Sample records for target aspect angle

  1. Sparse representation based SAR vehicle recognition along with aspect angle.

    PubMed

    Xing, Xiangwei; Ji, Kefeng; Zou, Huanxin; Sun, Jixiang

    2014-01-01

    As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC) has attracted much attention in synthetic aperture radar (SAR) automatic target recognition (ATR) recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA), in which the correlation between the vehicle's aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA) feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle's aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.

  2. Variability and robustness of scatterers in HRR/ISAR ground target data and its influence on the ATR performance

    NASA Astrophysics Data System (ADS)

    Schumacher, R.; Schimpf, H.; Schiller, J.

    2011-06-01

    The most challenging problem of Automatic Target Recognition (ATR) is the extraction of robust and independent target features which describe the target unambiguously. These features have to be robust and invariant in different senses: in time, between aspect views (azimuth and elevation angle), between target motion (translation and rotation) and between different target variants. Especially for ground moving targets in military applications an irregular target motion is typical, so that a strong variation of the backscattered radar signal with azimuth and elevation angle makes the extraction of stable and robust features most difficult. For ATR based on High Range Resolution (HRR) profiles and / or Inverse Synthetic Aperture Radar (ISAR) images it is crucial that the reference dataset consists of stable and robust features, which, among others, will depend on the target aspect and depression angle amongst others. Here it is important to find an adequate data grid for an efficient data coverage in the reference dataset for ATR. In this paper the variability of the backscattered radar signals of target scattering centers is analyzed for different HRR profiles and ISAR images from measured turntable datasets of ground targets under controlled conditions. Especially the dependency of the features on the elevation angle is analyzed regarding to the ATR of large strip SAR data with a large range of depression angles by using available (I)SAR datasets as reference. In this work the robustness of these scattering centers is analyzed by extracting their amplitude, phase and position. Therefore turntable measurements under controlled conditions were performed targeting an artificial military reference object called STANDCAM. Measures referring to variability, similarity, robustness and separability regarding the scattering centers are defined. The dependency of the scattering behaviour with respect to azimuth and elevation variations is analyzed. Additionally generic types of features (geometrical, statistical), which can be derived especially from (I)SAR images, are applied to the ATR-task. Therefore subsequently the dependence of individual feature values as well as the feature statistics on aspect (i.e. azimuth and elevation) are presented. The Kolmogorov-Smirnov distance will be used to show how the feature statistics is influenced by varying elevation angles. Finally, confusion matrices are computed between the STANDCAM target at all eleven elevation angles. This helps to assess the robustness of ATR performance under the influence of aspect angle deviations between training set and test set.

  3. Radar target classification method with high accuracy and decision speed performance using MUSIC spectrum vectors and PCA projection

    NASA Astrophysics Data System (ADS)

    Secmen, Mustafa

    2011-10-01

    This paper introduces the performance of an electromagnetic target recognition method in resonance scattering region, which includes pseudo spectrum Multiple Signal Classification (MUSIC) algorithm and principal component analysis (PCA) technique. The aim of this method is to classify an "unknown" target as one of the "known" targets in an aspect-independent manner. The suggested method initially collects the late-time portion of noise-free time-scattered signals obtained from different reference aspect angles of known targets. Afterward, these signals are used to obtain MUSIC spectrums in real frequency domain having super-resolution ability and noise resistant feature. In the final step, PCA technique is applied to these spectrums in order to reduce dimensionality and obtain only one feature vector per known target. In the decision stage, noise-free or noisy scattered signal of an unknown (test) target from an unknown aspect angle is initially obtained. Subsequently, MUSIC algorithm is processed for this test signal and resulting test vector is compared with feature vectors of known targets one by one. Finally, the highest correlation gives the type of test target. The method is applied to wire models of airplane targets, and it is shown that it can tolerate considerable noise levels although it has a few different reference aspect angles. Besides, the runtime of the method for a test target is sufficiently low, which makes the method suitable for real-time applications.

  4. Laser radar cross-section estimation from high-resolution image data.

    PubMed

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  5. Experimental investigation of correlation between fading and glint for aircraft targets

    NASA Astrophysics Data System (ADS)

    Wallin, C. M.; Aas, B.

    The correlation between the fading and glint of aircraft targets is investigated experimentally using a conventional amplitude comparison three-channel monopulse radar operating in the Ku-band. A significant correlation is found between the RCS and the variance of the angle error signals; this correlation seems to be independent of the aspect angle. The correlation between the RCS and the angle error signals themselves, however, is found to be very small.

  6. Three-dimensional Radar Imaging of a Building

    DTIC Science & Technology

    2012-12-01

    spotlight configuration and H-V ( cross ) polarization as seen from two different aspect angles. The feature colors correspond to their brightness... cross - ranges but at different heights. This effect may create significant confusion in image interpretation and result in missed target detections...over a range of azimuth angles ( centered at  = 0°) and elevation angles ( centered at 0), creating cross -range and height resolution, while

  7. Evaluation of Waveform Structure Features on Time Domain Target Recognition under Cross Polarization

    NASA Astrophysics Data System (ADS)

    Selver, M. A.; Seçmen, M.; Zoral, E. Y.

    2016-08-01

    Classification of aircraft targets from scattered electromagnetic waves is a challenging application, which suffers from aspect angle dependency. In order to eliminate the adverse effects of aspect angle, various strategies were developed including the techniques that rely on extraction of several features and design of suitable classification systems to process them. Recently, a hierarchical method, which uses features that take advantage of waveform structure of the scattered signals, is introduced and shown to have effective results. However, this approach has been applied to the special cases that consider only a single planar component of electric field that cause no-cross polarization at the observation point. In this study, two small scale aircraft models, Boeing-747 and DC-10, are selected as the targets and various polarizations are used to analyse the cross-polarization effects on system performance of the aforementioned method. The results reveal the advantages and the shortcomings of using waveform structures in time-domain target identification.

  8. Two-target game model of an air combat with fire-and-forget all-aspect missiles

    NASA Technical Reports Server (NTRS)

    Davidovitz, A.; Shinar, J.

    1989-01-01

    An air combat duel between similar aggressive fighter aircraft, both equipped with the same type of guided missiles, is formulated as a two-target differential game using the dynamic model of the game of two identical cars. Each of the identical target sets represents the effective firing envelope of an all-aspect fire-and-forget air-to-air missile. The firing range limits depend on the target aspect angle and are approximated by analytical functions. The maximum range, computed by taking into account the optimal missile avoidance maneuver of the target, determines the no-escape firing envelope. The solution consists of the decomposition of the game space into four regions: the respective winning zones of the two opponents, the draw zone, and the region where the game terminates by a mutual kill. The solution provides a new insight for future air combat analysis.

  9. The Effect of Sub-Aperture in DRIA Framework Applied on Multi-Aspect PolSAR Data

    NASA Astrophysics Data System (ADS)

    Xue, Feiteng; Yin, Qiang; Lin, Yun; Hong, Wen

    2016-08-01

    Multi-aspect SAR is a new remote sensing technology, achieves consecutive data in large look angle as platform moves. Multi- aspect observation brings higher resolution and SNR to SAR picture. Multi-aspect PolSAR data can increase the accuracy of target identify and classification because it contains the 3-D polarimetric scattering properties.DRIA(detecting-removing-incoherent-adding)framework is a multi-aspect PolSAR data processing method. In this method, the anisotropic and isotropic scattering is separated by maximum- likelihood ratio test. The anisotropic scattering is removed to gain a removal series. The isotropic scattering is incoherent added to gain a high resolution picture. The removal series describes the anisotropic scattering property and is used in features extraction and classification.This article focuses on the effect brought by difference of sub-aperture numbers in anisotropic scattering detection and removal. The more sub-apertures are, the less look angle is. Artificial target has anisotropic scattering because of Bragg resonances. The increase of sub-aperture number brings more accurate observation in azimuth though the quality of each single image may loss. The accuracy of classification in agricultural fields is affected by the anisotropic scattering brought by Bragg resonances. The size of the sub-aperture has a significant effect in the removal result of Bragg resonances.

  10. Measurements of the radar cross section and Inverse Synthetic Aperture Radar (ISAR) images of a Piper Navajo at 9.5 GHz and 49 GHz

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.

    1993-01-01

    Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).

  11. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  12. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  13. On the complexity of Engh and Huber refinement restraints: the angle τ as example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Touw, Wouter G.; Vriend, Gert, E-mail: vriend@cmbi.ru.nl

    2010-12-01

    The angle τ (backbone N—C{sup α}—C) is the most contested Engh and Huber refinement target parameter. It is shown that this parameter is ‘correct’ as a PDB-wide average, but can be improved by taking into account residue types, secondary structures and many other aspects of our knowledge of the biophysical relations between residue type and protein structure. The Engh and Huber parameters for bond lengths and bond angles have been used uncontested in macromolecular structure refinement from 1991 until very recently, despite critical discussion of their ubiquitous validity by many authors. An extensive analysis of the backbone angle τ (N—C{supmore » α}—C) illustrates that the Engh and Huber parameters can indeed be improved and a recent study [Tronrud et al. (2010 ▶), Acta Cryst. D66, 834–842] confirms these ideas. However, the present study of τ shows that improving the Engh and Huber parameters will be considerably more complex than simply making the parameters a function of the backbone ϕ, ψ angles. Many other aspects, such as the cooperativity of hydrogen bonds, the bending of secondary-structure elements and a series of biophysical aspects of the 20 amino-acid types, will also need to be taken into account. Different sets of Engh and Huber parameters will be needed for conceptually different refinement programs.« less

  14. The influence of selection for vulnerability to angling on foraging ecology in largemouth bass Micropterus salmoides.

    PubMed

    Nannini, M A; Wahl, D H; Philipp, D P; Cooke, S J

    2011-10-01

    Several traits related to foraging behaviour were assessed in young-of-the-year produced from largemouth bass Micropterus salmoides that had been exposed to four generations of artificial selection for vulnerability to angling. As recreational angling may target foraging ability, this study tested the hypothesis that selection for vulnerability to angling would affect behaviours associated with foraging ecology and prey capture success. Fish selected for low vulnerability to angling captured more prey and attempted more captures than high vulnerability fish. The higher capture attempts, however, ultimately resulted in a lower capture success for low vulnerability fish. Low vulnerability fish also had higher prey rejection rates, marginally shorter reactive distance and were more efficient at converting prey consumed into growth than their high vulnerability counterparts. Selection due to recreational fishing has the potential to affect many aspects of the foraging ecology of the targeted population and highlights the importance of understanding evolutionary effects and how these need to be considered when managing populations. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  15. Monostatic Radar Cross Section Estimation of Missile Shaped Object Using Physical Optics Method

    NASA Astrophysics Data System (ADS)

    Sasi Bhushana Rao, G.; Nambari, Swathi; Kota, Srikanth; Ranga Rao, K. S.

    2017-08-01

    Stealth Technology manages many signatures for a target in which most radar systems use radar cross section (RCS) for discriminating targets and classifying them with regard to Stealth. During a war target’s RCS has to be very small to make target invisible to enemy radar. In this study, Radar Cross Section of perfectly conducting objects like cylinder, truncated cone (frustum) and circular flat plate is estimated with respect to parameters like size, frequency and aspect angle. Due to the difficulties in exactly predicting the RCS, approximate methods become the alternative. Majority of approximate methods are valid in optical region and where optical region has its own strengths and weaknesses. Therefore, the analysis given in this study is purely based on far field monostatic RCS measurements in the optical region. Computation is done using Physical Optics (PO) method for determining RCS of simple models. In this study not only the RCS of simple models but also missile shaped and rocket shaped models obtained from the cascaded objects with backscatter has been computed using Matlab simulation. Rectangular plots are obtained for RCS in dbsm versus aspect angle for simple and missile shaped objects using Matlab simulation. Treatment of RCS, in this study is based on Narrow Band.

  16. The flip-over effect in pulsed laser deposition: Is it relevant at high background gas pressures?

    NASA Astrophysics Data System (ADS)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-12-01

    In pulsed laser deposition the use of a rectangular or elliptical beam spot with a non 1:1 aspect ratio leads to the so called flip-over effect. Here, the longest dimension of the laser spot results in the shortest direction of plasma plume expansion. This effect has been mainly reported for vacuum depositions of single element targets and is particularly noticeable when the aspect ratio of the beam spot is large. We investigate the flip-over effect in vacuum and at three relevant background-gas pressures for pulsed laser deposition using a La0.4Ca0.6MnO3 target by measuring the thickness dependence of the deposited material as a function of angle. The film thicknesses and compositions are determined by Rutherford backscattering and argon is used to reduce the influence of additional chemical reactions in the plasma. The results show the prevalence of the flip-over effect for all pressures except for the highest, i.e. 1 × 10-1 mbar, where the film thickness is constant for all angles. The composition profiles show noticeable compositional variations of up to 30% with respect to the target material depending on the background gas pressure, the angular location, and the laser spot dimensions.

  17. Electromagnetic inverse scattering

    NASA Technical Reports Server (NTRS)

    Bojarski, N. N.

    1972-01-01

    A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular integral equation is developed for the arbitrary case of incomplete frequence and/or aspect angle scattering information. A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, yielding short-pulse target resolution radar system parameter equations. The special cases of two- and one-dimensional inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits of this solution over the conventional radar imaging technique are discussed.

  18. Through-the-Wall Radar Simulations for Complex Room Imaging

    DTIC Science & Technology

    2010-05-01

    obtained by combining images from different aspect angles. We demonstrate the advantages of using cross -polarization for detecting human targets. We...3. Numerical Results 6 3.1 SAR Images from a Ground-based Radar System ..........................................................6 3.2 Using Cross ...bottom row contains the cross -correlation between the images created by the two methods. ....................16 vi Acknowledgments This study

  19. Getting NuSTAR on target: predicting mast motion

    NASA Astrophysics Data System (ADS)

    Forster, Karl; Madsen, Kristin K.; Miyasaka, Hiromasa; Craig, William W.; Harrison, Fiona A.; Rana, Vikram R.; Markwardt, Craig B.; Grefenstette, Brian W.

    2016-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high energy (3-79 keV) X-ray observatory operating for four years from low Earth orbit. The X-ray detector arrays are located on the spacecraft bus with the optics modules mounted on a flexible mast of 10.14m length. The motion of the telescope optical axis on the detectors during each observation is measured by a laser metrology system and matches the pre-launch predictions of the thermal flexing of the mast as the spacecraft enters and exits the Earths shadow each orbit. However, an additional motion of the telescope field of view was discovered during observatory commissioning that is associated with the spacecraft attitude control system and an additional flexing of the mast correlated with the Solar aspect angle for the observation. We present the methodology developed to predict where any particular target coordinate will fall on the NuSTAR detectors based on the Solar aspect angle at the scheduled time of an observation. This may be applicable to future observatories that employ optics deployed on extendable masts. The automation of the prediction system has greatly improved observatory operations efficiency and the reliability of observation planning.

  20. Getting NuSTAR on Target: Predicting Mast Motion

    NASA Technical Reports Server (NTRS)

    Forster, Karl; Madsen, Kristin K.; Miyasaka, Hiroshima; Craig, William W.; Harrison, Fiona A.; Rana, Vikram R.; Markwardt, Craig B.; Grenfenstette, Brian W.

    2017-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing high energy (3-79 keV) X-ray observatory operating for four years from low Earth orbit. The X-ray detector arrays are located on the spacecraft bus with the optics modules mounted on a flexible mast of 10.14m length. The motion of the telescope optical axis on the detectors during each observation is measured by a laser metrology system and matches the pre-launch predictions of the thermal flexing of the mast as the spacecraft enters and exits the Earths shadow each orbit. However, an additional motion of the telescope field of view was discovered during observatory commissioning that is associated with the spacecraft attitude control system and an additional flexing of the mast correlated with the Solar aspect angle for the observation. We present the methodology developed to predict where any particular target coordinate will fall on the NuSTAR detectors based on the Solar aspect angle at the scheduled time of an observation. This may be applicable to future observatories that employ optics deployed on extendable masts. The automation of the prediction system has greatly improved observatory operations efficiency and the reliability of observation planning.

  1. Adaptive matched filter spatial detection performance on standard imagery from a wideband VHF/UHF SAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, M.R.; Phillips, S.A.; Sofianos, D.J.

    1994-12-31

    The adaptive matched filter was implemented as a spatial detector for amplitude-only or complex images, and applied to an image formed by standard narrow band means from a wide angle, wideband radar. Direct performance comparisons were made between different implementations and various matched and mismatched cases by using a novel approach to generate ROC curves parametrically. For perfectly matched cases, performance using imaged targets was found to be significantly lower than potential performance of artificial targets whose features differed from the background. Incremental gain due to whitening the background was also found to be small, indicating little background spatial correlation.more » It is conjectured that the relatively featureless behavior in both targets and background is due to the image formation process, since this technique averages together all wide angle, wideband information. For mismatched cases where the signature was unknown, the amplitude detector losses were approximately equal to whatever gain over noncoherent integration that matching provided. However, the complex detector was generally very sensitive to unknown information, especially phase, and produced much larger losses. Whitening under these mismatched conditions produced further losses. Detector choice thus depends primarily on how reproducible target signatures are, especially if phase is used, and the subsequent number of stored signatures necessary to account for various imaging aspect angles.« less

  2. Assessment of UWB radar for improvised explosive device detection

    NASA Astrophysics Data System (ADS)

    Kegege, Obadiah; Li, Junfei; Foltz, Heinrich

    2006-05-01

    The goal of our research is to assess the capability of ultra-wide-band (UWB) radar for detection of roadside improvised explosive devices (IEDs). Radar scattering signatures of artillery shells over a broadband frequency range, with different Tx/Rx polarizations, and at various aspect angles have been explored based on simulation and indoor measurement. Characteristics of IEDs versus clutter, wave penetration at different frequencies are also investigated. Finally, visibility of IED targets is tested on a moving cart in outdoor settings, with IED targets on ground surface, recessed, and buried underground at different distances away from the radar.

  3. Relative range error evaluation of terrestrial laser scanners using a plate, a sphere, and a novel dual-sphere-plate target.

    PubMed

    Muralikrishnan, Bala; Rachakonda, Prem; Lee, Vincent; Shilling, Meghan; Sawyer, Daniel; Cheok, Geraldine; Cournoyer, Luc

    2017-12-01

    Terrestrial laser scanners (TLS) are a class of 3D imaging systems that produce a 3D point cloud by measuring the range and two angles to a point. The fundamental measurement of a TLS is range. Relative range error is one component of the overall range error of TLS and its estimation is therefore an important aspect in establishing metrological traceability of measurements performed using these systems. Target geometry is an important aspect to consider when realizing the relative range tests. The recently published ASTM E2938-15 mandates the use of a plate target for the relative range tests. While a plate target may reasonably be expected to produce distortion free data even at far distances, the target itself needs careful alignment at each of the relative range test positions. In this paper, we discuss relative range experiments performed using a plate target and then address the advantages and limitations of using a sphere target. We then present a novel dual-sphere-plate target that draws from the advantages of the sphere and the plate without the associated limitations. The spheres in the dual-sphere-plate target are used simply as fiducials to identify a point on the surface of the plate that is common to both the scanner and the reference instrument, thus overcoming the need to carefully align the target.

  4. Radar signatures of road vehicles: airborne SAR experiments

    NASA Astrophysics Data System (ADS)

    Palubinskas, G.; Runge, H.; Reinartz, P.

    2005-10-01

    The German radar satellite TerraSAR-X is a high resolution, dual receive antenna SAR satellite, which will be launched in spring 2006. Since it will have the capability to measure the velocity of moving targets, the acquired interferometric data can be useful for traffic monitoring applications on a global scale. DLR has started already the development of an automatic and operational processing system which will detect cars, measure their speed and assign them to a road. Statistical approaches are used to derive the vehicle detection algorithm, which require the knowledge of the radar signatures of vehicles, especially under consideration of the geometry of the radar look direction and the vehicle orientation. Simulation of radar signatures is a very difficult task due to the lack of realistic models of vehicles. In this paper the radar signatures of the parking cars are presented. They are estimated experimentally from airborne E-SAR X-band data, which have been collected during flight campaigns in 2003-2005. Several test cars of the same type placed in carefully selected orientation angles and several over-flights with different heading angles made it possible to cover the whole range of aspect angles from 0° to 180°. The large synthetic aperture length or beam width angle of 7° can be divided into several looks. Thus processing of each look separately allows to increase the angle resolution. Such a radar signature profile of one type of vehicle over the whole range of aspect angles in fine resolution can be used further for the verification of simulation studies and for the performance prediction for traffic monitoring with TerraSAR-X.

  5. Characterization of relief printing

    NASA Astrophysics Data System (ADS)

    Liu, Xing; Chen, Lin; Ortiz-Segovia, Maria-Valezzka; Ferwerda, James; Allebach, Jan

    2014-03-01

    Relief printing technology developed by Océ allows the superposition of several layers of colorant on different types of media which creates a variation of the surface height defined by the input to the printer. Evaluating the reproduction accuracy of distinct surface characteristics is of great importance to the application of the relief printing system. Therefore, it is necessary to develop quality metrics to evaluate the relief process. In this paper, we focus on the third dimension of relief printing, i.e. height information. To achieve this goal, we define metrics and develop models that aim to evaluate relief prints in two aspects: overall fidelity and surface finish. To characterize the overall fidelity, three metrics are calculated: Modulation Transfer Function (MTF), difference and root-mean-squared error (RMSE) between the input height map and scanned height map, and print surface angle accuracy. For the surface finish property, we measure the surface roughness, generate surface normal maps and develop a light reflection model that serves as a simulation of the differences between ideal prints and real prints that may be perceived by human observers. Three sets of test targets are designed and printed by the Océ relief printer prototypes for the calculation of the above metrics: (i) twisted target, (ii) sinusoidal wave target, and (iii) ramp target. The results provide quantitative evaluations of the printing quality in the third dimension, and demonstrate that the height of relief prints is reproduced accurately with respect to the input design. The factors that affect the printing quality include: printing direction, frequency and amplitude of the input signal, shape of relief prints. Besides the above factors, there are two additional aspects that influence the viewing experience of relief prints: lighting condition and viewing angle.

  6. Debris and shrapnel assessments for National Ignition Facility targets and diagnostics

    NASA Astrophysics Data System (ADS)

    Masters, N. D.; Fisher, A.; Kalantar, D.; Stölken, J.; Smith, C.; Vignes, R.; Burns, S.; Doeppner, T.; Kritcher, A.; Park, H.-S.

    2016-05-01

    High-energy laser experiments at the National Ignition Facility (NIF) can create debris and shrapnel capable of damaging laser optics and diagnostic instruments. The size, composition and location of target components and sacrificial shielding (e.g., disposable debris shields, or diagnostic filters) and the protection they provide is constrained by many factors, including: chamber and diagnostic geometries, experimental goals and material considerations. An assessment of the generation, nature and velocity of shrapnel and debris and their potential threats is necessary prior to fielding targets or diagnostics. These assessments may influence target and shielding design, filter configurations and diagnostic selection. This paper will outline the approach used to manage the debris and shrapnel risk associated with NIF targets and diagnostics and present some aspects of two such cases: the Material Strength Rayleigh- Taylor campaign and the Mono Angle Crystal Spectrometer (MACS).

  7. Extended target recognition in cognitive radar networks.

    PubMed

    Wei, Yimin; Meng, Huadong; Liu, Yimin; Wang, Xiqin

    2010-01-01

    We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR) based sequential hypothesis testing (SHT) framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS). Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  8. Waveform design for detection of weapons based on signature exploitation

    NASA Astrophysics Data System (ADS)

    Ahmad, Fauzia; Amin, Moeness G.; Dogaru, Traian

    2010-04-01

    We present waveform design based on signature exploitation techniques for improved detection of weapons in urban sensing applications. A single-antenna monostatic radar system is considered. Under the assumption of exact knowledge of the target orientation and, hence, known impulse response, matched illumination approach is used for optimal target detection. For the case of unknown target orientation, we analyze the target signatures as random processes and perform signal-to-noise-ratio based waveform optimization. Numerical electromagnetic modeling is used to provide the impulse responses of an AK-47 assault rifle for various target aspect angles relative to the radar. Simulation results depict an improvement in the signal-to-noise-ratio at the output of the matched filter receiver for both matched illumination and stochastic waveforms as compared to a chirp waveform of the same duration and energy.

  9. Analysis of forward scattering of an acoustical zeroth-order Bessel beam from rigid complicated (aspherical) structures

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chai, Yingbin; Gong, Zhixiong; Marston, Philip L.

    2017-10-01

    The forward scattering from rigid spheroids and endcapped cylinders with finite length (even with a large aspect ratio) immersed in a non-viscous fluid under the illumination of an idealized zeroth-order acoustical Bessel beam (ABB) with arbitrary angles of incidence is calculated and analyzed in the implementation of the T-matrix method (TTM). Based on the present method, the incident coefficients of expansion for the incident ABB are derived and simplifying methods are proposed for the numerical accuracy and computational efficiency according to the geometrical symmetries. A home-made MATLAB software package is constructed accordingly, and then verified and validated for the ABB scattering from rigid aspherical obstacles. Several numerical examples are computed for the forward scattering from both rigid spheroids and finite cylinder, with particular emphasis on the aspect ratios, the half-cone angles of ABBs, the incident angles and the dimensionless frequencies. The rectangular patterns of target strength in the (β, θs) domain (where β is the half-cone angle of the ABB and θs is the scattered polar angle) and local/total forward scattering versus dimensionless frequency are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by rigid spheroids and finite cylinders. The ray diagrams in geometrical models for the scattering in the forward half-space and the optical cross-section theorem help to interpret the scattering mechanisms of ABBs. This research work may provide an alternative for the partial wave series solution under certain circumstances interacting with ABBs for complicated obstacles and benefit some related works in optics and electromagnetics.

  10. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  11. SAR image dataset of military ground targets with multiple poses for ATR

    NASA Astrophysics Data System (ADS)

    Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc

    2017-10-01

    Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.

  12. Distributed ISAR Subimage Fusion of Nonuniform Rotating Target Based on Matching Fourier Transform.

    PubMed

    Li, Yuanyuan; Fu, Yaowen; Zhang, Wenpeng

    2018-06-04

    In real applications, the image quality of the conventional monostatic Inverse Synthetic Aperture Radar (ISAR) for the maneuvering target is subject to the strong fluctuation of Radar Cross Section (RCS), as the target aspect varies enormously. Meanwhile, the maneuvering target introduces nonuniform rotation after translation motion compensation which degrades the imaging performance of the conventional Fourier Transform (FT)-based method in the cross-range dimension. In this paper, a method which combines the distributed ISAR technique and the Matching Fourier Transform (MFT) is proposed to overcome these problems. Firstly, according to the characteristics of the distributed ISAR, the multiple channel echoes of the nonuniform rotation target from different observation angles can be acquired. Then, by applying the MFT to the echo of each channel, the defocused problem of nonuniform rotation target which is inevitable by using the FT-based imaging method can be avoided. Finally, after preprocessing, scaling and rotation of all subimages, the noncoherent fusion image containing all the RCS information in all channels can be obtained. The accumulation coefficients of all subimages are calculated adaptively according to the their image qualities. Simulation and experimental data are used to validate the effectiveness of the proposed approach, and fusion image with improved recognizability can be obtained. Therefore, by using the distributed ISAR technique and MFT, subimages of high-maneuvering target from different observation angles can be obtained. Meanwhile, by employing the adaptive subimage fusion method, the RCS fluctuation can be alleviated and more recognizable final image can be obtained.

  13. Method for controlling a vehicle with two or more independently steered wheels

    DOEpatents

    Reister, D.B.; Unseren, M.A.

    1995-03-28

    A method is described for independently controlling each steerable drive wheel of a vehicle with two or more such wheels. An instantaneous center of rotation target and a tangential velocity target are inputs to a wheel target system which sends the velocity target and a steering angle target for each drive wheel to a pseudo-velocity target system. The pseudo-velocity target system determines a pseudo-velocity target which is compared to a current pseudo-velocity to determine a pseudo-velocity error. The steering angle targets and the steering angles are inputs to a steering angle control system which outputs to the steering angle encoders, which measure the steering angles. The pseudo-velocity error, the rate of change of the pseudo-velocity error, and the wheel slip between each pair of drive wheels are used to calculate intermediate control variables which, along with the steering angle targets are used to calculate the torque to be applied at each wheel. The current distance traveled for each wheel is then calculated. The current wheel velocities and steering angle targets are used to calculate the cumulative and instantaneous wheel slip and the current pseudo-velocity. 6 figures.

  14. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    PubMed Central

    Kruyt, Jan W.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. PMID:25788539

  15. On the Statistical Analysis of the Radar Signature of the MQM-34D

    DTIC Science & Technology

    1975-01-31

    target drone for aspect angles near normal to the roll axis for a vertically polarized measurements system. The radar cross section and glint are... drone . The raw data from RATSCAT are reported in graphical form in an AFSWC three-volume report.. The results reported here are a statistical analysis of...Ta1get Drones , AFSWC-rR.74-0l, January 1974. 2James W. Wright, On the Statistical Analysis of the Radar Signature of the MQM-34D, Interim Report

  16. Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts

    NASA Astrophysics Data System (ADS)

    Abroshan, Hamid

    2018-02-01

    Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.

  17. Impact of Aspect Ratio, Incident Angle, and Surface Roughness on Windbreak Wakes

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2017-11-01

    Wind-tunnel results are presented on the wakes behind three-dimensional windbreaks in a simulated atmospheric boundary layer. Sheltering by upwind windbreaks, and surface-mounted obstacles (SMOs) in general, is parameterized by the wake-moment coefficient C h , which is a complex function of obstacle geometry and flow conditions. Values of C h are presented for several windbreak aspect ratios, incident angles, and windbreak-height-to-surface-roughness ratios. Lateral wake deflection is further presented for several incident angles and aspect ratios, and compared to a simple analytical formulation including a near- and far-wake solution. It is found that C h does not change with aspect ratios of 10 or greater, though C h may be lower for an aspect ratio of 5. C h is found to change roughly with the cosine of the incident angle, and to depend strongly on windbreak-height-to-surface-roughness ratio. The data broadly support the proposed wake-deflection model.

  18. Tracking a convoy of multiple targets using acoustic sensor data

    NASA Astrophysics Data System (ADS)

    Damarla, T. R.

    2003-08-01

    In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.

  19. Aerodynamic Characteristics of Low-Aspect-Ratio Wings in Close Proximity to the Ground

    NASA Technical Reports Server (NTRS)

    Fink, Marvin P.; Lastinger, James L.

    1961-01-01

    A wind-tunnel investigation has been conducted to determine the effect of ground proximity on the aerodynamic characteristics of thick highly cambered rectangular wings with aspect ratios of 1. 2, 4, and 6. The results showed that, for these aspect ratios, as the ground war, approached all wings experienced increases in lift-curve slope and reductions in induced drag which resulted in increases in lift-drag ratio. Although an increase in lift-curve slope was obtained for all aspect ratios as the ground was approached, the lift coefficient at an angle of attack of 0 deg for any given aspect ratio remained nearly constant. The experimental results were in general agreement with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77). As the wings approached the ground, there was an increase in static longitudinal stability at positive angles of attack. When operating in ground effect, all the wings had stability of height at positive angles of attack and instability of height at negative angles of attack. Wing-tip fairings on the wings with aspect ratios of 1 and 2 produced small increases in lift-drag ratio in ground effect. End plates extending only below the chord plane on the wing with an aspect ratio of 1 provided increases in lift coefficient and in lift-drag ratio in ground effect.

  20. Analysis of the Brunel model and resulting hot electron spectra

    NASA Astrophysics Data System (ADS)

    Mulser, P.; Weng, S. M.; Liseykina, Tatyana

    2012-04-01

    Among the various attempts to model collisionless absorption of intense and superintense ultrashort laser pulses, the so-called Brunel mechanism plays an eminent role. A detailed analysis reveals essential aspects of collisionless absorption: Splitting of the electron energy spectrum into two groups under p-polarization, prompt generation of fast electrons during one laser cycle or a fraction of it, insensitivity of absorption with respect to target density well above nc, robustness, simplicity, and logical coherence. Such positive aspects contrast with a non-Maxwellian tail of the hot electrons, too low energy cut off, excessively high fraction of fast electrons, and inefficient absorption at moderate angles of single beam incidence and intensities. Brunel's pioneering idea has been the recognition of the role of the space charges induced by the electron motion perpendicular to the target surface that make irreversibility possible. By setting the electrostatic fields inside the overdense target equal to zero, anharmonic resonance and mixing of layers leading to Maxwellianization are excluded. To what extent the real electron spectra and their scaling on laser intensity are the product of the interplay between Brunel's mechanism and anharmonic resonance is still an open question.

  1. Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.

    PubMed

    Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza

    2015-01-01

    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.

  2. Method for controlling a vehicle with two or more independently steered wheels

    DOEpatents

    Reister, David B.; Unseren, Michael A.

    1995-01-01

    A method (10) for independently controlling each steerable drive wheel (W.sub.i) of a vehicle with two or more such wheels (W.sub.i). An instantaneous center of rotation target (ICR) and a tangential velocity target (v.sup.G) are inputs to a wheel target system (30) which sends the velocity target (v.sub.i.sup.G) and a steering angle target (.theta..sub.i.sup.G) for each drive wheel (W.sub.i) to a pseudovelocity target system (32). The pseudovelocity target system (32) determines a pseudovelocity target (v.sub.P.sup.G) which is compared to a current pseudovelocity (v.sub.P.sup.m) to determine a pseudovelocity error (.epsilon.). The steering angle targets (.theta..sup.G) and the steering angles (.theta..sup.m) are inputs to a steering angle control system (34) which outputs to the steering angle encoders (36), which measure the steering angles (.theta..sup.m). The pseudovelocity error (.epsilon.), the rate of change of the pseudovelocity error ( ), and the wheel slip between each pair of drive wheels (W.sub.i) are used to calculate intermediate control variables which, along with the steering angle targets (.theta..sup.G) are used to calculate the torque to be applied at each wheel (W.sub.i). The current distance traveled for each wheel (W.sub.i) is then calculated. The current wheel velocities (v.sup.m) and steering angle targets (.theta..sup.G) are used to calculate the cumulative and instantaneous wheel slip (e, ) and the current pseudovelocity (v.sub.P.sup.m).

  3. Geometric Model for Tracker-Target Look Angles and Line of Slight Distance

    DTIC Science & Technology

    2015-10-20

    412TW-PA-15239 Geometric Model for Tracker -Target Look Angles and Line of Slight Distance DANIEL T. LAIRD AIR FORCE TEST CENTER EDWARDS...15 – 23 OCT 15 4. TITLE AND SUBTITLE Geometric Model for Tracker -Target Look Angles and Line of Slight Distance 5a. CONTRACT...include area code) 661-277-8615 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 GEOMETRIC MODEL FOR TRACKER -TARGET LOOK ANGLES

  4. Generalized ISAR--part II: interferometric techniques for three-dimensional location of scatterers.

    PubMed

    Given, James A; Schmidt, William R

    2005-11-01

    This paper is the second part of a study dedicated to optimizing diagnostic inverse synthetic aperture radar (ISAR) studies of large naval vessels. The method developed here provides accurate determination of the position of important radio-frequency scatterers by combining accurate knowledge of ship position and orientation with specialized signal processing. The method allows for the simultaneous presence of substantial Doppler returns from both change of roll angle and change of aspect angle by introducing generalized ISAR ates. The first paper provides two modes of interpreting ISAR plots, one valid when roll Doppler is dominant, the other valid when the aspect angle Doppler is dominant. Here, we provide, for each type of ISAR plot technique, a corresponding interferometric ISAR (InSAR) technique. The former, aspect-angle dominated InSAR, is a generalization of standard InSAR; the latter, roll-angle dominated InSAR, seems to be new to this work. Both methods are shown to be efficient at identifying localized scatterers under simulation conditions.

  5. Underwater target classification using wavelet packets and neural networks.

    PubMed

    Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J

    2000-01-01

    In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.

  6. Performance of resonant radar target identification algorithms using intra-class weighting functions

    NASA Astrophysics Data System (ADS)

    Mustafa, A.

    The use of calibrated resonant-region radar cross section (RCS) measurements of targets for the classification of large aircraft is discussed. Errors in the RCS estimate of full scale aircraft flying over an ocean, introduced by the ionospheric variability and the sea conditions were studied. The Weighted Target Representative (WTR) classification algorithm was developed, implemented, tested and compared with the nearest neighbor (NN) algorithm. The WTR-algorithm has a low sensitivity to the uncertainty in the aspect angle of the unknown target returns. In addition, this algorithm was based on the development of a new catalog of representative data which reduces the storage requirements and increases the computational efficiency of the classification system compared to the NN-algorithm. Experiments were designed to study and evaluate the characteristics of the WTR- and the NN-algorithms, investigate the classifiability of targets and study the relative behavior of the number of misclassifications as a function of the target backscatter features. The classification results and statistics were shown in the form of performance curves, performance tables and confusion tables.

  7. A Digital Solar Aspect Sensor

    NASA Technical Reports Server (NTRS)

    Albus, James S.

    1961-01-01

    The solar aspect sensor described herein performs the analog-to-digital conversion of data optically. To accomplish this, it uses a binary "Gray code" light mask to produce a digital indication, in vehicle-fixed coordinates, of the elevation and azimuth angles of incident light from the sun. This digital solar aspect sensor system, in Explorer X, provided measurements of both elevation and azimuth angles to +/- 2 degrees at a distance of over 140,000 statute miles.

  8. Shape matters: pore geometry and orientation influences the strength and stiffness of porous rocks

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Xu, Tao; Chen, Chong-Feng; Baud, Patrick

    2017-04-01

    The geometry of voids in porous rock fall between two end-members: very low aspect ratio (the ratio of the minor to the major semi-axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of 2.4 and 1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. This weakening effect is accentuated at higher porosities. The influence of pore aspect ratio (which we vary from 0.2 to 1.0) on strength and Young's modulus depends on the pore angle. At low angles ( 0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles ( 40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles ( 20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. We find that the analytical solutions for the stress and Young's modulus at the boundary of a single elliptical pore are in excellent agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. The alignment of grains or platy minerals such as clays may play an important role in controlling strength anisotropy in porous sandstones. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.

  9. The influence of pore geometry and orientation on the strength and stiffness of porous rock

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael J.; Xu, Tao; Chen, Chong-feng; Baud, Patrick

    2017-03-01

    The geometry of voids in porous rock falls between two end-members: very low aspect ratio (the ratio of the minor to the major axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock under uniaxial compression. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of ∼2.4 and ∼1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. The influence of pore aspect ratio on strength and Young's modulus depends on the pore angle. At low angles (∼0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles (∼40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles (∼20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. These simulations also highlight that the influence of pore angle on compressive strength and Young's modulus decreases as the pore aspect ratio approaches unity. We find that the analytical solution for the stress concentration around a single elliptical pore, and its contribution to elasticity, are in excellent qualitative agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. We conclude that the alignment of grains or platy minerals such as clays exerts a greater influence on strength anisotropy in porous sandstones than pore geometry. Finally, we show that the strength anisotropy that arises as a result of preferentially aligned elliptical pores is of a similar magnitude to that generated by bedding in porous sandstones and foliation in low-porosity metamorphic rocks. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.

  10. Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.

    PubMed

    Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin

    2012-10-08

    The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.

  11. The Semiotic and Conceptual Genesis of Angle

    ERIC Educational Resources Information Center

    Tanguay, Denis; Venant, Fabienne

    2016-01-01

    In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way "angle" is…

  12. Modeling and performance of HF/OTH (High-Frequency/Over-the-Horizon) radar target identification systems

    NASA Astrophysics Data System (ADS)

    Strausberger, Donald J.

    Several Radar Target Identification (RTI) techniques have been developed at The Ohio State University in recent years. Using the ElectroScience Laboratory compact range a large database of coherent RCS measurement has been constructed for several types of targets (aircraft, ships, and ground vehicles) at a variety of polarizations, aspect angles, and frequency bands. This extensive database has been used to analyze the performance of several different classification algorithms through the use of computer simulations. In order to optimize classification performance, it was concluded that the radar frequency range should lie in the Rayleigh-resonance frequency range, where the wavelength is on the order of or larger than the target size. For aircraft and ships with general dimensions on the order of 10 meters to 100 meters it is apparent that the High Frequency (HF) band provides optimal classification performance. Since existing HF radars are currently being used for detection and tracking or aircraft and ships of these dimensions, it is natural to further investigate the possibility of using these existing radars as the measurement devices in a radar target classification system.

  13. Method for Correcting Control Surface Angle Measurements in Single Viewpoint Photogrammetry

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W. (Inventor); Barrows, Danny A. (Inventor)

    2006-01-01

    A method of determining a corrected control surface angle for use in single viewpoint photogrammetry to correct control surface angle measurements affected by wing bending. First and second visual targets are spaced apart &om one another on a control surface of an aircraft wing. The targets are positioned at a semispan distance along the aircraft wing. A reference target separation distance is determined using single viewpoint photogrammetry for a "wind off condition. An apparent target separation distance is then computed for "wind on." The difference between the reference and apparent target separation distances is minimized by recomputing the single viewpoint photogrammetric solution for incrementally changed values of target semispan distances. A final single viewpoint photogrammetric solution is then generated that uses the corrected semispan distance that produced the minimized difference between the reference and apparent target separation distances. The final single viewpoint photogrammetric solution set is used to determine the corrected control surface angle.

  14. Estimating Elevation Angles From SAR Crosstalk

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  15. Development of a Vision-Based Robotic Follower Vehicle

    DTIC Science & Technology

    2009-02-01

    25 Figure 24: Determining the angles to the target...cable spooled out and the angle between the cable and the bumper to determine the range and bearing to a leader vehicle. To the author’s knowledge...Control Control of the pan/tilt angles can be modelled as a regulation problem, driving the angles to the target in the image to zero. However, the

  16. Relation between self-organized criticality and grain aspect ratio in granular piles

    NASA Astrophysics Data System (ADS)

    Denisov, D. V.; Villanueva, Y. Y.; Lőrincz, K. A.; May, S.; Wijngaarden, R. J.

    2012-05-01

    We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ), the critical angle (γ), and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches with a well-defined τ. However, only rice is truly SOC if we take three criteria into account: a power-law-shaped avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents. We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.

  17. Radiosurgery with a linear accelerator. Methodological aspects.

    PubMed

    Betti, O O; Galmarini, D; Derechinsky, V

    1991-01-01

    Based on the concepts of Leksell and on recommendations of different Swedish physicists on the use of linear accelerator for radiosurgical use, we developed a new methodology coupling the Talairach stereotactic system with a commercial linac. Anatomical facts encouraged us to use coronal angles of irradiation employing the angular displacement of the linac above the horizontal plane. Different coronal planes are obtained by rotation of the stereotactic frame. The center of the irradiated target coincides with the irradiation and rotation center of the linear accelerator. Multiple targets can be irradiated in the same session. We use as recommended a secondary collimator in heavy alloy. Special software was prepared after different dosimetric controls. The use of a PC allows us to employ 1-6 targets and different collimators to displace the isocenters in order to obtain geometrical isodose modification, and to change the value of each irradiation arc or portions of each arc in some minutes. Simple or sophisticated neurosurgical strategies can be applied in the treatment of frequently irregular shape and volume AVMs.

  18. SAR target recognition and posture estimation using spatial pyramid pooling within CNN

    NASA Astrophysics Data System (ADS)

    Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-01-01

    Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.

  19. Generic framework for vessel detection and tracking based on distributed marine radar image data

    NASA Astrophysics Data System (ADS)

    Siegert, Gregor; Hoth, Julian; Banyś, Paweł; Heymann, Frank

    2018-04-01

    Situation awareness is understood as a key requirement for safe and secure shipping at sea. The primary sensor for maritime situation assessment is still the radar, with the AIS being introduced as supplemental service only. In this article, we present a framework to assess the current situation picture based on marine radar image processing. Essentially, the framework comprises a centralized IMM-JPDA multi-target tracker in combination with a fully automated scheme for track management, i.e., target acquisition and track depletion. This tracker is conditioned on measurements extracted from radar images. To gain a more robust and complete situation picture, we are exploiting the aspect angle diversity of multiple marine radars, by fusing them a priori to the tracking process. Due to the generic structure of the proposed framework, different techniques for radar image processing can be implemented and compared, namely the BLOB detector and SExtractor. The overall framework performance in terms of multi-target state estimation will be compared for both methods based on a dedicated measurement campaign in the Baltic Sea with multiple static and mobile targets given.

  20. Target-adaptive polarimetric synthetic aperture radar target discrimination using maximum average correlation height filters.

    PubMed

    Sadjadi, Firooz A; Mahalanobis, Abhijit

    2006-05-01

    We report the development of a technique for adaptive selection of polarization ellipse tilt and ellipticity angles such that the target separation from clutter is maximized. From the radar scattering matrix [S] and its complex components, in phase and quadrature phase, the elements of the Mueller matrix are obtained. Then, by means of polarization synthesis, the radar cross section of the radar scatters are obtained at different transmitting and receiving polarization states. By designing a maximum average correlation height filter, we derive a target versus clutter distance measure as a function of four transmit and receive polarization state angles. The results of applying this method on real synthetic aperture radar imagery indicate a set of four transmit and receive angles that lead to maximum target versus clutter discrimination. These optimum angles are different for different targets. Hence, by adaptive control of the state of polarization of polarimetric radar, one can noticeably improve the discrimination of targets from clutter.

  1. Wind-tunnel investigation of several high aspect-ratio supercritical wing configurations on a wide-body-type fuselage

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1977-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel on two aspect-ratio 11.95 supercritical wings that were tested in combination with a representative wide-body-type fuselage. The two supercritical wings have identical planforms for equal sweep angles and differ only in thickness. Each wing was tested at quarter-chord sweep angles of 27 deg and 30 deg. At the higher sweep angle, the aspect ratio is reduced to 11.36. At 27 deg of quarter-chord sweep, the thicker supercritical wing (SCW-1) has maximum streamwise thickness-to-chord ratios of 0.16 at the wing-fuselage juncture, 0.14 at the planform break station, and 0.12 at the tip. The thinner wing (SCW-2) has maximum streamwise thickness-to-chord ratios of 0.144, 0.12, and 0.10 at the same stations respectively. Tests were also conducted on the thinner supercritical wing at the 27 deg sweep angle with a 15.24 cm (6.0 in.) shorter span which results in an aspect ratio of 10.25. For comparison, data were obtained on a current wide-body transport wing (AR=7) that was tested on the same fuselage used with the supercritical wings.

  2. Effects of changing canopy directional reflectance on feature selection

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Oliver, R. E.; Kilpela, O. E.

    1973-01-01

    The use of a Monte Carlo model for generating sample directional reflectance data for two simplified target canopies at two different solar positions is reported. Successive iterations through the model permit the calculation of a mean vector and covariance matrix for canopy reflectance for varied sensor view angles. These data may then be used to calculate the divergence between the target distributions for various wavelength combinations and for these view angles. Results of a feature selection analysis indicate that different sets of wavelengths are optimum for target discrimination depending on sensor view angle and that the targets may be more easily discriminated for some scan angles than others. The time-varying behavior of these results is also pointed out.

  3. Clutter modeling of the Denver Airport and surrounding areas

    NASA Technical Reports Server (NTRS)

    Harrah, Steven D.; Delmore, Victor E.; Onstott, Robert G.

    1991-01-01

    To accurately simulate and evaluate an airborne Doppler radar as a wind shear detection and avoidance sensor, the ground clutter surrounding a typical airport must be quantified. To do this, an imaging airborne Synthetic Aperture Radar (SAR) was employed to investigate and map the normalized radar cross sections (NRCS) of the ground terrain surrounding the Denver Stapleton Airport during November of 1988. Images of the Stapleton ground clutter scene were obtained at a variety of aspect and elevation angles (extending to near-grazing) at both HH and VV polarizations. Presented here, in viewgraph form with commentary, are the method of data collection, the specific observations obtained of the Denver area, a summary of the quantitative analysis performed on the SAR images to date, and the statistical modeling of several of the more interesting stationary targets in the SAR database. Additionally, the accompanying moving target database, containing NRCS and velocity information, is described.

  4. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation

    PubMed Central

    Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  5. Relativistic Electron Precipitation in the Auroral Zone. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Simons, D. J.

    1975-01-01

    The energy spectra and pitch angle distributions of electrons in the energy range from 50 keV to 2 MeV were determined by a solid state electron energy spectrometer during the Relativistic Electron Precipitation (REP) event of 31 May 1972. The pitch angle distributions were determined from a knowledge of the rocket aspect and the direction in space of the earth's magnetic field. The rocket aspect determination was therefore treated in depth and a method was developed to compensate for the malfunctioning of the aspect magnetometer. The electron fluxes during the REP event were highly variable demonstrating correlated energy, flux, and pitch angle pulsations with time periods of less than one second. A theoretical model for the production of relativistic electrons was proposed. It follows from this model that, at comparatively low background electron densities, the anomalous Doppler resonance leads to the acceleration of near relativistic particles.

  6. Hovering and targeting flight simulations of a dragonfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Hirohashi, Kensuke; Inamuro, Takaji

    2017-08-01

    Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m. We set the parameters at Re = 200, Fr = 15 and m = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ, and the horizontal motion of the model depends on the stroke angle β. Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β. The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β.

  7. DEM simulation of flow of dumbbells on a rough inclined plane

    NASA Astrophysics Data System (ADS)

    Mandal, Sandip; Khakhar, Devang

    2015-11-01

    The rheology of non-spherical granular materials such as food grains, sugar cubes, sand, pharmaceutical pills, among others, is not understood well. We study the flow of non-spherical dumbbells of different aspect ratios on a rough inclined plane by using soft sphere DEM simulations. The dumbbells are generated by fusing two spheres together and a linear spring dashpot model along with Coulombic friction is employed to calculate inter-particle forces. At steady state, a uni-directional shear flow is obtained which allows for a detailed study of the rheology. The effect of aspect ratio and inclination angle on mean velocity, volume fraction, shear rate, shear stress, pressure and viscosity profiles is examined. The effect of aspect ratio on probability distribution of angles, made by the major axes of the dumbbells with the flow direction, average angle and order parameter is analyzed. The dense flow rheology is well explained by Bagnold's law and the constitutive laws of JFP model. The dependencies of first and second normal stress differences on aspect ratio are studied. The probability distributions of translational and rotational velocity are analyzed.

  8. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  9. Effects of excimer laser illumination on microdrilling into an oblique polymer surface

    NASA Astrophysics Data System (ADS)

    Wu, Chih-Yang; Shu, Chun-Wei; Yeh, Zhi-Chang

    2006-08-01

    In this work, we present the experimental results of micromachining into polymethy-methacrylate exposed to oblique KrF excimer laser beams. The results of low-aspect-ratio ablations show that the ablation rate decreases monotonously with the increase of incident angle for various fluences. The ablation rate of high-aspect-ratio drilling with opening center on the focal plane is almost independent of incident angles and is less than that of low-aspect-ratio ablation. The results of high-aspect-ratio ablations show that the openings of the holes at a distance from the focal plane are enlarged and their edges are blurred. Besides, the depth of a hole in the samples oblique to the laser beam at a distance from the focal plane decreases with the increase of the distance from the focal plane. The number of deep holes generated by oblique laser beams through a matrix of apertures decreases with the increase of incident angle. Those phenomena reveal the influence of the local light intensity on microdrilling into an oblique surface.

  10. AGARD Flight Test Techniques Series. Volume 7. Air-to-Air Radar Flight Testing

    DTIC Science & Technology

    1988-06-01

    enters the beam ), a different tilt angle should be used. The emphasis on setting the tilt angle may require a non - standard high accuracy tilt angle...is: the time from pilot designation on a non -maneuvering target to the time that the system achieves target range, range rate and angle tracking...minimal attenuation, distortion, or boresight Shift effects on the radar beam . Thus, radome design for airborne application io largely a process of

  11. Notes of the Design of Two Supercavitating Hydrofoils

    DTIC Science & Technology

    1975-07-01

    Foil Section Characteristics Definition Tulin Two -Term Levi - Civita Larock and Street Two -Term three pararreter Prcgram and Inputs linearized two ...36 NOMENCLATURE Symbol Description Dimensions AIA 2 Angle distribution multipliers in Levi - radians Civita Program AR Aspect ratio CL Lift coefficient...angle of attack radian B Constant angle in Levi - Civita program radian 6 Linearized angle of attack superposed degrees C Wu’s 1955 program parameter

  12. Modeling of MOEMS electromagnetic scanning grating mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Quan; Wen, Zhiyu; Yang, Tingyan

    2016-02-01

    In this paper, the mathematical model is developed for researching the detailed electromagnetic mechanism of MOEMS scanning mirror. We present the relationship between spectral range and optical scanning angle. Furthermore, the variation tendencies of resonant frequency and maximal torsional angle are studied in detail under different aspect ratios of MOEMS scanning mirror and varied dimensions of torsional bar. The numerical results and Finite Element Analysis simulations both indicate that the thickness of torsional bar is the most important factor. The maximal torsional angle appears when the aspect ratio equals to 1. This mathematical model is an effective way for designing the MOEMS electromagnetic scanning grating mirror in actual fabrication.

  13. The Hydrodynamic Characteristics of Modified Rectangular Flat Plates Having Aspect Ratios of 1.00, 0.25, and 0.125 and Operating near a Free Water Surface

    NASA Technical Reports Server (NTRS)

    Wadlin, Kenneth L; Ramsen, John A; Vaughan, Victor L , Jr

    1955-01-01

    Report presents the results of an investigation conducted to determine the hydrodynamic forces and moments acting on modified rectangular flat plates with aspect ratios of 1.00, 0.25, and 0.125 mounted on a single strut and operating at several depths of submersion. A simple method has been developed by modification of Falkner's vortex-lattice theory which enables the prediction of the lift characteristics in unseparated flow at large depths. This method shows good agreement with experimental data from the present tests and with aerodynamic data at all angles investigated for aspect ratios of 1.00 and 0.25 and at angles up to 16 degrees for aspect ratio 0.125. Above 16 degrees for aspect ratio 0.125, the predicted lift proved too high.

  14. Apparatus and method for variable angle slant hole collimator

    DOEpatents

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  15. Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set Method

    NASA Astrophysics Data System (ADS)

    Pendota, Premchand

    Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.

  16. Does practicing a wide range of joint angle configurations lead to higher flexibility in a manual obstacle-avoidance target-pointing task?

    PubMed Central

    Bootsma, Reinoud J.; Schoemaker, Marina M.; Otten, Egbert; Mouton, Leonora J.; Bongers, Raoul M.

    2017-01-01

    Flexibility in motor actions can be defined as variability in the use of degrees of freedom (e.g., joint angles in the arm) over repetitions while keeping performance (e.g., fingertip position) stabilized. We examined whether flexibility can be increased through enlarging the joint angle range during practice in a manual obstacle-avoidance target-pointing task. To establish differences in flexibility we partitioned the variability in joint angles over repetitions in variability within (GEV) and variability outside the solution space (NGEV). More GEV than NGEV reflects flexibility; when the ratio of the GEV and NGEV is higher, flexibility is higher. The pretest and posttest consisted of 30 repetitions of manual pointing to a target while moving over a 10 cm high obstacle. To enlarge the joint angle range during practice participants performed 600 target-pointing movements while moving over obstacles of different heights (5–9 cm, 11–15 cm). The results indicated that practicing movements over obstacles of different heights led participants to use enlarged range of joint angles compared to the range of joint angles used in movements over the 10 cm obstacle in the pretest. However, for each individual obstacle neither joint angle variance nor flexibility were higher during practice. We also did not find more flexibility after practice. In the posttest, joint angle variance was in fact smaller than before practice, primarily in GEV. The potential influences of learning effects and the task used that could underlie the results obtained are discussed. We conclude that with this specific type of practice in this specific task, enlarging the range of joint angles does not lead to more flexibility. PMID:28700695

  17. Rotatable Aperture Coronagraph for Exoplanetary Studies (RACES)

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Supriya; Mendillo, Christopher; Mukherjee, Sunip; Martel, Jason; Cook, Timothy; Polidan, Ronald S.; Rafanelli, Gerard L.; Spencer, Susan B.; Wolfe, Douglas w.

    2018-01-01

    We present the design and expected performance of RACES, a suborbital mission concept to directly image exo-Jupiters with a rotatable non-circular aperture telescope. By using a high-aspect ratio elliptical or rectangular primary mirror (2.3m x 0.6m), this mission achieves the same angular resolution and inner working angle as a 2.3m dia telescope. Such an elliptical or rectangular system would fill the volume of a cylindrical launch vehicle more efficiently and by choosing the aspect ratio one can appropriately tailor its light gathering power. RACES can therefore serve as a pathfinder for future larger missions for exoplanetary explorations. For example, the system described here approaches the collecting area of the well studied EXO-C concept and exceeds its angular resolution. The mission concept, design studies, observation strategy and expected target yield for RACES will be presented, as well as simulations of the high contrast vector vortex coronagraph operating with an un-obscured elliptical aperture.

  18. A computer program to determine the possible daily release window for sky target experiments

    NASA Technical Reports Server (NTRS)

    Michaud, N. H.

    1973-01-01

    A computer program is presented which is designed to determine the daily release window for sky target experiments. Factors considered in the program include: (1) target illumination by the sun at release time and during the tracking period; (2) look angle elevation above local horizon from each tracking station to the target; (3) solar depression angle from the local horizon of each tracking station during the experimental period after target release; (4) lunar depression angle from the local horizon of each tracking station during the experimental period after target release; and (5) total sky background brightness as seen from each tracking station while viewing the target. Program output is produced in both graphic and data form. Output data can be plotted for a single calendar month or year. The numerical values used to generate the plots are furnished to permit a more detailed review of the computed daily release windows.

  19. Creation of 3D microsculptures in PMMA by multiple angle proton irradiation

    NASA Astrophysics Data System (ADS)

    Andrea, T.; Rothermel, M.; Reinert, T.; Koal, T.; Butz, T.

    2011-10-01

    In recent years the technique of proton beam writing has established itself as a versatile method for the creation of microstructures in resist materials. While these structures can be almost arbitrary in two dimensions, the creation of genuine 3D structures remains a challenge. At the LIPSION accelerator facility a new approach has been developed which combines aspects of ion beam tomography, so far solely an analysis method, with proton beam writing. Key element is the targeted irradiation from multiple angles in order to obtain a much broader range of 3D microstructures than has hitherto been possible. PMMA columns with a diameter of ∼90 μm were used as raw material and placed in an upright position on top of a rotational axis. Using 2.25 MeV protons patterns corresponding to the silhouettes of the desired structures were written from two or more directions. In a subsequent step of chemical etching irradiated portions were dissolved, leaving behind the finished 3D sculpture. Various objects have been created. For the demonstration of the method a 70 μm high model of the Eiffel tower has been sculpted by irradiation from two angles. Using irradiation from three angles a 40 μm wide screw with right-handed thread could be crafted which might find applications in micromachining. Also, a cage structure with a pore size of ca. 20 μm was written with the intention to use it as a scaffold for the growth of biological cells.

  20. The Influence of topography on formation characteristics of hygroscopic and condensate water in Shapotou

    NASA Astrophysics Data System (ADS)

    Pan, Yanxia; Li, Xinrong; Hui, Rong; Zhao, Yang

    2016-04-01

    The formation characteristics of hygroscopic and condensate water for different topographic positions were observed using the PVC pipes manual weighing and CPM method in the typical mobile dunes fixed by straw checkerboard barriers in Shapotou. The results indicated that the formation amounts and duration of hygroscopic and condensate water show moderate spatial heterogeneity at the influence of topography. The formation amounts of hygroscopic and condensate water at different aspects conform to the classical convection model, in which the hygroscopic and condensate water amounts are highest at hollow, and windward aspect gets more water than leeward aspect, the hygroscopic and condensate water amounts at different aspects are expressed as: hollow>Western-faced aspect>Northern-faced aspect>hilltop>Southern-faced aspect>Eastern-faced aspect. The hygroscopic and condensate water amounts at different slope positions for every aspect are as follows: the foot of slope>middle slope>hilltop. A negatively linear correlation is got between slope angles and hygroscopic and condensate water amounts, hygroscopic and condensate water amounts decrease gradually along with the increase of slope angles, the amounts of hygroscopic and condensate water at the vertical aspect are only half of horizontal aspect, which indicated topography were important influence factors for the formation of the hygroscopic and condensate water in arid area.

  1. Autonomous Motion Planning Using a Predictive Temporal Method

    DTIC Science & Technology

    2009-01-01

    interception test. ......150 5-20 Target and solution path heading angles for target interception test. ..............................151 10 LIST...environment as a series of distances and angles . Regardless of the technique, this knowledge of the surrounding area is crucial for the issue of...to, the rather simplistic vector driver algorithms which compute the angle between the current vehicle heading and the heading to the goal and

  2. On Target Localization Using Combined RSS and AoA Measurements

    PubMed Central

    Beko, Marko; Dinis, Rui

    2018-01-01

    This work revises existing solutions for a problem of target localization in wireless sensor networks (WSNs), utilizing integrated measurements, namely received signal strength (RSS) and angle of arrival (AoA). The problem of RSS/AoA-based target localization became very popular in the research community recently, owing to its great applicability potential and relatively low implementation cost. Therefore, here, a comprehensive study of the state-of-the-art (SoA) solutions and their detailed analysis is presented. The beginning of this work starts by considering the SoA approaches based on convex relaxation techniques (more computationally complex in general), and it goes through other (less computationally complex) approaches, as well, such as the ones based on the generalized trust region sub-problems framework and linear least squares. Furthermore, a detailed analysis of the computational complexity of each solution is reviewed. Furthermore, an extensive set of simulation results is presented. Finally, the main conclusions are summarized, and a set of future aspects and trends that might be interesting for future research in this area is identified. PMID:29671832

  3. High-aspect-ratio microstructures with versatile slanting angles on silicon by uniform metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.

    2018-05-01

    High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.

  4. On the Lateral Static Stability of Low-Aspect-Ratio Rectangular Wings

    NASA Astrophysics Data System (ADS)

    Linehan, Thomas; Mohseni, Kamran

    2017-11-01

    Low-aspect-ratio rectangular wings experience a reduction in lateral static stability at angles of attack distinct from that of lift stall. Stereoscopic digital particle image velocimetry is used to elucidate the flow physics behind this trend. Rectangular wings of AR = 0.75, 1, 1.5, 3 were tested at side-slip angles β = -10° and 0° with angle of attack varied in the range α =10° -40° . In side-slip, the leading-edge separation region emerges on the leeward wing where leading-edge flow reattachment is highly intermittent due to vortex shedding. The tip vortex downwash of the AR < 1.5 wings is sufficient to restrict the shedding of leading-edge vorticity, enabling sustained lift from the leading-edge separation region to high angles of attack. The windward tip vortex grows in size with increasing angle of attack, occupying an increasingly larger percentage of the windward wing. At high angles of attack pre-lift stall, the windward tip vortex lifts off the wing, resulting in separated flow underneath it. The downwash of the AR = 3 wing is insufficient to reattach the leading-edge flow at high incidence. The flow stalls on the leeward wing with stalled flow expanding upstream toward the windward wing with increasing angle of attack.

  5. Influence of eye size and beam entry angle on dose to non-targeted tissues of the eye during stereotactic x-ray radiosurgery of AMD

    NASA Astrophysics Data System (ADS)

    Cantley, Justin L.; Hanlon, Justin; Chell, Erik; Lee, Choonsik; Smith, W. Clay; Bolch, Wesley E.

    2013-10-01

    Age-related macular degeneration is a leading cause of vision loss for the elderly population of industrialized nations. The IRay® Radiotherapy System, developed by Oraya® Therapeutics, Inc., is a stereotactic low-voltage irradiation system designed to treat the wet form of the disease. The IRay System uses three robotically positioned 100 kVp collimated photon beams to deliver an absorbed dose of up to 24 Gy to the macula. The present study uses the Monte Carlo radiation transport code MCNPX to assess absorbed dose to six non-targeted tissues within the eye—total lens, radiosensitive tissues of the lens, optic nerve, distal tip of the central retinal artery, non-targeted portion of the retina, and the ciliary body--all as a function of eye size and beam entry angle. The ocular axial length was ranged from 20 to 28 mm in 2 mm increments, with the polar entry angle of the delivery system varied from 18° to 34° in 2° increments. The resulting data showed insignificant variations in dose for all eye sizes. Slight variations in the dose to the optic nerve and the distal tip of the central retinal artery were noted as the polar beam angle changed. An increase in non-targeted retinal dose was noted as the entry angle increased, while the dose to the lens, sensitive volume of the lens, and ciliary body decreased as the treatment polar angle increased. Polar angles of 26° or greater resulted in no portion of the sensitive volume of the lens receiving an absorbed dose of 0.5 Gy or greater. All doses to non-targeted structures reported in this study were less than accepted thresholds for post-procedure complications.

  6. Limitations of Lifting-Line Theory for Estimation of Aileron Hinge-Moment Characteristics

    NASA Technical Reports Server (NTRS)

    Swanson, Robert S.; Gillis, Clarence L.

    1943-01-01

    Hinge-moment parameters for several typical ailerons were calculated from section data with the aspect-ratio correction as usually determined from lifting-line theory. The calculations showed that the agreement between experimental and calculated results was unsatisfactory. An additional aspect-ratio correction, calculated by the method of lifting-surface theory, was applied to the slope of the curve of hinge-moment coefficient against angle of attack at small angles of attack. This so-called streamline-curvature correction brought the calculated and experimental results into satisfactory agreement.

  7. Small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  8. An Efficient Moving Target Detection Algorithm Based on Sparsity-Aware Spectrum Estimation

    PubMed Central

    Shen, Mingwei; Wang, Jie; Wu, Di; Zhu, Daiyin

    2014-01-01

    In this paper, an efficient direct data domain space-time adaptive processing (STAP) algorithm for moving targets detection is proposed, which is achieved based on the distinct spectrum features of clutter and target signals in the angle-Doppler domain. To reduce the computational complexity, the high-resolution angle-Doppler spectrum is obtained by finding the sparsest coefficients in the angle domain using the reduced-dimension data within each Doppler bin. Moreover, we will then present a knowledge-aided block-size detection algorithm that can discriminate between the moving targets and the clutter based on the extracted spectrum features. The feasibility and effectiveness of the proposed method are validated through both numerical simulations and raw data processing results. PMID:25222035

  9. Ultrasonic imaging of material flaws exploiting multipath information

    NASA Astrophysics Data System (ADS)

    Shen, Xizhong; Zhang, Yimin D.; Demirli, Ramazan; Amin, Moeness G.

    2011-05-01

    In this paper, we consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT) tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. Multipath exploitations provide extended virtual array apertures and, in turn, enhance imaging capability beyond the limitation of traditional multisensor approaches. We utilize reflections of ultrasonic signals which occur when encountering different media and interior discontinuities. The waveforms observed at the physical as well as virtual sensors yield additional measurements corresponding to different aspect angles. Exploitation of multipath information addresses unique issues observed in ultrasonic imaging. (1) Utilization of physical and virtual sensors significantly extends the array aperture for image enhancement. (2) Multipath signals extend the angle of view of the narrow beamwidth of the ultrasound transducers, allowing improved visibility and array design flexibility. (3) Ultrasonic signals experience difficulty in penetrating a flaw, thus the aspect angle of the observation is limited unless access to other sides is available. The significant extension of the aperture makes it possible to yield flaw observation from multiple aspect angles. We show that data fusion of physical and virtual sensor data significantly improves the detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated through experimental studies.

  10. Monte Carlo simulations of secondary electron emission due to ion beam milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahady, Kyle; Tan, Shida; Greenzweig, Yuval

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes thismore » study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.« less

  11. Radar targets reveal all to automated tester

    NASA Astrophysics Data System (ADS)

    Hartman, R. E.

    1985-09-01

    Technological developments in the field of automated test equipment for low radar-cross-section (RCS) systems are reviewed. Emphasis is given to an Automated Digital Analysis and Measurement (ADAM) system for measuring, scattering, and evaluating RCS using a minicomputer in combination with a vector network analyzer and a positioner programmer. ADAM incorporates a stepped CW measurement technique to obtain RCS as a function of both range and frequency at a fixed aspect angle. The operating characteristics and calibration procedures of the ADAM system are described and estimates of RCS sensitivity are obtained. The response resolution of the ADAM system is estimated to be 36 cm per measurement bandwidth (in GHz) for a minimum window. A block diagram of the error checking routine of the ADAM system is provided.

  12. Joint Task Force Two, Test 4.1; B 52 Aircraft Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Department 9210

    1968-10-01

    This volume contains plots of the aircraft position track in the target area. There are also plots of the aircraft altitude above the terrain, normal accelerations, roll angle, pitch angle & slant range from the navigation check points and the targets.

  13. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case.

    PubMed

    Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming

    2017-12-22

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  14. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    PubMed Central

    Ao, Dongyang; Hu, Cheng; Tian, Weiming

    2017-01-01

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917

  15. Factors affecting computer mouse use for young children: implications for AAC.

    PubMed

    Costigan, F Aileen; Light, Janice C; Newell, Karl M

    2012-06-01

    More than 12% of preschoolers receiving special education services have complex communication needs, including increasing numbers of children who do not have significant motor impairments (e.g., children with autism spectrum disorders, Down syndrome, etc.). In order to meet their diverse communication needs (e.g., face-to-face, written, Internet, telecommunication), these children may use mainstream technologies accessed via the mouse, yet little is known about factors that affect the mouse performance of young children. This study used a mixed factorial design to investigate the effects of age, target size, and angle of approach on accuracy and time required for accurate target selection with a mouse for 20 3-year-old and 20 4-year-old children. The 4-year-olds were generally more accurate and faster than the 3-year-olds. Target size and angle mediated differences in performance within age groups. The 3-year-olds were more accurate and faster in selecting the medium and large targets relative to the small target, were faster in selecting the large relative to the medium target, and were faster in selecting targets along the vertical relative to the diagonal angle. The 4-year-olds were faster in selecting the medium and large targets relative to the small target. Implications for improving access to AAC include the preliminary suggestion of age-related threshold target sizes that support sufficient accuracy, the possibility of efficiency benefits when target size is increased up to an age-related threshold, and identification of the potential utility of the vertical angle as a context for training navigational input device use.

  16. GOS hook type wells, directional planning, techniques applied and problems encountered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A /Azim, M.; Fahmy, H.; Salem, A.

    1995-10-01

    This paper addresses the various aspects of hook type wells introduced and drilled within GUPCO operations during he last two years. The first well of this category was October-G10, drilled in October 1992 from October ``G`` platform to a target point in the Nubia formation. Several wells of the same type have been drilled through 1993 and 1994. This group includes October-H1, Ramadan 3-57, July 62-69 and SB 374-3. Drilling hook type well profiles has resulted in increased production and more reserve recovery. The driving force behind using this profile was the reservoir requirements where it was required to hitmore » a target within few meters at a certain angle and direction. Torque and drag models have been used to optimize well path planning, resulting in lower torque and drag values. Daily pot appraisal of the drilling operations to monitor hole cleaning effectiveness. Combination of advanced steerable systems and PDC bits enabled GUPCO to drill these wells cost effectively.« less

  17. An innovative small angle slot divertor concept for long pulse advanced tokamaks

    NASA Astrophysics Data System (ADS)

    Guo, Houyang

    2017-10-01

    A new Small Angle Slot (SAS) divertor is being developed in DIII-D to address the challenge of efficient divertor heat dispersal at the relatively low plasma density required for non-inductive current drive in future advanced tokamaks. SAS features a small incident angle near the plasma strike point on the divertor target plate with a progressively opening slot. SOLPS (B2-Eirene) edge code analysis finds that SAS can achieve strong plasma cooling when the strike point is placed near the small angle target plate in the slot, leading to low electron temperature Te across the entire divertor target. This is enabled by strong coupling between a gas tight slot and directed neutral recycling by the small angle target to enhance neutral buildup near the target. SOLPS analysis reveals a strong correlation between Te and D2 density at the target for various divertor configurations including the flat target, slanted target, and lower single null divertor. The strong correlation suggests that achievement of low Te may reduce essentially to identifying the divertor baffle geometry that achieves the highest target gas density at a given upstream condition. The SAS divertor concept has recently been tested in DIII-D for a range of plasma configurations and conditions with precise control of slot strike point location. In confirmation of SOLPS predictions, a sharp transition is observed when the strike point is moved to the critical outer corner of SAS. A set of Langmuir probes imbedded in SAS show that the Te radial profile, which is peaked at the strike point when it is located away from the SAS corner, becomes low across the target when the strike point is located near the corner. With further increase in density, deep-slot detachment occurs with Te 1 eV, measured by the unique DIII-D divertor Thomson Scattering diagnostic. Work supported by US DOE under DE-FC02-04ER54698.

  18. Gyre formation within embayments of a large lake (Lake Geneva, Switzerland)

    NASA Astrophysics Data System (ADS)

    Razmi, A.; Barry, D.; Bouffard, D.; Le Dantec, N.; Lemmin, U.; Wuest, A.

    2013-12-01

    Numerical simulations were carried out to examine gyre formation within open, wide lacustrine embayments. The present study was motivated by observed differences in gyre formation within two open and wide embayments (located at Vidy and Morges in Lake Geneva, Switzerland). These two embayments are located within about 3 km of each other on the northern shore of Lake Geneva, and are subjected to similar pelagic currents. Vidy is deeper and has a greater aspect ratio than Morges. The flow field in the embayments was modeled using a previously validated 3D hydrodynamic model (Delft3D-FLOW). The model solved the Reynolds-Averaged Navier-Stokes equations, combined with a k-ɛ turbulence closure in σ (lakebed-following) coordinates. Our study focused on the influence of the embayment geometry on the (uniform) longshore (pelagic) current, specifically the occurrence and magnitude of circulation within the embayment. We built a set of numerical experiments using synthetic embayments, and systematically examined embayment geometry, thereby capturing the differences between the Vidy and Morges embayments. The numerical experiments considered single rectilinear embayments with different aspect ratios (i.e., 1-6), depth, shore-parallel flow rates, and embayment corner angle between 0°-50°. The circulation magnitude changes abruptly for an angle of about 40°. Embayments with angles greater than 40° have much greater circulation then those with lesser angles, other factors remaining the same. Of the factors considered (i.e., aspect ratio, offshore current velocity, corner angle, bottom slope, and viscosity), bottom slope and the viscosity have almost no impact on embayment circulation. For uniform offshore current patterns, gyres form in embayments with large aspect ratios (up to ~3). For the Vidy and Morges embayments, the results showed that gyre formation is more likely in Morges due to its smaller aspect ratio, a finding that is supported by field data gathered in drifter studies. For example, simultaneous drifter releases in 2011 showed parallel-to-shore currents in the Vidy embayment and a gyre in Morges. KEYWORDS: Hydrodynamics; Open Embayment; Flow Separation; Gyre; Topography; Lake Geneva.

  19. A Generalized Hydrodynamic-Impact Theory for the Loads and Motions of Deeply Immersed Prismatic Bodies

    NASA Technical Reports Server (NTRS)

    Markey, Melvin F.

    1959-01-01

    A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.

  20. Urban-area extraction from polarimetric SAR image using combination of target decomposition and orientation angle

    NASA Astrophysics Data System (ADS)

    Zou, Bin; Lu, Da; Wu, Zhilu; Qiao, Zhijun G.

    2016-05-01

    The results of model-based target decomposition are the main features used to discriminate urban and non-urban area in polarimetric synthetic aperture radar (PolSAR) application. Traditional urban-area extraction methods based on modelbased target decomposition usually misclassified ground-trunk structure as urban-area or misclassified rotated urbanarea as forest. This paper introduces another feature named orientation angle to improve urban-area extraction scheme for the accurate mapping in urban by PolSAR image. The proposed method takes randomness of orientation angle into account for restriction of urban area first and, subsequently, implements rotation angle to improve results that oriented urban areas are recognized as double-bounce objects from volume scattering. ESAR L-band PolSAR data of the Oberpfaffenhofen Test Site Area was used to validate the proposed algorithm.

  1. LROC Stereo Observations

    NASA Astrophysics Data System (ADS)

    Beyer, Ross A.; Archinal, B.; Li, R.; Mattson, S.; Moratto, Z.; McEwen, A.; Oberst, J.; Robinson, M.

    2009-09-01

    The Lunar Reconnaissance Orbiter Camera (LROC) will obtain two types of multiple overlapping coverage to derive terrain models of the lunar surface. LROC has two Narrow Angle Cameras (NACs), working jointly to provide a wider (in the cross-track direction) field of view, as well as a Wide Angle Camera (WAC). LRO's orbit precesses, and the same target can be viewed at different solar azimuth and incidence angles providing the opportunity to acquire `photometric stereo' in addition to traditional `geometric stereo' data. Geometric stereo refers to images acquired by LROC with two observations at different times. They must have different emission angles to provide a stereo convergence angle such that the resultant images have enough parallax for a reasonable stereo solution. The lighting at the target must not be radically different. If shadows move substantially between observations, it is very difficult to correlate the images. The majority of NAC geometric stereo will be acquired with one nadir and one off-pointed image (20 degree roll). Alternatively, pairs can be obtained with two spacecraft rolls (one to the left and one to the right) providing a stereo convergence angle up to 40 degrees. Overlapping WAC images from adjacent orbits can be used to generate topography of near-global coverage at kilometer-scale effective spatial resolution. Photometric stereo refers to multiple-look observations of the same target under different lighting conditions. LROC will acquire at least three (ideally five) observations of a target. These observations should have near identical emission angles, but with varying solar azimuth and incidence angles. These types of images can be processed via various methods to derive single pixel resolution topography and surface albedo. The LROC team will produce some topographic models, but stereo data collection is focused on acquiring the highest quality data so that such models can be generated later.

  2. Handrim wheelchair propulsion training effect on overground propulsion using biomechanical real-time visual feedback.

    PubMed

    Rice, Ian M; Pohlig, Ryan T; Gallagher, Jerri D; Boninger, Michael L

    2013-02-01

    To compare the effects of 2 manual wheelchair propulsion training programs on handrim kinetics, contact angle, and stroke frequency collected during overground propulsion. Randomized controlled trial comparing handrim kinetics between 3 groups: a control group that received no training, an instruction-only group that reviewed a multimedia presentation, and a feedback group that reviewed the multimedia presentation and real-time visual feedback. Research laboratory. Full-time manual wheelchair users (N=27) with spinal cord injury living in the Pittsburgh area. Propulsion training was given 3 times over 3 weeks, and data were collected at baseline, immediately after training, and at 3 months. Contact angle, stroke frequency, peak resultant force, and peak rate of rise of resultant force. Both feedback and instruction-only groups improved their propulsion biomechanics across all surfaces (carpet, tile, and ramp) at both target and self-selected speeds compared with the control group. While controlling for velocity, both intervention groups showed long-term reductions in the peak rate or rise of resultant force, stroke frequency, and increased contact angle. Long-term wheelchair users in both intervention groups significantly improved many aspects of their propulsion technique immediately after training and 3 months from baseline. Furthermore, training with a low-cost instructional video and slide presentation was an effective training tool alone. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints

    NASA Astrophysics Data System (ADS)

    Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea

    2018-05-01

    This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.

  4. The effects of target distance on pivot hip, trunk, pelvis, and kicking leg kinematics in Taekwondo roundhouse kicks.

    PubMed

    Kim, Jae-Woong; Kwon, Moon-Seok; Yenuga, Sree Sushma; Kwon, Young-Hoooo

    2010-06-01

    The study purpose was to investigate the effects of target distance on pivot hip, trunk, pelvis, and kicking leg movements in Taekwondo roundhouse kick. Twelve male black-belt holders executed roundhouse kicks for three target distances (Normal, Short, and Long). Linear displacements of the pivot hip and orientation angles of the pelvis, trunk, right thigh, and right shank were obtained through a three-dimensional video motion analysis. Select displacements, distances, peak orientation angles, and angle ranges were compared among the conditions using one-way repeated measure ANOVA (p < 0.05). Several orientation angle variables (posterior tilt range, peak right-tilted position, peak right-rotated position, peak left-rotated position, and left rotation range of the pelvis; peak hyperextended position and peak right-flexed position of the trunk; peak flexed position, flexion range and peak internal-rotated position of the hip) as well as the linear displacements of the pivot hip and the reach significantly changed in response to different target distances. It was concluded that the adjustment to different target distances was mainly accomplished through the pivot hip displacements, hip flexion, and pelvis left rotation. Target distance mainly affected the reach control function of the pelvis and the linear balance function of the trunk.

  5. Utilization of optical tracking to validate a software-driven isocentric approach to robotic couch movements for proton radiotherapy.

    PubMed

    Hsi, Wen C; Law, Aaron; Schreuder, Andreas N; Zeidan, Omar A

    2014-08-01

    An optical tracking and positioning system (OTPS) was developed to validate the software-driven isocentric (SDI) approach to control the six-degrees-of-freedom movement of a robotic couch. The SDI approach to movements rotating around a predefined isocenter, referred to as a GeoIso, instead of a mechanical pivot point was developed by the robot automation industry. With robotic couch-sag corrections for weight load in a traditional SDI approach, movements could be accurately executed for a GeoIso located within a 500 mm cubic volume on the couch for treatments. The accuracy of SDI movement was investigated using the OTPS. The GeoIso was assumed to align with the proton beam isocenter (RadIso) for gantry at the reference angle. However, the misalignment between GeoIso and RadIso was quantitatively investigated by measuring the displacements at various couch angles for a target placed at the RadIso at an initial couch angle. When circular target displacements occur on a plane, a relative isocenter shift (RIS) correction could be applied in the SDI movement to minimize target displacements. Target displacements at a fixed gantry angle without and with RIS correction were measured for 12 robotic couches. Target displacements for various gantry angles were performed on three couches in gantry rooms to study the gantry-induced RadIso shift. The RIS correction can also be applied for the RadIso shift. A new SDI approach incorporating the RIS correction with the couch sag is described in this study. In parallel, the accuracy of SDI translation movements for various weight loads of patients on the couch was investigated during positioning of patients for proton prostate treatments. For a fixed gantry angle, measured target displacements without RIS correction for couch rotations in the horizontal plane varied from 4 to 20 mm. However, measured displacements perpendicular to couch rotation plane were about 2 mm for all couches. Extracted misalignments of GeoIso and RadIso in the horizontal plane were about 10 mm for one couch and within 3 mm for the rest of couches. After applying the RIS correction, the residual target displacements for couch rotations were within 0.5 mm to RadIso for all couches. For various gantry angles, measured target location for each angle was within 0.5 mm to its excepted location by the preset RadIso shift. Measured target displacements for ± 30° of couch rotations were within 0.5 mm for gantry angles at 0° and 180°. Overall, nearly 85% of couch movements were within 0.5 mm in the horizontal plane and 0.7 mm vector distance from required displacements. The authors present an optical tracking methodology to quantify for software-driven isocentric movements of robotic couches. By applying proper RIS correction for misaligned GeoIso and RadIso for each couch, and the RadIso shifts for a moving gantry, residual target displacements for isocentric couch movements around the actual RadIso can be reduced to submillimeter tolerance.

  6. Utilization of optical tracking to validate a software-driven isocentric approach to robotic couch movements for proton radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsi, Wen C., E-mail: Wen.Hsi@Mclaren.org, E-mail: Wenchien.hsi@sphic.org.cn; Zeidan, Omar A., E-mail: omar.zeidan@orlandohealth.com; Law, Aaron

    Purpose: An optical tracking and positioning system (OTPS) was developed to validate the software-driven isocentric (SDI) approach to control the six-degrees-of-freedom movement of a robotic couch. Methods: The SDI approach to movements rotating around a predefined isocenter, referred to as a GeoIso, instead of a mechanical pivot point was developed by the robot automation industry. With robotic couch-sag corrections for weight load in a traditional SDI approach, movements could be accurately executed for a GeoIso located within a 500 mm cubic volume on the couch for treatments. The accuracy of SDI movement was investigated using the OTPS. The GeoIso wasmore » assumed to align with the proton beam isocenter (RadIso) for gantry at the reference angle. However, the misalignment between GeoIso and RadIso was quantitatively investigated by measuring the displacements at various couch angles for a target placed at the RadIso at an initial couch angle. When circular target displacements occur on a plane, a relative isocenter shift (RIS) correction could be applied in the SDI movement to minimize target displacements. Target displacements at a fixed gantry angle without and with RIS correction were measured for 12 robotic couches. Target displacements for various gantry angles were performed on three couches in gantry rooms to study the gantry-induced RadIso shift. The RIS correction can also be applied for the RadIso shift. A new SDI approach incorporating the RIS correction with the couch sag is described in this study. In parallel, the accuracy of SDI translation movements for various weight loads of patients on the couch was investigated during positioning of patients for proton prostate treatments. Results: For a fixed gantry angle, measured target displacements without RIS correction for couch rotations in the horizontal plane varied from 4 to 20 mm. However, measured displacements perpendicular to couch rotation plane were about 2 mm for all couches. Extracted misalignments of GeoIso and RadIso in the horizontal plane were about 10 mm for one couch and within 3 mm for the rest of couches. After applying the RIS correction, the residual target displacements for couch rotations were within 0.5 mm to RadIso for all couches. For various gantry angles, measured target location for each angle was within 0.5 mm to its excepted location by the preset RadIso shift. Measured target displacements for ±30° of couch rotations were within 0.5 mm for gantry angles at 0° and 180°. Overall, nearly 85% of couch movements were within 0.5 mm in the horizontal plane and 0.7 mm vector distance from required displacements. Conclusions: The authors present an optical tracking methodology to quantify for software-driven isocentric movements of robotic couches. By applying proper RIS correction for misaligned GeoIso and RadIso for each couch, and the RadIso shifts for a moving gantry, residual target displacements for isocentric couch movements around the actual RadIso can be reduced to submillimeter tolerance.« less

  7. Effect of sweep and aspect ratio on the longitudinal aerodynamics of a spanloader wing in and out of ground effect. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kjelgaard, S. O.; Paulson, J. W., Jr.

    1981-01-01

    A wind tunnel investigation was conducted in the Langley 4 by 7 meter tunnel to determine the effects of leading edge sweep, aspect ratio, flap deflection, and elevon deflection on the longitudinal aerodynamic characteristics of a span distributed load advanced cargo aircraft (spanloader). Model configurations consisted of leading edge sweeps of 0, 15, 30 and 45 deg and aspect ratios of approximately 2, 4, 6, and 8. Data were obtained for angles of attack of -8 to 18 deg out of ground effect and at angles of attack of -2, 0, and 2 deg in ground effect at Mach number equal 0.14. Flap and elevon deflections ranged from -20 to 20 deg. The data are represented in tabulated form.

  8. Computational design of low aspect ratio wing-winglets for transonic wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Brown, Christopher K.

    1989-01-01

    A computational design has been performed for three different low aspect ratio wing planforms fitted with nonplanar winglets; one of the three planforms has been selected to be constructed as a wind tunnel model for testing in the NASA LaRC 7 x 10 High Speed Wind Tunnel. A design point of M = 0.8, CL approx = 0.3 was selected, for wings of aspect ratio equal to 2.2, and leading edge sweep angles of 45 and 50 deg. Winglet length is 15 percent of the wing semispan, with a cant angle of 15 deg, and a leading edge sweep of 50 deg. Winglet total area equals 2.25 percent of the wing reference area. This report summarizes the design process and the predicted transonic performance for each configuration.

  9. A numerical study on high-pressure water-spray cleaning for CSP reflectors

    NASA Astrophysics Data System (ADS)

    Anglani, Francesco; Barry, John; Dekkers, Willem

    2016-05-01

    Mirror cleaning for concentrated solar thermal (CST) systems is an important aspect of operation and maintenance (O&M), which affects solar field efficiency. The cleaning process involves soil removal by erosion, resulting from droplet impingement on the surface. Several studies have been conducted on dust accumulation and CSP plant reflectivity restoration, demonstrating that parameters such as nozzle diameter, jet impingement angle, interaxial distance between nozzles, standoff distance, water velocity, nozzle pressure and others factors influence the extent of reflectance restoration. In this paper we aim at identifying optimized cleaning strategies suitable for CST plants, able to restore mirror reflectance by high-pressure water-spray systems through the enhancement of shear stress over reflectors' surface. In order to evaluate the forces generated by water-spray jet impingement during the cleaning process, fluid dynamics simulations have been undertaken with ANSYS CFX software. In this analysis, shear forces represent the "critical phenomena" within the soil removal process. Enhancing shear forces on a particular area of the target surface, varying the angle of impingement in combination with the variation of standoff distances, and managing the interaxial distance of nozzles can increase cleaning efficiency. This procedure intends to improve the cleaning operation for CST mirrors reducing spotted surface and increasing particles removal efficiency. However, turbulence developed by adjacent flows decrease the shear stress generated on the reflectors surface. The presence of turbulence is identified by the formation of "fountain regions" which are mostly responsible of cleaning inefficiency. By numerical analysis using ANSYS CFX, we have modelled a stationary water-spray system with an array of three nozzles in line, with two angles of impingement: θ = 90° and θ = 75°. Several numerical tests have been carried out, varying the interaxial distance of nozzles, standoff distance, jet pressure and jet impingement angle in order to identify effective and efficient cleaning procedures to restore collectors' reflectance, decrease turbulence and improve CST plant efficiency. Results show that the forces generated over the flat target surface are proportional to the inlet pressure and to the water velocity over the surface, and that the shear stresses decrease as the standoff distance increases.

  10. Multi-angle Spectra Evolution of Ionospheric Turbulence Excited by RF Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Watanabe, N.; Golkowski, M.; Bristow, W. A.; Bernhardt, P. A.; Briczinski, S. J., Jr.

    2014-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts

  11. Variability of Retinal Thickness Measurements in Tilted or Stretched Optical Coherence Tomography Images

    PubMed Central

    Uji, Akihito; Abdelfattah, Nizar Saleh; Boyer, David S.; Balasubramanian, Siva; Lei, Jianqin; Sadda, SriniVas R.

    2017-01-01

    Purpose To investigate the level of inaccuracy of retinal thickness measurements in tilted and axially stretched optical coherence tomography (OCT) images. Methods A consecutive series of 50 eyes of 50 patients with age-related macular degeneration were included in this study, and Cirrus HD-OCT images through the foveal center were used for the analysis. The foveal thickness was measured in three ways: (1) parallel to the orientation of the A-scan (Tx), (2) perpendicular to the retinal pigment epithelium (RPE) surface in the instrument-displayed aspect ratio image (Ty), and (3) thickness measured perpendicular to the RPE surface in a native aspect ratio image (Tz). Mathematical modeling was performed to estimate the measurement error. Results The measurement error was larger in tilted images with a greater angle of tilt. In the simulation, with axial stretching by a factor of 2, Ty/Tz ratio was > 1.05 at a tilt angle between 13° to 18° and 72° to 77°, > 1.10 at a tilt angle between 19° to 31° and 59° to 71°, and > 1.20 at an angle ranging from 32° to 58°. Of note with even more axial stretching, the Ty/Tz ratio is even larger. Tx/Tz ratio was smaller than the Ty/Tz ratio at angles ranging from 0° to 54°. The actual patient data showed good agreement with the simulation. The Ty/Tz ratio was greater than 1.05 (5% error) at angles ranging from 13° to 18° and 72° to 77°, greater than 1.10 (10% error) angles ranging from 19° to 31° and 59° to 71°, and greater than 1.20 (20% error) angles ranging from 32° to 58° in the images axially stretched by a factor of 2 (b/a = 2), which is typical of most OCT instrument displays. Conclusions Retinal thickness measurements obtained perpendicular to the RPE surface were overestimated when using tilted and axially stretched OCT images. Translational Relevance If accurate measurements are to be obtained, images with a native aspect ratio similar to microscopy must be used. PMID:28299239

  12. Target geometrical effects on the stagnation layer formed by colliding a pair of laser produced copper plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallon, C., E-mail: colm.fallon5@mail.dcu.ie; Hayden, P.; Walsh, N.

    We present the results of a time and space resolved optical-spectroscopic study of colliding plasmas formed at the front surfaces of flat and inclined Cu slab targets as a function of both the distance and the wedge angle between them for angles ranging from 100° to 180° (laterally colliding plasmas). The key parameters studied are stagnation layer density, temperature, duration, and kinetics of atomic/ionic spatial distributions and all have been found to vary significantly with wedge angle. It is found that the density and temperature of the stagnation layer decrease with increasing wedge angle. It is also found that themore » larger the wedge angle, the tighter and more well defined the stagnation layer formed.« less

  13. Targeting reactive oxygen species in development and progression of pancreatic cancer

    PubMed Central

    Durand, Nisha; Storz, Peter

    2017-01-01

    Introduction Pancreatic ductal adenocarcinoma (PDA) is characterized by expression of oncogenic KRas which drives all aspects of tumorigenesis. Oncogenic KRas induces the formation of reactive oxygen species (ROS) which have been implicated in initiation and progression of PDA. To facilitate tumor promoting levels and to avoid oncogene-induced senescence or cytotoxicity, ROS homeostasis in PDA cells is balanced by additional up-regulation of antioxidant systems. Areas Covered We examine the sources of ROS in PDA, the mechanisms by which ROS homeostasis is maintained, and the biological consequences of ROS in PDA. Additionally, we discuss the potential mechanisms for targeting ROS homoeostasis as a point of therapeutic intervention. An extensive review of the relevant literature as it relates to the topic was conducted using PubMed. Expert Commentary Even though oncogenic mutations in the KRAS gene have been detected in over 95% of human pancreatic adenocarcinoma, targeting its gene product, KRas, has been difficult. The dependency of PDA cells on balancing ROS homeostasis could be an angle for new prevention or treatment strategies. These include use of antioxidants to prevent formation or progression of precancerous lesions, or methods to increase ROS in tumor cells to toxic levels. PMID:27841037

  14. A study of 35-ghz radar-assisted orbital maneuvering vehicle/space telescope docking

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1986-01-01

    An experiment was conducted to study the effects of measuring range and range rate information from a complex radar target (a one-third scale model of the Edwin P. Hubble Space Telescope). The radar ranging system was a 35-GHz frequency-modulated continuous wave unit developed in the Communication Systems Branch of the Information and Electronic Systems Laboratory at Marshall Space Flight Cneter. Measurements were made over radar-to-target distances of 5 meters to 15 meters to simulate the close distance realized in the final stages of space vehicle docking. The Space Telescope model target was driven by an antenna positioner through a range of azimuth and elevation (pitch) angles to present a variety of visual aspects of the aft end to the radar. Measurements were obtained with and without a cube corner reflector mounted in the center of the aft end of the model. The results indicate that range and range rate measurements are performed significantly more accurately with the cooperative radar reflector affixed. The results further reveal that range rate (velocity) can be measured accurately enough to support the required soft docking with the Space Telescope.

  15. Fiber Angle and Aspect Ratio Influence the Shear Mechanics of Oriented Electrospun Nanofibrous Scaffolds

    PubMed Central

    Driscoll, Tristan P.; Nerurkar, Nandan L.; Jacobs, Nathan T.; Elliott, Dawn M.; Mauck, Robert L.

    2011-01-01

    Fibrocartilages, including the knee meniscus and the annulus fibrosus (AF) of the intervertebral disc, play critical mechanical roles in load transmission across joints and their function is dependent upon well-defined structural hierarchies, organization, and composition. All, however, are compromised in the pathologic transformations associated with tissue degeneration. Tissue engineering strategies that address these key features, for example, aligned nanofibrous scaffolds seeded with mesenchymal stem cells (MSCs), represent a promising approach for the regeneration of these fibrous structures. While such engineered constructs can replicate native tissue structure and uniaxial tensile properties, the multidirectional loading encountered by these tissues in vivo necessitates that they function adequately in other loading modalities as well, including shear. As previous findings have shown that native tissue tensile and shear properties are dependent on fiber angle and sample aspect ratio, respectively, the objective of the present study was to evaluate the effects of a changing fiber angle and sample aspect ratio on the shear properties of aligned electrospun poly(ε-caprolactone) (PCL) scaffolds, and to determine how extracellular matrix deposition by resident MSCs modulates the measured shear response. Results show that fiber orientation and sample aspect ratio significantly influence the response of scaffolds in shear, and that measured shear strains can be predicted by finite element models. Furthermore, acellular PCL scaffolds possessed a relatively high shear modulus, 2–4 fold greater than native tissue, independent of fiber angle and aspect ratio. It was further noted that under testing conditions that engendered significant fiber stretch, the aggregate resistance to shear was higher, indicating a role for fiber stretch in the overall shear response. Finally, with time in culture, the shear modulus of MSC laden constructs increased, suggesting that deposited ECM contributes to the construct shear properties. Collectively, these findings show that aligned electrospun PCL scaffolds are a promising tool for engineering fibrocartilage tissues, and that the shear properties of both acellular and cell-seeded formulations can match or exceed native tissue benchmarks. PMID:22098865

  16. Study on feasibility of laser reflective tomography with satellite-accompany

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Hu, Yi-hua; Hao, Shi-qi; Gu, You-lin; Zhao, Nan-xiang; Wang, Yang-yang

    2015-10-01

    Laser reflective tomography is a long-range, high-resolution active detection technology, whose advantage is that the spatial resolution is unrelated with the imaging distance. Accompany satellite is a specific satellite around the target spacecraft with encircling movement. When using the accompany satellite to detect the target aircraft, multi-angle echo data can be obtained with the application of reflective tomography imaging. The feasibility of such detection working mode was studied in this article. Accompany orbit model was established with horizontal circular fleet and the parameters of accompany flight was defined. The simulation of satellite-to-satellite reflective tomography imaging with satellite-accompany was carried out. The operating mode of reflective tomographic data acquisition from monostatic laser radar was discussed and designed. The flight period, which equals to the all direction received data consuming time, is one of the important accompany flight parameters. The azimuth angle determines the plane of image formation while the elevation angle determines the projection direction. Both of the azimuth and elevation angles guide the satellite attitude stability controller in order to point the laser radar spot on the target. The influences of distance between accompany satellite and target satellite on tomographic imaging consuming time was analyzed. The influences of flight period, azimuth angle and elevation angle on tomographic imaging were analyzed as well. Simulation results showed that the satellite-accompany laser reflective tomography is a feasible and effective method to the satellite-to-satellite detection.

  17. Aerodynamic characteristics of cruciform missiles at high angles of attack

    NASA Technical Reports Server (NTRS)

    Lesieutre, Daniel J.; Mendenhall, Michael R.; Nazario, Susana M.; Hemsch, Michael J.

    1987-01-01

    An aerodynamic prediction method for missile aerodynamic performance and preliminary design has been developed to utilize a newly available systematic fin data base and an improved equivalent angle of attack methodology. The method predicts total aerodynamic loads and individual fin forces and moments for body-tail (wing-body) and canard-body-tail configurations with cruciform fin arrangements. The data base and the prediction method are valid for angles of attack up to 45 deg, arbitrary roll angles, fin deflection angles between -40 deg and 40 deg, Mach numbers between 0.6 and 4.5, and fin aspect ratios between 0.25 and 4.0. The equivalent angle of attack concept is employed to include the effects of vorticity and geometric scaling.

  18. Measurements of Atomic Rayleigh Scattering Cross-Sections: A New Approach Based on Solid Angle Approximation and Geometrical Efficiency

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.

  19. Lifelong-RL: Lifelong Relaxation Labeling for Separating Entities and Aspects in Opinion Targets.

    PubMed

    Shu, Lei; Liu, Bing; Xu, Hu; Kim, Annice

    2016-11-01

    It is well-known that opinions have targets. Extracting such targets is an important problem of opinion mining because without knowing the target of an opinion, the opinion is of limited use. So far many algorithms have been proposed to extract opinion targets. However, an opinion target can be an entity or an aspect (part or attribute) of an entity. An opinion about an entity is an opinion about the entity as a whole, while an opinion about an aspect is just an opinion about that specific attribute or aspect of an entity. Thus, opinion targets should be separated into entities and aspects before use because they represent very different things about opinions. This paper proposes a novel algorithm, called Lifelong-RL , to solve the problem based on lifelong machine learning and relaxation labeling . Extensive experiments show that the proposed algorithm Lifelong-RL outperforms baseline methods markedly.

  20. Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Brown, Christopher K.

    1988-01-01

    A computational design has been performed for three different low aspect ratio wing planforms fitted with nonplanar winglets; one of the three planforms has been selected to be constructed as a wind tunnel model for testing in the NASA LaRC 7 x 10 High Speed Wind Tunnel. A design point of M = 0.8, CL approx = 0.3 was selected, for wings of aspect ratio equal to 2.2, and leading edge sweep angles of 45 and 50 deg. Winglet length is 15 percent of the wing semispan, with a cant angle of 15 deg, and a leading edge sweep of 50 deg. Winglet total area equals 2.25 percent of the wing reference area. This report summarizes the design process and the predicted transonic performance for each configuration.

  1. Pitot-pressure distributions of the flow field of a delta-wing orbiter

    NASA Technical Reports Server (NTRS)

    Cleary, J. W.

    1972-01-01

    Pitot pressure distributions of the flow field of a 0.0075-scale model of a typical delta wing shuttle orbiter are presented. Results are given for the windward and leeward sides on centerline in the angle-of-attack plane from wind tunnel tests conducted in air. Distributions are shown for three axial stations X/L = .35, .60, and .98 and for angles of attack from 0 to 60 deg. The tests were made at a Mach number of 7.4 and for Reynolds numbers based on body length from 1,500,000 to 9,000,000. The windward distributions at the two survey stations forward of the body boat tail demonstrate the compressive aspects of the flow from the shock wave to the body. Conversely, the distributions at the aft station display an expansion of the flow that is attributed to body boat tail. On the lee side, results are given at low angles of attack that illustrate the complicating aspects of the canopy on the flow field, while results are given to show the effects of flow separation at high angles of attack.

  2. Heat transfer performance comparison of steam and air in gas turbine cooling channels with different rib angles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin

    2013-11-01

    Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.

  3. Choosing a therapy electron accelerator target.

    PubMed

    Hutcheon, R M; Schriber, S O; Funk, L W; Sherman, N K

    1979-01-01

    Angular distributions of photon depth dose produced by 25-MeV electrons incident on several fully stopping single-element targets (C, Al, Cu, Mo, Ta, Pb) and two composite layered targets (Ni-Al, W-Al) were studied. Depth-dose curves measured using TLD-700 (thermoluminescent dosimeter) chips embedded in lucite phantoms. Several useful therapy electron accelerator design curves were determined, including relative flattener thickness as a function of target atomic number, "effective" bremsstrahlung endpoint energy or beam "hardness" as a function of target atomic number and photon emission angle, and estimates of shielding thickness as a function of angle required to reduce the radiation outside the treatment cone to required levels.

  4. Brain activation in parietal area during manipulation with a surgical robot simulator.

    PubMed

    Miura, Satoshi; Kobayashi, Yo; Kawamura, Kazuya; Nakashima, Yasutaka; Fujie, Masakatsu G

    2015-06-01

    we present an evaluation method to qualify the embodiment caused by the physical difference between master-slave surgical robots by measuring the activation of the intraparietal sulcus in the user's brain activity during surgical robot manipulation. We show the change of embodiment based on the change of the optical axis-to-target view angle in the surgical simulator to change the manipulator's appearance in the monitor in terms of hand-eye coordination. The objective is to explore the change of brain activation according to the change of the optical axis-to-target view angle. In the experiments, we used a functional near-infrared spectroscopic topography (f-NIRS) brain imaging device to measure the brain activity of the seven subjects while they moved the hand controller to insert a curved needle into a target using the manipulator in a surgical simulator. The experiment was carried out several times with a variety of optical axis-to-target view angles. Some participants showed a significant peak (P value = 0.037, F-number = 2.841) when the optical axis-to-target view angle was 75°. The positional relationship between the manipulators and endoscope at 75° would be the closest to the human physical relationship between the hands and eyes.

  5. Angle Performance on Optima XE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Jonathan; Satoh, Shu

    2011-01-07

    Angle control on high energy implanters is important due to shrinking device dimensions, and sensitivity to channeling at high beam energies. On Optima XE, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through a series of narrow slits, and any angle adjustment is made by steering the beam with the corrector magnet. In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen during implant.Using a sensitive channeling condition, we were ablemore » to quantify the angle repeatability of Optima XE. By quantifying the sheet resistance sensitivity to both horizontal and vertical angle variation, the total angle variation was calculated as 0.04 deg. (1{sigma}). Implants were run over a five week period, with all of the wafers selected from a single boule, in order to control for any crystal cut variation.« less

  6. Radiation damage and waste management options for the SOMBRERO final focus system and neutron dumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latkowski, J F; Meier, W R; Reyes, S

    1999-08-09

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were notmore » addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three -dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view.« less

  7. Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Sowa, W. A.; Kroll, J. T.; Samuelsen, G. S.; Holdeman, J. D.

    1994-01-01

    Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of jet injection in combustors is largely based on practical experience. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of an advanced design. An experimental test matrix was designed around three variables: the number of orifices, the orifice aspect ratio (long-to-short dimension), and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that mixture uniformity is a non-linear function of the number of orifices, the orifice aspect ratio, and the orifice angle. Optimum mixing occurs when the asymptotic mean jet trajectories are in the range of 0.35 less than r/R less than 0.5 (where r = 0 is at the mixer wall) at z/R = 1.0. At the optimum number of orifices, the difference between shallow-angled slots with large aspect ratios and round holes is minimal and either approach will lead to good mixing performance. At the optimum number of orifices, it appears possible to have two local optimums where one corresponds to an aspect ratio of 1.0 and the other to a high aspect ratio.

  8. A novel guidance law using fast terminal sliding mode control with impact angle constraints.

    PubMed

    Sun, Lianghua; Wang, Weihong; Yi, Ran; Xiong, Shaofeng

    2016-09-01

    This paper is concerned with the question of, for a missile interception with impact angle constraints, how to design a guidance law. Firstly, missile interception with impact angle constraints is modeled; secondly, a novel guidance law using fast terminal sliding mode control based on extended state observer is proposed to optimize the trajectory and time of interception; finally, for stationary targets, constant velocity targets and maneuvering targets, the guidance law and the stability of the closed loop system is analyzed and the stability of the closed loop system is analyzed, respectively. Simulation results show that when missile and target are on a collision course, the novel guidance law using fast terminal sliding mode control with extended state observer has more optimized trajectory and effectively reduces the time of interception which has a great significance in modern warfare. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Infratrochlear neuralgia.

    PubMed

    Pareja, Juan A; Casanova, Ignacio; Arbex, Andrea; Cuadrado, María L

    2015-11-01

    The infratrochlear nerve supplies the medial aspect of the upper eyelid, the superolateral aspect of the nose and the lacrimal caruncle. This nerve may contribute to the pain stemming from the trochlea, but infratrochlear neuralgia has not been identified as a specific cause of pain. Over a 10-year period we have been recruiting patients with pain in the internal angle of the orbit that did not show features of trochlear pain. Seven patients (six female, one male; mean age, 46.1 ± 18.9) presented with pain in the territory of the infratrochlear nerve. The pain appeared in the internal angle of the orbit and upper eyelid (n = 3), the superolateral aspect of the nose (n = 3), or the lacrimal caruncle (n = 1). All patients had a paroxysmal pain, with the attacks lasting five to 30 seconds. Pain attacks were mostly spontaneous, but two patients had triggers. Between attacks, all patients had local allodynia. Pain did not increase with vertical eye movements. Six patients were treated with gabapentin with complete response, and one patient experienced long-lasting relief with an anesthetic blockade of the infratrochlear nerve. Infratrochlear neuralgia should be considered as a possible cause of pain in the internal angle of the orbit. © International Headache Society 2015.

  10. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  11. Multi-angle Spectra Evolution of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Watanabe, N.; Golkowski, M.; Bernhardt, P. A.

    2013-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  12. Portable Diode Pumped Femtosecond Lasers

    DTIC Science & Technology

    2007-03-01

    second prism of the pair. [14, p.109] . . 41 2.34. GVD as a function of separation, in µm, of two N-SF18 Brewster angle prisms at a wavelength of...crystal showing Brewster angle of 54.6◦. . . . . . . 45 3.3. Index of refraction of LiSAF (blue) and BK7 (red) as a function of wavelength...separation, in µm, of two N-SF18 Brewster angle prisms at a wavelength of 1023 nm. 2.5 Summary The unique aspects of pulsing lasers can seem quite complex

  13. Angular distributions of reflected and refracted relativistic electron beams crossing a thin planar target at a small angle to its surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serov, A. V., E-mail: serov@x4u.lebedev.ru; Mamonov, I. A.; Kol’tsov, A. V., E-mail: koltsov@x4u.lebedev.ru

    2015-10-15

    The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the planemore » of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.« less

  14. Multi-Target Angle Tracking Algorithm for Bistatic MIMO Radar Based on the Elements of the Covariance Matrix

    PubMed Central

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-01-01

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar. PMID:29518957

  15. Multi-Target Angle Tracking Algorithm for Bistatic Multiple-Input Multiple-Output (MIMO) Radar Based on the Elements of the Covariance Matrix.

    PubMed

    Zhang, Zhengyan; Zhang, Jianyun; Zhou, Qingsong; Li, Xiaobo

    2018-03-07

    In this paper, we consider the problem of tracking the direction of arrivals (DOA) and the direction of departure (DOD) of multiple targets for bistatic multiple-input multiple-output (MIMO) radar. A high-precision tracking algorithm for target angle is proposed. First, the linear relationship between the covariance matrix difference and the angle difference of the adjacent moment was obtained through three approximate relations. Then, the proposed algorithm obtained the relationship between the elements in the covariance matrix difference. On this basis, the performance of the algorithm was improved by averaging the covariance matrix element. Finally, the least square method was used to estimate the DOD and DOA. The algorithm realized the automatic correlation of the angle and provided better performance when compared with the adaptive asymmetric joint diagonalization (AAJD) algorithm. The simulation results demonstrated the effectiveness of the proposed algorithm. The algorithm provides the technical support for the practical application of MIMO radar.

  16. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar.

    PubMed

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-09-09

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar's estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method.

  17. Reliability of tunnel angle in ACL reconstruction: two-dimensional versus three-dimensional guide technique.

    PubMed

    Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B

    2011-08-01

    To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P < 0.05) than tunnels drilled with a three-dimensional guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P < 0.05) in the two-dimensional (41.6 ± 2.5%) guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.

  18. "The One That Got Away": How Angling as a Culture of Practice Manifests in the Teaching and Learning Relationship within Angling-Based Intervention Programmes

    ERIC Educational Resources Information Center

    Djohari, Natalie; Brown, Adam; Stolk, Paul

    2016-01-01

    In recent years a professional sector has emerged within the UK delivering angling-based intervention programmes targeted at young people "disengaged" with education. These coaches bring with them an angling cultural background, which influences their interactions with young people as "novices", emerging in "angler…

  19. Non-Local Diffusion of Energetic Electrons during Solar Flares

    NASA Astrophysics Data System (ADS)

    Bian, N. H.; Emslie, G.; Kontar, E.

    2017-12-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.

  20. Abort-once-around entry corridor analysis program document

    NASA Technical Reports Server (NTRS)

    Kyle, H. C.

    1975-01-01

    The abort once around entry target corridor analysis program (ABECAP) was studied. The allowable range of flight path angles at entry interface for acceptable entry trajectories from a shuttle abort once around (AOA) situation was established. The solutions thus determined may be shown as corridor plots of entry interface flight path angle versus range from entry interface (EI) to the target.

  1. GLRS-R 2-colour retroreflector target design and predicted performance

    NASA Technical Reports Server (NTRS)

    Lund, Glenn

    1993-01-01

    This paper reports on the retroreflector ground-target design for the GLRS-R spaceborne dual-wavelength laser ranging system. The described passive design flows down from the requirements of high station autonomy, high global FOV (up to 60 degrees zenith angle), little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The proposed solution makes use of 5 hollow cube-corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for fairly large (is approximately 10 cm) retroreflectors is expected (within turbulence limitations) to generate quite narrow diffraction lobes, thus placing non-trivial requirements on the vectorial accuracy of velocity aberration corrections. A good compromise solution is found by appropriately spoiling just one of the retroreflector dihedral angles from 90 degrees, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependence on ground target latitude. Various link budget analyses are presented, showing the influence of such factors as point-ahead optimization, turbulence, ranging angle, atmospheric visibility and ground target thermal deformations.

  2. GLRS-R 2-colour retroreflector target design and predicted performance

    NASA Astrophysics Data System (ADS)

    Lund, Glenn

    1993-06-01

    This paper reports on the retroreflector ground-target design for the GLRS-R spaceborne dual-wavelength laser ranging system. The described passive design flows down from the requirements of high station autonomy, high global FOV (up to 60 degrees zenith angle), little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The proposed solution makes use of 5 hollow cube-corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for fairly large (is approximately 10 cm) retroreflectors is expected (within turbulence limitations) to generate quite narrow diffraction lobes, thus placing non-trivial requirements on the vectorial accuracy of velocity aberration corrections. A good compromise solution is found by appropriately spoiling just one of the retroreflector dihedral angles from 90 degrees, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependence on ground target latitude. Various link budget analyses are presented, showing the influence of such factors as point-ahead optimization, turbulence, ranging angle, atmospheric visibility and ground target thermal deformations.

  3. Gunshot residue patterns on skin in angled contact and near contact gunshot wounds.

    PubMed

    Plattner, T; Kneubuehl, B; Thali, M; Zollinger, U

    2003-12-17

    The goal of this study was the reproduction of shape and pattern of gunshot residues in near contact and contact gunshot wounds by a series of experimental gunshots on a skin and soft tissue model. The aim was to investigate the shape and direction of soot deposits with regard to the muzzle according to different muzzle-target angles, firing distances, type of ammunition and weapon and barrel length. Based on a review of the literature and on the results of the experiments the authors could make the following statements of gunshot residues in angled contact and close contact gunshot: (1) gunshot residues on the target surface can be differentiated in a "inner" and "outer powder soot zone"; (2) the outer powder soot zone is much less visible than the inner powder soot zone and may lack on human skin; (3) with increasing muzzle target distance both inner and outer powder soot halo increase in size and decrease in density; (4) in angled shots the inner powder soot halo shows an eccentric, elliptic shape which points towards the muzzle, regardless of ammunition, calibre and barrel length; (5) the outer powder soot points away from the muzzle in angled contact and close contact shots.

  4. Gaze and viewing angle influence visual stabilization of upright posture

    PubMed Central

    Ustinova, KI; Perkins, J

    2011-01-01

    Focusing gaze on a target helps stabilize upright posture. We investigated how this visual stabilization can be affected by observing a target presented under different gaze and viewing angles. In a series of 10-second trials, participants (N = 20, 29.3 ± 9 years of age) stood on a force plate and fixed their gaze on a figure presented on a screen at a distance of 1 m. The figure changed position (gaze angle: eye level (0°), 25° up or down), vertical body orientation (viewing angle: at eye level but rotated 25° as if leaning toward or away from the participant), or both (gaze and viewing angle: 25° up or down with the rotation equivalent of a natural visual perspective). Amplitude of participants’ sagittal displacement, surface area, and angular position of the center of gravity (COG) were compared. Results showed decreased COG velocity and amplitude for up and down gaze angles. Changes in viewing angles resulted in altered body alignment and increased amplitude of COG displacement. No significant changes in postural stability were observed when both gaze and viewing angles were altered. Results suggest that both the gaze angle and viewing perspective may be essential variables of the visuomotor system modulating postural responses. PMID:22398978

  5. Angular distributions of absorbed dose of Bremsstrahlung and secondary electrons induced by 18-, 28- and 38-MeV electron beams in thick targets.

    PubMed

    Takada, Masashi; Kosako, Kazuaki; Oishi, Koji; Nakamura, Takashi; Sato, Kouichi; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    2013-03-01

    Angular distributions of absorbed dose of Bremsstrahlung photons and secondary electrons at a wide range of emission angles from 0 to 135°, were experimentally obtained using an ion chamber with a 0.6 cm(3) air volume covered with or without a build-up cap. The Bremsstrahlung photons and electrons were produced by 18-, 28- and 38-MeV electron beams bombarding tungsten, copper, aluminium and carbon targets. The absorbed doses were also calculated from simulated photon and electron energy spectra by multiplying simulated response functions of the ion chambers, simulated with the MCNPX code. Calculated-to-experimental (C/E) dose ratios obtained are from 0.70 to 1.57 for high-Z targets of W and Cu, from 15 to 135° and the C/E range from 0.6 to 1.4 at 0°; however, the values of C/E for low-Z targets of Al and C are from 0.5 to 1.8 from 0 to 135°. Angular distributions at the forward angles decrease with increasing angles; on the other hand, the angular distributions at the backward angles depend on the target species. The dependences of absorbed doses on electron energy and target thickness were compared between the measured and simulated results. The attenuation profiles of absorbed doses of Bremsstrahlung beams at 0, 30 and 135° were also measured.

  6. Non-contact angle measurement based on parallel multiplex laser feedback interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Tan, Yi-Dong; Zhang, Shu-Lian

    2014-11-01

    We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non-cooperative targets. Experimental results show that PLFI has an accuracy of 8″ within a range of 1400″. The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.

  7. Graph theoretic framework based cooperative control and estimation of multiple UAVs for target tracking

    NASA Astrophysics Data System (ADS)

    Ahmed, Mousumi

    Designing the control technique for nonlinear dynamic systems is a significant challenge. Approaches to designing a nonlinear controller are studied and an extensive study on backstepping based technique is performed in this research with the purpose of tracking a moving target autonomously. Our main motivation is to explore the controller for cooperative and coordinating unmanned vehicles in a target tracking application. To start with, a general theoretical framework for target tracking is studied and a controller in three dimensional environment for a single UAV is designed. This research is primarily focused on finding a generalized method which can be applied to track almost any reference trajectory. The backstepping technique is employed to derive the controller for a simplified UAV kinematic model. This controller can compute three autopilot modes i.e. velocity, ground heading (or course angle), and flight path angle for tracking the unmanned vehicle. Numerical implementation is performed in MATLAB with the assumption of having perfect and full state information of the target to investigate the accuracy of the proposed controller. This controller is then frozen for the multi-vehicle problem. Distributed or decentralized cooperative control is discussed in the context of multi-agent systems. A consensus based cooperative control is studied; such consensus based control problem can be viewed from the algebraic graph theory concepts. The communication structure between the UAVs is represented by the dynamic graph where UAVs are represented by the nodes and the communication links are represented by the edges. The previously designed controller is augmented to account for the group to obtain consensus based on their communication. A theoretical development of the controller for the cooperative group of UAVs is presented and the simulation results for different communication topologies are shown. This research also investigates the cases where the communication topology switches to a different topology over particular time instants. Lyapunov analysis is performed to show stability in all cases. Another important aspect of this dissertation research is to implement the controller for the case, where perfect or full state information is not available. This necessitates the design of an estimator to estimate the system state. A nonlinear estimator, Extended Kalman Filter (EKF) is first developed for target tracking with a single UAV. The uncertainties involved with the measurement model and dynamics model are considered as zero mean Gaussian noises with some known covariances. The measurements of the full state of the target are not available and only the range, elevation, and azimuth angle are available from an onboard seeker sensor. A separate EKF is designed to estimate the UAV's own state where the state measurement is available through on-board sensors. The controller computes the three control commands based on the estimated states of target and its own states. Estimation based control laws is also implemented for colored noise measurement uncertainties, and the controller performance is shown with the simulation results. The estimation based control approach is then extended for the cooperative target tracking case. The target information is available to the network and a separate estimator is used to estimate target states. All of the UAVs in the network apply the same control law and the only difference is that each UAV updates the commands according to their connection. The simulation is performed for both cases of fixed and time varying communication topology. Monte Carlo simulation is also performed with different sample noises to investigate the performance of the estimator. The proposed technique is shown to be simple and robust to noisy environments.

  8. SU-E-T-589: Optimization of Patient Head Angle Position to Spare Hippocampus During the Brain Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, G; Kang, Y; Kang, S

    Purpose: Hippocampus is one of the important organs which controls emotions, behaviors, movements the memorizing and learning ability. In the conventional head & neck therapy position, it is difficult to perform the hippocampal-sparing brain radiation therapy. The purpose of this study is to investigate optimal head angle which can save the hippocampal-sparing and organ at risk (OAR) in conformal radiation therapy (CRT), Intensity modulation radiation therapy (IMRT) and helical tomotherapy (HT). Methods: Three types of radiation treatment plans, CRT, IMRT and Tomotherapy plans, were performed for 10 brain tumor patients. The image fusion between CT and MRI data were usedmore » in the contour due to the limited delineation of the target and OAR in the CT scan. The optimal condition plan was determined by comparing the dosimetric performance of the each plan with the use of various parameters which include three different techniques (CRT, IMRT, HT) and 4 angle (0, 15, 30, 40 degree). The each treatment plans of three different techniques were compared with the following parameters: conformity index (CI), homogeneity index (HI), target coverage, dose in the OARs, monitor units (MU), beam on time and the normal tissue complication probability (NTCP). Results: HI, CI and target coverage was most excellent in head angle 30 degree among all angle. When compared by modality, target coverage and CI showed good results in IMRT and TOMO than compared to the CRT. HI at the head angle 0 degrees is 1.137±0.17 (CRT), 1.085±0.09 (IMRT) and 1.077±0.06 (HT). HI at the head angle 30 degrees is 1.056±0.08 (CRT), 1.020±0.05 (IMRT) and 1.022±0.07 (HT). Conclusion: The results of our study show that when head angle tilted at 30 degree, target coverage, HI, CI were improved, and the dose delivered to OAR was reduced compared with conventional supine position in brain radiation therapy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  9. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios.

    PubMed

    Moreno-Salinas, David; Pascoal, Antonio; Aranda, Joaquin

    2013-08-12

    In this paper, we address the problem of determining the optimal geometric configuration of an acoustic sensor network that will maximize the angle-related information available for underwater target positioning. In the set-up adopted, a set of autonomous vehicles carries a network of acoustic units that measure the elevation and azimuth angles between a target and each of the receivers on board the vehicles. It is assumed that the angle measurements are corrupted by white Gaussian noise, the variance of which is distance-dependent. Using tools from estimation theory, the problem is converted into that of minimizing, by proper choice of the sensor positions, the trace of the inverse of the Fisher Information Matrix (also called the Cramer-Rao Bound matrix) to determine the sensor configuration that yields the minimum possible covariance of any unbiased target estimator. It is shown that the optimal configuration of the sensors depends explicitly on the intensity of the measurement noise, the constraints imposed on the sensor configuration, the target depth and the probabilistic distribution that defines the prior uncertainty in the target position. Simulation examples illustrate the key results derived.

  10. Development of reaching during mid-childhood from a Developmental Systems perspective.

    PubMed

    Golenia, Laura; Schoemaker, Marina M; Otten, Egbert; Mouton, Leonora J; Bongers, Raoul M

    2018-01-01

    Inspired by the Developmental Systems perspective, we studied the development of reaching during mid-childhood (5-10 years of age) not just at the performance level (i.e., endpoint movements), as commonly done in earlier studies, but also at the joint angle level. Because the endpoint position (i.e., the tip of the index finger) at the reaching target can be achieved with multiple joint angle combinations, we partitioned variability in joint angles over trials into variability that does not (goal-equivalent variability, GEV) and that does (non-goal-equivalent variability, NGEV) influence the endpoint position, using the Uncontrolled Manifold method. Quantifying this structure in joint angle variability allowed us to examine whether and how spatial variability of the endpoint at the reaching target is related to variability in joint angles and how this changes over development. 6-, 8- and 10-year-old children and young adults performed reaching movements to a target with the index finger. Polynomial trend analysis revealed a linear and a quadratic decreasing trend for the variable error. Linear decreasing and cubic trends were found for joint angle standard deviations at movement end. GEV and NGEV decreased gradually with age, but interestingly, the decrease of GEV was steeper than the decrease of NGEV, showing that the different parts of the joint angle variability changed differently over age. We interpreted these changes in the structure of variability as indicating changes over age in exploration for synergies (a family of task solutions), a concept that links the performance level with the joint angle level. Our results suggest changes in the search for synergies during mid-childhood development.

  11. Electron collisions with coherently prepared atomic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trajmar, S.; Kanik, I.; LeClair, L.R.

    1998-02-01

    The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can bemore » expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.« less

  12. Using Mindful Movement in Cooperative Learning while Learning about Angles

    ERIC Educational Resources Information Center

    Shoval, Ella

    2011-01-01

    Unlike studies on cooperative learning that have focused on the verbal communication aspect of learning, this study focuses on the non-verbal aspect--mindful movement, which is the use of body movement to aid academic learning. Our research examined the link between five learning activities occurring within a cooperative group of children using…

  13. A "Conveyor Belt" Model for the Dynamic Contact Angle

    ERIC Educational Resources Information Center

    Della Volpe, C.; Siboni, S.

    2011-01-01

    The familiar Young contact angle measurement of a liquid at equilibrium on a solid is a fundamental aspect of capillary phenomena. But in the real world it is not so easy to observe it. This is due to the roughness and/or heterogeneity of real surfaces, which typically are not perfectly planar and chemically homogeneous. What can be easily…

  14. Testing of the Trim Tab Parametric Model in NASA Langley's Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Watkins, Anthony N.; Korzun, Ashley M.; Edquist, Karl T.

    2013-01-01

    In support of NASA's Entry, Descent, and Landing technology development efforts, testing of Langley's Trim Tab Parametric Models was conducted in Test Section 2 of NASA Langley's Unitary Plan Wind Tunnel. The objectives of these tests were to generate quantitative aerodynamic data and qualitative surface pressure data for experimental and computational validation and aerodynamic database development. Six component force-and-moment data were measured on 38 unique, blunt body trim tab configurations at Mach numbers of 2.5, 3.5, and 4.5, angles of attack from -4deg to +20deg, and angles of sideslip from 0deg to +8deg. Configuration parameters investigated in this study were forebody shape, tab area, tab cant angle, and tab aspect ratio. Pressure Sensitive Paint was used to provide qualitative surface pressure mapping for a subset of these flow and configuration variables. Over the range of parameters tested, the effects of varying tab area and tab cant angle were found to be much more significant than varying tab aspect ratio relative to key aerodynamic performance requirements. Qualitative surface pressure data supported the integrated aerodynamic data and provided information to aid in future analyses of localized phenomena for trim tab configurations.

  15. Optical phase measuring sensors for automated rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Metheny, Wayne; Malin, Mark

    1991-01-01

    A technique is described for sensing relative spatial orientations of approach and target vehicles, using optical phase mensuration (in the interferometric sense, as opposed to LIDAR), in place of the more conventional intensity, image, or transit time measurements. This approach permits the parameters to be measured with great accuracy with relatively simple, small sensors having no moving components. A suite of sensors operating on this principle can produce all desired data using either active detection on the target or passive retroreflection to the detectors on the approach vehicle. These optical phase measurements can be applied to determine bearing angle (location of the target vehicle in the approach vehicle coordinates), range, and attitude (orientation of the target vehicle with respect to the line-of-sight). The first two quantities require the approach vehicle to project a modulated interference pattern into space. The bearing angle is determined for a selected point on the target by measuring the phase of the interference pattern at that point using either a detector on the target or a retroreflector on the target and a detector at the transmitter. The range is found by measuring differential bearing angles to predetermined relative instrumentation sites. Two interferometers, a coarse and a fine ranger are required to resolve the 2pi ambiguity.

  16. Study on a two-dimensional scanning micro-mirror and its application in a MOEMS target detector.

    PubMed

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation.

  17. Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector

    PubMed Central

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation. PMID:22163580

  18. Study on the influence factors of camouflage target polarization detection

    NASA Astrophysics Data System (ADS)

    Huang, Yanhua; Chen, Lei; Li, Xia; Wu, Wenyuan

    2016-10-01

    The degree of linear polarization (DOLP) expressions at any polarizer direction (PD) was deduced based on the Stokes vector and Mueller matrix. The outdoors experiments were carried out to demonstrate the expressions. This paper mainly explored the DOLP-image-Contrast (DOLPC) between the target image and the background image, and the PD and RGB waveband that be considered two important influence factors were studied for camouflage target polarization detection. It was found that the DOLPC of target and background was obviously higher than intensity image. When setting the reference direction that polarizer was perpendicular to the incident face, the DOLP image of interval angle 60 degree between PD and reference direction had relatively high DOLPC, the interval angle 45 degree was the second, and the interval angle 35 degree was the third. The outdoors polarization detection experiment of controlling waveband showed that the DOLPC results was significantly different to use 650nm, 550nm and 450nm waveband, and the polarization detection performance by using 650nm band was an optimization method.

  19. GLRS-R 2-colour retroreflector target design and predicted performance

    NASA Astrophysics Data System (ADS)

    Lund, Glenn

    The retroreflector ground target design for the GLRS-R spaceborne dual wavelength laser ranging system is described. The passive design flows down from the requirements of high station autonomy, high global field of view, little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The solution makes use of five hollow cube corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for large retroreflectors is expected to generate narrow diffraction lobes. A good compromise solution is found by spoiling just one of the retroereflector dihedral angles from 90 deg, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependance on ground target latitude. Various link budget analyses are presented. They show the influence of such factors as point ahead optimization, turbulence, ranging angle, atmospheric visibility, and ground target thermal deformations.

  20. A vortex model for forces and moments on low-aspect-ratio wings in side-slip with experimental validation

    PubMed Central

    DeVoria, Adam C.

    2017-01-01

    This paper studies low-aspect-ratio () rectangular wings at high incidence and in side-slip. The main objective is to incorporate the effects of high angle of attack and side-slip into a simplified vortex model for the forces and moments. Experiments are also performed and are used to validate assumptions made in the model. The model asymptotes to the potential flow result of classical aerodynamics for an infinite aspect ratio. The → 0 limit of a rectangular wing is considered with slender body theory, where the side-edge vortices merge into a vortex doublet. Hence, the velocity fields transition from being dominated by a spanwise vorticity monopole ( ≫ 1) to a streamwise vorticity dipole ( ∼ 1). We theoretically derive a spanwise loading distribution that is parabolic instead of elliptic, and this physically represents the additional circulation around the wing that is associated with reattached flow. This is a fundamental feature of wings with a broad-facing leading edge. The experimental measurements of the spanwise circulation closely approximate a parabolic distribution. The vortex model yields very agreeable comparison with direct measurement of the lift and drag, and the roll moment prediction is acceptable for ≤ 1 prior to the roll stall angle and up to side-slip angles of 20°. PMID:28293139

  1. Measurement of heat transfer and pressure drop in rectangular channels with turbulence promoters

    NASA Technical Reports Server (NTRS)

    Han, J. C.; Park, J. S.; Ibrahim, M. Y.

    1986-01-01

    Periodic rib turbulators were used in advanced turbine cooling designs to enhance the internal heat transfer. The objective of the present project was to investigate the combined effects of the rib angle of attack and the channel aspect ratio on the local heat transfer and pressure drop in rectangular channels with two opposite ribbed walls for Reynolds number varied from 10,000 to 60,000. The channel aspect ratio (W/H) was varied from 1 to 2 to 4. The rib angle of attack (alpha) was varied from 90 to 60 to 45 to 30 degree. The highly detailed heat transfer coefficient distribution on both the smooth side and the ribbed side walls from the channel sharp entrance to the downstream region were measured. The results showed that, in the square channel, the heat transfer for the slant ribs (alpha = 30 -45 deg) was about 30% higher that of the transverse ribs (alpha = 90 deg) for a constant pumping power. However, in the rectangular channels (W/H = 2 and 4, ribs on W side), the heat transfer at alpha = 30 -45 deg was only about 5% higher than 90 deg. The average heat transfer and friction correlations were developed to account for rib spacing, rib angle, and channel aspect ratio over the range of roughness Reynolds number.

  2. Grazing-incidence small-angle X-ray scattering (GISAXS) on small periodic targets using large beams

    PubMed Central

    Soltwisch, Victor; Probst, Jürgen; Scholze, Frank; Krumrey, Michael

    2017-01-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nano­structured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all litho­graphically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g. for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint. PMID:28875030

  3. Grazing-incidence small-angle X-ray scattering (GISAXS) on small periodic targets using large beams.

    PubMed

    Pflüger, Mika; Soltwisch, Victor; Probst, Jürgen; Scholze, Frank; Krumrey, Michael

    2017-07-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nano-structured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all litho-graphically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g.  for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint.

  4. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  5. Polarization-based index of refraction and reflection angle estimation for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Voelz, David G.; Creusere, Charles D.

    2007-10-01

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  6. Ergonomic evaluation of interior design of Shoka vehicle and proposing recommendations for improvement.

    PubMed

    Mazloumi, Adel; Mohammadreze, Fallah

    2012-01-01

    One of the applications of ergonomics disciplinary is designing driver workstation compatible to users' characteristics. The aim of this study was evaluation of interior design of Shoka vehicle with respect to the accommodation for Iranian population and proposing suggestions for customizing design of this vehicle. This study was a descriptive-analytical study conducted among thirty men from Iranian drivers population in 5, 50, 95 percentiles of the stature variable. Objective variables related to the occupant packaging and vehicle visual aspects including anthropometric variables, frontal, lateral, and side view and so on were investigated first. Then, subjective variables related to the driver mental workload and body comfort discomfort were studied using BMDMW and comfort questionnaires during 2-hour driving trial sessions. Occupant packaging variables and hand-arm angle showed the least accommodation percent (%53). Seating angles showed low accommodation as well (%73). Among three percentile groups there were no significant differences between the mean values of mental workload during two hours driving task. And, the mean value related to the comfort discomfort was 3.9 during driving sessions. Considering the findings in this study, it can be conclude that seating angles need correction and optimization. Taking mental workload results into account, it can be concluded that the interior design of the studied car had no influence on drivers' mental workload. From the aspect of comfort discomfort, Shoka vehicle showed neutral state among drivers. Optimizing seating angles, decreasing vibration, correcting stiffness of seating pan are suggested for customization of the ergonomics aspect of this vehicle.

  7. Efficacy of a Pelvic Lateral Positioner With a Mechanical Cup Navigator Based on the Anatomical Pelvic Plane in Total Hip Arthroplasty.

    PubMed

    Iwakiri, Kentaro; Kobayashi, Akio; Ohta, Yoichi; Minoda, Yukihide; Takaoka, Kunio; Nakamura, Hiroaki

    2017-12-01

    The acetabular component orientation in total hip arthroplasty (THA) is of critical importance to the good clinical results. However, traditional widely used cup alignment guides for cup placement are reported to be relatively unreliable. The present study aims at comparing a novel cup alignment guide, which can be attached to our anatomical pelvic plane (APP) pelvic lateral positioner for reducing discrepancies in sagittal pelvic tilt and indicate a targeted cup angle based on the APP, with a conventional cup alignment guide. The subjects were 136 hips of 136 patients who underwent unilateral THA using the APP positioner. The procedure was performed with the conventional cup alignment guide (conventional group; 60 hips) and with the novel cup navigator (mechanical navigator group; 76 hips). Postoperative cup angles and discrepancies of postoperative cup angles (inclination and anteversion angles) from the targeted angles were compared between the 2 groups to evaluate the usefulness of these navigators. The mean cup angles in the conventional group were 39.0° ± 5.3° for the inclination angle and 21.7° ± 6.4° for the anteversion angle, whereas those in the mechanical navigator group were 40.6° ± 3.2° and 18.3° ± 4.6°, respectively (P = .018, P < .0001). The discrepancies from the targeted angles were 3.5° ± 3.1° for the inclination angle and 4.6° ± 3.4° for the anteversion angle in the conventional group and 2.3° ± 2.3° and 3.2° ± 2.7°, respectively, in the mechanical navigator group (P = .020, P = .012). The mechanical cup navigator easily attachable to the APP positioner is a tool that can improve the accuracy of cup placement in a simple, economical, and noninvasive manner in THA via the lateral position. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar

    PubMed Central

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-01-01

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar’s estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method. PMID:27618058

  9. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?

    PubMed Central

    Wilson, Alexander D. M.; Brownscombe, Jacob W.; Sullivan, Brittany; Jain-Schlaepfer, Sofia; Cooke, Steven J.

    2015-01-01

    Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics) differentially target wild largemouth bass (Micropterus salmoides) and rock bass (Ambloplites rupestris) based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity) in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes) but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management. PMID:26284779

  10. Hyperon photoproduction in the nucleon resonance region

    NASA Astrophysics Data System (ADS)

    McNabb, J. W.; Schumacher, R. A.; Todor, L.; Adams, G.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Cole, P. L.; Coleman, A.; Cords, A. D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McCarthy, J.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Quinn, B. P.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weisberg, A.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhao, J.; Zhou, Z.

    2004-04-01

    High-statistics cross sections and recoil polarizations for the reactions γ+p→ K+ +Λ and γ+p→ K+ + Σ0 have been measured at CLAS for center-of-mass energies between 1.6 and 2.3 GeV . In the K+ Λ channel we confirm a resonance-like structure near W=1.9 GeV at backward kaon angles. Our data show more complex s - and u - channel behavior than previously seen, since structure is also present at forward angles, but not at central angles. The position and width change with angle, indicating that more than one resonance is playing a role. Large positive Λ polarization at backward angles, which is also energy dependent, is consistent with sizable s - or u -channel contributions. Presently available model calculations cannot explain these aspects of the data.

  11. Grammatical aspect, lexical aspect, and event duration constrain the availability of events in narratives.

    PubMed

    Becker, Raymond B; Ferretti, Todd R; Madden-Lombardi, Carol J

    2013-11-01

    The present study investigates how readers' representations of narratives are constrained by three sources of temporal information; grammatical aspect, lexical aspect, and the duration of intervening events. Participants read short stories in which a target event with an intrinsic endpoint or not (lexical aspect: accomplishments/activities) was described as ongoing or completed (grammatical aspect: imperfective/perfective). An intervening sentence described either a long or short duration event before the target situation was reintroduced later in the story. The electroencephalogram time-locked to the reintroduction of the target event elicited a larger N400 for perfective versus imperfective accomplishments, and this effect occurred only after short intervening events. Alternatively, the N400 to targets in the activity condition did not vary as a function of grammatical aspect or duration of intervening events. These results provide novel insight into how the temporal properties of events interact to constrain the availability of concepts in situation models. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Global statistics of microphysical properties of cloud-top ice crystals

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Fridlind, A. M.; Cairns, B.; Ackerman, A. S.; Riedi, J.

    2017-12-01

    Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to "habit". We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.

  13. Global Statistics of Microphysical Properties of Cloud-Top Ice Crystals

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Fridlind, Ann; Cairns, Brian; Ackerman, Andrew; Riedl, Jerome

    2017-01-01

    Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to a habit. We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.

  14. Design of a self-calibration high precision micro-angle deformation optical monitoring scheme

    NASA Astrophysics Data System (ADS)

    Gu, Yingying; Wang, Li; Guo, Shaogang; Wu, Yun; Liu, Da

    2018-03-01

    In order to meet the requirement of high precision and micro-angle measurement on orbit, a self-calibrated optical non-contact real-time monitoring device is designed. Within three meters, the micro-angle variable of target relative to measuring basis can be measured in real-time. The range of angle measurement is +/-50'', the angle measurement accuracy is less than 2''. The equipment can realize high precision real-time monitoring the micro-angle deformation, which caused by high strength vibration and shock of rock launching, sun radiation and heat conduction on orbit and so on.

  15. Oscillating Cascade Aerodynamics at Large Mean Incidence Angles

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.

    1997-01-01

    In a cooperative program with Pratt & Whitney, researchers obtained fundamental separated flow unsteady aerodynamic data in the NASA Lewis Research Center's Oscillating Cascade. These data fill a void that has hindered the understanding and prediction of subsonic and transonic stall flutter. For small-amplitude torsional oscillations, unsteady pressure distributions were measured on airfoils with cross sections representative of an advanced, low-aspect-ratio fan blade. Data were obtained for two mean incidence angles with a subsonic inflow. At high mean incidence angles (alpha = 10 deg), the mean flow separated at the leading edge and reattached at about 40 percent of the chord. For comparison purposes, data were also obtained for a low incidence angle (a = 0 deg) attached flow.

  16. Comparison of Continuous-Wave CO2 Lidar Calibration by use of Earth-Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1998-01-01

    Backscatter of several Earth surfaces was characterized in the laboratory as a function of incidence angle with a focused continuous-wave 9.1 micro meter CO2 Doppler lidar for use as possible calibration targets. Some targets showed negligible angular dependence, while others showed a slight increase with decreasing angle. The Earth-surface signal measured over the complex Californian terrain during a 1995 NASA airborne mission compared well with laboratory data. Distributions of the Earth's surface signal shows that the lidar efficiency can be estimated with a fair degree of accuracy, preferably with uniform Earth-surface targets during flight for airborne or space-based lidar.

  17. Two-Lens, Anamorphic, Brewster-Angle, Fourier-Transform Relay

    NASA Astrophysics Data System (ADS)

    Berggren, Ralph R.

    1987-06-01

    A two-lens system provides a simple and versatile means to relay a laser beam. The pair of lenses can provide true volume imaging, reproducing both amplitude and phase of the input beam. By using cylindrical lenses it is possible to change the aspect ratio of the beam. By adjusting the cylindrical curvatures, it is possible to minimize reflections by tilting the lenses at the Brewster angle.

  18. Self-contained eye-safe laser radar using an erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Driscoll, Thomas A.; Radecki, Dan J.; Tindal, Nan E.; Corriveau, John P.; Denman, Richard

    2003-07-01

    An Eye-safe Laser Radar has been developed under White Sands Missile Range sponsorship. The SEAL system, the Self-contained Eyesafe Autonomous Laser system, is designed to measure target position within a 0.5 meter box. Targets are augmented with Scotchlite for ranging out to 6 km and augmented with a retroreflector for targets out to 20 km. The data latency is less than 1.5 ms, and the position update rate is 1 kHz. The system is air-cooled, contained in a single 200-lb, 6-cubic-foot box, and uses less than 600 watts of prime power. The angle-angle-range data will be used to measure target dynamics and to control a tracking mount. The optical system is built around a diode-pumped, erbium-doped fiber laser rated at 1.5 watts average power at 10 kHz repetition rate with 25 nsec pulse duration. An 8 inch-diameter, F/2.84 telescope is relayed to a quadrant detector at F/0.85 giving a 5 mrad field of view. Two detectors have been evaluated, a Germanium PIN diode and an Intevac TE-IPD. The receiver electronics uses a DSP network of 6 SHARC processors to implement ranging and angle error algorithms along with an Optical AGC, including beam divergence/FOV control loops.Laboratory measurements of the laser characteristics, and system range and angle accuracies will be compared to simulations. Field measurements against actual targets will be presented.

  19. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target Part III: Terminal ballistic trajectory analyses

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.

    2015-08-01

    During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.

  20. Tilt anisoplanatism in extended turbulence propagation

    NASA Astrophysics Data System (ADS)

    Magee, Eric P.; Whiteley, Matthew R.; Das, Shashikala T.; Welsh, Byron M.

    2003-04-01

    The use of high-energy laser (HEL) weapon systems in tactical air-to-ground target engagements offers great promise for revolutionizing the USAF's war-fighting capabilities. Laser directed-energy systems will enable ultra-precision strike with minimal collateral damage and significant stand-off range for the aerial platform. The tactical directed energy application differs in many crucial ways from the conventional approach used in missile defense. Tactical missions occur at much lower altitudes and involve look-down to low-contrast ground targets instead of a high-contrast boosting missile. At these lower altitudes, the strength of atmospheric turbulence is greatly enhanced. Although the target slant ranges are much shorter, tactical missions may still involve moderate values of the Rytov number (0.1-0.5), and small isoplanatic angles compared to the diffraction angle. With increased density of air in the propagation path, and the potential for slow-moving or stationary ground targets, HEL-induced thermal blooming will certainly be a concern. In order to minimize the errors induced by tracking through thermal blooming, offset aimpoint tracking can be used. However, this will result in significant tilt anisoplanatism, thus degrading beam stabilization on target. In this paper we investigate the effects of extended turbulence on tracking (or tilt) anisoplanatism using theory and wave optics simulations. The simulations show good agreement with geometric optics predictions at angles larger than about 5 micro-radians (asymptotic regime) while at smaller angles the agreement is poor. We present a theoretical basis for this observation.

  1. Modeling of a cyclotron target for the production of 11C with Geant4.

    PubMed

    Chiappiniello, Andrea; Zagni, Federico; Infantino, Angelo; Vichi, Sara; Cicoria, Gianfranco; Morigi, Maria Pia; Marengo, Mario

    2018-04-12

    In medical cyclotron facilities, 11C is produced according to the 14N(p,α)11C reaction and widely employed in studies of prostate and brain cancers by Positron Emission Tomography. It is known from literature [1] that the 11C-target assembly shows a reduction in efficiency during time, meaning a decrease of activity produced at the end of bombardment. This effect might depend on aspects still not completely known. Possible causes of the loss of performance of the 11C-target assembly were addressed by Monte Carlo simulations. Geant4 was used to model the 11C-target assembly of a GE PETtrace cyclotron. The physical and transport parameters to be used in the energy range of medical applications were extracted from literature data and 11C routine productions. The Monte Carlo assessment of 11C saturation yield was performed varying several parameters such as the proton energy and the angle of the target assembly with respect to the proton beam. The estimated 11C saturation yield is in agreement with IAEA data at the energy of interest, while is about the 35% greater than experimental value. A more comprehensive modeling of the target system, including thermodynamic effect, is required. The energy absorbed in the inner layer of the target chamber was up to 46.5 J/mm2 under typical irradiation conditions. This study shows that Geant4 is potentially a useful tool to design and optimize targetry for PET radionuclide productions. Tests to choose the Geant4 physics libraries should be performed before using this tool with different energies and materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Angle amplifying optics using plane and ellipsoidal reflectors

    DOEpatents

    Glass, Alexander J.

    1977-01-01

    An optical system for providing a wide angle input beam into ellipsoidal laser fusion target illumination systems. The optical system comprises one or more pairs of centrally apertured plane and ellipsoidal mirrors disposed to accept the light input from a conventional lens of modest focal length and thickness, to increase the angular divergence thereof to a value equivalent to that of fast lenses, and to direct the light into the ellipsoidal target illumination system.

  3. Effect of structured visual environments on apparent eye level.

    PubMed

    Stoper, A E; Cohen, M M

    1989-11-01

    Each of 12 subjects set a binocularly viewed target to apparent eye level; the target was projected on the rear wall of an open box, the floor of which was horizontal or pitched up and down at angles of 7.5 degrees and 15 degrees. Settings of the target were systematically biased by 60% of the pitch angle when the interior of the box was illuminated, but by only 5% when the interior of the box was darkened. Within-subjects variability of the settings was less under illuminated viewing conditions than in the dark, but was independent of box pitch angle. In a second experiment, 11 subjects were tested with an illuminated pitched box, yielding biases of 53% and 49% for binocular and monocular viewing conditions, respectively. The results are discussed in terms of individual and interactive effects of optical, gravitational, and extraretinal eye-position information in determining judgements of eye level.

  4. The Role of Diffusion in the Transport of Energetic Electrons during Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Nicolas H.; Kontar, Eduard P.; Emslie, A. Gordon, E-mail: nicolas.bian@glasgow.gla.ac.uk, E-mail: emslieg@wku.edu

    2017-02-01

    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze thismore » approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled rather effectively as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.« less

  5. A Hybrid Neural Network and Feature Extraction Technique for Target Recognition.

    DTIC Science & Technology

    target features are extracted, the extracted data being evaluated in an artificial neural network to identify a target at a location within the image scene from which the different viewing angles extend.

  6. Attenuation of pressure dips underneath piles of spherocylinders.

    PubMed

    Zhao, Haiyang; An, Xizhong; Gou, Dazhao; Zhao, Bo; Yang, Runyu

    2018-05-30

    The discrete element method (DEM) was used to simulate the piling of rod-like (elongated sphero-cylindrical) particles, mainly focusing on the effect of particle shape on the structural and force properties of the piles. In this work, rod-like particles of different aspect ratios were discharged on a flat surface to form wedge-shaped piles. The surface properties of the piles were characterized in terms of angle of repose and stress at the bottom of the piles. The results showed that the rise of the angle of repose became slower with the increase of particle aspect ratio. The pressure dip underneath the piles reached the maximum when the particle aspect ratio was around 1.6, beyond which the pressure dip phenomenon became attenuated. Both the pressure dip and the shear stress dip were quantitatively examined. The structure and forces inside the piles were further analyzed to understand the change in pressure dip, indicating that "bridging" or "arching" structures within the piles were the cause of the pressure dip.

  7. Hydrodynamic characteristics over a range of speeds up to 80 feet per second of a rectangular modified flat plate having an aspect ratio of 0.25 and operating at several depths of submersion

    NASA Technical Reports Server (NTRS)

    Vaughan, Victor L , Jr; Ramsen, John A

    1957-01-01

    Results of an investigation of the hydrodynamic characteristics over an extended speed range of a rectangular modified flat plate having an aspect ratio of 0.25 and operating at several depths of submersion are presented. Comparisons between these data and data over a lower speed range on a similar aspect-ratio-0.25 flat plate but having one-half the thickness are presented. These comparisons show no significant differences at the low speeds. At high speeds and high angles of attack, where extensive cavitation was present, the lift coefficients were lower than would have been indicated by the results of the previous investigations and the present investigation at the lower angles of attack. A brief discussion and comparison of ventilation are presented which shows two types of planing bubble formation and the effect of increasing the thickness of the model on the ventilation boundary.

  8. Angle-dependent modulated spectral peaks of proton beams generated in ultrashort intense laser-solid interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, L. N.; Hu, Z. D.; Zheng, Y.

    2014-09-15

    Proton acceleration from 4 μm thick aluminum foils irradiated by 30-TW Ti:sapphire laser pulses is investigated using an angle-resolved proton energy spectrometer. We find that a modulated spectral peak at ∼0.82 MeV is presented at 2.5° off the target normal direction. The divergence angle of the modulated zone is 3.8°. Two-dimensional particle-in-cell simulations reveal that self-generated toroidal magnetic field at the rear surface of the target foil is responsible for the modulated spectral feature. The field deflects the low energy protons, resulting in the modulated energy spectrum with certain peaks.

  9. Site selection and directional models of deserts used for ERBE validation targets

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus 7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara, Gibson, and Saudi Deserts. These deserts will serve as in-flight validation targets for the Earth Radiation Budget Experiment being flown on the Earth Radiation Budget Satellite and two National Oceanic and Atmospheric Administration polar satellites. The directional reflectance model derived for the deserts was a function of the sum and product of the cosines of the solar and viewing zenith angles, and thus reciprocity existed between these zenith angles. The emittance model was related by a power law of the cosine of the viewing zenith angle.

  10. Experimental study of low aspect ratio compressor blading

    NASA Technical Reports Server (NTRS)

    Reid, L.; Moore, R. D.

    1979-01-01

    The effects of low aspect ratio blading on aerodynamic performance were examined. Four individual transonic compressor stages, representative of the inlet stage of an advanced high pressure ratio core compressor, are discussed. The flow phenomena for the four stages are investigated. Comparisons of blade element parameters are presented for the two different aspect ratio configurations. Blade loading levels are compared for the near stall conditions and comparisons are made of loss and diffusion factors over the operating range of incidence angles.

  11. Target Strength of Southern Resident Killer Whales (Orcinus orca): Measurement and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jinshan; Deng, Zhiqun; Carlson, Thomas J.

    2012-04-04

    A major criterion for tidal power licensing in Washington’s Puget Sound is the management of the risk of injury to killer whales due to collision with moving turbine blades. An active monitoring system is being proposed for killer whale detection, tracking, and alerting that links to and triggers temporary turbine shutdown when there is risk of collision. Target strength (TS) modeling of the killer whale is critical to the design and application of any active monitoring system. A 1996 study performed a high-resolution measurement of acoustic reflectivity as a function of frequency of a female bottlenose dolphin (2.2 m length)more » at broadside aspect and TS as a function of incident angle at 67 kHz frequency. Assuming that killer whales share similar morphology structure with the bottlenose dolphin, we extrapolated the TS of an adult killer whale 7.5 m in length at 67 kHz frequency with -8 dB at broadside aspect and -28 dB at tail side. The backscattering data from three Southern Resident killer whales were analyzed to obtain the TS measurement. These data were collected at Lime Kiln State Park using a split-beam system deployed from a boat. The TS of the killer whale at higher frequency (200 kHz) was estimated based on a three-layer model for plane wave reflection from the lung of the whale. The TS data of killer whales were in good agreement with our model. In this paper, we also discuss and explain possible causes for measurement estimation error.« less

  12. Microwave blackbodies for spaceborne receivers

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1985-01-01

    The properties of microwave blackbody targets are explained as they apply to the calibration of spaceborne receivers. Also described are several practicable, blackbody targets used to test and calibrate receivers in the laboratory and in the thermal vacuum chamber. Problems with the precision and the accuracy of blackbody targets, and blackbody target design concepts that overcome some of the accuracy limitations present in existing target designs, are presented. The principle of the Brewster angle blackbody target is described where the blackbody is applied as a fixed-temperature test target in the laboratory and as a variable-temperature target in the thermal vacuum chamber. The reflectivity of a Brewster angle target is measured in the laboratory. From this measurement, the emissivity of the target is calculated. Radiatively cooled thermal suspensions are discussed as the coolants of blackbody targets and waveguide terminations that function as calibration devices in spaceborne receivers. Examples are given for the design of radiatively cooled thermal suspensions. Corrugated-horn antennas used to observe the cosmic background and to provide a cold-calibration source for spaceborne receivers are described.

  13. Optimization of Self-Directed Target Coverage in Wireless Multimedia Sensor Network

    PubMed Central

    Yang, Yang; Wang, Yufei; Pi, Dechang; Wang, Ruchuan

    2014-01-01

    Video and image sensors in wireless multimedia sensor networks (WMSNs) have directed view and limited sensing angle. So the methods to solve target coverage problem for traditional sensor networks, which use circle sensing model, are not suitable for WMSNs. Based on the FoV (field of view) sensing model and FoV disk model proposed, how expected multimedia sensor covers the target is defined by the deflection angle between target and the sensor's current orientation and the distance between target and the sensor. Then target coverage optimization algorithms based on expected coverage value are presented for single-sensor single-target, multisensor single-target, and single-sensor multitargets problems distinguishingly. Selecting the orientation that sensor rotated to cover every target falling in the FoV disk of that sensor for candidate orientations and using genetic algorithm to multisensor multitargets problem, which has NP-complete complexity, then result in the approximated minimum subset of sensors which covers all the targets in networks. Simulation results show the algorithm's performance and the effect of number of targets on the resulting subset. PMID:25136667

  14. Role of target thickness in proton acceleration from near-critical mass-limited plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-07-01

    The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.

  15. Static internal performance of convergent single-expansion-ramp nozzles with various combinations of internal geometric parameters

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Capone, Francis J.

    1989-01-01

    An investigation was conducted in the Static Test Facility of the Langley 16-Foot Transonic Tunnel to determine the effects of five geometric design parameters on the internal performance of convergent single expansion ramp nozzles. The effects of ramp chordal angle, initial ramp angle, flap angle, flap length, and ramp length were determined. All nozzles tested has a nominally constant throat area and aspect ratio. Static pressure distributions along the centerlines of the ramp and flap were also obtained for each configuration. Nozzle pressure ratio was varied up to 10.0 for all configurations.

  16. Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring

    NASA Technical Reports Server (NTRS)

    Bare, E. Ann; Reubush, David E.

    1987-01-01

    A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.

  17. Study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios

    NASA Technical Reports Server (NTRS)

    Hess, Robert V; Gardner, Clifford S

    1947-01-01

    By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.

  18. ON THE PROBLEM OF CORRECTING TWISTED TURBINE BLADES,

    DTIC Science & Technology

    TURBINE BLADES , DESIGN), GAS TURBINES , STEAM TURBINES , BLADE AIRFOILS , ASPECT RATIO, FLUID DYNAMICS, SECONDARY FLOW, ANGLE OF ATTACK, INLET GUIDE VANES , CORRECTIONS, PERFORMANCE( ENGINEERING ), OPTIMIZATION, USSR

  19. Degradation of Silicon Carbide Reflective Surfaces in the LEO Environment

    NASA Astrophysics Data System (ADS)

    Mileti, Sandro; Coluzzi, Plinio; Marchetti, Mario

    2009-01-01

    Space mirrors in Low Earth Orbit (LEO) encounter a degradation problem caused by the impact of atomic oxygen (ATOX) in the space environment. This paper presents an experiment of the atomic oxygen impact degradation and UV synergic effects on ground simulation. The experiment was carried out in a dedicated ATOX simulation vacuum chamber. As target materials, a polished CVD Beta-silicon carbide (SiC) coating was investigated. The selection of silicon carbide is due to its high potential candidate as a mirror layer substrate material for its good reflectance at UV wavelengths and excellent thermal diffusivity. It has highly desirable mechanical and thermal properties and can achieve an excellent surface finish. The deposition of the coatings were on carbon-based material substrate; i.e., silicon impregnated carbon fiber composite (C/SiC). Mechanical and thermal properties of the coatings such as hardness and Coefficient of Thermal Expansion (CTE) were achieved. Several atomic oxygen impact angles were studied tilting the target samples respect to the flux direction. The various impact angles permitted to analyze the different erosion rates and typologies which the mirrors would encounter in LEO environment. The degradation was analyzed in various aspects. Macroscopic mass loss per unit area, surface roughness and morphology change were basically analyzed. The exposed surfaces of the materials were observed through a Scanning Electron Microscope (SEM). Secondly, optical diagnostic of the surfaces were performed in order to investigate their variation in optical properties as the evaluation of reflectance degradation. The presence of micro-cracks caused by shrinkage, grinding, polishing or thermal cycling and the porosity in the coatings, could have led to the undercutting phenomenon. Observation of uprising of undercutting was also conducted. Remarks are given regarding capabilities in short-term mission exposures to the LEO environment of this coating.

  20. Behavioral patterns and in-situ target strength of the hairtail ( Trichiurus lepturus) via coupling of scientific echosounder and acoustic camera data

    NASA Astrophysics Data System (ADS)

    Hwang, Kangseok; Yoon, Eun-A.; Kang, Sukyung; Cha, Hyungkee; Lee, Kyounghoon

    2017-12-01

    The present study focuses on the influence of target strength (TS) changes in the swimming angle of the hairtail ( Trichiurus lepturus). We measured in-situ TS at 38 and 120 kHz with luring lamps at a fishing ground for jigging boats near the coastal waters of Jeju-do in Korea. Swimming angle and size of hairtails were measured using an acoustic camera. Results showed that mean preanal length was estimated to be 13.5 cm (SD = 2.7 cm) and mean swimming tilt angle was estimated to be 43.9° (SD = 17.6°). The mean TS values were -35.7 and -41.2 dB at 38 and 120 kHz, respectively. The results will assist in understanding the influence of swimming angle on the TS of hairtails and, thus, improve the accuracy of biomass estimates.

  1. SAR imaging of ocean waves - Theory

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1981-01-01

    A SAR imaging integral for a rough surface is derived. Aspects of distributed target imaging and questions of ocean-wave imaging are considered. A description is presented of the results of analyses which are performed on aircraft and a spacecraft data in order to gain an understanding of the SAR imaging of ocean waves. The analyzed data illustrate the effect of radar resolution on the images of azimuthally traveling waves, the dependence of image distortion on the angle which the waves make with the radar flight path, and the dependence of the focusing parameter of the radar matched filter on the ocean wave period for azimuthally traveling waves. A dependence of ocean-wave modulation on significant wave height is also observed. The observed dependence of the modulations of azimuth waves on radar resolution is in contradiction to the hypothesis that these modulations are caused mainly by velocity bunching.

  2. A study of Radar Cross Section (RCS) characteristics and their application in future weapon systems

    NASA Astrophysics Data System (ADS)

    McCluggage, W. A.

    The sum of components technique was used to calculate the radar cross section (RCS) of a Canberra B2 aircraft. The theoretical result obtained by using simple shapes to model the aircraft were compared with practical results. It is found that this technique can be used to give a quick order of magnitude estimation of a target's RCS. However, the major drawback of this technique is that it cannot predict the rapid changes in RCS which result from a small change in aspect angle. Trends in radar guided weapons, the effects of aircraft shape on the overall RCS of a weapons platform, and reduction of aircraft RCS by appropriate shaping are discussed. Methods, including radar absorption, radar absorbing materials, impedance loading, and active cancellation, which can be used to reduce an aircraft's radar signature and the associated penalties are reviewed.

  3. Wind-tunnel investigation of aerodynamic loading on a 0.237-scale model of a remotely piloted research vehicle with a thick, high-aspect-ratio supercritical wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, T. A.; Brooks, C. W., Jr.

    1983-01-01

    Wind-tunnel measurements were made of the wing-surface static-pressure distributions on a 0.237 scale model of a remotely piloted research vehicle equipped with a thick, high-aspect-ratio supercritical wing. Data are presented for two model configurations (with and without a ventral pod) at Mach numbers from 0.70 to 0.92 at angles of attack from -4 deg to 8 deg. Large variations of wing-surface local pressure distributions were developed; however, the characteristic supercritical-wing pressure distribution occurred near the design condition of 0.80 Mach number and 2 deg angle of attack. The significant variations of the local pressure distributions indicated pronounced shock-wave movements that were highly sensitive to angle of attack and Mach number. The effect of the vertical pod varied with test conditions; however at the higher Mach numbers, the effects on wing flow characteristics were significant at semispan stations as far outboard as 0.815. There were large variations of the wing loading in the range of test conditions, both model configurations exhibited a well-defined peak value of normal-force coefficient at the cruise angle of attack (2 deg) and Mach number (0.80).

  4. Effect of Ground Proximity on the Aerodynamic Characteristics of Aspect-Ratio-1 Airfoils With and Without End Plates

    NASA Technical Reports Server (NTRS)

    Carter, Arthur W.

    1961-01-01

    An investigation has been made to determine the effect of ground proximity on the aerodynamic characteristics of aspect-ratio-1 airfoils. The investigation was made with the model moving over the water in a towing tank in order to eliminate the effects of wind-tunnel walls and of boundary layer on ground boards at small ground clearances. The results indicated that, as the ground was approached, the airfoils experienced an increase in lift-curve slope and a reduction in induced drag; thus, lift-drag ratio was increased. As the ground was approached, the profile drag remained essentially constant for each airfoil. Near the ground, the addition of end plates to the airfoil resulted in a large increase in lift-drag ratio. The lift characteristics of the airfoils indicated stability of height at positive angles of attack and instability of height at negative angles; therefore, the operating range of angles of attack would be limited to positive values. At positive angles of attack, the static longitudinal stability was increased as the height above the ground was reduced. Comparison of the experimental data with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77) indicated generally good agreement between experiment and theory for the airfoils without end plates.

  5. Sizing up skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, J.L.

    1993-11-01

    This article discusses various aspects of skylights. Designers, builders, and homeowners who understand the energy aspects of skylights can best select them for comfort as well as appearance. Topics covered include heat loss problems (convection, radiation); the sun and the sun angles; ventilation; skylight ratings for efficiency; pointers about what to look for; comparison of skylight and window U-Factors; ventilation. 3 figs., 1 tab.

  6. Analysis of multispectral signatures and investigation of multi-aspect remote sensing techniques

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Hieber, R. H.; Sarno, J. E.

    1974-01-01

    Two major aspects of remote sensing with multispectral scanners (MSS) are investigated. The first, multispectral signature analysis, includes the effects on classification performance of systematic variations found in the average signals received from various ground covers as well as the prediction of these variations with theoretical models of physical processes. The foremost effects studied are those associated with the time of day airborne MSS data are collected. Six data collection runs made over the same flight line in a period of five hours are analyzed, it is found that the time span significantly affects classification performance. Variations associated with scan angle also are studied. The second major topic of discussion is multi-aspect remote sensing, a new concept in remote sensing with scanners. Here, data are collected on multiple passes by a scanner that can be tilted to scan forward of the aircraft at different angles on different passes. The use of such spatially registered data to achieve improved classification of agricultural scenes is investigated and found promising. Also considered are the possibilities of extracting from multi-aspect data, information on the condition of corn canopies and the stand characteristics of forests.

  7. The effects of solar incidence angle over digital processing of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Novo, E. M. L. M.

    1983-01-01

    A technique to extract the topography modulation component from digital data is described. The enhancement process is based on the fact that the pixel contains two types of information: (1) reflectance variation due to the target; (2) reflectance variation due to the topography. In order to enhance the signal variation due to topography, the technique recommends the extraction from original LANDSAT data of the component resulting from target reflectance. Considering that the role of topographic modulation over the pixel information will vary with solar incidence angle, the results of this technique of digital processing will differ from one season to another, mainly in highly dissected topography. In this context, the effects of solar incidence angle over the topographic modulation technique were evaluated. Two sets of MSS/LANDSAT data, with solar elevation angles varying from 22 to 41 deg were selected to implement the digital processing at the Image-100 System. A secondary watershed (Rio Bocaina) draining into Rio Paraiba do Sul (Sao Paulo State) was selected as a test site. The results showed that the technique used was more appropriate to MSS data acquired under higher Sun elevation angles. Topographic modulation components applied to low Sun elevation angles lessens rather than enhances topography.

  8. Longitudinal Stability and Control Characteristics as Determined by the Rocket-model Technique for an Inline, Cruciform, Canard Missile Configuration with a Low-aspect-ratio Wing Having Trailing-edge Flap Controls for a Mach Number Range of 0.7 to 1.

    NASA Technical Reports Server (NTRS)

    Baber, Hal T , Jr; Moul, Martin T

    1955-01-01

    Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle - of-attack range of this test (0 deg to 8 deg). The aerodynamic-center location for angles of attack near 50 remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near 0 deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of 0 deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle -of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.

  9. Longitudinal Stability and Control Characteristics as Determined by the Rocket-Model Technique for an Inline, Cruciform, Canard Missile Configuration with a Low-Aspect-Ratio Wing Having Trailing-Edge Flap Controls for a Mach Number Range of 0.7 to 1.8

    NASA Technical Reports Server (NTRS)

    Baber, H. T., Jr.; Moul, M. T.

    1955-01-01

    Two full-scale models of an inline, cruciform, canard missile configuration having a low-aspect-ratio wing equipped with flap-type controls were flight tested in order to determine the missile's longitudinal aerodynamic characteristics. Stability derivatives and control and drag characteristics are presented for a range of Mach number from 0.7 to 1.8. Nonlinear lift and moment curves were noted for the angle-of-attack range of this test (0 deg to 8 deg ). The aerodynamic-center location for angles of attack near 5 deg remained nearly constant for supersonic speeds at 13.5 percent of the mean aerodynamic chord; whereas for angles of attack near O deg, there was a rapid forward movement of the aerodynamic center as the Mach number increased. At a control deflection of O deg, the missile's response to the longitudinal control was in an essentially fixed space plane which was not coincident with the pitch plane as a result of the missile rolling. As a consequence, stability characteristics were determined from the resultant of pitch and yaw motions. The damping-in-pitch derivatives for the two angle-of-attack ranges of the test are in close agreement and varied only slightly with Mach number. The horn-balanced trailing-edge flap was effective in producing angle of attack over the Mach number range.

  10. [A review on polarization information in the remote sensing detection].

    PubMed

    Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao

    2010-04-01

    Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.

  11. Bipartite networks improve understanding of effects of waterbody size and angling method on angler–fish interactions

    USGS Publications Warehouse

    Chizinski, Christopher J.; Martin, Dustin R.; Shizuka, Daizaburo; Pope, Kevin L.

    2018-01-01

    Networks used to study interactions could provide insights to fisheries. We compiled data from 27 297 interviews of anglers across waterbodies that ranged in size from 1 to 12 113 ha. Catch rates of fish species among anglers grouped by species targeted generally differed between angling methods (bank or boat). We constructed angler–catch bipartite networks (angling method specific) between anglers and fish and measured several network metrics. There was considerable variation in networks among waterbodies, with multiple metrics influenced by waterbody size. Number of species-targeting angler groups and number of fish species caught increased with increasing waterbody size. Mean number of links for species-targeting angler groups and fish species caught also increased with waterbody size. Connectance (realized proportion of possible links) of angler–catch interaction networks decreased slower for boat anglers than for bank anglers with increasing waterbody size. Network specialization (deviation of number of interactions from expected) was not significantly related to waterbody size or angling methods. Application of bipartite networks in fishery science requires careful interpretation of outputs, especially considering the numerous confounding factors prevalent in recreational fisheries.

  12. Fishing for Northern Pike in Minnesota: A comparison of anglers and dark house spearers

    USGS Publications Warehouse

    Schroeder, Susan A.; Fulton, David C.

    2014-01-01

    In order to project fishing effort and demand of individuals targeting Northern Pike Esox lucius in Minnesota, it is important to understand the catch orientations, management preferences, and site choice preferences of those individuals. Northern Pike are specifically targeted by about 35% of the approximately 1.5 million licensed anglers in Minnesota and by approximately 14,000–15,000 dark house spearers. Dark house spearing is a traditional method of harvesting fish through the ice in winter. Mail surveys were distributed to three research strata: anglers targeting Northern Pike, dark house spearing license holders spearing Northern Pike, and dark house spearing license holders angling for Northern Pike. Dark house spearers, whether spearing or angling, reported a stronger orientation toward keeping Northern Pike than did anglers. Anglers reported a stronger orientation toward catching large Northern Pike than did dark house spearers when spearing or angling. Northern Pike regulations were the most important attribute affecting site choice for respondents in all three strata. Models for all strata indicated a preference for lakes without protected slot limits. However, protected slot limits had a stronger negative influence on lake preference for dark house spearing licensees (whether spearing or angling) than for anglers.

  13. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    NASA Technical Reports Server (NTRS)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  14. Comparison of analytical and experimental steadyand unsteady-pressure distributions at Mach number 0.78 for a high-aspect-ratio supercritical wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Mccain, W. E.

    1984-01-01

    The unsteady aerodynamic lifting surface theory, the Doublet Lattice method, with experimental steady and unsteady pressure measurements of a high aspect ratio supercritical wing model at a Mach number of 0.78 were compared. The steady pressure data comparisons were made for incremental changes in angle of attack and control surface deflection. The unsteady pressure data comparisons were made at set angle of attack positions with oscillating control surface deflections. Significant viscous and transonic effects in the experimental aerodynamics which cannot be predicted by the Doublet Lattice method are shown. This study should assist development of empirical correction methods that may be applied to improve Doublet Lattice calculations of lifting surface aerodynamics.

  15. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, B.I.

    1978-09-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimentalmore » hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.« less

  16. Radar cross section models for limited aspect angle windows

    NASA Astrophysics Data System (ADS)

    Robinson, Mark C.

    1992-12-01

    This thesis presents a method for building Radar Cross Section (RCS) models of aircraft based on static data taken from limited aspect angle windows. These models statistically characterize static RCS. This is done to show that a limited number of samples can be used to effectively characterize static aircraft RCS. The optimum models are determined by performing both a Kolmogorov and a Chi-Square goodness-of-fit test comparing the static RCS data with a variety of probability density functions (pdf) that are known to be effective at approximating the static RCS of aircraft. The optimum parameter estimator is also determined by the goodness of-fit tests if there is a difference in pdf parameters obtained by the Maximum Likelihood Estimator (MLE) and the Method of Moments (MoM) estimators.

  17. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    NASA Technical Reports Server (NTRS)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  18. Polarization Smoothing Generalized MUSIC Algorithm with Polarization Sensitive Array for Low Angle Estimation.

    PubMed

    Tan, Jun; Nie, Zaiping

    2018-05-12

    Direction of Arrival (DOA) estimation of low-altitude targets is difficult due to the multipath coherent interference from the ground reflection image of the targets, especially for very high frequency (VHF) radars, which have antennae that are severely restricted in terms of aperture and height. The polarization smoothing generalized multiple signal classification (MUSIC) algorithm, which combines polarization smoothing and generalized MUSIC algorithm for polarization sensitive arrays (PSAs), was proposed to solve this problem in this paper. Firstly, the polarization smoothing pre-processing was exploited to eliminate the coherence between the direct and the specular signals. Secondly, we constructed the generalized MUSIC algorithm for low angle estimation. Finally, based on the geometry information of the symmetry multipath model, the proposed algorithm was introduced to convert the two-dimensional searching into one-dimensional searching, thus reducing the computational burden. Numerical results were provided to verify the effectiveness of the proposed method, showing that the proposed algorithm has significantly improved angle estimation performance in the low-angle area compared with the available methods, especially when the grazing angle is near zero.

  19. Acoustic Scattering from Sand Dollars (Dendraster excentricus): Modeling as High Aspect Ratio Oblate Objects and Comparison to Experiment

    DTIC Science & Technology

    2008-09-01

    2004), forward scattering and backscattering from a sand dollar test, a bivalve shell , and a machined aluminum disk of similar size were measured over a...Abstract Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low grazing angles. Among the...effects of shell aggregates are increased scattering strength and potential subcritical angle penetration of the seafloor. Sand dollars (Dendraster

  20. Acoustic Scattering from Sand Dollars (Dendraster excentricus): Modeling as High Aspect Ratio Oblate Objects and Comparison to Experiment

    DTIC Science & Technology

    2008-09-01

    results. In Stanton and Chu (2004), forward scattering and backscattering from a sand dollar test, a bivalve shell , and a machined aluminum disk of...Oceanographic Institution Abstract Benthic shells can contribute greatly to the scattering variability of the ocean bottom, particularly at low...grazing angles. Among the effects of shell aggregates are increased scattering strength and potential subcritical angle penetration of the seafloor

  1. A propagation experiment for modelling high elevation angle land mobile satellite channels

    NASA Technical Reports Server (NTRS)

    Richharia, M.; Evans, B. G.; Butt, G.

    1990-01-01

    This paper summarizes the results of a feasibility study for conducting high elevation angle propagation experiments in the European region for land mobile satellite communication. The study addresses various aspects of a proposed experiment. These include the selection of a suitable source for transmission, possibility of gathering narrow and wide band propagation data in various frequency bands, types of useful data, data acquisition technique, possible experimental configuration, and other experimental details.

  2. Design and fabrication of highly hydrophobic Mn nano-sculptured thin films and evaluation of surface properties on hydrophobicity

    NASA Astrophysics Data System (ADS)

    Hosseini, Somaye; Savaloni, Hadi; Gholipour-Shahraki, Mehran

    2017-03-01

    The wettability of solid surfaces is important from the aspects of both science and technology. The Mn nano-sculptured thin films were designed and fabricated by oblique angle deposition of Mn on glass substrates at room temperature. The obtained structure was characterized by field emission scanning electron microscopy and atomic force microscopy. The wettability of thin films samples was investigated by water contact angle (WCA). The 4-pointed helical star-shaped structure exhibits hydrophobicity with static WCAs of more than 133° for a 10-mg distilled water droplet. This sample also shows the rose petal effect with the additional property of high adhesion. The Mn nano-sculptured thin films also act as a sticky surface which is confirmed by hysteresis of the contact angle obtained from advancing and receding contact angles measurements. Physicochemical property of liquid phase could effectively change the contact angle, and polar solvents in contact with hydrophobic solid surfaces do not necessarily show high contact angle value.

  3. Physical Interpretation of the Correlation Between Multi-Angle Spectral Data and Canopy Height

    NASA Technical Reports Server (NTRS)

    Schull, M. A.; Ganguly, S.; Samanta, A.; Huang, D.; Shabanov, N. V.; Jenkins, J. P.; Chiu, J. C.; Marshak, A.; Blair, J. B.; Myneni, R. B.; hide

    2007-01-01

    Recent empirical studies have shown that multi-angle spectral data can be useful for predicting canopy height, but the physical reason for this correlation was not understood. We follow the concept of canopy spectral invariants, specifically escape probability, to gain insight into the observed correlation. Airborne Multi-Angle Imaging Spectrometer (AirMISR) and airborne Laser Vegetation Imaging Sensor (LVIS) data acquired during a NASA Terrestrial Ecology Program aircraft campaign underlie our analysis. Two multivariate linear regression models were developed to estimate LVIS height measures from 28 AirMISR multi-angle spectral reflectances and from the spectrally invariant escape probability at 7 AirMISR view angles. Both models achieved nearly the same accuracy, suggesting that canopy spectral invariant theory can explain the observed correlation. We hypothesize that the escape probability is sensitive to the aspect ratio (crown diameter to crown height). The multi-angle spectral data alone therefore may not provide enough information to retrieve canopy height globally

  4. Angle performance on optima MDxt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Jonathan; Kamenitsa, Dennis

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightlymore » tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).« less

  5. Application of AI techniques to infer vegetation characteristics from directional reflectance(s)

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Smith, J. A.; Harrison, P. A.; Harrison, P. R.

    1994-01-01

    Traditionally, the remote sensing community has relied totally on spectral knowledge to extract vegetation characteristics. However, there are other knowledge bases (KB's) that can be used to significantly improve the accuracy and robustness of inference techniques. Using AI (artificial intelligence) techniques a KB system (VEG) was developed that integrates input spectral measurements with diverse KB's. These KB's consist of data sets of directional reflectance measurements, knowledge from literature, and knowledge from experts which are combined into an intelligent and efficient system for making vegetation inferences. VEG accepts spectral data of an unknown target as input, determines the best techniques for inferring the desired vegetation characteristic(s), applies the techniques to the target data, and provides a rigorous estimate of the accuracy of the inference. VEG was developed to: infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; infer percent ground cover from any combination of nadir and/or off-nadir view angles; infer unknown view angle(s) from known view angle(s) (known as view angle extension); and discriminate between user defined vegetation classes using spectral and directional reflectance relationships developed from an automated learning algorithm. The errors for these techniques were generally very good ranging between 2 to 15% (proportional root mean square). The system is designed to aid scientists in developing, testing, and applying new inference techniques using directional reflectance data.

  6. Localization of Ferromagnetic Target with Three Magnetic Sensors in the Movement Considering Angular Rotation

    PubMed Central

    Gao, Xiang; Yan, Shenggang; Li, Bin

    2017-01-01

    Magnetic detection techniques have been widely used in many fields, such as virtual reality, surgical robotics systems, and so on. A large number of methods have been developed to obtain the position of a ferromagnetic target. However, the angular rotation of the target relative to the sensor is rarely studied. In this paper, a new method for localization of moving object to determine both the position and rotation angle with three magnetic sensors is proposed. Trajectory localization estimation of three magnetic sensors, which are collinear and noncollinear, were obtained by the simulations, and experimental results demonstrated that the position and rotation angle of ferromagnetic target having roll, pitch or yaw in its movement could be calculated accurately and effectively with three noncollinear vector sensors. PMID:28892006

  7. Correlation of process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target

    NASA Astrophysics Data System (ADS)

    Bundesmann, Carsten; Lautenschläge, Thomas; Spemann, Daniel; Finzel, Annemarie; Mensing, Michael; Frost, Frank

    2017-10-01

    The correlation between process parameters and properties of TiO2 films grown by ion beam sputter deposition from a ceramic target was investigated. TiO2 films were grown under systematic variation of ion beam parameters (ion species, ion energy) and geometrical parameters (ion incidence angle, polar emission angle) and characterized with respect to film thickness, growth rate, structural properties, surface topography, composition, optical properties, and mass density. Systematic variations of film properties with the scattering geometry, namely the scattering angle, have been revealed. There are also considerable differences in film properties when changing the process gas from Ar to Xe. Similar systematics were reported for TiO2 films grown by reactive ion beam sputter deposition from a metal target [C. Bundesmann et al., Appl. Surf. Sci. 421, 331 (2017)]. However, there are some deviations from the previously reported data, for instance, in growth rate, mass density and optical properties.

  8. Beam position reconstruction for the g2p experiment in Hall A at Jefferson lab

    NASA Astrophysics Data System (ADS)

    Zhu, Pengjia; Allada, Kalyan; Allison, Trent; Badman, Toby; Camsonne, Alexandre; Chen, Jian-ping; Cummings, Melissa; Gu, Chao; Huang, Min; Liu, Jie; Musson, John; Slifer, Karl; Sulkosky, Vincent; Ye, Yunxiu; Zhang, Jixie; Zielinski, Ryan

    2016-02-01

    Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. Before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve the required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. The calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.

  9. Recognition of aspect-dependent three-dimensional objects by an echolocating Atlantic bottlenose dolphin.

    PubMed

    Helweg, D A; Roitblat, H L; Nachtigall, P E; Hautus, M J

    1996-01-01

    We examined the ability of a bottlenose dolphin (Tursiops truncatus) to recognize aspect-dependent objects using echolocation. An aspect-dependent object such as a cube produces acoustically different echoes at different angles relative to the echolocation signal. The dolphin recognized the objects even though the objects were free to rotate and sway. A linear discriminant analysis and nearest centroid classifier could classify the objects using average amplitude, center frequency, and bandwidth of object echoes. The results show that dolphins can use varying acoustic properties to recognize constant objects and suggest that aspect-independent representations may be formed by combining information gleaned from multiple echoes.

  10. Characterization of the fast electrons distribution produced in a high intensity laser target interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westover, B.; Lawrence Livermore National Laboratory, Livermore, California 94550; Chen, C. D.

    2014-03-15

    Experiments on the Titan laser (∼150 J, 0.7 ps, 2 × 10{sup 20} W cm{sup −2}) at the Lawrence Livermore National Laboratory were carried out in order to study the properties of fast electrons produced by high-intensity, short pulse laser interacting with matter under conditions relevant to Fast Ignition. Bremsstrahlung x-rays produced by these fast electrons were measured by a set of compact filter-stack based x-ray detectors placed at three angles with respect to the target. The measured bremsstrahlung signal allows a characterization of the fast electron beam spectrum, conversion efficiency of laser energy into fast electron kinetic energy and angular distribution. A Monte Carlo codemore » Integrated Tiger Series was used to model the bremsstrahlung signal and infer a laser to fast electron conversion efficiency of 30%, an electron slope temperature of about 2.2 MeV, and a mean divergence angle of 39°. Simulations were also performed with the hybrid transport code ZUMA which includes fields in the target. In this case, a conversion efficiency of laser energy to fast electron energy of 34% and a slope temperature between 1.5 MeV and 4 MeV depending on the angle between the target normal direction and the measuring spectrometer are found. The observed temperature of the bremsstrahlung spectrum, and therefore the inferred electron spectrum are found to be angle dependent.« less

  11. Study on the measurement system of the target polarization characteristics and test

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhu, Yong; Zhang, Su; Duan, Jin; Yang, Di; Zhan, Juntong; Wang, Xiaoman; Jiang, Hui-Lin

    2015-10-01

    The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields, the research on the polarization characteristics of target is particularly important. The research of the polarization reflection model was introduced in this paper, which describes the scattering vector light energy distribution in reflecting hemisphere polarization characteristics, the target polarization characteristics test system solutions was put forward, by the irradiation light source, measuring turntable and camera, etc, which illuminate light source shall direct light source, with laser light sources and xenon lamp light source, light source can be replaced according to the test need; Hemispherical structure is used in measuring circumarotate placed near its base material sample, equipped with azimuth and pitching rotation mechanism, the manual in order to adjust the azimuth Angle and high Angle observation; Measuring camera pump works, through the different in the way of motor control polaroid polarization test, to ensure the accuracy of measurement and imaging resolution. The test platform has set up by existing laboratory equipment, the laser is 532 nm, line polaroid camera, at the same time also set the sending and receiving optical system. According to the different materials such as wood, metal, plastic, azimuth Angle and zenith Angle in different observation conditions, measurement of target in the polarization scattering properties of different exposure conditions, implementation of hemisphere space pBRDF measurement.

  12. Geometric approach to the design of an imaging probe to evaluate the iridocorneal angle structures

    NASA Astrophysics Data System (ADS)

    Hong, Xun Jie Jeesmond; V. K., Shinoj; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2017-06-01

    Photographic imaging methods allow the tracking of anatomical changes in the iridocorneal angle structures and the monitoring of treatment responses overtime. In this work, we aim to design an imaging probe to evaluate the iridocorneal angle structures using geometrical optics. We first perform an analytical analysis on light propagation from the anterior chamber of the eye to the exterior medium using Snell's law. This is followed by adopting a strategy to achieve uniform near field irradiance, by simplifying the complex non-rotational symmetric irradiance distribution of LEDs tilted at an angle. The optimization is based on the geometric design considerations of an angled circular ring array of 4 LEDs (or a 2 × 2 square LED array). The design equation give insights on variable parameters such as the illumination angle of the LEDs, ring array radius, viewing angle of the LEDs, and the working distance. A micro color CCD video camera that has sufficient resolution to resolve the iridocorneal angle structures at the required working distance is then chosen. The proposed design aspects fulfil the safety requirements recommended by the International Commission on Non-ionizing Radiation Protection.

  13. Examining Preservice Science Teacher Understanding of Nature of Science: Discriminating Variables on the Aspects of Nature of Science

    NASA Astrophysics Data System (ADS)

    Jones, William I.

    This study examined the understanding of nature of science among participants in their final year of a 4-year undergraduate teacher education program at a Midwest liberal arts university. The Logic Model Process was used as an integrative framework to focus the collection, organization, analysis, and interpretation of the data for the purpose of (1) describing participant understanding of NOS and (2) to identify participant characteristics and teacher education program features related to those understandings. The Views of Nature of Science Questionnaire form C (VNOS-C) was used to survey participant understanding of 7 target aspects of Nature of Science (NOS). A rubric was developed from a review of the literature to categorize and score participant understanding of the target aspects of NOS. Participants' high school and college transcripts, planning guides for their respective teacher education program majors, and science content and science teaching methods course syllabi were examined to identify and categorize participant characteristics and teacher education program features. The R software (R Project for Statistical Computing, 2010) was used to conduct an exploratory analysis to determine correlations of the antecedent and transaction predictor variables with participants' scores on the 7 target aspects of NOS. Fourteen participant characteristics and teacher education program features were moderately and significantly ( p < .01) correlated with participant scores on the target aspects of NOS. The 6 antecedent predictor variables were entered into multiple regression analyses to determine the best-fit model of antecedent predictor variables for each target NOS aspect. The transaction predictor variables were entered into separate multiple regression analyses to determine the best-fit model of transaction predictor variables for each target NOS aspect. Variables from the best-fit antecedent and best-fit transaction models for each target aspect of NOS were then combined. A regression analysis for each of the combined models was conducted to determine the relative effect of these variables on the target aspects of NOS. Findings from the multiple regression analyses revealed that each of the fourteen predictor variables was present in the best-fit model for at least 1 of the 7 target aspects of NOS. However, not all of the predictor variables were statistically significant (p < .007) in the models and their effect (beta) varied. Participants in the teacher education program who had higher ACT Math scores, completed more high school science credits, and were enrolled either in the Middle Childhood with a science concentration program major or in the Adolescent/Young Adult Science Education program major were more likely to have an informed understanding on each of the 7 target aspects of NOS. Analyses of the planning guides and the course syllabi in each teacher education program major revealed differences between the program majors that may account for the results.

  14. A gait retraining system using augmented-reality to modify footprint parameters: Effects on lower-limb sagittal-plane kinematics.

    PubMed

    Bennour, Sami; Ulrich, Baptiste; Legrand, Thomas; Jolles, Brigitte M; Favre, Julien

    2018-01-03

    Improving lower-limb flexion/extension angles during walking is important for the treatment of numerous pathologies. Currently, these gait retraining procedures are mostly qualitative, often based on visual assessment and oral instructions. This study aimed to propose an alternative method combining motion capture and display of target footprints on the floor. The second objectives were to determine the error in footprint modifications and the effects of footprint modifications on lower-limb flexion/extension angles. An augmented-reality system made of an optoelectronic motion capture device and video projectors displaying target footprints on the floor was designed. 10 young healthy subjects performed a series of 27 trials, consisting of increased and decreased amplitudes in stride length, step width and foot progression angle. 11 standard features were used to describe and compare lower-limb flexion/extension angles among footprint modifications. Subjects became accustomed to walk on target footprints in less than 10 min, with mean (± SD) precision of 0.020 ± 0.002 m in stride length, 0.022 ± 0.006 m in step width, and 2.7 ± 0.6° in progression angle. Modifying stride length had significant effects on 3/3 hip, 2/4 knee and 4/4 ankle features. Similarly, step width and progression angle modifications affected 2/3 and 1/3 hip, 2/4 and 1/4 knee as well as 3/4 and 2/4 ankle features, respectively. In conclusion, this study introduced an augmented-reality method allowing healthy subjects to modify their footprint parameters rapidly and precisely. Walking with modified footprints changed lower-limb sagittal-plane kinematics. Further research is needed to design rehabilitation protocols for specific pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. SU-E-T-230: Creating a Large Number of Focused Beams with Variable Patient Head Tilt to Improve Dose Fall-Off for Brain Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, J; Ma, L

    2015-06-15

    Purpose: To develop a treatment delivery and planning strategy by increasing the number of beams to minimize dose to brain tissue surrounding a target, while maximizing dose coverage to the target. Methods: We analyzed 14 different treatment plans via Leksell PFX and 4C. For standardization, single tumor cases were chosen. Original treatment plans were compared with two optimized plans. The number of beams was increased in treatment plans by varying tilt angles of the patient head, while maintaining original isocenter and the beam positions in the x-, y- and z-axes, collimator size, and beam blocking. PFX optimized plans increased beammore » numbers with three pre-set tilt angles, 70, 90, 110, and 4C optimized plans increased beam numbers with tilt angles increasing arbitrarily from range of 30 to 150 degrees. Optimized treatment plans were compared dosimetrically with original treatment plans. Results: Comparing total normal tissue isodose volumes between original and optimized plans, the low-level percentage isodose volumes decreased in all plans. Despite the addition of multiple beams up to a factor of 25, beam-on times for 1 tilt angle versus 3 or more tilt angles were comparable (<1 min.). In 64% (9/14) of the studied cases, the volume percentage decrease by >5%, with the highest value reaching 19%. The addition of more tilt angles correlates to a greater decrease in normal brain irradiated volume. Selectivity and coverage for original and optimized plans remained comparable. Conclusion: Adding large number of additional focused beams with variable patient head tilt shows improvement for dose fall-off for brain radiosurgery. The study demonstrates technical feasibility of adding beams to decrease target volume.« less

  16. Aerocapture Guidance Performance for the Neptune Orbiter

    NASA Technical Reports Server (NTRS)

    Masciarelli, James P.; Westhelle, Carlos H.; Graves, Claude A.

    2004-01-01

    A performance evaluation of the Hybrid Predictor corrector Aerocapture Scheme (HYPAS) guidance algorithm for aerocapture at Neptune is presented in this paper for a Mission to Neptune and the Neptune moon Triton'. This mission has several challenges not experienced in previous aerocapture guidance assessments. These challengers are a very high Neptune arrival speed, atmospheric exit into a high energy orbit about Neptune, and a very high ballistic coefficient that results in a low altitude acceleration capability when combined with the aeroshell LD. The evaluation includes a definition of the entry corridor, a comparison to the theoretical optimum performance, and guidance responses to variations in atmospheric density, aerodynamic coefficients and flight path angle for various vehicle configurations (ballistic numbers). The benefits of utilizing angle-of-attack modulation in addition to bank angle modulation to improve flight performance is also discussed. The results show that despite large sensitivities in apoapsis targeting, the algorithm performs within the allocated AV budget for the Neptune mission bank angle only modulation. The addition of angle-of-attack modulation with as little as 5 degrees of amplitude significantly improves the scatter in final orbit apoapsis. Although the angle-of-attack modulation complicates the vehicle design, the performance enhancement reduces aerocapture risk and reduces the propellant consumption needed to reach the high energy target orbit for a conventional propulsion system.

  17. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems.

    PubMed

    Stenz, Ulrich; Hartmann, Jens; Paffenholz, Jens-André; Neumann, Ingo

    2017-08-16

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less.

  18. Influence of Solid Target Reflectivity and Incident Angle on Depolarization Ratio and Reflected Energy from Polarized Lights: Experimental Results of the May 2008 Field Trial

    DTIC Science & Technology

    2009-11-01

    enviromental targets . . . . . . . . . . . . 45 Figure 25: Relative reectivity of environmental targets . . . . . . . . . . . . 46 Figure 26: Relationship...Environmental targets and position of the center . . . . . . . . . . 41 Table 11: Depolarization ratio of enviromental targets...42 Table 12: Relative reectivity results of enviromental targets . . . . . . . . . 42 Table 13: Sand papers and position of the center

  19. Subarray-based FDA radar to counteract deceptive ECM signals

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed; Wang, Wen-Qin; Yuan, Zhao; Mohamed, Suhad; Bin, Tang

    2016-12-01

    In recent years, the frequency diverse array (FDA) radar concept has attracted extensive attention, as it may benefit from a small frequency increment, compared to the carrier frequency across the array elements and thereby achieve an array factor that is a function of the angle, the time, and the range which is superior to the conventional phase array radar (PAR). However, limited effort on the subject of FDA in electronic countermeasure scenarios, especially in the presence of mainbeam deceptive jamming, has been published. Basic FDA is not desirable for anti-jamming applications, due to the range-angle coupling response of targets. In this paper, a novel method based on subarrayed FDA signal processing is proposed to counteract deceptive ECM signals. We divide the FDA array into multiple subarrays, each of which employs a distinct frequency increment. As a result, in the subarray-based FDA, the desired target can be distinguished at subarray level in joint range-angle-Doppler domain by utilizing the fact that the jammer generates false targets with the same ranges to each subarray without reparations. The performance assessment shows that the proposed solution is effective for deceptive ECM targets suppression. The effectiveness is verified by simulation results.

  20. Space-based infrared scanning sensor LOS determination and calibration using star observation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Zhan; An, Wei; Deng, Xin-Pu; Yang, Jun-Gang

    2015-10-01

    This paper provides a novel methodology for removing sensor bias from a space based infrared (IR) system (SBIRS) through the use of stars detected in the background field of the sensor. Space based IR system uses the LOS (line of sight) of target for target location. LOS determination and calibration is the key precondition of accurate location and tracking of targets in Space based IR system and the LOS calibration of scanning sensor is one of the difficulties. The subsequent changes of sensor bias are not been taking into account in the conventional LOS determination and calibration process. Based on the analysis of the imaging process of scanning sensor, a theoretical model based on the estimation of bias angles using star observation is proposed. By establishing the process model of the bias angles and the observation model of stars, using an extended Kalman filter (EKF) to estimate the bias angles, and then calibrating the sensor LOS. Time domain simulations results indicate that the proposed method has a high precision and smooth performance for sensor LOS determination and calibration. The timeliness and precision of target tracking process in the space based infrared (IR) tracking system could be met with the proposed algorithm.

  1. Xi0 and anti-Xi0 Polarization Measurements at 800-GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abouzaid, E.; Alavi-Harati, A.; Alexopoulos, T.

    The polarization of {Xi}{sup 0} and {bar {Xi}}{sup 0} hyperons produced by 800 GeV/c protons on a BeO target at a fixed targeting angle of 4.8 mrad is measured by the KTeV experiment at Fermilab. The result of 9.7% for {Xi}{sup 0} polarization shows no significant energy dependence when compared to a result obtained at 400 GeV/c production energy and at twice the targeting angle. The polarization of the {Xi}{sup 0} is measured for the first time and found to be consistent with zero. They also examine the dependence of polarization on production p{sub t}.

  2. Morphology parameters for intracranial aneurysm rupture risk assessment.

    PubMed

    Dhar, Sujan; Tremmel, Markus; Mocco, J; Kim, Minsuok; Yamamoto, Junichi; Siddiqui, Adnan H; Hopkins, L Nelson; Meng, Hui

    2008-08-01

    The aim of this study is to identify image-based morphological parameters that correlate with human intracranial aneurysm (IA) rupture. For 45 patients with terminal or sidewall saccular IAs (25 unruptured, 20 ruptured), three-dimensional geometries were evaluated for a range of morphological parameters. In addition to five previously studied parameters (aspect ratio, aneurysm size, ellipticity index, nonsphericity index, and undulation index), we defined three novel parameters incorporating the parent vessel geometry (vessel angle, aneurysm [inclination] angle, and [aneurysm-to-vessel] size ratio) and explored their correlation with aneurysm rupture. Parameters were analyzed with a two-tailed independent Student's t test for significance; significant parameters (P < 0.05) were further examined by multivariate logistic regression analysis. Additionally, receiver operating characteristic analyses were performed on each parameter. Statistically significant differences were found between mean values in ruptured and unruptured groups for size ratio, undulation index, nonsphericity index, ellipticity index, aneurysm angle, and aspect ratio. Logistic regression analysis further revealed that size ratio (odds ratio, 1.41; 95% confidence interval, 1.03-1.92) and undulation index (odds ratio, 1.51; 95% confidence interval, 1.08-2.11) had the strongest independent correlation with ruptured IA. From the receiver operating characteristic analysis, size ratio and aneurysm angle had the highest area under the curve values of 0.83 and 0.85, respectively. Size ratio and aneurysm angle are promising new morphological metrics for IA rupture risk assessment. Because these parameters account for vessel geometry, they may bridge the gap between morphological studies and more qualitative location-based studies.

  3. Investigation of the Characteristics of a High-Aspect-Ratio Wing in the Langley 8-Foot High-Speed Tunnel

    NASA Technical Reports Server (NTRS)

    Whitcomb, Richard T.

    1940-01-01

    An investigation of the characteristics of a wing with an aspect ratio of 9.0 and an NACA 65-210 airfoil section has been made at Mach number up to 0.925. The wing tested has a taper ratio of 2.5:1.0, no twist, dihedral, or sweepback, and 20-percent - chord 37.5-percent-semispan plain ailerons. The results showed that serious changes in the normal-force characteristics occurred when the Mach number was increased above 0.74 at angles of attack between 4 deg. and 10 deg. and above 0.80 at 0 deg. angle of attack.Because of small outboard shifts in the lateral center of load, the bending moment at the root for conditions corresponding to a 3g pull-out at an altitude of 35,000 feet increased by approximately 5% when the Much number was increased beyond 0.83 the negative pitching moments for the high angles of attack increased, whereas those for the low angles of attack decreased with a resulting large increase in the negative slope of the pitching-moment curves. A large increase occurred in the values of the drag coefficients for the range of lift coefficients needed for level flight at an altitude of 35,000 feet when the Mach number was increased beyond a value of 0.80. The wakes at a station 2.82 root chords behind the wing quarter-chord line extended approximately a chord above the wing chord line for the angles of attack required to recover from high-speed dives at high Mach numbers.

  4. Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.

    2013-01-01

    Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.

  5. Aspect-object alignment with Integer Linear Programming in opinion mining.

    PubMed

    Zhao, Yanyan; Qin, Bing; Liu, Ting; Yang, Wei

    2015-01-01

    Target extraction is an important task in opinion mining. In this task, a complete target consists of an aspect and its corresponding object. However, previous work has always simply regarded the aspect as the target itself and has ignored the important "object" element. Thus, these studies have addressed incomplete targets, which are of limited use for practical applications. This paper proposes a novel and important sentiment analysis task, termed aspect-object alignment, to solve the "object neglect" problem. The objective of this task is to obtain the correct corresponding object for each aspect. We design a two-step framework for this task. We first provide an aspect-object alignment classifier that incorporates three sets of features, namely, the basic, relational, and special target features. However, the objects that are assigned to aspects in a sentence often contradict each other and possess many complicated features that are difficult to incorporate into a classifier. To resolve these conflicts, we impose two types of constraints in the second step: intra-sentence constraints and inter-sentence constraints. These constraints are encoded as linear formulations, and Integer Linear Programming (ILP) is used as an inference procedure to obtain a final global decision that is consistent with the constraints. Experiments on a corpus in the camera domain demonstrate that the three feature sets used in the aspect-object alignment classifier are effective in improving its performance. Moreover, the classifier with ILP inference performs better than the classifier without it, thereby illustrating that the two types of constraints that we impose are beneficial.

  6. Etching of Silicon in HBr Plasmas for High Aspect Ratio Features

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Meyyappan, M.; Mathad, G. S.; Ranade, R.

    2002-01-01

    Etching in semiconductor processing typically involves using halides because of the relatively fast rates. Bromine containing plasmas can generate high aspect ratio trenches, desirable for DRAM and MEMS applications, with relatively straight sidewalk We present scanning electron microscope images for silicon-etched trenches in a HBr plasma. Using a feature profile simulation, we show that the removal yield parameter, or number of neutrals removed per incident ion due to all processes (sputtering, spontaneous desorption, etc.), dictates the profile shape. We find that the profile becomes pinched off when the removal yield is a constant, with a maximum aspect ratio (AR) of about 5 to 1 (depth to height). When the removal yield decreases with increasing ion angle, the etch rate increases at the comers and the trench bottom broadens. The profiles have ARs of over 9:1 for yields that vary with ion angle. To match the experimentally observed etched time of 250 s for an AR of 9:1 with a trench width of 0.135 microns, we find that the neutral flux must be 3.336 x 10(exp 17)sq cm/s.

  7. Selective recruitment of the triceps surae muscles with changes in knee angle.

    PubMed

    Signorile, Joseph F; Applegate, Brooks; Duque, Maurice; Cole, Natalie; Zink, Attila

    2002-08-01

    The muscles of the triceps surae group are important for performance in most sports and in the performance of activities of daily life. In addition, hypertrophy and balance among these muscles are integral to success in bodybuilding. The purpose of this study was to compare the muscle utilization patterns of the 2 major muscles of the triceps surae group, the soleus (SOL) and gastrocnemius (lateral head = LG and medial head = MG), and the tibialis anterior (TA) as an antagonist muscle to the group. Their electromyographic (EMG) signals were compared during 50 constant external resistance contractions at a level established before the testing session. Eleven experienced subjects contributed data during plantar flexion at 3 different knee angles (90, 135, and 180 degrees ). Both root mean square amplitude and integrated signal analyses of the EMGs revealed that the MG produced significantly greater activity than either the SOL or TA at 180 degrees, whereas the LG was not different from the SOL at any knee angle measured. Data also revealed that the SOL produced less electrical activity at 180 degrees than at the other knee angles, whereas the MG produced greater electrical activity. As would be expected, the TA produced lower EMG values than any of the triceps surae muscles at all angles tested. These data indicate that selective targeting of the SOL and MG is possible through the manipulation of knee angle. This targeting appears to be controlled by the biarticular and monoarticular structures of the MG and SOL, respectively. The LG appears less affected by knee position than the MG. Results suggest that the SOL can be targeted most effectively with the knee flexed at 90 degrees and the MG with the leg fully extended. The LG appears to also be more active at 180 degrees; however, it is not as affected as the MG or SOL by knee angle.

  8. Measurement of the photoneutron flux density distribution from cylindrical targets

    NASA Astrophysics Data System (ADS)

    Golovkov, V. M.; Basina, T. N.; Yakovlev, M. R.

    1989-09-01

    Measurements are performed of the density of photoneutron fluxes from cylindrical targets of2H2O (diameter 64 and height 86 mm), Be (outer diameter 70, inner diameter 40, height 100mm), and238U (diameter 44.5 mm, height 50 mm) under the action of braking radiation from electrons with energies of 4 to 8 MeV in order to determine the effect of target form and orientation relative to the detector upon the recorded photoneutron level. The fluxes were measured by an “all-wave” neutron detector based on an SNM-11 counter in a paraffin retarder at an angle of 90‡ to the axis of the braking radiation beam for various target orientations relative to the detector. Measurement results are compared to calculations. Photoneutron fluxes from heavy water and beryllium targets of the indicated dimensions were also measured for angles of 90, 135, and 167‡. An isotropic nature was noted in the photoneutron fluxes from both targets.

  9. Sliding mode control based impact angle control guidance considering the seeker׳s field-of-view constraint.

    PubMed

    Wang, Xingliang; Zhang, Youan; Wu, Huali

    2016-03-01

    The problem of impact angle control guidance for a field-of-view constrained missile against non-maneuvering or maneuvering targets is solved by using the sliding mode control theory. The existing impact angle control guidance laws with field-of-view constraint are only applicable against stationary targets and most of them suffer abrupt-jumping of guidance command due to the application of additional guidance mode switching logic. In this paper, the field-of-view constraint is handled without using any additional switching logic. In particular, a novel time-varying sliding surface is first designed to achieve zero miss distance and zero impact angle error without violating the field-of-view constraint during the sliding mode phase. Then a control integral barrier Lyapunov function is used to design the reaching law so that the sliding mode can be reached within finite time and the field-of-view constraint is not violated during the reaching phase as well. A nonlinear extended state observer is constructed to estimate the disturbance caused by unknown target maneuver, and the undesirable chattering is alleviated effectively by using the estimation as a compensation item in the guidance law. The performance of the proposed guidance law is illustrated with simulations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Investigation of an optical sensor for small tilt angle detection of a precision linear stage

    NASA Astrophysics Data System (ADS)

    Saito, Yusuke; Arai, Yoshikazu; Gao, Wei

    2010-05-01

    This paper presents evaluation results of the characteristics of the angle sensor based on the laser autocollimation method for small tilt angle detection of a precision linear stage. The sensor consists of a laser diode (LD) as the light source, and a quadrant photodiode (QPD) as the position-sensing detector. A small plane mirror is mounted on the moving table of the stage as a target mirror for the sensor. This optical system has advantages of high sensitivity, fast response speed and the ability for two-axis angle detection. On the other hand, the sensitivity of the sensor is determined by the size of the optical spot focused on the QPD, which is a function of the diameter of the laser beam projected onto the target mirror. Because the diameter is influenced by the divergence of the laser beam, this paper focuses on the relationship between the sensor sensitivity and the moving position of the target mirror (sensor working distance) over the moving stroke of the stage. The main error components that influence the sensor sensitivity are discussed and the optimal conditions of the optical system of the sensor are analyzed. The experimental result about evaluation of the effective working distance is also presented.

  11. Multi-crease Self-folding by Global Heating.

    PubMed

    Miyashita, Shuhei; Onal, Cagdas D; Rus, Daniela

    2015-01-01

    This study demonstrates a new approach to autonomous folding for the body of a 3D robot from a 2D sheet, using heat. We approach this challenge by folding a 0.27-mm sheetlike material into a structure. We utilize the thermal deformation of a contractive sheet sandwiched by rigid structural layers. During this baking process, the heat applied on the entire sheet induces contraction of the contracting layer and thus forms an instructed bend in the sheet. To attain the targeted folding angles, the V-fold spans method is used. The targeted angle θout can be kinematically encoded into crease geometry. The realization of this angle in the folded structure can be approximately controlled by a contraction angle θin. The process is non-reversible, is reliable, and is relatively fast. Our method can be applied simultaneously to all the folds in multi-crease origami structures. We demonstrate the use of this method to create a lightweight mobile robot.

  12. New developments of a knowledge based system (VEG) for inferring vegetation characteristics

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Harrison, P. A.; Harrison, P. R.

    1992-01-01

    An extraction technique for inferring physical and biological surface properties of vegetation using nadir and/or directional reflectance data as input has been developed. A knowledge-based system (VEG) accepts spectral data of an unknown target as input, determines the best strategy for inferring the desired vegetation characteristic, applies the strategy to the target data, and provides a rigorous estimate of the accuracy of the inference. Progress in developing the system is presented. VEG combines methods from remote sensing and artificial intelligence, and integrates input spectral measurements with diverse knowledge bases. VEG has been developed to (1) infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; (2) test and develop new extraction techniques on an internal spectral database; (3) browse, plot, or analyze directional reflectance data in the system's spectral database; (4) discriminate between user-defined vegetation classes using spectral and directional reflectance relationships; and (5) infer unknown view angles from known view angles (known as view angle extension).

  13. Experimental study on impact disruption of porous asteroids: Effects of oblique impact and multiple collisions on impact strength

    NASA Astrophysics Data System (ADS)

    Yasui, Minami; Takano, Shota; Matsue, Kazuma; Arakawa, Masahiko

    2015-08-01

    Most of asteroids would have pores and a plenty of pre-cracks in their interiors, and the pre-cracks could be formed by multiple impacts at various impact angles. Porosity and pre-cracks are important physical properties controlling the impact strength. Okamoto and Arakawa (2009) did impact experiments of porous gypsum spheres to obtain the impact strength of porous asteroids, but they carried out only single impact experiments on the same target at head-on. In this study, we conducted oblique impact and multiple impacts on porous gypsum and examined the effects of impact angle and pre-cracks on the impact strength.We carried out impact experiments by using the one-stage He gas gun and the two-stage H2 gas gun at Kobe University. The impact velocities were <200 m/s (low-vi) and >3 km/s (high-vi). Targets were porous gypsum spheres with the porosity of 55% and the diameters of 7 or 12 cm. The projectiles were a porous gypsum sphere with the diameter of 2.5 cm at low-vi or a polycarbonate sphere with the diameter of 4.7 cm at high-vi. The impact angle changed from 15° to 90°, and the projectile was impacted on the same target for 2-15 times. The impact phenomena were observed by a high-speed digital video camera to measure the fragment velocities.The oblique impact experiments showed that the impact strength did not depend on the impact angle θ between 45° and 90°, and obtained to be ~2000 J/kg, while it drastically changed at the θ from 15° to 30°. We reanalyzed our results by using the effective energy density defined as Qsin2θ, where Q is the energy density, and found that most of the results were consistent with the results of head-on impacts. The multiple impacts showed that the impact strength of pre-impacted targets was larger than that of intact targets in the case of low-vi. This might be caused by the compaction of the target surface. In the case of high-vi, the impact strength of pre-impacted targets was smaller than that of intact targets. This is because many cracks were generated in the target by the strong shock pressure propagating through the entire target.

  14. Kozai-Lidov disc instability

    NASA Astrophysics Data System (ADS)

    Lubow, Stephen H.; Ogilvie, Gordon I.

    2017-08-01

    Recent results by Martin et al. showed in 3D smoothed particle hydrodynamics simulations that tilted discs in binary systems can be unstable to the development of global, damped Kozai-Lidov (KL) oscillations in which the discs exchange tilt for eccentricity. We investigate the linear stability of KL modes for tilted inviscid discs under the approximations that the disc eccentricity is small and the disc remains flat. By using 1D equations, we are able to probe regimes of large ratios of outer to inner disc edge radii that are realistic for binary systems of hundreds of astronomical unit separations and are not easily probed by multidimensional simulations. For order unity binary mass ratios, KL instability is possible for a window of disc aspect ratios H/r in the outer parts of a disc that roughly scale as (nb/n)2 ≲ H/r ≲ nb/n, for binary orbital frequency nb and orbital frequency n at the disc outer edge. We present a framework for understanding the zones of instability based on the determination of branches of marginally unstable modes. In general, multiple growing eccentric KL modes can be present in a disc. Coplanar apsidal-nodal precession resonances delineate instability branches. We determine the range of tilt angles for unstable modes as a function of disc aspect ratio. Unlike the KL instability for free particles that involves a critical (minimum) tilt angle, disc instability is possible for any non-zero tilt angle depending on the disc aspect ratio.

  15. Simultaneous Multi-angle Observations of Strong Langmuir Turbulence at HAARP

    NASA Astrophysics Data System (ADS)

    Watanabe, Naomi; Golkowski, Mark; Sheerin, James P.; Watkins, Brenton J.

    2015-10-01

    We report results from a recent series of experiments employing the HF transmitter of the High Frequency Active Auroral Research Program (HAARP) to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. The Modular UHF Ionospheric Radar (MUIR) located at the HAARP facility is used as the primary diagnostic. Short pulse, low duty cycle experiments are used to avoid generation of artificial field-aligned irregularities and isolate ponderomotive plasma turbulence effects. The HF pump frequency is close to the 3rd gyro-harmonic frequency and the HF pointing angle and MUIR look angle are between the HF Spitze angle and Magnetic Zenith angle. Plasma line spectra measured simultaneously in different spots of the interaction region display differences dependent on the aspect angle of the HF pump beam in the boresight direction and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Lines, cascade, collapse, coexistence, spectra are observed in agreement with existing theory and simulation results of Strong Langmuir Turbulence in ionospheric interaction experiments. It is found that SLT at HAARP is most readily observed at a HF pointing angle of 11° and UHF observation angle of 15°, which is consistent with the magnetic zenith effect as documented in previous works and optimal orientation of the refracted HF electric field vector.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanagawa, T.; Sakagami, H.; Nagatomo, H.

    In inertial confinement fusion, the implosion process is important in forming a high-density plasma core. In the case of a fast ignition scheme using a cone-guided target, the fuel target is imploded with a cone inserted. This scheme is advantageous for efficiently heating the imploded fuel core; however, asymmetric implosion is essentially inevitable. Moreover, the effect of cone position and opening angle on implosion also becomes critical. Focusing on these problems, the effect of the asymmetric implosion, the initial position, and the opening angle on the compression rate of the fuel is investigated using a three-dimensional pure hydrodynamic code.

  17. Multi-Objective Optimization of Spacecraft Trajectories for Small-Body Coverage Missions

    NASA Technical Reports Server (NTRS)

    Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren

    2017-01-01

    Visual coverage of surface elements of a small-body object requires multiple images to be taken that meet many requirements on their viewing angles, illumination angles, times of day, and combinations thereof. Designing trajectories capable of maximizing total possible coverage may not be useful since the image target sequence and the feasibility of said sequence given the rotation-rate limitations of the spacecraft are not taken into account. This work presents a means of optimizing, in a multi-objective manner, surface target sequences that account for such limitations.

  18. Enhancing DInSAR capabilities for landslide monitoring by applying GIS-based multicriteria filtering analysis

    NASA Astrophysics Data System (ADS)

    Beyene, F.; Knospe, S.; Busch, W.

    2015-04-01

    Landslide detection and monitoring remain difficult with conventional differential radar interferometry (DInSAR) because most pixels of radar interferograms around landslides are affected by different error sources. These are mainly related to the nature of high radar viewing angles and related spatial distortions (such as overlays and shadows), temporal decorrelations owing to vegetation cover, and speed and direction of target sliding masses. On the other hand, GIS can be used to integrate spatial datasets obtained from many sources (including radar and non-radar sources). In this paper, a GRID data model is proposed to integrate deformation data derived from DInSAR processing with other radar origin data (coherence, layover and shadow, slope and aspect, local incidence angle) and external datasets collected from field study of landslide sites and other sources (geology, geomorphology, hydrology). After coordinate transformation and merging of data, candidate landslide representing pixels of high quality radar signals were filtered out by applying a GIS based multicriteria filtering analysis (GIS-MCFA), which excludes grid points in areas of shadow and overlay, low coherence, non-detectable and non-landslide deformations, and other possible sources of errors from the DInSAR data processing. At the end, the results obtained from GIS-MCFA have been verified by using the external datasets (existing landslide sites collected from fieldworks, geological and geomorphologic maps, rainfall data etc.).

  19. Target material dependence of positron generation from high intensity laser-matter interactions

    DOE PAGES

    Williams, G. J.; Barnak, D.; Fiksel, G.; ...

    2016-12-06

    Here, the effective scaling of positron-electron pair production by direct, ultraintense laser-matter interaction is investigated for a range of target materials and thicknesses. An axial magnetic field, acting as a focusing lens, was employed to measure positron signals for targets with atomic numbers as low as copper (Z – 29). The pair production yield was found to be consistent with the Bethe-Heitler mechanism, where the number of positrons emitted into a 1 steradian cone angle from the target rear was found to be proportional to Z 2. The unexpectedly low scaling results from Coulomb collisions that act to stop ormore » scatter positrons into high angles. Monte Carlo simulations support the experimental results, providing a comprehensive power-law scaling relationship for all elemental materials and densities.« less

  20. Modeling peripheral vision for moving target search and detection.

    PubMed

    Yang, Ji Hyun; Huston, Jesse; Day, Michael; Balogh, Imre

    2012-06-01

    Most target search and detection models focus on foveal vision. In reality, peripheral vision plays a significant role, especially in detecting moving objects. There were 23 subjects who participated in experiments simulating target detection tasks in urban and rural environments while their gaze parameters were tracked. Button responses associated with foveal object and peripheral object (PO) detection and recognition were recorded. In an urban scenario, pedestrians appearing in the periphery holding guns were threats and pedestrians with empty hands were non-threats. In a rural scenario, non-U.S. unmanned aerial vehicles (UAVs) were considered threats and U.S. UAVs non-threats. On average, subjects missed detecting 2.48 POs among 50 POs in the urban scenario and 5.39 POs in the rural scenario. Both saccade reaction time and button reaction time can be predicted by peripheral angle and entrance speed of POs. Fast moving objects were detected faster than slower objects and POs appearing at wider angles took longer to detect than those closer to the gaze center. A second-order mixed-effect model was applied to provide each subject's prediction model for peripheral target detection performance as a function of eccentricity angle and speed. About half the subjects used active search patterns while the other half used passive search patterns. An interactive 3-D visualization tool was developed to provide a representation of macro-scale head and gaze movement in the search and target detection task. An experimentally validated stochastic model of peripheral vision in realistic target detection scenarios was developed.

  1. Finite Forward Acceptance Angles for Single Electron Capture by ^3He^2+ Ions in He and H_2

    NASA Astrophysics Data System (ADS)

    Mawhorter, Rj; Greenwood, J.; Smith; Chutjian, A.

    2004-05-01

    Perhaps surprisingly, electron capture scattering angles of a few degrees or more are observed for slow ions impacting light targets. Gas cells must be designed with this in mind. Indeed the difference between small acceptance angle results(W.L. Nutt, et al., J. Phys. B 8), 1457 (1978) and the larger acceptance-angle studies of both Kusakabe, et al.(T. Kusakabe, et al., J. Phys. Soc. Japan 59), 1218 (1990) and our group at JPL (presented here; energy range 0.33-4.67 keV/amu) for ^3He^2+ in H2 can be ascribed to this effect. Olson and Kimura(R. E. Olson and M. Kimura, J. Phys. B 15), 4231 (1982) have modeled the problem theoretically. We use existing differential cross section data(D. Bordenave-Montesquieu and R. Dagnac, J. Phys. B 27), 543 1994) for both H_2/ D2 and ^4He targets to calculate realistic acceptance angles. The resulting small total cross section corrections provide reliable absolute results for these benchmark systems. This work was carried out at JPL/Caltech, and was supported through agreement with NASA.

  2. The evidential value of distorted and rectified digital images in footwear imprint examination.

    PubMed

    Shor, Yaron; Chaikovsky, Alan; Tsach, Tsadok

    2006-06-27

    The procedure for forensic photography requires that the film plane be parallel to the taken image. Another procedure must be used when the print is located on reflecting surfaces such as vehicles, or faint marks on porous surfaces. Examination was made of the evidential value of footprint images received from the scene or taken deliberately at an angle out of proper perspective (i.e., the lens axis is not perpendicular to the target plane). An artificial target was prepared and photographed from several lens axis angles ranging from 10 degrees to 85 degrees to the perpendicular, and then rectified using the Adobe Photoshop Version 7.0. It was found that at angles less than 40 degrees , the shape and location of all the individual characteristics were similar enough in comparison to the original image. In images taken at higher angles, the original image could not be adequately restored. The full potential of this image, therefore, could not be achieved after rectification. The results of this study show that the images of a footprint taken at an angle less than 40 degrees , preserve the evidential value of the unique characteristics.

  3. Algorithm for Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar Gradiometer

    DTIC Science & Technology

    2016-06-01

    TECHNICAL REPORT Algorithm for Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar...Automatic Detection, Localization and Characterization of Magnetic Dipole Targets Using the Laser Scalar Gradiometer Leon Vaizer, Jesse Angle, Neil...of Magnetic Dipole Targets Using LSG i June 2016 TABLE OF CONTENTS INTRODUCTION

  4. Bistatic scattering from submerged unexploded ordnance lying on a sediment.

    PubMed

    Bucaro, J A; Simpson, H; Kraus, L; Dragonette, L R; Yoder, T; Houston, B H

    2009-11-01

    The broadband bistatic target strengths (TSs) of two submerged unexploded ordnance (UXO) targets have been measured in the NRL sediment pool facility. The targets-a 5 in. rocket and a 155 mm projectile-were among the targets whose monostatic TSs were measured and reported previously by the authors. Bistatic TS measurements were made for 0 degrees (target front) and 90 degrees (target side) incident source directions, and include both backscattered and forward scattered echo angles over a complete 360 degrees with the targets placed proud of the sediment surface. For the two source angles used, each target exhibits two strong highlights: a backscattered specular-like echo and a forward scattered response. The TS levels of the former are shown to agree reasonably well with predictions, based on scattering from rigid disks and cylinders, while the levels of the latter with predictions from radar cross section models, based on simple geometric optics appropriately modified. The bistatic TS levels observed for the proud case provide comparable or higher levels of broadband TS relative to free-field monostatic measurements. It is concluded that access to bistatic echo information in operations aimed at detecting submerged UXO targets could provide an important capability.

  5. Improvements in dose calculation accuracy for small off-axis targets in high dose per fraction tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardcastle, Nicholas; Bayliss, Adam; Wong, Jeannie Hsiu Ding

    2012-08-15

    Purpose: A recent field safety notice from TomoTherapy detailed the underdosing of small, off-axis targets when receiving high doses per fraction. This is due to angular undersampling in the dose calculation gantry angles. This study evaluates a correction method to reduce the underdosing, to be implemented in the current version (v4.1) of the TomoTherapy treatment planning software. Methods: The correction method, termed 'Super Sampling' involved the tripling of the number of gantry angles from which the dose is calculated during optimization and dose calculation. Radiochromic film was used to measure the dose to small targets at various off-axis distances receivingmore » a minimum of 21 Gy in one fraction. Measurements were also performed for single small targets at the center of the Lucy phantom, using radiochromic film and the dose magnifying glass (DMG). Results: Without super sampling, the peak dose deficit increased from 0% to 18% for a 10 mm target and 0% to 30% for a 5 mm target as off-axis target distances increased from 0 to 16.5 cm. When super sampling was turned on, the dose deficit trend was removed and all peak doses were within 5% of the planned dose. For measurements in the Lucy phantom at 9.7 cm off-axis, the positional and dose magnitude accuracy using super sampling was verified using radiochromic film and the DMG. Conclusions: A correction method implemented in the TomoTherapy treatment planning system which triples the angular sampling of the gantry angles used during optimization and dose calculation removes the underdosing for targets as small as 5 mm diameter, up to 16.5 cm off-axis receiving up to 21 Gy.« less

  6. A numerical analysis of the British Experimental Rotor Program blade

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.

    1989-01-01

    Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.

  7. Fractional-order information in the visual control of lateral locomotor interception.

    PubMed

    Bootsma, Reinoud J; Ledouit, Simon; Casanova, Remy; Zaal, Frank T J M

    2016-04-01

    Previous work on locomotor interception of a target moving in the transverse plane has suggested that interception is achieved by maintaining the target's bearing angle (often inadvertently confused and/or confounded with the target heading angle) at a constant value. However, dynamics-based model simulations testing the veracity of the underlying control strategy of nulling the rate of change in the bearing angle have been restricted to limited conditions of target motion, and only a few alternatives have been considered. Exploring a wide range of target motion characteristics with straight and curving ball trajectories in a virtual reality setting, we examined how soccer goalkeepers moved along the goal line to intercept long-range shots on goal, a situation in which interception is naturally constrained to movement along a single dimension. Analyses of the movement patterns suggested reliance on combinations of optical position and velocity for straight trajectories and optical velocity and acceleration for curving trajectories. As an alternative to combining such standard integer-order derivatives, we demonstrate with a simple dynamical model that nulling a single informational variable of a self-tuned fractional (rather than integer) order efficiently captures the timing and patterning of the observed interception behaviors. This new perspective could fundamentally change the conception of what perceptual systems may actually provide, both in humans and in other animals. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Flight Tests of A 1/8-Scale Model of the Bell D-188A Jet VTOL Airplane

    NASA Technical Reports Server (NTRS)

    Smith, Charles C., Jr.

    1959-01-01

    The Bell D-188A VTOL airplane is a horizontal-attitude VTOL fighter with tilting engine nacelles at the tips of a low-aspect-ratio unswept wing and additional engines in the fuselage. The model could be flown smoothly in hovering and transition flight. In forward flight the model could be flown smoothly at the lower angles of attack but experienced an uncontrollable directional divergence at angles of attack above about 16 deg.

  9. Effects of afterbody boattail design and empennage arrangement on aeropropulsive characteristics of a twin-engine fighter model at transonic speeds

    NASA Technical Reports Server (NTRS)

    Bangert, Linda S.; Leavitt, Laurence D.; Reubush, David E.

    1987-01-01

    The effects of empennage arrangement and afterbody boattail design of nonaxisymmetric nozzles on the aeropropulsive characteristics of a twin-engine fighter-type model have been determined in an investigation conducted in the Langley 16-Foot Transonic Tunnel. Three nonaxisymmetric and one twin axisymmetric convergent-divergent nozzle configurations were tested with three different tail arrangements: a two-tail V-shaped arrangement; a staggered, conventional three-tail arrangement; and a four-tail arrangement similar to that on the F-18. Two of the nonaxisymmetric nozzles were also vectorable. Tests were conducted at Mach numbers from 0.60 to 1.20 over an angle-of-attack range from -3 deg to 9 deg. Nozzle pressure ratio was varied from 1 (jet off) to approximately 12, depending on Mach number. Results indicate that at design nozzle pressure ratio, the medium aspect ratio nozzle (with equal boattail angles on the nozzle sidewalls and upper and lower flaps) had the lowest zero angle of attack drag of the nonaxisymmetric nozzles for all tail configurations at subsonic Mach numbers. The drag levels of the twin axisymmetric nozzles were competitive with those of the medium-aspect-ratio nozzle at subsonic Mach number.

  10. FIREX mission requirements document for nonrenewable resources

    NASA Technical Reports Server (NTRS)

    Dixon, T.; Carsey, F.

    1982-01-01

    The proposed mission requirements and a proposed experimental program for satellite synthetic aperture radar (SAR) system named FIREX (Free-Flying Imaging Radar Experiment) for nonrenewable resources is described. The recommended spacecraft minimum SAR system is a C-band imager operating in four modes: (1) low look angle HH-polarized; (2) intermediate look angle, HH-polarized; (3) intermediate look angle, IIV-polarized; and (4) high look angle HH-polarized. This SAR system is complementary to other future spaceborne imagers such as the Thematic Mapper on LANDSAT-D. A near term aircraft SAR based research program is outlined which addresses specific mission design issues such as preferred incidence angles or polarizations for geologic targets of interest.

  11. Enhancing the reproducibility of ocular vestibular evoked myogenic potentials by use of a visual target originating from a head-mounted laser.

    PubMed

    Jerin, Claudia; Bartl, Klaus; Schneider, Erich; Gürkov, Robert

    2015-10-01

    Ocular vestibular evoked myogenic potentials (oVEMPs) represent extraocular muscle activity in response to vestibular stimulation. oVEMP amplitudes are known to increase with increasing upward gaze angle, while the patient fixates a visual target. We investigated two different methods of presenting a visual target during oVEMP recordings. 57 healthy subjects were enrolled in this study. oVEMPs were elicited by 500 Hz air-conducted tone bursts while the subjects were looking upward at a marking which was either fixed on the wall or originated from a head-mounted laser attached to a headband, in either case corresponding to a 35° upward gaze angle. oVEMP amplitudes and latencies did not differ between the subjects looking at the fixed marking and the ones looking at the laser marking. The intra-individual standard deviation of amplitudes obtained by two separate measurements for each subject, however, as a measure of test-retest reliability, was significantly smaller for the laser headband group (0.60) in comparison to the group looking at the fixed marking (0.96; p = 0.007). The intraclass correlation coefficient revealed better test-retest reliability for oVEMP amplitudes when using the laser headband (0.957) than using the fixed marking (0.908). Hence, the use of a visual target originating from a headband enhances the reproducibility of oVEMPs. This might be due to the fact that the laser headband ensures a constant gaze angle and rules out the influence of small involuntary head movements on the gaze angle.

  12. A Guide for Estimation of Aeroacoustic Loads on Flight Vehicle Surfaces

    DTIC Science & Technology

    1977-02-01

    Nozzle aspect ratio correction of one-third octave band sound pressure levels of USB noise . 122 31. Impingement angle correction of one-third octave...breech weapons ....................... 175 IX •: •-•,..i .•,z. •... LIST OF FIGURES (Cont.) page Figure 61. Rectangular cavity ...and a nozzle aspect ratio of 4.0, and without a deflector. Obtain the corrected one-third octave band level SPL from the baseline level, from " b

  13. Novel concept of enzyme selective nicotinamide adenine dinucleotide (NAD)-modified inhibitors based on enzyme taxonomy from the diphosphate conformation of NAD.

    PubMed

    Fujii, Mikio; Kitagawa, Yasuyuki; Iida, Shui; Kato, Keisuke; Ono, Machiko

    2015-11-15

    The dihedral angle θ of the diphosphate part of NAD(P) were investigated to distinguish the differences in the binding-conformation of NAD(P) to enzymes and to create an enzyme taxonomy. Furthermore, new inhibitors with fixed dihedral angles showed that enzymes could recognize the differences in the dihedral angle θ. We suggest the taxonomy and the dihedral angle θ are important values for chemists to consider when designing inhibitors and drugs that target enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dependence of NOAA-AVHRR recorded radiance on scan angle, atmospheric turbidity and unresolved cloud

    NASA Technical Reports Server (NTRS)

    Piwinski, D. J.; Schoch, L. B.; Duggin, M. J.; Whitehead, V.; Ryland, E.

    1984-01-01

    Experimental evidence on the scan angle and sun angle dependence of radiance recorded by the Advanced Very High Resolution Radiometer (AVHRR) devices on the NOAA-6 and NOAA-7 satellites is presented. The effects of atmospheric turbidity at various scan angles is shown, and simulations of angular anisotropy and recorded radiance are compared with the recorded digital data from the AVHRR obtained over the Great Plains area of the US. Evidence is presented on the effects of unresolved cloud on the recorded radiance and vegetative indices from uniform, vegetative targets.

  15. Microfabrication of through holes in polydimethylsiloxane (PDMS) sheets using a laser plasma EUV source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makimura, Tetsuya; Urai, Hikari; Niino, Hiroyuki

    2017-03-01

    Polydimethylsiloxane (PDMS) is a material used for cell culture substrates / bio-chips and micro total analysis systems / lab-on-chips due to its flexibility, chemical / thermo-dynamic stability, bio-compatibility, transparency and moldability. For further development, it is inevitable to develop a technique to fabricate precise three dimensional structures on micrometer-scale at high aspect ratio. In the previous works, we reported a technique for high-quality micromachining of PDMS without chemical modification, by means of photo direct machining using laser plasma EUV sources. In the present work, we have investigated fabrication of through holes. The EUV radiations around 10 nm were generated by irradiation of Ta targets with Nd:YAG laser light (10 ns, 500 mJ/pulse). The generated EUV radiations were focused using an ellipsoidal mirror. It has a narrower incident angle than those in the previous works in order to form a EUV beam with higher directivity, so that higher aspect structures can be fabricated. The focused EUV beam was incident on PDMS sheets with a thickness of 15 micrometers, through holes in a contact mask placed on top of them. Using a contact mask with holes with a diameter of three micrometers, complete through holes with a diameter of two micrometers are fabricated in the PDMS sheet. Using a contact mask with two micrometer holes, however, ablation holes almost reaches to the back side of the PDMS sheet. The fabricated structures can be explained in terms of geometrical optics. Thus, we have developed a technique for micromachining of PDMS sheets at high aspect ratios.

  16. The Calibration of the Corneal Light Reflex to Estimate the Degree of an Angle of Deviation.

    PubMed

    Tengtrisorn, Supaporn; Tangkijwongpaisarn, Sitthi; Burachokvivat, Somporn

    2015-12-01

    To measure the conversion factor for the size of an angle of deviation from the clinical photographs of the corneal light reflex. In this cross-sectional study, 19 normal subjects with 20/20 visual acuity were photographed with a digital camera while staring at targets placed five prism diopters (PD) apart from one another on a screen. The subjects were tested at a distance of 1 meter (m) and 4 m from a screen. Measurement of the corneal light reflex displacement for each fixed target was obtained from the photographs. The calibration of the corneal light reflex displacement in millimeters (mm) against the angle of deviation in PD was then analyzed with repeated measure linear regression analysis. At 1 m, the values of 0.047 mm/PD and 0.058 mm/PD were obtained as the conversion factor from reflex displacement to deviated angle for the nasal side and temporal side respectively. At 4 m, the values were 0.050 mm/PD and 0.064 mm/PD for the nasal side and the temporal side respectively. There were significant differences between the values obtained at the different distances, regardless of nasal or temporal side. Conversion factors were presented for estimating the strabismic angle at different distances and gazes. For clinical practice, the use of photographs to estimate the strabismic angle should use different values for different distances and strabismic types.

  17. Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements

    DOEpatents

    Lee, Ching-Pang; Heneveld, Benjamin E.; Brown, Glenn E.; Klinger, Jill

    2015-05-26

    A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.

  18. The Effect of Projectile Density and Disruption on the Crater Excavation Flow-Field

    NASA Technical Reports Server (NTRS)

    Anderson, Jennifer L. B.; Schultz, P. H.

    2005-01-01

    The ejection parameters of material excavated by a growing crater directly relate to the subsurface excavation flow-field. The ejection angles and speeds define the end of subsurface material streamlines at the target surface. Differences in the subsurface flow-fields can be inferred by comparing observed ejection parameters of various impacts obtained using three-dimensional particle image velocimetry (3D PIV). The work presented here investigates the observed ejection speeds and angles of material ejected during vertical (90 impact angle) experimental impacts for a range of different projectile types. The subsurface flow-fields produced during vertical impacts are simple when compared with that of oblique impacts, affected primarily by the depth of the energy and momentum deposition of the projectile. This depth is highly controlled by the projectile/target density ratio and the disruption of the projectile (brittle vs. ductile deformation). Previous studies indicated that cratering efficiency and the crater diameter/depth ratio were affected by projectile disruption, velocity, and the projectile/target density ratio. The effect of these projectile properties on the excavation flow-field are examined by comparing different projectile materials.

  19. Beam position reconstruction for the g2p experiment in Hall A at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Pengjia; Allada, Kalyan; Allison, Trent

    2015-11-03

    Beam-line equipment was upgraded for experiment E08-027 (g2p) in Hall A at Jefferson Lab. Two beam position monitors (BPMs) were necessary to measure the beam position and angle at the target. A new BPM receiver was designed and built to handle the low beam currents (50-100 nA) used for this experiment. Two new super-harps were installed for calibrating the BPMs. In addition to the existing fast raster system, a slow raster system was installed. We found that before and during the experiment, these new devices were tested and debugged, and their performance was also evaluated. In order to achieve themore » required accuracy (1-2 mm in position and 1-2 mrad in angle at the target location), the data of the BPMs and harps were carefully analyzed, as well as reconstructing the beam position and angle event by event at the target location. Finally, the calculated beam position will be used in the data analysis to accurately determine the kinematics for each event.« less

  20. Multi-Sensor Approach for Assessing the Taiga-Tundra Boundary

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, G.; Kharuk, V. I.; Kovacs, K.

    2003-01-01

    Monitoring the dynamics of the tundra-taiga boundary is critical for our understanding of the causes and consequences of the changes in this area. Because of its inaccessibility, remote sensing data will play an important role. In this study we examined the use of several remote sensing techniques for identifying the existing tundra-taiga ecotone. These include Landsat, MISR and RADARSAT data. High-resolution IKONOS images were used for local ground truth. It was found that on Landsat ETM+ summer images, reflectance from tundra and taiga at band 4 (NIR) is similar, but different at other bands such as red, and MIR bands. When the incidence angle is small, C-band HH-pol backscattering coefficients from both tundra and taiga are relatively high. The backscattering from tundra targets decreases faster than taiga targets when the incidence angle increases, because the tundra targets look smoother than taiga. Because of the shading effect of the vegetation, the MISR data, both multi-spectral data at nadir looking and multi-angle data at red and NIR bands, clearly show the transition zone.

  1. Modelling the detachment dependence on strike point location in the small angle slot divertor (SAS) with SOLPS

    NASA Astrophysics Data System (ADS)

    Casali, Livia; Covele, Brent; Guo, Houyang

    2017-10-01

    The new Small Angle Slot (SAS) divertor in DIII-D is characterized by a shallow-angle target enclosed by a slot structure about the strike point (SP). SOLPS modelling results of SAS have demonstrated divertor closure's utility in widening the range of acceptable densities for adequate heat handling. An extensive database of runs has been built to study the detachment dependence on SP location in SAS. Density scans show that lower Te at lower upstream density occur when the SP is at the critical location in the slot. The cooling front spreads across the entire target at higher densities, in agreement with experimental Langmuir probe measurements. A localized increase of the atomic and molecular density takes place near the SP, which reduces the target incident power density and facilitates detachment at lower upstream density. Systematic scans of variables such as power, transport, and viscosity have been carried out to assess the detachment sensitivity. Therein, a positive role of the viscosity is found. This work supported by DOE Contract Number DE-FC02-04ER54698.

  2. Acoustical imaging of high-frequency elastic responses of targets

    NASA Astrophysics Data System (ADS)

    Morse, Scot F.; Hefner, Brian T.; Marston, Philip L.

    2002-05-01

    Acoustical imaging was used to investigate high-frequency elastic responses to sound of two targets in water. The backscattering of broadband bipolar acoustic pulses by a truncated cylindrical shell was recorded over a wide range of tilt angles [S. F. Morse and P. L. Marston, ``Backscattering of transients by tilted truncated cylindrical shells: time-frequency identification of ray contributions from measurements,'' J. Acoust. Soc. Am. (in press)]. This data set was used to form synthetic aperture images of the target based on the data within different angular apertures. Over a range of viewing angles, the visibility of the cylinder's closest rear corner was significantly enhanced by the meridional flexural wave contribution to the backscattering. In another experiment, the time evolution of acoustic holographic images was used to explore the response of tilted elastic circular disks to tone bursts having frequencies of 250 and 300 kHz. For different tilt angles, specific responses that enhance the backscattering were identified from the time evolution of the images [B. T. Hefner and P. L. Marston, Acoust. Res. Lett. Online 2, 55-60 (2001)]. [Work supported by ONR.

  3. Infrared detection, recognition and identification of handheld objects

    NASA Astrophysics Data System (ADS)

    Adomeit, Uwe

    2012-10-01

    A main criterion for comparison and selection of thermal imagers for military applications is their nominal range performance. This nominal range performance is calculated for a defined task and standardized target and environmental conditions. The only standardization available to date is STANAG 4347. The target defined there is based on a main battle tank in front view. Because of modified military requirements, this target is no longer up-to-date. Today, different topics of interest are of interest, especially differentiation between friend and foe and identification of humans. There is no direct way to differentiate between friend and foe in asymmetric scenarios, but one clue can be that someone is carrying a weapon. This clue can be transformed in the observer tasks detection: a person is carrying or is not carrying an object, recognition: the object is a long / medium / short range weapon or civil equipment and identification: the object can be named (e. g. AK-47, M-4, G36, RPG7, Axe, Shovel etc.). These tasks can be assessed experimentally and from the results of such an assessment, a standard target for handheld objects may be derived. For a first assessment, a human carrying 13 different handheld objects in front of his chest was recorded at four different ranges with an IR-dual-band camera. From the recorded data, a perception experiment was prepared. It was conducted with 17 observers in a 13-alternative forced choice, unlimited observation time arrangement. The results of the test together with Minimum Temperature Difference Perceived measurements of the camera and temperature difference and critical dimension derived from the recorded imagery allowed defining a first standard target according to the above tasks. This standard target consist of 2.5 / 3.5 / 5 DRI line pairs on target, 0.24 m critical size and 1 K temperature difference. The values are preliminary and have to be refined in the future. Necessary are different aspect angles, different carriage and movement.

  4. Survey of research on unsteady aerodynamic loading of delta wings

    NASA Technical Reports Server (NTRS)

    Ashley, H.; Vaneck, T.; Katz, J.; Jarrah, M. A.

    1991-01-01

    For aeronautical applications, there has been recent interest in accurately determining the aerodynamic forces and moments experienced by low-aspect-ratio wings performing transient maneuvers which go to angles of attack as high as 90 deg. Focusing on the delta planform with sharp leading edges, the paper surveys experimental and theoretical investigations dealing with the associated unsteady flow phenomena. For maximum angles above a value between 30 and 40 deg, flow details and airloads are dominated by hysteresis in the 'bursting' instability of intense vortices which emanate from the leading edge. As examples of relevant test results, force and moment histories are presented for a model series with aspect ratios 1, 1.5 and 2. Influences of key parameters are discussed, notably those which measure unsteadiness. Comparisons are given with two theories: a paneling approximation that cannot capture bursting but clarifies other unsteady influences, and a simplified estimation scheme which uses measured bursting data.

  5. [Design and Optimization of Microfluidic Chips Used for Mixing Cryoprotectants].

    PubMed

    Zhou, Xinli; Yi, Xingyue; Zhou, Nanfeng; Yang, Yun

    2016-06-01

    Microfluidic chips can be used to realize continuous cryoprotectants(CPA)loading/unloading for oocytes,reducing osmotic damage and chemical toxicity of CPA.In this study,five different Y-shape microfluidic chips were fabricated to realize the continuous CPA loading/unloading.The effects of flow rate,entrance angle,aspect ratio and turning radius of microchannels on the mixing efficiency of microfluidic chips were analyzed quantitatively.The experimental results showed that with the decrease of flow rates,the increase of aspect ratios and the decrease of turning raradius of microchannel,the mixing length decreased and the mixing velocity was promoted,while the entrance angle had little effect on the mixing efficiency.However,the operating conditions and structural parameters of the chips in practical application should be determined based on an overall consideration of CPA loading/unloading time and machining accuracy.These results would provide a reference to the application of microfluidic chip in CPA mixing.

  6. Static Longitudinal Stability and Control Characteristics of an Unswept Wing and Unswept Horizontal-Tail Configuration at Mach Numbers from 0.70 to 2.22

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Menees, Gene P.

    1959-01-01

    Results of an investigation of the static longitudinal stability and control characteristics of an aspect-ratio-3.1, unswept wing configuration equipped with an aspect-ratio-4, unswept horizontal tail are presented without analysis for the Mach number range from 0.70 to 2.22. The hinge line of the all-movable horizontal tail was in the extended wing chord plane, 1.66 wing mean aerodynamic chords behind the reference center of moments. The ratio of the area of the exposed horizontal-tail panels to the total area of the wing was 13.3 percent and the ratio of the total areas was 19.9 percent. Data are presented at angles of attack ranging"from -6 deg to +18 deg for the horizontal tail set at angles ranging from +5 deg to -20 deg and for the tail removed.

  7. Acoustic basis for recognition of aspect-dependent three-dimensional targets by an echolocating bottlenose dolphin.

    PubMed

    Helweg, D A; Au, W W; Roitblat, H L; Nachtigall, P E

    1996-04-01

    The relationships between acoustic features of target echoes and the cognitive representations of the target formed by an echolocating dolphin will influence the ease with which the dolphin can recognize a target. A blindfolded Atlantic bottlenose dolphin (Tursiops truncatus) learned to match aspect-dependent three-dimensional targets (such as a cube) at haphazard orientations, although with some difficulty. This task may have been difficult because aspect-dependent targets produce different echoes at different orientations, which required the dolphin to have some capability for object constancy across changes in echo characteristics. Significant target-related differences in echo amplitude, rms bandwidth, and distributions of interhighlight intervals were observed among echoes collected when the dolphin was performing the task. Targets could be classified using a combination of energy flux density and rms bandwidth by a linear discriminant analysis and a nearest centroid classifier. Neither statistical model could classify targets without amplitude information, but the highest accuracy required spectral information as well. This suggests that the dolphin recognized the targets using a multidimensional representation containing amplitude and spectral information and that dolphins can form stable representations of targets regardless of orientation based on varying sensory properties.

  8. Leading-edge flow reattachment and the lateral static stability of low-aspect-ratio rectangular wings

    NASA Astrophysics Data System (ADS)

    Linehan, Thomas; Mohseni, Kamran

    2017-11-01

    The relationship between lateral static stability derivative, Clβ,lift coefficient, CL, and angle of attack was investigated for rectangular wings of aspect ratio A R =0.75 ,1 ,1.5 , and 3 using Stereo-Digital Particle Image Velocimetry (S-DPIV) and direct force and moment measurements. When the product Cl βA R is plotted with respect to CL, the lateral stability curves of each wing collapse to a single line for CL<0.7 . For CL>0.7 , the linearity and scaling of Clβwith respect to CL is lost. S-DPIV is used to elucidate the flow physics in this nonlinear regime. At α =10∘ , the leading-edge separation region emerges on the leeward portion of the sideslipped wing by means of vortex shedding. For the A R ≤1.5 wings at α >15∘ , the tip vortex downwash is sufficient to restrict the shedding of leading-edge vorticity thereby sustaining the lift of the leading-edge separation region at high angles of attack. Concurrently, the windward tip vortex grows in size and strength with increasing angle of attack, displacing the leading-edge separation region further toward the leeward wing. This reorganization of lift-generating vorticity results in the initial nonlinearities between Cl β and CL at angles of attack for which CL is still increasing. At angles of attack near that of maximum lift for the A R ≤1 wings, the windward tip vortex lifts off the wing, decreasing the lateral static stability of the wing prior to lift stall. For the A R =3 wing at α >10∘ , nonlinear trends in Cl β versus CL occur due to the spanwise evolution of stalled flow.

  9. Angular Impulse and Balance Regulation During the Golf Swing.

    PubMed

    Peterson, Travis J; Wilcox, Rand R; McNitt-Gray, Jill L

    2016-08-01

    Our aim was to determine how skilled players regulate linear and angular impulse while maintaining balance during the golf swing. Eleven highly-skilled golf players performed swings with a 6-iron and driver. Components contributing to linear and angular impulse generated by the rear and target legs (resultant horizontal reaction force [RFh], RFh-angle, and moment arm) were quantified and compared across the group and within a player (α = .05). Net angular impulse generated by both the rear and target legs was greater for the driver than the 6-iron. Mechanisms used to regulate angular impulse generation between clubs varied across players and required coordination between the legs. Increases in net angular impulse with a driver involved increases in target leg RFh. Rear leg RFh-angle was maintained between clubs whereas target leg RFh became more aligned with the target line. Net linear impulse perpendicular to the target line remained near zero, preserving balance, while net linear impulse along the target line decreased in magnitude. These results indicate that the net angular impulse was regulated between clubs by coordinating force generation of the rear and target legs while sustaining balance throughout the task.

  10. Low-Energy Elastic Electron Scattering by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Zatsarinny O.; Bartschat, K.; Tayal, S. S.

    2006-01-01

    The B-spline R-matrix method is employed to investigate the low-energy elastic electron scattering by atomic oxygen. Flexible non-orthogonal sets of radial functions are used to construct the target description and to represent the scattering functions. A detailed investigation regarding the dependence of the predicted partial and total cross sections on the scattering model and the accuracy of the target description is presented. The predicted angle-integrated elastic cross sections are in good agreement with experiment, whereas significant discrepancies are found in the angle-differential elastic cross sections near the forward direction. .The near-threshold results are found to strongly depend on the treatment of inner-core short-range correlation effects in the target description, as well as on a proper account of the target polarizability. A sharp increase in the elastic cross sections below 1 eV found in some earlier calculations is judged to be an artifact of an unbalanced description of correlation in the N-electron target structure and the (N+l)-electron-collision problems.

  11. Analysis of the effect on optical equipment caused by solar position in target flight measure

    NASA Astrophysics Data System (ADS)

    Zhu, Shun-hua; Hu, Hai-bin

    2012-11-01

    Optical equipment is widely used to measure flight parameters in target flight performance test, but the equipment is sensitive to the sun's rays. In order to avoid the disadvantage of sun's rays directly shines to the optical equipment camera lens when measuring target flight parameters, the angle between observation direction and the line which connects optical equipment camera lens and the sun should be kept at a big range, The calculation method of the solar azimuth and altitude to the optical equipment at any time and at any place on the earth, the equipment observation direction model and the calculating model of angle between observation direction and the line which connects optical equipment camera lens are introduced in this article. Also, the simulation of the effect on optical equipment caused by solar position at different time, different date, different month and different target flight direction is given in this article.

  12. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations.

    PubMed

    Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F

    2017-07-01

    Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.

  13. Using a Motion Sensor-Equipped Smartphone to Facilitate CT-Guided Puncture.

    PubMed

    Hirata, Masaaki; Watanabe, Ryouhei; Koyano, Yasuhiro; Sugata, Shigenori; Takeda, Yukie; Nakamura, Seiji; Akamune, Akihisa; Tsuda, Takaharu; Mochizuki, Teruhito

    2017-04-01

    To demonstrate the use of "Smart Puncture," a smartphone application to assist conventional CT-guided puncture without CT fluoroscopy, and to describe the advantages of this application. A puncture guideline is displayed by entering the angle into the application. Regardless of the angle at which the device is being held, the motion sensor ensures that the guideline is displayed at the appropriate angle with respect to gravity. The angle of the smartphone's liquid crystal display (LCD) is also detected, preventing needle deflection from the CT slice image. Physicians can perform the puncture procedure by advancing the needle using the guideline while the smartphone is placed adjacent to the patient. In an experimental puncture test using a sponge as a target, the target was punctured at 30°, 50°, and 70° when the device was tilted to 0°, 15°, 30°, and 45°, respectively. The punctured target was then imaged with a CT scan, and the puncture error was measured. The mean puncture error in the plane parallel to the LCD was less than 2°, irrespective of device tilt. The mean puncture error in the sagittal plane was less than 3° with no device tilt. However, the mean puncture error tended to increase when the tilt was increased. This application can transform a smartphone into a valuable tool that is capable of objectively and accurately assisting CT-guided puncture procedures.

  14. Analytical impact time and angle guidance via time-varying sliding mode technique.

    PubMed

    Zhao, Yao; Sheng, Yongzhi; Liu, Xiangdong

    2016-05-01

    To concretely provide a feasible solution for homing missiles with the precise impact time and angle, this paper develops a novel guidance law, based on the nonlinear engagement dynamics. The guidance law is firstly designed with the prior assumption of a stationary target, followed by the practical extension to a moving target scenario. The time-varying sliding mode (TVSM) technique is applied to fulfill the terminal constraints, in which a specific TVSM surface is constructed with two unknown coefficients. One is tuned to meet the impact time requirement and the other one is targeted with a global sliding mode, so that the impact angle constraint as well as the zero miss distance can be satisfied. Because the proposed law possesses three guidance gain as design parameters, the intercept trajectory can be shaped according to the operational conditions and missile׳s capability. To improve the tolerance of initial heading errors and broaden the application, a new frame of reference is also introduced. Furthermore, the analytical solutions of the flight trajectory, heading angle and acceleration command can be totally expressed for the prediction and offline parameter selection by solving a first-order linear differential equation. Numerical simulation results for various scenarios validate the effectiveness of the proposed guidance law and demonstrate the accuracy of the analytic solutions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  15. An algorithm for automatic target recognition using passive radar and an EKF for estimating aircraft orientation

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.

    2005-07-01

    Rather than emitting pulses, passive radar systems rely on "illuminators of opportunity," such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, further scaling the RCS. A Rician likelihood model compares the scaled RCS of the illuminated aircraft with those of the potential targets. To improve the robustness of the result, the algorithm jointly optimizes over feasible orientation profiles and target types via dynamic programming.

  16. Impact of Footprint Diameter and Off-Nadir Pointing on the Precision of Canopy Height Estimates from Spaceborne Lidar

    NASA Technical Reports Server (NTRS)

    Pang, Yong; Lefskky, Michael; Sun, Guoqing; Ranson, Jon

    2011-01-01

    A spaceborne lidar mission could serve multiple scientific purposes including remote sensing of ecosystem structure, carbon storage, terrestrial topography and ice sheet monitoring. The measurement requirements of these different goals will require compromises in sensor design. Footprint diameters that would be larger than optimal for vegetation studies have been proposed. Some spaceborne lidar mission designs include the possibility that a lidar sensor would share a platform with another sensor, which might require off-nadir pointing at angles of up to 16 . To resolve multiple mission goals and sensor requirements, detailed knowledge of the sensitivity of sensor performance to these aspects of mission design is required. This research used a radiative transfer model to investigate the sensitivity of forest height estimates to footprint diameter, off-nadir pointing and their interaction over a range of forest canopy properties. An individual-based forest model was used to simulate stands of mixed conifer forest in the Tahoe National Forest (Northern California, USA) and stands of deciduous forests in the Bartlett Experimental Forest (New Hampshire, USA). Waveforms were simulated for stands generated by a forest succession model using footprint diameters of 20 m to 70 m. Off-nadir angles of 0 to 16 were considered for a 25 m diameter footprint diameter. Footprint diameters in the range of 25 m to 30 m were optimal for estimates of maximum forest height (R(sup 2) of 0.95 and RMSE of 3 m). As expected, the contribution of vegetation height to the vertical extent of the waveform decreased with larger footprints, while the contribution of terrain slope increased. Precision of estimates decreased with an increasing off-nadir pointing angle, but off-nadir pointing had less impact on height estimates in deciduous forests than in coniferous forests. When pointing off-nadir, the decrease in precision was dependent on local incidence angle (the angle between the off-nadir beam and a line normal to the terrain surface) which is dependent on the off-nadir pointing angle, terrain slope, and the difference between the laser pointing azimuth and terrain aspect; the effect was larger when the sensor was aligned with the terrain azimuth but when aspect and azimuth are opposed, there was virtually no effect on R2 or RMSE. A second effect of off-nadir pointing is that the laser beam will intersect individual crowns and the canopy as a whole from a different angle which had a distinct effect on the precision of lidar estimates of height, decreasing R2 and increasing RMSE, although the effect was most pronounced for coniferous crowns.

  17. Flight Investigation at Low Angles of Attack to Determine the Longitudinal Stability and Control Characteristics of a Cruciform Canard Missile Configuration with a Low-Aspect-Ratio Wing and Blunt Nose at Mach Numbers from 1.2 to 2.1

    NASA Technical Reports Server (NTRS)

    Brown, Clarence A , Jr

    1957-01-01

    A full- scale rocket-powered model of a cruciform canard missile configuration with a low- aspect - ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed- control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift - curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift- .curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta= -0.3 deg . The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic- center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number.The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.

  18. Flight Investigation at Low Angles of Attack to Determine the Longitudinal Stability and Control Characteristics of a Cruciform Canard Missile Configuration with a Low-Aspect-Ratio Wing and Blunt Nose at Mach Numbers from 1.2 to 2.1

    NASA Technical Reports Server (NTRS)

    Brown, C. A., Jr.

    1957-01-01

    A full-scale rocket-powered model of a cruciform canard missile configuration with a low-aspect-ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed-control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift-curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift-curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta = -0.3 deg. The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic-center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number. The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.

  19. Calculation of Spectra of Neutrons and Charged Particles Produced in a Target of a Neutron Generator

    NASA Astrophysics Data System (ADS)

    Gaganov, V. V.

    2017-12-01

    An algorithm for calculating the spectra of neutrons and associated charged particles produced in the target of a neutron generator is detailed. The products of four nuclear reactions 3H( d, n)4He, 2H( d, n)3He, 2H( d, p)3H, and 3He( d, p)4He are analyzed. The results of calculations are presented in the form of neutron spectra for several emission angles and spectra of associated charged particles emitted at an angle of 180° for a deuteron initial energy of 0.13 MeV.

  20. An Improved Aerial Target Localization Method with a Single Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2017-01-01

    This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956

  1. High Grazing Angle Sea-Clutter Literature Review

    DTIC Science & Technology

    2013-03-01

    Optimal and sub-optimal detection .................................................................... 37 7.3 Polarimetry ... polarimetry for target detection from high grazing angles. UNCLASSIFIED DSTO-GD-0736 UNCLASSIFIED 36 7.1 Parametric modelling There have not been...relationships were also found to be intrinsically related to Gaussian detection counterparts. 7.3 Polarimetry Early studies by Stacy et al. [45, 46] and

  2. Miniaturized haploscope for testing binocular vision

    NASA Technical Reports Server (NTRS)

    Decker, T. A.

    1973-01-01

    Device can reproduce virtually all binocular stimulus conditions (target configuration, vergence angle, and accommodative distance) used to test binocular performance. All subsystems of electronic controls are open-loop and solid-state-controlled and, with the exception of vergence angle drive, utilize dc stepping motors as prime movers. Arrangement is also made for readouts of each variable.

  3. Possible influences on bullet trajectory deflection in ballistic gelatine.

    PubMed

    Riva, Fabiano; Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T

    2017-02-01

    The influence of the distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots on a bullet's trajectory, when passing through ballistic gelatine, was studied. No significant difference in deflection was found when trajectories of 9mm Luger bullets, fired at a 3.5cm distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots, were compared to trajectories of bullets fired 7cm or more away from any of the aforementioned aspects. A surprisingly consistent 6.5° absolute deflection angle was found when these bullets passed through 22.5 to 23.5cm of ballistic gelatine. The projection angle, determined by the direction of the deflection, appeared to be random. The consistent absolute angle, in combination with the random projection angle, resulted in a cone-like deflection pattern. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    PubMed

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  5. Up Close and Personal

    NASA Image and Video Library

    2014-05-08

    This image is one of the highest-resolution MDIS observations to date! Many craters of varying degradation states are visible, as well as gentle terrain undulations. Very short exposure times are needed to make these low-altitude observations while the spacecraft is moving quickly over the surface; thus the images are slightly noisier than typical MDIS images. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. Date acquired: March 15, 2014 Image Mission Elapsed Time (MET): 37173522 Image ID: 5936740 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 71.91° Center Longitude: 232.7° E Resolution: 5 meters/pixel Scale: The image is approximately 8.3 km (5.2 mi.) across. Incidence Angle: 79.4° Emission Angle: 4.0° Phase Angle: 83.4° http://photojournal.jpl.nasa.gov/catalog/PIA18370

  6. Specification for a surface-search radar-detection-range model

    NASA Astrophysics Data System (ADS)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  7. A doubly curved reflector X-band antenna with integrated IFF array

    NASA Astrophysics Data System (ADS)

    Alia, F.; Barbati, S.

    Primary radar antennas and Identification Friend or Foe (IFF) antennas must rotate with the same speed and synchronism, so that the target echo and IFF transponder mark will appear to the operator at the same time and at the same angular direction. A doubly-curved reflector antenna with a six-element microstrip array integrated in the reflector surface is presented to meet this requirement. The main antenna operates at X-band for low angle search radar, while the secondary antenna operates at L-band for IFF functions. The new configuration minimizes masking of the X-band radiated energy as a result of the IFF L-band elements. In fact, the only effect of the microstrip array on the X-band radiation pattern is the presence of several sidelobes in the + or - 90 deg angular region. The proposed new solution is compared to three other L-band/X-band integrated antenna configurations, and is found to be more advantageous with respect to masking, mechanical aspects, and production costs.

  8. Implementation of the P barANDA Planar-GEM tracking detector in Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Divani Veis, Nazila; Ehret, Andre; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Nami; Saito, Takehiko R.; Voss, Bernd; PANDA Gem-Tracker Subgroup

    2018-02-01

    The P barANDA experiment at FAIR will be performed to investigate different aspects of hadron physics using anti-proton beams interacting with a fixed nuclear target. The experimental setup consists of a complex series of detector components covering a large solid angle. A detector with a gaseous active media equipped with gas electron multiplier (GEM) technique will be employed to measure tracks of charged particles at forward direction in order to achieve a high momentum resolution. In this work, a full setup of the GEM tracking detector has been implemented in the P barANDA Monte Carlo simulation package (PandaRoot) based on the current technical and conceptual design, and the expected performance of the P barANDA GEM-tracking detector has been investigated. Furthermore, material-budget studies in terms of the radiation length of the P barANDA GEM-tracking detector have been made in order to investigate the effect of the detector materials and its associated structures to particle measurements.

  9. Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation (Conference Paper with Briefing Charts)

    DTIC Science & Technology

    2016-07-10

    Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play significant role in typical electric propulsion ...by ANSI Std. 239.18 Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation∗ Samuel J. Araki1

  10. Artificial phototropism based on a photo-thermo-responsive hydrogel

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Hamsini

    Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon absorption. Slopes of 0.82 and 0.56 were observed for the low and high Au NP concentration samples. The rapid and precise incident light tracking of our system has shown the promise in phototropic applications.

  11. Do size, shape, and alignment parameters of the femoral condyle affect the trochlear groove tracking? A morphometric study based on 3D- computed tomography models in Chinese people.

    PubMed

    Du, Zhe; Chen, Shichang; Yan, Mengning; Yue, Bing; Zeng, Yiming; Wang, You

    2017-01-06

    Our study aimed to investigate whether geometrical features (size, shape, or alignment parameters) of the femoral condyle affect the morphology of the trochlear groove. Computed tomography models of 195 femurs (97 and 98 knees from male and female subjects, respectively) were reconstructed into three-dimensional models and categorised into four types of trochlear groove morphology based on the position of the turning point in relation to the mechanical axis (types 45°, 60°, 75°, and 90°). Only subjects with healthy knees were included, whereas individuals with previous knee trauma or knee pain, soft tissue injury, osteoarthritis, or other chronic diseases of the musculoskeletal system were excluded. The size parameters were: radius of the best-fit cylinder, anteroposterior dimension of the lateral condyles (AP), and distal mediolateral dimension (ML). The shape parameters were: aspect ratio (AP/ML), arc angle, and proximal- and distal- end angles. The alignment parameters were: knee valgus physiologic angle (KVPA), mechanical medial distal femoral angle (mMDFA), and hip-knee-ankle angle (HKA). All variables were measured in the femoral condyle models, and the means for each groove type were compared using one-way analysis of variance. No significant difference among groove types was observed regarding size parameters. There were significant differences when comparing type 45° with types 60°, 75°, and 90° regarding aspect ratio and distal-end angle (p < 0.05), but not regarding proximal-end angle. There were significant differences when comparing type 90° with types 45°, 60°, and 75° regarding KVPA, mMDFA, and HKA (p < 0.05). Among size, shape, and alignment parameters, the latter two exhibited partial influence on the morphology of the trochlear groove. Shape parameters affected the trochlear groove for trochlear type 45°, for which the femoral condyle was relatively flat, whereas alignment parameters affected the trochlear groove for trochlear type 90°, showing that knees in type 90° tend to be valgus. The morphometric analysis based on trochlear groove classification may be helpful for the future design of individualized prostheses.

  12. 76 FR 20345 - Notice of Availability of Government-Owned Inventions; Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... Case No. 98,801: APPARATUS AND METHOD FOR GRAZING ANGLE INDEPENDENT SIGNAL DETECTION// Navy Case No. 98,946: APPARATUS AND METHOD FOR COMPENSATING IMAGES FOR DIFFERENCES IN ASPECT//Navy Case No. 98,947...

  13. Generic Sensor Modeling Using Pulse Method

    NASA Technical Reports Server (NTRS)

    Helder, Dennis L.; Choi, Taeyoung

    2005-01-01

    Recent development of high spatial resolution satellites such as IKONOS, Quickbird and Orbview enable observation of the Earth's surface with sub-meter resolution. Compared to the 30 meter resolution of Landsat 5 TM, the amount of information in the output image was dramatically increased. In this era of high spatial resolution, the estimation of spatial quality of images is gaining attention. Historically, the Modulation Transfer Function (MTF) concept has been used to estimate an imaging system's spatial quality. Sometimes classified by target shapes, various methods were developed in laboratory environment utilizing sinusoidal inputs, periodic bar patterns and narrow slits. On-orbit sensor MTF estimation was performed on 30-meter GSD Landsat4 Thematic Mapper (TM) data from the bridge pulse target as a pulse input . Because of a high resolution sensor s small Ground Sampling Distance (GSD), reasonably sized man-made edge, pulse, and impulse targets can be deployed on a uniform grassy area with accurate control of ground targets using tarps and convex mirrors. All the previous work cited calculated MTF without testing the MTF estimator's performance. In previous report, a numerical generic sensor model had been developed to simulate and improve the performance of on-orbit MTF estimating techniques. Results from the previous sensor modeling report that have been incorporated into standard MTF estimation work include Fermi edge detection and the newly developed 4th order modified Savitzky-Golay (MSG) interpolation technique. Noise sensitivity had been studied by performing simulations on known noise sources and a sensor model. Extensive investigation was done to characterize multi-resolution ground noise. Finally, angle simulation was tested by using synthetic pulse targets with angles from 2 to 15 degrees, several brightness levels, and different noise levels from both ground targets and imaging system. As a continuing research activity using the developed sensor model, this report was dedicated to MTF estimation via pulse input method characterization using the Fermi edge detection and 4th order MSG interpolation method. The relationship between pulse width and MTF value at Nyquist was studied including error detection and correction schemes. Pulse target angle sensitivity was studied by using synthetic targets angled from 2 to 12 degrees. In this report, from the ground and system noise simulation, a minimum SNR value was suggested for a stable MTF value at Nyquist for the pulse method. Target width error detection and adjustment technique based on a smooth transition of MTF profile is presented, which is specifically applicable only to the pulse method with 3 pixel wide targets.

  14. RaptorX-Angle: real-value prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning.

    PubMed

    Gao, Yujuan; Wang, Sheng; Deng, Minghua; Xu, Jinbo

    2018-05-08

    Protein dihedral angles provide a detailed description of protein local conformation. Predicted dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly, thus aiding protein tertiary structure prediction. However, direct angle prediction from sequence alone is challenging. In this article, we present a novel method (named RaptorX-Angle) to predict real-valued angles by combining clustering and deep learning. Tested on a subset of PDB25 and the targets in the latest two Critical Assessment of protein Structure Prediction (CASP), our method outperforms the existing state-of-art method SPIDER2 in terms of Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE). Our result also shows approximately linear relationship between the real prediction errors and our estimated bounds. That is, the real prediction error can be well approximated by our estimated bounds. Our study provides an alternative and more accurate prediction of dihedral angles, which may facilitate protein structure prediction and functional study.

  15. Ferroelectric Domain Studies of Patterned (001) BiFeO 3 by Angle-Resolved Piezoresponse Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bumsoo; Barrows, Frank P.; Sharma, Yogesh

    We have studied the ferroelectric domains in (001) BiFeO 3 (BFO) films patterned into mesas with various aspect ratios, using angle-resolved piezoresponse force microscope (AR-PFM), which can image the in-plane polarization component with an angular resolution of 30 degrees. We observed not only stable polarization variants, but also meta-stable polarization variants, which can reduce the charge accumulated at domain boundaries. We considered the number of neighboring domains that are in contact, in order to analyze the complexity of the ferroelectric domain structure. Comparison of the ferroelectric domains from the patterned and unpatterned regions showed that the elastic relaxation induced bymore » removal of the film surrounding the mesas led to a reduction of the average number of neighboring domains, indicative of a decrease in domain complexity. Finally, we also found that the rectangular BFO patterns with high aspect ratio had a simpler domain configuration and enhanced piezoelectric characteristics than square-shaped mesas. Manipulation of the ferroelectric domains by controlling the aspect ratio of the patterned BFO thin film mesas can be useful for nanoelectronic applications.« less

  16. Ferroelectric Domain Studies of Patterned (001) BiFeO 3 by Angle-Resolved Piezoresponse Force Microscopy

    DOE PAGES

    Kim, Bumsoo; Barrows, Frank P.; Sharma, Yogesh; ...

    2018-01-09

    We have studied the ferroelectric domains in (001) BiFeO 3 (BFO) films patterned into mesas with various aspect ratios, using angle-resolved piezoresponse force microscope (AR-PFM), which can image the in-plane polarization component with an angular resolution of 30 degrees. We observed not only stable polarization variants, but also meta-stable polarization variants, which can reduce the charge accumulated at domain boundaries. We considered the number of neighboring domains that are in contact, in order to analyze the complexity of the ferroelectric domain structure. Comparison of the ferroelectric domains from the patterned and unpatterned regions showed that the elastic relaxation induced bymore » removal of the film surrounding the mesas led to a reduction of the average number of neighboring domains, indicative of a decrease in domain complexity. Finally, we also found that the rectangular BFO patterns with high aspect ratio had a simpler domain configuration and enhanced piezoelectric characteristics than square-shaped mesas. Manipulation of the ferroelectric domains by controlling the aspect ratio of the patterned BFO thin film mesas can be useful for nanoelectronic applications.« less

  17. Anatomic changes of target vessels after fenestrated and branched aortic aneurysm repair.

    PubMed

    Kalder, J; Keschenau, P; Tamm, M; Jalaie, H; Jacobs, M J; Greiner, A

    2014-04-01

    Objective of this study was to evaluate the anatomic changes of the stented target vessels after endovascular repair of complex aortic aneurysms. Between July 2011 and December 2013, 53 aortic aneurysms were treated in our department with fenestrated and branched stent-graft devices. Forty-two of these patients were pre- and postoperatively scanned with a high resolution computer tomography (CT) (Cook Zenith® fenestrated or branched, Australia Pty. Ltd., Brisbane, Australia: N.=19; AnacondaTM fenestrated, Vascutek, Glasgow, Scotland, UK: N.=23). The other 11 out of the 53 patients did not receive a CT scan, because of a pre-existing renal failure. In the CT scans we retrospectively evaluated the anatomic vessel deviation at the origin of the target vessel and the vessel shift distal to the stent. For the first measurement the CT scans were loaded into OsiriX MD®, and the pre- and postoperative angles of the target vessels were measured and subtracted. For matching, the CT-scans were normalized at vertebral body lumbar 2. The second measured angle was the maximal measured angle distal to the target vessel stent-graft. Altogether, 113 target vessels were stented (celiac trunk [CT] 15, superior mesenteric arteries [SMA] 26, renal arteries [RA] 72), with 97 balloon-expandable PTFE stents: 90 Atrium V12 (Maquet Getinge group, Hudson, NH, USA), 7 BeGrafts (Bentley InnoMed, Hechingen, Germany) and 16 self-expandable fluency PTFE stents (Bard, Karlsruhe, Germany). The mean anatomic deviation at the target vessel origin was 28±17.3 and the mean vessel shift distal to the stent was 36.3±18.8. There were no significant differences between the main device and the target vessel stent types. Fenestrated and branched stent-graft solutions for aortic aneurysm repair induce changes of the target vessel anatomy. We did not observe significant differences between the several devices.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Lin, M; Chen, L

    Purpose: Recent in vitro and in vivo experimental findings provided strong evidence that pulsed low-dose-rate radiotherapy (PLDR) produced equivalent tumor control as conventional radiotherapy with significantly reduced normal tissue toxicities. This work aimed to implement a PLDR clinical protocol for the management of recurrent cancers utilizing IMRT and VMAT. Methods: Our PLDR protocol requires that the daily 2Gy dose be delivered in 0.2Gy×10 pulses with a 3min interval between the pulses. To take advantage of low-dose hyper-radiosensitivity the mean dose to the target is set at 0.2Gy and the maximum dose is limited to 0.4Gy per pulse. Practical planning strategiesmore » were developed for IMRT and VMAT: (1) set 10 ports for IMRT and 10 arcs for VMAT with each angle/arc as a pulse; (2) set the mean dose (0.2Gy) and maximum dose (0.4Gy) to the target per pulse as hard constraints (no constraints to OARs); (3) select optimal port/arc angles to avoid OARs; and (4) use reference structures in or around target/OARs to reduce maximum dose to the target/OARs. IMRT, VMAT and 3DCRT plans were generated for 60 H and N, breast, lung, pancreas and prostate patients and compared. Results: All PLDR treatment plans using IMRT and VMAT met the dosimetry requirements of the PLDR protocol (mean target dose: 0.20Gy±0.01Gy; maximum target dose < 0.4Gy). In comparison with 3DCRT, IMRT and VMAT exhibited improved target dose conformity and OAR dose sparing. A single arc can minimize the difference in the target dose due to multi-angle incidence although the delivery time is longer than 3DCRT and IMRT. Conclusion: IMRT and VMAT are better modalities for PLDR treatment of recurrent cancers with superior target dose conformity and critical structure sparing. The planning strategies/guidelines developed in this work are practical for IMRT/VMAT treatment planning to meet the dosimetry requirements of the PLDR protocol.« less

  19. Calculation of the Target Lumbar Lordosis Angle for Restoring an Optimal Pelvic Tilt in Elderly Patients With Adult Spinal Deformity.

    PubMed

    Yamato, Yu; Hasegawa, Tomohiko; Kobayashi, Sho; Yasuda, Tatsuya; Togawa, Daisuke; Arima, Hideyuki; Oe, Shin; Iida, Takahiro; Matsumura, Akira; Hosogane, Naobumi; Matsumoto, Morio; Matsuyama, Yukihiro

    2016-02-01

    This investigation consisted of a cross-sectional study and a retrospective multicenter case series. This investigation sought to identify the ideal lumbar lordosis (LL) angle for restoring an optimal pelvic tilt (PT) in patients with adult spinal deformity (ASD). To achieve successful corrective fusion in ASD patients with sagittal imbalance, it is essential to correct the sagittal spinal alignment and obtain a suitable pelvic inclination. We determined the LL angle that would restore the optimal PT following ASD surgery. The cross-sectional study included 184 elderly volunteers (mean age 64 years) with an Oswestry Disability Index score less than 20%. The relationship between PT or LL and the pelvic incidence (PI) in normal individuals was investigated. The second study included 116 ASD patients (mean age 66 years) who underwent thoracolumbar corrective fusion at 1 of 4 spine centers. The postoperative PT values were calculated using the parameters measured. On the basis of these studies, an ideal LL angle was determined. In the cross-sectional study, the linear regression equation for the optimal PT as a function of PI was "optimal PT = 0.47 × PI - 7.5." In the second study, the postoperative PT was determined as a function of PI and corrected LL, using the equation "postoperative PT = 0.7 × PI - 0.5 × corrected LL + 8.1." The target LL angle was determined by mathematically equalizing the PTs of these 2 equations: "target LL = 0.45 × PI + 31.8." The ideal LL angle can be determined using the equation "LL = 0.45 × PI + 31.8," which can be used as a reference during surgical planning in ASD cases. 4.

  20. High-resolution inverse synthetic aperture radar imaging for large rotation angle targets based on segmented processing algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan

    2017-01-01

    In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.

  1. Internal performance of two nozzles utilizing gimbal concepts for thrust vectoring

    NASA Technical Reports Server (NTRS)

    Berrier, Bobby L.; Taylor, John G.

    1990-01-01

    The internal performance of an axisymmetric convergent-divergent nozzle and a nonaxisymmetric convergent-divergent nozzle, both of which utilized a gimbal type mechanism for thrust vectoring was evaluated in the Static Test Facility of the Langley 16-Foot Transonic Tunnel. The nonaxisymmetric nozzle used the gimbal concept for yaw thrust vectoring only; pitch thrust vectoring was accomplished by simultaneous deflection of the upper and lower divergent flaps. The model geometric parameters investigated were pitch vector angle for the axisymmetric nozzle and pitch vector angle, yaw vector angle, nozzle throat aspect ratio, and nozzle expansion ratio for the nonaxisymmetric nozzle. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 12.0.

  2. Neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO

    NASA Astrophysics Data System (ADS)

    Kuklin, A. I.; Rogachev, A. V.; Soloviov, D. V.; Ivankov, O. I.; Kovalev, Yu S.; Utrobin, P. K.; Kutuzov, S. A.; Soloviev, A. G.; Rulev, M. I.; Gordeliy, V. I.

    2017-05-01

    Abstract.The work is a review of neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. Here, key parameters of small-angle spectrometers are considered. It is shown that two-detector system is the basis of YuMO upgrade. It allows to widen the dynamic q-range twice. In result, the available q-range is widened and dynamic q-range and data collection rate are doubled. The detailed description of YuMO spectrometer is given.The short review of experimental researches made on the spectrometer in the polymers field, biology, material science and physical chemistry is given. The current investigations also have a methodological aspect. It is shown that upgraded spectrometer provides advanced world level of research of supramolecular structures.

  3. Optical and hydrophobic properties of co-sputtered chromium and titanium oxynitride films

    NASA Astrophysics Data System (ADS)

    Rawal, Sushant K.; Chawla, Amit Kumar; Jayaganthan, R.; Chandra, Ramesh

    2011-08-01

    The chromium and titanium oxynitride films on glass substrate were deposited by using reactive RF magnetron sputtering in the present work. The structural and optical properties of the chromium and titanium oxynitride films as a function of power variations are investigated. The chromium oxynitride films are crystalline even at low power of Cr target (≥60 W) but the titanium oxynitride films are amorphous at low target power of Ti target (≤90 W) as observed from glancing incidence X-ray diffraction (GIXRD) patterns. The residual stress and strain of the chromium oxynitride films are calculated by sin 2 ψ method, as the average crystallite size decreases with the increase in sputtering power of the Cr target, higher stress and strain values are observed. The chromium oxynitride films changes from hydrophilic to hydrophobic with the increase of contact angle value from 86.4° to 94.1°, but the deposited titanium oxynitride films are hydrophilic as observed from contact angle measurements. The changes in surface energy were calculated using contact angle measurements to substantiate the hydrophobic properties of the films. UV-vis and NIR spectrophotometer were used to obtain the transmission and absorption spectra, and the later was used for determining band gap values of the films, respectively. The refractive index of chromium and titanium oxynitride films increases with film packing density due to formation of crystalline chromium and titanium oxynitride films with the gradual rise in deposition rate as a result of increase in target powers.

  4. A new approach to estimate the geometrical factors, solid angle approximation, geometrical efficiency and their use in basic interaction cross section measurements

    NASA Astrophysics Data System (ADS)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Takeda, T.; Itai, Y.; Akatsuka, T.

    2002-10-01

    A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic Kα radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work.

  5. Feature extraction of micro-motion frequency and the maximum wobble angle in a small range of missile warhead based on micro-Doppler effect

    NASA Astrophysics Data System (ADS)

    Li, M.; Jiang, Y. S.

    2014-11-01

    Micro-Doppler effect is induced by the micro-motion dynamics of the radar target itself or any structure on the target. In this paper, a simplified cone-shaped model for ballistic missile warhead with micro-nutation is established, followed by the theoretical formula of micro-nutation is derived. It is confirmed that the theoretical results are identical to simulation results by using short-time Fourier transform. Then we propose a new method for nutation period extraction via signature maximum energy fitting based on empirical mode decomposition and short-time Fourier transform. The maximum wobble angle is also extracted by distance approximate approach in a small range of wobble angle, which is combined with the maximum likelihood estimation. By the simulation studies, it is shown that these two feature extraction methods are both valid even with low signal-to-noise ratio.

  6. Off-nadir antenna bias correction using Amazon rain sigma(0) data

    NASA Technical Reports Server (NTRS)

    Birrer, I. J.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K.

    1982-01-01

    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Oceanic Satellite System (NOSS). Backscattering observations made by the SEASAT Scatterometer System (SASS) showed the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which was insensitive to polarization. The variation with angle of incidence was adequately modeled as scattering coefficient (dB) = a theta b with typical values for the incidence-angle coefficient from 0.07 to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum-likelihood estimation algorithms presented here permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

  7. Large-Angle Scattering of Multi-GeV Muons on Thin Lead Targets

    NASA Astrophysics Data System (ADS)

    Longhin, A.; Paoloni, A.; Pupilli, F.

    2015-10-01

    The probability of large-angle scattering for multi-GeV muons in lead targets with a thickness of O(10 - 1) radiation lengths is studied. The new estimates presented here are based both on simulation programs (GEANT4 libraries) and theoretical calculations. In order to validate the results provided by simulation, a comparison is drawn with experimental data from the literature. This study is particularly relevant when applied to muons originating from νμ CC interactions of CNGS beam neutrinos. In that circumstance the process under study represents the dominant background for the νμ → ντ search in the τ→ μ channel for the OPERA experiment at LNGS. Finally we also investigate, in the CNGS context, possible contributions from the muon photo-nuclear process which might in principle also produce a large-angle muon scattering signature in the detector.

  8. NIMROD: The Near and InterMediate Range Order Diffractometer of the ISIS second target station.

    PubMed

    Bowron, D T; Soper, A K; Jones, K; Ansell, S; Birch, S; Norris, J; Perrott, L; Riedel, D; Rhodes, N J; Wakefield, S R; Botti, A; Ricci, M-A; Grazzi, F; Zoppi, M

    2010-03-01

    NIMROD is the Near and InterMediate Range Order Diffractometer of the ISIS second target station. Its design is optimized for structural studies of disordered materials and liquids on a continuous length scale that extends from the atomic, upward of 30 nm, while maintaining subatomic distance resolution. This capability is achieved by matching a low and wider angle array of high efficiency neutron scintillation detectors to the broad band-pass radiation delivered by a hybrid liquid water and liquid hydrogen neutron moderator assembly. The capabilities of the instrument bridge the gap between conventional small angle neutron scattering and wide angle diffraction through the use of a common calibration procedure for the entire length scale. This allows the instrument to obtain information on nanoscale systems and processes that are quantitatively linked to the local atomic and molecular order of the materials under investigation.

  9. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system

    NASA Astrophysics Data System (ADS)

    Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong

    2018-01-01

    To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.

  10. Vertical gaze angle: absolute height-in-scene information for the programming of prehension.

    PubMed

    Gardner, P L; Mon-Williams, M

    2001-02-01

    One possible source of information regarding the distance of a fixated target is provided by the height of the object within the visual scene. It is accepted that this cue can provide ordinal information, but generally it has been assumed that the nervous system cannot extract "absolute" information from height-in-scene. In order to use height-in-scene, the nervous system would need to be sensitive to ocular position with respect to the head and to head orientation with respect to the shoulders (i.e. vertical gaze angle or VGA). We used a perturbation technique to establish whether the nervous system uses vertical gaze angle as a distance cue. Vertical gaze angle was perturbed using ophthalmic prisms with the base oriented either up or down. In experiment 1, participants were required to carry out an open-loop pointing task whilst wearing: (1) no prisms; (2) a base-up prism; or (3) a base-down prism. In experiment 2, the participants reached to grasp an object under closed-loop viewing conditions whilst wearing: (1) no prisms; (2) a base-up prism; or (3) a base-down prism. Experiment 1 and 2 provided clear evidence that the human nervous system uses vertical gaze angle as a distance cue. It was found that the weighting attached to VGA decreased with increasing target distance. The weighting attached to VGA was also affected by the discrepancy between the height of the target, as specified by all other distance cues, and the height indicated by the initial estimate of the position of the supporting surface. We conclude by considering the use of height-in-scene information in the perception of surface slant and highlight some of the complexities that must be involved in the computation of environmental layout.

  11. Maximum kinetic energy considerations in proton stereotactic radiosurgery.

    PubMed

    Sengbusch, Evan R; Mackie, Thomas R

    2011-04-12

    The purpose of this study was to determine the maximum proton kinetic energy required to treat a given percentage of patients eligible for stereotactic radiosurgery (SRS) with coplanar arc-based proton therapy, contingent upon the number and location of gantry angles used. Treatment plans from 100 consecutive patients treated with SRS at the University of Wisconsin Carbone Cancer Center between June of 2007 and March of 2010 were analyzed. For each target volume within each patient, in-house software was used to place proton pencil beam spots over the distal surface of the target volume from 51 equally-spaced gantry angles of up to 360°. For each beam spot, the radiological path length from the surface of the patient to the distal boundary of the target was then calculated along a ray from the gantry location to the location of the beam spot. This data was used to generate a maximum proton energy requirement for each patient as a function of the arc length that would be spanned by the gantry angles used in a given treatment. If only a single treatment angle is required, 100% of the patients included in the study could be treated by a proton beam with a maximum kinetic energy of 118 MeV. As the length of the treatment arc is increased to 90°, 180°, 270°, and 360°, the maximum energy requirement increases to 127, 145, 156, and 179 MeV, respectively. A very high percentage of SRS patients could be treated at relatively low proton energies if the gantry angles used in the treatment plan do not span a large treatment arc. Maximum proton kinetic energy requirements increase linearly with size of the treatment arc.

  12. Recent results from the NN-interaction studies with polarized beams and targets at ANKE-COSY

    NASA Astrophysics Data System (ADS)

    Dymov, Sergey

    2016-02-01

    Adding to the nucleon-nucleon scattering database is one of the major priorities of the ANKE collaboration. Such data are necessary ingredients, not only for the understanding of nuclear forces, but also for the description of meson production and other nuclear reactions at intermediate energies. By measuring the cross section, deuteron analysing powers, and spin-correlation parameters in the dp → {pp}sn reaction, where {pp}s represents the 1S0 state, information has been obtained on small-angle neutron-proton spin-flip charge-exchange amplitudes. The measurements of pp elastic scattering by the COSY-EDDA have had a major impact on the partial wave analysis of this reaction above 1 GeV. However, these experiments only extended over the central region of c.m. angles, 300 < θcm < 1500, that has left major ambiguities in the phase shift analysis by the SAID group. In contrast, the small angle region is accessible at ANKE-COSY, that allowed measurement of the differential cross section and the analysing power at 50 < θcm < 300 in the 0.8 — 2.8 GeV energy range. The data on the pn elastic scattering are much more scarce than those of pp, especially in the region above 1.15 GeV. The study of the dp → {pp}s n reaction provides the information about the pn elastic scattering at large angles. The small angle scattering was studied with the polarized proton COSY beam and an unpolarised deuterium gas target. The detection the spectator proton in the ANKE vertex silicon detector allowed to use the deuterium target as an effective neutron one. The analysing powers of the process were obtained at six beam energies from 0.8 to 2.4 GeV.

  13. Comparative Analysis of the Mini-pterional and Supraorbital Keyhole Craniotomies for Unruptured Aneurysms with Numeric Measurements of Their Geometric Configurations.

    PubMed

    Kang, Ho-Jun; Lee, Yoon-Soo; Suh, Sang-Jun; Lee, Jeong-Ho; Ryu, Kee-Young; Kang, Dong-Gee

    2013-03-01

    Keyhole craniotomy is a modification of pterional craniotomy that allows for use of a minimally invasive approach toward cerebral aneurysms. Currently, mini-pterional (MPKC) and supraorbital keyhole craniotomies (SOKC) are commonly used. In this study, we measured and compared the geometric configurations of surgical exposure provided by MPKC and SOKC. Nine patients underwent MPKC and four underwent SOKC. Their postoperative contrast-enhanced brain computed tomographic scans were evaluated. The transverse and longitudinal diameters and areas of exposure were measured. The locations of the anterior communicating artery, bifurcation of the middle cerebral artery (MCAB), and the internal carotid artery (ICA) terminal were identified, and the working angles and depths for these targets were measured. No significant differences in the transverse diameters of exposure were observed between MPKC and SOKC. However, the longitudinal diameters and the areas were significantly larger, by 1.5 times in MPKC. MPKC provided larger operable working angles for the targets. The angles by MPKC, particularly for the MCAB, reached up to 1.9-fold of those by SOKC. Greater working depths were required in order to reach the targets by SOKC, and the differences were the greatest in the MCAB by 1.6-fold. MPKC provides larger exposure than SOKC with a similar length of skin incision. MPKC allows for use of a direct transsylvian approach, and exposes the target in a wide working angle within a short distance. Despite some limitations in exposure, SOKC is suitable for a direct subfrontal approach, and provides a more anteromedial and basal view. MCAB and posteriorly directing ICA terminal aneurysms can be good candidates for MPKC.

  14. Flexor bias of joint position in humans during spaceflight

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Goulet, C.; Boorman, G. I.; Roy, R. R.; Edgerton, V. R.

    2003-01-01

    The ability to estimate ankle and elbow joint position was tested before, during, and after a 17-day spaceflight. Subjects estimated targeted joint angles during isovelocity (IsoV) joint movements with agonist muscle groups either active or relaxed. These movements included elbow extension (EE) and elbow flexion (EF), and plantarflexion (PF) and dorsiflexion (DF) of the ankle. Subjects also estimated these joint positions while moving the dynamometer at their chosen (variable) velocity (VarV) during EE and PF. For IsoV tests, no differences were observed between active and passive movements for either the ankle or elbow. Compared with those of pre-flight test days, estimates of targeted elbow joint angles were approximately 5 degrees to 15 degrees more flexed in-flight, and returned toward the pre-flight values during recovery. The spaceflight effects for the ankle were inconsistent and less prevalent than those for the elbow. The VarV PF test condition for the 120 degrees target angle at the ankle exhibited approximately 5 degrees to 7 degrees more DF target angle estimates in-flight compared with those pre- or post-flight. In contrast, during IsoV PF there was a tendency for ankle estimates to be approximately 2 degrees to 3 degrees more PF after 2-3 days exposure to spaceflight. These data indicate that during spaceflight the perception of elbow extension is greater than actuality, and are consistent with the interpretation that microgravity induced a flexor bias in the estimation of the actual elbow joint position. Moreover, these effects in joint proprioception during spaceflight were observed in individual isolated single-joint movements during tasks in which vestibular function in maintaining posture were minimal.

  15. Flexor bias of joint position in humans during spaceflight.

    PubMed

    McCall, G E; Goulet, C; Boorman, G I; Roy, R R; Edgerton, V R

    2003-09-01

    The ability to estimate ankle and elbow joint position was tested before, during, and after a 17-day spaceflight. Subjects estimated targeted joint angles during isovelocity (IsoV) joint movements with agonist muscle groups either active or relaxed. These movements included elbow extension (EE) and elbow flexion (EF), and plantarflexion (PF) and dorsiflexion (DF) of the ankle. Subjects also estimated these joint positions while moving the dynamometer at their chosen (variable) velocity (VarV) during EE and PF. For IsoV tests, no differences were observed between active and passive movements for either the ankle or elbow. Compared with those of pre-flight test days, estimates of targeted elbow joint angles were approximately 5 degrees to 15 degrees more flexed in-flight, and returned toward the pre-flight values during recovery. The spaceflight effects for the ankle were inconsistent and less prevalent than those for the elbow. The VarV PF test condition for the 120 degrees target angle at the ankle exhibited approximately 5 degrees to 7 degrees more DF target angle estimates in-flight compared with those pre- or post-flight. In contrast, during IsoV PF there was a tendency for ankle estimates to be approximately 2 degrees to 3 degrees more PF after 2-3 days exposure to spaceflight. These data indicate that during spaceflight the perception of elbow extension is greater than actuality, and are consistent with the interpretation that microgravity induced a flexor bias in the estimation of the actual elbow joint position. Moreover, these effects in joint proprioception during spaceflight were observed in individual isolated single-joint movements during tasks in which vestibular function in maintaining posture were minimal.

  16. Orange Is the New Blue

    NASA Image and Video Library

    2015-04-16

    Measurements from NASA MESSENGER MLA instrument during the spacecraft greater than four-year orbital mission have mapped the topography of Mercury northern hemisphere in great detail. This enhanced color mosaic shows (from left to right) Munch (61 km/38 mi.), Sander (52 km/32 mi.), and Poe (81 km/50 mi.) craters, which lie in the northwest portion of the Caloris basin. The smooth volcanic plains that fill the Caloris basin appear orange in this image. All three craters are superposed on these volcanic plains and have excavated low-reflectance material, which appears blue in this image, from the subsurface. Hollows, typically associated with low-reflectance material, dot the rims of Munch and Poe and cover the floor of Sander. These images were acquired as high-resolution targeted color observations. Targeted color observations are images of a small area on Mercury's surface at resolutions higher than the 1-kilometer/pixel 8-color base map. During MESSENGER's one-year primary mission, hundreds of targeted color observations were obtained. During MESSENGER's extended mission, high-resolution targeted color observations are more rare, as the 3-color base map is covering Mercury's northern hemisphere with the highest-resolution color images that are possible. Date acquired: July 03, 2011, July 04, 2011 Image Mission Elapsed Time (MET): 218204186, 218204190, 218204194, 218246487, 218246491, 218246495 Image ID: 458397, 458398, 458399, 460433, 460434, 460435 Instrument: Wide Angle Camera (WAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 42° N Center Longitude: 154° E Projection: Equirectangular Resolution: 239 meters/pixel Scale: Munch crater is approximately 61 km (38 mi.) in diameter Incidence Angle: 43°, 42° Emission Angle: 35°, 13° Phase Angle: 79°, 55° http://photojournal.jpl.nasa.gov/catalog/PIA19421

  17. Morphology of distal radius curvatures: a CT-based study on the Malaysian Malay population

    PubMed Central

    Singh, Taran Singh Pall; Sadagatullah, Abdul Nawfar; Yusof, Abdul Halim

    2015-01-01

    INTRODUCTION The purpose of this study was to examine the differing curves of the volar distal radius of healthy Malaysian Malays, so as to obtain detailed morphological information that will further the understanding of volar plate osteosynthesis in Malaysian Malays. METHODS Computed tomography with three-dimensional reconstruction was performed on the wrists of 16 healthy Malaysian Malay volunteers. Profile measurements were made using a software program. A novel parameter, the pronator quadratus curve angle, was explored and introduced in this study. Interclass correlation coefficients were calculated to assess the level of agreement between the data collected by the principal investigator and that collected by an independent radiologist. RESULTS The mean ± standard deviation of the arc radii on the radial aspect was 17.50° ± 5.40°, while the median (interquartile range [IQR]) of the arc radii on the ulnar aspect was 25.27° (IQR 5.80°). The mean ± standard deviation of the curvature of the pronator quadratus line was 40.52° ± 2.48°. The arc radii on the radial aspect was significantly lower than the arc radii on the ulnar aspect (p = 0.001). Different radial and ulnar arcs were observed in 56.25% of the radii; the arc was deeper on the ulnar aspect in 93.75% of the radii. CONCLUSION Based on the findings of this study, the likelihood of achieving anatomical reduction with uniformly curved, fixed-angle volar plates is questionable. Changes in the design of these implants may be needed to optimise their usage in the Malaysian Malay population. PMID:25814075

  18. Image change detection systems, methods, and articles of manufacture

    DOEpatents

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  19. Time-dependent first-principles study of angle-resolved secondary electron emission from atomic sheets

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki

    2018-02-01

    Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.

  20. Throwing accuracy

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2018-05-01

    A simple throwing task is described to illustrate various aspects of projectile motion. The task was to throw a tennis ball in a waste paper bin about 2 m away. Success depends on skill, but it also depends on the physics of the problem. If the ball is thrown underarm, then success depends primarily on the throw speed, which must be controlled to within about 2%. The launch angle can be chosen within a wide range. If the ball is thrown overarm, then the launch angle is just as important as the throw speed.

  1. Image synthesis for SAR system, calibration and processor design

    NASA Technical Reports Server (NTRS)

    Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.

    1978-01-01

    The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.

  2. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.

    1992-01-01

    Quality assessment procedures are described for two-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate accuracy of an implicit upwind Euler solution algorithm.

  3. High precise measurement of tiny angle dimensional holes for the unit-holes of the LAMOST Focal Plane Plate

    NASA Astrophysics Data System (ADS)

    Zhou, Zengxiang; Jin, Yi; Zhai, Chao; Xing, Xiaozheng

    2008-07-01

    In the LAMOST project, the unit-holes on the Focal Plane Plate are the final installation location of the optical fiber positioning system. Theirs precision will influence the observation efficiency of the LAMOST. For the unique requirements, the unit-holes on the Focal Plane Plate are composed by a series of tiny angle dimensional holes which dimensional angle are between 16' to 2.5°. According to these requirements, the measurement of the tiny angle dimensional holes for the unit-holes needs to less than 3'. And all the unit-holes point to the virtual sphere center of the Focal Plane Plate. To that end, the angle departure of the unit-holes axis is changed to the distance from the virtual sphere center of Focal Plane Plate to the unit-holes axis. That is the better way to evaluate the technical requirements of the dimensional angle errors. In the measuring process, common measuring methods do not fit for the tiny angle dimensional hole by CMM(coordinate measurement machine). An extraordinary way to solve this problem is to insert a measuring stick into a unit-hole, with a target ball on the stick. Then measure the low point of the ball center and pull out the stick for the high station of center. Finally, calculate the two points for the unit-hole axis to get the angle departure. But on the other hand, use this methods will bring extra errors for the measuring stick and the target ball. For better analysis this question, a series experiments are mentioned in this paper, which testify that the influence of the measure implement is little. With increasing the distance between the low point and the high point position in the measuring process should enhance the accuracy of dimensional angle measurement.

  4. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems

    PubMed Central

    Stenz, Ulrich; Neumann, Ingo

    2017-01-01

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less. PMID:28812998

  5. Single-backscattering and quasi-single-backscattering of low energy ions from a cold nickel surface: contribution to the ICISS method

    NASA Astrophysics Data System (ADS)

    Soszka, W.

    1992-09-01

    Energy spectra of 5 keV Ne+ and He+ ions backscattered from the cold (100) nickel surface for chosen values of the incidence angles were measured. It was found that the occurrence of the isotope structure of the so-called "single-scattering" peak as well as its position on the energy scale depend on the incidence angle and the target temperature. In comparison to the case of room temperature the "ICISS curve" (the intensity of the single-scattering peak versus the incidence angle) at low temperatures increases up to relatively large angles. The curve in its part shows some structure which is not observed at room temperatures. It has been shown [E.S. Parilis et al., Atomic Collisions in Gases and on Solid Surfaces (FAN, Tashkent, 1988) in Russian] that the doubly scattered ions can have the same energy and exit angle as the singly scattered ions and both components create the quasi-single-scattering peak. The double-scattering component depends in a complex manner on the incidence angle and the target temperature. It is shown that at low temperatures (below 80 K) the intensity of the single-scattering component decreases (a decrease of thermal cross section), and the intensity of the double-scattering component relatively increases. This determines the behaviour of the ICISS curve, which, for low temperatures and light projectiles cannot be treated as a real ICISS curve.

  6. Low-speed wind tunnel performance of high-speed counterrotation propellers at angle-of-attack

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Gazzaniga, John A.

    1989-01-01

    The low-speed aerodynamic performance characteristics of two advanced counterrotation pusher-propeller configurations with cruise design Mach numbers of 0.72 were investigated in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. The tests were conducted at Mach number 0.20, which is representative of the aircraft take-off/landing flight regime. The investigation determined the effect of nonuniform inflow on the propeller performance characteristics for several blade angle settings and a range of rotational speeds. The inflow was varied by yawing the propeller model to angle-of-attack by as much as plus or minus 16 degrees and by installing on the counterrotation propeller test rig near the propeller rotors a model simulator of an aircraft engine support pylon and fuselage. The results of the investigation indicated that the low-speed performance of the counterrotation propeller configurations near the take-off target operating points were reasonable and were fairly insensitive to changes in model angle-of-attack without the aircraft pylon/fuselage simulators installed on the propeller test rig. When the aircraft pylon/fuselage simulators were installed, small changes in propeller performance were seen at zero angle-of-attack, but fairly large changes in total power coefficient and very large changes of aft-to-forward-rotor torque ratio were produced when the propeller model was taken to angle-of-attack. The propeller net efficiency, though, was fairly insensitive to any changes in the propeller flowfield conditions near the take-off target operating points.

  7. Angles No Longer Weigh In: The Effect of Geometric Cue Directness on Reorientation

    ERIC Educational Resources Information Center

    Huang, Zhenzhen; Hu, Qingfen; Shao, Yi

    2017-01-01

    Previous research in spatial reorientation, which only presented the target location in the corner, has found that adults weighed angles more than wall lengths. We proposed that in previous research, angular cues were available for direct use whereas length cues had to be associated with the left/right sense. We thus investigated whether the…

  8. Muscular Proprioception Contributes to the Control of Interceptive Actions

    ERIC Educational Resources Information Center

    Bastin, Julien; Calvin, Sarah; Montagne, Gilles

    2006-01-01

    The authors proposed a model of the control of interceptive action over a ground plane (Chardenon, Montagne, Laurent, & Bootsma, 2004). This model is based on the cancellation of the rate of change of the angle between the current position of the target and the direction of displacement (i.e., the bearing angle). While several sources of visual…

  9. Adaptive Machine Vision.

    DTIC Science & Technology

    1992-06-18

    developed by Fukushima . The system has potential use for SDI target/decoy discrimination. For testing purposes, simulated angle-angle and range-Doppler...properties and computational requirements of the Neocognitron, a patern recognition neural network developed by Fukushima . The RADONN effort builds upon...and Information Processing, 17-21 June 1991, Plymouth State College, Plymouth, New Hampshire.) 5.0 References 1. Kunihiko Fukushima , Sei Miyake, and

  10. Imaging studies of the hindlimbs of pacas (Cuniculus paca) bred in captivity.

    PubMed

    Araújo, F A P; Rahal, S C; Doiche, D P; Machado, M R F; Vulcano, L C; Teixeira, C R; El-Warrak, A O

    2010-01-01

    To evaluate the hindlimbs of pacas bred in captivity using radiographic and computed tomography (CT) studies. Nine mature pacas (Cuniculus paca) 5.9-8.2 kg in body weight. Radiographical aspects of the bones of the hindlimbs were evaluated, and the Norberg angle and inclination angle were measured for each hindlimb. Anteversion angle were measured in CT examination. The bone anatomy of the hindlimb of the paca was similar to that of the guinea pig, apart from two lunulae and a single fabella (lateral) which were observed. The Norberg angle had mean value of 130.56º ± 3.81 without any significant difference between testers. Inclination angles ranged from 142.44º ± 4.82 to 145.44º ± 4.09 by Hauptman's method, and from 144.94º ± 3.13 to 148.22º ± 3.25 by Montavon's method, for right and left hindlimbs respectively. Average values for the anteversion angles measured with CT ranged from 28.56º ± 5.56 to 32.91º ± 2.62. The data may be used in future studies comparing the paca to other rodent species. In addition, the paca could be used as an animal model in orthopaedic research.

  11. Center for Automation and Manufacturing Science Established at Stanford University.

    DTIC Science & Technology

    1985-12-01

    robotic aspect of automated manufacturing will draw upon more of-the new technologies, and more deeply, than any other aspect. If the right aet of...manipulator in Fig. 3a.-Ib, the motor in the right cavity of the base drives the shoulder joint and upper arm link through four springs, while the motor...on the motor shaft to detect the shaft angle. Four pairs of strain gauges are attached to both sides of the right aluminum side plate. First-order

  12. Lensing of the CMB: non-Gaussian aspects.

    PubMed

    Zaldarriaga, M

    2001-06-01

    We compute the small angle limit of the three- and four-point function of the cosmic microwave background (CMB) temperature induced by the gravitational lensing effect by the large-scale structure of the universe. We relate the non-Gaussian aspects presented in this paper with those in our previous studies of the lensing effects. We interpret the statistics proposed in previous work in terms of different configurations of the four-point function and show how they relate to the statistic that maximizes the S/N.

  13. Adaptive wettability-enhanced surfaces ordered on molded etched substrates using shrink film

    NASA Astrophysics Data System (ADS)

    Jayadev, Shreshta; Pegan, Jonathan; Dyer, David; McLane, Jolie; Lim, Jessica; Khine, Michelle

    2013-01-01

    Superhydrophobic surfaces in nature exhibit desirable properties including self-cleaning, bacterial resistance, and flight efficiency. However, creating such intricate multi-scale features with conventional fabrication approaches is difficult, expensive, and not scalable. By patterning photoresist on pre-stressed shrink-wrap film, which contracts by 95% in surface area when heated, such features over large areas can be obtained easily. Photoresist serves as a dry etch mask to create complex and high-aspect ratio microstructures in the film. Using a double-shrink process, we introduce adaptive wettability-enhanced surfaces ordered on molded etched (AWESOME) substrates. We first create a mask out of the children’s toy ‘Shrinky-Dinks’ by printing dots using a laserjet printer. Heating this thermoplastic sheet causes the printed dots to shrink to a fraction of their original size. We then lithographically transfer the inverse pattern onto photoresist-coated shrink-wrap polyolefin film. The film is then plasma etched. After shrinking, the film serves as a high-aspect ratio mold for polydimethylsiloxane, creating a superhydrophobic surface with water contact angles >150° and sliding angles <10°. We pattern a microarray of ‘sticky’ spots with a dramatically different sliding angle compared to that of the superhydrophobic region, enabling microtiter-plate type assays without the need for a well plate.

  14. Target Acquisition for Projectile Vision-Based Navigation

    DTIC Science & Technology

    2014-03-01

    Future Work 20 8. References 21 Appendix A. Simulation Results 23 Appendix B. Derivation of Ground Resolution for a Diffraction-Limited Pinhole Camera...results for visual acquisition (left) and target recognition (right). ..........19 Figure B-1. Differential object and image areas for pinhole camera...projectile and target (measured in terms of the angle ) will depend on target heading. In particular, because we have aligned the x axis along the

  15. Multispectral radiation envelope characteristics of aerial infrared targets

    NASA Astrophysics Data System (ADS)

    Kou, Tian; Zhou, Zhongliang; Liu, Hongqiang; Yang, Yuanzhi; Lu, Chunguang

    2018-07-01

    Multispectral detection signals are relatively stable and complementary to single spectral detection signals with deficiencies of severe scintillation and poor anti-interference. To take advantage of multispectral radiation characteristics in the application of infrared target detection, the concept of a multispectral radiation envelope is proposed. To build the multispectral radiation envelope model, the temperature distribution of an aerial infrared target is calculated first. By considering the coupling heat transfer process, the heat balance equation is built by using the node network, and the convective heat transfer laws as a function of target speed are uncovered. Then, the tail flame temperature distribution model is built and the temperature distributions at different horizontal distances are calculated. Second, to obtain the optimal detection angles, envelope models of reflected background multispectral radiation and target multispectral radiation are built. Finally, the envelope characteristics of the aerial target multispectral radiation are analyzed in different wavebands in detail. The results we obtained reflect Wien's displacement law and prove the effectiveness and reasonableness of the envelope model, and also indicate that the major difference between multispectral wavebands is greatly influenced by the target speed. Moreover, optimal detection angles are obtained by numerical simulation, and these are very important for accurate and fast target detection, attack decision-making and developing multispectral detection platforms.

  16. Effects of Speed and Visual-Target Distance on Toe Trajectory During the Swing Phase of Treadmill Walking

    NASA Technical Reports Server (NTRS)

    Miller, Christopher A.; Feiveson, Al; Bloomberg, Jacob J.

    2007-01-01

    Toe trajectory during swing phase is a precise motor control task that can provide insights into the sensorimotor control of the legs. The purpose of this study was to determine changes in vertical toe trajectory during treadmill walking due to changes in walking speed and target distance. For each trial, subjects walked on a treadmill at one of five speeds while performing a dynamic visual acuity task at either a far or near target distance (five speeds two targets distances = ten trials). Toe clearance decreased with increasing speed, and the vertical toe peak just before heel strike increased with increasing speed, regardless of target distance. The vertical toe peak just after toe-off was lower during near-target visual acuity tasks than during far-target tasks, but was not affected by speed. The ankle of the swing leg appeared to be the main joint angle that significantly affected all three toe trajectory events. The foot angle of the swing leg significantly affected toe clearance and the toe peak just before heel strike. These results will be used to enhance the analysis of lower limb kinematics during the sensorimotor treadmill testing, where differing speeds and/or visual target distances may be used.

  17. Influence of target reflection on three-dimensional range gated reconstruction.

    PubMed

    Chua, Sing Yee; Wang, Xin; Guo, Ningqun; Tan, Ching Seong

    2016-08-20

    The range gated technique is a promising laser ranging method that is widely used in different fields such as surveillance, industry, and military. In a range gated system, a reflected laser pulse returned from the target scene contains key information for range reconstruction, which directly affects the system performance. Therefore, it is necessary to study the characteristics and effects of the target reflection factor. In this paper, theoretical and experimental analyses are performed to investigate the influence of target reflection on three-dimensional (3D) range gated reconstruction. Based on laser detection and ranging (LADAR) and bidirectional reflection distribution function (BRDF) theory, a 3D range gated reconstruction model is derived and the effect on range accuracy is analyzed from the perspectives of target surface reflectivity and angle of laser incidence. Our theoretical and experimental study shows that the range accuracy is proportional to the target surface reflectivity, but it decreases when the angle of incidence increases to adhere to the BRDF model. The presented findings establish a comprehensive understanding of target reflection in 3D range gated reconstruction, which is of interest to various applications such as target recognition and object modeling. This paper provides a reference for future improvement to perform accurate range compensation or correction.

  18. Computer Vision for Artificially Intelligent Robotic Systems

    NASA Astrophysics Data System (ADS)

    Ma, Chialo; Ma, Yung-Lung

    1987-04-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts -- position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed bye the main control unit. In Pulse-Echo Signal Process Unit, we ultilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by u law coding method, and this data together with delay time T, angle information OH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Model, we use a narrow beam transducer and it's input voltage is 50V p-p. A RobOt equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  19. Improved Performance Characteristics For Indium Antimonide Photovoltaic Detector Arrays Using A FET-Switched Multiplexing Technique

    NASA Astrophysics Data System (ADS)

    Ma, Yung-Lung; Ma, Chialo

    1987-03-01

    In this paper An Acoustic Imaging Recognition System (AIRS) will be introduced which is installed on an Intelligent Robotic System and can recognize different type of Hand tools' by Dynamic pattern recognition. The dynamic pattern recognition is approached by look up table method in this case, the method can save a lot of calculation time and it is practicable. The Acoustic Imaging Recognition System (AIRS) is consist of four parts _ position control unit, pulse-echo signal processing unit, pattern recognition unit and main control unit. The position control of AIRS can rotate an angle of ±5 degree Horizental and Vertical seperately, the purpose of rotation is to find the maximum reflection intensity area, from the distance, angles and intensity of the target we can decide the characteristic of this target, of course all the decision is target, of course all the decision is processed by the main control unit. In Pulse-Echo Signal Process Unit, we utilize the correlation method, to overcome the limitation of short burst of ultrasonic, because the Correlation system can transmit large time bandwidth signals and obtain their resolution and increased intensity through pulse compression in the correlation receiver. The output of correlator is sampled and transfer into digital data by p law coding method, and this data together with delay time T, angle information eH, eV will be sent into main control unit for further analysis. The recognition process in this paper, we use dynamic look up table method, in this method at first we shall set up serval recognition pattern table and then the new pattern scanned by Transducer array will be devided into serval stages and compare with the sampling table. The comparison is implemented by dynamic programing and Markovian process. All the hardware control signals, such as optimum delay time for correlator receiver, horizental and vertical rotation angle for transducer plate, are controlled by the Main Control Unit, the Main Control Unit also handles the pattern recognition process. The distance from the target to the transducer plate is limitted by the power and beam angle of transducer elements, in this AIRS Models, we use a narrow beam transducer and it's input voltage is 50V p-p. A Robot equipped with AIRS can not only measure the distance from the target but also recognize a three dimensional image of target from the image lab of Robot memory. Indexitems, Accoustic System, Supersonic transducer, Dynamic programming, Look-up-table, Image process, pattern Recognition, Quad Tree, Quadappoach.

  20. Impact angle constrained three-dimensional integrated guidance and control for STT missile in the presence of input saturation.

    PubMed

    Wang, Sen; Wang, Weihong; Xiong, Shaofeng

    2016-09-01

    Considering a class of skid-to-turn (STT) missile with fixed target and constrained terminal impact angles, a novel three-dimensional (3D) integrated guidance and control (IGC) scheme is proposed in this paper. Based on coriolis theorem, the fully nonlinear IGC model without the assumption that the missile flies heading to the target at initial time is established in the three-dimensional space. For this strict-feedback form of multi-variable system, dynamic surface control algorithm is implemented combining with extended observer (ESO) to complete the preliminary design. Then, in order to deal with the problems of the input constraints, a hyperbolic tangent function is introduced to approximate the saturation function and auxiliary system including a Nussbaum function established to compensate for the approximation error. The stability of the closed-loop system is proven based on Lyapunov theory. Numerical simulations results show that the proposed integrated guidance and control algorithm can ensure the accuracy of target interception with initial alignment angle deviation and the input saturation is suppressed with smooth deflection curves. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Prospective, non-interventional, multicenter study of the intraocular pressure-lowering effects of prostaglandin analog/prostamide-containing therapies in previously treated patients with open-angle glaucoma or ocular hypertension

    PubMed Central

    Tamçelik, Nevbahar; Izgi, Belgin; Temel, Ahmet; Yildirim, Nilgun; Okka, Mehmet; Özcan, Altan; Yüksel, Nurşen; Elgin, Ufuk; Altan, Çiğdem; Ozer, Baris

    2017-01-01

    Objective The objective of this study was to assess the intraocular pressure (IOP)-lowering efficacy, tolerability, safety, and usage patterns of prostaglandin analog/prostamide (PGA/P)-containing topical ocular hypotensives in ocular hypertension (OHT) and primary open-angle glaucoma in the Turkish clinical setting. Methods This non-interventional, multicenter study enrolled previously treated patients who failed to achieve target IOP (or experienced unacceptable adverse events [AEs]) and were prescribed a PGA/P-containing IOP-lowering agent. Treatment was initiated at baseline (V1), and patients returned at weeks 4–6 (V2) and 8–12 (V3). The primary efficacy measure was the change in IOP from baseline at V3 in each eye. The secondary measures were physician’s assessment of IOP-lowering efficacy, patients (%) reaching target IOP determined at V1, hyperemia score, physician and patient assessment of study treatment tolerability at V3, and AE frequency/severity. A subgroup analysis of patients receiving the most common study treatment was conducted. All analyses were performed using the safety population (patients who received one or more doses and had any data available). Results Of 358 enrolled patients, 60.6% had primary open-angle glaucoma, 29.9% had secondary open-angle glaucoma (protocol amendment), and 13.1% had OHT; 13 patients had multiple diagnoses. At V3, the mean IOP change from baseline was ≥−4.2 mmHg (≥21.1%). IOP met or was lower than the target in 81.7% of patients, 95% exhibited none to mild conjunctival hyperemia (most common AE), and tolerability was rated good/very good by >91.1% of patients and physicians. The results were similar in patients who received the most common study treatment, bimatoprost 0.03%/timolol 0.5% (bim/tim; n=310). Conclusion PGA/P-containing medications, including bim/tim, significantly reduced IOP in previously treated patients with open-angle glaucoma or OHT; most reached their target IOP or an IOP even lower than their target and reported good/very good tolerability. PGA/P-containing medications such as bim/tim should be considered as a safe, effective therapeutic option for Turkish patients who exhibit poor response, tolerance, or adherence to their previous therapy. PMID:28458511

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirata, Masaaki, E-mail: masaaki314@gmail.com; Watanabe, Ryouhei; Koyano, Yasuhiro

    PurposeTo demonstrate the use of “Smart Puncture,” a smartphone application to assist conventional CT-guided puncture without CT fluoroscopy, and to describe the advantages of this application.Materials and MethodsA puncture guideline is displayed by entering the angle into the application. Regardless of the angle at which the device is being held, the motion sensor ensures that the guideline is displayed at the appropriate angle with respect to gravity. The angle of the smartphone’s liquid crystal display (LCD) is also detected, preventing needle deflection from the CT slice image. Physicians can perform the puncture procedure by advancing the needle using the guidelinemore » while the smartphone is placed adjacent to the patient. In an experimental puncture test using a sponge as a target, the target was punctured at 30°, 50°, and 70° when the device was tilted to 0°, 15°, 30°, and 45°, respectively. The punctured target was then imaged with a CT scan, and the puncture error was measured.ResultsThe mean puncture error in the plane parallel to the LCD was less than 2°, irrespective of device tilt. The mean puncture error in the sagittal plane was less than 3° with no device tilt. However, the mean puncture error tended to increase when the tilt was increased.ConclusionThis application can transform a smartphone into a valuable tool that is capable of objectively and accurately assisting CT-guided puncture procedures.« less

  3. Simulation of real-gas effects on pressure distributions for aeroassist flight experiment vehicle and comparison with prediction

    NASA Technical Reports Server (NTRS)

    Micol, John R.

    1992-01-01

    Pressure distributions measured on a 60 degree half-angle elliptic cone, raked off at an angle of 73 degrees from the cone centerline and having an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane) are presented for angles of attack from -10 degrees to 10 degrees. The high normal shock density ratio aspect of a real gas was simulated by testing in Mach 6 air and CF sub 4 (density ratio equal to 5.25 and 12.0, respectively). The effects of Reynolds number, angle of attack, and normal shock density ratio on these measurements are examined, and comparisons with a three dimensional Euler code known as HALIS are made. A significant effect of density ratio on pressure distributions on the cone section of the configuration was observed; the magnitude of this effect decreased with increasing angle of attack. The effect of Reynolds number on pressure distributions was negligible for forebody pressure distributions, but a measurable effect was noted on base pressures. In general, the HALIS code accurately predicted the measured pressure distributions in air and CF sub 4.

  4. Setup and evaluation of a sensor tilting system for dimensional micro- and nanometrology

    NASA Astrophysics Data System (ADS)

    Schuler, Alexander; Weckenmann, Albert; Hausotte, Tino

    2014-06-01

    Sensors in micro- and nanometrology show their limits if the measurement objects and surfaces feature high aspect ratios, high curvature and steep surface angles. Their measurable surface angle is limited and an excess leads to measurement deviation and not detectable surface points. We demonstrate a principle to adapt the sensor's working angle during the measurement keeping the sensor in its optimal working angle. After the simulation of the principle, a hardware prototype was realized. It is based on a rotary kinematic chain with two rotary degrees of freedom, which extends the measurable surface angle to ±90° and is combined with a nanopositioning and nanomeasuring machine. By applying a calibration procedure with a quasi-tactile 3D sensor based on electrical near-field interaction the systematic position deviation of the kinematic chain is reduced. The paper shows for the first time the completed setup and integration of the prototype, the performance results of the calibration, the measurements with the prototype and the tilting principle, and finishes with the interpretation and feedback of the practical results.

  5. Experimental investigation of unsteady flows at large incidence angles in a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; King, Aaron J.; Capece, Vincent R.; El-Aini, Yehia M.

    1996-01-01

    The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies up to 0.8 for out-of-phase oscillations at Mach numbers up to 0.8 and chordal incidence angles of 0 deg and 10 deg. For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

  6. Ecosystem Services in Conservation Planning: Targeted Benefits vs. Co-Benefits or Costs?

    PubMed Central

    Chan, Kai M. A.; Hoshizaki, Lara; Klinkenberg, Brian

    2011-01-01

    There is growing support for characterizing ecosystem services in order to link conservation and human well-being. However, few studies have explicitly included ecosystem services within systematic conservation planning, and those that have follow two fundamentally different approaches: ecosystem services as intrinsically-important targeted benefits vs. substitutable co-benefits. We present a first comparison of these two approaches in a case study in the Central Interior of British Columbia. We calculated and mapped economic values for carbon storage, timber production, and recreational angling using a geographical information system (GIS). These ‘marginal’ values represent the difference in service-provision between conservation and managed forestry as land uses. We compared two approaches to including ecosystem services in the site-selection software Marxan: as Targeted Benefits, and as Co-Benefits/Costs (in Marxan's cost function); we also compared these approaches with a Hybrid approach (carbon and angling as targeted benefits, timber as an opportunity cost). For this analysis, the Co-Benefit/Cost approach yielded a less costly reserve network than the Hybrid approach (1.6% cheaper). Including timber harvest as an opportunity cost in the cost function resulted in a reserve network that achieved targets equivalently, but at 15% lower total cost. We found counter-intuitive results for conservation: conservation-compatible services (carbon, angling) were positively correlated with each other and biodiversity, whereas the conservation-incompatible service (timber) was negatively correlated with all other networks. Our findings suggest that including ecosystem services within a conservation plan may be most cost-effective when they are represented as substitutable co-benefits/costs, rather than as targeted benefits. By explicitly valuing the costs and benefits associated with services, we may be able to achieve meaningful biodiversity conservation at lower cost and with greater co-benefits. PMID:21915318

  7. Vastus lateralis single motor unit EMG at the same absolute torque production at different knee angles.

    PubMed

    Altenburg, T M; de Haan, A; Verdijk, P W L; van Mechelen, W; de Ruiter, C J

    2009-07-01

    Single motor unit electromyographic (EMG) activity of the knee extensors was investigated at different knee angles with subjects (n = 10) exerting the same absolute submaximal isometric torque at each angle. Measurements were made over a 20 degrees range around the optimum angle for torque production (AngleTmax) and, where feasible, over a wider range (50 degrees ). Forty-six vastus lateralis (VL) motor units were recorded at 20.7 +/- 17.9 %maximum voluntary contraction (%MVC) together with the rectified surface EMG (rsEMG) of the superficial VL muscle. Due to the lower maximal torque capacity at positions more flexed and extended than AngleTmax, single motor unit recruitment thresholds were expected to decrease and discharge rates were expected to increase at angles above and below AngleTmax. Unexpectedly, the recruitment threshold was higher (P < 0.05) at knee angles 10 degrees more extended (43.7 +/- 22.2 N.m) and not different (P > 0.05) at knee angles 10 degrees more flexed (35.2 +/- 17.9 N.m) compared with recruitment threshold at AngleTmax (41.8 +/- 21.4 N.m). Also, unexpectedly the discharge rates were similar (P > 0.05) at the three angles: 11.6 +/- 2.2, 11.6 +/- 2.1, and 12.3 +/- 2.1 Hz. Similar angle independent discharge rates were also found for 12 units (n = 5; 7.4 +/- 5.4 %MVC) studied over the wider (50 degrees ) range, while recruitment threshold only decreased at more flexed angles. In conclusion, the similar recruitment threshold and discharge behavior of VL motor units during submaximal isometric torque production suggests that net motor unit activation did not change very much along the ascending limb of the knee-angle torque relationship. Several factors such as length-dependent twitch potentiation, which may contribute to this unexpected aspect of motor control, are discussed.

  8. Smartphone-Guided Needle Angle Selection During CT-Guided Procedures.

    PubMed

    Xu, Sheng; Krishnasamy, Venkatesh; Levy, Elliot; Li, Ming; Tse, Zion Tsz Ho; Wood, Bradford John

    2018-01-01

    In CT-guided intervention, translation from a planned needle insertion angle to the actual insertion angle is estimated only with the physician's visuospatial abilities. An iPhone app was developed to reduce reliance on operator ability to estimate and reproduce angles. The iPhone app overlays the planned angle on the smartphone's camera display in real-time based on the smartphone's orientation. The needle's angle is selected by visually comparing the actual needle with the guideline in the display. If the smartphone's screen is perpendicular to the planned path, the smartphone shows the Bull's-Eye View mode, in which the angle is selected after the needle's hub overlaps the tip in the camera. In phantom studies, we evaluated the accuracies of the hardware, the Guideline mode, and the Bull's-Eye View mode and showed the app's clinical efficacy. A proof-of-concept clinical case was also performed. The hardware accuracy was 0.37° ± 0.27° (mean ± SD). The mean error and navigation time were 1.0° ± 0.9° and 8.7 ± 2.3 seconds for a senior radiologist with 25 years' experience and 1.5° ± 1.3° and 8.0 ± 1.6 seconds for a junior radiologist with 4 years' experience. The accuracy of the Bull's-Eye View mode was 2.9° ± 1.1°. Combined CT and smart-phone guidance was significantly more accurate than CT-only guidance for the first needle pass (p = 0.046), which led to a smaller final targeting error (mean distance from needle tip to target, 2.5 vs 7.9 mm). Mobile devices can be useful for guiding needle-based interventions. The hardware is low cost and widely available. The method is accurate, effective, and easy to implement.

  9. Toward a mechanistic understanding of vulnerability to hook-and-line fishing: Boldness as the basic target of angling-induced selection.

    PubMed

    Klefoth, Thomas; Skov, Christian; Kuparinen, Anna; Arlinghaus, Robert

    2017-12-01

    In passively operated fishing gear, boldness-related behaviors should fundamentally affect the vulnerability of individual fish and thus be under fisheries selection. To test this hypothesis, we used juvenile common-garden reared carp ( Cyprinus carpio ) within a narrow size range to investigate the mechanistic basis of behavioral selection caused by angling. We focused on one key personality trait (i.e., boldness), measured in groups within ponds, two morphological traits (body shape and head shape), and one life-history trait (juvenile growth capacity) and studied mean standardized selection gradients caused by angling. Carp behavior was highly repeatable within ponds. In the short term, over seven days of fishing, total length, not boldness, was the main predictor of angling vulnerability. However, after 20 days of fishing, boldness turned out to be the main trait under selection, followed by juvenile growth rate, while morphological traits were only weakly related to angling vulnerability. In addition, we found juvenile growth rate to be moderately correlated with boldness. Hence, direct selection on boldness will also induce indirect selection on juvenile growth and vice versa, but given that the two traits are not perfectly correlated, independent evolution of both traits is also possible. Our study is among the first to mechanistically reveal that energy-acquisition-related behaviors, and not growth rate per se, are key factors determining the probability of capture, and hence, behavioral traits appear to be the prime targets of angling selection. We predict an evolutionary response toward increased shyness in intensively angling-exploited fish stocks, possibly causing the emergence of a timidity syndrome.

  10. Polarization differences in airborne ground penetrating radar performance for landmine detection

    NASA Astrophysics Data System (ADS)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  11. Impact of basic angle variations on the parallax zero point for a scanning astrometric satellite

    NASA Astrophysics Data System (ADS)

    Butkevich, Alexey G.; Klioner, Sergei A.; Lindegren, Lennart; Hobbs, David; van Leeuwen, Floor

    2017-07-01

    Context. Determination of absolute parallaxes by means of a scanning astrometric satellite such as Hipparcos or Gaia relies on the short-term stability of the so-called basic angle between the two viewing directions. Uncalibrated variations of the basic angle may produce systematic errors in the computed parallaxes. Aims: We examine the coupling between a global parallax shift and specific variations of the basic angle, namely those related to the satellite attitude with respect to the Sun. Methods: The changes in observables produced by small perturbations of the basic angle, attitude, and parallaxes were calculated analytically. We then looked for a combination of perturbations that had no net effect on the observables. Results: In the approximation of infinitely small fields of view, it is shown that certain perturbations of the basic angle are observationally indistinguishable from a global shift of the parallaxes. If these kinds of perturbations exist, they cannot be calibrated from the astrometric observations but will produce a global parallax bias. Numerical simulations of the astrometric solution, using both direct and iterative methods, confirm this theoretical result. For a given amplitude of the basic angle perturbation, the parallax bias is smaller for a larger basic angle and a larger solar aspect angle. In both these respects Gaia has a more favourable geometry than Hipparcos. In the case of Gaia, internal metrology is used to monitor basic angle variations. Additionally, Gaia has the advantage of detecting numerous quasars, which can be used to verify the parallax zero point.

  12. Triangulation methods for automated docking

    NASA Technical Reports Server (NTRS)

    Bales, John W.

    1996-01-01

    An automated docking system must have a reliable method for determining range and orientation of the passive (target) vehicle with respect to the active vehicle. This method must also provide accurate information on the rates of change of range to and orientation of the passive vehicle. The method must be accurate within required tolerances and capable of operating in real time. The method being developed at Marshall Space Flight Center employs a single TV camera, a laser illumination system and a target consisting, in its minimal configuration, of three retro-reflectors. Two of the retro-reflectors are mounted flush to the same surface, with the third retro-reflector mounted to a post fixed midway between the other two and jutting at a right angle from the surface. For redundancy, two additional retroreflectors are mounted on the surface on a line at right angles to the line containing the first two retro-reflectors, and equally spaced on either side of the post. The target vehicle will contain a large target for initial acquisition and several smaller targets for close range.

  13. Surgical anatomy of the radial nerve at the elbow.

    PubMed

    Artico, M; Telera, S; Tiengo, C; Stecco, C; Macchi, V; Porzionato, A; Vigato, E; Parenti, A; De Caro, R

    2009-02-01

    An anatomical study of the brachial portion of the radial nerve with surgical implications is proposed. Thirty specimens of arm from 20 fresh cadavers (11 male, 9 female) were used to examine the topographical relations of the radial nerve with reference to the following anatomical landmarks: acromion angle, medial and lateral epicondyles, point of division between the lateral and long heads of the triceps brachii, lateral intermuscular septum, site of division of the radial nerve into its superficial and posterior interosseous branches and entry and exit point of the posterior interosseous branch into the supinator muscle. The mean distances between the acromion angle and the medial and lateral levels of crossing the posterior aspect of the humerus were 109 (+/-11) and 157 (+/-11) mm, respectively. The mean length and calibre of the nerve in the groove were 59 (+/-4) and 6 (+/-1) mm, respectively. The division of the lateral and long heads of the triceps was found at a mean distance of 126 (+/-13) mm from the acromion angle. The mean distances between the lateral point of crossing the posterior aspect of the humerus and the medial and lateral epicondyles were 125 (+/-13) and 121 (+/-13) mm, respectively. The mean distance between the lateral point of crossing the posterior aspect of the humerus and the entry point in the lateral intermuscular septum (LIS) was 29 (+/-6) mm. The mean distances between the entry point of the nerve in the LIS and the medial and lateral epicondyles were 133 (+/-14) and 110 (+/-23) mm, respectively. Our study provides reliable and objective data of surgical anatomy of the radial nerve which should be always kept in mind by surgeons approaching to the surgery of the arm, in order to avoid iatrogenic injuries.

  14. Analysis of video-recorded images to determine linear and angular dimensions in the growing horse.

    PubMed

    Hunt, W F; Thomas, V G; Stiefel, W

    1999-09-01

    Studies of growth and conformation require statistical methods that are not applicable to subjective conformation standards used by breeders and trainers. A new system was developed to provide an objective approach for both science and industry, based on analysis of video images to measure aspects of conformation that were represented by angles or lengths. A studio crush was developed in which video images of horses of different sizes were taken after bone protuberances, located by palpation, were marked with white paper stickers. Screen pixel coordinates of calibration marks, bone markers and points on horse outlines were digitised from captured images and corrected for aspect ratio and 'fish-eye' lens effects. Calculations from the corrected coordinates produced linear dimensions and angular dimensions useful for comparison of horses for conformation and experimental purposes. The precision achieved by the method in determining linear and angular dimensions was examined through systematically determining variance for isolated steps of the procedure. Angles of the front limbs viewed from in front were determined with a standard deviation of 2-5 degrees and effects of viewing angle were detectable statistically. The height of the rump and wither were determined with precision closely related to the limitations encountered in locating a point on a screen, which was greater for markers applied to the skin than for points at the edge of the image. Parameters determined from markers applied to the skin were, however, more variable (because their relation to bone position was affected by movement), but still provided a means by which a number of aspects of size and conformation can be determined objectively for many horses during growth. Sufficient precision was achieved to detect statistically relatively small effects on calculated parameters of camera height position.

  15. The effect of viewing angle on the spectral behavior of a Gd plasma source near 6.7 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Gorman, Colm; Li Bowen; Cummins, Thomas

    2012-04-02

    We have demonstrated the effect of viewing angle on the extreme ultraviolet (EUV) emission spectra of gadolinium (Gd) near 6.7 nm. The spectra are shown to have a strong dependence on viewing angle when produced with a laser pulse duration of 10 ns, which may be attributed to absorption by low ion stages of Gd and an angular variation in the ion distribution. Absorption effects are less pronounced at a 150-ps pulse duration due to reduced opacity resulting from plasma expansion. Thus for evaluating source intensity, it is necessary to allow for variation with both viewing angle and target orientation.

  16. Embedding A4 into left-right flavor symmetry: Tribimaximal neutrino mixing and fermion hierarchy

    NASA Astrophysics Data System (ADS)

    Bazzocchi, F.; Morisi, S.; Picariello, M.

    2008-01-01

    We address two fundamental aspects of flavor physics: the mass hierarchy and the large lepton mixing angles. On one side, left-right flavor symmetry realizes the democratic mass matrix patterns and explains why one family is much heavier than the others. On the other side, discrete flavor symmetry such as A4 leads to the observed tribimaximal mixing for the leptons. We show that, by explicitly breaking the left-right flavor symmetry into the diagonal A4, it is possible to explain both the observed charged fermion mass hierarchies and quark and lepton mixing angles. In particular we predict a heavy 3rd family, the tribimaximal mixing for the leptons, and we suggest a possible origin of the Cabibbo and other mixing angles for the quarks.

  17. Technology and operational considerations for low-heat-rate trajectories. [of future winged earth reentry vehicles

    NASA Technical Reports Server (NTRS)

    Wurster, K. E.; Eldred, C. H.

    1979-01-01

    A broad parametric study which examines several critical aspects of low-heat-rate entry trajectories is performed. Low planform loadings associated with future winged earth-entry vehicles coupled with the potential application of metallic thermal protection systems (TPS) suggest that such trajectories are of particular interest. Studied are three heating conditions - reference, stagnation, and windward centerline, for both laminar and turbulent flow; configuration-related factors including planform loading and hypersonic angle of attack; and mission-related factors such as cross-range and orbit inclination. Results indicate benefits in the design of TPS to be gained by utilizing moderate angles of attack as opposed to high-lift coefficient, high angles of attack, during entry. An assessment of design and technology implications is made.

  18. Space shuttle: High angle of attack transition and low angle of attack launch phase aerodynamic stability and control of GD/C B-18E-2, B-18E-3 delta wing booster, and launch configuration of MSC-040A orbiter and twin pressure fed boosters

    NASA Technical Reports Server (NTRS)

    Debevoise, J. M.; Mcginnis, R. F.

    1972-01-01

    The test was a conventional stability and control test except for two aspects. One was the very high angles of attack at which the delta wing configurations were tested (up to 60 degrees) at Mach numbers of 3 and 4.96. The other was the installation of the orbiter and twin boosters in a manner that caused the support system to induce normal forces and side forces on the aft portion of the boosters at all Mach numbers; i.e., the support and the booster bodies were close together, side by side.

  19. Flare research with the NASA/MSFC vector magnetograph - Observed characteristics of sheared magnetic fields that produce flares

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Hagyard, M. J.; Davis, J. M.

    1987-01-01

    The present MSFC Vector Magnetograph has sufficient spatial resolution (2.7 arcsec pixels) and sensitivity to the transverse field (the noise level is about 100 gauss) to map the transverse field in active regions accurately enough to reveal key aspects of the sheared magnetic fields commonly found at flare sites. From the measured shear angle along the polarity inversion line in sites that flared and in other shear sites that didn't flare, evidence is found that a sufficient condition for a flare to occur in 1000 gauss fields in and near sunspots is that both: (1) the maximum shear angle exceed 85 degrees; and (2) the extent of strong shear (shear angle of greater than 80 degrees) exceed 10,000 km.

  20. An experimental investigation of an oblique-wing and body combination at Mach numbers between 0.60 and 1.40

    NASA Technical Reports Server (NTRS)

    Graham, L. A.; Jones, R. T.; Boltz, F. W.

    1972-01-01

    An experimental investigation was conducted in an 11- by 11-foot wind tunnel to determine the aerodynamic characteristics of an oblique high aspect ratio wing in combination with a high fineness-ratio Sears-Haack body. Longitudinal and lateral-directional stability data were obtained at wing yaw angles from 0 deg to 60 deg over a test Mach number range from 0.6 to 1.4 for angles of attack between minus 6 deg and 9 deg. The effects of changes in Reynolds number, dihedral, and trailing-edge angle were studied along with the effects of a roughness strip on the upper and lower surfaces of the wing. Flow-visualization studies were made to determine the nature of the flow on the wing surfaces.

  1. Prospects for high accuracy time dissemination and synchronization using coded radar pulses from a low-earth orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Detoma, Edoardo V.; Dionisio, C.

    1995-01-01

    The radar (an acronym for radio detection and ranging) is an instrument developed just before the WW-II to precisely measure the position of an object (target) in space. This is done by emitting a narrow pulse of electromagnetic energy in the RF spectrum, receiving the return echo and measuring the time of flight in the two-way path from the emitter to the target. The propagation delay provides a measure of the range to the target, which is not in itself sufficient to uniquely locate the position of the same in space. However, if a directional antenna is used, the direction of the echo can be assessed by the antenna pointing angles. In this way the position of the target can be uniquely determined in space. How well this can be done is a function of the resolution of the measurements performed (range and direction, i.e.: angles); in turn, the resolution will dictate the time and frequency requirements of the reference oscillator.

  2. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  3. Dual Ion Species Plasma Expansion from Isotopically Layered Cryogenic Targets

    NASA Astrophysics Data System (ADS)

    Scott, G. G.; Carroll, D. C.; Astbury, S.; Clarke, R. J.; Hernandez-Gomez, C.; King, M.; Alejo, A.; Arteaga, I. Y.; Dance, R. J.; Higginson, A.; Hook, S.; Liao, G.; Liu, H.; Mirfayzi, S. R.; Rusby, D. R.; Selwood, M. P.; Spindloe, C.; Tolley, M. K.; Wagner, F.; Zemaityte, E.; Borghesi, M.; Kar, S.; Li, Y.; Roth, M.; McKenna, P.; Neely, D.

    2018-05-01

    A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer-thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modeling shows that by controlling the deuterium layer thickness, a composite H+/D+ ion beam can be produced by target normal sheath acceleration (TNSA), with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modeling shows that a (4.3 ±0.7 ) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9°. Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4 ±0.7 ) MeV per nucleon was measured in a cone of half angle 7°-9°, while maintaining a significant TNSA proton component.

  4. Shuttle orbiter KU-band radar/communications system design evaluation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An expanded introduction is presented which addresses the in-depth nature of the tasks and indicates continuity of the reported effort and results with previous work and related contracts, and the two major modes of operation which exist in the Ku-band system, namely, the radar mode and the communication mode, are described. The Ku-band radar system is designed to search for a target in a designated or undesignated mode, then track the detected target, which might be cooperative (active) or passive, providing accurate, estimates of the target range, range rate, angle and angle rate to enable the orbiter to rendezvous with this target. The radar mode is described along with a summary of its predicted performance. The principal sub-unit that implements the radar function is the electronics assembly 2(EA-2). The relationship of EA-2 to the remainder of the Ku-band system is shown. A block diagram of EA-2 is presented including the main command and status signals between EA-2 and the other Ku-band units.

  5. Effects of Optical Pitch on Oculomotor Control and the Perception of Target Elevation

    NASA Technical Reports Server (NTRS)

    Cohen, Malcom M.; Ebenholtz, Sheldon M.; Linder, Barry J.

    1995-01-01

    In two experiments, we used an ISCAN infrared video system to examine the influence of a pitched visual array on gaze elevation and on judgments of visually perceived eye level. In Experiment 1, subjects attempted to direct their gaze to a relaxed or to a horizontal orientation while they were seated in a room whose walls were pitched at various angles with respect to gravity. Gaze elevation was biased in the direction in which the room was pitched. In Experiment 2, subjects looked into a small box that was pitched at various angles while they attempted simply to direct their gaze alone, or to direct their gaze and place a visual target at their apparent horizon. Both gaze elevation and target settings varied systematically with the pitch orientation of the box. Our results suggest that under these conditions, an optostatic response, of which the subject is unaware, is responsible for the changes in both gaze elevation and judgments of target elevation.

  6. Optimal approach for complete liver tumor ablation using radiofrequency ablation: a simulation study.

    PubMed

    Givehchi, Sogol; Wong, Yin How; Yeong, Chai Hong; Abdullah, Basri Johan Jeet

    2018-04-01

    To investigate the effect of radiofrequency ablation (RFA) electrode trajectory on complete tumor ablation using computational simulation. The RFA of a spherical tumor of 2.0 cm diameter along with 0.5 cm clinical safety margin was simulated using Finite Element Analysis software. A total of 86 points inside one-eighth of the tumor volume along the axial, sagittal and coronal planes were selected as the target sites for electrode-tip placement. The angle of the electrode insertion in both craniocaudal and orbital planes ranged from -90° to +90° with 30° increment. The RFA electrode was simulated to pass through the target site at different angles in combination of both craniocaudal and orbital planes before being advanced to the edge of the tumor. Complete tumor ablation was observed whenever the electrode-tip penetrated through the epicenter of the tumor regardless of the angles of electrode insertion in both craniocaudal and orbital planes. Complete tumor ablation can also be achieved by placing the electrode-tip at several optimal sites and angles. Identification of the tumor epicenter on the central slice of the axial images is essential to enhance the success rate of complete tumor ablation during RFA procedures.

  7. Analysis of normalized radar cross section (sigma-O) signature of Amazon rain forest using SEASAT scatterometer data

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M.; Sweet, J. L.

    1984-01-01

    The normalized radar cross section (NRCS) signature of the Amazon rain forest was SEASAT scatterometer data. Statistics of the measured (NRCS) values were determined from multiple orbit passes for three local time periods. Plots of mean normalized radar cross section, dB against incidence angle as a function of beam and polarization show that less than 0.3 dB relative bias exists between all beams over a range of incidence angle from 30 deg to 53 deg. The backscattered measurements analyzed show the Amazon rain forest to be relatively homogeneous, azimuthally isotropic and insensitive to polarization. The return from the rain forest target appears relatively consistent and stable, except for the small diurnal variation (0.75 dB) that occurs at sunrise. Because of the relative stability of the rain forest target and the scatterometer instrument, the response of versus incidence angle was able to detect errors in the estimated yaw altitude angle. Also, small instrument gain biases in some of the processing channels were detected. This led to the development of an improved NRCS algorithm, which uses a more accurate method for estimating the system noise power.

  8. Vertical navigation displays : pilot performance and workload during simulated constant-angle-of-descent GPS approaches

    DOT National Transportation Integrated Search

    2000-03-26

    This study compared the effect of alternative graphic or : numeric cockpit display formats on the tactical aspects of : vertical navigation (VNAV). Display formats included: : a) a moving map with altitude range arc, b) the same : format, supplemente...

  9. SCD 02 thermal design

    NASA Technical Reports Server (NTRS)

    Cardoso, Humberto Pontes

    1990-01-01

    The Satelite de Coleta de Dados (SCD) 02 (Data Collection Satellite) has the following characteristics: 115 kg weight, octagonal prism shape, 1 m diameter, and 0.67 m height. Its specified orbit is nearly circular, 700 km altitude, is inclined 25 deg with respect to the equator line, and has 100 min period. The electric power is supplied by eight solar panels installed on the lateral sides of the satellite. The equipment is located on the central (both faces) and lower (internal face) panels. The satellite is spin stabilized and its attitude control is such that during its lifetime, the solar aspect angle will vary between 80 and 100 deg with respect to its spin axis. Two critical cases were selected for thermal control design purposes: Hot case (maximum solar constant, solar aspect angle equal to 100 deg, minimum eclipse time and maximum internal heat dissipation); and a passive thermal design concept was achieved and the maximum and minimum equipment operating temperatures were obtained through a 109 node finite difference mathematical model.

  10. Jet trajectories and surface pressures induced on a body of revolution with various dual jet configurations

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Jakubowski, A. K.; Aoyagi, K.

    1983-01-01

    A jet in a cross flow is of interest in practical situations including jet-powered VTOL aircraft. Three aspects of the problem have received little prior study. First is the effect of the angle of the jet to the crossflow. Second is the performance of dual-jet configurations. The third item for further study is a jet injected from a body of revolution as opposed to a flat plate. The Test Plan for this work was designed to address these three aspects. The experiments were conducted in the 7 x 10 tunnel at NASA Ames at velocities 14.5 - 35.8 m/sec (47.6 - 117.4 ft/sec). Detailed pressure distributions are presented for single and dual jets over a range of velocity ratios from 3 to 8, spacings from 2 to 6 diameters and injection angles of 90, 75 and 60 degrees. Some flowfield measurements are also presented, and it is shown that a simple analysis is capable of predicting the trajectories of the jets.

  11. Stability and Control Characteristics of a Complete Airplane Model Having a Wing with Quarter-chord Line Swept Back 40 Degrees, Aspect Ratio 2.50, and Taper Ratio 0.42

    NASA Technical Reports Server (NTRS)

    Schulderfrei, Marvin; Comisarow, Paul; Goodson, Kenneth W

    1951-01-01

    An investigation has been made of a complete airplane model having a wing with the quarter-chord line swept back 40 degrees, aspect ratio 2.50, and taper ratio 0.42 to determine its low-speed stability and control characteristics. The longitudinal stability investigation included stabilizer and tail-off tests with different wing dihedral angles (Gamma = 0 degrees and Gamma = -10 degrees) over an angle-of-attack range for the cruising and landing configurations and tests. with a high horizontal-tail location (Gamma = -10 degrees) for the cruising configuration. Tests were made of the wing alone and to determine the effect of wing end plates in pitch. Lateral stability characteristics were determined for the airplane with different geometric wing dihedrals, with end plates, and with several dorsal modifications. Tests were made with ailerons and spoilers to determine control characteristics.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galambos, John D.; Anderson, David E.; Bechtol, D.

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  13. A limited-angle intrafraction verification (LIVE) system for radiation therapy.

    PubMed

    Ren, Lei; Zhang, You; Yin, Fang-Fang

    2014-02-01

    Currently, no 3D or 4D volumetric x-ray imaging techniques are available for intrafraction verification of target position during actual treatment delivery or in-between treatment beams, which is critical for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) treatments. This study aims to develop a limited-angle intrafraction verification (LIVE) system to use prior information, deformation models, and limited angle kV-MV projections to verify target position intrafractionally. The LIVE system acquires limited-angle kV projections simultaneously during arc treatment delivery or in-between static 3D/IMRT treatment beams as the gantry moves from one beam to the next. Orthogonal limited-angle MV projections are acquired from the beam's eye view (BEV) exit fluence of arc treatment beam or in-between static beams to provide additional anatomical information. MV projections are converted to kV projections using a linear conversion function. Patient prior planning CT at one phase is used as the prior information, and the on-board patient volume is considered as a deformation of the prior images. The deformation field is solved using the data fidelity constraint, a breathing motion model extracted from the planning 4D-CT based on principal component analysis (PCA) and a free-form deformation (FD) model. LIVE was evaluated using a 4D digital extended cardiac torso phantom (XCAT) and a CIRS 008A dynamic thoracic phantom. In the XCAT study, patient breathing pattern and tumor size changes were simulated from CT to treatment position. In the CIRS phantom study, the artificial target in the lung region experienced both size change and position shift from CT to treatment position. Varian Truebeam research mode was used to acquire kV and MV projections simultaneously during the delivery of a dynamic conformal arc plan. The reconstruction accuracy was evaluated by calculating the 3D volume percentage difference (VPD) and the center of mass (COM) difference of the tumor in the true on-board images and reconstructed images. In both simulation and phantom studies, LIVE achieved substantially better reconstruction accuracy than reconstruction using PCA or FD deformation model alone. In the XCAT study, the average VPD and COM differences among different patient scenarios for LIVE system using orthogonal 30° scan angles were 4.3% and 0.3 mm when using kV+BEV MV. Reducing scan angle to 15° increased the average VPD and COM differences to 15.1% and 1.7 mm. In the CIRS phantom study, the VPD and COM differences for the LIVE system using orthogonal 30° scan angles were 6.4% and 1.4 mm. Reducing scan angle to 15° increased the VPD and COM differences to 51.9% and 3.8 mm. The LIVE system has the potential to substantially improve intrafraction target localization accuracy by providing volumetric verification of tumor position simultaneously during arc treatment delivery or in-between static treatment beams. With this improvement, LIVE opens up a new avenue for margin reduction and dose escalation in both fractionated treatments and SRS and SBRT treatments.

  14. A limited-angle intrafraction verification (LIVE) system for radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Lei, E-mail: lei.ren@duke.edu; Yin, Fang-Fang; Zhang, You

    Purpose: Currently, no 3D or 4D volumetric x-ray imaging techniques are available for intrafraction verification of target position during actual treatment delivery or in-between treatment beams, which is critical for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) treatments. This study aims to develop a limited-angle intrafraction verification (LIVE) system to use prior information, deformation models, and limited angle kV-MV projections to verify target position intrafractionally. Methods: The LIVE system acquires limited-angle kV projections simultaneously during arc treatment delivery or in-between static 3D/IMRT treatment beams as the gantry moves from one beam to the next. Orthogonal limited-angle MV projectionsmore » are acquired from the beam's eye view (BEV) exit fluence of arc treatment beam or in-between static beams to provide additional anatomical information. MV projections are converted to kV projections using a linear conversion function. Patient prior planning CT at one phase is used as the prior information, and the on-board patient volume is considered as a deformation of the prior images. The deformation field is solved using the data fidelity constraint, a breathing motion model extracted from the planning 4D-CT based on principal component analysis (PCA) and a free-form deformation (FD) model. LIVE was evaluated using a 4D digital extended cardiac torso phantom (XCAT) and a CIRS 008A dynamic thoracic phantom. In the XCAT study, patient breathing pattern and tumor size changes were simulated from CT to treatment position. In the CIRS phantom study, the artificial target in the lung region experienced both size change and position shift from CT to treatment position. Varian Truebeam research mode was used to acquire kV and MV projections simultaneously during the delivery of a dynamic conformal arc plan. The reconstruction accuracy was evaluated by calculating the 3D volume percentage difference (VPD) and the center of mass (COM) difference of the tumor in the true on-board images and reconstructed images. Results: In both simulation and phantom studies, LIVE achieved substantially better reconstruction accuracy than reconstruction using PCA or FD deformation model alone. In the XCAT study, the average VPD and COM differences among different patient scenarios for LIVE system using orthogonal 30° scan angles were 4.3% and 0.3 mm when using kV+BEV MV. Reducing scan angle to 15° increased the average VPD and COM differences to 15.1% and 1.7 mm. In the CIRS phantom study, the VPD and COM differences for the LIVE system using orthogonal 30° scan angles were 6.4% and 1.4 mm. Reducing scan angle to 15° increased the VPD and COM differences to 51.9% and 3.8 mm. Conclusions: The LIVE system has the potential to substantially improve intrafraction target localization accuracy by providing volumetric verification of tumor position simultaneously during arc treatment delivery or in-between static treatment beams. With this improvement, LIVE opens up a new avenue for margin reduction and dose escalation in both fractionated treatments and SRS and SBRT treatments.« less

  15. Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)

    2001-01-01

    An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.

  16. Advantageous GOES IR results for ash mapping at high latitudes: Cleveland eruptions 2001

    USGS Publications Warehouse

    Gu, Yingxin; Rose, William I.; Schneider, D.J.; Bluth, G.J.S.; Watson, I.M.

    2005-01-01

    The February 2001 eruption of Cleveland Volcano, Alaska allowed for comparisons of volcanic ash detection using two-band thermal infrared (10-12 ??m) remote sensing from MODIS, AVHRR, and GOES 10. Results show that high latitude GOES volcanic cloud sensing the range of about 50 to 65??N is significantly enhanced. For the Cleveland volcanic clouds the MODIS and AVHRR data have zenith angles 6-65 degrees and the GOES has zenith angles that are around 70 degrees. The enhancements are explained by distortion in the satellite view of the cloud's lateral extent because the satellite zenith angles result in a "side-looking" aspect and longer path lengths through the volcanic cloud. The shape of the cloud with respect to the GOES look angle also influences the results. The MODIS and AVHRR data give consistent retrievals of the ash cloud evolution over time and are good corrections for the GOES data. Copyright 2005 by the American Geophysical Union.

  17. Multi-Angle Snowflake Camera Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuefer, Martin; Bailey, J.

    2016-07-01

    The Multi-Angle Snowflake Camera (MASC) takes 9- to 37-micron resolution stereographic photographs of free-falling hydrometers from three angles, while simultaneously measuring their fall speed. Information about hydrometeor size, shape orientation, and aspect ratio is derived from MASC photographs. The instrument consists of three commercial cameras separated by angles of 36º. Each camera field of view is aligned to have a common single focus point about 10 cm distant from the cameras. Two near-infrared emitter pairs are aligned with the camera’s field of view within a 10-angular ring and detect hydrometeor passage, with the lower emitters configured to trigger the MASCmore » cameras. The sensitive IR motion sensors are designed to filter out slow variations in ambient light. Fall speed is derived from successive triggers along the fall path. The camera exposure times are extremely short, in the range of 1/25,000th of a second, enabling the MASC to capture snowflake sizes ranging from 30 micrometers to 3 cm.« less

  18. Characteristics and self-cleaning effect of the transparent super-hydrophobic film having nanofibers array structures

    NASA Astrophysics Data System (ADS)

    Lee, Kyungjun; Lyu, Sungnam; Lee, Sangmin; Kim, Youn Sang; Hwang, Woonbong

    2010-09-01

    Transparent super-hydrophobic films were fabricated using the PDMS method and silane process, based on anodization in phosphoric acid. Contact angle tests were performed to determine the contact angle of each film according to the anodizing time. Transmittance tests also were performed to obtain the transparency of each TPT (trimethylolpropane propoxylate triacrylate) replica film according to the anodizing time. The contact angle was determined by studying the drop shape, and the transmittance was measured using a UV-spectrometer. The contact angle increases with increasing anodizing time, because increasing pillar length can trap more air between the TPT replica film and a drop of water. The transmittance falls with increasing anodizing time because the increasing pillar length causes a scattering effect. This study shows that the pillar length and transparency are inversely proportional. The TPT replica film having nanofibers array structures was better than other films in aspect of self-cleaning by doing quantitative experimentation.

  19. Experimental aerodynamic characteristics for slender bodies with thin wings at angles of attack from 0 deg to 58 deg and Mach numbers from 0.6 to 2.0

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.; Howell, M. H.

    1976-01-01

    An experimental investigation was conducted in the Ames 6-by-6-Foot Wind Tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat-plate wings. Eighteen configuration combinations were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that taper ratio and aspect ratio had only small effect on the aerodynamic characteristics, especially at the higher angles of attack. Undesirable side forces and yawing moments, which developed at angles of attack greater than about 25 deg, were generally no greater than those for the bodies tested alone. As for the bodies alone, the side forces and yawing moments increased as the nose fineness ratio increased and/or as the subsonic Mach number decreased.

  20. Experimental optimization of wing shape for a hummingbird-like flapping wing micro air vehicle.

    PubMed

    Nan, Yanghai; Karásek, Matěj; Lalami, Mohamed Esseghir; Preumont, André

    2017-03-06

    Flapping wing micro air vehicles (MAVs) take inspiration from natural fliers, such as insects and hummingbirds. Existing designs manage to mimic the wing motion of natural fliers to a certain extent; nevertheless, differences will always exist due to completely different building blocks of biological and man-made systems. The same holds true for the design of the wings themselves, as biological and engineering materials differ significantly. This paper presents results of experimental optimization of wing shape of a flexible wing for a hummingbird-sized flapping wing MAV. During the experiments we varied the wing 'slackness' (defined by a camber angle), the wing shape (determined by the aspect and taper ratios) and the surface area. Apart from the generated lift, we also evaluated the overall power efficiency of the flapping wing MAV achieved with the various wing design. The results indicate that especially the camber angle and aspect ratio have a critical impact on the force production and efficiency. The best performance was obtained with a wing of trapezoidal shape with a straight leading edge and an aspect ratio of 9.3, both parameters being very similar to a typical hummingbird wing. Finally, the wing performance was demonstrated by a lift-off of a 17.2 g flapping wing robot.

  1. Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Brown, Christopher K.

    1989-01-01

    Computational designs were performed for three different low aspect ratio wing planforms fitted with nonplanar winglets; one of the three configurations was selected to be constructed as a wind tunnel model for testing in the NASA LaRC 8-foot transonic pressure tunnel. A design point of M = 0.8, C(sub L) is approximate or = to 0.3 was selected, for wings of aspect ratio equal to 2.2, and leading edge sweep angles of 45 deg and 50 deg. Winglet length is 15 percent of the wing semispan, with a cant angle of 15 deg, and a leading edge sweep of 50 deg. Winglet total area equals 2.25 percent of the wing reference area. The design process and the predicted transonic performance are summarized for each configuration. In addition, a companion low-speed design study was conducted, using one of the transonic design wing-winglet planforms but with different camber and thickness distributions. A low-speed wind tunnel model was constructed to match this low-speed design geometry, and force coefficient data were obtained for the model at speeds of 100 to 150 ft/sec. Measured drag coefficient reductions were of the same order of magnitude as those predicted by numerical subsonic performance predictions.

  2. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Yang, Henry T. Y.; Batina, John T.

    1992-01-01

    Quality assessment procedures are described for two-dimensional and three-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate the accuracy of an implicit upwind Euler solution algorithm.

  3. LASER APPLICATIONS AND OTHER ASPECTS OF QUANTUM ELECTRONICS Measurement of angular parameters of divergent optical radiation by light diffraction on sound

    NASA Astrophysics Data System (ADS)

    Kotov, V. M.; Averin, S. V.; Shkerdin, G. N.

    2010-12-01

    A method is proposed to measure the scattering angle of optical radiation, the method employing two Bragg diffraction processes in which divergent optical radiation propagates close to the optical axis of a uniaxial crystal, while the acoustic wave — orthogonally to this axis. The method does not require additional angular tuning of the acousto-optic cell. We suggest using a mask to measure the light divergence that is larger than the angle of Bragg scattering. The method can be used to measure the size of the polished glass plate inhomogeneities.

  4. Vascular Targeting of Nanocarriers: Perplexing Aspects of the Seemingly Straightforward Paradigm

    PubMed Central

    2015-01-01

    Targeted nanomedicine holds promise to find clinical use in many medical areas. Endothelial cells that line the luminal surface of blood vessels represent a key target for treatment of inflammation, ischemia, thrombosis, stroke, and other neurological, cardiovascular, pulmonary, and oncological conditions. In other cases, the endothelium is a barrier for tissue penetration or a victim of adverse effects. Several endothelial surface markers including peptidases (e.g., ACE, APP, and APN) and adhesion molecules (e.g., ICAM-1 and PECAM) have been identified as key targets. Binding of nanocarriers to these molecules enables drug targeting and subsequent penetration into or across the endothelium, offering therapeutic effects that are unattainable by their nontargeted counterparts. We analyze diverse aspects of endothelial nanomedicine including (i) circulation and targeting of carriers with diverse geometries, (ii) multivalent interactions of carrier with endothelium, (iii) anchoring to multiple determinants, (iv) accessibility of binding sites and cellular response to their engagement, (v) role of cell phenotype and microenvironment in targeting, (vi) optimization of targeting by lowering carrier avidity, (vii) endocytosis of multivalent carriers via molecules not implicated in internalization of their ligands, and (viii) modulation of cellular uptake and trafficking by selection of specific epitopes on the target determinant, carrier geometry, and hydrodynamic factors. Refinement of these aspects and improving our understanding of vascular biology and pathology is likely to enable the clinical translation of vascular endothelial targeting of nanocarriers. PMID:24787360

  5. Response to reflected-force feedback to fingers in teleoperations

    NASA Technical Reports Server (NTRS)

    Sutter, P. H.; Iatridis, J. C.; Thakor, N. V.

    1989-01-01

    Reflected-force feedback is an important aspect of teleoperations. The objective is to determine the ability of the human operator to respond to that force. Telerobotics operation is simulated by computer control of a motor-driven device with capabilities for programmable force feedback and force measurement. A computer-controlled motor drive is developed that provides forces against the fingers as well as (angular) position control. A load cell moves in a circular arc as it is pushed by a finger and measures reaction forces on the finger. The force exerted by the finger on the load cell and the angular position are digitized and recorded as a function of time by the computer. Flexure forces of the index, long and ring fingers of the human hand in opposition to the motor driven load cell are investigated. Results of the following experiments are presented: (1) Exertion of maximum finger force as a function of angle; (2) Exertion of target finger force against a computer controlled force; and (3) Test of the ability to move to a target force against a force that is a function of position. Averaged over ten individuals, the maximum force that could be exerted by the index or long finger is about 50 Newtons, while that of the ring finger is about 40 Newtons. From the tests of the ability of a subject to exert a target force, it was concluded that reflected-force feedback can be achieved with the direct kinesthetic perception of force without the use of tactile or visual clues.

  6. Optimal directional view angles for remote-sensing missions

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Holben, B. N.; Tucker, C. J.; Newcomb, W. W.

    1984-01-01

    The present investigation is concerned with the directional, off-nadir viewing of terrestrial scenes using remote-sensing systems from aircraft and satellite platforms, taking into account advantages of such an approach over strictly nadir viewing systems. Directional reflectance data collected for bare soil and several different vegetation canopies in NOAA-7 AVHRR bands 1 and 2 were analyzed. Optimum view angles were recommended for two strategies. The first strategy views the utility of off-nadir measurements as extending spatial and temporal coverage of the target area. The second strategy views the utility of off-nadir measurements as providing additional information about the physical characteristics of the target. Conclusions regarding the two strategies are discussed.

  7. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  8. Off-nadir antenna bias correction using Amazon rain forest sigma deg data. [Brazil

    NASA Technical Reports Server (NTRS)

    Birrer, I. J.; Bracalente, E. M.; Dome, G. J.; Sweet, J.; Berthold, G.; Moore, R. K. (Principal Investigator)

    1981-01-01

    The radar response from the Amazon rain forest was studied to determine the suitability of this region for use as a standard target to calibrate a scatterometer like that proposed for the National Ocean Satellite System (NOSS). Backscattering observations made by the SEASAT-1 scatterometer system show the Amazon rain forest to be a homogeneous, azimuthally-isotropic, radar target which is insensitive to polarization. The variation with angle of incidence may be adequately modeled as sigma deg (dB) = alpha theta + beta with typical values for the incidence-angle coefficient from 0.07 dB deg to 0.15 dB/deg. A small diurnal effect occurs, with measurements at sunrise being 0.5 dB to 1 dB higher than the rest of the day. Maximum likelihood estimation algorithms are presented which permit determination of relative bias and true pointing angle for each beam. Specific implementation of these algorithms for the proposed NOSS scatterometer system is also discussed.

  9. Radar sea reflection for low-e targets

    NASA Astrophysics Data System (ADS)

    Chow, Winston C.; Groves, Gordon W.

    1998-09-01

    Modeling radar signal reflection from a wavy sea surface uses a realistic characteristic of the large surface features and parameterizes the effect of the small roughness elements. Representation of the reflection coefficient at each point of the sea surface as a function of the Specular Deviation Angle is, to our knowledge, a novel approach. The objective is to achieve enough simplification and retain enough fidelity to obtain a practical multipath model. The 'specular deviation angle' as used in this investigation is defined and explained. Being a function of the sea elevations, which are stochastic in nature, this quantity is also random and has a probability density function. This density function depends on the relative geometry of the antenna and target positions, and together with the beam- broadening effect of the small surface ripples determined the reflectivity of the sea surface at each point. The probability density function of the specular deviation angle is derived. The distribution of the specular deviation angel as function of position on the mean sea surface is described.

  10. Assessment of Spectral Doppler in Preclinical Ultrasound Using a Small-Size Rotating Phantom

    PubMed Central

    Yang, Xin; Sun, Chao; Anderson, Tom; Moran, Carmel M.; Hadoke, Patrick W.F.; Gray, Gillian A.; Hoskins, Peter R.

    2013-01-01

    Preclinical ultrasound scanners are used to measure blood flow in small animals, but the potential errors in blood velocity measurements have not been quantified. This investigation rectifies this omission through the design and use of phantoms and evaluation of measurement errors for a preclinical ultrasound system (Vevo 770, Visualsonics, Toronto, ON, Canada). A ray model of geometric spectral broadening was used to predict velocity errors. A small-scale rotating phantom, made from tissue-mimicking material, was developed. True and Doppler-measured maximum velocities of the moving targets were compared over a range of angles from 10° to 80°. Results indicate that the maximum velocity was overestimated by up to 158% by spectral Doppler. There was good agreement (<10%) between theoretical velocity errors and measured errors for beam-target angles of 50°–80°. However, for angles of 10°–40°, the agreement was not as good (>50%). The phantom is capable of validating the performance of blood velocity measurement in preclinical ultrasound. PMID:23711503

  11. Influence of turnout on foot posture and its relationship to overuse musculoskeletal injury in professional contemporary dancers: a preliminary investigation.

    PubMed

    Cimelli, Sonja N; Curran, Sarah A

    2012-01-01

    The angle of turnout is thought to predispose professional dancers to overuse musculoskeletal injuries of the lower limb; yet, the influence of angle of turnout on foot posture is currently unknown. Twelve professional contemporary dancers (five women and seven men; mean age, 26.8 years) were recruited. The angle of gait and angle of turnout were measured using a quasi-static clinical tracing method. Foot posture was assessed in the base of gait and angle of turnout using the Foot Posture Index. Each dancer completed a dance history and injury questionnaire. The results show a tendency toward a pronated foot posture (mean, 9°) in the angle of turnout position. A significant relationship was noted between the Foot Posture Index and angle of turnout (ρ = 0.933-0.968, P < .01) and between the number of reported injuries and change in foot posture in the angle of turnout (ρ = 0.789, P < .01) (right foot only). Twenty-eight injuries were reported; male dancers experienced a mean of 2.8 injuries and females a mean of 1.6 injuries. An inverse relationship was noted between age at training initiation and total reported injuries (r =-0.867, P < .01). All of the dancers reported a history of injury to the spine or lower limb, and 9 of the 12 reported an injury within the previous 12 months. Turnout is one of the most fundamental aspects of dance technique. This study suggests a trend toward pronation in angle of turnout and a link to lower-limb musculoskeletal injury.

  12. Measurements and parameterization of neutron energy spectra from targets bombarded with 120 GeV protons

    NASA Astrophysics Data System (ADS)

    Kajimoto, T.; Shigyo, N.; Sanami, T.; Iwamoto, Y.; Hagiwara, M.; Lee, H. S.; Soha, A.; Ramberg, E.; Coleman, R.; Jensen, D.; Leveling, A.; Mokhov, N. V.; Boehnlein, D.; Vaziri, K.; Sakamoto, Y.; Ishibashi, K.; Nakashima, H.

    2014-10-01

    The energy spectra of neutrons were measured by a time-of-flight method for 120 GeV protons on thick graphite, aluminum, copper, and tungsten targets with an NE213 scintillator at the Fermilab Test Beam Facility. Neutron energy spectra were obtained between 25 and 3000 MeV at emission angles of 30°, 45°, 120°, and 150°. The spectra were parameterized as neutron emissions from three moving sources and then compared with theoretical spectra calculated by PHITS and FLUKA codes. The yields of the theoretical spectra were substantially underestimated compared with the yields of measured spectra. The integrated neutron yields from 25 to 3000 MeV calculated with PHITS code were 16-36% of the experimental yields and those calculated with FLUKA code were 26-57% of the experimental yields for all targets and emission angles.

  13. Study to investigate and evaluate means of optimizing the Ku-band combined radar/communication functions for the space shuttle

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Udalov, S.; Alem, W.

    1977-01-01

    The performance of the space shuttle orbiter's Ku-Band integrated radar and communications equipment is analyzed for the radar mode of operation. The block diagram of the rendezvous radar subsystem is described. Power budgets for passive target detection are calculated, based on the estimated values of system losses. Requirements for processing of radar signals in the search and track modes are examined. Time multiplexed, single-channel, angle tracking of passive scintillating targets is analyzed. Radar performance in the presence of main lobe ground clutter is considered and candidate techniques for clutter suppression are discussed. Principal system parameter drivers are examined for the case of stationkeeping at ranges comparable to target dimension. Candidate ranging waveforms for short range operation are analyzed and compared. The logarithmic error discriminant utilized for range, range rate and angle tracking is formulated and applied to the quantitative analysis of radar subsystem tracking loops.

  14. Bistatic image processing for a 32 x 19 inch model aircraft using scattered fields obtained in the OSU-ESL compact range

    NASA Technical Reports Server (NTRS)

    Lee, T-H.; Burnside, W. D.

    1992-01-01

    Inverse Synthetic Aperture Radar (ISAR) images for a 32 in long and 19 in wide model aircraft are documented. Both backscattered and bistatic scattered fields of this model aircraft were measured in the OSU-ESL compact range to obtain these images. The scattered fields of the target were measured for frequencies from 2 to 18 GHz with a 10 MHz increment and for full 360 deg azimuth rotation angles with a 0.2 deg step. For the bistatic scattering measurement, the compact range was used as the transmitting antenna; while, a broad band AEL double ridge horn was used as the receiving antenna. Bistatic angles of 90 deg and 135 deg were measured. Due to the size of the chamber and target, the receiving antenna was in the near field of the target; nevertheless, the image processing algorithm was valid for this case.

  15. Angular dependence of source-target-detector in active mode standoff infrared detection

    NASA Astrophysics Data System (ADS)

    Pacheco-Londoño, Leonardo C.; Castro-Suarez, John R.; Aparicio-Bolaños, Joaquín. A.; Hernández-Rivera, Samuel P.

    2013-06-01

    Active mode standoff measurement using infrared spectroscopy were carried out in which the angle between target and the source was varied from 0-70° with respect to the surface normal of substrates containing traces of highly energetic materials (explosives). The experiments were made using three infrared sources: a modulated source (Mod-FTIR), an unmodulated source (UnMod-FTIR) and a scanning quantum cascade laser (QCL), part of a dispersive mid infrared (MIR) spectrometer. The targets consisted of PENT 200 μg/cm2 deposited on aluminum plates placed at 1 m from the sources. The evaluation of the three modalities was aimed at verifying the influence of the highly collimated laser beam in the detection in comparison with the other sources. The Mod-FTIR performed better than QCL source in terms of the MIR signal intensity decrease with increasing angle.

  16. Melt damage simulation of W-macrobrush and divertor gaps after multiple transient events in ITER

    NASA Astrophysics Data System (ADS)

    Bazylev, B. N.; Janeschitz, G.; Landman, I. S.; Loarte, A.; Pestchanyi, S. E.

    2007-06-01

    Tungsten in the form of macrobrush structure is foreseen as one of two candidate materials for the ITER divertor and dome. In ITER, even for moderate and weak ELMs when a thin shielding layer does not protect the armour surface from the dumped plasma, the main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. The melt erosion of W-macrobrush targets with different geometry of brush surface under the heat loads caused by weak ELMs is numerically investigated using the modified code MEMOS. The optimal angle of brush surface inclination that provides a minimum of surface roughness is estimated for given inclination angles of impacting plasma stream and given parameters of the macrobrush target. For multiple disruptions the damage of the dome gaps and the gaps between divertor cassettes caused by the radiation impact is estimated.

  17. Rebounding of a shaped-charge jet

    NASA Astrophysics Data System (ADS)

    Proskuryakov, E. V.; Sorokin, M. V.; Fomin, V. M.

    2007-09-01

    The phenomenon of rebounding of a shaped-charge jet from the armour surface with small angles between the jet axis and the target surface is considered. Rebounding angles as a function of jet velocity are obtained in experiments for a copper shaped-charge jet. An engineering calculation technique is developed. The results calculated with the use of this technique are in reasonable agreement with experimental data.

  18. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine.

    PubMed

    Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E

    2013-02-01

    We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.

  19. Investigation of porous silicon obtained under different conditions by the contact angle method

    NASA Astrophysics Data System (ADS)

    Belorus, A. O.; Bukina, Y. V.; Pastukhov, A. I.; Stebko, D. S.; Spivak, Yu M.; Moshnikov, V. A.

    2017-11-01

    This paper investigates a hydrophobicity/hydrophilicity of porous silicon by the contact angle method. Porous silicon series were obtained by electrochemical anodic etching of n-Si (100) and (111) under the current anodization density range of 5-120 mA/cm2. For this purpose the original laboratory installation and the software «Measurement of contact angle» were developed. It is shown that, the contact angle can vary significantly (up to 80 degrees for (100)) depending on the current anodization Discussion of the results is carried out taking in account the composition of the functional groups and of surface morphology of the porous silicon. These results are important for developing porous silicon particles as nanocontainers in the targeted drug delivery.

  20. Relationship between the alpha and beta angles in diagnosing CAM-type femoroacetabular impingement on frog-leg lateral radiographs.

    PubMed

    Khan, Moin; Ranawat, Anil; Williams, Dale; Gandhi, Rajiv; Choudur, Hema; Parasu, Naveen; Simunovic, Nicole; Ayeni, Olufemi R

    2015-09-01

    Alpha and beta angles are commonly used radiographic measures to assess the sphericity of the proximal femur and distance between the pathologic head-neck junction and the acetabular rim, respectively. The aim of this study was to explore the relationship between these two measurements on frog-leg lateral hip radiographs. Fifty frog-leg lateral hip radiographs were evaluated by two orthopaedic surgeons and two radiologists. Each reviewer measured the alpha and beta angles on two separate occasions to determine the relationship between positive alpha and beta angles and the inter- and intra-observer reliability of these measurements. There was no significant association between positive alpha and beta angles, [kappa range -0.043 (95 % CI -0.17 to 0.086) to 0.54 (95 % CI 0.33-0.75)]. Intra-observer reliability was high [alpha angle intra-class correlation coefficient (ICC) range 0.74 (95 % CI 0.58-0.84) to 0.99 (95 % CI 0.98-0.99) and beta angle ICC range 0.86 (95 % CI 0.76-0.92) to 0.97 (95 % CI 0.95-0.98)]. There is no statistical or functional relationship between readings of positive alpha and beta angles. The radiographic measurements resulted in high intra-observer and fair-to-moderate inter-observer reliability. Results of this study suggest that the presence of a CAM lesion on lateral radiographs as suggested by a positive alpha angle does not necessitate a decrease in clearance between the femoral head and acetabular rim as measured by the beta angle and thus may not be the best measure of functional impingement. Understanding the relationship between these two aspects of femoroacetabular impingement improves a surgeon's ability to anticipate potential operative management.

  1. Neutron energy spectra from the laser-induced Dd,n3He reaction.

    PubMed

    Hilscher, D; Berndt, O; Enke, M; Jahnke, U; Nickles, P V; Ruhl, H; Sandner, W

    2001-07-01

    Detailed neutron energy spectra were measured for the D(d,n)3He reaction induced in solid (CD2)(n) targets by irradiation with 50-fs 2 x 10(18) W/cm(2) light pulses from a 10-TW Ti:Sapphire laser. The neutrons were observed at two angles 5 degrees and 112 degrees relative to the incident laser beam. The neutron spectra at the two angles are characterized by peaks with large widths of about 700 keV full width at half maximum and a shift of 300 keV between them. Neutron energies of up to about 4 MeV were observed indicating that deuterons are accelerated up to an energy of 1 MeV in the laser produced plasma. Simulation calculations can describe qualitatively the neutron spectra by assuming isotropic deuteron acceleration and a reduction of the reaction probability by a factor of 1/3 for deuterons emitted from the front of the target. These calculations indicate in particular that it is necessary to assume deuterons moving both into and out of the front of the target in order to describe the neutron energy spectra at the two angles. The highest recorded mean neutron yield was about 10(4) neutrons per pulse. The neutron yield increases with the number of electrons emitted from the front of the target and with the intensity of the prompt gamma flash induced by the bremsstrahlung of energetic electrons.

  2. 3D-printed orthodontic brackets - proof of concept.

    PubMed

    Krey, Karl-Friedrich; Darkazanly, Nawras; Kühnert, Rolf; Ruge, Sebastian

    Today, orthodontic treatment with fixed appliances is usually carried out using preprogrammed straight-wire brackets made of metal or ceramics. The goal of this study was to determine the possibility of clinically implementing a fully digital workflow with individually designed and three-dimensionally printed (3D-printed) brackets. Edgewise brackets were designed using computer-aided design (CAD) software for demonstration purposes. After segmentation of the malocclusion model generated based on intraoral scan data, the brackets were digitally positioned on the teeth and a target occlusion model created. The thus-defined tooth position was used to generate a template for an individualized arch form in the horizontal plane. The base contours of the brackets were modified to match the shape of the tooth surfaces, and a positioning guide (fabricated beforehand) was used to ensure that the brackets were bonded at the correct angle and position. The brackets, positioning guide, and retainer splint, digitally designed on the target occlusion model, were 3D printed using a Digital Light Processing (DLP) 3D printer. The archwires were individually pre-bent using the template. In the treatment sequence, it was shown for the first time that, in principle, it is possible to perform treatment with an individualized 3D-printed brackets system by using the proposed fully digital workflow. Technical aspects of the system, problems encountered in treatment, and possible future developments are discussed in this article.

  3. Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

    NASA Technical Reports Server (NTRS)

    Henderson, R. A.; Schrag, R. L.

    1986-01-01

    A summary of modeling the electrical system aspects of a coil and metal target configuration resembling a practical electro-impulse deicing (EIDI) installation, and a simple circuit for providing energy to the coil, was presented. The model was developed in sufficient theoretical detail to allow the generation of computer algorithms for the current in the coil, the magnetic induction on both surfaces of the target, the force between the coil and target, and the impulse delivered to the target. These algorithms were applied to a specific prototype EIDI test system for which the current, magnetic fields near the target surfaces, and impulse were previously measured.

  4. Calculating Angle Lambda (λ) Using Zernike Tilt Measurements in Specular Reflection Corneal Topography

    PubMed Central

    Braaf, Boy; van de Watering, Thomas Christiaan; Spruijt, Kees; van der Heijde, Rob G.L.; Sicam, Victor Arni D.P.

    2010-01-01

    Purpose To develop a method to calculate the angle λ of the human eye using Zernike tilt measurements in specular reflection corneal topography. Methods The meaning of Zernike tilt in specular reflection corneal topography is demonstrated by measurements on translated artificial surfaces using the VU Topographer. The relationship derived from the translation experiments is used to determine the angle λ. Corneal surfaces are measured for a set of eight different fixation points, for which tilt angles ρ are obtained from the Zernike tilt coefficients. The angles ρ are used with respect to the fixation target angles to determine angle λ by fitting a geometrical model. This method is validated with Orbscan II's angle-κ measurements in 9 eyes. Results The translation experiments show that the Zernike tilt coefficient is directly related to an angle ρ, which describes a tilt orientation of the cornea and can therefore be used to derive a value for angle λ. A significant correlation exists between measured values for angle λ with the VU Topographer and the angle κ with the Orbscan II (r=0.95, P<0.001). A Bland-Altman plot indicates a mean difference of -0.52 degrees between the two instruments, but this is not statistically significant as indicated by a matched-pairs Wilcoxon signed-rank test (P≤0.1748). The mean precision for measuring angle λ using the VU topographer is 0.6±0.3 degrees. Conclusion The method described above to determine angle λ is sufficiently repeatable and performs similarly to the angle-κ measurements made with the Orbscan II.

  5. Recent advances in fixation of the craniomaxillofacial skeleton.

    PubMed

    Meslemani, Danny; Kellman, Robert M

    2012-08-01

    Fixation of the craniomaxillofacial skeleton is an evolving aspect for facial plastic, oral and maxillofacial, and plastic surgery. This review looks at the recent advances that aid in reduction and fixation of the craniomaxillofacial skeleton. More surgeons are using resorbable plates for craniomaxillofacial fixation. A single miniplate on the inferior border of the mandible may be sufficient to reduce and fixate an angle fracture. Percutaneous K-wires may assist in plating angle fractures. Intraoperative computed tomography (CT) may prove to be useful for assessing reduction and fixation. Resorbable plates are becoming increasingly popular in orthognathic surgery and facial trauma surgery. There are newer operative techniques for fixating the angle of the mandible. Also, the utilization of the intraoperative CT provides immediate feedback for accurate reduction and fixation. Prebent surgical plates save operative time, decrease errors, and provide more accurate fixation.

  6. Modeling of reduced effective secondary electron emission yield from a velvet surface

    DOE PAGES

    Swanson, Charles; Kaganovich, Igor D.

    2016-12-05

    Complex structures on a material surface can significantly reduce total secondary electron emission from that surface. A velvet is a surface that consists of an array of vertically standing whiskers. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at the bottom of the structure and on the sides of the velvet whiskers. We performed numerical simulations and developed an approximate analytical model that calculates the net secondary electron emission yield from a velvet surface as a function of the velvet whisker length and packing density, and the angle of incidence of primary electrons. We foundmore » that to suppress secondary electrons, the following condition on dimensionless parameters must be met: (π/2) DΑ tan θ >> 1, where theta is the angle of incidence of the primary electron from the normal, D is the fraction of surface area taken up by the velvet whisker bases, and A is the aspect ratio, A = h/r, the ratio of height to radius of the velvet whiskers. We find that velvets available today can reduce the secondary electron yield by 90% from the value of a flat surface. As a result, the values of optimal velvet whisker packing density that maximally suppresses the secondary electron emission yield are determined as a function of velvet aspect ratio and the electron angle of incidence.« less

  7. Aerodynamic Loads at Mach Numbers from 0.70 to 2.22 on a Airplane Model Having a Wing and Canard of Triangular Plan Form and Either Single or Twin Vertical Tails

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.; Menees, Gene P.

    1961-01-01

    Results of an investigation of the aerodynamic loads on a canard airplane model are presented without detailed analysis for the Mach number range of 0.70 t o 2.22. The model consisted of a triangular wing and canard of aspect ratio 2 mounted on a Sears-Haack body of fineness ratio 12.5 and either a single body-mounted vertical tail or twin wing mounted vertical tails of low aspect ratio and sweptback plan form. The body, right wing panel, single vertical tail, and left twin vertical tail were instrumented for measuring pressures. Data were obtained for angles of attack ranging from -4 degrees to +16 degrees, nominal canard deflection angles of 0 degrees and 10 degrees, and angles of sideslip of 0 degrees and 5.3 degrees. The Reynolds number was 2.9 x 10(exp 6) based on the wing mean aerodynamic chord. Selected portions of the data are presented in graphical form and attention is directed to some of the results of the investigation. All of the experimental results have been tabulated in the form of pressure coefficients and integrations of the pressure coefficients and are available as supplements to this paper. A brief summary of the contents of the tabular material is given.

  8. Magnetic alloy nanowire arrays with different lengths: Insights into the crossover angle of magnetization reversal process

    NASA Astrophysics Data System (ADS)

    Samanifar, S.; Alikhani, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2017-05-01

    Nanoscale magnetic alloy wires are being actively investigated, providing fundamental insights into tuning properties in magnetic data storage and processing technologies. However, previous studies give trivial information about the crossover angle of magnetization reversal process in alloy nanowires (NWs). Here, magnetic alloy NW arrays with different compositions, composed of Fe, Co and Ni have been electrochemically deposited into hard-anodic aluminum oxide templates with a pore diameter of approximately 150 nm. Under optimized conditions of alumina barrier layer and deposition bath concentrations, the resulting alloy NWs with aspect ratio and saturation magnetization (Ms) up to 550 and 1900 emu cm-3, respectively, are systematically investigated in terms of composition, crystalline structure and magnetic properties. Using angular dependence of coercivity extracted from hysteresis loops, the reversal processes are evaluated, indicating non-monotonic behavior. The crossover angle (θc) is found to depend on NW length and Ms. At a constant Ms, increasing NW length decreases θc, thereby decreasing the involvement of vortex mode during the magnetization reversal process. On the other hand, decreasing Ms decreases θc in large aspect ratio (>300) alloy NWs. Phenomenologically, it is newly found that increasing Ni content in the composition decreases θc. The angular first-order reversal curve (AFORC) measurements including the irreversibility of magnetization are also investigated to gain a more detailed insight into θc.

  9. Using Scratch: An Integrated Problem-Solving Approach to Mathematical Thinking

    ERIC Educational Resources Information Center

    Calder, Nigel

    2010-01-01

    "Scratch" is a media-rich digital environment that utilises a building block command structure to manipulate graphic, audio, and video aspects. It incorporates elements of Logo including "tinkerability" in the programming process. In "Scratch" students use geometric and measurement concepts such as coordinates, angle, and length measurements. It…

  10. Estimating Geometric Aspects of Relative Satellite Motion Using Angles-Only Measurements

    DTIC Science & Technology

    2008-08-01

    Clohessy - Wiltshire (HCW) equations2-3, the Cartesian states characterizing the deputy’s relative motion (i.e., its relative position and velocity...the AAS/AIAA Astrodynamics Specialist Conference, Mackinac Island, MI, Aug 19-23, 2007. 2Clohessy, W. H., and Wiltshire , R. S., “Terminal Guidance

  11. Biological Small Angle Scattering: Techniques, Strategies and Tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, Barnali; Muñoz, Inés G.; Urban, Volker S.

    This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins,more » and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications.The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS.The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for exploring the diversity of solution SAS methods and applications.« less

  12. A Transonic Wind-Tunnel Investigation of the Longitudinal Aerodynamic Characteristics of a Model of the Lockheed XF-104 Airplane

    NASA Technical Reports Server (NTRS)

    Hieser, Gerald; Reid, Charles F.

    1954-01-01

    The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.

  13. Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation

    NASA Astrophysics Data System (ADS)

    Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.

    2004-12-01

    Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.

  14. Angular dependence of Kβ/Kα intensity ratios of thick Ti and Cu pure elements from 10-25 keV electron bombardment

    NASA Astrophysics Data System (ADS)

    Singh, B.; Kumar, S.; Prajapati, S.; Singh, B. K.; Llovet, X.; Shanker, R.

    2018-02-01

    Measurements yielding the first results on angular dependence of Kβ/Kα X-ray intensity ratios of thick Ti (Z = 22) and Cu (Z = 29) targets induced by 10-25 keV electrons are presented. The measurements were done by rotating the target surface around the electron beam direction in the angular detection range 105° ≤ θ ≤ 165° in the reflection mode using an energy dispersive Si PIN photodiode detector. The measured angular dependence of Kβ/Kα intensity ratios is shown to be almost isotropic for Ti and Cu targets for the range of detection angles, 105° ≤ θ ≤ 150°, while there is a very weak increase beyond 150° for both targets. No dependence of Kβ/Kα intensity ratios on impact energy is observed; while on average, the value of the Kβ/Kα X-ray intensity ratio for Cu is larger by about 8% than that for Ti, which indicates a weak Z-dependence of the target. The experimental results are compared with those obtained from PENELOPE MC calculations and from the Evaluated Atomic Data Library (EADL) ratios. These results on Kβ/Kα X-ray intensity ratios are found to be in reasonable agreement in the detection angle range 105° ≤ θ ≤ 150° to within uncertainties, whereas the simulation and experimental results show a very slight increase in the intensity ratio with θ as the latter attains higher values. The results presented in this work provide a direct check on the accuracy of PENELOPE at oblique incidence angles for which there has been a lack of measurements in the literature until now.

  15. Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests.

    PubMed

    Yang, Changwei; Zhang, Jianjing; Liu, Feicheng; Bi, Junwei; Jun, Zhang

    2015-08-06

    Based on our field investigations of landslide hazards in the Wenchuan earthquake, some findings can be reported: (1) the multi-aspect terrain facing empty isolated mountains and thin ridges reacted intensely to the earthquake and was seriously damaged; (2) the slope angles of most landslides was larger than 45°. Considering the above disaster phenomena, the reasons are analyzed based on shaking table tests of one-sided, two-sided and four-sided slopes. The analysis results show that: (1) the amplifications of the peak accelerations of four-sided slopes is stronger than that of the two-sided slopes, while that of the one-sided slope is the weakest, which can indirectly explain the phenomena that the damage is most serious; (2) the amplifications of the peak accelerations gradually increase as the slope angles increase, and there are two inflection points which are the point where the slope angle is 45° and where the slope angle is 50°, respectively, which can explain the seismic phenomenon whereby landslide hazards mainly occur on the slopes whose slope angle is bigger than 45°. The amplification along the slope strike direction is basically consistent, and the step is smooth.

  16. Non-lane-discipline-based car-following model under honk environment

    NASA Astrophysics Data System (ADS)

    Rong, Ying; Wen, Huiying

    2018-04-01

    This study proposed a non-lane-discipline-based car-following model by synthetically considering the visual angles and the timid/aggressive characteristics of drivers under honk environment. We firstly derived the neutral stability condition by the linear stability theory. It showed that the parameters related to visual angles and driving characteristics of drivers under honk environment all have significant impact on the stability of non-lane-discipline traffic flow. For better understanding the inner mechanism among these factors, we further analyzed how each parameter affects the traffic flow and gained further insight into how the visual angles information influences other parameters and then influences the non-lane-discipline traffic flow under honk environment. And the results showed that the other aspects such as driving characteristics of drivers or honk effect are all interacted with the "Visual-Angle Factor". And the effect of visual angle is not just to say simply it has larger stable region or not as the existing studies. Finally, to verify the proposed model, we carried out the numerical simulation under the periodic boundary condition. And the results of numerical simulation are agreed well with the theoretical findings.

  17. An all-reflective wide-angle flat-field telescope for space

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Howell, B. J.; Wilson, M. E.

    1984-01-01

    An all-reflective wide-angle flat-field telescope (WAFFT) designed and built at Goddard Space Flight Center demonstrates the markedly improved wide-angle imaging capability which can be achieved with a design based on a recently announced class of unobscured 3-mirror optical systems. Astronomy and earth observation missions in space dictate the necessity or preference for wide-angle all-reflective systems which can provide UV through IR wavelength coverage and tolerate the space environment. An initial prototype unit has been designed to meet imaging requirements suitable for monitoring the ultraviolet sky from space. The unobscured f/4, 36 mm efl system achieves a full 20 x 30 deg field of view with resolution over a flat focal surface that is well matched for use with advanced ultraviolet image array detectors. Aspects of the design and fabrication approach, which have especially important bearing on the system solution, are reviewed; and test results are compared with the analytic performance predictions. Other possible applications of the WAFFT class of imaging system are briefly discussed. The exceptional wide-angle, high quality resolution, and very wide spectral coverage of the WAFFT-type optical system could make it a very important tool for future space research.

  18. Experimental study of electrical discharge drilling of stainless steel UNS S30400

    NASA Astrophysics Data System (ADS)

    Hanash, E. A. H.; Ali, M. Y.

    2018-01-01

    In this study, overcut and taper angle were investigated in machining of stainless steel UNS S30400 against three different electrical discharge machining parameters which are electric current (Ip), pulse on-time (Ton) and pulse off-time (Toff). The electrode used was of 1 mm diameter with aspect ratio of 10. Dimensional accuracy was measured by evaluating overcut and taper angle. Those two measurements were performed using optical microscope model (Olympus BX41M, Japan). The experimentation planning, evaluation, analysis and optimization have been carried out using DOE software version 10.0.3 RSM based method with total number of twenty experiments. The research reveals that, discharge current was found to have the most significant effect on overcut and taper angle followed by pulse on-time and pulse off-time. As the discharge current and pulse on-time increase, overcut and taper angle are increased. However, when pulse off-time increases, overcut and taper angle decrease. The outcome result of this study will be very useful in the manufacturing industry to select the appropriate parameters for the selected work material. The model has shown a great accuracy with percentage error of less than 5%.

  19. Phonotactic flight of the parasitoid fly Emblemasoma auditrix (Diptera: Sarcophagidae).

    PubMed

    Tron, Nanina; Lakes-Harlan, Reinhard

    2017-01-01

    The parasitoid fly Emblemasoma auditrix locates its hosts using acoustic cues from sound producing males of the cicada Okanagana rimosa. Here, we experimentally analysed the flight path of the phonotaxis from a landmark to the target, a hidden loudspeaker in the field. During flight, the fly showed only small lateral deviations. The vertical flight direction angles were initially negative (directed downwards relative to starting position), grew positive (directed upwards) in the second half of the flight, and finally flattened (directed horizontally or slightly upwards), typically resulting in a landing above the loudspeaker. This phonotactic flight pattern was largely independent from sound pressure level or target distance, but depended on the elevation of the sound source. The flight velocity was partially influenced by sound pressure level and distance, but also by elevation. The more elevated the target, the lower was the speed. The accuracy of flight increased with elevation of the target as well as the landing precision. The minimal vertical angle difference eliciting differences in behaviour was 10°. By changing the elevation of the acoustic target after take-off, we showed that the fly is able to orientate acoustically while flying.

  20. Comparison of large-angle production of charged pions with incident protons on cylindrical long and short targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apollonio, M.; Chimenti, P.; Giannini, G.

    2009-12-15

    The HARP Collaboration has presented measurements of the double-differential {pi}{sup {+-}} production cross section in the range of momentum 100 MeV/c{<=}p{<=}800 MeV/c and angle 0.35 rad{<=}{theta}{<=}2.15 rad with proton beams hitting thin nuclear targets. In many applications the extrapolation to long targets is necessary. In this article the analysis of data taken with long (one interaction length) solid cylindrical targets made of carbon, tantalum, and lead is presented. The data were taken with the large-acceptance HARP detector in the T9 beam line of the CERN proton synchrotron. The secondary pions were produced by beams of protons with momenta of 5,more » 8, and 12GeV/c. The tracking and identification of the produced particles were performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident protons were identified by an elaborate system of beam detectors. Results are obtained for the double-differential yields per target nucleon d{sup 2}{sigma}/dpd{theta}. The measurements are compared with predictions of the MARS and GEANT4 Monte Carlo simulations.« less

  1. Laser-induced breakdown spectra of rock powders at variable ablation and collection angles under Mars-analog conditions

    NASA Astrophysics Data System (ADS)

    Breves, E. A.; Lepore, K.; Dyar, M. D.; Bender, S. C.; Tokar, R. L.; Boucher, T.

    2017-11-01

    Laser-induced breakdown spectroscopy has become a popular tool for rapid elemental analysis of geological materials. However, quantitative applications of LIBS are plagued by variability in collected spectra that cannot be attributed to differences in geochemical composition. Even under ideal laboratory conditions, variability in LIBS spectra creates a host of difficulties for quantitative analysis. This is only exacerbated during field work, when both the laser-sample distance and the angle of ablation/collection are constantly changing. A primary goal of this study is to use empirical evidence to provide a more accurate assessment of uncertainty in LIBS-derived element predictions. We hope to provide practical guidance regarding the angles of ablation and collection that can be tolerated without substantially increasing prediction uncertainty beyond that which already exists under ideal laboratory conditions. Spectra were collected from ten geochemically diverse samples at angles of ablation and collection ranging from 0° to ± 60°. Ablation and collection angles were changed independently and simultaneously in order to isolate spectral changes caused by differences in ablation angle from those due to differences in collection angle. Most of the variability in atomic and continuum spectra is attributed to changes in the ablation angle, rather than the collection angle. At higher angles, the irradiance of the laser beam is lower and produces smaller, possibly less dense plasmas. Simultaneous changes in the collection angle do not appear to affect the collected spectra, possibly because smaller plasmas are still within the viewing area of the collection optics, even though this area is reduced at higher collection angles. A key observation is that changes in the magnitude of atomic and total emission are < 5% and 10%, respectively, in spectra collected with the configuration that most closely resembles field measurements (VV) at angles < 20°. In addition, variability in atomic and continuum emission is strongly dependent upon sample composition. Denser, more Fe/Mg-rich rocks exhibited much less variability with changes in ablation and collection angles than Si-rich felsic rocks. Elemental compositions of our variable angle data that were predicted using a much larger but conventionally-collected calibration suite show that accuracy generally suffers when the incidence and collection angles are high. Prediction accuracy (for measurements acquired with varying collection and ablation angles) varies from ± 1.28-1.86 wt% for Al2O3, ± 1.25-1.66 wt% for CaO, ± 1.90-2.21 wt% for Fe2O3T, ± 0.76-0.94 wt% for K2O, ± 2.85-3.61 wt% MgO, ± 0.15-0.17 wt% for MnO, ± 0.68-0.78 wt% for Na2O, ± 0.33-0.42 wt% for TiO2, and ± 2.94-4.34 wt% SiO2. The ChemCam team is using lab data acquired under normal incidence and collection angles to predict the compositions of Mars targets at varying angles. Thus, the increased errors noted in this study for high incidence angle measurements are likely similar to additional, unacknowledged errors on ChemCam results for non-normal targets analyzed on Mars. Optimal quantitative analysis of LIBS spectra must include some knowledge of the angle of ablation and collection so the approximate increase in uncertainty introduced by a departure from normal angles can be accurately reported.

  2. Cyclovergence: the motor response to cyclodisparity.

    PubMed

    Hooten, K; Myers, E; Worrall, R; Stark, L

    1979-03-05

    Static photographic evidence of the occurrence of cyclovergence is presented that supports and extends the result of Crone and Everhard-Halm (1975). Wide-angle complex targets were a necessary condition; simple horizontal line targets were insufficient. Our asymmetrical disparity targets supported in part the conformance of cyclovergence to Hering's Law but raised questions relating to the computational process that also acts to remove cyclodisparity and permits cyclofusion. Saturation and hysteresis nonlinearities were observed.

  3. Optical Distance Measurement Device And Method Thereof

    DOEpatents

    Bowers, Mark W.

    2004-06-15

    A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.

  4. Variable Distance Angular Symbology Reader

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F., Jr. (Inventor); Corder, Eric L. (Inventor)

    2006-01-01

    A variable distance angular symbology, reader utilizes at least one light source to direct light through a beam splitter and onto a target. A target may be angled relative to the impinging light beam up to and maybe even greater than 45deg. A reflected beam from the target passes through the beam splitter and is preferably directed 90deg relative to the light source through a telecentric lens to a scanner which records an image of the target such as a direct part marking code.

  5. Large area ion beam sputtered YBa2Cu3O(7-delta) films for novel device structures

    NASA Astrophysics Data System (ADS)

    Gauzzi, A.; Lucia, M. L.; Kellett, B. J.; James, J. H.; Pavuna, D.

    1992-03-01

    A simple single-target ion-beam system is employed to manufacture large areas of uniformly superconducting YBa2Cu3O(7-delta) films which can be reproduced. The required '123' stoichiometry is transferred from the target to the substrate when ion-beam power, target/ion-beam angle, and target temperature are adequately controlled. Ion-beam sputtering is experimentally demonstrated to be an effective technique for producing homogeneous YBa2Cu3O(7-delta) films.

  6. Detection technology of polarization target based on curvelet transform in turbid liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Duan, Jin; Fu, Qiang; Zhan, Juntong; Ma, Wanzhuo

    2015-08-01

    To suppress the interference of the target detecting in the turbid medium, a kind of polarization detection technology based on Curvelet transform was applied. This method firstly adjusts the angles of polarizing film to get the intensity images of the situations at 0°,60° and 120°, then deduces the images of Stokes vectors, degree of polarization (DOP) and polarization angle (PA) according to the Mueller matrix. At last the DOP and intensity images can be decomposed by Curvelet transform to realize the fusion of the high and low coefficients respectively, after the processed coefficients are reconstructed, the target which is easier to detect can be achieved. To prove this method, many targets in turbid medium have been detected by polarization method and fused their DOP and intensity images with Curvelet transform algorithm. As an example screws in moderate and high concentration liquid are presented respectively, from which we can see the unpolarized targets are less obvious in higher concentration liquid. When the DOP and intensity images are fused by Curvelet transform, the targets are emerged clearly out of the turbid medium, and the values of the quality evaluation parameters in clarity, degree of contract and spatial frequency are prominently enhanced comparing with the unpolarized images, which can show the feasibility of this method.

  7. Ground Target Overflight and Orbital Maneuvering via Atmospheric Maneuvers

    DTIC Science & Technology

    2014-03-27

    Total deceleration m ∙ s−2 Gravitational acceleration m ∙ s−2 ℎ Altitude m Inclination angle rad Vehicle mass kg Geocentric ...determine the longitude. By expanding and simplifying Eqs. (3.1) and (3.5) for a circular orbit, the position can be written in the Geocentric Equatorial...Altitude m Inclination angle rad Vehicle mass kg Geocentric radial distance from planet center of mass to vehicle m General time s

  8. Bonneville First Powerhouse ERDC Turbine Operating Range Investigation

    DTIC Science & Technology

    2017-05-01

    the target operating range for minimizing turbine effects on fish passing through the B1 powerhouse. Relative effects of blade contact, shear, stay...This includes operation within and beyond the current 1% operating zone. Results from these model investigations indicate that that steeper blade ...angles (BAs) (if operated at peak efficiency for that subject blade angle) provide for better passage conditions for fish. Fewer severe contacts with the

  9. CONTINUOUS ROTATION SCATTERING CHAMBER

    DOEpatents

    Verba, J.W.; Hawrylak, R.A.

    1963-08-01

    An evacuated scattering chamber for use in observing nuclear reaction products produced therein over a wide range of scattering angles from an incoming horizontal beam that bombards a target in the chamber is described. A helically moving member that couples the chamber to a detector permits a rapid and broad change of observation angles without breaching the vacuum in the chamber. Also, small inlet and outlet openings are provided whose size remains substantially constant. (auth)

  10. Spreadsheet Application Showing the Proper Elevation Angle, Points of Shot and Impact of a Projectile

    ERIC Educational Resources Information Center

    Benacka, Jan

    2015-01-01

    This paper provides the formula for the elevation angle at which a projectile has to be fired in a vacuum from a general position to hit a target at a given distance. A spreadsheet application that models the trajectory is presented, and the problem of finding the points of shot and impact of a projectile moving in a vacuum if three points of the…

  11. Incoherent imaging of radar targets

    NASA Astrophysics Data System (ADS)

    van Ommen, A.; van der Spek, G. A.

    1986-05-01

    Theory suggests that, if a target can be modeled as a rigid constellation of point scatterers, the RCS pattern over a certain aspect change can be used to produce a one-dimensional image. The results for actual measured RCS patterns, however, are not promising. This is illustrated by processing on 4 s of echo data obtained from a Boeing 737 in straight flight, during which its aspect change is 2 deg. The conclusion might be that, for the application considered, aircraft cannot be modeled as a rigid constellation of point scatterers; this is partly due to the treatment of a three-dimensional target as a line target.

  12. An Algorithm for Interactive Modeling of Space-Transportation Engine Simulations: A Constraint Satisfaction Approach

    NASA Technical Reports Server (NTRS)

    Mitra, Debasis; Thomas, Ajai; Hemminger, Joseph; Sakowski, Barbara

    2001-01-01

    In this research we have developed an algorithm for the purpose of constraint processing by utilizing relational algebraic operators. Van Beek and others have investigated in the past this type of constraint processing from within a relational algebraic framework, producing some unique results. Apart from providing new theoretical angles, this approach also gives the opportunity to use the existing efficient implementations of relational database management systems as the underlying data structures for any relevant algorithm. Our algorithm here enhances that framework. The algorithm is quite general in its current form. Weak heuristics (like forward checking) developed within the Constraint-satisfaction problem (CSP) area could be also plugged easily within this algorithm for further enhancements of efficiency. The algorithm as developed here is targeted toward a component-oriented modeling problem that we are currently working on, namely, the problem of interactive modeling for batch-simulation of engineering systems (IMBSES). However, it could be adopted for many other CSP problems as well. The research addresses the algorithm and many aspects of the problem IMBSES that we are currently handling.

  13. Analysis and Modeling of Target Echo and Reverberation: FY15 Annual Report for ONR

    DTIC Science & Technology

    2015-09-30

    particular interest is the target echo, which has not yet received a lot of attention , and for which good data were obtained during the TREX...essentially cut off all paths steeper than the critical angle. The coloured lines lines correspond to the differences between the group velocity formulation

  14. Stability and control characteristics of an airplane model having a 45.1 degree swept-back wing with aspect ratio 2.50 and taper ratio 0.42 and a 42.8 degree swept-back horizontal tail with aspect ratio 3.87 and taper ratio 0.49

    NASA Technical Reports Server (NTRS)

    Schuldenfrei, Marvin; Comisarow, Paul; Goodson, Kenneth W

    1947-01-01

    Tests were made of an airplane model having a 45.1 degree swept-back wing with aspect ratio 2.50 and taper ratio 0.42 and a 42.8 degree swept-back horizontal tail with aspect ratio 3.87 and taper ratio 0.49 to determine its low-speed stability and control characteristics. The test Reynolds number was 2.87 x 10(6) based on a mean aerodynamic chord of 2.47 feet except for some of the aileron tests which were made at a Reynolds number of 2.05 x 10(6). With the horizontal tail located near the fuselage juncture on the vertical tail, model results indicated static longitudinal instability above a lift coefficient that was 0.15 below the lift coefficient at which stall occurred. Static longitudinal stability, however, was manifested throughout the life range with the horizontal tail located near the top of the vertical tail. The use of 10 degrees negative dihedral on the wing had little effect on the static longitudinal stability characteristics. Preliminary tests of the complete model revealed an undesirable flat spot in the yawing-moment curves at low angles of attack, the directional stability being neutral for yaw angles of plus-or-minus 2 degrees. This undesirable characteristic was improved by replacing the thick original vertical tail with a thin vertical tail and by flattening the top of the dorsal fairing.

  15. Comparison of Geant4 multiple Coulomb scattering models with theory for radiotherapy protons

    NASA Astrophysics Data System (ADS)

    Makarova, Anastasia; Gottschalk, Bernard; Sauerwein, Wolfgang

    2017-08-01

    Usually, Monte Carlo models are validated against experimental data. However, models of multiple Coulomb scattering (MCS) in the Gaussian approximation are exceptional in that we have theories which are probably more accurate than the experiments which have, so far, been done to test them. In problems directly sensitive to the distribution of angles leaving the target, the relevant theory is the Molière/Fano/Hanson variant of Molière theory (Gottschalk et al 1993 Nucl. Instrum. Methods Phys. Res. B 74 467-90). For transverse spreading of the beam in the target itself, the theory of Preston and Koehler (Gottschalk (2012 arXiv:1204.4470)) holds. Therefore, in this paper we compare Geant4 simulations, using the Urban and Wentzel models of MCS, with theory rather than experiment, revealing trends which would otherwise be obscured by experimental scatter. For medium-energy (radiotherapy) protons, and low-Z (water-like) target materials, Wentzel appears to be better than Urban in simulating the distribution of outgoing angles. For beam spreading in the target itself, the two models are essentially equal.

  16. Comparison of Geant4 multiple Coulomb scattering models with theory for radiotherapy protons.

    PubMed

    Makarova, Anastasia; Gottschalk, Bernard; Sauerwein, Wolfgang

    2017-07-06

    Usually, Monte Carlo models are validated against experimental data. However, models of multiple Coulomb scattering (MCS) in the Gaussian approximation are exceptional in that we have theories which are probably more accurate than the experiments which have, so far, been done to test them. In problems directly sensitive to the distribution of angles leaving the target, the relevant theory is the Molière/Fano/Hanson variant of Molière theory (Gottschalk et al 1993 Nucl. Instrum. Methods Phys. Res. B 74 467-90). For transverse spreading of the beam in the target itself, the theory of Preston and Koehler (Gottschalk (2012 arXiv:1204.4470)) holds. Therefore, in this paper we compare Geant4 simulations, using the Urban and Wentzel models of MCS, with theory rather than experiment, revealing trends which would otherwise be obscured by experimental scatter. For medium-energy (radiotherapy) protons, and low-Z (water-like) target materials, Wentzel appears to be better than Urban in simulating the distribution of outgoing angles. For beam spreading in the target itself, the two models are essentially equal.

  17. Posterolateral Trajectories Favor a Longer Motor Domain in Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease.

    PubMed

    Tamir, Idit; Marmor-Levin, Odeya; Eitan, Renana; Bergman, Hagai; Israel, Zvi

    2017-10-01

    The clinical outcome of patients with Parkinson disease (PD) who undergo subthalamic nucleus (STN) deep brain stimulation (DBS) is, in part, determined by the length of the electrode trajectory through the motor STN domain, the dorsolateral oscillatory region (DLOR). Trajectory length has been found to correlate with the stimulation-related improvement in patients' motor function (estimated by part III of the United Parkinson's Disease Rating Scale [UPDRS]). Therefore, it seems that ideally trajectories should have maximal DLOR length. We retrospectively studied the influence of various anatomic aspects of the brains of patients with PD and the geometry of trajectories planned on the length of the DLOR and STN recorded during DBS surgery. We examined 212 trajectories and 424 microelectrode recording tracks in 115 patients operated on in our center between 2010 and 2015. We found a strong correlation between the length of the recorded DLOR and STN. Trajectories that were more lateral and/or posterior in orientation had a longer STN and DLOR pass, although the DLOR/STN fraction length remained constant. The STN target was more lateral when the third ventricle was wider, and the latter correlated with older age and male gender. Trajectory angles correlate with the recorded STN and DLOR lengths, and should be altered toward a more posterolateral angle in older patients and atrophied brains to compensate for the changes in STN location and geometry. These fine adjustments should yield a longer motor domain pass, thereby improving the patient's predicted outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Optimizing sensor cover energy for directional sensors

    NASA Astrophysics Data System (ADS)

    Astorino, Annabella; Gaudioso, Manlio; Miglionico, Giovanna

    2016-10-01

    The Directional Sensors Continuous Coverage Problem (DSCCP) aims at covering a given set of targets in a plane by means of a set of directional sensors. The location of these sensors is known in advance and they are characterized by a discrete set of possible radii and aperture angles. Decisions to be made are about orientation (which in our approach can vary continuously), radius and aperture angle of each sensor. The objective is to get a minimum cost coverage of all targets, if any. We introduce a MINLP formulation of the problem and define a Lagrangian heuristics based on a dual ascent procedure operating on one multiplier at a time. Finally we report the results of the implementation of the method on a set of test problems.

  19. Angle-resolved Auger electron spectra induced by neon ion impact on aluminum

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Aron, P. R.

    1986-01-01

    Auger electron emission from aluminum bombarded with 1 to 5 keV neon ions was studied by angle-resolved electron spectroscopy. The position and shape of the spectral features depended on the incident ion energy, angle of ion incidence, and electron take-off angle with respect to the aluminum surface. These spectral dependencies were interpreted in terms of the Doppler shift given to the Auger electron velocity by the excited atom ejected into the vacuum. For oblique ion incidence it is concluded that a flux of high energy atoms are ejected in a direction close to the projection of the ion beam on the target surface. In addition, a new spectral feature was found and identified as due to Auger emission from excited neon in the aluminum matrix.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Lei, E-mail: lei.ren@duke.edu; Yin, Fang-Fang; Zhang, You

    Purpose: Currently, no 3D or 4D volumetric x-ray imaging techniques are available for intrafraction verification of target position during actual treatment delivery or in-between treatment beams, which is critical for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) treatments. This study aims to develop a limited-angle intrafraction verification (LIVE) system to use prior information, deformation models, and limited angle kV-MV projections to verify target position intrafractionally. Methods: The LIVE system acquires limited-angle kV projections simultaneously during arc treatment delivery or in-between static 3D/IMRT treatment beams as the gantry moves from one beam to the next. Orthogonal limited-angle MV projectionsmore » are acquired from the beam's eye view (BEV) exit fluence of arc treatment beam or in-between static beams to provide additional anatomical information. MV projections are converted to kV projections using a linear conversion function. Patient prior planning CT at one phase is used as the prior information, and the on-board patient volume is considered as a deformation of the prior images. The deformation field is solved using the data fidelity constraint, a breathing motion model extracted from the planning 4D-CT based on principal component analysis (PCA) and a free-form deformation (FD) model. LIVE was evaluated using a 4D digital extended cardiac torso phantom (XCAT) and a CIRS 008A dynamic thoracic phantom. In the XCAT study, patient breathing pattern and tumor size changes were simulated from CT to treatment position. In the CIRS phantom study, the artificial target in the lung region experienced both size change and position shift from CT to treatment position. Varian Truebeam research mode was used to acquire kV and MV projections simultaneously during the delivery of a dynamic conformal arc plan. The reconstruction accuracy was evaluated by calculating the 3D volume percentage difference (VPD) and the center of mass (COM) difference of the tumor in the true on-board images and reconstructed images. Results: In both simulation and phantom studies, LIVE achieved substantially better reconstruction accuracy than reconstruction using PCA or FD deformation model alone. In the XCAT study, the average VPD and COM differences among different patient scenarios for LIVE system using orthogonal 30° scan angles were 4.3% and 0.3 mm when using kV+BEV MV. Reducing scan angle to 15° increased the average VPD and COM differences to 15.1% and 1.7 mm. In the CIRS phantom study, the VPD and COM differences for the LIVE system using orthogonal 30° scan angles were 6.4% and 1.4 mm. Reducing scan angle to 15° increased the VPD and COM differences to 51.9% and 3.8 mm. Conclusions: The LIVE system has the potential to substantially improve intrafraction target localization accuracy by providing volumetric verification of tumor position simultaneously during arc treatment delivery or in-between static treatment beams. With this improvement, LIVE opens up a new avenue for margin reduction and dose escalation in both fractionated treatments and SRS and SBRT treatments.« less

  1. Tactical missile aerodynamics - General topics. Progress in Astronautics and Aeronautics. Vol. 141

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemsch, M.J.

    1992-01-01

    The present volume discusses the development history of tactical missile airframes, aerodynamic considerations for autopilot design, a systematic method for tactical missile design, the character and reduction of missile observability by radar, the visualization of high angle-of-attack flow phenomena, and the behavior of low aspect ratio wings at high angles of attack. Also discussed are airbreathing missile inlets, 'waverider' missile configurations, bodies with noncircular cross-sections and bank-to-turn missiles, asymmetric flow separation and vortex shedding on bodies-of-revolution, unsteady missile flows, swept shock-wave/boundary-layer interactions, pylon carriage and separation of stores, and internal stores carriage and separation.

  2. Numerical simulation of wind loads on solar panels

    NASA Astrophysics Data System (ADS)

    Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung

    2018-05-01

    Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.

  3. Micromechanics of fatigue in woven and stitched composites

    NASA Technical Reports Server (NTRS)

    Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Mitchell, M. R.; Morris, W. L.; Schroeder, S.

    1991-01-01

    The goal is to determine how microstructural factors, especially the architecture of microstructural factors, control fatigue damage in 3D reinforced polymer composites. Test materials were fabricated from various preforms, including stitched quasi-isotropic laminates, and through-the-thickness angle interlock, layer-to-layer angle interlock, and through-the-thickness stitching effect weaves. Preforms were impregnated with a tough resin by a special vacuum infiltration method. Most tests are being performed in uniaxial compression/compression loading. In all cases to date, failure has occurred not by delamination, but by shear failure, which occurs suddenly rather than by gradual macroscopic crack growth. Some theoretical aspects of bridging are also examined.

  4. Roles of gravitational cues and efference copy signals in the rotational updating of memory saccades.

    PubMed

    Klier, Eliana M; Angelaki, Dora E; Hess, Bernhard J M

    2005-07-01

    Primates are able to localize a briefly flashed target despite intervening movements of the eyes, head, or body. This ability, often referred to as updating, requires extraretinal signals related to the intervening movement. With active roll rotations of the head from an upright position it has been shown that the updating mechanism is 3-dimensional, robust, and geometrically sophisticated. Here we examine whether such a rotational updating mechanism operates during passive motion both with and without inertial cues about head/body position in space. Subjects were rotated from either an upright or supine position, about a nasal-occipital axis, briefly shown a world-fixed target, rotated back to their original position, and then asked to saccade to the remembered target location. Using this paradigm, we tested subjects' abilities to update from various tilt angles (0, +/-30, +/-45, +/-90 degrees), to 8 target directions and 2 target eccentricities. In the upright condition, subjects accurately updated the remembered locations from all tilt angles independent of target direction or eccentricity. Slopes of directional errors versus tilt angle ranged from -0.011 to 0.15, and were significantly different from a slope of 1 (no compensation for head-in-space roll) and a slope of 0.9 (no compensation for eye-in-space roll). Because the eyes, head, and body were fixed throughout these passive movements, subjects could not use efference copies or neck proprioceptive cues to assess the amount of tilt, suggesting that vestibular signals and/or body proprioceptive cues suffice for updating. In the supine condition, where gravitational signals could not contribute, slopes ranged from 0.60 to 0.82, indicating poor updating performance. Thus information specifying the body's orientation relative to gravity is critical for maintaining spatial constancy and for distinguishing body-fixed versus world-fixed reference frames.

  5. Angular Distributions of Differential Electron Capture Cross Sections in Collisions Between Low-Velocity Highly-Charged Ions and Neutral Targets.

    NASA Astrophysics Data System (ADS)

    Waggoner, William Tracy

    1990-01-01

    Experimental capture cross sections d sigma / dtheta versus theta , are presented for various ions incident on neutral targets. First, distributions are presented for Ar ^{rm 8+} ions incident on H_{rm 2}, D _{rm 2}, and Ar targets. Energy gain studies indicate that capture occurs to primarily a 5d,f final state of Ar^{rm 7+} with some contributions from transfer ionization (T.I.) channels. Angular distribution spectra for all three targets are similar, with spectra having a main peak located at forward angles which is attributed to single capture events, and a secondary structure occurring at large angles which is attributed to T.I. contributions. A series of Ar^{rm 8+} on Ar spectra were collected using a retarding grid system as a low resolution energy spectrometer to resolve single capture events from T.I. events. The resulting single capture and T.I. angular distributions are presented. Results are discussed in terms of a classical deflection function employing a simple two state curve crossing model. Angular distributions for electron capture from He by C, N, O, F, and Ne ions with charge states from 5 ^+-8^+ are presented for projectile energies between 1.2 and 2.0 kV. Distributions for the same charge state but different ion species are simlar, but not identical with distributions for the 5 ^+ and 7^+ ions being strongly forward peaked, the 6^+ distributions are much less forward peaked with the O^{6+} distributions showing structure, the Ne^{8+} ion distribution appears to be an intermediate case between forward peaking and large angle scattering. These results are discussed in terms of classical deflection functions which utilize two state Coulomb diabatic curve crossing models. Finally, angular distributions are presented for electron capture from He by Ar^{rm 6+} ions at energies between 1287 eV and 296 eV. At large projectile energies the distribution is broad. As the energy decreases below 523 eV, distributions shift to forward angles with a second peak appearing outside the Coulomb angle, theta_{c} = Q/2E, which continues to grow in magnitude as the projectile energy decreases further. Results are compared with a model calculation employing a two state diabatic Coulomb curve crossing model and the classical deflection function.

  6. The Aspect Hypothesis Revisited: A Cross-Sectional Study of Tense and Aspect Marking in Interlanguage.

    ERIC Educational Resources Information Center

    Robison, Richard E.

    1995-01-01

    This article examined the aspect hypothesis, which asserts that verb inflections in early interlanguage systems function primarily as markers of lexical aspect independent of the target language. A study of interviews conducted with 26 Puerto Rican college students grouped into 4 proficiency levels found that the association of inflections with…

  7. [Therapeutic algorithm of idiopathic scoliosis in children].

    PubMed

    Ciortan, Ionica; Goţia, D G

    2008-01-01

    Acquired deformations of spinal cord (scoliosis, kyphosis, lordosis) represent a frequent pathology in child; their treatment is complex, with variable results which depend on various parameters. Mild scoliosis, with an angle less than 30 degrees, is treated with physiotherapy and regular follow-up. If the angle is higher than 30 degrees, the orthopedic corset is required; the angle over 45 degrees impose surgically correction. The indications of every therapeutic method depend on many factors, the main target of the treatment is to prevent the aggravation of the curvature; concerning the surgery, the goal is to obtain a correction as normal as possible of the spinal axis.

  8. Influence of Cobb Angle and ISIS2 Surface Topography Volumetric Asymmetry on Scoliosis Research Society-22 Outcome Scores in Scoliosis.

    PubMed

    Brewer, Paul; Berryman, Fiona; Baker, De; Pynsent, Paul; Gardner, Adrian

    2013-11-01

    Retrospective sequential patient series. To establish the relationship between the magnitude of the deformity in scoliosis and patients' perception of their condition, as measured with Scoliosis Research Society-22 scores. A total of 93 untreated patients with adolescent idiopathic scoliosis were included retrospectively. The Cobb angle was measured from a plain radiograph, and volumetric asymmetry was measured by ISIS2 surface topography. The association between Scoliosis Research Society scores for function, pain, self-image, and mental health against Cobb angle and volumetric asymmetry was investigated using the Pearson correlation coefficient. Correlation of both Cobb angle and volumetric asymmetry with function and pain was weak (all < .23); these correlation values were not statistically significant. Correlation of Cobb angle and volumetric asymmetry with self-image, was higher, although still moderate (-.37 for Cobb angle and -.44 for volumetric asymmetry). Both were statistically significant (Cobb angle, p = .0002; volumetric asymmetry; p = .00001). Cobb angle contributed 13.8% to the linear relationship with self-image, whereas volumetric asymmetry contributed 19.3%. For mental health, correlation was statistically significant with Cobb angle (p = .011) and volumetric asymmetry (p = .0005), but the correlation was low to moderate (-.26 and -.35, respectively). Cobb angle contributed 6.9% to the linear relationship with mental health, whereas volumetric asymmetry contributed 12.4%. Volumetric asymmetry correlates better with both mental health and self-image compared with Cobb angle, but the correlation was only moderate. This study suggests that a patient's own perception of self-image and mental health is multifactorial and not completely explained through present objective measurements of the size of the deformity. This helps to explain the difficulties in any objective analysis of a problem with multifactorial perception issues. Further study is required to investigate other physical aspects of the deformity that may have a role in how patients view themselves. Copyright © 2013 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  9. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, D.N.

    1996-09-24

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.

  10. Dual beam optical system for pulsed laser ablation film deposition

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.

  11. Ipsilateral kidney sparing in treatment of pancreatic malignancies using volumetric-modulated arc therapy avoidance sectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Raymond W., E-mail: rwc3b@alumni.virginia.edu; Podgorsak, Matthew B.

    Recent research has shown treating pancreatic cancer with volumetric-modulated arc therapy (VMAT) to be superior to either intensity-modulated radiation therapy or 3-dimensional conformal radiotherapy (3D-CRT), with respect to reducing normal tissue toxicity, monitor units, and treatment time. Furthermore, using avoidance sectors with RapidArc planning can further reduce normal tissue dose while maintaining target conformity. This study looks at the methods in reducing dose to the ipsilateral kidney, in pancreatic head cases, while observing dose received by other critical organs using avoidance sectors. Overall, 10 patients were retrospectively analyzed. Each patient had preoperative/unresectable pancreatic tumor and were selected based on themore » location of the right kidney being situated within the traditional 3D-CRT treatment field. The target planning target volume (286.97 ± 85.17 cm{sup 3}) was prescribed to 50.4 Gy using avoidance sectors of 30°, 40°, and 50° and then compared with VMAT as well as 3D-CRT. Analysis of the data shows that the mean dose to the right kidney was reduced by 11.6%, 15.5%, and 21.9% for avoidance angles of 30°, 40°, and 50°, respectively, over VMAT. The mean dose to the total kidney also decreased by 6.5%, 8.5%, and 11.0% for the same increasing angles. Spinal cord maximum dose, however, increased as a function of angle by 3.7%, 4.8%, and 6.1% compared with VMAT. Employing avoidance sector angles as a complement to VMAT planning can significantly reduce high dose to the ipsilateral kidney while not greatly overdosing other critical organs.« less

  12. The combi-targeting concept: synthesis of stable nitrosoureas designed to inhibit the epidermal growth factor receptor (EGFR).

    PubMed

    Domarkas, Juozas; Dudouit, Fabienne; Williams, Christopher; Qiyu, Qiu; Banerjee, Ranjita; Brahimi, Fouad; Jean-Claude, Bertrand Jacques

    2006-06-15

    According to the "combi-targeting" concept, the EGFR tyrosine kinase (TK) inhibitory potency of compounds termed "combi-molecules" is critical for selective growth inhibition of tumor cells with disordered expression of EGFR or its closest family member erbB2. Here we report on the optimization of the EGFR TK inhibitory potency of the combi-molecules of the nitrosourea class by comparison with their aminoquinazoline and ureidoquinazoline precursors. This led to the discovery of a new structural parameter that influences their EGFR TK inhibitory potency, i.e., the torsion angle between the plane of the quinazoline ring and the ureido or the nitrosoureido moiety of the synthesized drugs. Compounds (3'-Cl and Br series) with small angles (0.5-3 degrees ) were generally stronger EGFR TK inhibitors than those with large angles (18-21 degrees ). This was further corroborated by ligand-receptor van der Waals interaction calculations that showed significant binding hindrance imposed by large torsion angles in the narrow ATP cleft of EGFR. Selective antiproliferative studies in a pair of mouse fibroblast NIH3T3 cells, one of which NIH3T3/neu being transfected with the erbB2 oncogene, showed that IC(50) values for inhibition of EGFR TK could be good predictors of their selective potency against the serum-stimulated growth of the erbB2-tranfected cell line (Pearson r = 0.8). On the basis of stability (t(1/2)), EGFR TK inhibitory potency (IC(50)), and selective erbB2 targeting, compound 23, a stable nitrosourea, was considered to have the structural requirements for further development.

  13. Super-resolution imaging using multi- electrode CMUTs: theoretical design and simulation using point targets.

    PubMed

    You, Wei; Cretu, Edmond; Rohling, Robert

    2013-11-01

    This paper investigates a low computational cost, super-resolution ultrasound imaging method that leverages the asymmetric vibration mode of CMUTs. Instead of focusing on the broadband received signal on the entire CMUT membrane, we utilize the differential signal received on the left and right part of the membrane obtained by a multi-electrode CMUT structure. The differential signal reflects the asymmetric vibration mode of the CMUT cell excited by the nonuniform acoustic pressure field impinging on the membrane, and has a resonant component in immersion. To improve the resolution, we propose an imaging method as follows: a set of manifold matrices of CMUT responses for multiple focal directions are constructed off-line with a grid of hypothetical point targets. During the subsequent imaging process, the array sequentially steers to multiple angles, and the amplitudes (weights) of all hypothetical targets at each angle are estimated in a maximum a posteriori (MAP) process with the manifold matrix corresponding to that angle. Then, the weight vector undergoes a directional pruning process to remove the false estimation at other angles caused by the side lobe energy. Ultrasound imaging simulation is performed on ring and linear arrays with a simulation program adapted with a multi-electrode CMUT structure capable of obtaining both average and differential received signals. Because the differential signals from all receiving channels form a more distinctive temporal pattern than the average signals, better MAP estimation results are expected than using the average signals. The imaging simulation shows that using differential signals alone or in combination with the average signals produces better lateral resolution than the traditional phased array or using the average signals alone. This study is an exploration into the potential benefits of asymmetric CMUT responses for super-resolution imaging.

  14. Steady-state and transitional aerodynamic characteristics of a wing in simulated heavy rain

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Bezos, Gaudy M.

    1989-01-01

    The steady-state and transient effects of simulated heavy rain on the subsonic aerodynamic characteristics of a wing model were determined in the Langley 14- by 22-Foot Subsonic Tunnel. The 1.29 foot chord wing was comprised of a NACA 23015 airfoil and had an aspect ratio of 6.10. Data were obtained while test variables of liquid water content, angle of attack, and trailing edge flap angle were parametrically varied at dynamic pressures of 10, 30, and 50 psf (i.e., Reynolds numbers of .76x10(6), 1.31x10(6), and 1.69x10(6)). The experimental results showed reductions in lift and increases in drag when in the simulated rain environment. Accompanying this was a reduction of the stall angle of attack by approximately 4 deg. The transient aerodynamic performance during transition from dry to wet steady-state conditions varied between a linear and a nonlinear transition.

  15. The slant of the forehead as a craniofacial feature of impulsiveness.

    PubMed

    Guerrero-Apolo, J David; Navarro-Pastor, J Blas; Bulbena-Vilarrasa, Antonio; Gabarre-Mir, Julián

    2018-03-12

    Impulsiveness has been the subject of much research, but little is known about the possible relationship between craniofacial anatomy and impulsiveness. The present study was designed to investigate the relationship between one aspect of craniofacial structure (the angle of inclination of the forehead) and impulsiveness. Photographs in profile were obtained from 131 volunteers who had been fined for driving at high speed and were undergoing a court-mandated driving license point-recovery course. They completed the Barratt Impulsiveness Scale (BIS-11), the Impulsive Behavior Scale (UPPS-P), and Zuckerman's Sensation Seeking Scale (V). The angle of the slant of the forehead was measured with a photographic support and a protractor. High positive concordance was found between forehead inclination and 14 out of the 15 impulsiveness factors studied. The angle of inclination of the forehead was significantly associated with self-reported impulsiveness in this sample of traffic violators.

  16. Wind-Tunnel Tests on a Series of Wing Models Through a Large Angle of Attack Range. Part I : Force Tests

    NASA Technical Reports Server (NTRS)

    Knight, Montgomery; Wenzinger, Carl J

    1930-01-01

    This investigation covers force tests through a large range of angle of attack on a series of monoplane and biplane wing models. The tests were conducted in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics. The models were arranged in such a manner as to make possible a determination of the effects of variations in tip shape, aspect ratio, flap setting, stagger, gap, decalage, sweep back, and airfoil profile. The arrangements represented most of the types of wing systems in use on modern airplanes. The effect of each variable is illustrated by means of groups of curves. In addition, there are included approximate autorotational characteristics in the form of calculated ranges of "rotary instability." a correction for blocking in this tunnel which applies to monoplanes at large angles of attack has been developed, and is given in an appendix. (author)

  17. Low-speed investigation of effects of wing leading- and trailing-edge flap deflections and canard incidence on a fighter configuration equipped with a forward-swept wing

    NASA Technical Reports Server (NTRS)

    Gainer, T. G.; Mann, M. J.; Huffman, J. K.

    1984-01-01

    An advanced fighter configuration with a forward-swept wing of aspect ratio 3.28 is tested in the Langley 7 by 10 Foot High Speed Tunnel at a Mach number of 0.3. The wing has 29.5 degrees of forward sweep of the quarter chord line and is equipped with 15 percent chord leading edge and 30 percent chord trailing edge flaps. The canard is sweptback 45 degrees. Tests were made through a range of angle of attack from about -2 degrees to 22 degrees. Deflecting the flaps significantly improves the lift drag characteristics at the higher angles of attack. The canard is able to trim the configurations with different flap deflections over most of the range of angle of attack. The penalty in maximum lift coefficient due to trimming is about 0.10.

  18. Scale Effect on Clark Y Airfoil Characteristics from NACA Full-Scale Wind-Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe

    1935-01-01

    This report presents the results of wind tunnel tests conducted to determine the aerodynamic characteristics of the Clark Y airfoil over a large range of Reynolds numbers. Three airfoils of aspect ratio 6 and with 4, 6, and 8 foot chords were tested at velocities between 25 and 118 miles per hour, and the characteristics were obtained for Reynolds numbers (based on the airfoil chord) in the range between 1,000,000 and 9,000,000 at the low angles of attack, and between 1,000,000 and 6,000,000 at maximum lift. With increasing Reynolds number the airfoil characteristics are affected in the following manner: the drag at zero lift decreases, the maximum lift increases, the slope of the lift curve increases, the angle of zero lift occurs at smaller negative angles, and the pitching moment at zero lift does not change appreciably.

  19. Effect of varying internal geometry on the static performance of rectangular thrust-reverser ports

    NASA Technical Reports Server (NTRS)

    Re, Richard J.; Mason, Mary L.

    1987-01-01

    An investigation has been conducted to evaluate the effects of several geometric parameters on the internal performance of rectangular thrust-reverser ports for nonaxisymmetric nozzles. Internal geometry was varied with a test apparatus which simulated a forward-flight nozzle with a single, fully deployed reverser port. The test apparatus was designed to simulate thrust reversal (conceptually) either in the convergent section of the nozzle or in the constant-area duct just upstream of the nozzle. The main geometric parameters investigated were port angle, port corner radius, port location, and internal flow blocker angle. For all reverser port geometries, the port opening had an aspect ratio (throat width to throat height) of 6.1 and had a constant passage area from the geometric port throat to the exit. Reverser-port internal performance and thrust-vector angles computed from force-balance measurements are presented.

  20. Nonplanar wing load-line and slender wing theory

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1977-01-01

    Nonplanar load line, slender wing, elliptic wing, and infinite aspect ratio limit loading theories are developed. These are quasi two dimensional theories but satisfy wing boundary conditions at all points along the nonplanar spanwise extent of the wing. These methods are applicable for generalized configurations such as the laterally nonplanar wing, multiple nonplanar wings, or wing with multiple winglets of arbitrary shape. Two dimensional theory infers simplicity which is practical when analyzing complicated configurations. The lateral spanwise distribution of angle of attack can be that due to winglet or control surface deflection, wing twist, or induced angles due to multiwings, multiwinglets, ground, walls, jet or fuselage. In quasi two dimensional theory the induced angles due to these extra conditions are likewise determined for two dimensional flow. Equations are developed for the normal to surface induced velocity due to a nonplanar trailing vorticity distribution. Application examples are made using these methods.

  1. Tactical missile aerodynamics

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)

    1986-01-01

    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  2. Behaviour of a Bouncing Ball

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    The bounce of a ball is a seemingly innocuous event that can be used to illustrate many aspects of elementary and even advanced mechanics. Both normal and oblique bounces on a rigid surface are considered in this article, emphasizing qualitative features of the bounce process. If the ball bounces at an oblique angle then it can slide throughout…

  3. Aspects of Adult-Child Communication: the Problem of Question Acquisition

    ERIC Educational Resources Information Center

    Savic, Svenka

    1975-01-01

    The early acquisition of the interrogative system, with data from Serbo-Croatian, is investigated. The subject is approached from the angle of adult-child interaction. A first-born pair of dizygotic twins were observed, beginning a month prior to the time when they first began to produce questions. (Author/RM)

  4. Learning Mathematics Does Not (Necessarily) Mean Constructing the Right Knowledge

    ERIC Educational Resources Information Center

    Dawson, Sandy

    2015-01-01

    In this article, which was first published in 1991, the late Sandy Dawson, discusses aspects of a Lakatosian approach to mathematics teaching. The ideas are illustrated with examples from three teaching situations: making conjectures about the next number in a sequence; making conjectures about the internal angles in a triangle using Logo; and…

  5. Theoretical stability and control characteristics of wings with various amounts of taper and twist

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A; Jones, Robert T

    1938-01-01

    Stability derivatives have been computed for twisted wings of different plan forms that include variations in both the wing taper and the aspect ratio. Taper ratios of 1.0, 0,50, and 0.25 are considered for each of three aspect ratios: 6, 10, and 16. The specific derivatives for which results are given are the rolling-moment and the yawing-moment derivatives with respect to (a) rolling velocity, (b) yawing velocity, and (c) angle of sideslip. These results are given in such a form that the effect of any initial symmetrical wing twist (such as may be produced by flaps) on the derivatives may easily be taken into account. In addition to the stability derivatives, results are included for determining the theoretical rolling moment due to aileron deflection and a series of influence lines is given by which the loading across the span may be determined for any angle-of-attack distribution that may occur on the wing plan forms considered. The report also includes incidental references to the application of the results.

  6. Investigating the structure of a vortex flow in the closed polygonal containers

    NASA Astrophysics Data System (ADS)

    Podolskaya, I. Yu; Bakakin, G. V.; Naumov, I. V.

    2018-03-01

    The structure of confined vortex flow generated by a rotating lid in a closed container with polygonal cross-section geometry (eight, six and five angles) has been investigated numerically for different height/radius aspect ratios h from 3.0 to 4.5 and for Reynold numbers ranging from 1500 to 3000. The critical Reynolds numbers at which the flow becomes unsteady were determined numerically by STAR-CCM+ computational fluid dynamics software for pentagonal and hexagonal cross-section configurations. The obtained results were compared with the flow structure in the closed cylindrical container. The boundary of a nonstationarity in polygonal containers is found to shift to the region of smaller aspect ratio and smaller Reynolds numbers with a decrease in the number of angles in the cross-section of the container relative to the boundary in a cylindrical container. It is additionally established that the structure of the flow in the near-axis region remains similar to the vortex structure in the cylinder, therefore the shape of the container does not influence the near-axis region.

  7. Aerodynamic Characteristics at a Mach Number of 6.8 of Two Hypersonic Missile Configurations, One with Low-Aspect-Ratio Cruciform Fins and Trailing-Edge Flaps and One with a Flared Afterbody and All-Movable Controls

    NASA Technical Reports Server (NTRS)

    Robinson, Ross B; Bernot, Peter T

    1958-01-01

    An investigation has been made to determine the aerodynamic characteristics in pitch at a Mach number of 6.8 of hypersonic missile configurations with cruciform trailing-edge flaps and with all-movable control surfaces. The flaps were tested on a configuration having low-aspect-ratio cruciform fins with an apex angle of 5 deg the all-movable controls were mounted at the 46.7-percent body station on a configuration having a 10 deg flared afterbody. The tests were made through an angle-of-attack range of -2 deg to 20 deg at zero sideslip in the Langley 11-inch hypersonic tunnel. The results indicated that the all-movable controls on the flared afterbody model should be capable of producing much larger values of trim lift and of normal acceleration than the trailing-edge -flap configuration. The flared -after body configuration had considerably higher drag than the cruciform-fin model but only slightly lower values of lift drag ratio.

  8. Aerodynamic Characteristics at a Mach Number of 6.8 of Two Hypersonic Missile Configurations, One with Low-Aspect-Ratio Cruciform Fins and Trailing-Edge Flaps and One with a Flared Afterbody and All-Movable Controls

    NASA Technical Reports Server (NTRS)

    Bernot, P. T.; Robinson, R. B.

    1958-01-01

    An investigation has been made to determine the aerodynamic characteristics in pitch at a Mach number of 6.8 of hypersonic missile configurations with cruciform trailing-edge flaps and with all-movable control surfaces. The flaps were tested on a configuration having low-aspect-ratio cruciform fins with an apex angle of 5 degrees; the all-movable controls were mounted at the 46.7-percent body station on a configuration having a 10 degrees flared afterbody. The tests were made through an angle-of-attack range of -2 degrees to 20 degrees at zero sideslip in the Langley 11-inch hypersonic tunnel. The results indicated that the all-movable controls on the flared-afterbody model should be capable of producing much larger values of trim lift and of normal acceleration than the trailing-edge-flap configuration. The flared-afterbody configuration had considerably higher drag than the cruciform-fin model but only slightly lower values of lift-drag ratio.

  9. Experimental Study of Characteristics of Micro-Hole Porous Skins for Turbulent Skin Friction Reduction

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.

    2002-01-01

    Characteristics of micro-hole porous skins for the turbulent skin friction reduction technology called the micro-blowing technique (MBT) were assessed experimentally at Mach 0.4 and blowing fractions from zero to 0.005. The objective of this study was to provide guidelines for the selection of porous plates for MBT. The hole angle, pattern, diameter, aspect ratio, and porosity were the parameters considered for this study. The additional effort to angle and stagger the holes was experimentally determined to be unwarranted in terms of skin friction benefit; therefore, these parameters were systematically eliminated from the parametric study. The impact of the remaining three parameters was evaluated by fixing two parameters at the reference values while varying the third parameter. The best hole-diameter Reynolds number was found to be around 400, with an optimum aspect ratio of about 6. The optimum porosity was not conclusively discerned because the range of porosities in the test plates considered was not great enough. However, the porosity was estimated to be about 15 percent or less.

  10. Oscillating cascade aerodynamics at large mean incidence

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; King, Aaron J.; El-Aini, Yehia M.; Capece, Vincent R.

    1996-01-01

    The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 deg and 10 deg; the Reynolds number was 0.9 x l0(exp 6). For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.

  11. Analysis of high aspect ratio jet flap wings of arbitrary geometry.

    NASA Technical Reports Server (NTRS)

    Lissaman, P. B. S.

    1973-01-01

    Paper presents a design technique for rapidly computing lift, induced drag, and spanwise loading of unswept jet flap wings of arbitrary thickness, chord, twist, blowing, and jet angle, including discontinuities. Linear theory is used, extending Spence's method for elliptically loaded jet flap wings. Curves for uniformly blown rectangular wings are presented for direct performance estimation. Arbitrary planforms require a simple computer program. Method of reducing wing to equivalent stretched, twisted, unblown planform for hand calculation is also given. Results correlate with limited existing data, and show lifting line theory is reasonable down to aspect ratios of 5.

  12. A proposed definition for a pitch attitude target for the microburst escape maneuver

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.

    1990-01-01

    The Windshear Training Aid promulgated by the Federal Aviation Administration (FAA) defines the practical recovery maneuver following a microburst encounter as application of maximum thrust accompanied by rotation to an aircraft-specific target pitch attitude. In search of a simple method of determining this target, appropriate to a variety of aircraft types, a computer simulation was used to explore the suitability of a pitch target equal in numerical value to that of the angle of attack associated with stall warning. For the configurations and critical microburst shears simulated, this pitch target was demonstrated to be close to optimum.

  13. Object tracking with robotic total stations: Current technologies and improvements based on image data

    NASA Astrophysics Data System (ADS)

    Ehrhart, Matthias; Lienhart, Werner

    2017-09-01

    The importance of automated prism tracking is increasingly triggered by the rising automation of total station measurements in machine control, monitoring and one-person operation. In this article we summarize and explain the different techniques that are used to coarsely search a prism, to precisely aim at a prism, and to identify whether the correct prism is tracked. Along with the state-of-the-art review, we discuss and experimentally evaluate possible improvements based on the image data of an additional wide-angle camera which is available for many total stations today. In cases in which the total station's fine aiming module loses the prism, the tracked object may still be visible to the wide-angle camera because of its larger field of view. The theodolite angles towards the target can then be derived from its image coordinates which facilitates a fast reacquisition of the prism. In experimental measurements we demonstrate that our image-based approach for the coarse target search is 4 to 10-times faster than conventional approaches.

  14. Inertial Pointing and Positioning System

    NASA Technical Reports Server (NTRS)

    Yee, Robert (Inventor); Robbins, Fred (Inventor)

    1998-01-01

    An inertial pointing and control system and method for pointing to a designated target with known coordinates from a platform to provide accurate position, steering, and command information. The system continuously receives GPS signals and corrects Inertial Navigation System (INS) dead reckoning or drift errors. An INS is mounted directly on a pointing instrument rather than in a remote location on the platform for-monitoring the terrestrial position and instrument attitude. and for pointing the instrument at designated celestial targets or ground based landmarks. As a result. the pointing instrument and die INS move independently in inertial space from the platform since the INS is decoupled from the platform. Another important characteristic of the present system is that selected INS measurements are combined with predefined coordinate transformation equations and control logic algorithms under computer control in order to generate inertial pointing commands to the pointing instrument. More specifically. the computer calculates the desired instrument angles (Phi, Theta. Psi). which are then compared to the Euler angles measured by the instrument- mounted INS. and forms the pointing command error angles as a result of the compared difference.

  15. Leaf angle, tree species, and the functioning of broadleaf deciduous forest ecosystems

    NASA Astrophysics Data System (ADS)

    McNeil, B. E.; Brzostek, E. R.; Fahey, R. T.; King, C. J.; Flamenco, E. A.; Rescorl, S.; Erazo, D.; Heimerl, T.

    2016-12-01

    The effects of temperate forests on the global cycles of carbon, water, and energy depends strongly on how individual tree species adjust to the novel environmental conditions of the Anthropocene. Here, we seek to identify and understand ecological variability in one important component of tree canopies, the inclination angles of leaves. Leaf angle has important effects on forest albedo, photosynthesis, and evapotranspiration, but there is relatively little data to constrain the many models that include (or perhaps should include) this essential aspect of canopy architecture. We employ a relatively new technique for using an electronic protractor to measure leaf angles from leveled digital photographs. From a suite of observation platforms (e.g. UAVs, eddy flux towers, old fire towers) in Connecticut, Indiana, Maryland, Michigan, Pennsylvania, and West Virginia, USA, we have measured leaf angles periodically throughout the 2014, 2015, and 2016 growing seasons. Based on over 25,000 measurements taken from 15 tree species, we find highly significant differences in mean leaf angle by canopy position, tree species, location, and observation date. In addition to replicating findings where upper-canopy sun leaves are more vertical than lower-canopy shade leaves, our analysis on sun leaves also finds other ecologically meaningful differences. For instance, we find that the mesic, shade tolerant sugar maple had significantly more horizontal leaf angles than drought-resistant species such as white oak. Species also appear to have unique patterns of leaf angle phenology, with most species tending toward more vertical leaf angles during droughty conditions later in the year. We discuss these empirical results in light of an emerging theoretical framework that positions leaf angle as a functional trait. Like leaf traits such as %N or SLA, we suggest that leaf angle is an essential part of the adaptive resource strategy of each tree species. Finally, by linking our leaf angle data to new observations of spatial and temporal variations in near infrared reflectance measured from UAV, airborne, and satellite sensors, we highlight how species-specific patterns of leaf angle phenology could provide a new mechanism to better constrain model predictions of energy, water, and carbon fluxes from temperate forests.

  16. A BRDF statistical model applying to space target materials modeling

    NASA Astrophysics Data System (ADS)

    Liu, Chenghao; Li, Zhi; Xu, Can; Tian, Qichen

    2017-10-01

    In order to solve the problem of poor effect in modeling the large density BRDF measured data with five-parameter semi-empirical model, a refined statistical model of BRDF which is suitable for multi-class space target material modeling were proposed. The refined model improved the Torrance-Sparrow model while having the modeling advantages of five-parameter model. Compared with the existing empirical model, the model contains six simple parameters, which can approximate the roughness distribution of the material surface, can approximate the intensity of the Fresnel reflectance phenomenon and the attenuation of the reflected light's brightness with the azimuth angle changes. The model is able to achieve parameter inversion quickly with no extra loss of accuracy. The genetic algorithm was used to invert the parameters of 11 different samples in the space target commonly used materials, and the fitting errors of all materials were below 6%, which were much lower than those of five-parameter model. The effect of the refined model is verified by comparing the fitting results of the three samples at different incident zenith angles in 0° azimuth angle. Finally, the three-dimensional modeling visualizations of these samples in the upper hemisphere space was given, in which the strength of the optical scattering of different materials could be clearly shown. It proved the good describing ability of the refined model at the material characterization as well.

  17. Direction, site and the muzzle target distance of bullet in the head and neck at close range as an indication of suicide or homicide.

    PubMed

    Suwanjutha, T

    1988-05-01

    Direction, site and muzzle target distance can indicate suicide or homicide. This conclusion can be drawn from autopsies of 57 cases of suicide and 68 cases of homicide by handgun fired at close range to the head and neck together with going to the crimescene in some cases. This study was carried out in Bangkok during the period from January 1983 to January 1986. In order to determine whether it was suicide or homicide, the path of the bullet, the site, the muzzle target distance must be considered. The angle of the bullet would be either elevated (from below upward), horizontal or an angle of depression (from above downward). For suicide, the direction of the bullet should be at an angle of elevation in the majority of cases. The position of the handgun in relation to the head in suicide was most often in tight contact and near contact. For homicide, the direction of the bullet should be horizontal in most cases. The bullet was at close range in the majority of the cases. There are 8 common sites for suicide and homicide and 10 different sites in the case of homicide which are at neck, left cheek, left aural region, lip, left occipital area orbit, chin, left eyebrow, submental and nose.

  18. Free–free experiments: the search for dressed atom effects

    NASA Astrophysics Data System (ADS)

    Martin, N. L. S.; Weaver, C. M.; Kim, B. N.; deHarak, B. A.

    2018-07-01

    Experiments on free–free electron scattering, specifically the absorption or emission of 1.17 eV photons from a Nd:YAG laser field by an unbound electron when it is scattered by an atom or molecule, are reviewed. For large scattering angles such experiments are well described by a simple analytical theory that is independent of the properties of the target. At small scattering angles this theory breaks down for targets with a high dipole polarizability α, and an additional term needs to be incorporated in the scattering amplitude. This term is proportional to the dipole polarizability, and hence introduces the properties of the target into the free–free cross section—i.e., the laser field ‘dresses’ the atom. A progress report is given of free–free experiments designed to look for such ‘dressed atom’ effects during the electron-impact excitation of argon in the presence of a laser field; the lowest excited states of argon have α ≈ 300 atomic units.

  19. Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods

    PubMed Central

    Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.

    2013-01-01

    Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822

  20. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    DOEpatents

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

Top