmful residues in traditional herbal medicines.

  18. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    PubMed

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies.

  19. Arsenic leaching and speciation in C&D debris landfills and the relationship with gypsum drywall content.

    PubMed

    Zhang, Jianye; Kim, Hwidong; Dubey, Brajesh; Townsend, Timothy

    2017-01-01

    The effects of sulfide levels on arsenic leaching and speciation were investigated using leachate generated from laboratory-scale construction and demolition (C&D) debris landfills, which were simulated lysimeters containing various percentages of gypsum drywall. The drywall percentages in lysimeters were 0, 1, 6, and 12.4wt% (weight percent) respectively. With the exception of a control lysimeter that contained 12.4wt% of drywall, each lysimeter contained chromated copper arsenate (CCA) treated wood, which accounts for 10wt% of the C&D waste. During the period of study, lysimeters were mostly under anaerobic conditions. Leachate analysis results showed that sulfide levels increased as the percentage of drywall increased in landfills, but arsenic concentrations in leachate were not linearly correlated with sulfide levels. Instead, the arsenic concentrations decreased as sulfide increased up to approximately 1000μg/L, but had an increase with further increase in sulfide levels, forming a V-shape on the arsenic vs. sulfide plot. The analysis of arsenic speciation in leachate showed different species distribution as sulfide levels changed; the fraction of arsenite (As(III)) increased as the sulfide level increased, and thioarsenate anions (As(V)) were detected when the sulfide level further increased (>10 4 μg/L). The formation of insoluble arsenic sulfide minerals at a lower range of sulfide and soluble thioarsenic anionic species at a higher range of sulfide likely contributed to the decreasing and increasing trend of arsenic leaching. Copyright © 2016. Published by Elsevier Ltd.

  20. Effect of arsenic content and quenching temperature on solidification microstructure and arsenic distribution in iron-arsenic alloys

    NASA Astrophysics Data System (ADS)

    Xin, Wen-bin; Song, Bo; Huang, Chuan-gen; Song, Ming-ming; Song, Gao-yang

    2015-07-01

    The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe-As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe-0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe-4wt%As and Fe-10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe-0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe-4wt%As and Fe-10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe-10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2As phase in Fe-4wt%As and Fe-10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.

  1. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, R.S.; Wang, F.T.

    1996-08-13

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic. 1 fig.

  2. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, Ravindra S.; Wang, Francis T.

    1996-01-01

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic.

  3. Speciation And Distribution Of Arsenic In Fresh Water Pond Sediments Impacted By Contaminated Ground-Water Discharge (Presentation)

    EPA Science Inventory

    The speciation and mineralogy of sediments contaminated with arsenic due to arsenic enriched groundwater discharging into the pond at the Ft. Devens Super Fund Site in Ft. Devens, MA were determined using X-ray absorption fine structure and X-ray diffraction spectroscopy. Speci...

  4. Arsenic tolerance of cyanobacterial strains with potential use in biotechnology.

    PubMed

    Ferrari, Susana G; Silva, Patricia G; González, Diana M; Navoni, Julio A; Silva, Humberto J

    2013-01-01

    The arsenic content of various water bodies in Argentina is higher than the acceptable levels for human and animal uses. Cyanobacteria are widely distributed in aquatic environments and can bioaccumulate arsenic (As). This study presents the response of indigenous cyanobacteria to As(III) and As(V), including the species Tolypothrix tenuis, Nostoc muscorum and Nostoc minutum, previously used with biotechnological purposes. As(III) resulted more toxic than As(V) in all cases, causing cell death in the range of 5-20 mg/l. T. tenuis growth was sensitive to As(V) with lethal inhibition at 625 mg/l, whereas the Noctoc species were stimulated. EC50 values found were 73.34 mg/l for N. muscorum and 989.3 mg/l for N. minutum. Batch cultures of N. minutum showed improvements in both growth parameters and photosynthetic pigment content in the presence of 1,000 mg/l As(V). Increases of 66.7%, 75.5%, 40% and 20.7% in cell productivity, chlorophyll a, total carotenoids and C-phycocyanin respectively were observed, reaching a bioaccumulated arsenic value of 37.4 ¼g/g at the stationary growth phase.

  5. Mesophotic depths as refuge areas for fishery-targeted species on coral reefs

    NASA Astrophysics Data System (ADS)

    Lindfield, Steven J.; Harvey, Euan S.; Halford, Andrew R.; McIlwain, Jennifer L.

    2016-03-01

    Coral reefs are subjected to unprecedented levels of disturbance with population growth and climate change combining to reduce standing coral cover and stocks of reef fishes. Most of the damage is concentrated in shallow waters (<30 m deep) where humans can comfortably operate and where physical disturbances are most disruptive to marine organisms. Yet coral reefs can extend to depths exceeding 100 m, potentially offering refuge from the threats facing shallower reefs. We deployed baited remote underwater stereo-video systems (stereo-BRUVs) at depths of 10-90 m around the southern Mariana Islands to investigate whether fish species targeted by fishing in the shallows may be accruing benefits from being at depth. We show that biomass, abundance and species richness of fishery-targeted species increased from shallow reef areas to a depth of 60 m, whereas at greater depths, a lack of live coral habitat corresponded to lower numbers of fish. The majority of targeted species were found to have distributions that ranged from shallow depths (10 m) to depths of at least 70 m, emphasising that habitat, not depth, is the limiting factor in their vertical distribution. While the gradient of abundance and biomass versus depth was steepest for predatory species, the first species usually targeted by fishing, we also found that fishery-targeted herbivores prevailed in similar biomass and species richness to 60 m. Compared to shallow marine protected areas, there was clearly greater biomass of fishery-targeted species accrued in mesophotic depths. Particularly some species typically harvested by depth-limited fishing methods (e.g., spearfishing), such as the endangered humphead wrasse Cheilinus undulatus, were found in greater abundance on deeper reefs. We conclude that mesophotic depths provide essential fish habitat and refuge for fishery-targeted species, representing crucial zones for fishery management and research into the resilience of disturbed coral reef ecosystems.

  6. Correlation of arsenic exposure through drinking groundwater and urinary arsenic excretion among adults in Pakistan.

    PubMed

    Ahmed, Mubashir; Fatmi, Zafar; Ali, Arif

    2014-01-01

    Long-term exposure to arsenic has been associated with manifestation of skin lesions (melanosis/keratosis) and increased risk of internal cancers (lung/bladder). The objective of the study described here was to determine the relationship between exposure of arsenic through drinking groundwater and urinary arsenic excretion among adults > or =15 years of age living in Khairpur district, Pakistan. Total arsenic was determined in drinking groundwater and in spot urine samples of 465 randomly selected individuals through hydride generation-atomic absorption spectrometry. Spearman's rank correlation coefficient was calculated between arsenic in drinking groundwater and arsenic excreted in urine. The median arsenic concentration in drinking water was 2.1 microg/L (range: 0.1-350), and in urine was 28.5 microg/L (range: 0.1-848). Positive correlation was found between total arsenic in drinking water and in urine (r = .52, p < .01). Urinary arsenic may be used as a biomarker of arsenic exposure through drinking water.

  7. Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth

    PubMed Central

    Bentley, Ronald; Chasteen, Thomas G.

    2002-01-01

    A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important. PMID:12040126

  8. Analysis of arsenic and antimony distribution within plants growing at an old mine site in Ouche (Cantal, France) and identification of species suitable for site revegetation.

    PubMed

    Jana, Ulrike; Chassany, Vincent; Bertrand, Georges; Castrec-Rouelle, Maryse; Aubry, Emmanuel; Boudsocq, Simon; Laffray, Daniel; Repellin, Anne

    2012-11-15

    One of the objectives of this study was to assess the contamination levels in the tailings of an old antimony mine site located in Ouche (Cantal, France). Throughout the 1.3 ha site, homogenous concentrations of antimony and arsenic, a by-product of the operation, were found along 0-0.5 m-deep profiles. Maximum concentrations for antimony and arsenic were 5780 mg kg(-1) dry tailings and 852 mg kg(-1) dry tailings, respectively. Despite the presence of the contaminants and the low pH and organic matter contents of the tailings, several patches of vegetation were found. Botanical identification determined 12 different genera/species. The largest and most abundant plants were adult pines (Pinus sylvestris), birches (Betula pendula) and the bulrush (Juncus effusus). The distribution of the metalloids within specimens of each genera/species was analysed in order to deduce their concentration and translocation capacities. This was the second goal of this work. All plant specimens were highly contaminated with both metalloids. Most were root accumulators with root to shoot translocation factors <1. Whereas contamination levels were high overall, species with both a low translocation factor and a low root accumulation coefficient were identified as suitable candidates for the complete revegetation of the site. Species combining those characteristics were the perennials P. sylvestris, B. pendula, Cytisus scoparius and the herbaceous Plantago major, and Deschampsia flexuosa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations.

    PubMed Central

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2003-01-01

    Surface soil and groundwater in Australia have been found to contain high concentrations of arsenic. The relative importance of long-term human exposure to these sources has not been established. Several studies have investigated long-term exposure to environmental arsenic concentrations using hair and toenails as the measure of exposure. Few have compared the difference in these measures of environmental sources of exposure. In this study we aimed to investigate risk factors for elevated hair and toenail arsenic concentrations in populations exposed to a range of environmental arsenic concentrations in both drinking water and soil as well as in a control population with low arsenic concentrations in both drinking water and soil. In this study, we recruited 153 participants from areas with elevated arsenic concentrations in drinking water and residential soil, as well as a control population with no anticipated arsenic exposures. The median drinking water arsenic concentrations in the exposed population were 43.8 micro g/L (range, 16.0-73 micro g/L) and median soil arsenic concentrations were 92.0 mg/kg (range, 9.1-9,900 mg/kg). In the control group, the median drinking water arsenic concentration was below the limit of detection, and the median soil arsenic concentration was 3.3 mg/kg. Participants were categorized based on household drinking water and residential soil arsenic concentrations. The geometric mean hair arsenic concentrations were 5.52 mg/kg for the drinking water exposure group and 3.31 mg/kg for the soil exposure group. The geometric mean toenail arsenic concentrations were 21.7 mg/kg for the drinking water exposure group and 32.1 mg/kg for the high-soil exposure group. Toenail arsenic concentrations were more strongly correlated with both drinking water and soil arsenic concentrations; however, there is a strong likelihood of significant external contamination. Measures of residential exposure were better predictors of hair and toenail arsenic

  10. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    PubMed

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  11. Arsenic levels in ground water and cancer incidence in Idaho: an ecologic study.

    PubMed

    Han, Yueh-Ying; Weissfeld, Joel L; Davis, Devra L; Talbott, Evelyn O

    2009-07-01

    Long-term exposure to arsenic above 50 microg/L in drinking water has been related to multiple types of cancers. Few epidemiologic studies conducted in the US have detected an association between regional exposures below this level in drinking water and corresponding cancer occurrence rates. This county-level ecologic study evaluates arsenic levels in ground water and its association with targeted cancer incidence in Idaho, where some regions have been found to contain higher arsenic levels. Using cancer incidence data (1991-2005) from the Cancer Data Registry of Idaho and arsenic data (1991-2005) from the Idaho Department of Environmental Quality, we calculated the age-adjusted incidence rate for cancers of the urinary bladder, kidney and renal pelvis, liver and bile duct, lung and bronchus, non-Hodgkin's lymphoma (NHL), and all malignant cancers according to arsenic levels in ground water. Multivariate regression analysis was applied to evaluate the relationship between arsenic levels in ground water and cancer incidence. For males, but not for females, age-adjusted incidence for lung cancer and all malignant cancers was significantly higher in the intermediate arsenic counties (2-9 microg/L, n = 16) and the high arsenic counties (>or=10 microg/L, n = 5) compared to the low arsenic counties (<2.0 microg/L, n = 23). When adjusted for race, gender, population density, smoking and body mass index (BMI), no relationship was found between arsenic levels in ground water and cancer incidence. In this ecological design, exposure to low-level arsenic in ground water is not associated with cancer incidence when adjusting for salient variables. For populations residing in southwestern Idaho, where arsenic has been found to exceed 10 microg/L in ground water, individual risk assessment is required in order to determine whether there is a link between long-term arsenic exposure at these levels and cancer risk.

  12. Implementation of the Arsenic Biosand Filter in Nepal

    NASA Astrophysics Data System (ADS)

    Murcott, S.; Ngai, T.; Shrestha, R.; Pokharel, K.; Walewijk, S.

    2004-05-01

    water provision, involving training of local women, entrepreneurs, trainers, teachers, and local authorities. A laboratory and three month pilot study conducted in Nepal from September 2002 to January 2003 found that the ABF removed arsenic (range = 87 to 96%, mean = 93%), total coliform (range = 0 to 99%, mean = 58%), E. Coli (range = 0 to >99%, mean = 64%), and iron (range = >90 to >97 %, mean = >93%). This presentation will report on the results of the 2004 ABF implementation program in 25 villages in Nepal, targeting an overall population of 10,000 people and will discuss the ABF technology in the context of other similar low-cost household scale approaches to remediation of arsenic-contaminated groundwater.

  13. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.

    PubMed

    Wei, Chao-Yang; Chen, Tong-Bin

    2006-05-01

    In an area near an arsenic mine in Hunan Province of south China, soils were often found with elevated arsenic levels. A field survey was conducted to determine arsenic accumulation in 8 Cretan brake ferns (Pteris cretica) and 16 Chinese brake ferns (Pteris vittata) growing on these soils. Three factors were evaluated: arsenic concentration in above ground parts (fronds), arsenic bioaccumulation factor (BF; ratio of arsenic in fronds to soil) and arsenic translocation factor (TF; ratio of arsenic in fronds to roots). Arsenic concentrations in the fronds of Chinese brake fern were 3-704 mg kg-1, the BFs were 0.06-7.43 and the TFs were 0.17-3.98, while those in Cretan brake fern were 149-694 mg kg-1, 1.34-6.62 and 1.00-2.61, respectively. Our survey showed that both ferns were capable of arsenic accumulation under field conditions. With most of the arsenic being accumulated in the fronds, these ferns have potential for use in phytoremediation of arsenic contaminated soils.

  14. Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35).

    PubMed

    Rahman, M Azizur; Hogan, Ben; Duncan, Elliott; Doyle, Christopher; Krassoi, Rick; Rahman, Mohammad Mahmudur; Naidu, Ravi; Lim, Richard P; Maher, William; Hassler, Christel

    2014-08-01

    In the environment, arsenic (As) exists in a number of chemical species, and arsenite (As(III)) and arsenate (As(V)) dominate in freshwater systems. Toxicity of As species to aquatic organisms is complicated by their interaction with chemicals in water such as phosphate that can influence the bioavailability and uptake of As(V). In the present study, the toxicities of As(III), As(V) and dimethylarsinic acid (DMA) to three freshwater organisms representing three phylogenetic groups: a phytoplankton (Chlorella sp. strain CE-35), a floating macrophyte (Lemna disperma) and a cladoceran grazer (Ceriodaphnia cf. dubia), were determined using acute and growth inhibition bioassays (EC₅₀) at a range of total phosphate (TP) concentrations in OECD medium. The EC₅₀ values of As(III), As(V) and DMA were 27 ± 10, 1.15 ± 0.04 and 19 ± 3 mg L(-1) for Chlorella sp. CE-35; 0.57 ± 0.16, 2.3 ± 0.2 and 56 ± 15 mg L(-1) for L. disperma, and 1.58 ± 0.05, 1.72 ± 0.01 and 5.9 ± 0.1 mg L(-1) for C. cf. dubia, respectively. The results showed that As(III) was more toxic than As(V) to L. disperma; however, As(V) was more toxic than As(III) to Chlorella sp. CE-35. The toxicities of As(III) and As(V) to C. cf. dubia were statistically similar (p>0.05). DMA was less toxic than iAs species to L. disperma and C. cf. dubia, but more toxic than As(III) to Chlorella sp. CE-35. The toxicity of As(V) to Chlorella sp. CE-35 and L. disperma decreased with increasing TP concentrations in the growth medium. Phosphate concentrations did not influence the toxicity of As(III) to either organism. Chlorella sp. CE-35 showed the ability to reduce As(V) to As(III), indicating a substantial influence of phytoplankton on As biogeochemistry in freshwater aquatic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    The biotransformation of inorganic arsenic (iAs) involves methylation by an arsenic (+3 oxidation state) methyltransferase (AS3MT), yielding methyl arsenic (MA), dimethyl arsenic (DMA), and trimethylarsenic (TMA). To identify molecular mechanisms that coordinate arsenic biotra...

  16. Arsenic Methyltransferase

    EPA Science Inventory

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  17. Metagenomes of Microbial Communities in Arsenic- and Pathogen-Contaminated Well and Surface Water from Bangladesh

    PubMed Central

    Layton, Alice C.; Chauhan, Archana; Williams, Daniel E.; Mailloux, Brian; Knappett, Peter S. K.; Ferguson, Andrew S.; McKay, Larry D.; Alam, M. Jahangir; Matin Ahmed, Kazi; van Geen, Alexander

    2014-01-01

    The contamination of drinking water from both arsenic and microbial pathogens occurs in Bangladesh. A general metagenomic survey of well water and surface water provided information on the types of pathogens present and may help elucidate arsenic metabolic pathways and potential assay targets for monitoring surface-to-ground water pathogen transport. PMID:25414497

  18. Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea.

    PubMed

    Rascovan, Nicolás; Maldonado, Javier; Vazquez, Martín P; Eugenia Farías, María

    2016-02-01

    Arsenic metabolism is proposed to be an ancient mechanism in microbial life. Different bacteria and archaea use detoxification processes to grow under high arsenic concentration. Some of them are also able to use arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. However, among the archaea, bioenergetic arsenic metabolism has only been found in the Crenarchaeota phylum. Here we report the discovery of haloarchaea (Euryarchaeota phylum) biofilms forming under the extreme environmental conditions such as high salinity, pH and arsenic concentration at 4589 m above sea level inside a volcano crater in Diamante Lake, Argentina. Metagenomic analyses revealed a surprisingly high abundance of genes used for arsenite oxidation (aioBA) and respiratory arsenate reduction (arrCBA) suggesting that these haloarchaea use arsenic compounds as bioenergetics substrates. We showed that several haloarchaea species, not only from this study, have all genes required for these bioenergetic processes. The phylogenetic analysis of aioA showed that haloarchaea sequences cluster in a novel and monophyletic group, suggesting that the origin of arsenic metabolism in haloarchaea is ancient. Our results also suggest that arsenite chemolithotrophy likely emerged within the archaeal lineage. Our results give a broad new perspective on the haloarchaea metabolism and shed light on the evolutionary history of arsenic bioenergetics.

  19. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    PubMed Central

    Faita, Francesca; Cori, Liliana; Bianchi, Fabrizio; Andreassi, Maria Grazia

    2013-01-01

    The arsenic (As) exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects. PMID:23583964

  20. Arsenic in groundwater of Licking County, Ohio, 2012—Occurrence and relation to hydrogeology

    USGS Publications Warehouse

    Thomas, Mary Ann

    2016-02-23

    Arsenic concentrations were measured in samples from 168 domestic wells in Licking County, Ohio, to document arsenic concentrations in a wide variety of wells and to identify hydrogeologic factors associated with arsenic concentrations in groundwater. Elevated concentrations of arsenic (greater than 10.0 micrograms per liter [µg/L]) were detected in 12 percent of the wells (about 1 in 8). The maximum arsenic concentration of about 44 µg/L was detected in two wells in the same township.A subset of 102 wells was also sampled for iron, sulfate, manganese, and nitrate, which were used to estimate redox conditions of the groundwater. Elevated arsenic concentrations were detected only in strongly reducing groundwater. Almost 20 percent of the samples with iron concentrations high enough to produce iron staining (greater than 300 µg/L) also had elevated concentrations of arsenic.In groundwater, arsenic primarily occurs as two inorganic species—arsenite and arsenate. Arsenic speciation was determined for a subset of nine samples, and arsenite was the predominant species. Of the two species, arsenite is more difficult to remove from water, and is generally considered to be more toxic to humans.Aquifer and well-construction characteristics were compiled from 99 well logs. Elevated concentrations of arsenic (and iron) were detected in glacial and bedrock aquifers but were more prevalent in glacial aquifers. The reason may be that the glacial deposits typically contain more organic carbon than the Paleozoic bedrock. Organic carbon plays a role in the redox reactions that cause arsenic (and iron) to be released from the aquifer matrix. Arsenic concentrations were not significantly different for different types of bedrock (sandstone, shale, sandstone/shale, or other). However, arsenic concentrations in bedrock wells were correlated with two well-construction characteristics; higher arsenic concentrations in bedrock wells were associated with (1) shorter open intervals and

  1. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic

    PubMed Central

    Stanton, Bruce A.

    2015-01-01

    This report is the outcome of the meeting: “Environmental and Human Health Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the U.S. Environmental Protection Agency (EPA) has set a limit of 10 micrograms per liter (10 μg/L) in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry and educators at the local, state, national and international levels to: (1) Establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) Work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry and others; (3) Develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) Develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods, and (5) Develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  2. Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population.

    PubMed

    Chen, Hsiu-Ling; Lee, Ching-Chang; Huang, Winn-Jung; Huang, Han-Ting; Wu, Yi-Chen; Hsu, Ya-Chen; Kao, Yi-Ting

    2016-03-01

    This study assessed the total arsenic content and arsenic speciation in rice to determine the health risks associated with rice consumption in various age-gender subgroups in Taiwan. The average total arsenic levels in white rice and brown rice were 116.6 ± 39.2 and 215.5 ± 63.5 ng/g weight (n = 51 and 13), respectively. The cumulative cancer risk among males was 10.4/100,000. The highest fraction of inorganic/total arsenic content in white rice ranged from 76.9 to 88.2 % and from 81.0 to 96.5 % in brown rice. The current study found different arsenic speciation of rice in southern Taiwan, where the famous blackfoot disease has been reported compared with arsenic speciation from other Taiwan areas. Therefore, rice and other grains should be further monitored in southern Taiwan to evaluate whether arsenic contamination is well controlled in this area.

  3. A greenhouse study on arsenic remediation potential of Vetiver grass (Vetiveria Zizanioides) as a function of soil physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Quispe, M. A.; Datta, R.; Sarkar, D.; Sharma, S.

    2006-05-01

    Arsenic is one of the most harmful and toxic metals, being a Group A human carcinogen. Mining activities as well as the use of arsenic-containing pesticides have resulted in the contamination of a wide variety of sites including mine tailings, cattle dip sites, wood treatment sites, pesticide treatment areas, golf courses, etc. Phytoremediation has emerged as a novel and promising technology, which uses plants to clean up contaminated soil and water taking advantage of plant's natural abilities to extract and accumulate various contaminants. This method has distinct advantages, since it maintains the biological properties and physical structure of the soil, is environment friendly, and above all, inexpensive. However, effective remediation of contaminated residential soils using a specific plant species is an immensely complex task whose success depends on a multitude of factors including the ability of the target plant to uptake, translocate, detoxify, and accumulate arsenic in its system. One of the major challenges in phytoremediation lies in identifying a fast- growing, high biomass plant that can accumulate the contaminant in its harvestable parts. vetiver grass (Vetiveria zizanioides) is a fast-growing perennial grass with strong ecological adaptability and large biomass. While this plant is not a hyperaccumulator of arsenic, it has been reported to be able to tolerate and accumulate considerable amounts of arsenic. Being a high biomass, fast-growing plant, vetiver has the potential to be used for arsenic remediation. The present study investigates the potential of vetiver grass to tolerate and accumulate arsenic in soils with varying physico-chemical properties. A greenhouse study is in progress to study the uptake, tolerance and stress response of vetiver grass to inorganic arsenical pesticide. A column study was set up using 5 soils (Eufaula, Millhopper, Orelia, Orla, and Pahokee Muck) contaminated with sodium arsenite at 4 different concentrations of

  4. Arsenic and diabetes: current perspectives.

    PubMed

    Huang, Chun Fa; Chen, Ya Wen; Yang, Ching Yao; Tsai, Keh Sung; Yang, Rong Sen; Liu, Shing Hwa

    2011-09-01

    Arsenic is a naturally occurring toxic metalloid of global concern. Many studies have indicated a dose-response relationship between accumulative arsenic exposure and the prevalence of diabetes mellitus (DM) in arseniasis-endemic areas in Taiwan and Bangladesh, where arsenic exposure occurs through drinking water. Epidemiological researches have suggested that the characteristics of arsenic-induced DM observed in arseniasis-endemic areas in Taiwan and Mexico are similar to those of non-insulin-dependent DM (Type 2 DM). These studies analyzed the association between high and chronic exposure to inorganic arsenic in drinking water and the development of DM, but the effect of exposure to low to moderate levels of inorganic arsenic on the risk of DM is unclear. Navas-Acien et al. recently proposed that a positive association existed between total urine arsenic and the prevalence of Type 2 DM in people exposed to low to moderate levels of arsenic. However, the diabetogenic role played by arsenic is still debated upon. An increase in the prevalence of DM has been observed among residents of highly arsenic-contaminated areas, whereas the findings from community-based and occupational studies in low-arsenic-exposure areas have been inconsistent. Recently, a population-based cross-sectional study showed that the current findings did not support an association between arsenic exposure from drinking water at levels less than 300 μg/L and a significantly increased risk of DM. Moreover, although the precise mechanisms for the arsenic-induced diabetogenic effect are still largely undefined, recent in vitro experimental studies indicated that inorganic arsenic or its metabolites impair insulin-dependent glucose uptake or glucose-stimulated insulin secretion. Nevertheless, the dose, the form of arsenic used, and the experimental duration in the in vivo studies varied greatly, leading to conflicting results and ambiguous interpretation of these data with respect to human exposure

  5. Physiologically based pharmacokinetic (PBPK) modeling considering methylated trivalent arsenicals

    EPA Science Inventory

    PBPK modeling provides a quantitative biologically-based framework to integrate diverse types of information for application to risk analysis. For example, genetic polymorphisms in arsenic metabolizing enzymes (AS3MT) can lead to differences in target tissue dosimetry for key tri...

  6. Inorganic arsenic exposure increased expression of Fas and Bax gene in vivo and vitro.

    PubMed

    He, Yuefeng; Zhang, Ruobing; Xiaoxiao, Song; Li, Shang; Xinan, Wu; Huang, Dahai

    2018-06-01

    Accumulating evidences have shown that apoptosis plays an important role in mediating the therapeutic effects and toxicity of arsenic. Fas and Bax genes are critical regulatory genes for apoptosis. In this study, we investigated the association between levels of Fas and Bax expression and the three arsenic species (inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in vivo and vitro. Three arsenic species in urine were measured and levels of Fas and Bax expression were examined by the quantitative real-time PCR (qPCR) for all subjects. We found that Fas and Bax mRNA expression in the exposed group were significantly higher than that in the control group. The levels of gene expression were positively correlated with the concentrations of urinary iAs, MMA and DMA in all subjects. Sodium arsenite induced Fas and Bax mRNA expression, then MMA and DMA did not induce mRNA expression in MDA-MB-231 and XWLC-05 cells. The findings of the present study indicated that iAs, MMA, and DMA had different effects on expression of Bax and Fas gene. Copyright © 2017. Published by Elsevier B.V.

  7. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66.

    PubMed

    Wang, Chenghong; Liu, Xinlei; Chen, J Paul; Li, Kang

    2015-11-12

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5-280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds.

  8. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66

    PubMed Central

    Wang, Chenghong; Liu, Xinlei; Chen, J. Paul; Li, Kang

    2015-01-01

    In this study, water stable zirconium metal-organic framework (UiO-66) has been synthesized and for the first time applied as an adsorbent to remove aquatic arsenic contamination. The as-synthesized UiO-66 adsorbent functions excellently across a broad pH range of 1 to 10, and achieves a remarkable arsenate uptake capacity of 303 mg/g at the optimal pH, i.e., pH = 2. To the best of our knowledge, this is the highest arsenate As(V) adsorption capacity ever reported, much higher than that of currently available adsorbents (5–280 mg/g, generally less than 100 mg/g). The superior arsenic uptake performance of UiO-66 adsorbent could be attributed to the highly porous crystalline structure containing zirconium oxide clusters, which provides a large contact area and plenty of active sites in unit space. Two binding sites within the adsorbent framework are proposed for arsenic species, i.e., hydroxyl group and benzenedicarboxylate ligand. At equilibrium, seven equivalent arsenic species can be captured by one Zr6 cluster through the formation of Zr-O-As coordination bonds. PMID:26559001

  9. Availability of arsenic in human milk in women and its correlation with arsenic in urine of breastfed children living in arsenic contaminated areas in Bangladesh.

    PubMed

    Islam, Md Rafiqul; Attia, John; Alauddin, Mohammad; McEvoy, Mark; McElduff, Patrick; Slater, Christine; Islam, Md Monirul; Akhter, Ayesha; d'Este, Catherine; Peel, Roseanne; Akter, Shahnaz; Smith, Wayne; Begg, Stephen; Milton, Abul Hasnat

    2014-12-04

    Early life exposure to inorganic arsenic may be related to adverse health effects in later life. However, there are few data on postnatal arsenic exposure via human milk. In this study, we aimed to determine arsenic levels in human milk and the correlation between arsenic in human milk and arsenic in mothers and infants urine. Between March 2011 and March 2012, this prospective study identified a total of 120 new mother-baby pairs from Kashiani (subdistrict), Bangladesh. Of these, 30 mothers were randomly selected for human milk samples at 1, 6 and 9 months post-natally; the same mother baby pairs were selected for urine sampling at 1 and 6 months. Twelve urine samples from these 30 mother baby pairs were randomly selected for arsenic speciation. Arsenic concentration in human milk was low and non-normally distributed. The median arsenic concentration in human milk at all three time points remained at 0.5 μg/L. In the mixed model estimates, arsenic concentration in human milk was non-significantly reduced by -0.035 μg/L (95% CI: -0.09 to 0.02) between 1 and 6 months and between 6 and 9 months. With the progression of time, arsenic concentration in infant's urine increased non-significantly by 0.13 μg/L (95% CI: -1.27 to 1.53). Arsenic in human milk at 1 and 6 months was not correlated with arsenic in the infant's urine at the same time points (r = -0.13 at 1 month and r = -0.09 at 6 month). Arsenite (AsIII), arsenate (AsV), monomethyl arsonic acid (MMA), dimethyl arsinic acid (DMA) and arsenobetaine (AsB) were the constituents of total urinary arsenic; DMA was the predominant arsenic metabolite in infant urine. We observed a low arsenic concentration in human milk. The concentration was lower than the World Health Organization's maximum permissible limit (WHO Permissible Limit 15 μg/kg-bw/week). Our findings support the safety of breastfeeding even in arsenic contaminated areas.

  10. Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations.

    PubMed

    Iriel, Analia; Lagorio, M Gabriela; Fernández Cirelli, Alicia

    2015-11-01

    Arsenic (V) uptake from groundwater by using Vallisneria gigantea plants was studied using batch experiments. Reflectance and fluorescence of intact plants were investigated and changes in photophysical properties following arsenic absorption were reported. Good correlations have been found between arsenic concentration in groundwater and parameters derived from reflectance and fluorescence measurements. This system reached its equilibrium after seven days when the removal quantities were strongly dependent on the initial arsenic concentration. Interestingly, Vallisneria plants were able to accumulate from 100 to 600 mg As kg(-1) in roots and fronds although the translocation factors were low (0.6-1.6). Kinetic data for biosorption process followed a first-order law. At low arsenic concentrations the uptake in plants was governed by diffusion aspects. Langmuir, Freundlich and Dubinin-Radushkevich models were applied and results demonstrated that arsenic uptake was better described by the Langmuir model. As a final remark we concluded that a plant of this species should be able to remove 1mg As per week. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  12. ADSORPTION TECHNOLOGIES FOR ARSENIC REMOVAL

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water will likely consider adsorption technology as a reasonable approach to remove arsenic. Adsorptio...

  13. ARSENIC REMOVAL USING ADSORPTION TECHNOLOGIES

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. Many groundwaters that have arsenic in their source water will likely consider adsorption technology as a reasonable approach to remove arsenic. Adsorptio...

  14. THE CELLUAR METABOLISM OF ARSENIC

    EPA Science Inventory

    Because the methylation of arsenic produces intermediates and terminal products that exceed inorganic arsenic in potency as enzyme inhibitors, cytotoxins, and genotoxins, the methylation of arsenic is properly regarded as an activation process. The methylation of arsenic is an e...

  15. Enrichment of arsenic transforming and resistant heterotrophic bacteria from sediments of two salt lakes in Northern Chile.

    PubMed

    Lara, José; Escudero González, Lorena; Ferrero, Marcela; Chong Díaz, Guillermo; Pedrós-Alió, Carlos; Demergasso, Cecilia

    2012-05-01

    Microbial populations are involved in the arsenic biogeochemical cycle in catalyzing arsenic transformations and playing indirect roles. To investigate which ecotypes among the diverse microbial communities could have a role in cycling arsenic in salt lakes in Northern Chile and to obtain clues to facilitate their isolation in pure culture, sediment samples from Salar de Ascotán and Salar de Atacama were cultured in diluted LB medium amended with NaCl and arsenic, at different incubation conditions. The samples and the cultures were analyzed by nucleic acid extraction, fingerprinting analysis, and sequencing. Microbial reduction of As was evidenced in all the enrichments carried out in anaerobiosis. The results revealed that the incubation factors were more important for determining the microbial community structure than arsenic species and concentrations. The predominant microorganisms in enrichments from both sediments belonged to the Firmicutes and Proteobacteria phyla, but most of the bacterial ecotypes were confined to only one system. The occurrence of an active arsenic biogeochemical cycle was suggested in the system with the highest arsenic content that included populations compatible with microorganisms able to transform arsenic for energy conservation, accumulate arsenic, produce H(2), H(2)S and acetic acid (potential sources of electrons for arsenic reduction) and tolerate high arsenic levels.

  16. Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae.

    PubMed

    Magellan, Kit; Barral-Fraga, Laura; Rovira, Marona; Srean, Pao; Urrea, Gemma; García-Berthou, Emili; Guasch, Helena

    2014-11-01

    Arsenic contamination has global impacts and freshwaters are major arsenic repositories. Arsenic toxicity depends on numerous interacting factors which makes effects difficult to estimate. The use of aquatic algae is often advocated for bioremediation of arsenic contaminated waters as they absorb arsenate and transform it into arsenite and methylated chemical species. Fish are another key constituent of aquatic ecosystems. Contamination in natural systems is often too low to cause mortality but sufficient to interfere with normal functioning. Alteration of complex, naturally occurring fish behaviours such as foraging and aggression are ecologically relevant indicators of toxicity and ideal for assessing sublethal impacts. We examined the effects of arsenic exposure in the invasive mosquitofish, Gambusia holbrooki, in a laboratory experiment incorporating some of the complexity of natural systems by including the interacting effects of aquatic algae. Our aims were to quantify the effects of arsenic on some complex behaviours and physical parameters in mosquitofish, and to assess whether the detoxifying mechanisms of algae would ameliorate any effects of arsenic exposure. Aggression increased significantly with arsenic whereas operculum movement decreased non-significantly and neither food capture efficiency nor consumption were notably affected. Bioaccumulation increased with arsenic and unexpectedly so did fish biomass. Possibly increased aggression facilitated food resource defence allowing fish to gain weight. The presence of algae aggravated the effects of arsenic exposure. For increase in fish biomass, algae acted antagonistically with arsenic, resulting in a disadvantageous reduction in weight gained. For bioaccumulation the effects were even more severe, as algae operated additively with arsenic to increase arsenic uptake and/or assimilation. Aggression was also highest in the presence of both algae and arsenic. Bioremediation of arsenic contaminated waters

  17. Environmental source of arsenic exposure.

    PubMed

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  18. Environmental Source of Arsenic Exposure

    PubMed Central

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made. PMID:25284196

  19. Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic.

    PubMed Central

    Farmer, J G; Johnson, L R

    1990-01-01

    An analytical speciation method, capable of separating inorganic arsenic (As (V), As (III] and its methylated metabolites (MMAA, DMAA) from common, inert, dietary organoarsenicals, was applied to the determination of arsenic in urine from a variety of workers occupationally exposed to inorganic arsenic compounds. Mean urinary arsenic (As (V) + As (III) + MMAA + DMAA) concentrations ranged from 4.4 micrograms/g creatinine for controls to less than 10 micrograms/g for those in the electronics industry, 47.9 micrograms/g for timber treatment workers applying arsenical wood preservatives, 79.4 micrograms/g for a group of glassworkers using arsenic trioxide, and 245 micrograms/g for chemical workers engaged in manufacturing and handling inorganic arsenicals. The maximum recorded concentration was 956 micrograms/g. For the most exposed groups, the ranges in the average urinary arsenic speciation pattern were 1-6% As (V), 11-14% As (III), 14-18% MMAA, and 63-70% DMAA. The highly raised urinary arsenic concentrations for the chemical workers, in particular, and some glassworkers are shown to correspond to possible atmospheric concentrations in the workplace and intakes in excess of, or close to, recommended and statutory limits and those associated with inorganic arsenic related diseases. PMID:2357455

  20. Arsenic in freshwater fish in the Chihuahua County water reservoirs (Mexico).

    PubMed

    Nevárez, Myrna; Moreno, Myriam Verónica; Sosa, Manuel; Bundschuh, Jochen

    2011-01-01

    Water reservoirs in Chihuahua County, Mexico, are affected by some punctual and non-punctual geogenic and anthropogenic pollution sources; fish are located at the top of the food chain and are good indicators for the ecosystems pollution. The study goal was to: (i) determine arsenic concentration in fish collected from the Chuviscar, Chihuahua, San Marcos and El Rejon water reservoirs; (ii) to assess if the fishes are suitable for human consumption and (iii) link the arsenic contents in fish with those in sediment and water reported in studies made the same year for these water reservoirs. Sampling was done in summer, fall and winter. The highest arsenic concentration in the species varied through the sampling periods: Channel catfish (Ictalurus punctatus) with 0.22 ± 0.15 mg/kg dw in winter and Green sunfish (Lepomis cyanellus) with 2.00 ± 0.15 mg/kg dw in summer in El Rejon water reservoir. A positive correlation of arsenic contents was found through all sampling seasons in fish samples and the samples of sediment and water. The contribution of the weekly intake of inorganic arsenic, based on the consumption of 0.245 kg fish muscles/body weight/week was found lower than the acceptable weekly intake of 0.015 mg/kg/body weight for inorganic arsenic suggested by FAO/WHO.

  1. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    ERIC Educational Resources Information Center

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from…

  2. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents

    USGS Publications Warehouse

    Wang, M.; Song, D.; Zheng, B.; Finkelman, R.B.; ,

    2008-01-01

    To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong. ?? 2008 New York Academy of Sciences.

  3. Arsenic in cancer treatment: challenges for application of realgar nanoparticles (a minireview).

    PubMed

    Baláž, Peter; Sedlák, Ján

    2010-06-01

    While intensive efforts have been made for the treatment of cancer, this disease is still the second leading cause of death in many countries. Metastatic breast cancer, late-stage colon cancer, malignant melanoma, multiple myeloma, and other forms of cancer are still essentially incurable in most cases. Recent advances in genomic technologies have permitted the simultaneous evaluation of DNA sequence-based alterations together with copy number gains and losses. The requirement for a multi-targeting approach is the common theme that emerges from these studies. Therefore, the combination of new targeted biological and cytotoxic agents is currently under investigation in multimodal treatment regimens. Similarly, a combinational principle is applied in traditional Chinese medicine, as formulas consist of several types of medicinal herbs or minerals, in which one represents the principal component, and the others serve as adjuvant ones that assist the effects, or facilitate the delivery, of the principal component. In Western medicine, approximately 60 different arsenic preparations have been developed and used in pharmacological history. In traditional Chinese medicines, different forms of mineral arsenicals (orpiment-As(2)S(3), realgar-As(4)S(4), and arsenolite-arsenic trioxide, As(2)O(3)) are used, and realgar alone is included in 22 oral remedies that are recognized by the Chinese Pharmacopeia Committee (2005). It is known that a significant portion of some forms of mineral arsenicals is poorly absorbed into the body, and would be unavailable to cause systemic damage. This review primary focuses on the application of arsenic sulfide (realgar) for treatment of various forms of cancer in vitro and in vivo.

  4. Arsenic in the human food chain, biotransformation and toxicology--Review focusing on seafood arsenic.

    PubMed

    Molin, Marianne; Ulven, Stine Marie; Meltzer, Helle Margrete; Alexander, Jan

    2015-01-01

    Fish and seafood are main contributors of arsenic (As) in the diet. The dominating arsenical is the organoarsenical arsenobetaine (AB), found particularly in finfish. Algae, blue mussels and other filter feeders contain less AB, but more arsenosugars and relatively more inorganic arsenic (iAs), whereas fatty fish contain more arsenolipids. Other compounds present in smaller amounts in seafood include trimethylarsine oxide (TMAO), trimethylarsoniopropionate (TMAP), dimethylarsenate (DMA), methylarsenate (MA) and sulfur-containing arsenicals. The toxic and carcinogenic arsenical iAs is biotransformed in humans and excreted in urine as the carcinogens dimethylarsinate (DMA) and methylarsonate (MA), producing reactive intermediates in the process. Less is known about the biotransformation of organoarsenicals, but new insight indicates that bioconversion of arsenosugars and arsenolipids in seafood results in urinary excretion of DMA, possibly also producing reactive trivalent arsenic intermediates. Recent findings also indicate that the pre-systematic metabolism by colon microbiota play an important role for human metabolism of arsenicals. Processing of seafood may also result in transformation of arsenicals. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. ARSENIC SOURCES AND ASSESSMENT

    EPA Science Inventory

    Recent research has identified a number of potential and current links between environmental arsenic releases and the management of operational and abandoned landfills. Many landfills will receive an increasing arsenic load due to the disposal of arsenic-bearing solid residuals ...

  6. Risk assessment of vegetables irrigated with arsenic-contaminated water.

    PubMed

    Bhatti, S M; Anderson, C W N; Stewart, R B; Robinson, B H

    2013-10-01

    Arsenic (As) contaminated water is used in South Asian countries to irrigate food crops, but the subsequent uptake of As by vegetables and associated human health risk is poorly understood. We used a pot trial to determine the As uptake of four vegetable species (carrot, radish, spinach and tomato) with As irrigation levels ranging from 50 to 1000 μg L(-1) and two irrigation techniques, non-flooded (70% field capacity for all studied vegetables), and flooded (110% field capacity initially followed by aerobic till next irrigation) for carrot and spinach only. Only the 1000 μg As L(-1) treatment showed a significant increase of As concentration in the vegetables over all other treatments (P < 0.05). The distribution of As in vegetable tissues was species dependent; As was mainly found in the roots of tomato and spinach, but accumulated in the leaves and skin of root crops. There was a higher concentration of As in the vegetables grown under flood irrigation relative to non-flood irrigation. The trend of As bioaccumulation was spinach > tomato > radish > carrot. The As concentration in spinach leaves exceeded the Chinese maximum permissible concentration for inorganic As (0.05 μg g(-1) fresh weight) by a factor of 1.6 to 6.4 times. No other vegetables recorded an As concentration that exceeded this threshold. The USEPA parameters hazard quotient and cancer risk were calculated for adults and adolescents. A hazard quotient value greater than 1 and a cancer risk value above the highest target value of 10(-4) confirms potential risk to humans from ingestion of spinach leaves. In our study, spinach presents a direct risk to human health where flood irrigated with water containing an arsenic concentration greater than 50 μg As L(-1).

  7. ELUCIDATING THE PATHWAY FOR ARSENIC METHYLATION

    EPA Science Inventory

    Enzymatically-catalyzed methylation of arsenic is part of a metabolic pathway that converts inorganic arsenic into methylated products. Hence, in humans chronically exposed to inorganic arsenic, methyl and dimethyl arsenic account for most of the arsenic that is excreted in the ...

  8. THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY

    EPA Science Inventory

    Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...

  9. Dithiothreitol abrogates the effect of arsenic trioxide on normal rat liver mitochondria and human hepatocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Manash K.; Kumar, Rajinder; Mukhopadhyay, Anup K.

    2008-01-15

    Arsenic trioxide (ATO) is a known environmental toxicant and a potent chemotherapeutic agent. Significant correlation has been reported between consumption of arsenic-contaminated water and occurrence of liver cancer; moreover, ATO-treated leukemia patients also suffers from liver toxicity. Hence, modulation of ATO action may help to prevent populations suffering from arsenic toxicity as well as help reduce the drug-related side effects. Dithiothreitol (DTT) is a well-known dithiol agent reported to modulate the action of ATO. Controversial reports exist regarding the effect of DTT on ATO-induced apoptosis in leukemia cells. To the best of our knowledge, no report illustrates the modulatory effectmore » of DTT on ATO-induced liver toxicity, the prime target for arsenic. Mitochondria serve as the doorway to apoptosis and have been implicated in ATO-induced cell death. Hence, we attempted to study the modulatory effect of DTT on ATO-induced dysfunction of mammalian liver mitochondria and human hepatocellular carcinoma cell line (Hep3B). We, for the first time, report that ATO produces complex I-mediated electron transfer inhibition, reactive oxygen species (ROS) generation, respiration inhibition, and ATO-induced ROS-mediated mitochondrial permeability transition (MPT) opening. DTT at low concentration (100 {mu}M and less) prevents the effect of ATO-induced complex I-malfunctions. DTT protects mitochondria from ATO-mediated opening of MPT and membrane potential depolarization. DTT also prevented ATO-induced Hep3B cell death. Thus, at low concentrations DTT abrogates the effect of ATO on rat liver mitochondria and Hep3B cell line. Therefore, the present result suggests, that use of low concentration of dithiols as food supplement may prevent arsenic toxicity in affected population.« less

  10. ARSENIC TREATMENT PILOT TESTS

    EPA Science Inventory

    This presentation provides information on the chemistry of arsenic in drinking water and the results of several pilot plant studies on the removal of arsenic from drinking water with emphasis on adsorptive media processes. Information is also being presented on the Arsenic Demon...

  11. Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan.

    PubMed

    Lin, M C; Liao, C M

    2008-02-01

    The risk of consuming groundwater-cultured milkfish (Chanos chanos) was assessed. Samples of water and milkfish from groundwater-cultured ponds in southwestern Taiwan were analyzed. One third of the 12 sampled ponds had arsenic concentrations in the water higher than 50 microg/L, which is the maximum allowed concentration for arsenic in aquacultural water in Taiwan. Of the total amount of arsenic in water, the percentage of inorganic arsenic was 67.5+/-8.8%. The inorganic arsenic level in milkfish was 44.1+/-10.2%. The bioconcentration factors (BCFs) of milkfish for total arsenic and inorganic arsenic were 11.55+/-4.42 and 6.8+/-2.64, respectively. The target cancer risk (TR) for intake of the milkfish from those ponds was higher than the safe standard 1 x 10(-6), while in 8 of the ponds the TR values were higher than 1 x 10(-4). Among the 12 ponds, 7 of those had the target hazard quotient (THQ) for intake of the milkfish higher than the safe standard 1. The actual consumption (IRF) of milkfish from most of those ponds were higher than the calculated acceptable consumption (RBIRF), based on TR = 1 x 10(-6)-1 x 10(-4). Only three sampled ponds (Putai 2, Peimen 2 and Peimen 3) did not show differences between the IRF and the RBIRF. Based on the standard TR = 1 x 10(-6), both the risk-based concentration for inorganic arsenic in milkfish (RBC(f)) and the risk-based concentration for inorganic arsenic in pond water (RBC(w)) were lower than the levels of inorganic arsenic in reared milkfish (C(b)) and the concentration of inorganic arsenic in pond water (C(w)), respectively. When the calculation was based on TR = 1 x 10(-4), only one sampled pond (Putai 3) had a RBC(f) value higher than C(b). The inhabitants might be exposed to arsenic pollution with carcinogenic and non-carcinogenic risks.

  12. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  13. Toxic substances in surface waters and sediments--A study to assess the effects of arsenic-contaminated alluvial sediment in Whitewood Creek, South Dakota

    USGS Publications Warehouse

    Kuwabara, James S.; Fuller, Christopher C.

    2003-01-01

    Field measurements and bioassay experiments were done to investigate the effects of arsenic and phosphorus interactions on sorption of these solutes by the benthic flora (periphyton and submerged macrophytes) in Whitewood Creek, a stream in western South Dakota. Short-term (24-hour) sorption experiments were used to determine arsenic transport characteristics for algae (first-order rate constants for solute sorption, biomass, and accumulation factors) collected in the creek along a transect beginning upstream from a mine discharge point and downgradient through a 57-kilometer reach. Temporal changes in biomass differed significantly between and within sampling sites. Arsenic concentrations in plant tissue increased with distance downstream, but temporal changes in concentrations in tissues differed considerably from site to site. Cultures of Achnanthes minutissima (Bacillariophyceae) and Stichococcus sp. (Chlorophyceae) were isolated from four sites along a longitudinal concentration gradient of dissolved arsenic within the study reach and were maintained at ambient solute concentrations. Arsenic accumulation factors and sorption-rate constants for these isolates were determined as a function of dissolved arsenate and orthophosphate. Cell surfaces of algal isolates exhibited preferential orthophosphate sorption over arsenate. Initial sorption of both arsenate and orthophosphate followed first-order mass transfer for each culturing condition. Although sorption-rate constants increased slightly with increased dissolved-arsenate concentration, algae, isolated from a site with elevated dissolved arsenic in the stream channel, had a significantly slower rate of arsenic sorption compared with the same species isolated from an uncontaminated site upstream. In diel studies, amplitudes of the pH cycles increased with measured biomass except at a site immediately downstream from water-treatment-plant discharge. Inorganic pentavalent arsenic dominated arsenic speciation at

  14. Using habitat suitability models to target invasive plant species surveys.

    PubMed

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P < 0.01), and targeted sampling did detect more species than nontargeted sampling with less

  15. Chem I Supplement: Arsenic and Old Myths.

    ERIC Educational Resources Information Center

    Sarquis, Mickey

    1979-01-01

    Describes the history of arsenic, the properties of arsenic, production and uses of arsenicals, arsenic in the environment; toxic levels of arsenic, arsenic in the human body, and the Marsh Test. (BT)

  16. Toxicity of so-called edible hijiki seaweed (Sargassum fusiforme) containing inorganic arsenic.

    PubMed

    Yokoi, Katsuhiko; Konomi, Aki

    2012-07-01

    The UK Food Standards Agency and its counterparts in other countries have warned consumers not to eat hijiki (Sargassum fusiforme; synonym Hizikia fusiformis), a Sargasso seaweed, because it contains large amounts of inorganic arsenic. We investigated dietary exposure of hijiki in weaning male F344/N rats fed an AIN-93G diet supplemented with 3% (w/w) hijiki powder for 7 weeks, compared with those fed only an AIN-93G diet. Body weight, body temperature, blood and tissue arsenic concentrations, plasma biochemistry and hematological parameters were measured. We found that feeding rats a 3% hijiki diet led to a marked accumulation of arsenic in blood and tissues, and evoked a high body temperature and abnormal blood biochemistry including elevated plasma alkaline phosphatase activity and inorganic phosphorus, consistent with arsenic poisoning. These findings should prompt further investigations to identify the health hazards related to consumption of hijiki and related Sargassum species in humans. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Relation of polymorphism of arsenic metabolism genes to arsenic methylation capacity and developmental delay in preschool children in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Ru-Lan

    Inefficient arsenic methylation capacity has been associated with developmental delay in children. The present study was designed to explore whether polymorphisms and haplotypes of arsenic methyltransferase (AS3MT), glutathione-S-transferase omegas (GSTOs), and purine nucleoside phosphorylase (PNP) affect arsenic methylation capacity and developmental delay. A case-control study was conducted from August 2010 to March 2014. All participants were recruited from the Shin Kong Wu Ho-Su Memorial Teaching Hospital. In total, 179 children with developmental delay and 88 children without delay were recruited. Urinary arsenic species, including arsenite (As{sup III}), arsenate (As{sup V}), monomethylarsonic acid (MMA{sup V}), and dimethylarsinic acid (DMA{sup V}) weremore » measured using a high-performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphisms of AS3MT, GSTO, and PNP were performed using the Sequenom MassARRAY platform with iPLEX Gold chemistry. Polymorphisms of AS3MT genes were found to affect susceptibility to developmental delay in children, but GSTO and PNP polymorphisms were not. Participants with AS3MT rs3740392 A/G + G/G genotype, compared with AS3MT rs3740392 A/A genotype, had a significantly lower secondary methylation index. This may result in an increased OR for developmental delay. Participants with the AS3MT high-risk haplotype had a significantly higher OR than those with AS3MT low-risk haplotypes [OR and 95% CI, 1.59 (1.08–2.34)]. This is the first study to show a joint dose-response effect of this AS3MT high-risk haplotype and inefficient arsenic methylation capacity on developmental delay. Our data provide evidence that AS3MT genes are related to developmental delay and may partially influence arsenic methylation capacity. - Highlights: • AS3MT genotypes were found to affect susceptibility to developmental delay. • AS3MT rs3740392 A/G and G/G genotype had a significantly low SMI (DMA

  18. Oxidative Damage Induced by Arsenic in Mice or Rats: A Systematic Review and Meta-Analysis.

    PubMed

    Xu, Mengchuan; Rui, Dongsheng; Yan, Yizhong; Xu, Shangzhi; Niu, Qiang; Feng, Gangling; Wang, Yan; Li, Shugang; Jing, Mingxia

    2017-03-01

    In this meta-analysis, studies reporting arsenic-induced oxidative damage in mouse models were systematically evaluated to provide a scientific understanding of oxidative stress mechanisms associated with arsenic poisoning. Fifty-eight relevant peer-reviewed publications were identified through exhaustive database searching. Oxidative stress indexes assessed included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), oxidized glutathione (GSSG), malondialdehyde (MDA), and reactive oxygen species (ROS). Our meta-analysis showed that arsenic exposure generally suppressed measured levels of the antioxidants, SOD, CAT, GSH, GPx, GST, and GR, but increased levels of the oxidants, GSSG, MDA, and ROS. Arsenic valence was important and GR and MDA levels increased to a significantly (P < 0.05) greater extent upon exposure to As 3+ than to As 5+ . Other factors that contributed to a greater overall oxidative effect from arsenic exposure included intervention time, intervention method, dosage, age of animals, and the sample source from which the indexes were estimated. Our meta-analysis effectively summarized a wide range of studies and detected a positive relationship between arsenic exposure and oxidative damage. These data provide a scientific basis for the prevention and treatment of arsenic poisoning.

  19. Experimental determination and modeling of arsenic complexation with humic and fulvic acids.

    PubMed

    Fakour, Hoda; Lin, Tsair-Fuh

    2014-08-30

    The complexation of humic acid (HA) and fulvic acid (FA) with arsenic (As) in water was studied. Experimental results indicate that arsenic may form complexes with HA and FA with a higher affinity for arsenate than for arsenite. With the presence of iron oxide based adsorbents, binding of arsenic to HA/FA in water was significantly suppressed, probably due to adsorption of As and HA/FA. A two-site ligand binding model, considering only strong and weak site types of binding affinity, was successfully developed to describe the complexation of arsenic on the two natural organic fractions. The model showed that the numbers of weak sites were more than 10 times those of strong sites on both HA and FA for both arsenic species studied. The numbers of both types of binding sites were found to be proportional to the HA concentrations, while the apparent stability constants, defined for describing binding affinity between arsenic and the sites, are independent of the HA concentrations. To the best of our knowledge, this is the first study to characterize the impact of HA concentrations on the applicability of the ligand binding model, and to extrapolate the model to FA. The obtained results may give insights on the complexation of arsenic in HA/FA laden groundwater and on the selection of more effective adsorption-based treatment methods for natural waters. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  1. Polymorphism of inflammatory genes and arsenic methylation capacity are associated with urothelial carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chia-Chang; Department of Urology, Taipei Medical University—Shuang Ho Hospital, Taipei, Taiwan; Huang, Yung-Kai

    2013-10-01

    Chronic exposure to arsenic can generate reactive oxidative species, which can induce certain proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8). TNF-α, IL-6 and IL-8 have been shown to be involved in the development and progression of various cancers, including bladder cancer. This study aimed to investigate the joint effect of the polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C, IL-8 − 251 T/A and urinary arsenic profiles on urothelial carcinoma (UC) risk. This study evaluated 300 pathologically-confirmed cases of UC and 594 cancer-free controls. Urinary arsenic species were detected using high-performance liquidmore » chromatography-linked hydride generator and atomic absorption spectrometry. The polymorphism of TNF-α − 308 G/A, IL-6 − 174 G/C and IL-8 − 251 T/A was determined using polymerase chain reaction-restriction fragment length polymorphism. The joint effects on UC risk were estimated by odds ratios and 95% confidence intervals using unconditional logistic regression. We found that the TNF-α − 308 A/A and IL-8 − 251 T/T polymorphisms were significantly associated with UC. Moreover, significant dose–response joint effect of TNF-α − 308 A/A or IL-8 − 251 T/T genotypes and arsenic methylation indices were seen to affect UC risk. The present results also showed a significant increase in UC risk in subjects with the IL-8 − 251 T/T genotype for each SD increase in urinary total arsenic and MMA%. In contrast, a significant decrease in UC risk was found in subjects who carried the IL-8 − 251 T/T genotype for each SD increase in DMA%. - Highlights: • Joint effect of the TNF-α -308 A/A genotype and urinary total arsenic affected UC. • Joint effect of the IL-8 -251 T/T genotype and urinary total arsenic affected UC. • Urinary total arsenic level, TNF-α -308 A/A and IL-8 -251 T/T genotype affected UC.« less

  2. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Yi-Chen; Lien, Li-Ming; School of Medicine, Taipei Medical University, Taipei, Taiwan

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study.more » Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis

  3. Seasonal perspective of dietary arsenic consumption and urine arsenic in an endemic population.

    PubMed

    Biswas, Anirban; Deb, Debasree; Ghose, Aloke; Santra, Subhas Chandra; Guha Mazumder, Debendra Nath

    2014-07-01

    Exposure to arsenic in arsenic endemic areas is most remarkable environmental health challenges. Although effects of arsenic contamination are well established, reports are unavailable on probable seasonal variation due to changes of food habit depending on winter and summer seasons, especially for endemic regions of Nadia district, West Bengal. Complete 24-h diets, drinking-cooking water, first morning voided urine samples, and diet history were analyzed on 25 volunteers in arsenic endemic Chakdah block of Nadia district, once in summer followed by once in winter from the same participants. Results depicted no seasonal variation of body weight and body mass index. Arsenic concentration of source drinking and cooking water decreased (p = 0.04) from 26 μg L(-1) in summer to 6 μg L(-1) in winter season. We recorded a seasonal decrease of water intake in male (3.8 and 2.5 L day (-1)) and female (2.6 and 1.2 L day(-1)) participants from summer to winter. Arsenic intake through drinking water decreased (p = 0.04) in winter (29 μg day(-1)) than in summer (100 μg day(-1)), and urinary arsenic concentration decreased (p = 0.018) in winter (41 μg L(-1)) than in summer (69 μg L(-1)). Dietary arsenic intake remained unchanged (p = 0.24) over the seasons. Hence, we can infer that human health risk assessment from arsenic needs an insight over temporal scale.

  4. Arsenic Speciation in Plankton Organisms from Contaminated Lakes: Transformations at the Base of the Freshwater Food Chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caumette, Guilhem; Koch, Iris; Estrada, Esteban

    2012-02-06

    The two complementary techniques high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and X-ray absorption near edge structure (XANES) analysis were used to assess arsenic speciation in freshwater phytoplankton and zooplankton collected from arsenic-contaminated lakes in Yellowknife (Northwest Territories, Canada). Arsenic concentrations in lake water ranged from 7 {micro}g L{sup -1} in a noncontaminated lake to 250 {micro}g L{sup -1} in mine-contaminated lakes, which resulted in arsenic concentrations ranging from 7 to 340 mg kg{sup -1} d.w. in zooplankton organisms (Cyclops sp.) and from 154 to 894 mg kg{sup -1} d.w. in phytoplankton. The main arsenic compounds identified by HPLC-ICP-MSmore » in all plankton were inorganic arsenic (from 38% to 98% of total arsenic). No other arsenic compounds were found in phytoplankton, but zooplankton organisms showed the presence of organoarsenic compounds, the most common being the sulfate arsenosugar, up to 47% of total arsenic, with traces of phosphate sugar, glycerol sugar, methylarsonate (MMA), and dimethylarsinate (DMA). In the uncontaminated Grace Lake, zooplankton also contained arsenobetaine (AB). XANES characterization of arsenic in the whole plankton samples showed AsV-O as the only arsenic compound in phytoplankton, and AsIII-S and AsV-O compounds as the two major inorganic arsenic species in zooplankton. The proportion of organoarsenicals and inorganic arsenic in zooplankton depends upon the arsenic concentration in lakes and shows the impact of arsenic contamination: zooplankton from uncontaminated lake has higher proportions of organoarsenic compounds and contains arsenobetaine, while zooplankton from contaminated area contains mostly inorganic arsenic.« less

  5. Microbial Community of High Arsenic Groundwater in Agricultural Irrigation Area of Hetao Plain, Inner Mongolia

    PubMed Central

    Wang, Yanhong; Li, Ping; Jiang, Zhou; Sinkkonen, Aki; Wang, Shi; Tu, Jin; Wei, Dazhun; Dong, Hailiang; Wang, Yanxin

    2016-01-01

    Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina MiSeq sequencing approach targeting the V4 region of the 16S rRNA genes. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups) according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with NH4+ and total organic carbon (TOC). Sequencing results revealed that a total of 329–2823 operational taxonomic units (OTUs) were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing arsenic-rich aquifers of Hetao Plain and other high arsenic groundwater aquifers including Bangladesh, West Bengal, and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera, and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal coordinate

  6. Metabolism and toxicity of arsenicals in mammals.

    PubMed

    Sattar, Adeel; Xie, Shuyu; Hafeez, Mian Abdul; Wang, Xu; Hussain, Hafiz Iftikhar; Iqbal, Zahid; Pan, Yuanhu; Iqbal, Mujahid; Shabbir, Muhammad Abubakr; Yuan, Zonghui

    2016-12-01

    Arsenic (As) is a metalloid usually found in organic and inorganic forms with different oxidation states, while inorganic form (arsenite As-III and arsenate As-v) is considered to be more hazardous as compared to organic form (methylarsonate and dimethylarsinate), with mild or no toxicity in mammals. Due to an increasing trend to using arsenicals as growth promoters or for treatment purposes, the understanding of metabolism and toxicity of As gets vital importance. Its toxicity is mainly depends on oxi-reduction states (As-III or As-v) and the level of methylation during the metabolism process. Currently, the exact metabolic pathways of As have yet to be confirmed in humans and food producing animals. Oxidative methylation and glutathione conjugation is believed to be major pathways of As metabolism. Oxidative methylation is based on conversion of Arsenite in to mono-methylarsonic acid and di-methylarsenic acid in mammals. It has been confirmed that As is only methylated in the presence of glutathione or thiol compounds, suggesting that As is being methylated in trivalent states. Subsequently, non-conjugated trivalent arsenicals are highly reactive with thiol which converts the trivalent arsenicals in to less toxic pentavalent forms. The glutathione conjugate stability of As is the most important factor for determining the toxicity. It can lead to DNA damage by alerting enzyme profile and production of reactive oxygen and nitrogen species which causes the oxidative stress. Moreover, As causes immune-dysfunction by hindering cellular and humeral immune response. The present review discussed different metabolic pathways and toxic outcomes of arsenicals in mammals which will be helpful in health risk assessment and its impact on biological world. Copyright © 2016. Published by Elsevier B.V.

  7. Arsenic silicide formation by oxidation of arsenic implanted silicon

    NASA Astrophysics Data System (ADS)

    Hagmann, D.; Euen, W.; Schorer, G.; Metzger, G.

    1989-07-01

    Wet oxidations of (100) silicon implanted with an arsenic dose of 2 × 1016 cm-2 and an energy of 30 keV were carried out in the temperature range between 600 and 900° C. The oxidation rate is increased on the arsenic implanted samples up to a factor of 2000 as compared to undoped samples. During these oxidations the arsenic suicide phase AsSi is precipitated at the oxide/silicon interface. After short oxidation times at 600° C, a continuous AsSi layer is found. It is dissolved during extended oxidation times and finally almost all As is incorporated in the oxide. After 900° C oxidations, substantial AsSi crystallites remain at the Si/SiO2 interface. They are still observed up to the larg-est oxide thickness grown (2.3 µm). The AsSi phase and the distribution of the im-planted arsenic were analyzed by TEM, SIMS and XRF measurements.

  8. Determination of arsenic species in rice samples using CPE and ETAAS.

    PubMed

    Costa, Bruno Elias Dos Santos; Coelho, Nívia Maria Melo; Coelho, Luciana Melo

    2015-07-01

    A highly sensitive and selective procedure for the determination of arsenate and total arsenic in food by electrothermal atomic absorption spectrometry after cloud point extraction (ETAAS/CPE) was developed. The procedure is based on the formation of a complex of As(V) ions with molybdate in the presence of 50.0 mmol L(-1) sulfuric acid. The complex was extracted into the surfactant-rich phase of 0.06% (w/v) Triton X-114. The variables affecting the complex formation, extraction and phase separation were optimized using factorial designs. Under the optimal conditions, the calibration graph was linear in the range of 0.05-10.0 μg L(-1). The detection and quantification limits were 10 and 33 ng L(-1), respectively and the corresponding value for the relative standard deviation for 10 replicates was below 5%. Recovery values of between 90.8% and 113.1% were obtained for spiked samples. The accuracy of the method was evaluated by comparison with the results obtained for the analysis of a rice flour sample (certified material IRMM-804) and no significant difference at the 95% confidence level was observed. The method was successfully applied to the determination of As(V) and total arsenic in rice samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Urinary Arsenic Speciation in Children and Pregnant Women from Spain.

    PubMed

    Signes-Pastor, Antonio J; Carey, Manus; Vioque, Jesus; Navarrete-Muñoz, Eva M; Rodríguez-Dehli, Cristina; Tardón, Adonina; Begoña-Zubero, Miren; Santa-Marina, Loreto; Vrijheid, Martine; Casas, Maribel; Llop, Sabrina; Gonzalez-Palacios, Sandra; Meharg, Andrew A

    2017-01-01

    Inorganic arsenic (i-As) is a non-threshold human carcinogen that has been associated with several adverse health outcomes. Exposure to i-As is of particular concern among pregnant women, infants and children, as they are specifically vulnerable to the adverse health effects of i-As, and in utero and early-life exposure, even low to moderate levels of i-As, may have a marked effect throughout the lifespan. Ion chromatography-mass spectrometry detection (IC-ICP-MS) was used to analyse urinary arsenic speciation, as an exposure biomarker, in samples of 4-year-old children with relatively low-level arsenic exposure living in different regions in Spain including Asturias, Gipuzkoa, Sabadell and Valencia. The profile of arsenic metabolites in urine was also determined in samples taken during pregnancy (1st trimester) and in the children from Valencia of 7 years old. The median of the main arsenic species found in the 4-year-old children was 9.71 μg/l (arsenobetaine-AsB), 3.97 μg/l (dimethylarsinic acid-DMA), 0.44 μg/l (monomethylarsonic acid-MMA) and 0.35 μg/l (i-As). Statistically significant differences were found in urinary AsB, MMA and i-As according to the study regions in the 4-year-old, and also in DMA among pregnant women and their children. Spearman's correlation coefficient among urinary arsenic metabolites was calculated, and, in general, a strong methylation capacity to methylate i-As to MMA was observed.

  10. Selenite restores Pax6 expression in neuronal cells of chronically arsenic-exposed Golden Syrian hamsters.

    PubMed

    Aguirre-Vázquez, Alain; Sampayo-Reyes, Adriana; González-Escalante, Laura; Hernández, Alba; Marcos, Ricard; Castorena-Torres, Fabiola; Lozano-Garza, Gerardo; Taméz-Guerra, Reyes; de León, Mario Bermúdez

    2017-01-01

    Arsenic is a worldwide environmental pollutant that generates public health concerns. Various types of cancers and other diseases, including neurological disorders, have been associated with human consumption of arsenic in drinking water. At the molecular level, arsenic and its metabolites have the capacity to provoke genome instability, causing altered expression of genes. One such target of arsenic is the Pax6 gene that encodes a transcription factor in neuronal cells. The aim of this study was to evaluate the effect of two antioxidants, α-tocopheryl succinate (α-TOS) and sodium selenite, on Pax6 gene expression levels in the forebrain and cerebellum of Golden Syrian hamsters chronically exposed to arsenic in drinking water. Animals were divided into six groups. Using quantitative real-time reverse transcriptase (RT)-PCR analysis, we confirmed that arsenic downregulates Pax6 expression in nervous tissues by 53 ± 21% and 32 ± 7% in the forebrain and cerebellum, respectively. In the presence of arsenic, treatment with α-TOS did not modify Pax6 expression in nervous tissues; however, sodium selenite completely restored Pax6 expression in the arsenic-exposed hamster forebrain, but not the cerebellum. Although our results suggest the use of selenite to restore the expression of a neuronal gene in arsenic-exposed animals, its use and efficacy in the human population require further studies.

  11. Toxicokinetics/toxicodynamics links bioavailability for assessing arsenic uptake and toxicity in three aquaculture species.

    PubMed

    Chen, Wei-Yu; Liao, Chung-Min

    2012-11-01

    The purpose of this study was to link toxicokinetics/toxicodynamics (TK/TD) and bioavailability-based metal uptake kinetics to assess arsenic (As) uptake and bioaccumulation in three common farmed species of tilapia (Oreochromis mossambicus), milkfish (Chanos chanos), and freshwater clam (Corbicula fluminea). We developed a mechanistic framework by linking damage assessment model (DAM) and bioavailability-based Michaelis-Menten model for describing TK/TD and As uptake mechanisms. The proposed model was verified with published acute toxicity data. The estimated TK/TD parameters were used to simulate the relationship between bioavailable As uptake and susceptibility probability. The As toxicity was also evaluated based on a constructed elimination-recovery scheme. Absorption rate constants were estimated to be 0.025, 0.016, and 0.175 mL g(-1) h(-1) and As uptake rate constant estimates were 22.875, 63.125, and 788.318 ng g(-1) h(-1) for tilapia, milkfish, and freshwater clam, respectively. Here we showed that a potential trade-off between capacities of As elimination and damage recovery was found among three farmed species. Moreover, the susceptibility probability can also be estimated by the elimination-recovery relations. This study suggested that bioavailability-based uptake kinetics and TK/TD-based DAM could be integrated for assessing metal uptake and toxicity in aquatic organisms. This study is useful to quantitatively assess the complex environmental behavior of metal uptake and implicate to risk assessment of metals in aquaculture systems.

  12. The Association of Arsenic Exposure and Metabolism With Type 1 and Type 2 Diabetes in Youth: The SEARCH Case-Control Study

    PubMed Central

    Kuo, Chin-Chi; Spratlen, Miranda; Thayer, Kristina A.; Mendez, Michelle A.; Hamman, Richard F.; Dabelea, Dana; Adgate, John L.; Knowler, William C.; Bell, Ronny A.; Miller, Frederick W.; Liese, Angela D.; Zhang, Chongben; Douillet, Christelle; Drobná, Zuzana; Mayer-Davis, Elizabeth J.; Styblo, Miroslav

    2017-01-01

    OBJECTIVE Little is known about arsenic and diabetes in youth. We examined the association of arsenic with type 1 and type 2 diabetes in the SEARCH for Diabetes in Youth Case-Control (SEARCH-CC) study. Because one-carbon metabolism can influence arsenic metabolism, we also evaluated the potential interaction of folate and vitamin B12 with arsenic metabolism on the odds of diabetes. RESEARCH DESIGN AND METHODS Six hundred eighty-eight participants <22 years of age (429 with type 1 diabetes, 85 with type 2 diabetes, and 174 control participants) were evaluated. Arsenic species (inorganic arsenic [iAs], monomethylated arsenic [MMA], dimethylated arsenic [DMA]), and one-carbon metabolism biomarkers (folate and vitamin B12) were measured in plasma. We used the sum of iAs, MMA, and DMA (∑As) and the individual species as biomarkers of arsenic concentrations and the relative proportions of the species over their sum (iAs%, MMA%, DMA%) as biomarkers of arsenic metabolism. RESULTS Median ∑As, iAs%, MMA%, and DMA% were 83.1 ng/L, 63.4%, 10.3%, and 25.2%, respectively. ∑As was not associated with either type of diabetes. The fully adjusted odds ratios (95% CI), rescaled to compare a difference in levels corresponding to the interquartile range of iAs%, MMA%, and DMA%, were 0.68 (0.50–0.91), 1.33 (1.02–1.74), and 1.28 (1.01–1.63), respectively, for type 1 diabetes and 0.82 (0.48–1.39), 1.09 (0.65–1.82), and 1.17 (0.77–1.77), respectively, for type 2 diabetes. In interaction analysis, the odds ratio of type 1 diabetes by MMA% was 1.80 (1.25–2.58) and 0.98 (0.70–1.38) for participants with plasma folate levels above and below the median (P for interaction = 0.02), respectively. CONCLUSIONS Low iAs% versus high MMA% and DMA% was associated with a higher odds of type 1 diabetes, with a potential interaction by folate levels. These data support further research on the role of arsenic metabolism in type 1 diabetes, including the interplay with one

  13. The Association of Arsenic Exposure and Metabolism With Type 1 and Type 2 Diabetes in Youth: The SEARCH Case-Control Study.

    PubMed

    Grau-Pérez, Maria; Kuo, Chin-Chi; Spratlen, Miranda; Thayer, Kristina A; Mendez, Michelle A; Hamman, Richard F; Dabelea, Dana; Adgate, John L; Knowler, William C; Bell, Ronny A; Miller, Frederick W; Liese, Angela D; Zhang, Chongben; Douillet, Christelle; Drobná, Zuzana; Mayer-Davis, Elizabeth J; Styblo, Miroslav; Navas-Acien, Ana

    2017-01-01

    Little is known about arsenic and diabetes in youth. We examined the association of arsenic with type 1 and type 2 diabetes in the SEARCH for Diabetes in Youth Case-Control (SEARCH-CC) study. Because one-carbon metabolism can influence arsenic metabolism, we also evaluated the potential interaction of folate and vitamin B12 with arsenic metabolism on the odds of diabetes. Six hundred eighty-eight participants <22 years of age (429 with type 1 diabetes, 85 with type 2 diabetes, and 174 control participants) were evaluated. Arsenic species (inorganic arsenic [iAs], monomethylated arsenic [MMA], dimethylated arsenic [DMA]), and one-carbon metabolism biomarkers (folate and vitamin B12) were measured in plasma. We used the sum of iAs, MMA, and DMA (∑As) and the individual species as biomarkers of arsenic concentrations and the relative proportions of the species over their sum (iAs%, MMA%, DMA%) as biomarkers of arsenic metabolism. Median ∑As, iAs%, MMA%, and DMA% were 83.1 ng/L, 63.4%, 10.3%, and 25.2%, respectively. ∑As was not associated with either type of diabetes. The fully adjusted odds ratios (95% CI), rescaled to compare a difference in levels corresponding to the interquartile range of iAs%, MMA%, and DMA%, were 0.68 (0.50-0.91), 1.33 (1.02-1.74), and 1.28 (1.01-1.63), respectively, for type 1 diabetes and 0.82 (0.48-1.39), 1.09 (0.65-1.82), and 1.17 (0.77-1.77), respectively, for type 2 diabetes. In interaction analysis, the odds ratio of type 1 diabetes by MMA% was 1.80 (1.25-2.58) and 0.98 (0.70-1.38) for participants with plasma folate levels above and below the median (P for interaction = 0.02), respectively. Low iAs% versus high MMA% and DMA% was associated with a higher odds of type 1 diabetes, with a potential interaction by folate levels. These data support further research on the role of arsenic metabolism in type 1 diabetes, including the interplay with one-carbon metabolism biomarkers. © 2017 by the American Diabetes Association.

  14. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    PubMed Central

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure. PMID:26784217

  15. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household.

    PubMed

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-16

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family's residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  16. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water

    PubMed Central

    Spayd, Steven E.; Robson, Mark G.; Buckley, Brian T.

    2014-01-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples were collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations were significantly lower (p < 0.0005) in the point-of-entry treatment group (2.5 μg/g creatinine) than in the point-of-use treatment group (7.2 μg/g creatinine). The results suggest that whole house arsenic water treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment. PMID:24975493

  17. Strategies for the Engineered Phytoremediation of Mercury and Arsenic Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhankher, Om Parkash; Meagher, Richard B.

    2003-03-26

    Phytoremediation is the use of plants to extract, transport, detoxify and/or sequester pollutants of the land, water or air. Mercury and arsenic are among the worst environmental pollutants, adversely affecting the health of hundreds of millions of people worldwide. We have demonstrated that plants can be engineered to take up and tolerate several times the levels of mercury and arsenic that would kill most plant species. Starting with methylmercury and/or ionic mercury contamination, mercury is detoxified, stored below or above ground, and even volatilized as part of the transpiration process and keeping it out of the food chain. Initial effortsmore » with arsenate demonstrate that it can be taken up, transported aboveground, electrochemically reduced to arsenite in leaves and sequestered in thiol-rich peptide complexes. The transgenic mercury remediation strategies also worked in cultivated and wild plant species like canola, rice and cottonwood.« less

  18. [Study on the variation of arsenic concentration in groundwater and chemical characteristics of arsenic in sediment cores at the areas with endemic arsenic poison disease in Jianghan Plain].

    PubMed

    Zhou, Suhua; Ye, Hengpeng; Li, Mingjian; Xiong, Peisheng; Du, Dongyun; Wang, Jingwen

    2015-06-01

    To understand the variation of arsenic concentration in underground water at the endemic arsenic poison disease area of Jianghan Plain so as to better understand the spatial distribution of high arsenic groundwater, hydro-chemical evolution and source of arsenic in this region. Thirty underground water samples were collected respectively around 3 km radius of the two houses where arsenic poisoning patients lived, in Xiantao and Honghu. Sediment cores of three drillings were collected as well. Both paired t-test or paired Wilcoxon Signed Ranking Test were used to compare the arsenic concentration of water. The arsenic concentration in 2011-2012 appeared lower than that in 2006-2007 at the Nanhong village of Xiantao (t = 4.645 3, P < 0.000 1), but was higher (S = -150, P < 0.000 1) in the Yaohe village of Honghu. The pH value showed weak acidity with Eh as weak oxidated. Positive correlations were observed between arsenic concentration and Cl, HCO3(-), Fe, Mn. However, negative correlations were found between As and SO4(2-), NO3(-). The range of arsenic content in the sediment was 1.500 mg/kg to 17.289 mg/kg. The maximum arsenic content existed in the soil layer, while the minimum arsenic content existed in the sand layer. The concentration of arsenic varied widely with time and space at endemic arsenic poison disease area of Jianghan Plain. Characteristics of these water chemicals showed significant differences, when compared to the groundwater from Datong Basin, Shanxi Shanyin and Hetao Plain of Inner Mongolia, which presented a typical environment with high arsenic contents in the groundwater. The arsenic content in the sediment samples seemed related to the lithologic structure.

  19. Speciation of arsenic in different types of nuts by ion chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Kannamkumarath, Sasi S; Wróbel, Kazimierz; Wróbel, Katarzyna; Caruso, Joseph A

    2004-03-24

    In this work the quantitative determination and analytical speciation of arsenic were undertaken in different types of nuts, randomly purchased from local markets. The hardness of the whole nuts and high lipid content made the preparation of this material difficult for analysis. The lack of sample homogeneity caused irreproducible results. To improve the precision of analysis, arsenic was determined separately in nut oil and in the defatted sample. The lipids were extracted from the ground sample with the two portions of a mixture of chloroform and methanol (2:1). The defatted material was dried and ground again, yielding a fine powder. The nut oil was obtained by combining the two organic extracts and by evaporating the solvents. The two nut fractions were microwave digested, and total arsenic was determined by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained for oils from different types of nuts showed element concentration in the range 2.9-16.9 ng g(-)(1). Lower levels of arsenic were found in defatted material (<0.1 ng g(-)(1) with the exception of Brazil nuts purchased with and without shells, 3.0 and 2.8 ng g(-)(1) respectively). For speciation analysis of arsenic in nut oils, elemental species were extracted from 2 g of oil with 12 mL of chloroform/methanol (2:1) and 8 mL of deionized water. The aqueous layer, containing polar arsenic species, was evaporated and the residue dissolved and analyzed by ion chromatography-ICP-MS. The anion exchange chromatography enabled separation of As(III), dimethylarsinic acid (DMAs(V)), monomethylarsonic acid (MMAs(V)), and As(V) within 8 min. Several types of nuts were analyzed, including walnuts, Brazil nuts, almonds, cashews, pine nuts, peanuts, pistachio nuts, and sunflower seeds. The recovery for the speciation procedure was in the range 72.7-90.6%. The primary species found in the oil extracts were As(III) and As(V). The arsenic concentration levels in these two species were 0.7-12.7 and 0

  20. Difference of toxicity and accumulation of methylated and inorganic arsenic in arsenic-hyperaccumulating and -hypertolerant plants.

    PubMed

    Huang, Ze-Chun; Chen, Tong-Bin; Lei, Mei; Liu, Ying-Ru; Hu, Tian-Dou

    2008-07-15

    The arsenic (As) hyperaccumulators, Pteris vittata and Pteris cretica and an As-tolerant plant Boehmeria nivea, were selected to compare the toxicity, uptake, and transportation of inorganic arsenate (As(V)) and its methylated counterpart dimethylarsinic acid (DMA). The XANES method was used to elucidate the effect of As species transformation on As toxicity and accumulation characteristics. Significantly higher toxicity and lower accumulation of DMAthan inorganic As(V) was shown in the As hyperaccumulators and the As-tolerant plant. Reduction of As(V) was commonly found in the plants. Arsenic complexation with thiols, which have less mobility in plants and usually occur in As-tolerant plants, was also found in rhizoids of P. cretica. Plants with greater ability to form As-thiolate have lower ability for upward transport of As. Demethylation of DMA occurred in the three plants. The DMA component decreased from the rhizoids to the fronds in both hyperaccumulators, while this tendency is reverse in B. nivea.

  1. Arsenic Exposure and Toxicology: A Historical Perspective

    PubMed Central

    Hughes, Michael F.; Beck, Barbara D.; Chen, Yu; Lewis, Ari S.; Thomas, David J.

    2011-01-01

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states of arsenic because it forms alloys with metals and covalent bonds with hydrogen, oxygen, carbon, and other elements. Environmentally relevant forms of arsenic are inorganic and organic existing in the trivalent or pentavalent state. Metabolism of arsenic, catalyzed by arsenic (+3 oxidation state) methyltransferase, is a sequential process of reduction from pentavalency to trivalency followed by oxidative methylation back to pentavalency. Trivalent arsenic is generally more toxicologically potent than pentavalent arsenic. Acute effects of arsenic range from gastrointestinal distress to death. Depending on the dose, chronic arsenic exposure may affect several major organ systems. A major concern of ingested arsenic is cancer, primarily of skin, bladder, and lung. The mode of action of arsenic for its disease endpoints is currently under study. Two key areas are the interaction of trivalent arsenicals with sulfur in proteins and the ability of arsenic to generate oxidative stress. With advances in technology and the recent development of animal models for arsenic carcinogenicity, understanding of the toxicology of arsenic will continue to improve. PMID:21750349

  2. Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada

    USGS Publications Warehouse

    Wilkie, J.A.; Hering, J.G.

    1998-01-01

    Arsenic redox cycling was examined in source waters of the Los Angeles Aqueduct, specifically at Hot Creek, a tributary of the Owens River. Elevated arsenic concentrations in Hot Creek result from geothermal inputs. Total arsenic and As(III) concentrations were determined in the creek and in hot spring pools along its banks. Samples were processed in the field using anion-exchange columns to separate inorganic As(III) and As(V) species. Downstream of the geothermal inputs, decreasing contributions of As(III) to total arsenic concentrations indicated rapid in-stream oxidation of As(III) to As(V) with almost complete oxidation occurring within 1200 m. Based on assumed plug flow transport and a flow velocity of about 0.4 m/s, the pseudo- first-order half-life calculated for this reaction was approximately 0.3 h. Conservative transport of total dissolved arsenic was observed over the reach. Pseudo-first-order reaction rates determined for As(III) oxidation in batch studies conducted in the field with aquatic macrophytes and/or macrophyte surface matter were comparable to the in-stream oxidation rate observed along Hot Creek. In batch kinetic studies, oxidation was not observed after sterile filtration or after the addition of antibiotics, which indicates that bacteria attached to submerged macrophytes are mediating the rapid As(III) oxidation reaction.Arsenic redox cycling was examined in source waters of the Los Angeles Aqueduct, specifically at Hot Creek, a tributary of the Owens River. Elevated arsenic concentrations in Hot Creek result from geothermal inputs. Total arsenic and As(III) concentrations were determined in the creek and in hot spring pools along its banks. Samples were processed in the field using anion-exchange columns to separate inorganic As(III) and As(V) species. Downstream of the geothermal inputs, decreasing contributions of As(III) to total arsenic concentrations indicated rapid in-stream oxidation of As(III) to As(V) with almost complete

  3. Well Water Arsenic Exposure, Arsenic Induced Skin-Lesions and Self-Reported Morbidity in Inner Mongolia

    PubMed Central

    Xia, Yajuan; Wade, Timothy J.; Wu, Kegong; Li, Yanhong; Ning, Zhixiong; Le, X Chris; He, Xingzhou; Chen, Binfei; Feng, Yong; Mumford, Judy L.

    2009-01-01

    Residents of the Bayingnormen region of Inner Mongolia have been exposed to arsenic-contaminated well water for over 20 years, but relatively few studies have investigated health effects in this region. We surveyed one village to document exposure to arsenic and assess the prevalence of arsenic-associated skin lesions and self-reported morbidity. Five-percent (632) of the 12,334 residents surveyed had skin lesions characteristics of arsenic exposure. Skin lesions were strongly associated with well water arsenic and there was an elevated prevalence among residents with water arsenic exposures as low as 5 μg/L-10 μg/L. The presence of skin lesions was also associated with self-reported cardiovascular disease. PMID:19440430

  4. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species.

    PubMed

    Avelelas, Francisco; Martins, Roberto; Oliveira, Tânia; Maia, Frederico; Malheiro, Eliana; Soares, Amadeu M V M; Loureiro, Susana; Tedim, João

    2017-04-01

    Biofouling is a global problem that affects virtually all the immersed structures. Currently, several novel environmentally friendly approaches are being tested worldwide to decrease the toxicity of biocides in non-fouling species, such as the encapsulation/immobilization of commercially available biocides, in order to achieve control over the leaching rate. The present study addresses the toxicity of two widely used booster biocides, zinc pyrithione (ZnPT) and copper pyrithione (CuPT), in its free and incorporated forms in order to assess their toxicity and anti-fouling efficacy in target and non-target species. To achieve this goal, the following marine organisms were tested; the green microalgae Tetraselmis chuii (non-target species) and both target species, the diatom Phaeodactylum tricornutum and the mussel Mytilus edulis. Organisms were exposed to both biocides, two unloaded nanostructured materials and nanomaterials loaded with biocides, from 10 μg/L to 100 mg/L total weight, following standard protocols. The most eco-friendly and simultaneously efficient anti-fouling solution against the two photosynthetic species (nanoclays loaded with ZnPT) was then tested on mussels to assess its lethal efficacy (LC 50  = 123 μg/L) and compared with free biocide (LC 50  = 211 μg/L) and unloaded material (LC 50  > 1000 μg/L). A second exposure test with sub-lethal concentrations (lower than 100 μg/L), using mussels, was carried out to assess biochemical changes caused by the tested compounds. Oxidative stress, detoxification and neurotransmission markers were not responsive; however, different antioxidant patterns were found with free ZnPT and loaded nanoclay exposures. Thus, the immobilization of the biocide ZnPT into nanoclays proved to be a promising efficient and eco-friendly anti-fouling strategy.

  5. Arsenic-gene interactions and beta-cell function in the Strong Heart Family Study.

    PubMed

    Balakrishnan, Poojitha; Navas-Acien, Ana; Haack, Karin; Vaidya, Dhananjay; Umans, Jason G; Best, Lyle G; Goessler, Walter; Francesconi, Kevin A; Franceschini, Nora; North, Kari E; Cole, Shelley A; Voruganti, V Saroja; Gribble, Matthew O

    2018-06-01

    We explored arsenic-gene interactions influencing pancreatic beta-cell activity in the Strong Heart Family Study (SHFS). We considered 42 variants selected for associations with either beta-cell function (31 variants) or arsenic metabolism (11 variants) in the SHFS. Beta-cell function was calculated as homeostatic model - beta corrected for insulin resistance (cHOMA-B) by regressing homeostatic model - insulin resistance (HOMA-IR) on HOMA-B and adding mean HOMA-B. Arsenic exposure was dichotomized at the median of the sum of creatinine-corrected inorganic and organic arsenic species measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). Additive GxE models for cHOMA-B were adjusted for age and ancestry, and accounted for family relationships. Models were stratified by center (Arizona, Oklahoma, North Dakota and South Dakota) and meta-analyzed. The two interactions between higher vs. lower arsenic and SNPs for cHOMA-B that were nominally significant at P < 0.05 were with rs10738708 (SNP overall effect -3.91, P = 0.56; interaction effect with arsenic -31.14, P = 0.02) and rs4607517 (SNP overall effect +16.61, P = 0.03; interaction effect with arsenic +27.02, P = 0.03). The corresponding genes GCK and TUSC1 suggest oxidative stress and apoptosis as possible mechanisms for arsenic impacts on beta-cell function. No interactions were Bonferroni-significant (1.16 × 10 -3 ). Our findings are suggestive of oligogenic moderation of arsenic impacts on pancreatic β-cell endocrine function, but were not Bonferroni-significant. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, C.-J.; Huang, C.-J.; Pu, Y.-S.

    2008-01-01

    Arsenic is a well-documented human carcinogen and is known to cause oxidative stress in cultured cells and animals. A hospital-based case-control study was conducted to evaluate the relationship among the levels of urinary 8-hydroxydeoxyguanosine (8-OHdG), the arsenic profile, and urothelial carcinoma (UC). Urinary 8-OHdG was measured by using high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits. The urinary species of inorganic arsenic and their metabolites were analyzed by high-performance liquid chromatography (HPLC) and hydride generator-atomic absorption spectrometry (HG-AAS). This study showed that the mean urinary concentration of total arsenics was significantly higher, at 37.67 {+-} 2.98 {mu}g/g creatinine, for UC patients thanmore » for healthy controls of 21.10 {+-} 0.79 {mu}g/g creatinine (p < 0.01). Urinary 8-OHdG levels correlated with urinary total arsenic concentrations (r = 0.19, p < 0.01). There were significantly higher 8-OHdG levels, of 7.48 {+-} 0.97 ng/mg creatinine in UC patients, compared to healthy controls of 5.95 {+-} 0.21 ng/mg creatinine. Furthermore, female UC patients had higher 8-OHdG levels of 9.22 {+-} 0.75 than those of males at 5.76 {+-} 0.25 ng/mg creatinine (p < 0.01). Multiple linear regression analyses revealed that high urinary 8-OHdG levels were associated with increased total arsenic concentrations, inorganic arsenite, monomethylarsonic acid (MMA), and dimethylarsenate (DMA) as well as the primary methylation index (PMI) even after adjusting for age, gender, and UC status. The results suggest that oxidative DNA damage was associated with arsenic exposure, even at low urinary level of arsenic.« less

  7. Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic

    PubMed Central

    Georgopoulos, Panos G.; Wang, Sheng-Wei; Yang, Yu-Ching; Xue, Jianping; Zartarian, Valerie G.; Mccurdy, Thomas; Özkaynak, Halûk

    2011-01-01

    This article presents an integrated, biologically based, source-to-dose assessment framework for modeling multimedia/multipathway/multiroute exposures to arsenic. Case studies demonstrating this framework are presented for three US counties (Hunderton County, NJ; Pima County, AZ; and Franklin County, OH), representing substantially different conditions of exposure. The approach taken utilizes the Modeling ENvironment for TOtal Risk studies (MENTOR) in an implementation that incorporates and extends the approach pioneered by Stochastic Human Exposure and Dose Simulation (SHEDS), in conjunction with a number of available databases, including NATA, NHEXAS, CSFII, and CHAD, and extends modeling techniques that have been developed in recent years. Model results indicate that, in most cases, the food intake pathway is the dominant contributor to total exposure and dose to arsenic. Model predictions are evaluated qualitatively by comparing distributions of predicted total arsenic amounts in urine with those derived using biomarker measurements from the NHEXAS — Region V study: the population distributions of urinary total arsenic levels calculated through MENTOR and from the NHEXAS measurements are in general qualitative agreement. Observed differences are due to various factors, such as interindividual variation in arsenic metabolism in humans, that are not fully accounted for in the current model implementation but can be incorporated in the future, in the open framework of MENTOR. The present study demonstrates that integrated source-to-dose modeling for arsenic can not only provide estimates of the relative contributions of multipathway exposure routes to the total exposure estimates, but can also estimate internal target tissue doses for speciated organic and inorganic arsenic, which can eventually be used to improve evaluation of health risks associated with exposures to arsenic from multiple sources, routes, and pathways. PMID:18073786

  8. Arsenic in Cancer Treatment: Challenges for Application of Realgar Nanoparticles (A Minireview)

    PubMed Central

    Baláž, Peter; Sedlák, Ján

    2010-01-01

    While intensive efforts have been made for the treatment of cancer, this disease is still the second leading cause of death in many countries. Metastatic breast cancer, late-stage colon cancer, malignant melanoma, multiple myeloma, and other forms of cancer are still essentially incurable in most cases. Recent advances in genomic technologies have permitted the simultaneous evaluation of DNA sequence-based alterations together with copy number gains and losses. The requirement for a multi-targeting approach is the common theme that emerges from these studies. Therefore, the combination of new targeted biological and cytotoxic agents is currently under investigation in multimodal treatment regimens. Similarly, a combinational principle is applied in traditional Chinese medicine, as formulas consist of several types of medicinal herbs or minerals, in which one represents the principal component, and the others serve as adjuvant ones that assist the effects, or facilitate the delivery, of the principal component. In Western medicine, approximately 60 different arsenic preparations have been developed and used in pharmacological history. In traditional Chinese medicines, different forms of mineral arsenicals (orpiment—As2S3, realgar—As4S4, and arsenolite—arsenic trioxide, As2O3) are used, and realgar alone is included in 22 oral remedies that are recognized by the Chinese Pharmacopeia Committee (2005). It is known that a significant portion of some forms of mineral arsenicals is poorly absorbed into the body, and would be unavailable to cause systemic damage. This review primary focuses on the application of arsenic sulfide (realgar) for treatment of various forms of cancer in vitro and in vivo. PMID:22069650

  9. INFLUENCE OF DIETARY ARSENIC ON URINARY ARSENIC METABOLITE EXCRETION

    EPA Science Inventory

    Influence of Dietary Arsenic on Urinary Arsenic Metabolite Excretion

    Cara L. Carty, M.S., Edward E. Hudgens, B.Sc., Rebecca L. Calderon, Ph.D., M.S.P.H., Richard Kwok, M.S.P.H., Epidemiology and Biomarkers Branch/HSD, NHEERL/US EPA; David J. Thomas, Ph.D., Pharmacokinetics...

  10. Arsenic Trioxide Injection

    MedlinePlus

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  11. Estimation of Inorganic Arsenic Exposure in Populations With Frequent Seafood Intake: Evidence From MESA and NHANES

    PubMed Central

    Jones, Miranda R.; Tellez-Plaza, Maria; Vaidya, Dhananjay; Grau, Maria; Francesconi, Kevin A.; Goessler, Walter; Guallar, Eliseo; Post, Wendy S.; Kaufman, Joel D.; Navas-Acien, Ana

    2016-01-01

    The sum of urinary inorganic arsenic (iAs) and methylated arsenic (monomethylarsonate and dimethylarsinate (DMA)) species is the main biomarker of iAs exposure. Assessing iAs exposure, however, is difficult in populations with moderate-to-high seafood intakes. In the present study, we used subsamples from the Multi-Ethnic Study of Atherosclerosis (2000–2002) (n = 310) and the 2003–2006 National Health and Nutrition Examination Survey (n = 1,175). We calibrated urinary concentrations of non–seafood-derived iAs, DMA, and methylarsonate, as well as the sum of inorganic and methylated arsenic species, in the Multi-Ethnic Study of Atherosclerosis and of DMA in the National Health and Nutrition Examination Survey by regressing their original concentrations by arsenobetaine and extracting model residuals. To confirm that calibrated biomarkers reflected iAs exposure but not seafood intake, we compared urinary arsenic concentrations by levels of seafood and rice intakes. Self-reported seafood intakes, estimated n-3 polyunsaturated fatty acid levels, and measured n-3 polyunsaturated fatty acid levels were positively associated with the original urinary arsenic biomarkers. Using the calibrated arsenic biomarkers, we found a marked attenuation of the associations with self-reported seafood intake and estimated or measured n-3 fatty acids, whereas associations with self-reported rice intake remained similar. Our residual-based method provides estimates of iAs exposure and metabolism for each participant that no longer reflect seafood intake and can facilitate research about low-to-moderate levels of iAs exposure in populations with high seafood intakes. PMID:27702745

  12. Managing hazardous pollutants in Chile: arsenic.

    PubMed

    Sancha, Ana María; O'Ryan, Raul

    2008-01-01

    Chile is one of the few countries that faces the environmental challenge posed by extensive arsenic pollution, which exists in the northern part of the country. Chile has worked through various options to appropriately address the environmental challenge of arsenic pollution of water and air. Because of cost and other reasons, copying standards used elsewhere in the world was not an option for Chile. Approximately 1.8 million people, representing about 12% of the total population of the country, live in arsenic-contaminated areas. In these regions, air, water, and soil are contaminated with arsenic from both natural and anthropogenic sources. For long periods, water consumed by the population contained arsenic levels that exceeded values recommended by the World Health Organization. Exposure to airborne arsenic also occurred near several large cities, as a consequence of both natural contamination and the intensive mining activity carried out in those areas. In rural areas, indigenous populations, who lack access to treated water, were also exposed to arsenic by consuming foods grown locally in arsenic-contaminated soils. Health effects in children and adults from arsenic exposure first appeared in the 1950s. Such effects included vascular, respiratory, and skin lesions from intake of high arsenic levels in drinking water. Methods to remove arsenic from water were evaluated, developed, and implemented that allowed significant reductions in exposure at a relatively low cost. Construction and operation of treatment plants to remove arsenic from water first began in the 1970s. Beginning in the 1990s, epidemiological studies showed that the rate of lung and bladder cancer in the arsenic-polluted area was considerably higher than mean cancer rates for the country. Cancer incidence was directly related to arsenic exposure. During the 1990s, international pressure and concern by Chile's Health Ministry prompted action to regulate arsenic emissions from copper smelters. A

  13. [Arsenical keratosis treated by dermatome shaving].

    PubMed

    Kjerkegaard, Ulrik Knap; Heje, Jens Martin; Vestergaard, Christian; Stausbøl-Grøn, Birgitte; Stolle, Lars Bjørn

    2014-05-05

    Cutaneous malignancy in association with arsenic exposure is a rare but well-documented phenomenon. Signs of chronic arsenic exposure are very rare in Denmark today. However, arsenic was used in the medical treatment of psoriasis vulgaris up till the 1980's and several patients suffer from this arsenic treatment today. This case report shows that arsenical keratosis can be treated by dermatome shaving, a superficial destructive therapy.

  14. Climate warming increases biological control agent impact on a non-target species

    PubMed Central

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303

  15. In utero and early childhood exposure to arsenic decreases lung function in children

    PubMed Central

    Recio-Vega, Rogelio; Gonzalez-Cortes, Tania; Olivas-Calderon, Edgar; Lantz, R. Clark; Gandolfi, A. Jay; Gonzalez-De Alba, Cesar

    2016-01-01

    Background The lung is a target organ for adverse health outcomes following exposure to arsenic. Several studies have reported a high prevalence of respiratory symptoms and diseases in subjects highly exposed to arsenic through drinking water, however, most studies to date has been performed in exposed adults, with little information on respiratory effects in children. The objective of the study was to evaluate the association between urinary levels of arsenic and its metabolites with lung function in children exposed in utero and in early childhood to high arsenic levels through drinking water. Methods A total of 358 healthy children were included in our study. Individual exposure was assessed based on urinary concentration of inorganic arsenic. Lung function was assessed by spirometry. Results Participants were exposed since pregnancy until early childhood to an average water As concentration of 152.13 μg/L. The mean urinary arsenic level registered in the studied subjects was 141.2 μg/L and only 16.7% had a urinary concentration below the national concern level. Forced vital capacity was significantly decreased in the studied population and it was negatively associated with the percent of inorganic arsenic. More than 57% of the subjects had a restrictive spirometric pattern. The urinary As level was higher in those children with restrictive lung patterns when compared with the levels registered in subjects with normal spirometric patterns. Conclusion Exposure to arsenic through drinking water during in utero and early life was associated with a decrease in FVC and with a restrictive spirometric pattern in the children evaluated. PMID:25131850

  16. Arsenic Exposure, Arsenic Metabolism, and Incident Diabetes in the Strong Heart Study

    PubMed Central

    Howard, Barbara V.; Umans, Jason G.; Gribble, Matthew O.; Best, Lyle G.; Francesconi, Kevin A.; Goessler, Walter; Lee, Elisa; Guallar, Eliseo; Navas-Acien, Ana

    2015-01-01

    OBJECTIVE Little is known about arsenic metabolism in diabetes development. We investigated the prospective associations of low-moderate arsenic exposure and arsenic metabolism with diabetes incidence in the Strong Heart Study. RESEARCH DESIGN AND METHODS A total of 1,694 diabetes-free participants aged 45–75 years were recruited in 1989–1991 and followed through 1998–1999. We used the proportions of urine inorganic arsenic (iAs), monomethylarsonate (MMA), and dimethylarsinate (DMA) over their sum (expressed as iAs%, MMA%, and DMA%) as the biomarkers of arsenic metabolism. Diabetes was defined as fasting glucose ≥126 mg/dL, 2-h glucose ≥200 mg/dL, self-reported diabetes history, or self-reported use of antidiabetic medications. RESULTS Over 11,263.2 person-years of follow-up, 396 participants developed diabetes. Using the leave-one-out approach to model the dynamics of arsenic metabolism, we found that lower MMA% was associated with higher diabetes incidence. The hazard ratios (95% CI) of diabetes incidence for a 5% increase in MMA% were 0.77 (0.63–0.93) and 0.82 (0.73–0.92) when iAs% and DMA%, respectively, were left out of the model. DMA% was associated with higher diabetes incidence only when MMA% decreased (left out of the model) but not when iAs% decreased. iAs% was also associated with higher diabetes incidence when MMA% decreased. The association between MMA% and diabetes incidence was similar by age, sex, study site, obesity, and urine iAs concentrations. CONCLUSIONS Arsenic metabolism, particularly lower MMA%, was prospectively associated with increased incidence of diabetes. Research is needed to evaluate whether arsenic metabolism is related to diabetes incidence per se or through its close connections with one-carbon metabolism. PMID:25583752

  17. Influence of water management on the active root-associated microbiota involved in arsenic, iron, and sulfur cycles in rice paddies.

    PubMed

    Zecchin, Sarah; Corsini, Anna; Martin, Maria; Cavalca, Lucia

    2017-09-01

    In recent years, the role of microorganisms inhabiting rice rhizosphere in promoting arsenic contamination has emerged. However, little is known concerning the species and metabolic properties involved in this phenomenon. In this study, the influence of water management on the rhizosphere microbiota in relation to arsenic dissolution in soil solution was tested. Rice plants were cultivated in macrocosms under different water regimes: continuous flooding, continuous flooding with a 2-week period drainage before flowering, and dry soil watered every 10 days. The active bacterial communities in rhizosphere soil and in rhizoplane were characterized by 16S rRNA pyrosequencing. An in-depth analysis of microbial taxa with direct or indirect effects on arsenic speciation was performed and related contribution was evaluated. Continuous flooding promoted high diversity in the rhizosphere, with the plant strongly determining species richness and evenness. On the contrary, under watering the communities were uniform, with little differences between rhizosphere soil and rhizoplane. Arsenic-releasing and arsenite-methylating bacteria were selected by continuous flooding, where they represented 8% of the total. On the contrary, bacteria decreasing arsenic solubility were more abundant under watering, with relative abundance of 10%. These values reflected arsenic concentrations in soil solution: 135 μg L -1 and negligible in continuous flooding and under watering, respectively. When short-term drainage was applied before flowering, intermediate conditions were achieved. This evidence strongly indicates an active role of the rhizosphere microbiota in driving arsenic biogeochemistry in rice paddies, influenced by water management, explaining amounts and speciation of arsenic often found in rice grains.

  18. Using habitat suitability models to target invasive plant species surveys

    USGS Publications Warehouse

    Crall, Alycia W.; Jarnevich, Catherine S.; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P 2) = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be

  19. Oncogenomic disruptions in arsenic-induced carcinogenesis

    PubMed Central

    Ng, Kevin W.; Stewart, Greg L.; Dummer, Trevor J.B.; Lam, Wan L.; Martinez, Victor D

    2017-01-01

    Chronic exposure to arsenic affects more than 200 million people worldwide, and has been associated with many adverse health effects, including cancer in several organs. There is accumulating evidence that arsenic biotransformation, a step in the elimination of arsenic from the human body, can induce changes at a genetic and epigenetic level, leading to carcinogenesis. At the genetic level, arsenic interferes with key cellular processes such as DNA damage-repair and chromosomal structure, leading to genomic instability. At the epigenetic level, arsenic places a high demand on the cellular methyl pool, leading to global hypomethylation and hypermethylation of specific gene promoters. These arsenic-associated DNA alterations result in the deregulation of both oncogenic and tumour-suppressive genes. Furthermore, recent reports have implicated aberrant expression of non-coding RNAs and the consequential disruption of signaling pathways in the context of arsenic-induced carcinogenesis. This article provides an overview of the oncogenomic anomalies associated with arsenic exposure and conveys the importance of non-coding RNAs in the arsenic-induced carcinogenic process. PMID:28179585

  20. Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride.

    PubMed

    Andrianisa, Harinaivo Anderson; Ito, Ayumi; Sasaki, Atsushi; Aizawa, Jiro; Umita, Teruyuki

    2008-12-01

    The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.