Sample records for target detection classification

  1. Supervised target detection in hyperspectral images using one-class Fukunaga-Koontz Transform

    NASA Astrophysics Data System (ADS)

    Binol, Hamidullah; Bal, Abdullah

    2016-05-01

    A novel hyperspectral target detection technique based on Fukunaga-Koontz transform (FKT) is presented. FKT offers significant properties for feature selection and ordering. However, it can only be used to solve multi-pattern classification problems. Target detection may be considered as a two-class classification problem, i.e., target versus background clutter. Nevertheless, background clutter typically contains different types of materials. That's why; target detection techniques are different than classification methods by way of modeling clutter. To avoid the modeling of the background clutter, we have improved one-class FKT (OC-FKT) for target detection. The statistical properties of target training samples are used to define tunnel-like boundary of the target class. Non-target samples are then created synthetically as to be outside of the boundary. Thus, only limited target samples become adequate for training of FKT. The hyperspectral image experiments confirm that the proposed OC-FKT technique provides an effective means for target detection.

  2. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar.

    PubMed

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-09-29

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system's capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications.

  3. Analysis on Target Detection and Classification in LTE Based Passive Forward Scattering Radar

    PubMed Central

    Raja Abdullah, Raja Syamsul Azmir; Abdul Aziz, Noor Hafizah; Abdul Rashid, Nur Emileen; Ahmad Salah, Asem; Hashim, Fazirulhisyam

    2016-01-01

    The passive bistatic radar (PBR) system can utilize the illuminator of opportunity to enhance radar capability. By utilizing the forward scattering technique and procedure into the specific mode of PBR can provide an improvement in target detection and classification. The system is known as passive Forward Scattering Radar (FSR). The passive FSR system can exploit the peculiar advantage of the enhancement in forward scatter radar cross section (FSRCS) for target detection. Thus, the aim of this paper is to show the feasibility of passive FSR for moving target detection and classification by experimental analysis and results. The signal source is coming from the latest technology of 4G Long-Term Evolution (LTE) base station. A detailed explanation on the passive FSR receiver circuit, the detection scheme and the classification algorithm are given. In addition, the proposed passive FSR circuit employs the self-mixing technique at the receiver; hence the synchronization signal from the transmitter is not required. The experimental results confirm the passive FSR system’s capability for ground target detection and classification. Furthermore, this paper illustrates the first classification result in the passive FSR system. The great potential in the passive FSR system provides a new research area in passive radar that can be used for diverse remote monitoring applications. PMID:27690051

  4. Determination of target detection limits in hyperspectral data using band selection and dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.

    2016-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally, generally useful wavelength ranges are determined and the optimal amount of principal components is analyzed.

  5. An incremental knowledge assimilation system (IKAS) for mine detection

    NASA Astrophysics Data System (ADS)

    Porway, Jake; Raju, Chaitanya; Varadarajan, Karthik Mahesh; Nguyen, Hieu; Yadegar, Joseph

    2010-04-01

    In this paper we present an adaptive incremental learning system for underwater mine detection and classification that utilizes statistical models of seabed texture and an adaptive nearest-neighbor classifier to identify varied underwater targets in many different environments. The first stage of processing uses our Background Adaptive ANomaly detector (BAAN), which identifies statistically likely target regions using Gabor filter responses over the image. Using this information, BAAN classifies the background type and updates its detection using background-specific parameters. To perform classification, a Fully Adaptive Nearest Neighbor (FAAN) determines the best label for each detection. FAAN uses an extremely fast version of Nearest Neighbor to find the most likely label for the target. The classifier perpetually assimilates new and relevant information into its existing knowledge database in an incremental fashion, allowing improved classification accuracy and capturing concept drift in the target classes. Experiments show that the system achieves >90% classification accuracy on underwater mine detection tasks performed on synthesized datasets provided by the Office of Naval Research. We have also demonstrated that the system can incrementally improve its detection accuracy by constantly learning from new samples.

  6. Real-time classification of vehicles by type within infrared imagery

    NASA Astrophysics Data System (ADS)

    Kundegorski, Mikolaj E.; Akçay, Samet; Payen de La Garanderie, Grégoire; Breckon, Toby P.

    2016-10-01

    Real-time classification of vehicles into sub-category types poses a significant challenge within infra-red imagery due to the high levels of intra-class variation in thermal vehicle signatures caused by aspects of design, current operating duration and ambient thermal conditions. Despite these challenges, infra-red sensing offers significant generalized target object detection advantages in terms of all-weather operation and invariance to visual camouflage techniques. This work investigates the accuracy of a number of real-time object classification approaches for this task within the wider context of an existing initial object detection and tracking framework. Specifically we evaluate the use of traditional feature-driven bag of visual words and histogram of oriented gradient classification approaches against modern convolutional neural network architectures. Furthermore, we use classical photogrammetry, within the context of current target detection and classification techniques, as a means of approximating 3D target position within the scene based on this vehicle type classification. Based on photogrammetric estimation of target position, we then illustrate the use of regular Kalman filter based tracking operating on actual 3D vehicle trajectories. Results are presented using a conventional thermal-band infra-red (IR) sensor arrangement where targets are tracked over a range of evaluation scenarios.

  7. Aircraft target detection algorithm based on high resolution spaceborne SAR imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Hao, Mengxi; Zhang, Cong; Su, Xiaojing

    2018-03-01

    In this paper, an image classification algorithm for airport area is proposed, which based on the statistical features of synthetic aperture radar (SAR) images and the spatial information of pixels. The algorithm combines Gamma mixture model and MRF. The algorithm using Gamma mixture model to obtain the initial classification result. Pixel space correlation based on the classification results are optimized by the MRF technique. Additionally, morphology methods are employed to extract airport (ROI) region where the suspected aircraft target samples are clarified to reduce the false alarm and increase the detection performance. Finally, this paper presents the plane target detection, which have been verified by simulation test.

  8. Camouflage target reconnaissance based on hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Hua, Wenshen; Guo, Tong; Liu, Xun

    2015-08-01

    Efficient camouflaged target reconnaissance technology makes great influence on modern warfare. Hyperspectral images can provide large spectral range and high spectral resolution, which are invaluable in discriminating between camouflaged targets and backgrounds. Hyperspectral target detection and classification technology are utilized to achieve single class and multi-class camouflaged targets reconnaissance respectively. Constrained energy minimization (CEM), a widely used algorithm in hyperspectral target detection, is employed to achieve one class camouflage target reconnaissance. Then, support vector machine (SVM), a classification method, is proposed to achieve multi-class camouflage target reconnaissance. Experiments have been conducted to demonstrate the efficiency of the proposed method.

  9. Marine Targets Classification in PolInSAR Data

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Jingsong; Ren, Lin

    2014-11-01

    In this paper, marine stationary targets and moving targets are studied by Pol-In-SAR data of Radarsat-2. A new method of stationary targets detection is proposed. The method get the correlation coefficient image of the In-SAR data, and using the histogram of correlation coefficient image. Then, A Constant False Alarm Rate (CFAR) algorithm and The Probabilistic Neural Network model are imported to detect stationary targets. To find the moving targets, Azimuth Ambiguity is show as an important feature. We use the length of azimuth ambiguity to get the target's moving direction and speed. Make further efforts, Targets classification is studied by rebuild the surface elevation of marine targets.

  10. Marine Targets Classification in PolInSAR Data

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Jingsong; Ren, Lin

    2014-11-01

    In this paper, marine stationary targets and moving targets are studied by Pol-In-SAR data of Radarsat-2. A new method of stationary targets detection is proposed. The method get the correlation coefficient image of the In-SAR data, and using the histogram of correlation coefficient image. Then , A Constant False Alarm Rate (CFAR) algorithm and The Probabilistic Neural Network model are imported to detect stationary targets. To find the moving targets, Azimuth Ambiguity is show as an important feature. We use the length of azimuth ambiguity to get the target's moving direction and speed. Make further efforts, Targets classification is studied by rebuild the surface elevation of marine targets.

  11. Target Detection and Classification Using Seismic and PIR Sensors

    DTIC Science & Technology

    2012-06-01

    time series analysis via wavelet - based partitioning,” Signal Process...regard, this paper presents a wavelet - based method for target detection and classification. The proposed method has been validated on data sets of...The work reported in this paper makes use of a wavelet - based feature extraction method , called Symbolic Dynamic Filtering (SDF) [12]–[14]. The

  12. UAS Detection Classification and Neutralization: Market Survey 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, Gabriel Carisle; Griffin, John Clark; Erdman, Matthew Kelly

    The purpose of this document is to briefly frame the challenges of detecting low, slow, and small (LSS) unmanned aerial systems (UAS). The conclusion drawn from internal discussions and external reports is the following; detection of LSS UAS is a challenging problem that can- not be achieved with a single detection modality for all potential targets. Classification of LSS UAS, especially classification in the presence of background clutter (e.g., urban environment) or other non-threating targets (e.g., birds), is under-explored. Though information of avail- able technologies is sparse, many of the existing options for UAS detection appear to be in theirmore » infancy (when compared to more established ground-based air defense systems for larger and/or faster threats). Companies currently providing or developing technologies to combat the UAS safety and security problem are certainly worth investigating, however, no company has provided the statistical evidence necessary to support robust detection, identification, and/or neutralization of LSS UAS targets. The results of a market survey are included that highlights potential commercial entities that could contribute some technology that assists in the detection, classification, and neutral- ization of a LSS UAS. This survey found no clear and obvious commercial solution, though recommendations are given for further investigation of several potential systems.« less

  13. Heterogeneous Vision Data Fusion for Independently Moving Cameras

    DTIC Science & Technology

    2010-03-01

    target detection , tracking , and identification over a large terrain. The goal of the project is to investigate and evaluate the existing image...fusion algorithms, develop new real-time algorithms for Category-II image fusion, and apply these algorithms in moving target detection and tracking . The...moving target detection and classification. 15. SUBJECT TERMS Image Fusion, Target Detection , Moving Cameras, IR Camera, EO Camera 16. SECURITY

  14. A targeted change-detection procedure by combining change vector analysis and post-classification approach

    NASA Astrophysics Data System (ADS)

    Ye, Su; Chen, Dongmei; Yu, Jie

    2016-04-01

    In remote sensing, conventional supervised change-detection methods usually require effective training data for multiple change types. This paper introduces a more flexible and efficient procedure that seeks to identify only the changes that users are interested in, here after referred to as "targeted change detection". Based on a one-class classifier "Support Vector Domain Description (SVDD)", a novel algorithm named "Three-layer SVDD Fusion (TLSF)" is developed specially for targeted change detection. The proposed algorithm combines one-class classification generated from change vector maps, as well as before- and after-change images in order to get a more reliable detecting result. In addition, this paper introduces a detailed workflow for implementing this algorithm. This workflow has been applied to two case studies with different practical monitoring objectives: urban expansion and forest fire assessment. The experiment results of these two case studies show that the overall accuracy of our proposed algorithm is superior (Kappa statistics are 86.3% and 87.8% for Case 1 and 2, respectively), compared to applying SVDD to change vector analysis and post-classification comparison.

  15. Applying the Multiple Signal Classification Method to Silent Object Detection Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Yokoyama, Tomoki; Hasegawa, Akio; Matsuda, Minoru

    2004-05-01

    The revolutionary concept of using ocean ambient noise positively to detect objects, called acoustic daylight imaging, has attracted much attention. The authors attempted the detection of a silent target object using ambient noise and a wide-band beam former consisting of an array of receivers. In experimental results obtained in air, using the wide-band beam former, we successfully applied the delay-sum array (DSA) method to detect a silent target object in an acoustic noise field generated by a large number of transducers. This paper reports some experimental results obtained by applying the multiple signal classification (MUSIC) method to a wide-band beam former to detect silent targets. The ocean ambient noise was simulated by transducers decentralized to many points in air. Both MUSIC and DSA detected a spherical target object in the noise field. The relative power levels near the target obtained with MUSIC were compared with those obtained by DSA. Then the effectiveness of the MUSIC method was evaluated according to the rate of increase in the maximum and minimum relative power levels.

  16. Advances in Doppler recognition for ground moving target indication

    NASA Astrophysics Data System (ADS)

    Kealey, Paul G.; Jahangir, Mohammed

    2006-05-01

    Ground Moving Target Indication (GMTI) radar provides a day/night, all-weather, wide-area surveillance capability to detect moving vehicles and personnel. Current GMTI radar sensors are limited to only detecting and tracking targets. The exploitation of GMTI data would be greatly enhanced by a capability to recognize accurately the detections as significant classes of target. Doppler classification exploits the differential internal motion of targets, e.g. due to the tracks, limbs and rotors. Recently, the QinetiQ Bayesian Doppler classifier has been extended to include a helicopter class in addition to wheeled, tracked and personnel classes. This paper presents the performance for these four classes using a traditional low-resolution GMTI surveillance waveform with an experimental radar system. We have determined the utility of an "unknown output decision" for enhancing the accuracy of the declared target classes. A confidence method has been derived, using a threshold of the difference in certainties, to assign uncertain classifications into an "unknown class". The trade-off between fraction of targets declared and accuracy of the classifier has been measured. To determine the operating envelope of a Doppler classification algorithm requires a detailed understanding of the Signal-to-Noise Ratio (SNR) performance of the algorithm. In this study the SNR dependence of the QinetiQ classifier has been determined.

  17. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  18. A Parallel Finite Set Statistical Simulator for Multi-Target Detection and Tracking

    NASA Astrophysics Data System (ADS)

    Hussein, I.; MacMillan, R.

    2014-09-01

    Finite Set Statistics (FISST) is a powerful Bayesian inference tool for the joint detection, classification and tracking of multi-target environments. FISST is capable of handling phenomena such as clutter, misdetections, and target birth and decay. Implicit within the approach are solutions to the data association and target label-tracking problems. Finally, FISST provides generalized information measures that can be used for sensor allocation across different types of tasks such as: searching for new targets, and classification and tracking of known targets. These FISST capabilities have been demonstrated on several small-scale illustrative examples. However, for implementation in a large-scale system as in the Space Situational Awareness problem, these capabilities require a lot of computational power. In this paper, we implement FISST in a parallel environment for the joint detection and tracking of multi-target systems. In this implementation, false alarms and misdetections will be modeled. Target birth and decay will not be modeled in the present paper. We will demonstrate the success of the method for as many targets as we possibly can in a desktop parallel environment. Performance measures will include: number of targets in the simulation, certainty of detected target tracks, computational time as a function of clutter returns and number of targets, among other factors.

  19. Hyperspectral and Hypertemporal Longwave Infrared Data Characterization

    NASA Astrophysics Data System (ADS)

    Jeganathan, Nirmalan

    The Army Research Lab conducted a persistent imaging experiment called the Spectral and Polarimetric Imagery Collection Experiment (SPICE) in 2012 and 2013 which focused on collecting and exploiting long wave infrared hyperspectral and polarimetric imagery. A part of this dataset was made for public release for research and development purposes. This thesis investigated the hyperspectral portion of this released dataset through data characterization and scene characterization of man-made and natural objects. First, the data were contrasted with MODerate resolution atmospheric TRANsmission (MODTRAN) results and found to be comparable. Instrument noise was characterized using an in-scene black panel, and was found to be comparable with the sensor manufacturer's specication. The temporal and spatial variation of certain objects in the scene were characterized. Temporal target detection was conducted on man-made objects in the scene using three target detection algorithms: spectral angle mapper (SAM), spectral matched lter (SMF) and adaptive coherence/cosine estimator (ACE). SMF produced the best results for detecting the targets when the training and testing data originated from different time periods, with a time index percentage result of 52.9%. Unsupervised and supervised classification were conducted using spectral and temporal target signatures. Temporal target signatures produced better visual classification than spectral target signature for unsupervised classification. Supervised classification yielded better results using the spectral target signatures, with a highest weighted accuracy of 99% for 7-class reference image. Four emissivity retrieval algorithms were applied on this dataset. However, the retrieved emissivities from all four methods did not represent true material emissivity and could not be used for analysis. This spectrally and temporally rich dataset enabled to conduct analysis that was not possible with other data collections. Regarding future work, applying noise-reduction techniques before applying temperature-emissivity retrieval algorithms may produce more realistic emissivity values, which could be used for target detection and material identification.

  20. A new EMI system for detection and classification of challenging targets

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    Advanced electromagnetic induction (EMI) sensors currently feature multi-axis illumination of targets and tri-axial vector sensing (e.g., MetalMapper), or exploit multi-static array data acquisition (e.g., TEMTADS). They produce data of high density, quality, and diversity, and have been combined with advanced EMI models to provide superb classification performance relative to the previous generation of single-axis, monostatic sensors. However, these advances yet have to improve significantly our ability to classify small, deep, and otherwise challenging targets. Particularly, recent live-site discrimination studies at Camp Butner, NC and Camp Beale, CA have revealed that it is more challenging to detect and discriminate small munitions (with calibers ranging from 20 mm to 60 mm) than larger ones. In addition, a live-site test at the Massachusetts Military Reservation, MA highlighted the difficulties for current sensors to classify large, deep, and overlapping targets with high confidence. There are two main approaches to overcome these problems: 1) adapt advanced EMI models to the existing systems and 2) improve the detection limits of current sensors by modifying their hardware. In this paper we demonstrate a combined software/hardware approach that will provide extended detection range and spatial resolution to next-generation EMI systems; we analyze and invert EMI data to extract classification features for small and deep targets; and we propose a new system that features a large transmitter coil.

  1. Robust skin color-based moving object detection for video surveillance

    NASA Astrophysics Data System (ADS)

    Kaliraj, Kalirajan; Manimaran, Sudha

    2016-07-01

    Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.

  2. Detection, recognition, identification, and tracking of military vehicles using biomimetic intelligence

    NASA Astrophysics Data System (ADS)

    Pace, Paul W.; Sutherland, John

    2001-10-01

    This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.

  3. Initial study of Schroedinger eigenmaps for spectral target detection

    NASA Astrophysics Data System (ADS)

    Dorado-Munoz, Leidy P.; Messinger, David W.

    2016-08-01

    Spectral target detection refers to the process of searching for a specific material with a known spectrum over a large area containing materials with different spectral signatures. Traditional target detection methods in hyperspectral imagery (HSI) require assuming the data fit some statistical or geometric models and based on the model, to estimate parameters for defining a hypothesis test, where one class (i.e., target class) is chosen over the other classes (i.e., background class). Nonlinear manifold learning methods such as Laplacian eigenmaps (LE) have extensively shown their potential use in HSI processing, specifically in classification or segmentation. Recently, Schroedinger eigenmaps (SE), which is built upon LE, has been introduced as a semisupervised classification method. In SE, the former Laplacian operator is replaced by the Schroedinger operator. The Schroedinger operator includes by definition, a potential term V that steers the transformation in certain directions improving the separability between classes. In this regard, we propose a methodology for target detection that is not based on the traditional schemes and that does not need the estimation of statistical or geometric parameters. This method is based on SE, where the potential term V is taken into consideration to include the prior knowledge about the target class and use it to steer the transformation in directions where the target location in the new space is known and the separability between target and background is augmented. An initial study of how SE can be used in a target detection scheme for HSI is shown here. In-scene pixel and spectral signature detection approaches are presented. The HSI data used comprise various target panels for testing simultaneous detection of multiple objects with different complexities.

  4. Automatic target recognition and detection in infrared imagery under cluttered background

    NASA Astrophysics Data System (ADS)

    Gundogdu, Erhan; Koç, Aykut; Alatan, A. Aydın.

    2017-10-01

    Visual object classification has long been studied in visible spectrum by utilizing conventional cameras. Since the labeled images has recently increased in number, it is possible to train deep Convolutional Neural Networks (CNN) with significant amount of parameters. As the infrared (IR) sensor technology has been improved during the last two decades, labeled images extracted from IR sensors have been started to be used for object detection and recognition tasks. We address the problem of infrared object recognition and detection by exploiting 15K images from the real-field with long-wave and mid-wave IR sensors. For feature learning, a stacked denoising autoencoder is trained in this IR dataset. To recognize the objects, the trained stacked denoising autoencoder is fine-tuned according to the binary classification loss of the target object. Once the training is completed, the test samples are propagated over the network, and the probability of the test sample belonging to a class is computed. Moreover, the trained classifier is utilized in a detect-by-classification method, where the classification is performed in a set of candidate object boxes and the maximum confidence score in a particular location is accepted as the score of the detected object. To decrease the computational complexity, the detection step at every frame is avoided by running an efficient correlation filter based tracker. The detection part is performed when the tracker confidence is below a pre-defined threshold. The experiments conducted on the real field images demonstrate that the proposed detection and tracking framework presents satisfactory results for detecting tanks under cluttered background.

  5. Infrared small target detection with kernel Fukunaga Koontz transform

    NASA Astrophysics Data System (ADS)

    Liu, Rui-ming; Liu, Er-qi; Yang, Jie; Zhang, Tian-hao; Wang, Fang-lin

    2007-09-01

    The Fukunaga-Koontz transform (FKT) has been proposed for many years. It can be used to solve two-pattern classification problems successfully. However, there are few researchers who have definitely extended FKT to kernel FKT (KFKT). In this paper, we first complete this task. Then a method based on KFKT is developed to detect infrared small targets. KFKT is a supervised learning algorithm. How to construct training sets is very important. For automatically detecting targets, the synthetic target images and real background images are used to train KFKT. Because KFKT can represent the higher order statistical properties of images, we expect better detection performance of KFKT than that of FKT. The well-devised experiments verify that KFKT outperforms FKT in detecting infrared small targets.

  6. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  7. ATR Performance Estimation Seed Program

    DTIC Science & Technology

    2015-09-28

    to produce simulated MCM sonar data and demonstrate the impact of system, environmental, and target scattering effects on ATR detection...settings and achieving better understanding the relative impact of the factors influencing ATR performance. sonar, mine countermeasures, MCM , automatic...simulated MCM sonar data and demonstrate the impact of system, environmental, and target scattering effects on ATR detection/classification performance. The

  8. Confidence level estimation in multi-target classification problems

    NASA Astrophysics Data System (ADS)

    Chang, Shi; Isaacs, Jason; Fu, Bo; Shin, Jaejeong; Zhu, Pingping; Ferrari, Silvia

    2018-04-01

    This paper presents an approach for estimating the confidence level in automatic multi-target classification performed by an imaging sensor on an unmanned vehicle. An automatic target recognition algorithm comprised of a deep convolutional neural network in series with a support vector machine classifier detects and classifies targets based on the image matrix. The joint posterior probability mass function of target class, features, and classification estimates is learned from labeled data, and recursively updated as additional images become available. Based on the learned joint probability mass function, the approach presented in this paper predicts the expected confidence level of future target classifications, prior to obtaining new images. The proposed approach is tested with a set of simulated sonar image data. The numerical results show that the estimated confidence level provides a close approximation to the actual confidence level value determined a posteriori, i.e. after the new image is obtained by the on-board sensor. Therefore, the expected confidence level function presented in this paper can be used to adaptively plan the path of the unmanned vehicle so as to optimize the expected confidence levels and ensure that all targets are classified with satisfactory confidence after the path is executed.

  9. Modeling and performance of HF/OTH (High-Frequency/Over-the-Horizon) radar target identification systems

    NASA Astrophysics Data System (ADS)

    Strausberger, Donald J.

    Several Radar Target Identification (RTI) techniques have been developed at The Ohio State University in recent years. Using the ElectroScience Laboratory compact range a large database of coherent RCS measurement has been constructed for several types of targets (aircraft, ships, and ground vehicles) at a variety of polarizations, aspect angles, and frequency bands. This extensive database has been used to analyze the performance of several different classification algorithms through the use of computer simulations. In order to optimize classification performance, it was concluded that the radar frequency range should lie in the Rayleigh-resonance frequency range, where the wavelength is on the order of or larger than the target size. For aircraft and ships with general dimensions on the order of 10 meters to 100 meters it is apparent that the High Frequency (HF) band provides optimal classification performance. Since existing HF radars are currently being used for detection and tracking or aircraft and ships of these dimensions, it is natural to further investigate the possibility of using these existing radars as the measurement devices in a radar target classification system.

  10. Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging.

    PubMed

    Li, Xiaolu; Liang, Yu; Xu, Lijun

    2014-09-01

    To provide a credible model for light detection and ranging (LiDAR) target classification, the focus of this study is on the relationship between intensity data of LiDAR and the bidirectional reflectance distribution function (BRDF). An integration method based on the built-in-lab coaxial laser detection system was advanced. A kind of intermediary BRDF model advanced by Schlick was introduced into the integration method, considering diffuse and specular backscattering characteristics of the surface. A group of measurement campaigns were carried out to investigate the influence of the incident angle and detection range on the measured intensity data. Two extracted parameters r and S(λ) are influenced by different surface features, which illustrate the surface features of the distribution and magnitude of reflected energy, respectively. The combination of two parameters can be used to describe the surface characteristics for target classification in a more plausible way.

  11. Thermal bioaerosol cloud tracking with Bayesian classification

    NASA Astrophysics Data System (ADS)

    Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.

    2017-05-01

    The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.

  12. Assessment of target detection limits in hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Schilling, H.; Middelmann, W.; Weyermann, J.; Wellig, P.; Oechslin, R.; Kneubuehler, M.

    2015-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to detect and classify target objects that cannot be reliably separated using broadband sensors. The comparably low spatial resolution is compensated by the fact that small targets, even below image resolution, can still be classified. The goal of this paper is to determine the target size to spatial resolution ratio for successful classification of different target and background materials. Airborne hyperspectral data is used to simulate data with known mixture ratios and to estimate the detection threshold for given false alarm rates. The data was collected in July 2014 over Greding, Germany, using airborne aisaEAGLE and aisaHAWK hyperspectral sensors. On the ground, various target materials were placed on natural background. The targets were four quadratic molton patches with an edge length of 7 meters in the colors black, white, grey and green. Also, two different types of polyethylene (camouflage nets) with an edge length of approximately 5.5 meters were deployed. Synthetic data is generated from the original data using spectral mixtures. Target signatures are linearly combined with different background materials in specific ratios. The simulated mixtures are appended to the original data and the target areas are removed for evaluation. Commonly used classification algorithms, e.g. Matched Filtering, Adaptive Cosine Estimator are used to determine the detection limit. Fixed false alarm rates are employed to find and analyze certain regions where false alarms usually occur first. A combination of 18 targets and 12 backgrounds is analyzed for three VNIR and two SWIR data sets of the same area.

  13. An AdaBoost Based Approach to Automatic Classification and Detection of Buildings Footprints, Vegetation Areas and Roads from Satellite Images

    NASA Astrophysics Data System (ADS)

    Gonulalan, Cansu

    In recent years, there has been an increasing demand for applications to monitor the targets related to land-use, using remote sensing images. Advances in remote sensing satellites give rise to the research in this area. Many applications ranging from urban growth planning to homeland security have already used the algorithms for automated object recognition from remote sensing imagery. However, they have still problems such as low accuracy on detection of targets, specific algorithms for a specific area etc. In this thesis, we focus on an automatic approach to classify and detect building foot-prints, road networks and vegetation areas. The automatic interpretation of visual data is a comprehensive task in computer vision field. The machine learning approaches improve the capability of classification in an intelligent way. We propose a method, which has high accuracy on detection and classification. The multi class classification is developed for detecting multiple objects. We present an AdaBoost-based approach along with the supervised learning algorithm. The combi- nation of AdaBoost with "Attentional Cascade" is adopted from Viola and Jones [1]. This combination decreases the computation time and gives opportunity to real time applications. For the feature extraction step, our contribution is to combine Haar-like features that include corner, rectangle and Gabor. Among all features, AdaBoost selects only critical features and generates in extremely efficient cascade structured classifier. Finally, we present and evaluate our experimental results. The overall system is tested and high performance of detection is achieved. The precision rate of the final multi-class classifier is over 98%.

  14. Assessment of Students' Media Competence: Test Results Analysis

    ERIC Educational Resources Information Center

    Federov, Alexander

    2011-01-01

    Ascertaining levels of media competence (development in the field of media culture) of students is based on the classification of indicators developed by the author. In accordance with this classification, audience is invited to a basic blocks of questions and tasks. The targets are: to detect the levels of motivational indicators of audience's…

  15. Detecting Targeted Malicious Email through Supervised Classification of Persistent Threat and Recipient Oriented Features

    ERIC Educational Resources Information Center

    Amin, Rohan Mahesh

    2010-01-01

    Targeted email attacks to enable computer network exploitation have become more prevalent, more insidious, and more widely documented in recent years. Beyond nuisance spam or phishing designed to trick users into revealing personal information, targeted malicious email (TME) facilitates computer network exploitation and the gathering of sensitive…

  16. Ultra-Wideband EMI Sensing: Non-Metallic Target Detection and Automatic Classification of Unexploded Ordnance

    NASA Astrophysics Data System (ADS)

    Sigman, John Brevard

    Buried explosive hazards present a pressing problem worldwide. Millions of acres and thousands of sites are contaminated in the United States alone [1, 2]. There are three categories of explosive hazards: metallic, intermediate-electrical conducting (IEC), and non-conducting targets. Metallic target detection and classification by electromagnetic (EM) signature has been the subject of research for many years. Key to the success of this research is modern multi-static Electromagnetic Induction (EMI) sensors, which are able to measure the wideband EMI response from metallic buried targets. However, no hardware solutions exist which can characterize IEC and non-conducting targets. While high-conducting metallic targets exhibit a quadrature peak response for frequencies in a traditional EMI regime under 100 kHz, the response of intermediate-conducting objects manifests at higher frequencies, between 100 kHz and 15 MHz. In addition to high-quality electromagnetic sensor data and robust electromagnetic models, a classification procedure is required to discriminate Targets of Interest (TOI) from clutter. Currently, costly human experts are used for this task. This expense and effort can be spared by using statistical signal processing and machine learning. This thesis has two main parts. In the first part, we explore using the high frequency EMI (HFEMI) band (100 kHz-15 MHz) for detection of carbon fiber UXO, voids, and of materials with characteristics that may be associated with improvised explosive devices (IED). We constructed an HFEMI sensing instrument, and apply the techniques of metal detection to sensing in a band of frequencies which are the transition between the induction and radar bands. In this transition domain, physical considerations and technological issues arise that cannot be solved via the approaches used in either of the bracketing lower and higher frequency ranges. In the second half of this thesis, we present a procedure for automatic classification of UXO. For maximum generality, our algorithm is robust and can handle sparse training examples of multi-class data. This procedure uses an unsupervised starter, semi-supervised techniques to gather training data, and concludes with supervised learning until all TOI are found. Additionally, an inference method for estimating the number of remaining true positives from a partial Receiver Operating Characteristic (ROC) curve is presented and applied to live-site dig histories.

  17. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection-Relevance for Neuroscience and Clinical Applications.

    PubMed

    Kirchner, Elsa A; Kim, Su Kyoung

    2018-01-01

    Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent ( targets ), motor-task irrelevant infrequent ( deviants ), and motor-task irrelevant frequent ( standards ) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention.

  18. Marine Targets Detection in Pol-SAR Data

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Yang, Jingsong

    2016-08-01

    In this poster, we present a new method of marine target detection in Pol-SAR data. One band SAR image, like HH, VV or VH, can be used to find marine target using a Contant False Alarm Ratio (CFAR) algorithm. But some false detection may happen, as the sidelobe of antenna, Azimuth ambiguity, strong speckle noise and so on in the single band SAR image. Pol-SAR image can get more information of targets. After decomposition and false color composite, the sidelobe of antenna and Azimuth ambiguity could be deleted. So, the method presented include three steps, decomposion, false color composite and supervised classification. The result of Radarsat-2 SAR image test indicates a good accuracy. The detection results are compared with Automatic Indentify Sistem (AIS) data, the accuracy of right detection is above 95% and false detection ratio is below 5%.

  19. An accelerated framework for the classification of biological targets from solid-state micropore data.

    PubMed

    Hanif, Madiha; Hafeez, Abdul; Suleman, Yusuf; Mustafa Rafique, M; Butt, Ali R; Iqbal, Samir M

    2016-10-01

    Micro- and nanoscale systems have provided means to detect biological targets, such as DNA, proteins, and human cells, at ultrahigh sensitivity. However, these devices suffer from noise in the raw data, which continues to be significant as newer and devices that are more sensitive produce an increasing amount of data that needs to be analyzed. An important dimension that is often discounted in these systems is the ability to quickly process the measured data for an instant feedback. Realizing and developing algorithms for the accurate detection and classification of biological targets in realtime is vital. Toward this end, we describe a supervised machine-learning approach that records single cell events (pulses), computes useful pulse features, and classifies the future patterns into their respective types, such as cancerous/non-cancerous cells based on the training data. The approach detects cells with an accuracy of 70% from the raw data followed by an accurate classification when larger training sets are employed. The parallel implementation of the algorithm on graphics processing unit (GPU) demonstrates a speedup of three to four folds as compared to a serial implementation on an Intel Core i7 processor. This incredibly efficient GPU system is an effort to streamline the analysis of pulse data in an academic setting. This paper presents for the first time ever, a non-commercial technique using a GPU system for realtime analysis, paired with biological cluster targeting analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Assessment of Schrodinger Eigenmaps for target detection

    NASA Astrophysics Data System (ADS)

    Dorado Munoz, Leidy P.; Messinger, David W.; Czaja, Wojtek

    2014-06-01

    Non-linear dimensionality reduction methods have been widely applied to hyperspectral imagery due to its structure as the information can be represented in a lower dimension without losing information, and because the non-linear methods preserve the local geometry of the data while the dimension is reduced. One of these methods is Laplacian Eigenmaps (LE), which assumes that the data lies on a low dimensional manifold embedded in a high dimensional space. LE builds a nearest neighbor graph, computes its Laplacian and performs the eigendecomposition of the Laplacian. These eigenfunctions constitute a basis for the lower dimensional space in which the geometry of the manifold is preserved. In addition to the reduction problem, LE has been widely used in tasks such as segmentation, clustering, and classification. In this regard, a new Schrodinger Eigenmaps (SE) method was developed and presented as a semi-supervised classification scheme in order to improve the classification performance and take advantage of the labeled data. SE is an algorithm built upon LE, where the former Laplacian operator is replaced by the Schrodinger operator. The Schrodinger operator includes a potential term V, that, taking advantage of the additional information such as labeled data, allows clustering of similar points. In this paper, we explore the idea of using SE in target detection. In this way, we present a framework where the potential term V is defined as a barrier potential: a diagonal matrix encoding the spatial position of the target, and the detection performance is evaluated by using different targets and different hyperspectral scenes.

  1. Joint passive radar tracking and target classification using radar cross section

    NASA Astrophysics Data System (ADS)

    Herman, Shawn M.

    2004-01-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  2. Joint passive radar tracking and target classification using radar cross section

    NASA Astrophysics Data System (ADS)

    Herman, Shawn M.

    2003-12-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  3. Rapid detection and classification of Salmonella enterica shedding in feedlot cattle utilizing Roka Bioscience Atlas Salmonella detection assay for the analysis of rectoanal mucosal swabs

    USDA-ARS?s Scientific Manuscript database

    With an increasing focus on preharvest food safety, rapid methods are required for the detection and quantification of foodborne pathogens such as Salmonella enterica in beef cattle. We validated the Atlas Salmonella Detection Assay (SEN), a nucleic acid amplification technology that targets Salmone...

  4. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection—Relevance for Neuroscience and Clinical Applications

    PubMed Central

    Kirchner, Elsa A.; Kim, Su Kyoung

    2018-01-01

    Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for communication or system control for enhancing or regaining control for motor-disabled persons. Especially results from single-trial EEG classification approaches for BCIs support correlations between single-trial ERP detection performance and ERP expression. Hence, BCIs can be considered as a paradigm shift contributing to new methods with strong influence on both neuroscience and clinical applications. Here, we investigate the relevance of the choice of training data and classifier transfer for the interpretability of results from single-trial ERP detection. In our experiments, subjects performed a visual-motor oddball task with motor-task relevant infrequent (targets), motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards) stimuli. Under dual-task condition, a secondary senso-motor task was performed, compared to the simple-task condition. For evaluation, average ERP analysis and single-trial detection analysis with different numbers of electrodes were performed. Further, classifier transfer was investigated between simple and dual task. Parietal positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger under dual-task condition, which is discussed as an increase of task emphasis and brain processes involved in task coordination and change of task set. Highest classification performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes were used. Further, higher detection performance of targets compared to standards was achieved under dual-task compared to simple-task condition in case of training on data from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier transfer between tasks improves classification performance in case that training took place on more varying examples (from dual task). In summary, we showed that P300 and overlaying parietal positive ERPs can successfully be detected while subjects are performing additional ongoing motor activity. This supports single-trial detection of ERPs evoked by target events to, e.g., infer a patient's attentional state during therapeutic intervention. PMID:29636660

  5. Sensor fusion approaches for EMI and GPR-based subsurface threat identification

    NASA Astrophysics Data System (ADS)

    Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.

    2011-06-01

    Despite advances in both electromagnetic induction (EMI) and ground penetrating radar (GPR) sensing and related signal processing, neither sensor alone provides a perfect tool for detecting the myriad of possible buried objects that threaten the lives of Soldiers and civilians. However, while neither GPR nor EMI sensing alone can provide optimal detection across all target types, the two approaches are highly complementary. As a result, many landmine systems seek to make use of both sensing modalities simultaneously and fuse the results from both sensors to improve detection performance for targets with widely varying metal content and GPR responses. Despite this, little work has focused on large-scale comparisons of different approaches to sensor fusion and machine learning for combining data from these highly orthogonal phenomenologies. In this work we explore a wide array of pattern recognition techniques for algorithm development and sensor fusion. Results with the ARA Nemesis landmine detection system suggest that nonlinear and non-parametric classification algorithms provide significant performance benefits for single-sensor algorithm development, and that fusion of multiple algorithms can be performed satisfactorily using basic parametric approaches, such as logistic discriminant classification, for the targets under consideration in our data sets.

  6. Unsupervised domain adaptation for early detection of drought stress in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Schmitter, P.; Steinrücken, J.; Römer, C.; Ballvora, A.; Léon, J.; Rascher, U.; Plümer, L.

    2017-09-01

    Hyperspectral images can be used to uncover physiological processes in plants if interpreted properly. Machine Learning methods such as Support Vector Machines (SVM) and Random Forests have been applied to estimate development of biomass and detect and predict plant diseases and drought stress. One basic requirement of machine learning implies, that training and testing is done in the same domain and the same distribution. Different genotypes, environmental conditions, illumination and sensors violate this requirement in most practical circumstances. Here, we present an approach, which enables the detection of physiological processes by transferring the prior knowledge within an existing model into a related target domain, where no label information is available. We propose a two-step transformation of the target features, which enables a direct application of an existing model. The transformation is evaluated by an objective function including additional prior knowledge about classification and physiological processes in plants. We have applied the approach to three sets of hyperspectral images, which were acquired with different plant species in different environments observed with different sensors. It is shown, that a classification model, derived on one of the sets, delivers satisfying classification results on the transformed features of the other data sets. Furthermore, in all cases early non-invasive detection of drought stress was possible.

  7. Fractal analysis of seafloor textures for target detection in synthetic aperture sonar imagery

    NASA Astrophysics Data System (ADS)

    Nabelek, T.; Keller, J.; Galusha, A.; Zare, A.

    2018-04-01

    Fractal analysis of an image is a mathematical approach to generate surface related features from an image or image tile that can be applied to image segmentation and to object recognition. In undersea target countermeasures, the targets of interest can appear as anomalies in a variety of contexts, visually different textures on the seafloor. In this paper, we evaluate the use of fractal dimension as a primary feature and related characteristics as secondary features to be extracted from synthetic aperture sonar (SAS) imagery for the purpose of target detection. We develop three separate methods for computing fractal dimension. Tiles with targets are compared to others from the same background textures without targets. The different fractal dimension feature methods are tested with respect to how well they can be used to detect targets vs. false alarms within the same contexts. These features are evaluated for utility using a set of image tiles extracted from a SAS data set generated by the U.S. Navy in conjunction with the Office of Naval Research. We find that all three methods perform well in the classification task, with a fractional Brownian motion model performing the best among the individual methods. We also find that the secondary features are just as useful, if not more so, in classifying false alarms vs. targets. The best classification accuracy overall, in our experimentation, is found when the features from all three methods are combined into a single feature vector.

  8. Feature Extraction and Selection Strategies for Automated Target Recognition

    NASA Technical Reports Server (NTRS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  9. Feature extraction and selection strategies for automated target recognition

    NASA Astrophysics Data System (ADS)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-04-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  10. Summary of tracking and identification methods

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Yang, Chun; Kadar, Ivan

    2014-06-01

    Over the last two decades, many solutions have arisen to combine target tracking estimation with classification methods. Target tracking includes developments from linear to non-linear and Gaussian to non-Gaussian processing. Pattern recognition includes detection, classification, recognition, and identification methods. Integrating tracking and pattern recognition has resulted in numerous approaches and this paper seeks to organize the various approaches. We discuss the terminology so as to have a common framework for various standards such as the NATO STANAG 4162 - Identification Data Combining Process. In a use case, we provide a comparative example highlighting that location information (as an example) with additional mission objectives from geographical, human, social, cultural, and behavioral modeling is needed to determine identification as classification alone does not allow determining identification or intent.

  11. MR 201104: Evaluation of Discrimination Technologies and Classification Results and MR 201157: Demonstration of MetalMapper Static Data Acquisition and Data Analysis

    DTIC Science & Technology

    2016-09-23

    Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s

  12. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  13. Sonar Detection and Classification of Underwater UXO and Environmental Parameters

    DTIC Science & Technology

    2012-07-09

    For these targets, representations like those in Figs. 10 and 11 may be more useful because they focus on properties of the isolated target signal ... using time-frequency phenomena extracted from strong ROIs in target scattering data. In general, backscattered signals contain specular as well as...database of sonar target signals useful for developing and evaluating C/ID algorithms that separate UXO from bottom clutter and to look for and

  14. Performance of fusion algorithms for computer-aided detection and classification of mines in very shallow water obtained from testing in navy Fleet Battle Exercise-Hotel 2000

    NASA Astrophysics Data System (ADS)

    Ciany, Charles M.; Zurawski, William; Kerfoot, Ian

    2001-10-01

    The performance of Computer Aided Detection/Computer Aided Classification (CAD/CAC) Fusion algorithms on side-scan sonar images was evaluated using data taken at the Navy's's Fleet Battle Exercise-Hotel held in Panama City, Florida, in August 2000. A 2-of-3 binary fusion algorithm is shown to provide robust performance. The algorithm accepts the classification decisions and associated contact locations form three different CAD/CAC algorithms, clusters the contacts based on Euclidian distance, and then declares a valid target when a clustered contact is declared by at least 2 of the 3 individual algorithms. This simple binary fusion provided a 96 percent probability of correct classification at a false alarm rate of 0.14 false alarms per image per side. The performance represented a 3.8:1 reduction in false alarms over the best performing single CAD/CAC algorithm, with no loss in probability of correct classification.

  15. Domain Adaptation for Pedestrian Detection Based on Prediction Consistency

    PubMed Central

    Huan-ling, Tang; Zhi-yong, An

    2014-01-01

    Pedestrian detection is an active area of research in computer vision. It remains a quite challenging problem in many applications where many factors cause a mismatch between source dataset used to train the pedestrian detector and samples in the target scene. In this paper, we propose a novel domain adaptation model for merging plentiful source domain samples with scared target domain samples to create a scene-specific pedestrian detector that performs as well as rich target domain simples are present. Our approach combines the boosting-based learning algorithm with an entropy-based transferability, which is derived from the prediction consistency with the source classifications, to selectively choose the samples showing positive transferability in source domains to the target domain. Experimental results show that our approach can improve the detection rate, especially with the insufficient labeled data in target scene. PMID:25013850

  16. Feature Selection Has a Large Impact on One-Class Classification Accuracy for MicroRNAs in Plants.

    PubMed

    Yousef, Malik; Saçar Demirci, Müşerref Duygu; Khalifa, Waleed; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short RNA sequences involved in posttranscriptional gene regulation. Their experimental analysis is complicated and, therefore, needs to be supplemented with computational miRNA detection. Currently computational miRNA detection is mainly performed using machine learning and in particular two-class classification. For machine learning, the miRNAs need to be parametrized and more than 700 features have been described. Positive training examples for machine learning are readily available, but negative data is hard to come by. Therefore, it seems prerogative to use one-class classification instead of two-class classification. Previously, we were able to almost reach two-class classification accuracy using one-class classifiers. In this work, we employ feature selection procedures in conjunction with one-class classification and show that there is up to 36% difference in accuracy among these feature selection methods. The best feature set allowed the training of a one-class classifier which achieved an average accuracy of ~95.6% thereby outperforming previous two-class-based plant miRNA detection approaches by about 0.5%. We believe that this can be improved upon in the future by rigorous filtering of the positive training examples and by improving current feature clustering algorithms to better target pre-miRNA feature selection.

  17. Adaptive sequential Bayesian classification using Page's test

    NASA Astrophysics Data System (ADS)

    Lynch, Robert S., Jr.; Willett, Peter K.

    2002-03-01

    In this paper, the previously introduced Mean-Field Bayesian Data Reduction Algorithm is extended for adaptive sequential hypothesis testing utilizing Page's test. In general, Page's test is well understood as a method of detecting a permanent change in distribution associated with a sequence of observations. However, the relationship between detecting a change in distribution utilizing Page's test with that of classification and feature fusion is not well understood. Thus, the contribution of this work is based on developing a method of classifying an unlabeled vector of fused features (i.e., detect a change to an active statistical state) as quickly as possible given an acceptable mean time between false alerts. In this case, the developed classification test can be thought of as equivalent to performing a sequential probability ratio test repeatedly until a class is decided, with the lower log-threshold of each test being set to zero and the upper log-threshold being determined by the expected distance between false alerts. It is of interest to estimate the delay (or, related stopping time) to a classification decision (the number of time samples it takes to classify the target), and the mean time between false alerts, as a function of feature selection and fusion by the Mean-Field Bayesian Data Reduction Algorithm. Results are demonstrated by plotting the delay to declaring the target class versus the mean time between false alerts, and are shown using both different numbers of simulated training data and different numbers of relevant features for each class.

  18. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, wasmore » shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.« less

  19. Multiband tissue classification for ultrasonic transmission tomography using spectral profile detection

    NASA Astrophysics Data System (ADS)

    Jeong, Jeong-Won; Kim, Tae-Seong; Shin, Dae-Chul; Do, Synho; Marmarelis, Vasilis Z.

    2004-04-01

    Recently it was shown that soft tissue can be differentiated with spectral unmixing and detection methods that utilize multi-band information obtained from a High-Resolution Ultrasonic Transmission Tomography (HUTT) system. In this study, we focus on tissue differentiation using the spectral target detection method based on Constrained Energy Minimization (CEM). We have developed a new tissue differentiation method called "CEM filter bank". Statistical inference on the output of each CEM filter of a filter bank is used to make a decision based on the maximum statistical significance rather than the magnitude of each CEM filter output. We validate this method through 3-D inter/intra-phantom soft tissue classification where target profiles obtained from an arbitrary single slice are used for differentiation in multiple tomographic slices. Also spectral coherence between target and object profiles of an identical tissue at different slices and phantoms is evaluated by conventional cross-correlation analysis. The performance of the proposed classifier is assessed using Receiver Operating Characteristic (ROC) analysis. Finally we apply our method to classify tiny structures inside a beef kidney such as Styrofoam balls (~1mm), chicken tissue (~5mm), and vessel-duct structures.

  20. The preattentive processing of major vs. minor chords in the human brain: An event-related potential study.

    PubMed

    Virtala, Paula; Berg, Venla; Kivioja, Maari; Purhonen, Juha; Salmenkivi, Marko; Paavilainen, Petri; Tervaniemi, Mari

    2011-01-10

    Western music has two classifications that are highly familiar to all Western listeners: the dichotomy between the major and minor modalities and consonance vs. dissonance. We aimed at determining whether these classifications already take place at the level of the elicitation of the change-related mismatch negativity (MMN) component of the event-related potential (ERP). To this end, we constructed an oddball-paradigm with root minor, dissonant and inverted major chords in a context of root major chords. These stimuli were composed so that the standard and deviant chords did not include a physically deviant frequency which could cause the MMN. The standard chords were transposed into 12 different keys (=pitch levels) and delivered to the participants while they were watching a silent movie (ignore condition) or detecting softer target sounds (detection condition). In the ignore condition, the MMN was significant for all but inverted major chords. In the detection condition, the MMN was significant for dissonant chords and soft target chords. Our results indicate that the processes underlying MMN are able to make discriminations which are qualitative by nature. Whether the classifications between major and minor modalities and consonance vs. dissonance are innate or based on implicit learning remains a question for the future. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Fusion of multiple quadratic penalty function support vector machines (QPFSVM) for automated sea mine detection and classification

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2002-08-01

    The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. The Quadratic Penalty Function Support Vector Machine (QPFSVM) algorithm to aid in the automated detection and classification of sea mines is introduced in this paper. The QPFSVM algorithm is easy to train, simple to implement, and robust to feature space dimension. Outputs of successive SVM algorithms are cascaded in stages (fused) to improve the Probability of Classification (Pc) and reduce the number of false alarms. Even though our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to fusion of any D/C problem (e.g., automated medical diagnosis or automatic target recognition for ballistic missile defense).

  2. Advanced Geophysical Classification with the Marine Towed Array

    NASA Astrophysics Data System (ADS)

    Steinhurst, D.; Harbaugh, G.; Keiswetter, D.; Bell, T. W.; Massey, G.; Wright, D.

    2017-12-01

    The Marine Towed Array, or MTA, is an underwater dual-mode sensor array that has been successfully deployed at multiple marine venues in support of Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP) demonstrations beginning in 2004. It provided both marine electromagnetic and marine magnetic sensors for detection and mapping of underwater UXO. The EMI sensor array was based on older technology, which in several ESTCP demonstrations has not been able to support advanced geophysical classification (AGC). Under ESTCP funding, the U.S. Naval Research Laboratory is in the process of upgrading the MTA with modern, advanced electromagnetic (EMI) electronics and replacing the sensor array with a modern, multistatic array design. A half-scale version of the proposed array has been built and tested on land. Six tri-axial receiver cubes were placed inside two- and three- transmit coil configurations in equivalent positions to design locations for the MTA wing. The responses of a variety of munitions items and test spheres were measured over a range of target-to-array geometries and in both static and simulated dynamic data collection modes. The multi-transmit coil configuration was shown to provide enhanced single-pass classification performance over the original single coil design, particularly as a function of target location relative to the centerline. The ability to go beyond anomaly detection and additionally classify detected anomalies from survey data would dramatically improve the state of the art for underwater UXO remediation by reducing costs and improving the efficiency of these efforts. The results of our efforts to return the MTA to service and validating the new EMI array's design for UXO detection and classification in the underwater environment will be the focus of this presentation.

  3. Acoustic target detection and classification using neural networks

    NASA Technical Reports Server (NTRS)

    Robertson, James A.; Conlon, Mark

    1993-01-01

    A neural network approach to the classification of acoustic emissions of ground vehicles and helicopters is demonstrated. Data collected during the Joint Acoustic Propagation Experiment conducted in July of l991 at White Sands Missile Range, New Mexico was used to train a classifier to distinguish between the spectrums of a UH-1, M60, M1 and M114. An output node was also included that would recognize background (i.e. no target) data. Analysis revealed specific hidden nodes responding to the features input into the classifier. Initial results using the neural network were encouraging with high correct identification rates accompanied by high levels of confidence.

  4. Development and Testing of a Multiple Frequency Continuous Wave Radar for Target Detection and Classification

    DTIC Science & Technology

    2007-03-01

    1 2’ VIH " 1 ’ 󈧏) (34) where is the modified Bessel function of zero order. Here is the conditional variance and is the conditional probability...10, the probability of detection is the area under the signal-plus-noise curve above the detection threshold co M vF (V 2+ A2)]10 ( vAPd= fnp~ju,( vIH

  5. Real-time multisensor data fusion for target detection, classification, tracking, counting, and range estimates

    NASA Astrophysics Data System (ADS)

    Tsui, Eddy K.; Thomas, Russell L.

    2004-09-01

    As part of the Commanding General of Army Material Command's Research, Development & Engineering Command (RDECOM), the U.S. Army Research Development and Engineering Center (ARDEC), Picatinny funded a joint development effort with McQ Associates, Inc. to develop an Advanced Minefield Sensor (AMS) as a technology evaluation prototype for the Anti-Personnel Landmine Alternatives (APLA) Track III program. This effort laid the fundamental groundwork of smart sensors for detection and classification of targets, identification of combatant or noncombatant, target location and tracking at and between sensors, fusion of information across targets and sensors, and automatic situation awareness to the 1st responder. The efforts have culminated in developing a performance oriented architecture meeting the requirements of size, weight, and power (SWAP). The integrated digital signal processor (DSP) paradigm is capable of computing signals from sensor modalities to extract needed information within either a 360° or fixed field of view with acceptable false alarm rate. This paper discusses the challenges in the developments of such a sensor, focusing on achieving reasonable operating ranges, achieving low power, small size and low cost, and applications for extensions of this technology.

  6. Mine countermeasures (MCM) sensor technology drivers

    NASA Astrophysics Data System (ADS)

    Skinner, David P.

    1995-06-01

    In recent years, MCM has moved to the forefront of the Navy's attention. This paper describes the general problems that drive the technology requirements of classical sea mine countermeasure (MCM) sensors for those working outside of this specialized area. Sensor requirements for MCM are compared with those for antisubmarine warfare. This highlights the unique environmental issues and crucial false target problems. The elimination of false targets, not mine detection, is the principal driver of MCM sensor requirements and places special emphasis on the technologies needed for the sequential operations of detection, classification, and identification.

  7. Spotting East African mammals in open savannah from space.

    PubMed

    Yang, Zheng; Wang, Tiejun; Skidmore, Andrew K; de Leeuw, Jan; Said, Mohammed Y; Freer, Jim

    2014-01-01

    Knowledge of population dynamics is essential for managing and conserving wildlife. Traditional methods of counting wild animals such as aerial survey or ground counts not only disturb animals, but also can be labour intensive and costly. New, commercially available very high-resolution satellite images offer great potential for accurate estimates of animal abundance over large open areas. However, little research has been conducted in the area of satellite-aided wildlife census, although computer processing speeds and image analysis algorithms have vastly improved. This paper explores the possibility of detecting large animals in the open savannah of Maasai Mara National Reserve, Kenya from very high-resolution GeoEye-1 satellite images. A hybrid image classification method was employed for this specific purpose by incorporating the advantages of both pixel-based and object-based image classification approaches. This was performed in two steps: firstly, a pixel-based image classification method, i.e., artificial neural network was applied to classify potential targets with similar spectral reflectance at pixel level; and then an object-based image classification method was used to further differentiate animal targets from the surrounding landscapes through the applications of expert knowledge. As a result, the large animals in two pilot study areas were successfully detected with an average count error of 8.2%, omission error of 6.6% and commission error of 13.7%. The results of the study show for the first time that it is feasible to perform automated detection and counting of large wild animals in open savannahs from space, and therefore provide a complementary and alternative approach to the conventional wildlife survey techniques.

  8. Multiple pathogen biomarker detection using an encoded bead array in droplet PCR.

    PubMed

    Periyannan Rajeswari, Prem Kumar; Soderberg, Lovisa M; Yacoub, Alia; Leijon, Mikael; Andersson Svahn, Helene; Joensson, Haakan N

    2017-08-01

    We present a droplet PCR workflow for detection of multiple pathogen DNA biomarkers using fluorescent color-coded Luminex® beads. This strategy enables encoding of multiple singleplex droplet PCRs using a commercially available bead set of several hundred distinguishable fluorescence codes. This workflow provides scalability beyond the limited number offered by fluorescent detection probes such as TaqMan probes, commonly used in current multiplex droplet PCRs. The workflow was validated for three different Luminex bead sets coupled to target specific capture oligos to detect hybridization of three microorganisms infecting poultry: avian influenza, infectious laryngotracheitis virus and Campylobacter jejuni. In this assay, the target DNA was amplified with fluorescently labeled primers by PCR in parallel in monodisperse picoliter droplets, to avoid amplification bias. The color codes of the Luminex detection beads allowed concurrent and accurate classification of the different bead sets used in this assay. The hybridization assay detected target DNA of all three microorganisms with high specificity, from samples with average target concentration of a single DNA template molecule per droplet. This workflow demonstrates the possibility of increasing the droplet PCR assay detection panel to detect large numbers of targets in parallel, utilizing the scalability offered by the color-coded Luminex detection beads. Copyright © 2017. Published by Elsevier B.V.

  9. Electronic Sleep Stage Classifiers: A Survey and VLSI Design Methodology.

    PubMed

    Kassiri, Hossein; Chemparathy, Aditi; Salam, M Tariqus; Boyce, Richard; Adamantidis, Antoine; Genov, Roman

    2017-02-01

    First, existing sleep stage classifier sensors and algorithms are reviewed and compared in terms of classification accuracy, level of automation, implementation complexity, invasiveness, and targeted application. Next, the implementation of a miniature microsystem for low-latency automatic sleep stage classification in rodents is presented. The classification algorithm uses one EMG (electromyogram) and two EEG (electroencephalogram) signals as inputs in order to detect REM (rapid eye movement) sleep, and is optimized for low complexity and low power consumption. It is implemented in an on-board low-power FPGA connected to a multi-channel neural recording IC, to achieve low-latency (order of 1 ms or less) classification. Off-line experimental results using pre-recorded signals from nine mice show REM detection sensitivity and specificity of 81.69% and 93.86%, respectively, with the maximum latency of 39 [Formula: see text]. The device is designed to be used in a non-disruptive closed-loop REM sleep suppression microsystem, for future studies of the effects of REM sleep deprivation on memory consolidation.

  10. Multimode electromagnetic target discriminator: preliminary data results

    NASA Astrophysics Data System (ADS)

    Black, Christopher J.; McMichael, Ian T.; Nelson, Carl V.

    2004-09-01

    This paper describes the Multi-mode Electromagnetic Target Discriminator (METD) sensor and presents preliminary results from recent field experiments. The METD sensor was developed for the US Army RDECOM NVESD by The Johns Hopkins University Applied Physics Laboratory. The METD, based on the technology of the previously developed Electromagnetic Target Discriminator (ETD), is a spatial scanning electromagnetic induction (EMI) sensor that uses both the time-domain (TD) and the frequency-domain (FD) for target detection and classification. Data is collected with a custom data acquisition system and wirelessly transmitted to a base computer. We show that the METD has a high signal-to-noise ratio (SNR), the ability to detect voids created by plastic anti-tank (AT) mines, and is practical for near real-time data processing.

  11. Detection of buried mines with seismic sonar

    NASA Astrophysics Data System (ADS)

    Muir, Thomas G.; Baker, Steven R.; Gaghan, Frederick E.; Fitzpatrick, Sean M.; Hall, Patrick W.; Sheetz, Kraig E.; Guy, Jeremie

    2003-10-01

    Prior research on seismo-acoustic sonar for detection of buried targets [J. Acoust. Soc. Am. 103, 2333-2343 (1998)] has continued with examination of the target strengths of buried test targets as well as targets of interest, and has also examined detection and confirmatory classification of these, all using arrays of seismic sources and receivers as well as signal processing techniques to enhance target recognition. The target strengths of two test targets (one a steel gas bottle, the other an aluminum powder keg), buried in a sand beach, were examined as a function of internal mass load, to evaluate theory developed for seismic sonar target strength [J. Acoust. Soc. Am. 103, 2344-2353 (1998)]. The detection of buried naval and military targets of interest was achieved with an array of 7 shaker sources and 5, three-axis seismometers, at a range of 5 m. Vector polarization filtering was the main signal processing technique for detection. It capitalizes on the fact that the vertical and horizontal components in Rayleigh wave echoes are 90 deg out of phase, enabling complex variable processing to obtain the imaginary component of the signal power versus time, which is unique to Rayleigh waves. Gabor matrix processing of this signal component was the main technique used to determine whether the target was man-made or just a natural target in the environment. [Work sponsored by ONR.

  12. Automated Hand-Held UXO Detection, Classification & Discrimination Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Thomas H.

    2000-06-12

    The research focused on procedures for target discrimination and classification using hand-held EMI sensors. The idea is to have a small, portable sensor that can be operated in a sweep or similar pattern in front of the operator, and that is capable of distinguishing between buried UXO and clutter on the spot. Curing Phase 1, we developed the processing techniques for distinguishing between buried UXO and clutter using the EM61-HH hand-held metal detector.

  13. Feature-based RNN target recognition

    NASA Astrophysics Data System (ADS)

    Bakircioglu, Hakan; Gelenbe, Erol

    1998-09-01

    Detection and recognition of target signatures in sensory data obtained by synthetic aperture radar (SAR), forward- looking infrared, or laser radar, have received considerable attention in the literature. In this paper, we propose a feature based target classification methodology to detect and classify targets in cluttered SAR images, that makes use of selective signature data from sensory data, together with a neural network technique which uses a set of trained networks based on the Random Neural Network (RNN) model (Gelenbe 89, 90, 91, 93) which is trained to act as a matched filter. We propose and investigate radial features of target shapes that are invariant to rotation, translation, and scale, to characterize target and clutter signatures. These features are then used to train a set of learning RNNs which can be used to detect targets within clutter with high accuracy, and to classify the targets or man-made objects from natural clutter. Experimental data from SAR imagery is used to illustrate and validate the proposed method, and to calculate Receiver Operating Characteristics which illustrate the performance of the proposed algorithm.

  14. Hierarchical relaxation methods for multispectral pixel classification as applied to target identification

    NASA Astrophysics Data System (ADS)

    Cohen, E. A., Jr.

    1985-02-01

    This report provides insights into the approaches toward image modeling as applied to target detection. The approach is that of examining the energy in prescribed wave-bands which emanate from a target and correlating the emissions. Typically, one might be looking at two or three infrared bands, possibly together with several visual bands. The target is segmented, using both first and second order modeling, into a set of interesting components and these components are correlated so as to enhance the classification process. A Markov-type model is used to provide an a priori assessment of the spatial relationships among critical parts of the target, and a stochastic model using the output of an initial probabilistic labeling is invoked. The tradeoff between this stochastic model and the Markov model is then optimized to yield a best labeling for identification purposes. In an identification of friend or foe (IFF) context, this methodology could be of interest, for it provides the ingredients for such a higher level of understanding.

  15. Small Infrared Target Detection by Region-Adaptive Clutter Rejection for Sea-Based Infrared Search and Track

    PubMed Central

    Kim, Sungho; Lee, Joohyoung

    2014-01-01

    This paper presents a region-adaptive clutter rejection method for small target detection in sea-based infrared search and track. In the real world, clutter normally generates many false detections that impede the deployment of such detection systems. Incoming targets (missiles, boats, etc.) can be located in the sky, horizon and sea regions, which have different types of clutters, such as clouds, a horizontal line and sea-glint. The characteristics of regional clutter were analyzed after the geometrical analysis-based region segmentation. The false detections caused by cloud clutter were removed by the spatial attribute-based classification. Those by the horizontal line were removed using the heterogeneous background removal filter. False alarms by sun-glint were rejected using the temporal consistency filter, which is the most difficult part. The experimental results of the various cluttered background sequences show that the proposed region adaptive clutter rejection method produces fewer false alarms than that of the mean subtraction filter (MSF) with an acceptable degradation detection rate. PMID:25054633

  16. Multiplex acute leukemia cytosensing using multifunctional hybrid electrochemical nanoprobes at a hierarchically nanoarchitectured electrode interface

    NASA Astrophysics Data System (ADS)

    Zheng, Tingting; Tan, Tingting; Zhang, Qingfeng; Fu, Jia-Ju; Wu, Jia-Jun; Zhang, Kui; Zhu, Jun-Jie; Wang, Hui

    2013-10-01

    We have developed a robust, nanobiotechnology-based electrochemical cytosensing approach with high sensitivity, selectivity, and reproducibility toward the simultaneous multiplex detection and classification of both acute myeloid leukemia and acute lymphocytic leukemia cells. The construction of the electrochemical cytosensor involves the hierarchical assembly of dual aptamer-functionalized, multilayered graphene-Au nanoparticle electrode interface and the utilization of hybrid electrochemical nanoprobes co-functionalized with redox tags, horseradish peroxidase, and cell-targeting nucleic acid aptamers. The hybrid nanoprobes are multifunctional, capable of specifically targeting the cells of interest, amplifying the electrochemical signals, and generating distinguishable signals for multiplex cytosensing. The as-assembled electrode interface not only greatly facilitates the interfacial electron transfer process due to its high conductivity and surface area but also exhibits excellent biocompatibility and specificity for cell recognition and adhesion. A superstructured sandwich-type sensor geometry is adopted for electrochemical cytosensing, with the cells of interest sandwiched between the nanoprobes and the electrode interface. Such an electrochemical sensing strategy allows for ultrasensitive, multiplex acute leukemia cytosensing with a detection limit as low as ~350 cells per mL and a wide linear response range from 5 × 102 to 1 × 107 cells per mL for HL-60 and CEM cells, with minimal cross-reactivity and interference from non-targeting cells. This electrochemical cytosensing approach holds great promise as a new point-of-care diagnostic tool for early detection and classification of human acute leukemia and may be readily expanded to multiplex cytosensing of other cancer cells.We have developed a robust, nanobiotechnology-based electrochemical cytosensing approach with high sensitivity, selectivity, and reproducibility toward the simultaneous multiplex detection and classification of both acute myeloid leukemia and acute lymphocytic leukemia cells. The construction of the electrochemical cytosensor involves the hierarchical assembly of dual aptamer-functionalized, multilayered graphene-Au nanoparticle electrode interface and the utilization of hybrid electrochemical nanoprobes co-functionalized with redox tags, horseradish peroxidase, and cell-targeting nucleic acid aptamers. The hybrid nanoprobes are multifunctional, capable of specifically targeting the cells of interest, amplifying the electrochemical signals, and generating distinguishable signals for multiplex cytosensing. The as-assembled electrode interface not only greatly facilitates the interfacial electron transfer process due to its high conductivity and surface area but also exhibits excellent biocompatibility and specificity for cell recognition and adhesion. A superstructured sandwich-type sensor geometry is adopted for electrochemical cytosensing, with the cells of interest sandwiched between the nanoprobes and the electrode interface. Such an electrochemical sensing strategy allows for ultrasensitive, multiplex acute leukemia cytosensing with a detection limit as low as ~350 cells per mL and a wide linear response range from 5 × 102 to 1 × 107 cells per mL for HL-60 and CEM cells, with minimal cross-reactivity and interference from non-targeting cells. This electrochemical cytosensing approach holds great promise as a new point-of-care diagnostic tool for early detection and classification of human acute leukemia and may be readily expanded to multiplex cytosensing of other cancer cells. Electronic supplementary information (ESI) available: Additional figures as noted in the text. See DOI: 10.1039/c3nr02903d

  17. Integrated Change Detection and Classification in Urban Areas Based on Airborne Laser Scanning Point Clouds.

    PubMed

    Tran, Thi Huong Giang; Ressl, Camillo; Pfeifer, Norbert

    2018-02-03

    This paper suggests a new approach for change detection (CD) in 3D point clouds. It combines classification and CD in one step using machine learning. The point cloud data of both epochs are merged for computing features of four types: features describing the point distribution, a feature relating to relative terrain elevation, features specific for the multi-target capability of laser scanning, and features combining the point clouds of both epochs to identify the change. All these features are merged in the points and then training samples are acquired to create the model for supervised classification, which is then applied to the whole study area. The final results reach an overall accuracy of over 90% for both epochs of eight classes: lost tree, new tree, lost building, new building, changed ground, unchanged building, unchanged tree, and unchanged ground.

  18. Beyond the Sparsity-Based Target Detector: A Hybrid Sparsity and Statistics Based Detector for Hyperspectral Images.

    PubMed

    Du, Bo; Zhang, Yuxiang; Zhang, Liangpei; Tao, Dacheng

    2016-08-18

    Hyperspectral images provide great potential for target detection, however, new challenges are also introduced for hyperspectral target detection, resulting that hyperspectral target detection should be treated as a new problem and modeled differently. Many classical detectors are proposed based on the linear mixing model and the sparsity model. However, the former type of model cannot deal well with spectral variability in limited endmembers, and the latter type of model usually treats the target detection as a simple classification problem and pays less attention to the low target probability. In this case, can we find an efficient way to utilize both the high-dimension features behind hyperspectral images and the limited target information to extract small targets? This paper proposes a novel sparsitybased detector named the hybrid sparsity and statistics detector (HSSD) for target detection in hyperspectral imagery, which can effectively deal with the above two problems. The proposed algorithm designs a hypothesis-specific dictionary based on the prior hypotheses for the test pixel, which can avoid the imbalanced number of training samples for a class-specific dictionary. Then, a purification process is employed for the background training samples in order to construct an effective competition between the two hypotheses. Next, a sparse representation based binary hypothesis model merged with additive Gaussian noise is proposed to represent the image. Finally, a generalized likelihood ratio test is performed to obtain a more robust detection decision than the reconstruction residual based detection methods. Extensive experimental results with three hyperspectral datasets confirm that the proposed HSSD algorithm clearly outperforms the stateof- the-art target detectors.

  19. Subpixel target detection and enhancement in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Tiwari, K. C.; Arora, M.; Singh, D.

    2011-06-01

    Hyperspectral data due to its higher information content afforded by higher spectral resolution is increasingly being used for various remote sensing applications including information extraction at subpixel level. There is however usually a lack of matching fine spatial resolution data particularly for target detection applications. Thus, there always exists a tradeoff between the spectral and spatial resolutions due to considerations of type of application, its cost and other associated analytical and computational complexities. Typically whenever an object, either manmade, natural or any ground cover class (called target, endmembers, components or class) gets spectrally resolved but not spatially, mixed pixels in the image result. Thus, numerous manmade and/or natural disparate substances may occur inside such mixed pixels giving rise to mixed pixel classification or subpixel target detection problems. Various spectral unmixing models such as Linear Mixture Modeling (LMM) are in vogue to recover components of a mixed pixel. Spectral unmixing outputs both the endmember spectrum and their corresponding abundance fractions inside the pixel. It, however, does not provide spatial distribution of these abundance fractions within a pixel. This limits the applicability of hyperspectral data for subpixel target detection. In this paper, a new inverse Euclidean distance based super-resolution mapping method has been presented that achieves subpixel target detection in hyperspectral images by adjusting spatial distribution of abundance fraction within a pixel. Results obtained at different resolutions indicate that super-resolution mapping may effectively aid subpixel target detection.

  20. Composite Wavelet Filters for Enhanced Automated Target Recognition

    NASA Technical Reports Server (NTRS)

    Chiang, Jeffrey N.; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low-resolution sonar and camera videos taken from unmanned vehicles. These sonar images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both sonar and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this paper.

  1. Evaluating structural pattern recognition for handwritten math via primitive label graphs

    NASA Astrophysics Data System (ADS)

    Zanibbi, Richard; Mouchère, Harold; Viard-Gaudin, Christian

    2013-01-01

    Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.

  2. Spectral Target Detection using Schroedinger Eigenmaps

    NASA Astrophysics Data System (ADS)

    Dorado-Munoz, Leidy P.

    Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and those similar pixels are clustered in a predictable region of the low-dimensional representation is used to define a decision rule that allows one to identify target pixels over the rest of pixels in a given image. In addition, a knowledge propagation scheme is used to combine spectral and spatial information as a means to propagate the "potential constraints" to nearby points. The propagation scheme is introduced to reinforce weak connections and improve the separability between most of the target pixels and the background. Experiments using different HSI data sets are carried out in order to test the proposed methodology. The assessment is performed from a quantitative and qualitative point of view, and by comparing the SE-based methodology against two other detection methodologies that use linear/non-linear algorithms as transformations and the well-known Adaptive Coherence/Cosine Estimator (ACE) detector. Overall results show that the SE-based detector outperforms the other two detection methodologies, which indicates the usefulness of the SE transformation in spectral target detection problems.

  3. Hybrid analysis of multiaxis electromagnetic data for discrimination of munitions and explosives of concern

    USGS Publications Warehouse

    Friedel, M.J.; Asch, T.H.; Oden, C.

    2012-01-01

    The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot–Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the ground. Second, the target response is modelled by three orthogonal dipoles from prolate, oblate and triaxial ellipsoids with one long axis and two shorter axes. Each target consists of all three dipoles. Third, unknown target parameters are determined by comparing modelled to measured target responses. By comparing the rms error among the self-organizing map and numerical classification results, we achieved greater than 95 per cent detection and correct classification of the munitions and explosives of concern at the direct fire and indirect fire test areas at the UXO Standardized Test Site at the Aberdeen Proving Ground, Maryland in 2010.

  4. Hybrid analysis of multiaxis electromagnetic data for discrimination of munitions and explosives of concern

    NASA Astrophysics Data System (ADS)

    Friedel, M. J.; Asch, T. H.; Oden, C.

    2012-08-01

    The remediation of land containing munitions and explosives of concern, otherwise known as unexploded ordnance, is an ongoing problem facing the U.S. Department of Defense and similar agencies worldwide that have used or are transferring training ranges or munitions disposal areas to civilian control. The expense associated with cleanup of land previously used for military training and war provides impetus for research towards enhanced discrimination of buried unexploded ordnance. Towards reducing that expense, a multiaxis electromagnetic induction data collection and software system, called ALLTEM, was designed and tested with support from the U.S. Department of Defense Environmental Security Technology Certification Program. ALLTEM is an on-time time-domain system that uses a continuous triangle-wave excitation to measure the target-step response rather than traditional impulse response. The system cycles through three orthogonal transmitting loops and records a total of 19 different transmitting and receiving loop combinations with a nominal spatial data sampling interval of 20 cm. Recorded data are pre-processed and then used in a hybrid discrimination scheme involving both data-driven and numerical classification techniques. The data-driven classification scheme is accomplished in three steps. First, field observations are used to train a type of unsupervised artificial neural network, a self-organizing map (SOM). Second, the SOM is used to simultaneously estimate target parameters (depth, azimuth, inclination, item type and weight) by iterative minimization of the topographic error vectors. Third, the target classification is accomplished by evaluating histograms of the estimated parameters. The numerical classification scheme is also accomplished in three steps. First, the Biot-Savart law is used to model the primary magnetic fields from the transmitter coils and the secondary magnetic fields generated by currents induced in the target materials in the ground. Second, the target response is modelled by three orthogonal dipoles from prolate, oblate and triaxial ellipsoids with one long axis and two shorter axes. Each target consists of all three dipoles. Third, unknown target parameters are determined by comparing modelled to measured target responses. By comparing the rms error among the self-organizing map and numerical classification results, we achieved greater than 95 per cent detection and correct classification of the munitions and explosives of concern at the direct fire and indirect fire test areas at the UXO Standardized Test Site at the Aberdeen Proving Ground, Maryland in 2010.

  5. On Adaptive Cell-Averaging CFAR (Constant False-Alarm Rate) Radar Signal Detection

    DTIC Science & Technology

    1987-10-01

    SIICILE COPY 4 F FInI Tedwill Rlmrt to October 197 00 C\\JT ON ADAPTIVE CELL-AVERA81NG CFAR I RADAR SIGNAL DETECTION Syracuse University Mourud krket...NY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO. 11. TITLE (Include Security Classification) 61102F 2’ 05 J8 PD - ON ADAPTIVE CELL-AVERAGING CFAR RADAR... CFAR ). One approach to adaptive detection in nonstationary noise and clutter background is to compare the processed target signal to an adaptive

  6. Environmentally Adaptive UXO Detection and Classification Systems

    DTIC Science & Technology

    2016-04-01

    probability of false alarm ( Pfa ), as well as Receiver Op- erating Characteristic (ROC) curve and confusion matrix characteristics. The results of these...techniques at a false alarm probability of Pfa = 1× 10−3. X̃ = g(X). In this case, the problem remains invariant to the group of transformations G = { g : g(X...and observed target responses as well as the probability of detection versus SNR for both detection techniques at Pfa = 1× 10−3. with N = 128 and M = 50

  7. Detection and classification of underwater targets by echolocating dolphins

    NASA Astrophysics Data System (ADS)

    Au, Whitlow

    2003-10-01

    Many experiments have been performed with echolocating dolphins to determine their target detection and discrimination capabilities. Target detection experiments have been performed in a naturally noisy environment, with masking noise and with both phantom echoes and masking noise, and in reverberation. The echo energy to rms noise spectral density for the Atlantic bottlenose dolphin (Tursiops truncatus) at the 75% correct response threshold is approximately 7.5 dB whereas for the beluga whale (Delphinapterus leucas) the threshold is approximately 1 dB. The dolphin's detection threshold in reverberation is approximately 2.5 dB vs 2 dB for the beluga. The difference in performance between species can probably be ascribed to differences in how both species perceived the task. The bottlenose dolphin may be performing a combination detection/discrimination task whereas the beluga may be performing a simple detection task. Echolocating dolphins also have the capability to make fine discriminate of target properties such as wall thickness difference of water-filled cylinders and material differences in metallic plates. The high resolution property of the animal's echolocation signals and the high dynamic range of its auditory system are important factors in their outstanding discrimination capabilities.

  8. Intelligent Classification in Huge Heterogeneous Data Sets

    DTIC Science & Technology

    2015-06-01

    Competencies DoD Department of Defense GMTI Ground Moving Target Indicator ISR Intelligence, Surveillance and Reconnaissance NCD Noncoherent Change...Detection OCR Optical Character Recognition PCA Principal Component Analysis SAR Synthetic Aperture Radar SVD Singular Value Decomponsition USPS United States Postal Service 8 Approved for Public Release; Distribution Unlimited.

  9. The Effect of Sub-Aperture in DRIA Framework Applied on Multi-Aspect PolSAR Data

    NASA Astrophysics Data System (ADS)

    Xue, Feiteng; Yin, Qiang; Lin, Yun; Hong, Wen

    2016-08-01

    Multi-aspect SAR is a new remote sensing technology, achieves consecutive data in large look angle as platform moves. Multi- aspect observation brings higher resolution and SNR to SAR picture. Multi-aspect PolSAR data can increase the accuracy of target identify and classification because it contains the 3-D polarimetric scattering properties.DRIA(detecting-removing-incoherent-adding)framework is a multi-aspect PolSAR data processing method. In this method, the anisotropic and isotropic scattering is separated by maximum- likelihood ratio test. The anisotropic scattering is removed to gain a removal series. The isotropic scattering is incoherent added to gain a high resolution picture. The removal series describes the anisotropic scattering property and is used in features extraction and classification.This article focuses on the effect brought by difference of sub-aperture numbers in anisotropic scattering detection and removal. The more sub-apertures are, the less look angle is. Artificial target has anisotropic scattering because of Bragg resonances. The increase of sub-aperture number brings more accurate observation in azimuth though the quality of each single image may loss. The accuracy of classification in agricultural fields is affected by the anisotropic scattering brought by Bragg resonances. The size of the sub-aperture has a significant effect in the removal result of Bragg resonances.

  10. Polarization-based material classification technique using passive millimeter-wave polarimetric imagery.

    PubMed

    Hu, Fei; Cheng, Yayun; Gui, Liangqi; Wu, Liang; Zhang, Xinyi; Peng, Xiaohui; Su, Jinlong

    2016-11-01

    The polarization properties of thermal millimeter-wave emission capture inherent information of objects, e.g., material composition, shape, and surface features. In this paper, a polarization-based material-classification technique using passive millimeter-wave polarimetric imagery is presented. Linear polarization ratio (LPR) is created to be a new feature discriminator that is sensitive to material type and to remove the reflected ambient radiation effect. The LPR characteristics of several common natural and artificial materials are investigated by theoretical and experimental analysis. Based on a priori information about LPR characteristics, the optimal range of incident angle and the classification criterion are discussed. Simulation and measurement results indicate that the presented classification technique is effective for distinguishing between metals and dielectrics. This technique suggests possible applications for outdoor metal target detection in open scenes.

  11. Vehicle Maneuver Detection with Accelerometer-Based Classification.

    PubMed

    Cervantes-Villanueva, Javier; Carrillo-Zapata, Daniel; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F

    2016-09-29

    In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed.

  12. Real Time Intelligent Target Detection and Analysis with Machine Vision

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Padgett, Curtis; Brown, Kenneth

    2000-01-01

    We present an algorithm for detecting a specified set of targets for an Automatic Target Recognition (ATR) application. ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. We address the problem of discriminating between targets and nontarget objects in a scene by evaluating 40x40 image blocks belonging to an image. Each image block is first projected onto a set of templates specifically designed to separate images of targets embedded in a typical background scene from those background images without targets. These filters are found using directed principal component analysis which maximally separates the two groups. The projected images are then clustered into one of n classes based on a minimum distance to a set of n cluster prototypes. These cluster prototypes have previously been identified using a modified clustering algorithm based on prior sensed data. Each projected image pattern is then fed into the associated cluster's trained neural network for classification. A detailed description of our algorithm will be given in this paper. We outline our methodology for designing the templates, describe our modified clustering algorithm, and provide details on the neural network classifiers. Evaluation of the overall algorithm demonstrates that our detection rates approach 96% with a false positive rate of less than 0.03%.

  13. Testing of a Composite Wavelet Filter to Enhance Automated Target Recognition in SONAR

    NASA Technical Reports Server (NTRS)

    Chiang, Jeffrey N.

    2011-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low resolution SONAR and camera videos taken from Unmanned Underwater Vehicles (UUVs). These SONAR images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both SONAR and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this report.

  14. Visual attention distracter insertion for improved EEG rapid serial visual presentation (RSVP) target stimuli detection

    NASA Astrophysics Data System (ADS)

    Khosla, Deepak; Huber, David J.; Martin, Kevin

    2017-05-01

    This paper† describes a technique in which we improve upon the prior performance of the Rapid Serial Visual Presentation (RSVP) EEG paradigm for image classification though the insertion of visual attention distracters and overall sequence reordering based upon the expected ratio of rare to common "events" in the environment and operational context. Inserting distracter images maintains the ratio of common events to rare events at an ideal level, maximizing the rare event detection via P300 EEG response to the RSVP stimuli. The method has two steps: first, we compute the optimal number of distracters needed for an RSVP stimuli based on the desired sequence length and expected number of targets and insert the distracters into the RSVP sequence, and then we reorder the RSVP sequence to maximize P300 detection. We show that by reducing the ratio of target events to nontarget events using this method, we can allow RSVP sequences with more targets without sacrificing area under the ROC curve (azimuth).

  15. Terrain feature recognition for synthetic aperture radar (SAR) imagery employing spatial attributes of targets

    NASA Astrophysics Data System (ADS)

    Iisaka, Joji; Sakurai-Amano, Takako

    1994-08-01

    This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.

  16. Glycoprotein Disease Markers and Single Protein-omics*

    PubMed Central

    Chandler, Kevin; Goldman, Radoslav

    2013-01-01

    Glycoproteins are well represented among biomarkers for inflammatory and cancer diseases. Secreted and membrane-associated glycoproteins make excellent targets for noninvasive detection. In this review, we discuss clinically applicable markers of cancer diseases and methods for their analysis. High throughput discovery continues to supply marker candidates with unusual glycan structures, altered glycoprotein abundance, or distribution of site-specific glycoforms. Improved analytical methods are needed to unlock the potential of these discoveries in validated clinical assays. A new generation of targeted quantitative assays is expected to advance the use of glycoproteins in early detection of diseases, molecular disease classification, and monitoring of therapeutic interventions. PMID:23399550

  17. Small battery operated unattended radar sensor for security systems

    NASA Astrophysics Data System (ADS)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  18. a Novel Framework for Remote Sensing Image Scene Classification

    NASA Astrophysics Data System (ADS)

    Jiang, S.; Zhao, H.; Wu, W.; Tan, Q.

    2018-04-01

    High resolution remote sensing (HRRS) images scene classification aims to label an image with a specific semantic category. HRRS images contain more details of the ground objects and their spatial distribution patterns than low spatial resolution images. Scene classification can bridge the gap between low-level features and high-level semantics. It can be applied in urban planning, target detection and other fields. This paper proposes a novel framework for HRRS images scene classification. This framework combines the convolutional neural network (CNN) and XGBoost, which utilizes CNN as feature extractor and XGBoost as a classifier. Then, this framework is evaluated on two different HRRS images datasets: UC-Merced dataset and NWPU-RESISC45 dataset. Our framework achieved satisfying accuracies on two datasets, which is 95.57 % and 83.35 % respectively. From the experiments result, our framework has been proven to be effective for remote sensing images classification. Furthermore, we believe this framework will be more practical for further HRRS scene classification, since it costs less time on training stage.

  19. The footprints of visual attention in the Posner cueing paradigm revealed by classification images

    NASA Technical Reports Server (NTRS)

    Eckstein, Miguel P.; Shimozaki, Steven S.; Abbey, Craig K.

    2002-01-01

    In the Posner cueing paradigm, observers' performance in detecting a target is typically better in trials in which the target is present at the cued location than in trials in which the target appears at the uncued location. This effect can be explained in terms of a Bayesian observer where visual attention simply weights the information differently at the cued (attended) and uncued (unattended) locations without a change in the quality of processing at each location. Alternatively, it could also be explained in terms of visual attention changing the shape of the perceptual filter at the cued location. In this study, we use the classification image technique to compare the human perceptual filters at the cued and uncued locations in a contrast discrimination task. We did not find statistically significant differences between the shapes of the inferred perceptual filters across the two locations, nor did the observed differences account for the measured cueing effects in human observers. Instead, we found a difference in the magnitude of the classification images, supporting the idea that visual attention changes the weighting of information at the cued and uncued location, but does not change the quality of processing at each individual location.

  20. Unmanned Aircraft Systems (UAS) Sensor and Targeting

    DTIC Science & Technology

    2010-07-27

    4.7.1 Objective. The objective of this subtest is to determine the detection performance of the Synthetic Aperture Radar (SAR) with the radar...Detection SAR – Synthetic Aperture Radar 4.7.3 Data Required. Section 5.1 outlines general test data required. The following additional data may...m – meter No. – Number PC – Probability of Classification SAR – Synthetic Aperture Radar 4.8.3 Data Required. Section 5.1 outlines

  1. Sequential Adaptive Multi-Modality Target Detection and Classification Using Physics Based Models

    DTIC Science & Technology

    2006-09-01

    estimation," R. Raghuram, R. Raich and A.O. Hero, IEEE Intl. Conf. on Acoustics, Speech , and Signal Processing, Toulouse France, June 2006, <http...can then be solved using off-the-shelf classifiers such as radial basis functions, SVM, or kNN classifier structures. When applied to mine detection we...stage waveform selection for adaptive resource constrained state estimation," 2006 IEEE Intl. Conf. on Acoustics, Speech , and Signal Processing

  2. Mixing geometric and radiometric features for change classification

    NASA Astrophysics Data System (ADS)

    Fournier, Alexandre; Descombes, Xavier; Zerubia, Josiane

    2008-02-01

    Most basic change detection algorithms use a pixel-based approach. Whereas such approach is quite well defined for monitoring important area changes (such as urban growth monitoring) in low resolution images, an object based approach seems more relevant when the change detection is specifically aimed toward targets (such as small buildings and vehicles). In this paper, we present an approach that mixes radiometric and geometric features to qualify the changed zones. The goal is to establish bounds (appearance, disappearance, substitution ...) between the detected changes and the underlying objects. We proceed by first clustering the change map (containing each pixel bitemporal radiosity) in different classes using the entropy-kmeans algorithm. Assuming that most man-made objects have a polygonal shape, a polygonal approximation algorithm is then used in order to characterize the resulting zone shapes. Hence allowing us to refine the primary rough classification, by integrating the polygon orientations in the state space. Tests are currently conducted on Quickbird data.

  3. Study of time-reversal-based signal processing applied to polarimetric GPR detection of elongated targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N.; Teixeira, Fernando L.

    2017-04-01

    Ground penetrating radar (GPR) is a useful sensing modality for mapping and identification of underground infrastructure networks, such as metal and concrete pipes (gas, water or sewer), phone conduits or cables, and other buried objects. Due to the polarization-dependent response of typical targets, it is of interest to investigate the optimum antenna arrangement and/or combination of arrangements that maximize the detection and classification capabilities of polarimetric GPR imaging systems. Here, we provide a preliminary study of time-reversal-based techniques applied to target detection by GPR utilizing different relative orientations of linear-polarized antenna elements (with respect to each other, as well as to the targets). We modeled three different pipe materials (metallic, plastic and concrete) and GPR systems operating at center frequencies of 100 MHz and 200 MHz. Full-wave numerical simulations are adopted to account for mutual coupling between targets. This type of assessment study may contribute to the improvement of GPR data interpretation of infrastructure networks in urban area surveys and in other engineering studies.

  4. Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection

    PubMed Central

    Kim, Sungho

    2015-01-01

    Sea-based infrared search and track (IRST) is important for homeland security by detecting missiles and asymmetric boats. This paper proposes a novel scheme to interpret various infrared scenes by classifying the infrared background types and detecting the coastal regions in omni-directional images. The background type or region-selective small infrared target detector should be deployed to maximize the detection rate and to minimize the number of false alarms. A spatial filter-based small target detector is suitable for identifying stationary incoming targets in remote sea areas with sky only. Many false detections can occur if there is an image sector containing a coastal region, due to ground clutter and the difficulty in finding true targets using the same spatial filter-based detector. A temporal filter-based detector was used to handle these problems. Therefore, the scene type and coastal region information is critical to the success of IRST in real-world applications. In this paper, the infrared scene type was determined using the relationships between the sensor line-of-sight (LOS) and a horizontal line in an image. The proposed coastal region detector can be activated if the background type of the probing sector is determined to be a coastal region. Coastal regions can be detected by fusing the region map and curve map. The experimental results on real infrared images highlight the feasibility of the proposed sea-based scene interpretation. In addition, the effects of the proposed scheme were analyzed further by applying region-adaptive small target detection. PMID:26404308

  5. Automated intelligent video surveillance system for ships

    NASA Astrophysics Data System (ADS)

    Wei, Hai; Nguyen, Hieu; Ramu, Prakash; Raju, Chaitanya; Liu, Xiaoqing; Yadegar, Jacob

    2009-05-01

    To protect naval and commercial ships from attack by terrorists and pirates, it is important to have automatic surveillance systems able to detect, identify, track and alert the crew on small watercrafts that might pursue malicious intentions, while ruling out non-threat entities. Radar systems have limitations on the minimum detectable range and lack high-level classification power. In this paper, we present an innovative Automated Intelligent Video Surveillance System for Ships (AIVS3) as a vision-based solution for ship security. Capitalizing on advanced computer vision algorithms and practical machine learning methodologies, the developed AIVS3 is not only capable of efficiently and robustly detecting, classifying, and tracking various maritime targets, but also able to fuse heterogeneous target information to interpret scene activities, associate targets with levels of threat, and issue the corresponding alerts/recommendations to the man-in- the-loop (MITL). AIVS3 has been tested in various maritime scenarios and shown accurate and effective threat detection performance. By reducing the reliance on human eyes to monitor cluttered scenes, AIVS3 will save the manpower while increasing the accuracy in detection and identification of asymmetric attacks for ship protection.

  6. Detecting Water Bodies in LANDSAT8 Oli Image Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Jiang, W.; He, G.; Long, T.; Ni, Y.

    2018-04-01

    Water body identifying is critical to climate change, water resources, ecosystem service and hydrological cycle. Multi-layer perceptron(MLP) is the popular and classic method under deep learning framework to detect target and classify image. Therefore, this study adopts this method to identify the water body of Landsat8. To compare the performance of classification, the maximum likelihood and water index are employed for each study area. The classification results are evaluated from accuracy indices and local comparison. Evaluation result shows that multi-layer perceptron(MLP) can achieve better performance than the other two methods. Moreover, the thin water also can be clearly identified by the multi-layer perceptron. The proposed method has the application potential in mapping global scale surface water with multi-source medium-high resolution satellite data.

  7. Performance Comparison of Feature Extraction Algorithms for Target Detection and Classification

    DTIC Science & Technology

    2013-01-01

    Detection and Classification⋆ Soheil Bahrampour1 Asok Ray2 Soumalya Sarkar2 Thyagaraju Damarla3 Nasser M. Nasrabadi3 Keywords: Feature Extraction...USA email:soheil@psu.edu 2A. Ray and S. Sarkar are with the Department of Mechanical Engineering, Pennsylvania State University, University Park, PA...no. 1, pp. 22–29, 2001. [5] G. Mallapragada, A. Ray , and X. Jin, “Symbolic dynamic filtering and language measure for behavior identification of mobile

  8. Real-time road detection in infrared imagery

    NASA Astrophysics Data System (ADS)

    Andre, Haritini E.; McCoy, Keith

    1990-09-01

    Automatic road detection is an important part in many scene recognition applications. The extraction of roads provides a means of navigation and position update for remotely piloted vehicles or autonomous vehicles. Roads supply strong contextual information which can be used to improve the performance of automatic target recognition (ATh) systems by directing the search for targets and adjusting target classification confidences. This paper will describe algorithmic techniques for labeling roads in high-resolution infrared imagery. In addition, realtime implementation of this structural approach using a processor array based on the Martin Marietta Geometric Arithmetic Parallel Processor (GAPPTh) chip will be addressed. The algorithm described is based on the hypothesis that a road consists of pairs of line segments separated by a distance "d" with opposite gradient directions (antiparallel). The general nature of the algorithm, in addition to its parallel implementation in a single instruction, multiple data (SIMD) machine, are improvements to existing work. The algorithm seeks to identify line segments meeting the road hypothesis in a manner that performs well, even when the side of the road is fragmented due to occlusion or intersections. The use of geometrical relationships between line segments is a powerful yet flexible method of road classification which is independent of orientation. In addition, this approach can be used to nominate other types of objects with minor parametric changes.

  9. Leishmania infections: Molecular targets and diagnosis.

    PubMed

    Akhoundi, Mohammad; Downing, Tim; Votýpka, Jan; Kuhls, Katrin; Lukeš, Julius; Cannet, Arnaud; Ravel, Christophe; Marty, Pierre; Delaunay, Pascal; Kasbari, Mohamed; Granouillac, Bruno; Gradoni, Luigi; Sereno, Denis

    2017-10-01

    Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems.

    PubMed

    Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T

    2017-01-07

    One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.

  11. Seeing is believing: video classification for computed tomographic colonography using multiple-instance learning.

    PubMed

    Wang, Shijun; McKenna, Matthew T; Nguyen, Tan B; Burns, Joseph E; Petrick, Nicholas; Sahiner, Berkman; Summers, Ronald M

    2012-05-01

    In this paper, we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3-D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods.

  12. Seeing is Believing: Video Classification for Computed Tomographic Colonography Using Multiple-Instance Learning

    PubMed Central

    Wang, Shijun; McKenna, Matthew T.; Nguyen, Tan B.; Burns, Joseph E.; Petrick, Nicholas; Sahiner, Berkman

    2012-01-01

    In this paper we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods. PMID:22552333

  13. Unification of automatic target tracking and automatic target recognition

    NASA Astrophysics Data System (ADS)

    Schachter, Bruce J.

    2014-06-01

    The subject being addressed is how an automatic target tracker (ATT) and an automatic target recognizer (ATR) can be fused together so tightly and so well that their distinctiveness becomes lost in the merger. This has historically not been the case outside of biology and a few academic papers. The biological model of ATT∪ATR arises from dynamic patterns of activity distributed across many neural circuits and structures (including retina). The information that the brain receives from the eyes is "old news" at the time that it receives it. The eyes and brain forecast a tracked object's future position, rather than relying on received retinal position. Anticipation of the next moment - building up a consistent perception - is accomplished under difficult conditions: motion (eyes, head, body, scene background, target) and processing limitations (neural noise, delays, eye jitter, distractions). Not only does the human vision system surmount these problems, but it has innate mechanisms to exploit motion in support of target detection and classification. Biological vision doesn't normally operate on snapshots. Feature extraction, detection and recognition are spatiotemporal. When vision is viewed as a spatiotemporal process, target detection, recognition, tracking, event detection and activity recognition, do not seem as distinct as they are in current ATT and ATR designs. They appear as similar mechanism taking place at varying time scales. A framework is provided for unifying ATT and ATR.

  14. Advanced miniature processing handware for ATR applications

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Daud, Taher (Inventor); Thakoor, Anikumar (Inventor)

    2003-01-01

    A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR).

  15. Classification of underwater target echoes based on auditory perception characteristics

    NASA Astrophysics Data System (ADS)

    Li, Xiukun; Meng, Xiangxia; Liu, Hang; Liu, Mingye

    2014-06-01

    In underwater target detection, the bottom reverberation has some of the same properties as the target echo, which has a great impact on the performance. It is essential to study the difference between target echo and reverberation. In this paper, based on the unique advantage of human listening ability on objects distinction, the Gammatone filter is taken as the auditory model. In addition, time-frequency perception features and auditory spectral features are extracted for active sonar target echo and bottom reverberation separation. The features of the experimental data have good concentration characteristics in the same class and have a large amount of differences between different classes, which shows that this method can effectively distinguish between the target echo and reverberation.

  16. Holographic neural networks versus conventional neural networks: a comparative evaluation for the classification of landmine targets in ground-penetrating radar images

    NASA Astrophysics Data System (ADS)

    Mudigonda, Naga R.; Kacelenga, Ray; Edwards, Mark

    2004-09-01

    This paper evaluates the performance of a holographic neural network in comparison with a conventional feedforward backpropagation neural network for the classification of landmine targets in ground penetrating radar images. The data used in the study was acquired from four different test sites using the landmine detection system developed by General Dynamics Canada Ltd., in collaboration with the Defense Research and Development Canada, Suffield. A set of seven features extracted for each detected alarm is used as stimulus inputs for the networks. The recall responses of the networks are then evaluated against the ground truth to declare true or false detections. The area computed under the receiver operating characteristic curve is used for comparative purposes. With a large dataset comprising of data from multiple sites, both the holographic and conventional networks showed comparable trends in recall accuracies with area values of 0.88 and 0.87, respectively. By using independent validation datasets, the holographic network"s generalization performance was observed to be better (mean area = 0.86) as compared to the conventional network (mean area = 0.82). Despite the widely publicized theoretical advantages of the holographic technology, use of more than the required number of cortical memory elements resulted in an over-fitting phenomenon of the holographic network.

  17. A new approach for SSVEP detection using PARAFAC and canonical correlation analysis.

    PubMed

    Tello, Richard; Pouryazdian, Saeed; Ferreira, Andre; Beheshti, Soosan; Krishnan, Sridhar; Bastos, Teodiano

    2015-01-01

    This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures. SSVEPs characterized with localized spectral and spatial signatures are then detected exploiting a correlation analysis between extracted signatures of the EEG tensor and the corresponding simulated signatures of all target SSVEP signals. The SSVEP that has the highest correlation is selected as the intended target. Two flickers blinking at 8 and 13 Hz were used as visual stimuli and the detection was performed based on data packets of 1 second without overlapping. Five subjects participated in the experiments and the highest classification rate of 83.34% was achieved, leading to the Information Transfer Rate (ITR) of 21.01 bits/min.

  18. Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Neal R; Ruggiero, Christy E; Pawley, Norma H

    2009-01-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervisedmore » assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.« less

  19. Incorporation of operator knowledge for improved HMDS GPR classification

    NASA Astrophysics Data System (ADS)

    Kennedy, Levi; McClelland, Jessee R.; Walters, Joshua R.

    2012-06-01

    The Husky Mine Detection System (HMDS) detects and alerts operators to potential threats observed in groundpenetrating RADAR (GPR) data. In the current system architecture, the classifiers have been trained using available data from multiple training sites. Changes in target types, clutter types, and operational conditions may result in statistical differences between the training data and the testing data for the underlying features used by the classifier, potentially resulting in an increased false alarm rate or a lower probability of detection for the system. In the current mode of operation, the automated detection system alerts the human operator when a target-like object is detected. The operator then uses data visualization software, contextual information, and human intuition to decide whether the alarm presented is an actual target or a false alarm. When the statistics of the training data and the testing data are mismatched, the automated detection system can overwhelm the analyst with an excessive number of false alarms. This is evident in the performance of and the data collected from deployed systems. This work demonstrates that analyst feedback can be successfully used to re-train a classifier to account for variable testing data statistics not originally captured in the initial training data.

  20. Multi-Sensor Systems Development for UXO Detection and Discrimination: Man-Portable Dual Magnetic/Electromagnetic Induction Sensor

    DTIC Science & Technology

    2008-02-01

    of the magnetic data to constrain the target depth using joint or cooperative inversions ( Pasion et al. 2002). ERDC/EL TR-08-9 24 Figure 15. EM...baseline ordnance classification test site at Blossom Pt. Naval Research Laboratory. NRL/MR/6110-00-8437, March 20, 1998. Pasion , L., S. Billings, and

  1. Investigating the Importance of the Pocket-estimation Method in Pocket-based Approaches: An Illustration Using Pocket-ligand Classification.

    PubMed

    Caumes, Géraldine; Borrel, Alexandre; Abi Hussein, Hiba; Camproux, Anne-Claude; Regad, Leslie

    2017-09-01

    Small molecules interact with their protein target on surface cavities known as binding pockets. Pocket-based approaches are very useful in all of the phases of drug design. Their first step is estimating the binding pocket based on protein structure. The available pocket-estimation methods produce different pockets for the same target. The aim of this work is to investigate the effects of different pocket-estimation methods on the results of pocket-based approaches. We focused on the effect of three pocket-estimation methods on a pocket-ligand (PL) classification. This pocket-based approach is useful for understanding the correspondence between the pocket and ligand spaces and to develop pharmacological profiling models. We found pocket-estimation methods yield different binding pockets in terms of boundaries and properties. These differences are responsible for the variation in the PL classification results that can have an impact on the detected correspondence between pocket and ligand profiles. Thus, we highlighted the importance of the pocket-estimation method choice in pocket-based approaches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sparsity based target detection for compressive spectral imagery

    NASA Astrophysics Data System (ADS)

    Boada, David Alberto; Arguello Fuentes, Henry

    2016-09-01

    Hyperspectral imagery provides significant information about the spectral characteristics of objects and materials present in a scene. It enables object and feature detection, classification, or identification based on the acquired spectral characteristics. However, it relies on sophisticated acquisition and data processing systems able to acquire, process, store, and transmit hundreds or thousands of image bands from a given area of interest which demands enormous computational resources in terms of storage, computationm, and I/O throughputs. Specialized optical architectures have been developed for the compressed acquisition of spectral images using a reduced set of coded measurements contrary to traditional architectures that need a complete set of measurements of the data cube for image acquisition, dealing with the storage and acquisition limitations. Despite this improvement, if any processing is desired, the image has to be reconstructed by an inverse algorithm in order to be processed, which is also an expensive task. In this paper, a sparsity-based algorithm for target detection in compressed spectral images is presented. Specifically, the target detection model adapts a sparsity-based target detector to work in a compressive domain, modifying the sparse representation basis in the compressive sensing problem by means of over-complete training dictionaries and a wavelet basis representation. Simulations show that the presented method can achieve even better detection results than the state of the art methods.

  3. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A. (Principal Investigator); Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    The author has identified the following significant results. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. The post classification comparison technique reliably identified areas of change and was used as the standard for qualitatively evaluating the other three techniques. The layered spectral/temporal change classification and the delta data change detection results generally agreed with the post classification comparison technique results; however, many small areas of change were not identified. Major discrepancies existed between the post classification comparison and spectral/temporal change detection results.

  4. A generic nuclei detection method for histopathological breast images

    NASA Astrophysics Data System (ADS)

    Kost, Henning; Homeyer, André; Bult, Peter; Balkenhol, Maschenka C. A.; van der Laak, Jeroen A. W. M.; Hahn, Horst K.

    2016-03-01

    The detection of cell nuclei plays a key role in various histopathological image analysis problems. Considering the high variability of its applications, we propose a novel generic and trainable detection approach. Adaption to specific nuclei detection tasks is done by providing training samples. A trainable deconvolution and classification algorithm is used to generate a probability map indicating the presence of a nucleus. The map is processed by an extended watershed segmentation step to identify the nuclei positions. We have tested our method on data sets with different stains and target nuclear types. We obtained F1-measures between 0.83 and 0.93.

  5. Electronic Nose: A Promising Tool For Early Detection Of Alicyclobacillus spp In Soft Drinks

    NASA Astrophysics Data System (ADS)

    Concina, I.; Bornšek, M.; Baccelliere, S.; Falasconi, M.; Sberveglieri, G.

    2009-05-01

    In the present work we investigate the potential use of the Electronic Nose EOS835 (SACMI scarl, Italy) to early detect Alicyclobacillus spp in two flavoured soft drinks. These bacteria have been acknowledged by producer companies as a major quality control target microorganisms because of their ability to survive commercial pasteurization processes and produce taint compounds in final product. Electronic Nose was able to distinguish between uncontaminated and contaminated products before the taint metabolites were identifiable by an untrained panel. Classification tests showed an excellent rate of correct classification for both drinks (from 86% uo to 100%). High performance liquid chromatography analyses showed no presence of the main metabolite at a level of 200 ppb, thus confirming the skill of the Electronic Nose technology in performing an actual early diagnosis of contamination.

  6. Neyman Pearson detection of K-distributed random variables

    NASA Astrophysics Data System (ADS)

    Tucker, J. Derek; Azimi-Sadjadi, Mahmood R.

    2010-04-01

    In this paper a new detection method for sonar imagery is developed in K-distributed background clutter. The equation for the log-likelihood is derived and compared to the corresponding counterparts derived for the Gaussian and Rayleigh assumptions. Test results of the proposed method on a data set of synthetic underwater sonar images is also presented. This database contains images with targets of different shapes inserted into backgrounds generated using a correlated K-distributed model. Results illustrating the effectiveness of the K-distributed detector are presented in terms of probability of detection, false alarm, and correct classification rates for various bottom clutter scenarios.

  7. The Efficacy of Multiparametric Magnetic Resonance Imaging and Magnetic Resonance Imaging Targeted Biopsy in Risk Classification for Patients with Prostate Cancer on Active Surveillance.

    PubMed

    Recabal, Pedro; Assel, Melissa; Sjoberg, Daniel D; Lee, Daniel; Laudone, Vincent P; Touijer, Karim; Eastham, James A; Vargas, Hebert A; Coleman, Jonathan; Ehdaie, Behfar

    2016-08-01

    We determined whether multiparametric magnetic resonance imaging targeted biopsies may replace systematic biopsies to detect higher grade prostate cancer (Gleason score 7 or greater) and whether biopsy may be avoided based on multiparametric magnetic resonance imaging among men with Gleason 3+3 prostate cancer on active surveillance. We identified men with previously diagnosed Gleason score 3+3 prostate cancer on active surveillance who underwent multiparametric magnetic resonance imaging and a followup prostate biopsy. Suspicion for higher grade cancer was scored on a standardized 5-point scale. All patients underwent a systematic biopsy. Patients with multiparametric magnetic resonance imaging regions of interest also underwent magnetic resonance imaging targeted biopsy. The detection rate of higher grade cancer was estimated for different multiparametric magnetic resonance imaging scores with the 3 biopsy strategies of systematic, magnetic resonance imaging targeted and combined. Of 206 consecutive men on active surveillance 135 (66%) had a multiparametric magnetic resonance imaging region of interest. Overall, higher grade cancer was detected in 72 (35%) men. A higher multiparametric magnetic resonance imaging score was associated with an increased probability of detecting higher grade cancer (Wilcoxon-type trend test p <0.0001). Magnetic resonance imaging targeted biopsy detected higher grade cancer in 23% of men. Magnetic resonance imaging targeted biopsy alone missed higher grade cancers in 17%, 12% and 10% of patients with multiparametric magnetic resonance imaging scores of 3, 4 and 5, respectively. Magnetic resonance imaging targeted biopsies increased the detection of higher grade cancer among men on active surveillance compared to systematic biopsy alone. However, a clinically relevant proportion of higher grade cancer was detected using only systematic biopsy. Despite the improved detection of disease progression using magnetic resonance imaging targeted biopsy, systematic biopsy cannot be excluded as part of surveillance for men with low risk prostate cancer. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    PubMed

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (<1.7% of false classification rate), with limit of detection values of 0.1% for each event, which were also achieved with simulated mixtures at different relative percentages of targets. The assay was further combined with a second multiplex PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  9. Multi-source feature extraction and target recognition in wireless sensor networks based on adaptive distributed wavelet compression algorithms

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    Proposed distributed wavelet-based algorithms are a means to compress sensor data received at the nodes forming a wireless sensor network (WSN) by exchanging information between neighboring sensor nodes. Local collaboration among nodes compacts the measurements, yielding a reduced fused set with equivalent information at far fewer nodes. Nodes may be equipped with multiple sensor types, each capable of sensing distinct phenomena: thermal, humidity, chemical, voltage, or image signals with low or no frequency content as well as audio, seismic or video signals within defined frequency ranges. Compression of the multi-source data through wavelet-based methods, distributed at active nodes, reduces downstream processing and storage requirements along the paths to sink nodes; it also enables noise suppression and more energy-efficient query routing within the WSN. Targets are first detected by the multiple sensors; then wavelet compression and data fusion are applied to the target returns, followed by feature extraction from the reduced data; feature data are input to target recognition/classification routines; targets are tracked during their sojourns through the area monitored by the WSN. Algorithms to perform these tasks are implemented in a distributed manner, based on a partition of the WSN into clusters of nodes. In this work, a scheme of collaborative processing is applied for hierarchical data aggregation and decorrelation, based on the sensor data itself and any redundant information, enabled by a distributed, in-cluster wavelet transform with lifting that allows multiple levels of resolution. The wavelet-based compression algorithm significantly decreases RF bandwidth and other resource use in target processing tasks. Following wavelet compression, features are extracted. The objective of feature extraction is to maximize the probabilities of correct target classification based on multi-source sensor measurements, while minimizing the resource expenditures at participating nodes. Therefore, the feature-extraction method based on the Haar DWT is presented that employs a maximum-entropy measure to determine significant wavelet coefficients. Features are formed by calculating the energy of coefficients grouped around the competing clusters. A DWT-based feature extraction algorithm used for vehicle classification in WSNs can be enhanced by an added rule for selecting the optimal number of resolution levels to improve the correct classification rate and reduce energy consumption expended in local algorithm computations. Published field trial data for vehicular ground targets, measured with multiple sensor types, are used to evaluate the wavelet-assisted algorithms. Extracted features are used in established target recognition routines, e.g., the Bayesian minimum-error-rate classifier, to compare the effects on the classification performance of the wavelet compression. Simulations of feature sets and recognition routines at different resolution levels in target scenarios indicate the impact on classification rates, while formulas are provided to estimate reduction in resource use due to distributed compression.

  10. Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics.

    PubMed

    Wang, Zhengfang; Jablonski, Joseph E

    2016-01-01

    Economically motivated adulteration (EMA) of lemon juice was detected by LC-MS and principal component analysis (PCA). Twenty-two batches of freshly squeezed lemon juice were adulterated by adding an aqueous solution containing 5% citric acid and 6% sucrose to pure lemon juice to obtain 30%, 60% and 100% lemon juice samples. Their total titratable acidities, °Brix and pH values were measured, and then all the lemon juice samples were subject to LC-MS analysis. Concentrations of hesperidin and eriocitrin, major phenolic components of lemon juice, were quantified. The PCA score plots for LC-MS datasets were used to preview the classification of pure and adulterated lemon juice samples. Results showed a large inherent variability in the chemical properties among 22 batches of 100% lemon juice samples. Measurement or quantitation of one or several chemical properties (targeted detection) was not effective in detecting lemon juice adulteration. However, by using the LC-MS datasets, including both chromatographic and mass spectrometric information, 100% lemon juice samples were successfully differentiated from adulterated samples containing 30% lemon juice in the PCA score plot. LC-MS coupled with chemometric analysis can be a complement to existing methods for detecting juice adulteration.

  11. A Single-Channel EOG-Based Speller.

    PubMed

    He, Shenghong; Li, Yuanqing

    2017-11-01

    Electrooculography (EOG) signals, which can be used to infer the intentions of a user based on eye movements, are widely used in human-computer interface (HCI) systems. Most existing EOG-based HCI systems incorporate a limited number of commands because they generally associate different commands with a few different types of eye movements, such as looking up, down, left, or right. This paper presents a novel single-channel EOG-based HCI that allows users to spell asynchronously by only blinking. Forty buttons corresponding to 40 characters displayed to the user via a graphical user interface are intensified in a random order. To select a button, the user must blink his/her eyes in synchrony as the target button is flashed. Two data processing procedures, specifically support vector machine (SVM) classification and waveform detection, are combined to detect eye blinks. During detection, we simultaneously feed the feature vectors extracted from the ongoing EOG signal into the SVM classification and waveform detection modules. Decisions are made based on the results of the SVM classification and waveform detection. Three online experiments were conducted with eight healthy subjects. We achieved an average accuracy of 94.4% and a response time of 4.14 s for selecting a character in synchronous mode, as well as an average accuracy of 93.43% and a false positive rate of 0.03/min in the idle state in asynchronous mode. The experimental results, therefore, demonstrated the effectiveness of this single-channel EOG-based speller.

  12. A Features Selection for Crops Classification

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Shao, Luyi; Yin, Qiang; Hong, Wen

    2016-08-01

    The components of the polarimetric target decomposition reflect the differences of target since they linked with the scattering properties of the target and can be imported into SVM as the classification features. The result of decomposition usually concentrate on part of the components. Selecting a combination of components can reduce the features that importing into the SVM. The features reduction can lead to less calculation and targeted classification of one target when we classify a multi-class area. In this research, we import different combinations of features into the SVM and find a better combination for classification with a data of AGRISAR.

  13. Learning optimal embedded cascades.

    PubMed

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  14. Flight evaluation of advanced third-generation midwave infrared sensor

    NASA Astrophysics Data System (ADS)

    Shen, Chyau N.; Donn, Matthew

    1998-08-01

    In FY-97 the Counter Drug Optical Upgrade (CDOU) demonstration program was initiated by the Program Executive Office for Counter Drug to increase the detection and classification ranges of P-3 counter drug aircraft by using advanced staring infrared sensors. The demonstration hardware is a `pin-for-pin' replacement of the AAS-36 Infrared Detection Set (IRDS) located under the nose radome of a P-3 aircraft. The hardware consists of a 3rd generation mid-wave infrared (MWIR) sensor integrated into a three axis-stabilized turret. The sensor, when installed on the P- 3, has a hemispheric field of regard and analysis has shown it will be capable of detecting and classifying Suspected Drug Trafficking Aircraft and Vessels at ranges several factors over the current IRDS. This paper will discuss the CDOU system and it's lab, ground, and flight evaluation results. Test targets included target templates, range targets, dedicated target boats, and targets of opportunity at the Naval Air Warfare Center Aircraft Division and at operational test sites. The objectives of these tests were to: (1) Validate the integration concept of the CDOU package into the P-3 aircraft. (2) Validate the end-to-end functionality of the system, including sensor/turret controls and recording of imagery during flight. (3) Evaluate the system sensitivity and resolution on a set of verified resolution targets templates. (4) Validate the ability of the 3rd generation MWIR sensor to detect and classify targets at a significantly increased range.

  15. Rapid Target Detection in High Resolution Remote Sensing Images Using Yolo Model

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Chen, X.; Gao, Y.; Li, Y.

    2018-04-01

    Object detection in high resolution remote sensing images is a fundamental and challenging problem in the field of remote sensing imagery analysis for civil and military application due to the complex neighboring environments, which can cause the recognition algorithms to mistake irrelevant ground objects for target objects. Deep Convolution Neural Network(DCNN) is the hotspot in object detection for its powerful ability of feature extraction and has achieved state-of-the-art results in Computer Vision. Common pipeline of object detection based on DCNN consists of region proposal, CNN feature extraction, region classification and post processing. YOLO model frames object detection as a regression problem, using a single CNN predicts bounding boxes and class probabilities in an end-to-end way and make the predict faster. In this paper, a YOLO based model is used for object detection in high resolution sensing images. The experiments on NWPU VHR-10 dataset and our airport/airplane dataset gain from GoogleEarth show that, compare with the common pipeline, the proposed model speeds up the detection process and have good accuracy.

  16. Developing an Automated Machine Learning Marine Oil Spill Detection System with Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.

    2016-02-01

    Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.

  17. A new FOD recognition algorithm based on multi-source information fusion and experiment analysis

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xiao, Gang

    2011-08-01

    Foreign Object Debris (FOD) is a kind of substance, debris or article alien to an aircraft or system, which would potentially cause huge damage when it appears on the airport runway. Due to the airport's complex circumstance, quick and precise detection of FOD target on the runway is one of the important protections for airplane's safety. A multi-sensor system including millimeter-wave radar and Infrared image sensors is introduced and a developed new FOD detection and recognition algorithm based on inherent feature of FOD is proposed in this paper. Firstly, the FOD's location and coordinate can be accurately obtained by millimeter-wave radar, and then according to the coordinate IR camera will take target images and background images. Secondly, in IR image the runway's edges which are straight lines can be extracted by using Hough transformation method. The potential target region, that is, runway region, can be segmented from the whole image. Thirdly, background subtraction is utilized to localize the FOD target in runway region. Finally, in the detailed small images of FOD target, a new characteristic is discussed and used in target classification. The experiment results show that this algorithm can effectively reduce the computational complexity, satisfy the real-time requirement and possess of high detection and recognition probability.

  18. A simulation study of scene confusion factors in sensing soil moisture from orbital radar

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Moezzi, S.; Roth, F. T.

    1983-01-01

    Simulated C-band radar imagery for a 124-km by 108-km test site in eastern Kansas is used to classify soil moisture. Simulated radar resolutions are 100 m by 100 m, 1 km by 1km, and 3 km by 3 km. Distributions of actual near-surface soil moisture are established daily for a 23-day accounting period using a water budget model. Within the 23-day period, three orbital radar overpasses are simulated roughly corresponding to generally moist, wet, and dry soil moisture conditions. The radar simulations are performed by a target/sensor interaction model dependent upon a terrain model, land-use classification, and near-surface soil moisture distribution. The accuracy of soil-moisture classification is evaluated for each single-date radar observation and also for multi-date detection of relative soil moisture change. In general, the results for single-date moisture detection show that 70% to 90% of cropland can be correctly classified to within +/- 20% of the true percent of field capacity. For a given radar resolution, the expected classification accuracy is shown to be dependent upon both the general soil moisture condition and also the geographical distribution of land-use and topographic relief. An analysis of cropland, urban, pasture/rangeland, and woodland subregions within the test site indicates that multi-temporal detection of relative soil moisture change is least sensitive to classification error resulting from scene complexity and topographic effects.

  19. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2015-09-30

    Scattering from Rock and Rock Outcrops Derek R. Olson The Pennsylvania State University Applied Research Laboratory, P.O. Box 30 State...In terms of target detection and classification, scattering from exposed rock on the seafloor, (i.e., individual rocks and rock outcrops) presents...levels, and other statistical measures of acoustic scattering from rocks and rock outcrops is therefore critical. Unfortunately (and curiously

  20. Target Classification of Canonical Scatterers Using Classical Estimation and Dictionary Based Techniques

    DTIC Science & Technology

    2012-03-22

    shapes tested , when the objective parameter set was confined to a dictionary’s de - fined parameter space. These physical characteristics included...8 2.3 Hypothesis Testing and Detection Theory . . . . . . . . . . . . . . . 8 2.4 3-D SAR Scattering Models...basis pursuit de -noising (BPDN) algorithm is chosen to perform extraction due to inherent efficiency and error tolerance. Multiple shape dictionaries

  1. Acquisition and processing of advanced sensor data for ERW and UXO detection and classification

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory M.; Keranen, Joe; Miller, Jonathan S.; Shubitidze, Fridon

    2014-06-01

    The remediation of explosive remnants of war (ERW) and associated unexploded ordnance (UXO) has seen improvements through the injection of modern technological advances and streamlined standard operating procedures. However, reliable and cost-effective detection and geophysical mapping of sites contaminated with UXO such as cluster munitions, abandoned ordnance, and improvised explosive devices rely on the ability to discriminate hazardous items from metallic clutter. In addition to anthropogenic clutter, handheld and vehicle-based metal detector systems are plagued by natural geologic and environmental noise in many post conflict areas. We present new and advanced electromagnetic induction (EMI) technologies including man-portable and towed EMI arrays and associated data processing software. While these systems feature vastly different form factors and transmit-receive configurations, they all exhibit several fundamental traits that enable successful classification of EMI anomalies. Specifically, multidirectional sampling of scattered magnetic fields from targets and corresponding high volume of unique data provide rich information for extracting useful classification features for clutter rejection analysis. The quality of classification features depends largely on the extent to which the data resolve unique physics-based parameters. To date, most of the advanced sensors enable high quality inversion by producing data that are extremely rich in spatial content through multi-angle illumination and multi-point reception.

  2. Audible sonar images generated with proprioception for target analysis.

    PubMed

    Kuc, Roman B

    2017-05-01

    Some blind humans have demonstrated the ability to detect and classify objects with echolocation using palatal clicks. An audible-sonar robot mimics human click emissions, binaural hearing, and head movements to extract interaural time and level differences from target echoes. Targets of various complexity are examined by transverse displacements of the sonar and by target pose rotations that model movements performed by the blind. Controlled sonar movements executed by the robot provide data that model proprioception information available to blind humans for examining targets from various aspects. The audible sonar uses this sonar location and orientation information to form two-dimensional target images that are similar to medical diagnostic ultrasound tomograms. Simple targets, such as single round and square posts, produce distinguishable and recognizable images. More complex targets configured with several simple objects generate diffraction effects and multiple reflections that produce image artifacts. The presentation illustrates the capabilities and limitations of target classification from audible sonar images.

  3. Autonomous target recognition using remotely sensed surface vibration measurements

    NASA Astrophysics Data System (ADS)

    Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.

    1993-09-01

    The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.

  4. Detection and Classification of UXO Using Unmanned Undersea Electromagnetic Sensing Platforms

    NASA Astrophysics Data System (ADS)

    Schultz, G.; Keranen, J.; McNinch, J.; Miller, J.

    2017-12-01

    Important seafloor applications, including mine countermeasures, unexploded ordnance (UXO) surveys, salvage, and underwater hazards, require the detection, geo-registration, and characterization of man-made targets on, or below, the seafloor. Investigations in littoral environments can be time-consuming and expensive due to the challenges of accurately tracking underwater assets, the difficulty of quick or effective site reconnaissance activities, high levels of clutter in nearshore areas, and lack of situational awareness and real-time feedback to operators. Consequently, a high payoff exists for effective methods using sensor and data fusion, feature extraction, and effective payload integration and deployment for improved assessments of littoral infrastructure. We present technology development and demonstration results from multiple technology research, development, and demonstration projects over the last 3 years that have been focused on advancing seafloor target detection, tracking, and classification for specific environmental and defense missions. We focus on challenges overcome in integrating and testing new miniaturized passive magnetic and controlled-source electromagnetic sensors on a variety of remotely and autonomously operated sensing platforms (ROVs, AUVs and bottom crawling systems). In particular, we present aspects of the design, development, and testing of array configurations of miniaturized atomic magnetometers/gradiometers and multi-dimensional electromagnetic (EM) sensor arrays. Results from nearshore (surf zone and marsh in North Carolina) and littoral experiments (bays and reef areas of Florida Gulf and Florida Keys) are presented.

  5. Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Mandrake, Lukas; Green, Robert O.

    2013-01-01

    Mapping localized spectral features in large images demands sensitive and robust detection algorithms. Two aspects of large images that can harm matched-filter detection performance are addressed simultaneously. First, multimodal backgrounds may thwart the typical Gaussian model. Second, outlier features can trigger false detections from large projections onto the target vector. Two state-of-the-art approaches are combined that independently address outlier false positives and multimodal backgrounds. The background clustering models multimodal backgrounds, and the mixture tuned matched filter (MT-MF) addresses outliers. Combining the two methods captures significant additional performance benefits. The resulting mixture tuned clutter matched filter (MT-CMF) shows effective performance on simulated and airborne datasets. The classical MNF transform was applied, followed by k-means clustering. Then, each cluster s mean, covariance, and the corresponding eigenvalues were estimated. This yields a cluster-specific matched filter estimate as well as a cluster- specific feasibility score to flag outlier false positives. The technology described is a proof of concept that may be employed in future target detection and mapping applications for remote imaging spectrometers. It is of most direct relevance to JPL proposals for airborne and orbital hyperspectral instruments. Applications include subpixel target detection in hyperspectral scenes for military surveillance. Earth science applications include mineralogical mapping, species discrimination for ecosystem health monitoring, and land use classification.

  6. Aerial surveillance based on hierarchical object classification for ground target detection

    NASA Astrophysics Data System (ADS)

    Vázquez-Cervantes, Alberto; García-Huerta, Juan-Manuel; Hernández-Díaz, Teresa; Soto-Cajiga, J. A.; Jiménez-Hernández, Hugo

    2015-03-01

    Unmanned aerial vehicles have turned important in surveillance application due to the flexibility and ability to inspect and displace in different regions of interest. The instrumentation and autonomy of these vehicles have been increased; i.e. the camera sensor is now integrated. Mounted cameras allow flexibility to monitor several regions of interest, displacing and changing the camera view. A well common task performed by this kind of vehicles correspond to object localization and tracking. This work presents a hierarchical novel algorithm to detect and locate objects. The algorithm is based on a detection-by-example approach; this is, the target evidence is provided at the beginning of the vehicle's route. Afterwards, the vehicle inspects the scenario, detecting all similar objects through UTM-GPS coordinate references. Detection process consists on a sampling information process of the target object. Sampling process encode in a hierarchical tree with different sampling's densities. Coding space correspond to a huge binary space dimension. Properties such as independence and associative operators are defined in this space to construct a relation between the target object and a set of selected features. Different densities of sampling are used to discriminate from general to particular features that correspond to the target. The hierarchy is used as a way to adapt the complexity of the algorithm due to optimized battery duty cycle of the aerial device. Finally, this approach is tested in several outdoors scenarios, proving that the hierarchical algorithm works efficiently under several conditions.

  7. Masked and unmasked error-related potentials during continuous control and feedback

    NASA Astrophysics Data System (ADS)

    Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.

    2018-06-01

    The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR  =  81.8% and average TNR  =  96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR  =  60.9% and average TNR  =  58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the feedback modality did not hinder the asynchronous detection of ErrPs.

  8. False alarm reduction by the And-ing of multiple multivariate Gaussian classifiers

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2003-09-01

    The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. This paper describes a method for training several multivariate Gaussian classifiers such that their And-ing dramatically reduces false alarms while maintaining a high probability of classification. This training approach is referred to as the Focused- Training method. This work extends our 2001-2002 work where the Focused-Training method was used with three other types of classifiers: the Attractor-based K-Nearest Neighbor Neural Network (a type of radial-basis, probabilistic neural network), the Optimal Discrimination Filter Classifier (based linear discrimination theory), and the Quadratic Penalty Function Support Vector Machine (QPFSVM). Although our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to a wide range of pattern recognition and automatic target recognition (ATR) problems.

  9. [Medical computer-aided detection method based on deep learning].

    PubMed

    Tao, Pan; Fu, Zhongliang; Zhu, Kai; Wang, Lili

    2018-03-01

    This paper performs a comprehensive study on the computer-aided detection for the medical diagnosis with deep learning. Based on the region convolution neural network and the prior knowledge of target, this algorithm uses the region proposal network, the region of interest pooling strategy, introduces the multi-task loss function: classification loss, bounding box localization loss and object rotation loss, and optimizes it by end-to-end. For medical image it locates the target automatically, and provides the localization result for the next stage task of segmentation. For the detection of left ventricular in echocardiography, proposed additional landmarks such as mitral annulus, endocardial pad and apical position, were used to estimate the left ventricular posture effectively. In order to verify the robustness and effectiveness of the algorithm, the experimental data of ultrasonic and nuclear magnetic resonance images are selected. Experimental results show that the algorithm is fast, accurate and effective.

  10. Calculation and simulation of atmospheric refraction effects in maritime environments

    NASA Astrophysics Data System (ADS)

    Dion, Denis, Jr.; Gardenal, Lionel; Lahaie, P.; Forand, J. Luc

    2001-01-01

    Near the sea surface, atmospheric refraction and turbulence affect both IR transmission and image quality. This produces an impact on both the detection and classification/identification of targets. With the financial participation of the U.S. Office of Naval Research (ONR), Canada's Defence Research Establishment Valcartier (DREV) is developing PRIME (Propagation Resources In the Maritime Environment), a computer model aimed at describing the overall atmospheric effects on IR imagery systems in the marine surface layer. PRIME can be used as a complement to MODTRAN to compute the effective transmittance in the marine surface layer, taking into account the lens effects caused by refraction. It also provides information on image degradation caused by both refraction and turbulence. This paper reviews the refraction phenomena that take place in the surface layer and discusses their effects on target detection and identification. We then show how PRIME can benefit detection studies and image degradation simulations.

  11. Hyperspectral imaging for differentiation of foreign materials from pinto beans

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Zemlan, Michael; Henry, Sam

    2015-09-01

    Food safety and quality in packaged products are paramount in the food processing industry. To ensure that packaged products are free of foreign materials, such as debris and pests, unwanted materials mixed with the targeted products must be detected before packaging. A portable hyperspectral imaging system in the visible-to-NIR range has been used to acquire hyperspectral data cubes from pinto beans that have been mixed with foreign matter. Bands and band ratios have been identified as effective features to develop a classification scheme for detection of foreign materials in pinto beans. A support vector machine has been implemented with a quadratic kernel to separate pinto beans and background (Class 1) from all other materials (Class 2) in each scene. After creating a binary classification map for the scene, further analysis of these binary images allows separation of false positives from true positives for proper removal action during packaging.

  12. Acoustic⁻Seismic Mixed Feature Extraction Based on Wavelet Transform for Vehicle Classification in Wireless Sensor Networks.

    PubMed

    Zhang, Heng; Pan, Zhongming; Zhang, Wenna

    2018-06-07

    An acoustic⁻seismic mixed feature extraction method based on the wavelet coefficient energy ratio (WCER) of the target signal is proposed in this study for classifying vehicle targets in wireless sensor networks. The signal was decomposed into a set of wavelet coefficients using the à trous algorithm, which is a concise method used to implement the wavelet transform of a discrete signal sequence. After the wavelet coefficients of the target acoustic and seismic signals were obtained, the energy ratio of each layer coefficient was calculated as the feature vector of the target signals. Subsequently, the acoustic and seismic features were merged into an acoustic⁻seismic mixed feature to improve the target classification accuracy after the acoustic and seismic WCER features of the target signal were simplified using the hierarchical clustering method. We selected the support vector machine method for classification and utilized the data acquired from a real-world experiment to validate the proposed method. The calculated results show that the WCER feature extraction method can effectively extract the target features from target signals. Feature simplification can reduce the time consumption of feature extraction and classification, with no effect on the target classification accuracy. The use of acoustic⁻seismic mixed features effectively improved target classification accuracy by approximately 12% compared with either acoustic signal or seismic signal alone.

  13. SLATE: scanning laser automatic threat extraction

    NASA Astrophysics Data System (ADS)

    Clark, David J.; Prickett, Shaun L.; Napier, Ashley A.; Mellor, Matthew P.

    2016-10-01

    SLATE is an Autonomous Sensor Module (ASM) designed to work with the SAPIENT system providing accurate location tracking and classifications of targets that pass through its field of view. The concept behind the SLATE ASM is to produce a sensor module that provides a complementary view of the world to the camera-based systems that are usually used for wide area surveillance. Cameras provide a hi-fidelity, human understandable view of the world with which tracking and identification algorithms can be used. Unfortunately, positioning and tracking in a 3D environment is difficult to implement robustly, making location-based threat assessment challenging. SLATE uses a Scanning Laser Rangefinder (SLR) that provides precise (<1cm) positions, sizes, shapes and velocities of targets within its field-of-view (FoV). In this paper we will discuss the development of the SLATE ASM including the techniques used to track and classify detections that move through the field of view of the sensor providing the accurate tracking information to the SAPIENT system. SLATE's ability to locate targets precisely allows subtle boundary-crossing judgements, e.g. on which side of a chain-link fence a target is. SLATE's ability to track targets in 3D throughout its FoV enables behavior classification such as running and walking which can provide an indication of intent and help reduce false alarm rates.

  14. Object-oriented recognition of high-resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan

    2016-01-01

    With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .

  15. Classification and recognition of texture collagen obtaining by multiphoton microscope with neural network analysis

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui

    2016-01-01

    Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.

  16. Optical beam classification using deep learning: a comparison with rule- and feature-based classification

    NASA Astrophysics Data System (ADS)

    Alom, Md. Zahangir; Awwal, Abdul A. S.; Lowe-Webb, Roger; Taha, Tarek M.

    2017-08-01

    Deep-learning methods are gaining popularity because of their state-of-the-art performance in image classification tasks. In this paper, we explore classification of laser-beam images from the National Ignition Facility (NIF) using a novel deeplearning approach. NIF is the world's largest, most energetic laser. It has nearly 40,000 optics that precisely guide, reflect, amplify, and focus 192 laser beams onto a fusion target. NIF utilizes four petawatt lasers called the Advanced Radiographic Capability (ARC) to produce backlighting X-ray illumination to capture implosion dynamics of NIF experiments with picosecond temporal resolution. In the current operational configuration, four independent short-pulse ARC beams are created and combined in a split-beam configuration in each of two NIF apertures at the entry of the pre-amplifier. The subaperture beams then propagate through the NIF beampath up to the ARC compressor. Each ARC beamlet is separately compressed with a dedicated set of four gratings and recombined as sub-apertures for transport to the parabola vessel, where the beams are focused using parabolic mirrors and pointed to the target. Small angular errors in the compressor gratings can cause the sub-aperture beams to diverge from one another and prevent accurate alignment through the transport section between the compressor and parabolic mirrors. This is an off-normal condition that must be detected and corrected. The goal of the off-normal check is to determine whether the ARC beamlets are sufficiently overlapped into a merged single spot or diverged into two distinct spots. Thus, the objective of the current work is three-fold: developing a simple algorithm to perform off-normal classification, exploring the use of Convolutional Neural Network (CNN) for the same task, and understanding the inter-relationship of the two approaches. The CNN recognition results are compared with other machine-learning approaches, such as Deep Neural Network (DNN) and Support Vector Machine (SVM). The experimental results show around 96% classification accuracy using CNN; the CNN approach also provides comparable recognition results compared to the present feature-based off-normal detection. The feature-based solution was developed to capture the expertise of a human expert in classifying the images. The misclassified results are further studied to explain the differences and discover any discrepancies or inconsistencies in current classification.

  17. Approach to explosive hazard detection using sensor fusion and multiple kernel learning with downward-looking GPR and EMI sensor data

    NASA Astrophysics Data System (ADS)

    Pinar, Anthony; Masarik, Matthew; Havens, Timothy C.; Burns, Joseph; Thelen, Brian; Becker, John

    2015-05-01

    This paper explores the effectiveness of an anomaly detection algorithm for downward-looking ground penetrating radar (GPR) and electromagnetic inductance (EMI) data. Threat detection with GPR is challenged by high responses to non-target/clutter objects, leading to a large number of false alarms (FAs), and since the responses of target and clutter signatures are so similar, classifier design is not trivial. We suggest a method based on a Run Packing (RP) algorithm to fuse GPR and EMI data into a composite confidence map to improve detection as measured by the area-under-ROC (NAUC) metric. We examine the value of a multiple kernel learning (MKL) support vector machine (SVM) classifier using image features such as histogram of oriented gradients (HOG), local binary patterns (LBP), and local statistics. Experimental results on government furnished data show that use of our proposed fusion and classification methods improves the NAUC when compared with the results from individual sensors and a single kernel SVM classifier.

  18. Autonomous underwater vehicle adaptive path planning for target classification

    NASA Astrophysics Data System (ADS)

    Edwards, Joseph R.; Schmidt, Henrik

    2002-11-01

    Autonomous underwater vehicles (AUVs) are being rapidly developed to carry sensors into the sea in ways that have previously not been possible. The full use of the vehicles, however, is still not near realization due to lack of the true vehicle autonomy that is promised in the label (AUV). AUVs today primarily attempt to follow as closely as possible a preplanned trajectory. The key to increasing the autonomy of the AUV is to provide the vehicle with a means to make decisions based on its sensor receptions. The current work examines the use of active sonar returns from mine-like objects (MLOs) as a basis for sensor-based adaptive path planning, where the path planning objective is to discriminate between real mines and rocks. Once a target is detected in the mine hunting phase, the mine classification phase is initialized with a derivative cost function to emphasize signal differences and enhance classification capability. The AUV moves adaptively to minimize the cost function. The algorithm is verified using at-sea data derived from the joint MIT/SACLANTCEN GOATS experiments and advanced acoustic simulation using SEALAB. The mission oriented operating system (MOOS) real-time simulator is then used to test the onboard implementation of the algorithm.

  19. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2018-01-23

    scattering and rough areas as seen on the rock outcrop in Fig. 1, display high variability which could pose difficulty for target detection and...classification systems. The primary long-term goal of this research project is to increase understanding and modeling capabilities for high -frequency acoustic...Arlington, VA 22203-1995 10. SPONSOR/MONITOR’S ACRONYM(S) BD025 11. SPONSORING/MONITORING AGENCY REPORT NUMBER 12. DISTRIBUTION AVAILABILITY

  20. New wideband radar target classification method based on neural learning and modified Euclidean metric

    NASA Astrophysics Data System (ADS)

    Jiang, Yicheng; Cheng, Ping; Ou, Yangkui

    2001-09-01

    A new method for target classification of high-range resolution radar is proposed. It tries to use neural learning to obtain invariant subclass features of training range profiles. A modified Euclidean metric based on the Box-Cox transformation technique is investigated for Nearest Neighbor target classification improvement. The classification experiments using real radar data of three different aircraft have demonstrated that classification error can reduce 8% if this method proposed in this paper is chosen instead of the conventional method. The results of this paper have shown that by choosing an optimized metric, it is indeed possible to reduce the classification error without increasing the number of samples.

  1. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    PubMed

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples, perhaps due to colonized berries or sparse mycelia hidden within the bunch or airborne conidia on the berries that were detected by qPCR. An advanced approach to hyperspectral image classification based on combined spatial and spectral image features, potentially applicable to many available hyperspectral sensor technologies, has been developed and validated to improve the detection of powdery mildew infection levels of Chardonnay grape bunches. The spatial-spectral approach improved especially the detection of light infection levels compared with pixel-wise spectral data analysis. This approach is expected to improve the speed and accuracy of disease detection once the thresholds for fungal biomass detected by hyperspectral imaging are established; it can also facilitate monitoring in plant phenotyping of grapevine and additional crops.

  2. Multiple kernel based feature and decision level fusion of iECO individuals for explosive hazard detection in FLIR imagery

    NASA Astrophysics Data System (ADS)

    Price, Stanton R.; Murray, Bryce; Hu, Lequn; Anderson, Derek T.; Havens, Timothy C.; Luke, Robert H.; Keller, James M.

    2016-05-01

    A serious threat to civilians and soldiers is buried and above ground explosive hazards. The automatic detection of such threats is highly desired. Many methods exist for explosive hazard detection, e.g., hand-held based sensors, downward and forward looking vehicle mounted platforms, etc. In addition, multiple sensors are used to tackle this extreme problem, such as radar and infrared (IR) imagery. In this article, we explore the utility of feature and decision level fusion of learned features for forward looking explosive hazard detection in IR imagery. Specifically, we investigate different ways to fuse learned iECO features pre and post multiple kernel (MK) support vector machine (SVM) based classification. Three MK strategies are explored; fixed rule, heuristics and optimization-based. Performance is assessed in the context of receiver operating characteristic (ROC) curves on data from a U.S. Army test site that contains multiple target and clutter types, burial depths and times of day. Specifically, the results reveal two interesting things. First, the different MK strategies appear to indicate that the different iECO individuals are all more-or-less important and there is not a dominant feature. This is reinforcing as our hypothesis was that iECO provides different ways to approach target detection. Last, we observe that while optimization-based MK is mathematically appealing, i.e., it connects the learning of the fusion to the underlying classification problem we are trying to solve, it appears to be highly susceptible to over fitting and simpler, e.g., fixed rule and heuristics approaches help us realize more generalizable iECO solutions.

  3. Broadly targeted multiprobe QPCR for detection of coronaviruses: Coronavirus is common among mallard ducks (Anas platyrhynchos).

    PubMed

    Muradrasoli, Shaman; Mohamed, Nahla; Hornyák, Akos; Fohlman, Jan; Olsen, Björn; Belák, Sándor; Blomberg, Jonas

    2009-08-01

    Coronaviruses (CoVs) can cause trivial or fatal disease in humans and in animals. Detection methods for a wide range of CoVs are needed, to understand viral evolution, host range, transmission and maintenance in reservoirs. A new concept, "Multiprobe QPCR", which uses a balanced mixture of competing discrete non- or moderately degenerated nuclease degradable (TaqMan) probes was employed. It provides a broadly targeted and rational single tube real-time reverse transcription PCR ("NQPCR") for the generic detection and discovery of CoV. Degenerate primers, previously published, and the new probes, were from a conserved stretch of open reading frame 1b, encoding the replicase. This multiprobe design reduced the degree of probe degeneration, which otherwise decreases the sensitivity, and allowed a preliminary classification of the amplified sequence directly from the QPCR trace. The split probe strategy allowed detection of down to 10 viral nucleic acid equivalents of CoV from all known CoV groups. Evaluation was with reference CoV strains, synthetic targets, human respiratory samples and avian fecal samples. Infectious-Bronchitis-Virus (IBV)-related variants were found in 7 of 35 sample pools, from 100 wild mallards (Anas platyrhynchos). Ducks may spread and harbour CoVs. NQPCR can detect a wide range of CoVs, as illustrated for humans and ducks.

  4. Systematic Model-in-the-Loop Test of Embedded Control Systems

    NASA Astrophysics Data System (ADS)

    Krupp, Alexander; Müller, Wolfgang

    Current model-based development processes offer new opportunities for verification automation, e.g., in automotive development. The duty of functional verification is the detection of design flaws. Current functional verification approaches exhibit a major gap between requirement definition and formal property definition, especially when analog signals are involved. Besides lack of methodical support for natural language formalization, there does not exist a standardized and accepted means for formal property definition as a target for verification planning. This article addresses several shortcomings of embedded system verification. An Enhanced Classification Tree Method is developed based on the established Classification Tree Method for Embeded Systems CTM/ES which applies a hardware verification language to define a verification environment.

  5. Using Knowledge Base for Event-Driven Scheduling of Web Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Kim, Yang Sok; Kang, Sung Won; Kang, Byeong Ho; Compton, Paul

    Web monitoring systems report any changes to their target web pages by revisiting them frequently. As they operate under significant resource constraints, it is essential to minimize revisits while ensuring minimal delay and maximum coverage. Various statistical scheduling methods have been proposed to resolve this problem; however, they are static and cannot easily cope with events in the real world. This paper proposes a new scheduling method that manages unpredictable events. An MCRDR (Multiple Classification Ripple-Down Rules) document classification knowledge base was reused to detect events and to initiate a prompt web monitoring process independent of a static monitoring schedule. Our experiment demonstrates that the approach improves monitoring efficiency significantly.

  6. Three dimensional time reversal optical tomography

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Alrubaiee, M.; Xu, M.; Gayen, S. K.

    2011-03-01

    Time reversal optical tomography (TROT) approach is used to detect and locate absorptive targets embedded in a highly scattering turbid medium to assess its potential in breast cancer detection. TROT experimental arrangement uses multi-source probing and multi-detector signal acquisition and Multiple-Signal-Classification (MUSIC) algorithm for target location retrieval. Light transport from multiple sources through the intervening medium with embedded targets to the detectors is represented by a response matrix constructed using experimental data. A TR matrix is formed by multiplying the response matrix by its transpose. The eigenvectors with leading non-zero eigenvalues of the TR matrix correspond to embedded objects. The approach was used to: (a) obtain the location and spatial resolution of an absorptive target as a function of its axial position between the source and detector planes; and (b) study variation in spatial resolution of two targets at the same axial position but different lateral positions. The target(s) were glass sphere(s) of diameter ~9 mm filled with ink (absorber) embedded in a 60 mm-thick slab of Intralipid-20% suspension in water with an absorption coefficient μa ~ 0.003 mm-1 and a transport mean free path lt ~ 1 mm at 790 nm, which emulate the average values of those parameters for human breast tissue. The spatial resolution and accuracy of target location depended on axial position, and target contrast relative to the background. Both the targets could be resolved and located even when they were only 4-mm apart. The TROT approach is fast, accurate, and has the potential to be useful in breast cancer detection and localization.

  7. Passive Polarimetric Information Processing for Target Classification

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz; Sadjadi, Farzad

    Polarimetric sensing is an area of active research in a variety of applications. In particular, the use of polarization diversity has been shown to improve performance in automatic target detection and recognition. Within the diverse scope of polarimetric sensing, the field of passive polarimetric sensing is of particular interest. This chapter presents several new methods for gathering in formation using such passive techniques. One method extracts three-dimensional (3D) information and surface properties using one or more sensors. Another method extracts scene-specific algebraic expressions that remain unchanged under polariza tion transformations (such as along the transmission path to the sensor).

  8. Transient classification in LIGO data using difference boosting neural network

    NASA Astrophysics Data System (ADS)

    Mukund, N.; Abraham, S.; Kandhasamy, S.; Mitra, S.; Philip, N. S.

    2017-05-01

    Detection and classification of transients in data from gravitational wave detectors are crucial for efficient searches for true astrophysical events and identification of noise sources. We present a hybrid method for classification of short duration transients seen in gravitational wave data using both supervised and unsupervised machine learning techniques. To train the classifiers, we use the relative wavelet energy and the corresponding entropy obtained by applying one-dimensional wavelet decomposition on the data. The prediction accuracy of the trained classifier on nine simulated classes of gravitational wave transients and also LIGO's sixth science run hardware injections are reported. Targeted searches for a couple of known classes of nonastrophysical signals in the first observational run of Advanced LIGO data are also presented. The ability to accurately identify transient classes using minimal training samples makes the proposed method a useful tool for LIGO detector characterization as well as searches for short duration gravitational wave signals.

  9. Thermal infrared panoramic imaging sensor

    NASA Astrophysics Data System (ADS)

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to serve in a wide range of applications of homeland security, as well as serve the Army in tasks of improved situational awareness (SA) in defense and offensive operations, and as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The novel ViperView TM high-resolution panoramic thermal imager is the heart of the APTIS system. It features an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS system include network communications, advanced power management, and wakeup capability. Recent developments include image processing, optical design being expanded into the visible spectral range, and wireless communications design. This paper describes the development status of the APTIS system.

  10. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    NASA Astrophysics Data System (ADS)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  11. Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection

    NASA Astrophysics Data System (ADS)

    Erener, A.

    2013-04-01

    Automatic extraction of urban features from high resolution satellite images is one of the main applications in remote sensing. It is useful for wide scale applications, namely: urban planning, urban mapping, disaster management, GIS (geographic information systems) updating, and military target detection. One common approach to detecting urban features from high resolution images is to use automatic classification methods. This paper has four main objectives with respect to detecting buildings. The first objective is to compare the performance of the most notable supervised classification algorithms, including the maximum likelihood classifier (MLC) and the support vector machine (SVM). In this experiment the primary consideration is the impact of kernel configuration on the performance of the SVM. The second objective of the study is to explore the suitability of integrating additional bands, namely first principal component (1st PC) and the intensity image, for original data for multi classification approaches. The performance evaluation of classification results is done using two different accuracy assessment methods: pixel based and object based approaches, which reflect the third aim of the study. The objective here is to demonstrate the differences in the evaluation of accuracies of classification methods. Considering consistency, the same set of ground truth data which is produced by labeling the building boundaries in the GIS environment is used for accuracy assessment. Lastly, the fourth aim is to experimentally evaluate variation in the accuracy of classifiers for six different real situations in order to identify the impact of spatial and spectral diversity on results. The method is applied to Quickbird images for various urban complexity levels, extending from simple to complex urban patterns. The simple surface type includes a regular urban area with low density and systematic buildings with brick rooftops. The complex surface type involves almost all kinds of challenges, such as high dense build up areas, regions with bare soil, and small and large buildings with different rooftops, such as concrete, brick, and metal. Using the pixel based accuracy assessment it was shown that the percent building detection (PBD) and quality percent (QP) of the MLC and SVM depend on the complexity and texture variation of the region. Generally, PBD values range between 70% and 90% for the MLC and SVM, respectively. No substantial improvements were observed when the SVM and MLC classifications were developed by the addition of more variables, instead of the use of only four bands. In the evaluation of object based accuracy assessment, it was demonstrated that while MLC and SVM provide higher rates of correct detection, they also provide higher rates of false alarms.

  12. Evaluation of modified crystal violet chromoendoscopy procedure using new mucosal pit pattern classification for detection of Barrett's dysplastic lesions.

    PubMed

    Yuki, T; Amano, Y; Kushiyama, Y; Takahashi, Y; Ose, T; Moriyama, I; Fukuhara, H; Ishimura, N; Koshino, K; Furuta, K; Ishihara, S; Adachi, K; Kinoshita, Y

    2006-05-01

    Pit pattern diagnosis is important for endoscopic detection of dysplastic Barrett's lesions, though using magnification endoscopy can be difficult and laborious. We investigated the usefulness of a modified crystal violet chromoendoscopy procedure and utilised a new pit pattern classification for diagnosis of dysplastic Barrett's lesions. A total of 1,030 patients suspected of having a columnar lined oesophagus were examined, of whom 816 demonstrated a crystal violet-stained columnar lined oesophagus. The early group of patients underwent 0.05% crystal violet chromoendoscopy, while the later group was examined using 0.03% crystal violet with 3.0% acetate. A targeted biopsy of the columnar lined oesophagus was performed using crystal violet staining after making a diagnosis of closed or open type pit pattern with a newly proposed system of classification. The relationship between type of pit pattern and histologically identified dysplastic Barrett's lesions was evaluated. Dysplastic Barrett's lesions were identified in biopsy samples with an open type pit pattern with a sensitivity of 96.0%. Further, Barrett's mucosa with the intestinal predominant mucin phenotype was closely associated with the open type pit pattern (sensitivity 81.9%, specificity 95.6%). The new pit pattern classification for diagnosis of Barrett's mucosa was found to be useful for identification of cases with dysplastic lesions and possible malignant potential using a crystal violet chromoendoscopic procedure.

  13. Model-based approach to the detection and classification of mines in sidescan sonar.

    PubMed

    Reed, Scott; Petillot, Yvan; Bell, Judith

    2004-01-10

    This paper presents a model-based approach to mine detection and classification by use of sidescan sonar. Advances in autonomous underwater vehicle technology have increased the interest in automatic target recognition systems in an effort to automate a process that is currently carried out by a human operator. Current automated systems generally require training and thus produce poor results when the test data set is different from the training set. This has led to research into unsupervised systems, which are able to cope with the large variability in conditions and terrains seen in sidescan imagery. The system presented in this paper first detects possible minelike objects using a Markov random field model, which operates well on noisy images, such as sidescan, and allows a priori information to be included through the use of priors. The highlight and shadow regions of the object are then extracted with a cooperating statistical snake, which assumes these regions are statistically separate from the background. Finally, a classification decision is made using Dempster-Shafer theory, where the extracted features are compared with synthetic realizations generated with a sidescan sonar simulator model. Results for the entire process are shown on real sidescan sonar data. Similarities between the sidescan sonar and synthetic aperture radar (SAR) imaging processes ensure that the approach outlined here could be made applied to SAR image analysis.

  14. Page layout analysis and classification for complex scanned documents

    NASA Astrophysics Data System (ADS)

    Erkilinc, M. Sezer; Jaber, Mustafa; Saber, Eli; Bauer, Peter; Depalov, Dejan

    2011-09-01

    A framework for region/zone classification in color and gray-scale scanned documents is proposed in this paper. The algorithm includes modules for extracting text, photo, and strong edge/line regions. Firstly, a text detection module which is based on wavelet analysis and Run Length Encoding (RLE) technique is employed. Local and global energy maps in high frequency bands of the wavelet domain are generated and used as initial text maps. Further analysis using RLE yields a final text map. The second module is developed to detect image/photo and pictorial regions in the input document. A block-based classifier using basis vector projections is employed to identify photo candidate regions. Then, a final photo map is obtained by applying probabilistic model based on Markov random field (MRF) based maximum a posteriori (MAP) optimization with iterated conditional mode (ICM). The final module detects lines and strong edges using Hough transform and edge-linkages analysis, respectively. The text, photo, and strong edge/line maps are combined to generate a page layout classification of the scanned target document. Experimental results and objective evaluation show that the proposed technique has a very effective performance on variety of simple and complex scanned document types obtained from MediaTeam Oulu document database. The proposed page layout classifier can be used in systems for efficient document storage, content based document retrieval, optical character recognition, mobile phone imagery, and augmented reality.

  15. Automated detection of radioisotopes from an aircraft platform by pattern recognition analysis of gamma-ray spectra.

    PubMed

    Dess, Brian W; Cardarelli, John; Thomas, Mark J; Stapleton, Jeff; Kroutil, Robert T; Miller, David; Curry, Timothy; Small, Gary W

    2018-03-08

    A generalized methodology was developed for automating the detection of radioisotopes from gamma-ray spectra collected from an aircraft platform using sodium-iodide detectors. Employing data provided by the U.S Environmental Protection Agency Airborne Spectral Photometric Environmental Collection Technology (ASPECT) program, multivariate classification models based on nonparametric linear discriminant analysis were developed for application to spectra that were preprocessed through a combination of altitude-based scaling and digital filtering. Training sets of spectra for use in building classification models were assembled from a combination of background spectra collected in the field and synthesized spectra obtained by superimposing laboratory-collected spectra of target radioisotopes onto field backgrounds. This approach eliminated the need for field experimentation with radioactive sources for use in building classification models. Through a bi-Gaussian modeling procedure, the discriminant scores that served as the outputs from the classification models were related to associated confidence levels. This provided an easily interpreted result regarding the presence or absence of the signature of a specific radioisotope in each collected spectrum. Through the use of this approach, classifiers were built for cesium-137 ( 137 Cs) and cobalt-60 ( 60 Co), two radioisotopes that are of interest in airborne radiological monitoring applications. The optimized classifiers were tested with field data collected from a set of six geographically diverse sites, three of which contained either 137 Cs, 60 Co, or both. When the optimized classification models were applied, the overall percentages of correct classifications for spectra collected at these sites were 99.9 and 97.9% for the 60 Co and 137 Cs classifiers, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Intelligence and Electronic Warfare (IEW) System Fact Sheets

    DTIC Science & Technology

    1994-04-06

    unattended ground sensor system that detects, classifies, and determines direction of movement of intruding personnel and vehicles . It uses remotely...fixed and moving target locations, speed and direction of movement, and classification of tracked/wheeled vehicles . The GSM is equipped with standard... Vehicle The Pointer is a Hand-Launched Unmanned Aerial Vehicle (HL-UAV) to be employed by battalion scouts for t"over-the-hillll reconnaissance and

  17. Detection of Antineutrophil Autoantibodies by Flow Cytometry: Use of Unfixed Neutrophils as Antigenic Targets

    DTIC Science & Technology

    1993-01-01

    irmuanoglobulins, neutropenia , systemic lupus erythematosus, IL PRICE OO rheumatoid arthritis. 17. SECURITY CLASSIFICATION 18. SECURITY...sera of a variety of neutropenic patients with typical RA had patients with neutropenia and associated au- positive results, 51/244 (21%) of sera from...from patients were used to study the effects of cellular ac- with suspected immune neutropenia were tivation, and increased antibody binding was studied

  18. Idiopathic interstitial pneumonias and emphysema: detection and classification using a texture-discriminative approach

    NASA Astrophysics Data System (ADS)

    Fetita, C.; Chang-Chien, K. C.; Brillet, P. Y.; Pr"teux, F.; Chang, R. F.

    2012-03-01

    Our study aims at developing a computer-aided diagnosis (CAD) system for fully automatic detection and classification of pathological lung parenchyma patterns in idiopathic interstitial pneumonias (IIP) and emphysema using multi-detector computed tomography (MDCT). The proposed CAD system is based on three-dimensional (3-D) mathematical morphology, texture and fuzzy logic analysis, and can be divided into four stages: (1) a multi-resolution decomposition scheme based on a 3-D morphological filter was exploited to discriminate the lung region patterns at different analysis scales. (2) An additional spatial lung partitioning based on the lung tissue texture was introduced to reinforce the spatial separation between patterns extracted at the same resolution level in the decomposition pyramid. Then, (3) a hierarchic tree structure was exploited to describe the relationship between patterns at different resolution levels, and for each pattern, six fuzzy membership functions were established for assigning a probability of association with a normal tissue or a pathological target. Finally, (4) a decision step exploiting the fuzzy-logic assignments selects the target class of each lung pattern among the following categories: normal (N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG). According to a preliminary evaluation on an extended database, the proposed method can overcome the drawbacks of a previously developed approach and achieve higher sensitivity and specificity.

  19. Computationally efficient target classification in multispectral image data with Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Cavigelli, Lukas; Bernath, Dominic; Magno, Michele; Benini, Luca

    2016-10-01

    Detecting and classifying targets in video streams from surveillance cameras is a cumbersome, error-prone and expensive task. Often, the incurred costs are prohibitive for real-time monitoring. This leads to data being stored locally or transmitted to a central storage site for post-incident examination. The required communication links and archiving of the video data are still expensive and this setup excludes preemptive actions to respond to imminent threats. An effective way to overcome these limitations is to build a smart camera that analyzes the data on-site, close to the sensor, and transmits alerts when relevant video sequences are detected. Deep neural networks (DNNs) have come to outperform humans in visual classifications tasks and are also performing exceptionally well on other computer vision tasks. The concept of DNNs and Convolutional Networks (ConvNets) can easily be extended to make use of higher-dimensional input data such as multispectral data. We explore this opportunity in terms of achievable accuracy and required computational effort. To analyze the precision of DNNs for scene labeling in an urban surveillance scenario we have created a dataset with 8 classes obtained in a field experiment. We combine an RGB camera with a 25-channel VIS-NIR snapshot sensor to assess the potential of multispectral image data for target classification. We evaluate several new DNNs, showing that the spectral information fused together with the RGB frames can be used to improve the accuracy of the system or to achieve similar accuracy with a 3x smaller computation effort. We achieve a very high per-pixel accuracy of 99.1%. Even for scarcely occurring, but particularly interesting classes, such as cars, 75% of the pixels are labeled correctly with errors occurring only around the border of the objects. This high accuracy was obtained with a training set of only 30 labeled images, paving the way for fast adaptation to various application scenarios.

  20. Progressively expanded neural network for automatic material identification in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Paheding, Sidike

    The science of hyperspectral remote sensing focuses on the exploitation of the spectral signatures of various materials to enhance capabilities including object detection, recognition, and material characterization. Hyperspectral imagery (HSI) has been extensively used for object detection and identification applications since it provides plenty of spectral information to uniquely identify materials by their reflectance spectra. HSI-based object detection algorithms can be generally classified into stochastic and deterministic approaches. Deterministic approaches are comparatively simple to apply since it is usually based on direct spectral similarity such as spectral angles or spectral correlation. In contrast, stochastic algorithms require statistical modeling and estimation for target class and non-target class. Over the decades, many single class object detection methods have been proposed in the literature, however, deterministic multiclass object detection in HSI has not been explored. In this work, we propose a deterministic multiclass object detection scheme, named class-associative spectral fringe-adjusted joint transform correlation. Human brain is capable of simultaneously processing high volumes of multi-modal data received every second of the day. In contrast, a machine sees input data simply as random binary numbers. Although machines are computationally efficient, they are inferior when comes to data abstraction and interpretation. Thus, mimicking the learning strength of human brain has been current trend in artificial intelligence. In this work, we present a biological inspired neural network, named progressively expanded neural network (PEN Net), based on nonlinear transformation of input neurons to a feature space for better pattern differentiation. In PEN Net, discrete fixed excitations are disassembled and scattered in the feature space as a nonlinear line. Each disassembled element on the line corresponds to a pattern with similar features. Unlike the conventional neural network where hidden neurons need to be iteratively adjusted to achieve better accuracy, our proposed PEN Net does not require hidden neurons tuning which achieves better computational efficiency, and it has also shown superior performance in HSI classification tasks compared to the state-of-the-arts. Spectral-spatial features based HSI classification framework has shown stronger strength compared to spectral-only based methods. In our lastly proposed technique, PEN Net is incorporated with multiscale spatial features (i.e., multiscale complete local binary pattern) to perform a spectral-spatial classification of HSI. Several experiments demonstrate excellent performance of our proposed technique compared to the more recent developed approaches.

  1. Multi-Temporal Classification and Change Detection Using Uav Images

    NASA Astrophysics Data System (ADS)

    Makuti, S.; Nex, F.; Yang, M. Y.

    2018-05-01

    In this paper different methodologies for the classification and change detection of UAV image blocks are explored. UAV is not only the cheapest platform for image acquisition but it is also the easiest platform to operate in repeated data collections over a changing area like a building construction site. Two change detection techniques have been evaluated in this study: the pre-classification and the post-classification algorithms. These methods are based on three main steps: feature extraction, classification and change detection. A set of state of the art features have been used in the tests: colour features (HSV), textural features (GLCM) and 3D geometric features. For classification purposes Conditional Random Field (CRF) has been used: the unary potential was determined using the Random Forest algorithm while the pairwise potential was defined by the fully connected CRF. In the performed tests, different feature configurations and settings have been considered to assess the performance of these methods in such challenging task. Experimental results showed that the post-classification approach outperforms the pre-classification change detection method. This was analysed using the overall accuracy, where by post classification have an accuracy of up to 62.6 % and the pre classification change detection have an accuracy of 46.5 %. These results represent a first useful indication for future works and developments.

  2. Magnetic STAR technology for real-time localization and classification of unexploded ordnance and buried mines

    NASA Astrophysics Data System (ADS)

    Wiegert, R. F.

    2009-05-01

    A man-portable Magnetic Scalar Triangulation and Ranging ("MagSTAR") technology for Detection, Localization and Classification (DLC) of unexploded ordnance (UXO) has been developed by Naval Surface Warfare Center Panama City Division (NSWC PCD) with support from the Strategic Environmental Research and Development Program (SERDP). Proof of principle of the MagSTAR concept and its unique advantages for real-time, high-mobility magnetic sensing applications have been demonstrated by field tests of a prototype man-portable MagSTAR sensor. The prototype comprises: a) An array of fluxgate magnetometers configured as a multi-tensor gradiometer, b) A GPS-synchronized signal processing system. c) Unique STAR algorithms for point-by-point, standoff DLC of magnetic targets. This paper outlines details of: i) MagSTAR theory, ii) Design and construction of the prototype sensor, iii) Signal processing algorithms recently developed to improve the technology's target-discrimination accuracy, iv) Results of field tests of the portable gradiometer system against magnetic dipole targets. The results demonstrate that the MagSTAR technology is capable of very accurate, high-speed localization of magnetic targets at standoff distances of several meters. These advantages could readily be transitioned to a wide range of defense, security and sensing applications to provide faster and more effective DLC of UXO and buried mines.

  3. Development of dual sensor hand-held detector

    NASA Astrophysics Data System (ADS)

    Sezgin, Mehmet

    2010-04-01

    In this paper hand-held dual sensor detector development requirements are considered dedicated to buried object detection. Design characteristics of such a system are categorized and listed. Hardware and software structures, ergonomics, user interface, environmental and EMC/EMI tests to be applied and performance test issues are studied. Main properties of the developed system (SEZER) are presented, which contains Metal Detector (MD) and Ground Penetrating Radar (GPR). The realized system has ergonomic structure and can detect both metallic and non-metallic buried objects. Moreover classification of target is possible if it was defined to the signal processing software in learning phase.

  4. Measurements and modeling of acoustic scattering from partially and completely buried spherical shells

    NASA Astrophysics Data System (ADS)

    Tesei, A.; Maguer, A.; Fox, W. L. J.; Lim, R.; Schmidt, H.

    2002-11-01

    The use of low-frequency sonars (2-15 kHz) is explored to better exploit scattering features of buried targets that can contribute to their detection and classification. Compared to conventional mine countermeasure sonars, sound penetrates better into the sediment at these frequencies, and the excitation of structural waves in the targets is enhanced. The main contributions to target echo are the specular reflection, geometric diffraction effects, and the structural response, with the latter being particularly important for man-made elastic objects possessing particular symmetries such as bodies of revolution. The resonance response derives from elastic periodic phenomena such as surface circumferential waves revolving around the target. The GOATS'98 experiment, conducted jointly by SACLANTCEN and MIT off the island of Elba, involved controlled monostatic measurements of scattering by spherical shells which were partially and completely buried in sand, and suspended in the water column. The analysis mainly addresses a study of the effect of burial on the dynamics of backscattered elastic waves, which can be clearly identified in the target responses, and is based on the comparison of measurements with appropriate scattering models. Data interpretation results are in good agreement with theory. This positive result demonstrates the applicability of low-frequency methodologies based on resonance analysis to the classification of buried objects. copyright 2002 Acoustical Society of America.

  5. A task-difficulty artifact in subliminal priming.

    PubMed

    Pratte, Michael S; Rouder, Jeffrey N

    2009-08-01

    Subliminal priming is said to occur when a subliminal prime influences the classification of a subsequent target. Most subliminal-priming claims are based on separate target- and prime-classification tasks. Because primes are intended to be subliminal, the prime-classification task is difficult, and the target-classification task is easy. To assess whether this task-difficulty difference accounts for previous claims of subliminal priming, we manipulated the ease of the prime-classification task by intermixing long-duration (visible) primes with short-duration (near liminal) ones. In Experiment 1, this strategy of intermixing long-duration primes raised classification of the short-duration ones. In Experiments 2 and 3, prime duration was lowered in such a way that prime classification was at chance in intermixed presentations. Under these conditions, we failed to observe any priming effects; hence, previous demonstrations of subliminal priming may simply have reflected a task-difficulty artifact.

  6. Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2010-08-01

    In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.

  7. Time-reversal imaging for classification of submerged elastic targets via Gibbs sampling and the Relevance Vector Machine.

    PubMed

    Dasgupta, Nilanjan; Carin, Lawrence

    2005-04-01

    Time-reversal imaging (TRI) is analogous to matched-field processing, although TRI is typically very wideband and is appropriate for subsequent target classification (in addition to localization). Time-reversal techniques, as applied to acoustic target classification, are highly sensitive to channel mismatch. Hence, it is crucial to estimate the channel parameters before time-reversal imaging is performed. The channel-parameter statistics are estimated here by applying a geoacoustic inversion technique based on Gibbs sampling. The maximum a posteriori (MAP) estimate of the channel parameters are then used to perform time-reversal imaging. Time-reversal implementation requires a fast forward model, implemented here by a normal-mode framework. In addition to imaging, extraction of features from the time-reversed images is explored, with these applied to subsequent target classification. The classification of time-reversed signatures is performed by the relevance vector machine (RVM). The efficacy of the technique is analyzed on simulated in-channel data generated by a free-field finite element method (FEM) code, in conjunction with a channel propagation model, wherein the final classification performance is demonstrated to be relatively insensitive to the associated channel parameters. The underlying theory of Gibbs sampling and TRI are presented along with the feature extraction and target classification via the RVM.

  8. Data fusion for target tracking and classification with wireless sensor network

    NASA Astrophysics Data System (ADS)

    Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2016-10-01

    In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  9. Regional fringe analysis for improving depth measurement in phase-shifting fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Chien, Kuang-Che Chang; Tu, Han-Yen; Hsieh, Ching-Huang; Cheng, Chau-Jern; Chang, Chun-Yen

    2018-01-01

    This study proposes a regional fringe analysis (RFA) method to detect the regions of a target object in captured shifted images to improve depth measurement in phase-shifting fringe projection profilometry (PS-FPP). In the RFA method, region-based segmentation is exploited to segment the de-fringed image of a target object, and a multi-level fuzzy-based classification with five presented features is used to analyze and discriminate the regions of an object from the segmented regions, which were associated with explicit fringe information. Then, in the experiment, the performance of the proposed method is tested and evaluated on 26 test cases made of five types of materials. The qualitative and quantitative results demonstrate that the proposed RFA method can effectively detect the desired regions of an object to improve depth measurement in the PS-FPP system.

  10. Automatic adventitious respiratory sound analysis: A systematic review.

    PubMed

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases.

  11. Automatic adventitious respiratory sound analysis: A systematic review

    PubMed Central

    Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Background Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. Objective To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. Data sources A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Study selection Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Data extraction Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. Data synthesis A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11.69%) on rhonchi, and 18 (23.38%) on other sounds such as pleural rub, squawk, as well as the pathology. Instrumentation used to collect data included microphones, stethoscopes, and accelerometers. Several references obtained data from online repositories or book audio CD companions. Detection or classification methods used varied from empirically determined thresholds to more complex machine learning techniques. Performance reported in the surveyed works were converted to accuracy measures for data synthesis. Limitations Direct comparison of the performance of surveyed works cannot be performed as the input data used by each was different. A standard validation method has not been established, resulting in different works using different methods and performance measure definitions. Conclusion A review of the literature was performed to summarise different analysis approaches, features, and methods used for the analysis. The performance of recent studies showed a high agreement with conventional non-automatic identification. This suggests that automated adventitious sound detection or classification is a promising solution to overcome the limitations of conventional auscultation and to assist in the monitoring of relevant diseases. PMID:28552969

  12. High-speed railway real-time localization auxiliary method based on deep neural network

    NASA Astrophysics Data System (ADS)

    Chen, Dongjie; Zhang, Wensheng; Yang, Yang

    2017-11-01

    High-speed railway intelligent monitoring and management system is composed of schedule integration, geographic information, location services, and data mining technology for integration of time and space data. Assistant localization is a significant submodule of the intelligent monitoring system. In practical application, the general access is to capture the image sequences of the components by using a high-definition camera, digital image processing technique and target detection, tracking and even behavior analysis method. In this paper, we present an end-to-end character recognition method based on a deep CNN network called YOLO-toc for high-speed railway pillar plate number. Different from other deep CNNs, YOLO-toc is an end-to-end multi-target detection framework, furthermore, it exhibits a state-of-art performance on real-time detection with a nearly 50fps achieved on GPU (GTX960). Finally, we realize a real-time but high-accuracy pillar plate number recognition system and integrate natural scene OCR into a dedicated classification YOLO-toc model.

  13. Automated target classification in high resolution dual frequency sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernández, Manuel

    2007-04-01

    An improved computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The classified objects of 2 distinct strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new high-resolution dual frequency sonar imagery. Three significant fusion algorithm improvements were made. First, a nonlinear 2nd order (Volterra) feature LLRT fusion algorithm was developed. Second, a Box-Cox nonlinear feature LLRT fusion algorithm was developed. The Box-Cox transformation consists of raising the features to a to-be-determined power. Third, a repeated application of a subset feature selection / feature orthogonalization / Volterra feature LLRT fusion block was utilized. It was shown that cascaded Volterra feature LLRT fusion of the CAD/CAC processing strings outperforms summing, baseline single-stage Volterra and Box-Cox feature LLRT algorithms, yielding significant improvements over the best single CAD/CAC processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate. Additionally, the robustness of cascaded Volterra feature fusion was demonstrated, by showing that the algorithm yields similar performance with the training and test sets.

  14. Laser range profiling for small target recognition

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Tulldahl, Michael

    2016-05-01

    The detection and classification of small surface and airborne targets at long ranges is a growing need for naval security. Long range ID or ID at closer range of small targets has its limitations in imaging due to the demand on very high transverse sensor resolution. It is therefore motivated to look for 1D laser techniques for target ID. These include vibrometry, and laser range profiling. Vibrometry can give good results but is also sensitive to certain vibrating parts on the target being in the field of view. Laser range profiling is attractive because the maximum range can be substantial, especially for a small laser beam width. A range profiler can also be used in a scanning mode to detect targets within a certain sector. The same laser can also be used for active imaging when the target comes closer and is angular resolved. The present paper will show both experimental and simulated results for laser range profiling of small boats out to 6-7 km range and a UAV mockup at close range (1.3 km). We obtained good results with the profiling system both for target detection and recognition. Comparison of experimental and simulated range waveforms based on CAD models of the target support the idea of having a profiling system as a first recognition sensor and thus narrowing the search space for the automatic target recognition based on imaging at close ranges. The naval experiments took place in the Baltic Sea with many other active and passive EO sensors beside the profiling system. Discussion of data fusion between laser profiling and imaging systems will be given. The UAV experiments were made from the rooftop laboratory at FOI.

  15. High area rate reconnaissance (HARR) and mine reconnaissance/hunter (MR/H) exploratory development programs

    NASA Astrophysics Data System (ADS)

    Lathrop, John D.

    1995-06-01

    This paper describes the sea mine countermeasures developmental context, technology goals, and progress to date of the two principal Office of Naval Research exploratory development programs addressing sea mine reconnaissance and minehunting technology development. The first of these programs, High Area Rate Reconnaissance, is developing toroidal volume search sonar technology, sidelooking sonar technology, and associated signal processing technologies (motion compensation, beamforming, and computer-aided detection and classification) for reconnaissance and hunting against volume mines and proud bottom mines from 21-inch diameter vehicles operating in deeper waters. The second of these programs, Amphibious Operation Area Mine Reconnaissance/Hunter, is developing a suite of sensor technologies (synthetic aperture sonar, ahead-looking sonar, superconducting magnetic field gradiometer, and electro-optic sensor) and associated signal processing technologies for reconnaissance and hunting against all mine types (including buried mines) in shallow water and very shallow water from 21-inch diameter vehicles. The technologies under development by these two programs must provide excellent capabilities for mine detection, mine classification, and discrimination against false targets.

  16. Early Detection of Ovarian Cancer by Contrast-Enhanced Ultrasound-Targeted Imaging

    DTIC Science & Technology

    2012-07-01

    the sections with an antigen-unmasking solution (Vector Laboratories, Burlingame, CA) for 20 minutes in a microwave oven . Endogenous peroxidase in the...and Cooper MD (2000). Paired Ig-like receptor homologs in birds and mammals share a common ancestor with mammalian Fc receptors. Proc Natl Acad Sci...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON a . REPORT b. ABSTRACT c. THIS PAGE 19b

  17. Integrated Strike Avionics Study. Volume 1

    DTIC Science & Technology

    1980-10-01

    MMW Systems Targeting Studies Perf. Meas. o C02 Laser Radar Ses. St. Army Obstacle Detect Prog. Concept Demo Mobile System 20 ’ - I...Fabrication and Test o FLIR Field of View & Classification Study (FLIR FACS) Definition m Development & Test 4. Aplicability of Current Programs to...FY80 81 8283 84 85 o LANTIRN 1 n Imaoinn Sensor Autoprocessor • o Forward Looking Active Class a 4. Aplicability of Current Program Required The need

  18. High definition versus standard definition white light endoscopy for detecting dysplasia in patients with Barrett's esophagus.

    PubMed

    Sami, S S; Subramanian, V; Butt, W M; Bejkar, G; Coleman, J; Mannath, J; Ragunath, K

    2015-01-01

    High-definition endoscopy systems provide superior image resolution. The aim of this study was to assess the utility of high definition compared with standard definition endoscopy system for detecting dysplastic lesions in patients with Barrett's esophagus. A retrospective cohort study of patients with non-dysplastic Barrett's esophagus undergoing routine surveillance was performed. Data were retrieved from the central hospital electronic database. Procedures performed for non-surveillance indications, Barrett's esophagus Prague C0M1 classification with no specialized intestinal metaplasia on histology, patients diagnosed with any dysplasia or cancer on index endoscopy, and procedures using advanced imaging techniques were excluded. Logistic regression models were constructed to estimate adjusted odds ratios and 95% confidence intervals comparing outcomes with standard definition and high-definition systems. The high definition was superior to standard definition system in targeted detection of all dysplastic lesions (odds ratio 3.27, 95% confidence interval 1.27-8.40) as well as overall dysplasia detected on both random and target biopsies (odds ratio 2.36, 95% confidence interval 1.50-3.72). More non-dysplastic lesions were detected with the high-definition system (odds ratio 1.16, 95% confidence interval 1.01-1.33). There was no difference between high definition and standard definition endoscopy in the overall (random and target) high-grade dysplasia or cancers detected (odds ratio 0.93, 95% confidence interval 0.83-1.04). Trainee endoscopists, number of biopsies taken, and male sex were all significantly associated with a higher yield for dysplastic lesions. The use of the high-definition endoscopy system is associated with better targeted detection of any dysplasia during routine Barrett's esophagus surveillance. However, high-definition endoscopy cannot replace random biopsies at present time. © 2014 International Society for Diseases of the Esophagus.

  19. Time-reversal optical tomography: detecting and locating extended targets in a turbid medium

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Xu, M.; Gayen, S. K.

    2012-03-01

    Time Reversal Optical Tomography (TROT) is developed to locate extended target(s) in a highly scattering turbid medium, and estimate their optical strength and size. The approach uses Diffusion Approximation of Radiative Transfer Equation for light propagation along with Time Reversal (TR) Multiple Signal Classification (MUSIC) scheme for signal and noise subspaces for assessment of target location. A MUSIC pseudo spectrum is calculated using the eigenvectors of the TR matrix T, whose poles provide target locations. Based on the pseudo spectrum contours, retrieval of target size is modeled as an optimization problem, using a "local contour" method. The eigenvalues of T are related to optical strengths of targets. The efficacy of TROT to obtain location, size, and optical strength of one absorptive target, one scattering target, and two absorptive targets, all for different noise levels was tested using simulated data. Target locations were always accurately determined. Error in optical strength estimates was small even at 20% noise level. Target size and shape were more sensitive to noise. Results from simulated data demonstrate high potential for application of TROT in practical biomedical imaging applications.

  20. Time reversal optical tomography and decomposition methods for detection and localization of targets in highly scattering turbid media

    NASA Astrophysics Data System (ADS)

    Wu, Binlin

    New near-infrared (NIR) diffuse optical tomography (DOT) approaches were developed to detect, locate, and image small targets embedded in highly scattering turbid media. The first approach, referred to as time reversal optical tomography (TROT), is based on time reversal (TR) imaging and multiple signal classification (MUSIC). The second approach uses decomposition methods of non-negative matrix factorization (NMF) and principal component analysis (PCA) commonly used in blind source separation (BSS) problems, and compare the outcomes with that of optical imaging using independent component analysis (OPTICA). The goal is to develop a safe, affordable, noninvasive imaging modality for detection and characterization of breast tumors in early growth stages when those are more amenable to treatment. The efficacy of the approaches was tested using simulated data, and experiments involving model media and absorptive, scattering, and fluorescent targets, as well as, "realistic human breast model" composed of ex vivo breast tissues with embedded tumors. The experimental arrangements realized continuous wave (CW) multi-source probing of samples and multi-detector acquisition of diffusely transmitted signal in rectangular slab geometry. A data matrix was generated using the perturbation in the transmitted light intensity distribution due to the presence of absorptive or scattering targets. For fluorescent targets the data matrix was generated using the diffusely transmitted fluorescence signal distribution from the targets. The data matrix was analyzed using different approaches to detect and characterize the targets. The salient features of the approaches include ability to: (a) detect small targets; (b) provide three-dimensional location of the targets with high accuracy (~within a millimeter or 2); and (c) assess optical strength of the targets. The approaches are less computation intensive and consequently are faster than other inverse image reconstruction methods that attempt to reconstruct the optical properties of every voxel of the sample volume. The location of a target was estimated to be the weighted center of the optical property of the target. Consequently, the locations of small targets were better specified than those of the extended targets. It was more difficult to retrieve the size and shape of a target. The fluorescent measurements seemed to provide better accuracy than the transillumination measurements. In the case of ex vivo detection of tumors embedded in human breast tissue, measurements using multiple wavelengths provided more robust results, and helped suppress artifacts (false positives) than that from single wavelength measurements. The ability to detect and locate small targets, speedier reconstruction, combined with fluorophore-specific multi-wavelength probing has the potential to make these approaches suitable for breast cancer detection and diagnosis.

  1. Combining Cell Type-Restricted Adenoviral Targeting with Immunostaining and Flow Cytometry to Identify Cells-of-Origin of Lung Cancer.

    PubMed

    Best, Sarah A; Kersbergen, Ariena; Asselin-Labat, Marie-Liesse; Sutherland, Kate D

    2018-01-01

    Lung cancers display considerable intertumoral heterogeneity, leading to the classification of distinct tumor subtypes. Our understanding of the genetic aberrations that underlie tumor subtypes has been greatly enhanced by recent genomic sequencing studies and state-of-the-art gene targeting technologies, highlighting evidence that distinct lung cancer subtypes may be derived from different "cells-of-origin". Here, we describe the intra-tracheal delivery of cell type-restricted Ad5-Cre viruses into the lungs of adult mice, combined with immunohistochemical and flow cytometry strategies for the detection of lung cancer-initiating cells in vivo.

  2. Ballistic missile precession frequency extraction based on the Viterbi & Kalman algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Longlong; Xie, Yongjie; Xu, Daping; Ren, Li

    2015-12-01

    Radar Micro-Doppler signatures are of great potential for target detection, classification and recognition. In the mid-course phase, warheads flying outside the atmosphere are usually accompanied by precession. Precession may induce additional frequency modulations on the returned radar signal, which can be regarded as a unique signature and provide additional information that is complementary to existing target recognition methods. The main purpose of this paper is to establish a more actual precession model of conical ballistic missile warhead and extract the precession parameters by utilizing Viterbi & Kalman algorithm, which improving the precession frequency estimation accuracy evidently , especially in low SNR.

  3. Classification of change detection and change blindness from near-infrared spectroscopy signals

    NASA Astrophysics Data System (ADS)

    Tanaka, Hirokazu; Katura, Takusige

    2011-08-01

    Using a machine-learning classification algorithm applied to near-infrared spectroscopy (NIRS) signals, we classify a success (change detection) or a failure (change blindness) in detecting visual changes for a change-detection task. Five subjects perform a change-detection task, and their brain activities are continuously monitored. A support-vector-machine algorithm is applied to classify the change-detection and change-blindness trials, and correct classification probability of 70-90% is obtained for four subjects. Two types of temporal shapes in classification probabilities are found: one exhibiting a maximum value after the task is completed (postdictive type), and another exhibiting a maximum value during the task (predictive type). As for the postdictive type, the classification probability begins to increase immediately after the task completion and reaches its maximum in about the time scale of neuronal hemodynamic response, reflecting a subjective report of change detection. As for the predictive type, the classification probability shows an increase at the task initiation and is maximal while subjects are performing the task, predicting the task performance in detecting a change. We conclude that decoding change detection and change blindness from NIRS signal is possible and argue some future applications toward brain-machine interfaces.

  4. A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals

    PubMed Central

    2014-01-01

    Background The inter-patient classification schema and the Association for the Advancement of Medical Instrumentation (AAMI) standards are important to the construction and evaluation of automated heartbeat classification systems. The majority of previously proposed methods that take the above two aspects into consideration use the same features and classification method to classify different classes of heartbeats. The performance of the classification system is often unsatisfactory with respect to the ventricular ectopic beat (VEB) and supraventricular ectopic beat (SVEB). Methods Based on the different characteristics of VEB and SVEB, a novel hierarchical heartbeat classification system was constructed. This was done in order to improve the classification performance of these two classes of heartbeats by using different features and classification methods. First, random projection and support vector machine (SVM) ensemble were used to detect VEB. Then, the ratio of the RR interval was compared to a predetermined threshold to detect SVEB. The optimal parameters for the classification models were selected on the training set and used in the independent testing set to assess the final performance of the classification system. Meanwhile, the effect of different lead configurations on the classification results was evaluated. Results Results showed that the performance of this classification system was notably superior to that of other methods. The VEB detection sensitivity was 93.9% with a positive predictive value of 90.9%, and the SVEB detection sensitivity was 91.1% with a positive predictive value of 42.2%. In addition, this classification process was relatively fast. Conclusions A hierarchical heartbeat classification system was proposed based on the inter-patient data division to detect VEB and SVEB. It demonstrated better classification performance than existing methods. It can be regarded as a promising system for detecting VEB and SVEB of unknown patients in clinical practice. PMID:24981916

  5. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    PubMed

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].

  6. Efficient sensor network vehicle classification using peak harmonics of acoustic emissions

    NASA Astrophysics Data System (ADS)

    William, Peter E.; Hoffman, Michael W.

    2008-04-01

    An application is proposed for detection and classification of battlefield ground vehicles using the emitted acoustic signal captured at individual sensor nodes of an ad hoc Wireless Sensor Network (WSN). We make use of the harmonic characteristics of the acoustic emissions of battlefield vehicles, in reducing both the computations carried on the sensor node and the transmitted data to the fusion center for reliable and effcient classification of targets. Previous approaches focus on the lower frequency band of the acoustic emissions up to 500Hz; however, we show in the proposed application how effcient discrimination between battlefield vehicles is performed using features extracted from higher frequency bands (50 - 1500Hz). The application shows that selective time domain acoustic features surpass equivalent spectral features. Collaborative signal processing is utilized, such that estimation of certain signal model parameters is carried by the sensor node, in order to reduce the communication between the sensor node and the fusion center, while the remaining model parameters are estimated at the fusion center. The transmitted data from the sensor node to the fusion center ranges from 1 ~ 5% of the sampled acoustic signal at the node. A variety of classification schemes were examined, such as maximum likelihood, vector quantization and artificial neural networks. Evaluation of the proposed application, through processing of an acoustic data set with comparison to previous results, shows that the improvement is not only in the number of computations but also in the detection and false alarm rate as well.

  7. Analysis of A Drug Target-based Classification System using Molecular Descriptors.

    PubMed

    Lu, Jing; Zhang, Pin; Bi, Yi; Luo, Xiaomin

    2016-01-01

    Drug-target interaction is an important topic in drug discovery and drug repositioning. KEGG database offers a drug annotation and classification using a target-based classification system. In this study, we gave an investigation on five target-based classes: (I) G protein-coupled receptors; (II) Nuclear receptors; (III) Ion channels; (IV) Enzymes; (V) Pathogens, using molecular descriptors to represent each drug compound. Two popular feature selection methods, maximum relevance minimum redundancy and incremental feature selection, were adopted to extract the important descriptors. Meanwhile, an optimal prediction model based on nearest neighbor algorithm was constructed, which got the best result in identifying drug target-based classes. Finally, some key descriptors were discussed to uncover their important roles in the identification of drug-target classes.

  8. Filtering high resolution hyperspectral imagery and analyzing it for quantification of water quality parameters and aquatic vegetation

    NASA Astrophysics Data System (ADS)

    Pande-Chhetri, Roshan

    High resolution hyperspectral imagery (airborne or ground-based) is gaining momentum as a useful analytical tool in various fields including agriculture and aquatic systems. These images are often contaminated with stripes and noise resulting in lower signal-to-noise ratio, especially in aquatic regions where signal is naturally low. This research investigates effective methods for filtering high spatial resolution hyperspectral imagery and use of the imagery in water quality parameter estimation and aquatic vegetation classification. The striping pattern of the hyperspectral imagery is non-parametric and difficult to filter. In this research, a de-striping algorithm based on wavelet analysis and adaptive Fourier domain normalization was examined. The result of this algorithm was found superior to other available algorithms and yielded highest Peak Signal to Noise Ratio improvement. The algorithm was implemented on individual image bands and on selected bands of the Maximum Noise Fraction (MNF) transformed images. The results showed that image filtering in the MNF domain was efficient and produced best results. The study investigated methods of analyzing hyperspectral imagery to estimate water quality parameters and to map aquatic vegetation in case-2 waters. Ground-based hyperspectral imagery was analyzed to determine chlorophyll-a (Chl-a) concentrations in aquaculture ponds. Two-band and three-band indices were implemented and the effect of using submerged reflectance targets was evaluated. Laboratory measured values were found to be in strong correlation with two-band and three-band spectral indices computed from the hyperspectral image. Coefficients of determination (R2) values were found to be 0.833 and 0.862 without submerged targets and stronger values of 0.975 and 0.982 were obtained using submerged targets. Airborne hyperspectral images were used to detect and classify aquatic vegetation in a black river estuarine system. Image normalization for water surface reflectance and water depths was conducted and non-parametric classifiers such as ANN, SVM and SAM were tested and compared. Quality assessment indicated better classification and detection when non-parametric classifiers were applied to normalized or depth invariant transform images. Best classification accuracy of 73% was achieved when ANN is applied on normalized image and best detection accuracy of around 92% was obtained when SVM or SAM was applied on depth invariant images.

  9. Identification of mosquito larval habitats in high resolution satellite data

    NASA Astrophysics Data System (ADS)

    Kiang, Richard K.; Hulina, Stephanie M.; Masuoka, Penny M.; Claborn, David M.

    2003-09-01

    Mosquito-born infectious diseases are a serious public health concern, not only for the less developed countries, but also for developed countries like the U.S. Larviciding is an effective method for vector control and adverse effects to non-target species are minimized when mosquito larval habitats are properly surveyed and treated. Remote sensing has proven to be a useful technique for large-area ground cover mapping, and hence, is an ideal tool for identifying potential larval habitats. Locating small larval habitats, however, requires data with very high spatial resolution. Textural and contextual characteristics become increasingly evident at higher spatial resolution. Per-pixel classification often leads to suboptimal results. In this study, we use pan-sharpened Ikonos data, with a spatial resolution approaching 1 meter, to classify potential mosquito larval habitats for a test site in South Korea. The test site is in a predominantly agricultural region. When spatial characteristics were used in conjunction with spectral data, reasonably good classification accuracy was obtained for the test site. In particular, irrigation and drainage ditches are important larval habitats but their footprints are too small to be detected with the original spectral data at 4-meter resolution. We show that the ditches are detectable using automated classification on pan-sharpened data.

  10. Detection of Olea europaea subsp. cuspidata and Juniperus procera in the dry Afromontane forest of northern Ethiopia using subpixel analysis of Landsat imagery

    NASA Astrophysics Data System (ADS)

    Hishe, Hadgu; Giday, Kidane; Neka, Mulugeta; Soromessa, Teshome; Van Orshoven, Jos; Muys, Bart

    2015-01-01

    Comprehensive and less costly forest inventory approaches are required to monitor the spatiotemporal dynamics of key species in forest ecosystems. Subpixel analysis using the earth resources data analysis system imagine subpixel classification procedure was tested to extract Olea europaea subsp. cuspidata and Juniperus procera canopies from Landsat 7 enhanced thematic mapper plus imagery. Control points with various canopy area fractions of the target species were collected to develop signatures for each of the species. With these signatures, the imagine subpixel classification procedure was run for each species independently. The subpixel process enabled the detection of O. europaea subsp. cuspidata and J. procera trees in pure and mixed pixels. Total of 100 pixels each were field verified for both species. An overall accuracy of 85% was achieved for O. europaea subsp. cuspidata and 89% for J. procera. A high overall accuracy level of detecting species at a natural forest was achieved, which encourages using the algorithm for future species monitoring activities. We recommend that the algorithm has to be validated in similar environment to enrich the knowledge on its capability to ensure its wider usage.

  11. Using recurrence plot analysis for software execution interpretation and fault detection

    NASA Astrophysics Data System (ADS)

    Mosdorf, M.

    2015-09-01

    This paper shows a method targeted at software execution interpretation and fault detection using recurrence plot analysis. In in the proposed approach recurrence plot analysis is applied to software execution trace that contains executed assembly instructions. Results of this analysis are subject to further processing with PCA (Principal Component Analysis) method that simplifies number coefficients used for software execution classification. This method was used for the analysis of five algorithms: Bubble Sort, Quick Sort, Median Filter, FIR, SHA-1. Results show that some of the collected traces could be easily assigned to particular algorithms (logs from Bubble Sort and FIR algorithms) while others are more difficult to distinguish.

  12. DIF Trees: Using Classification Trees to Detect Differential Item Functioning

    ERIC Educational Resources Information Center

    Vaughn, Brandon K.; Wang, Qiu

    2010-01-01

    A nonparametric tree classification procedure is used to detect differential item functioning for items that are dichotomously scored. Classification trees are shown to be an alternative procedure to detect differential item functioning other than the use of traditional Mantel-Haenszel and logistic regression analysis. A nonparametric…

  13. Individual Differences in Dual Task Performance.

    DTIC Science & Technology

    1981-06-10

    SJCURITY CLASSIFICATION OF THIS PAGE("en Data Entered) second experimental series, we compared ability to detect visual and audi- tory targets in single...used performance on a simple secondary task executed during an easy primary task to predict performance on a more diffi- cult’version of the same...process concepts developed b’j cognitive ps:choloqists°’ In this laborators, we adapted a number of experimental tasks to 4ield individual measures of the

  14. Distributed multimodal data fusion for large scale wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ertin, Emre

    2006-05-01

    Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.

  15. Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB

    DTIC Science & Technology

    2014-03-27

    FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Gordon M. Spahr, Second Lieutenant, USAF AFIT-ENP-14-M-34...CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air...DISTRIUBUTION UNLIMITED. AFIT-ENP-14-M-34 FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB Gordon M. Spahr, BS Second

  16. Active tensor magnetic gradiometer system final report for Project MM–1514

    USGS Publications Warehouse

    Smith, David V.; Phillips, Jeffrey D.; Hutton, S. Raymond

    2014-01-01

    An interactive computer simulation program, based on physical models of system sensors, platform geometry, Earth environment, and spheroidal magnetically-permeable targets, was developed to generate synthetic magnetic field data from a conceptual tensor magnetic gradiometer system equipped with an active primary field generator. The system sensors emulate the prototype tensor magnetic gradiometer system (TMGS) developed under a separate contract for unexploded ordnance (UXO) detection and classification. Time-series data from different simulation scenarios were analyzed to recover physical dimensions of the target source. Helbig-Euler simulations were run with rectangular and rod-like source bodies to determine whether such a system could separate the induced component of the magnetization from the remanent component for each target. This report concludes with an engineering assessment of a practical system design.

  17. Classification of crops across heterogeneous agricultural landscape in Kenya using AisaEAGLE imaging spectroscopy data

    NASA Astrophysics Data System (ADS)

    Piiroinen, Rami; Heiskanen, Janne; Mõttus, Matti; Pellikka, Petri

    2015-07-01

    Land use practices are changing at a fast pace in the tropics. In sub-Saharan Africa forests, woodlands and bushlands are being transformed for agricultural use to produce food for the rapidly growing population. The objective of this study was to assess the prospects of mapping the common agricultural crops in highly heterogeneous study area in south-eastern Kenya using high spatial and spectral resolution AisaEAGLE imaging spectroscopy data. Minimum noise fraction transformation was used to pack the coherent information in smaller set of bands and the data was classified with support vector machine (SVM) algorithm. A total of 35 plant species were mapped in the field and seven most dominant ones were used as classification targets. Five of the targets were agricultural crops. The overall accuracy (OA) for the classification was 90.8%. To assess the possibility of excluding the remaining 28 plant species from the classification results, 10 different probability thresholds (PT) were tried with SVM. The impact of PT was assessed with validation polygons of all 35 mapped plant species. The results showed that while PT was increased more pixels were excluded from non-target polygons than from the polygons of the seven classification targets. This increased the OA and reduced salt-and-pepper effects in the classification results. Very high spatial resolution imagery and pixel-based classification approach worked well with small targets such as maize while there was mixing of classes on the sides of the tree crowns.

  18. Classification schemes for knowledge translation interventions: a practical resource for researchers.

    PubMed

    Slaughter, Susan E; Zimmermann, Gabrielle L; Nuspl, Megan; Hanson, Heather M; Albrecht, Lauren; Esmail, Rosmin; Sauro, Khara; Newton, Amanda S; Donald, Maoliosa; Dyson, Michele P; Thomson, Denise; Hartling, Lisa

    2017-12-06

    As implementation science advances, the number of interventions to promote the translation of evidence into healthcare, health systems, or health policy is growing. Accordingly, classification schemes for these knowledge translation (KT) interventions have emerged. A recent scoping review identified 51 classification schemes of KT interventions to integrate evidence into healthcare practice; however, the review did not evaluate the quality of the classification schemes or provide detailed information to assist researchers in selecting a scheme for their context and purpose. This study aimed to further examine and assess the quality of these classification schemes of KT interventions, and provide information to aid researchers when selecting a classification scheme. We abstracted the following information from each of the original 51 classification scheme articles: authors' objectives; purpose of the scheme and field of application; socioecologic level (individual, organizational, community, system); adaptability (broad versus specific); target group (patients, providers, policy-makers), intent (policy, education, practice), and purpose (dissemination versus implementation). Two reviewers independently evaluated the methodological quality of the development of each classification scheme using an adapted version of the AGREE II tool. Based on these assessments, two independent reviewers reached consensus about whether to recommend each scheme for researcher use, or not. Of the 51 original classification schemes, we excluded seven that were not specific classification schemes, not accessible or duplicates. Of the remaining 44 classification schemes, nine were not recommended. Of the 35 recommended classification schemes, ten focused on behaviour change and six focused on population health. Many schemes (n = 29) addressed practice considerations. Fewer schemes addressed educational or policy objectives. Twenty-five classification schemes had broad applicability, six were specific, and four had elements of both. Twenty-three schemes targeted health providers, nine targeted both patients and providers and one targeted policy-makers. Most classification schemes were intended for implementation rather than dissemination. Thirty-five classification schemes of KT interventions were developed and reported with sufficient rigour to be recommended for use by researchers interested in KT in healthcare. Our additional categorization and quality analysis will aid in selecting suitable classification schemes for research initiatives in the field of implementation science.

  19. Research on application of LADAR in ground vehicle recognition

    NASA Astrophysics Data System (ADS)

    Lan, Jinhui; Shen, Zhuoxun

    2009-11-01

    For the requirement of many practical applications in the field of military, the research of 3D target recognition is active. The representation that captures the salient attributes of a 3D target independent of the viewing angle will be especially useful to the automatic 3D target recognition system. This paper presents a new approach of image generation based on Laser Detection and Ranging (LADAR) data. Range image of target is obtained by transformation of point cloud. In order to extract features of different ground vehicle targets and to recognize targets, zernike moment properties of typical ground vehicle targets are researched in this paper. A technique of support vector machine is applied to the classification and recognition of target. The new method of image generation and feature representation has been applied to the outdoor experiments. Through outdoor experiments, it can be proven that the method of image generation is stability, the moments are effective to be used as features for recognition, and the LADAR can be applied to the field of 3D target recognition.

  20. EEG and Eye Tracking Signatures of Target Encoding during Structured Visual Search

    PubMed Central

    Brouwer, Anne-Marie; Hogervorst, Maarten A.; Oudejans, Bob; Ries, Anthony J.; Touryan, Jonathan

    2017-01-01

    EEG and eye tracking variables are potential sources of information about the underlying processes of target detection and storage during visual search. Fixation duration, pupil size and event related potentials (ERPs) locked to the onset of fixation or saccade (saccade-related potentials, SRPs) have been reported to differ dependent on whether a target or a non-target is currently fixated. Here we focus on the question of whether these variables also differ between targets that are subsequently reported (hits) and targets that are not (misses). Observers were asked to scan 15 locations that were consecutively highlighted for 1 s in pseudo-random order. Highlighted locations displayed either a target or a non-target stimulus with two, three or four targets per trial. After scanning, participants indicated which locations had displayed a target. To induce memory encoding failures, participants concurrently performed an aurally presented math task (high load condition). In a low load condition, participants ignored the math task. As expected, more targets were missed in the high compared with the low load condition. For both conditions, eye tracking features distinguished better between hits and misses than between targets and non-targets (with larger pupil size and shorter fixations for missed compared with correctly encoded targets). In contrast, SRP features distinguished better between targets and non-targets than between hits and misses (with average SRPs showing larger P300 waveforms for targets than for non-targets). Single trial classification results were consistent with these averages. This work suggests complementary contributions of eye and EEG measures in potential applications to support search and detect tasks. SRPs may be useful to monitor what objects are relevant to an observer, and eye variables may indicate whether the observer should be reminded of them later. PMID:28559807

  1. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    PubMed

    Wenzel, Markus A; Almeida, Inês; Blankertz, Benjamin

    2016-01-01

    Brain-computer interfaces (BCIs) that are based on event-related potentials (ERPs) can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli) in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG). Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI), because it would allow software to adapt to the user's interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli. Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions. Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG). The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI.

  2. Targeted Acoustic Data Processing for Ocean Ecological Studies

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, N.; Li, K.; Tiemann, C.; Ackleh, A. S.; Tang, T.; Ioup, G. E.; Ioup, J. W.

    2015-12-01

    The Gulf of Mexico is home to many species of deep diving marine mammals. In recent years several ecological studies have collected large volumes of Passive Acoustic Monitoring (PAM) data to investigate the effects of anthropogenic activities on protected and endangered marine mammal species. To utilize these data to their fullest potential for abundance estimates and habitat preference studies, automated detection and classification algorithms are needed to extract species acoustic encounters from a continuous stream of data. The species which phonate in overlapping frequency bands represent a particular challenge. This paper analyzes the performance of a newly developed automated detector for the classification of beaked whale clicks in the Northern Gulf of Mexico. Current used beaked whale classification algorithms rely heavily on experienced human operator involvement in manually associating potential events with a particular species of beaked whales. Our detection algorithm is two-stage: the detector is triggered when the species-representative phonation band energy exceeds the baseline detection threshold. Then multiple event attributes (temporal click duration, central frequency, frequency band, frequency sweep rate, Choi-Williams distribution shape indices) are measured. An attribute vector is then used to discriminate among different species of beaked whales present in the Gulf of Mexico and Risso's dolphins which were recognized to mask the detections of beaked whales in the case of widely used energy-band detectors. The detector is applied to the PAM data collected by the Littoral Acoustic Demonstration Center to estimate abundance trends of beaked whales in the vicinity of the 2010 oil spill before and after the disaster. This algorithm will allow automated processing with minimal operator involvement for new and archival PAM data. [The research is supported by a BP/GOMRI 2015-2017 consortium grant.

  3. Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.

  4. Integrating visual learning within a model-based ATR system

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark; Nebrich, Mark

    2017-05-01

    Automatic target recognition (ATR) systems, like human photo-interpreters, rely on a variety of visual information for detecting, classifying, and identifying manmade objects in aerial imagery. We describe the integration of a visual learning component into the Image Data Conditioner (IDC) for target/clutter and other visual classification tasks. The component is based on an implementation of a model of the visual cortex developed by Serre, Wolf, and Poggio. Visual learning in an ATR context requires the ability to recognize objects independent of location, scale, and rotation. Our method uses IDC to extract, rotate, and scale image chips at candidate target locations. A bootstrap learning method effectively extends the operation of the classifier beyond the training set and provides a measure of confidence. We show how the classifier can be used to learn other features that are difficult to compute from imagery such as target direction, and to assess the performance of the visual learning process itself.

  5. Airborne ladar man-in-the-loop operations in tactical environments

    NASA Astrophysics Data System (ADS)

    Grobmyer, Joseph E., Jr.; Lum, Tommy; Morris, Robert E.; Hard, Sarah J.; Pratt, H. L.; Florence, Tom; Peddycoart, Ed

    2004-09-01

    The U.S. Army Research, Development and Engineering Command (RDECOM) is developing approaches and processes that will exploit the characteristics of current and future Laser Radar (LADAR) sensor systems for critical man-in-the-loop tactical processes. The importance of timely and accurate target detection, classification, identification, and engagement for future combat systems has been documented and is viewed as a critical enabling factor for FCS survivability and lethality. Recent work has demonstrated the feasibility of using low cost but relatively capable personal computer class systems to exploit the information available in Ladar sensor frames to present the war fighter or analyst with compelling and usable imagery for use in the target identification and engagement processes in near real time. The advantages of LADAR imagery are significant in environments presenting cover for targets and the associated difficulty for automated target recognition (ATR) technologies.

  6. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  7. Deep feature extraction and combination for synthetic aperture radar target classification

    NASA Astrophysics Data System (ADS)

    Amrani, Moussa; Jiang, Feng

    2017-10-01

    Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.

  8. Keypoint Density-Based Region Proposal for Fine-Grained Object Detection and Classification Using Regions with Convolutional Neural Network Features

    DTIC Science & Technology

    2015-12-15

    Keypoint Density-based Region Proposal for Fine-Grained Object Detection and Classification using Regions with Convolutional Neural Network ... Convolutional Neural Networks (CNNs) enable them to outperform conventional techniques on standard object detection and classification tasks, their...detection accuracy and speed on the fine-grained Caltech UCSD bird dataset (Wah et al., 2011). Recently, Convolutional Neural Networks (CNNs), a deep

  9. Examining the robustness of automated aural classification of active sonar echoes.

    PubMed

    Murphy, Stefan M; Hines, Paul C

    2014-02-01

    Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.

  10. Probabilistic Classification Using Elemental Abundance Distributions and Lossless Image Compression in Apollo 17 Lunar Dust Samples from Mare Serenitatis

    NASA Technical Reports Server (NTRS)

    Storrie-Lombardi, Michael C.; Hoover, Richard B.; Abbas, Mian; Jerman, Gregory; Coston, James; Fisk, Martin

    2006-01-01

    We have previously outlined a strategy for the detection of fossils [Storrie-Lombardi and Hoover, 2004] and extant microbial life [Storrie-Lombaudi and Hoover, 20051 during robotic missions to Mars using co-registered structural and chemical signatures. Data inputs included image lossless compression indices to estimate relative textural complexity and elemental abundance distributions. Two exploratory classification algorithms (principal component analysis and hierarchical cluster analysis) provide an initial tentative classification of all targets. Nonlinear stochastic neural networks are then trained to produce a Bayesian estimate of algorithm classification accuracy. The strategy previously has been successful in distinguishing regions of biotic and abiotic alteration of basalt glass from unaltered samples. [Storrie-Lombardi and Fisk, 2004; Storrie-Lombardi and Fisk, 2004] Such investigations of abiotic versus biotic alteration of terrestrial mineralogy on Earth are compromised by .the difficulty finding mineralogy completely unaffected by the ubiquitous presence of microbial life on the planet. The renewed interest in lunar exploration offers an opportunity to investigate geological materials that may exhibit signs of aqueous alteration, but are highly unlikely to contain contaminating biological weathering signatures. We here present an extension of our earlier data set to include lunar dust samples obtained during the Apollo 17 mission. Apollo 17 landed in the Taurus-Littrow Valley in Mare Serenitatis. Most of the rock samples from this region of the lunar highlands are basalts comprised primarily of plagioclase and pyroxene and selected examples of orange and black volcanic glass. SEM images and elemental abundances (C6, N7, O8, Na11, Mg12, Al13, Si14, P15, S16, Cll7, K19, Ca20, Fe26) for a series of targets in the lunar dust samples are compared to the extant cyanobacteria, fossil trilobites, Orgueil meteorite, and terrestrial basalt targets previously discussed. The data set provides a first step in producing a quantitative probabilistic methodology for geobiological analysis of returned lunar samples or in situ exploration.

  11. Performance of resonant radar target identification algorithms using intra-class weighting functions

    NASA Astrophysics Data System (ADS)

    Mustafa, A.

    The use of calibrated resonant-region radar cross section (RCS) measurements of targets for the classification of large aircraft is discussed. Errors in the RCS estimate of full scale aircraft flying over an ocean, introduced by the ionospheric variability and the sea conditions were studied. The Weighted Target Representative (WTR) classification algorithm was developed, implemented, tested and compared with the nearest neighbor (NN) algorithm. The WTR-algorithm has a low sensitivity to the uncertainty in the aspect angle of the unknown target returns. In addition, this algorithm was based on the development of a new catalog of representative data which reduces the storage requirements and increases the computational efficiency of the classification system compared to the NN-algorithm. Experiments were designed to study and evaluate the characteristics of the WTR- and the NN-algorithms, investigate the classifiability of targets and study the relative behavior of the number of misclassifications as a function of the target backscatter features. The classification results and statistics were shown in the form of performance curves, performance tables and confusion tables.

  12. Classification methods to detect sleep apnea in adults based on respiratory and oximetry signals: a systematic review.

    PubMed

    Uddin, M B; Chow, C M; Su, S W

    2018-03-26

    Sleep apnea (SA), a common sleep disorder, can significantly decrease the quality of life, and is closely associated with major health risks such as cardiovascular disease, sudden death, depression, and hypertension. The normal diagnostic process of SA using polysomnography is costly and time consuming. In addition, the accuracy of different classification methods to detect SA varies with the use of different physiological signals. If an effective, reliable, and accurate classification method is developed, then the diagnosis of SA and its associated treatment will be time-efficient and economical. This study aims to systematically review the literature and present an overview of classification methods to detect SA using respiratory and oximetry signals and address the automated detection approach. Sixty-two included studies revealed the application of single and multiple signals (respiratory and oximetry) for the diagnosis of SA. Both airflow and oxygen saturation signals alone were effective in detecting SA in the case of binary decision-making, whereas multiple signals were good for multi-class detection. In addition, some machine learning methods were superior to the other classification methods for SA detection using respiratory and oximetry signals. To deal with the respiratory and oximetry signals, a good choice of classification method as well as the consideration of associated factors would result in high accuracy in the detection of SA. An accurate classification method should provide a high detection rate with an automated (independent of human action) analysis of respiratory and oximetry signals. Future high-quality automated studies using large samples of data from multiple patient groups or record batches are recommended.

  13. Wideband Detection and Classification of Practice Limpet Mines against Various Backgrounds

    DTIC Science & Technology

    2008-07-01

    variations de la hauteur. Les sonars imageurs haute fréquence permettent de dresser une carte de la réflectivité haute fréquence de la surface et de...25 Figure 32 The cross -correlations (described in the text) of the echo time series with a reference plate echo. The first target is...Fig.20d) for the [17 57] kHz compensated pulse.......................... 28 viii DRDC Atlantic TM 2008-079 Figure 34 The cross

  14. Sequential Analysis of Automatic Target Detection with Classification Algorithms and Optimality of Dynamic Decision Making Under Uncertainty

    DTIC Science & Technology

    2013-02-01

    Pavlovian   drug  cues  to  produce   excessive  “wanting”  to...motivation:  Incentive   salience  boosts  of   drug  or  appetite  states.  Behavioral  Brain  Science  31:440-­‐441...learning   into  motivation.  In  Gutkin,  B.  and  Ahmed,  S.H.  (Eds.)  Computational  Neuroscience  of   Drug

  15. Assessment of Vision-Based Target Detection and Classification Solutions Using an Indoor Aerial Robot

    DTIC Science & Technology

    2014-09-01

    college student alongside you, little sis! To Jes- xix sika Miller, Lauren Garcia and Caity White , my closest friends and confidants of ten years, who...arena corresponding coverage to the GUI is outlined in white 2.1.3 Challenges in the Model There are inherent challenges with any model that implements...source middleware originally maintained by Willow Garage [36] and now managed by the Open Source Robotics Foundation [37]. It provides a framework for

  16. Advancement of High Resolution Radar Polarimetry in Target Verses Clutter Detection, Discrimination, Classification: A. Basic Theory and Modeling of Polarimetric Clutter Phenomenology.

    DTIC Science & Technology

    1988-07-15

    the interim period, polarimetLic measurement data collected at other DOD/NATO/Industrial R/D/M facilities will be used. These basic studies will be...the polarization sphere and its spread can he related either to the coherency factor or the depolarization factor plus descriptive parameters of the...careful study of the concluding sections outlining the overall scenario of solved and unsolved problems. Here, we also refer to the recent report (Dec

  17. Monoclonal antibody specific for IDH1 R132H mutation.

    PubMed

    Capper, David; Zentgraf, Hanswalter; Balss, Jörg; Hartmann, Christian; von Deimling, Andreas

    2009-11-01

    IDH1 R132H mutations occur in approximately 70% of astrocytomas and oligodendroglial tumors. We developed a mouse monoclonal antibody targeting the IDH1 R132H mutation. Here, we show the high specificity and sensitivity of this antibody on Western blots and tissue sections from formalin fixed paraffin embedded tumor specimens. This antibody is highly useful for tumor classification, in detecting single infiltrating tumor cells and for the characterization of the cellular role of mutant IDH1 protein.

  18. Underwater target classification using wavelet packets and neural networks.

    PubMed

    Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J

    2000-01-01

    In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.

  19. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems.

    PubMed

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-22

    To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226 × 370 image, whereas the original selective search method extracted approximately 10 6 × n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset.

  20. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems

    PubMed Central

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-01

    To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226×370 image, whereas the original selective search method extracted approximately 106×n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset. PMID:28117742

  1. Non-linear molecular pattern classification using molecular beacons with multiple targets.

    PubMed

    Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak

    2013-12-01

    In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Optimization of a chemical identification algorithm

    NASA Astrophysics Data System (ADS)

    Chyba, Thomas H.; Fisk, Brian; Gunning, Christin; Farley, Kevin; Polizzi, Amber; Baughman, David; Simpson, Steven; Slamani, Mohamed-Adel; Almassy, Robert; Da Re, Ryan; Li, Eunice; MacDonald, Steve; Slamani, Ahmed; Mitchell, Scott A.; Pendell-Jones, Jay; Reed, Timothy L.; Emge, Darren

    2010-04-01

    A procedure to evaluate and optimize the performance of a chemical identification algorithm is presented. The Joint Contaminated Surface Detector (JCSD) employs Raman spectroscopy to detect and identify surface chemical contamination. JCSD measurements of chemical warfare agents, simulants, toxic industrial chemicals, interferents and bare surface backgrounds were made in the laboratory and under realistic field conditions. A test data suite, developed from these measurements, is used to benchmark algorithm performance throughout the improvement process. In any one measurement, one of many possible targets can be present along with interferents and surfaces. The detection results are expressed as a 2-category classification problem so that Receiver Operating Characteristic (ROC) techniques can be applied. The limitations of applying this framework to chemical detection problems are discussed along with means to mitigate them. Algorithmic performance is optimized globally using robust Design of Experiments and Taguchi techniques. These methods require figures of merit to trade off between false alarms and detection probability. Several figures of merit, including the Matthews Correlation Coefficient and the Taguchi Signal-to-Noise Ratio are compared. Following the optimization of global parameters which govern the algorithm behavior across all target chemicals, ROC techniques are employed to optimize chemical-specific parameters to further improve performance.

  3. Feature long axis size and local luminance contrast determine ship target acquisition performance: strong evidence for the TOD case

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; Toet, Alexander; Kooi, Frank L.

    2016-10-01

    Visual images of a civilian target ship on a sea background were produced using a CAD model. The total set consisted of 264 images and included 3 different color schemes, 2 ship viewing aspects, 5 sun illumination conditions, 2 sea reflection values, 2 ship positions with respect to the horizon and 3 values of atmospheric contrast reduction. In a perception experiment, the images were presented on a display in a long darkened corridor. Observers were asked to indicate the range at which they were able to detect the ship and classify the following 5 ship elements: accommodation, funnel, hull, mast, and hat above the bridge. This resulted in a total of 1584 Target Acquisition (TA) range estimates for two observers. Next, the ship contour, ship elements and corresponding TA ranges were analyzed applying several feature size and contrast measures. Most data coincide on a contrast versus angular size plot using (1) the long axis as characteristic ship/ship feature size and (2) local Weber contrast as characteristic ship/ship feature contrast. Finally, the data were compared with a variety of visual performance functions assumed to be representative for Target Acquisition: the TOD (Triangle Orientation Discrimination), MRC (Minimum Resolvable Contrast), CTF (Contrast Threshold Function), TTP (Targeting Task Performance) metric and circular disc detection data for the unaided eye (Blackwell). The results provide strong evidence for the TOD case: both position and slope of the TOD curve match the ship detection and classification data without any free parameter. In contrast, the MRC and CTF are too steep, the TTP and disc detection curves are too shallow and all these curves need an overall scaling factor in order to coincide with the ship and ship feature recognition data.

  4. A Randomized Trial Comparing High Definition Colonoscopy Alone With High Definition Dye Spraying and Electronic Virtual Chromoendoscopy for Detection of Colonic Neoplastic Lesions During IBD Surveillance Colonoscopy.

    PubMed

    Iacucci, Marietta; Kaplan, Gilaad G; Panaccione, Remo; Akinola, Oluseyi; Lethebe, Brendan Cord; Lowerison, Mark; Leung, Yvette; Novak, Kerri L; Seow, Cynthia H; Urbanski, Stefan; Minoo, Parham; Gui, Xianyong; Ghosh, Subrata

    2018-02-01

    Dye spraying chromoendoscopy (DCE) is recommended for the detection of colonic neoplastic lesions in inflammatory bowel disease (IBD). The majority of neoplastic lesions are visible endoscopically and therefore targeted biopsies are appropriate for surveillance colonoscopy. To compare three different techniques for surveillance colonoscopy to detect colonic neoplastic lesions in IBD patients: high definition (HD), (DCE), or virtual chromoendoscopy (VCE) using iSCAN image enhanced colonoscopy. A randomized non-inferiority trial was conducted to determine the detection rates of neoplastic lesions in IBD patients with longstanding colitis. Patients with inactive disease were enrolled into three arms of the study. Endoscopic neoplastic lesions were classified by the Paris classification and Kudo pit pattern, then histologically classified by the Vienna classification. A total of 270 patients (55% men; age range 20-77 years, median age 49 years) were assessed by HD (n=90), VCE (n=90), or DCE (n=90). Neoplastic lesion detection rates in the VCE arm was non-inferior to the DCE arm. HD was non-inferior to either DCE or VCE for detection of all neoplastic lesions. In the lesions detected, location at right colon and the Kudo pit pattern were predictive of neoplastic lesions (OR 6.52 (1.98-22.5 and OR 21.50 (8.65-60.10), respectively). In this randomized trial, VCE or HD-WLE is not inferior to dye spraying colonoscopy for detection of colonic neoplastic lesions during surveillance colonoscopy. In fact, in this study HD-WLE alone was sufficient for detection of dysplasia, adenocarcinoma or all neoplastic lesions.

  5. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    PubMed Central

    Gonzalez, Luis F.; Montes, Glen A.; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J.

    2016-01-01

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification. PMID:26784196

  6. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.

    PubMed

    Gonzalez, Luis F; Montes, Glen A; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J

    2016-01-14

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  7. Unified framework for triaxial accelerometer-based fall event detection and classification using cumulants and hierarchical decision tree classifier.

    PubMed

    Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram

    2015-08-01

    In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.

  8. Early pest detection in soy plantations from hyperspectral measurements: a case study for caterpillar detection

    NASA Astrophysics Data System (ADS)

    Tailanián, Matías; Castiglioni, Enrique; Musé, Pablo; Fernández Flores, Germán.; Lema, Gabriel; Mastrángelo, Pedro; Almansa, Mónica; Fernández Liñares, Ignacio; Fernández Liñares, Germán.

    2015-10-01

    Soybean producers suffer from caterpillar damage in many areas of the world. Estimated average economic losses are annually 500 million USD in Brazil, Argentina, Paraguay and Uruguay. Designing efficient pest control management using selective and targeted pesticide applications is extremely important both from economic and environmental perspectives. With that in mind, we conducted a research program during the 2013-2014 and 2014-2015 planting seasons in a 4,000 ha soybean farm, seeking to achieve early pest detection. Nowadays pest presence is evaluated using manual, labor-intensive counting methods based on sampling strategies which are time consuming and imprecise. The experiment was conducted as follows. Using manual counting methods as ground-truth, a spectrometer capturing reflectance from 400 to 1100 nm was used to measure the reflectance of soy plants. A first conclusion, resulting from measuring the spectral response at leaves level, showed that stress was a property of plants since different leaves with different levels of damage yielded the same spectral response. Then, to assess the applicability of unsupervised classification of plants as healthy, biotic-stressed or abiotic-stressed, feature extraction and selection from leaves spectral signatures, combined with a Supported Vector Machine classifier was designed. Optimization of SVM parameters using grid search with cross-validation, along with classification evaluation by ten-folds cross-validation showed a correct classification rate of 95%, consistently on both seasons. Controlled experiments using cages with different numbers of caterpillars--including caterpillar-free plants--were also conducted to evaluate consistency in trends of the spectral response as well as the extracted features.

  9. Learning target masks in infrared linescan imagery

    NASA Astrophysics Data System (ADS)

    Fechner, Thomas; Rockinger, Oliver; Vogler, Axel; Knappe, Peter

    1997-04-01

    In this paper we propose a neural network based method for the automatic detection of ground targets in airborne infrared linescan imagery. Instead of using a dedicated feature extraction stage followed by a classification procedure, we propose the following three step scheme: In the first step of the recognition process, the input image is decomposed into its pyramid representation, thus obtaining a multiresolution signal representation. At the lowest three levels of the Laplacian pyramid a neural network filter of moderate size is trained to indicate the target location. The last step consists of a fusion process of the several neural network filters to obtain the final result. To perform this fusion we use a belief network to combine the various filter outputs in a statistical meaningful way. In addition, the belief network allows the integration of further knowledge about the image domain. By applying this multiresolution recognition scheme, we obtain a nearly scale- and rotational invariant target recognition with a significantly decreased false alarm rate compared with a single resolution target recognition scheme.

  10. Polarimetric SAR Models for Oil Fields Monitoring in China Seas

    NASA Astrophysics Data System (ADS)

    Buono, A.; Nunziata, F.; Li, X.; Wei, Y.; Ding, X.

    2014-11-01

    In this study, physical-based models for polarimetric Synthetic Aperture Radar (SAR) oil fields monitoring are proposed. They all share a physical rationale relying on the different scattering mechanisms that characterize a free sea surface, an oil slick-covered sea surface, and a metallic target. In fact, sea surface scattering is well modeled by a Bragg-like behaviour, while a strong departure from Bragg scattering is in place when dealing with oil slicks and targets. Furthermore, the proposed polarimetric models aim at addressing simultaneously target and oil slick detection, providing useful extra information with respect to single-pol SAR data in order to approach oil discrimination and classification. Experiments undertaken over East and South China Sea from actual C-band RadarSAT-2 full-pol SAR data witness the soundness of the proposed rationale.

  11. Polarimetric SAR Models for Oil Fields Monitoring in China Seas

    NASA Astrophysics Data System (ADS)

    Buono, A.; Nunziata, F.; Li, X.; Wei, Y.; Ding, X.

    2014-11-01

    In this study, physical-based models for polarimetric Synthetic Aperture Radar (SAR) oil fields monitoring are proposed. They all share a physical rationale relying on the different scattering mechanisms that characterize a free sea surface, an oil slick-covered sea surface, and a metallic target. In fact, sea surface scattering is well modeled by a Bragg-like behaviour, while a strong departure from Bragg scattering is in place when dealing with oil slicks and targets. Furthermore, the proposed polarimetric models aim at addressing simultaneously target and oil slick detection, providing useful extra information with respect to single-pol SAR data in order to approach oil discrimination and classification.Experiments undertaken over East and South China Sea from actual C-band RadarSAT-2 full-pol SAR data witness the soundness of the proposed rationale.

  12. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods.

    PubMed

    Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J

    2017-03-03

    We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter.

  13. Image-Based Multi-Target Tracking through Multi-Bernoulli Filtering with Interactive Likelihoods

    PubMed Central

    Hoak, Anthony; Medeiros, Henry; Povinelli, Richard J.

    2017-01-01

    We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods for image-based multiple target tracking applications. The purpose of the ILH is to improve tracking accuracy by reducing the need for data association. In addition, we integrate a recently developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics (optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of the multi-Bernoulli filter. PMID:28273796

  14. Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.

    PubMed

    Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying; Houacine, Amrane

    2016-12-01

    In this paper, we address the problem of detecting human falls using anomaly detection. Detection and classification of falls are based on accelerometric data and variations in human silhouette shape. First, we use the exponentially weighted moving average (EWMA) monitoring scheme to detect a potential fall in the accelerometric data. We used an EWMA to identify features that correspond with a particular type of fall allowing us to classify falls. Only features corresponding with detected falls were used in the classification phase. A benefit of using a subset of the original data to design classification models minimizes training time and simplifies models. Based on features corresponding to detected falls, we used the support vector machine (SVM) algorithm to distinguish between true falls and fall-like events. We apply this strategy to the publicly available fall detection databases from the university of Rzeszow's. Results indicated that our strategy accurately detected and classified fall events, suggesting its potential application to early alert mechanisms in the event of fall situations and its capability for classification of detected falls. Comparison of the classification results using the EWMA-based SVM classifier method with those achieved using three commonly used machine learning classifiers, neural network, K-nearest neighbor and naïve Bayes, proved our model superior.

  15. Monitoring forest land from high altitude and from space

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Forest inventory, forest stress, and standardization and calibration studies are presented. These include microscale photointerpretation of forest and nonforest land classes, multiseasonal film densities for automated forest and nonforest land classification, trend and spread of bark beetle infestations from 1968 through 1971, aerial photography for determining optimum levels of stand density to reduce such infestations, use of airborne spectrometers and multispectral scanners for previsual detection of Ponderosa pine trees under stress from insects and diseases, establishment of an earth resources technology satellite test site in the Black Hills and the identification of natural resolution targets, detection of root disease impact on forest stands by sequential orbital and suborbital multispectral photography, and calibration of color aerial photography.

  16. Comparison of different classification algorithms for underwater target discrimination.

    PubMed

    Li, Donghui; Azimi-Sadjadi, Mahmood R; Robinson, Marc

    2004-01-01

    Classification of underwater targets from the acoustic backscattered signals is considered here. Several different classification algorithms are tested and benchmarked not only for their performance but also to gain insight to the properties of the feature space. Results on a wideband 80-kHz acoustic backscattered data set collected for six different objects are presented in terms of the receiver operating characteristic (ROC) and robustness of the classifiers wrt reverberation.

  17. Deep Neural Network for Structural Prediction and Lane Detection in Traffic Scene.

    PubMed

    Li, Jun; Mei, Xue; Prokhorov, Danil; Tao, Dacheng

    2017-03-01

    Hierarchical neural networks have been shown to be effective in learning representative image features and recognizing object classes. However, most existing networks combine the low/middle level cues for classification without accounting for any spatial structures. For applications such as understanding a scene, how the visual cues are spatially distributed in an image becomes essential for successful analysis. This paper extends the framework of deep neural networks by accounting for the structural cues in the visual signals. In particular, two kinds of neural networks have been proposed. First, we develop a multitask deep convolutional network, which simultaneously detects the presence of the target and the geometric attributes (location and orientation) of the target with respect to the region of interest. Second, a recurrent neuron layer is adopted for structured visual detection. The recurrent neurons can deal with the spatial distribution of visible cues belonging to an object whose shape or structure is difficult to explicitly define. Both the networks are demonstrated by the practical task of detecting lane boundaries in traffic scenes. The multitask convolutional neural network provides auxiliary geometric information to help the subsequent modeling of the given lane structures. The recurrent neural network automatically detects lane boundaries, including those areas containing no marks, without any explicit prior knowledge or secondary modeling.

  18. Three forms of immune myasthenia.

    PubMed

    Agius, Mark A; Richman, David P; Fairclough, Robert H; Aarli, Johan; Gilhus, Nils Erik; Romi, Fredrik

    2003-09-01

    We propose a new classification for immune myasthenia based on antibody pattern. The types of immune myasthenia presently characterized by known antibody targets segregate into three groups: type 1, in which the muscle target is the acetylcholine receptor only; type 2, in which titin antibodies are present in addition to acetylcholine receptor antibodies; and type 3, in which muscle-specific kinase antibodies are present in the absence of acetylcholine receptor antibodies. The immune target is unknown in the patients with immune myasthenia not associated with these antibodies. This classification has advantages over the present classifications as regards homogeneity of groups, etiology, mechanism of disease, and prognosis.

  19. Correlating Flight Behavior and Radar Measurements for Species Based Classification of Bird Radar Echoes for Wind Energy Site Assessment

    NASA Astrophysics Data System (ADS)

    Werth, S. P.; Frasier, S. J.

    2015-12-01

    Wind energy is one of the fastest-growing segments of the world energy market, offering a clean and abundant source of electricity. However, wind energy facilities can have detrimental effects on wildlife, especially birds and bats. Monitoring systems based on marine navigation radar are often used to quantify migration near potential wind sites, but the ability to reliably distinguish between bats and different varieties of birds has not been practically achieved. This classification capability would enable wind site selection that protects more vulnerable species, such as bats and raptors. Flight behavior, such as wing beat frequency, changes in speed, or changes in orientation, are known to vary by species [1]. The ability to extract these properties from radar data could ultimately enable a species based classification scheme. In this work, we analyze the relationship between radar measurements and bird flight behavior in echoes from avifauna. During the 2014 fall migration season, the UMass dual polarized weather radar was used to collect low elevation observations of migrating birds as they traversed through a fixed antenna beam. The radar was run during the night time, in clear-air conditions. Data was coherently integrated, and detections of biological targets exceeding an SNR threshold were extracted. Detections without some dominant frequency content (i.e. clear periodicity, potentially the wing beat frequency) were removed from the sample in order to isolate observations suspected to contain a single species or bird. For the remaining detections, measurements including the polarimetric products and the Doppler spectrum were extracted at each time step over the duration of the observation. The periodic and time changing nature of some of these different measurements was found to have a strong correlation with flight behavior (i.e. flapping vs. gliding behavior). Assumptions about flight behavior and orientation were corroborated through scattering simulations of birds in flight. The presence of a strong correlation between certain radar measurements and flight behavior would suggest the potential for a broad, species based avian classification algorithm. Such a classification scheme could ultimately help select and monitor wind sites in order to minimize harm to at-risk bird and bat species.

  20. Improving Spectral Image Classification through Band-Ratio Optimization and Pixel Clustering

    NASA Astrophysics Data System (ADS)

    O'Neill, M.; Burt, C.; McKenna, I.; Kimblin, C.

    2017-12-01

    The Underground Nuclear Explosion Signatures Experiment (UNESE) seeks to characterize non-prompt observables from underground nuclear explosions (UNE). As part of this effort, we evaluated the ability of DigitalGlobe's WorldView-3 (WV3) to detect and map UNE signatures. WV3 is the current state-of-the-art, commercial, multispectral imaging satellite; however, it has relatively limited spectral and spatial resolutions. These limitations impede image classifiers from detecting targets that are spatially small and lack distinct spectral features. In order to improve classification results, we developed custom algorithms to reduce false positive rates while increasing true positive rates via a band-ratio optimization and pixel clustering front-end. The clusters resulting from these algorithms were processed with standard spectral image classifiers such as Mixture-Tuned Matched Filter (MTMF) and Adaptive Coherence Estimator (ACE). WV3 and AVIRIS data of Cuprite, Nevada, were used as a validation data set. These data were processed with a standard classification approach using MTMF and ACE algorithms. They were also processed using the custom front-end prior to the standard approach. A comparison of the results shows that the custom front-end significantly increases the true positive rate and decreases the false positive rate.This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946-3283.

  1. Preprocessing of A-scan GPR data based on energy features

    NASA Astrophysics Data System (ADS)

    Dogan, Mesut; Turhan-Sayan, Gonul

    2016-05-01

    There is an increasing demand for noninvasive real-time detection and classification of buried objects in various civil and military applications. The problem of detection and annihilation of landmines is particularly important due to strong safety concerns. The requirement for a fast real-time decision process is as important as the requirements for high detection rates and low false alarm rates. In this paper, we introduce and demonstrate a computationally simple, timeefficient, energy-based preprocessing approach that can be used in ground penetrating radar (GPR) applications to eliminate reflections from the air-ground boundary and to locate the buried objects, simultaneously, at one easy step. The instantaneous power signals, the total energy values and the cumulative energy curves are extracted from the A-scan GPR data. The cumulative energy curves, in particular, are shown to be useful to detect the presence and location of buried objects in a fast and simple way while preserving the spectral content of the original A-scan data for further steps of physics-based target classification. The proposed method is demonstrated using the GPR data collected at the facilities of IPA Defense, Ankara at outdoor test lanes. Cylindrically shaped plastic containers were buried in fine-medium sand to simulate buried landmines. These plastic containers were half-filled by ammonium nitrate including metal pins. Results of this pilot study are demonstrated to be highly promising to motivate further research for the use of energy-based preprocessing features in landmine detection problem.

  2. Assessing Hurricane Katrina Vegetation Damage at Stennis Space Center using IKONOS Image Classification Techniques

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ross, Kenton W.; Graham, William D.

    2006-01-01

    Hurricane Katrina inflicted widespread damage to vegetation in southwestern coastal Mississippi upon landfall on August 29, 2005. Storm damage to surface vegetation types at the NASA John C. Stennis Space Center (SSC) was mapped and quantified using IKONOS data originally acquired on September 2, 2005, and later obtained via a Department of Defense ClearView contract. NASA SSC management required an assessment of the hurricane s impact to the 125,000-acre buffer zone used to mitigate rocket engine testing noise and vibration impacts and to manage forestry and fire risk. This study employed ERDAS IMAGINE software to apply traditional classification techniques to the IKONOS data. Spectral signatures were collected from multiple ISODATA classifications of subset areas across the entire region and then appended to a master file representative of major targeted cover type conditions. The master file was subsequently used with the IKONOS data and with a maximum likelihood algorithm to produce a supervised classification later refined using GIS-based editing. The final results enabled mapped, quantitative areal estimates of hurricane-induced damage according to general surface cover type. The IKONOS classification accuracy was assessed using higher resolution aerial imagery and field survey data. In-situ data and GIS analysis indicate that the results compare well to FEMA maps of flooding extent. The IKONOS classification also mapped open areas with woody storm debris. The detection of such storm damage categories is potentially useful for government officials responsible for hurricane disaster mitigation.

  3. Doppler Feature Based Classification of Wind Profiler Data

    NASA Astrophysics Data System (ADS)

    Sinha, Swati; Chandrasekhar Sarma, T. V.; Lourde. R, Mary

    2017-01-01

    Wind Profilers (WP) are coherent pulsed Doppler radars in UHF and VHF bands. They are used for vertical profiling of wind velocity and direction. This information is very useful for weather modeling, study of climatic patterns and weather prediction. Observations at different height and different wind velocities are possible by changing the operating parameters of WP. A set of Doppler power spectra is the standard form of WP data. Wind velocity, direction and wind velocity turbulence at different heights can be derived from it. Modern wind profilers operate for long duration and generate approximately 4 megabytes of data per hour. The radar data stream contains Doppler power spectra from different radar configurations with echoes from different atmospheric targets. In order to facilitate systematic study, this data needs to be segregated according the type of target. A reliable automated target classification technique is required to do this job. Classical techniques of radar target identification use pattern matching and minimization of mean squared error, Euclidean distance etc. These techniques are not effective for the classification of WP echoes, as these targets do not have well-defined signature in Doppler power spectra. This paper presents an effective target classification technique based on range-Doppler features.

  4. A New Antibody for Category 1 Biomarker Detection

    NASA Technical Reports Server (NTRS)

    Maule, J.; Steele, A.; Toporski, J.; McKay, D. S.

    2003-01-01

    At least two questions arise in developing a life-detection strategy: What do we look for and what will positive detection tell us? Unfortunately, many 'biomarkers' are not conclusive markers of biology. For example, sugars, amino acids, polycyclic aromatic hydrocarbons (PAH) and certain bacteria-like morphologies can all be produced non-biologically. Inferences of life following the detection of several inconclusive biomarkers in one sample will always be questioned. Although DNA, RNA and proteins are excellent markers of biology, and preserved on Earth for several millions of years, their survival over longer periods of time is low. Ideally, we should target biomarkers which are both stable over time and formed exclusively from biological processes, i.e. a 'category 1' biomarker under the new classification system of Mckay. We have used antibodies to detect category 1 and other biomarkers in rock samples. Extraction takes a few minutes and analysis a few hours. We have presented use of new antibodies to detect hopanes and have shown proof of operation during martian gravity.

  5. Magnetoencephalographic responses to illusory figures: early evoked gamma is affected by processing of stimulus features.

    PubMed

    Herrmann, C S; Mecklinger, A

    2000-12-01

    We examined evoked and induced responses in event-related fields and gamma activity in the magnetoencephalogram (MEG) during a visual classification task. The objective was to investigate the effects of target classification and the different levels of discrimination between certain stimulus features. We performed two experiments, which differed only in the subjects' task while the stimuli were identical. In Experiment 1, subjects responded by a button-press to rare Kanizsa squares (targets) among Kanizsa triangles and non-Kanizsa figures (standards). This task requires the processing of both stimulus features (colinearity and number of inducer disks). In Experiment 2, the four stimuli of Experiment 1 were used as standards and the occurrence of an additional stimulus without any feature overlap with the Kanizsa stimuli (a rare and highly salient red fixation cross) had to be detected. Discrimination of colinearity and number of inducer disks was not necessarily required for task performance. We applied a wavelet-based time-frequency analysis to the data and calculated topographical maps of the 40 Hz activity. The early evoked gamma activity (100-200 ms) in Experiment 1 was higher for targets as compared to standards. In Experiment 2, no significant differences were found in the gamma responses to the Kanizsa figures and non-Kanizsa figures. This pattern of results suggests that early evoked gamma activity in response to visual stimuli is affected by the targetness of a stimulus and the need to discriminate between the features of a stimulus.

  6. NASA-SETI microwave observing project: Targeted Search Element (TSE)

    NASA Technical Reports Server (NTRS)

    Webster, L. D.

    1991-01-01

    The Targeted Search Element (TSE) performs one of two complimentary search strategies of the NASA-SETI Microwave Observing Project (MOP): the targeted search. The principle objective of the targeted search strategy is to scan the microwave window between the frequencies of one and three gigahertz for narrowband microwave emissions eminating from the direction of 773 specifically targeted stars. The scanning process is accomplished at a minimum resolution of one or two Hertz at very high sensitivity. Detectable signals will be of a continuous wave or pulsed form and may also drift in frequency. The TSE will possess extensive radio frequency interference (RFI) mitigation and verification capability as the majority of signals detected by the TSE will be of local origin. Any signal passing through RFI classification and classifiable as an extraterrestrial intelligence (ETI) candidate will be further validated at non-MOP observatories using established protocol. The targeted search will be conducted using the capability provided by the TSE. The TSE provides six Targeted Search Systems (TSS) which independently or cooperatively perform automated collection, analysis, storage, and archive of signal data. Data is collected in 10 megahertz chunks and signal processing is performed at a rate of 160 megabits per second. Signal data is obtained utilizing the largest radio telescopes available for the Targeted Search such as those at Arecibo and Nancay or at the dedicated NASA-SETI facility. This latter facility will allow continuous collection of data. The TSE also provides for TSS utilization planning, logistics, remote operation, and for off-line data analysis and permanent archive of both the Targeted Search and Sky Survey data.

  7. The Elderly’s Independent Living in Smart Homes: A Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development

    PubMed Central

    Ni, Qin; García Hernando, Ana Belén; de la Cruz, Iván Pau

    2015-01-01

    Human activity detection within smart homes is one of the basis of unobtrusive wellness monitoring of a rapidly aging population in developed countries. Most works in this area use the concept of “activity” as the building block with which to construct applications such as healthcare monitoring or ambient assisted living. The process of identifying a specific activity encompasses the selection of the appropriate set of sensors, the correct preprocessing of their provided raw data and the learning/reasoning using this information. If the selection of the sensors and the data processing methods are wrongly performed, the whole activity detection process may fail, leading to the consequent failure of the whole application. Related to this, the main contributions of this review are the following: first, we propose a classification of the main activities considered in smart home scenarios which are targeted to older people’s independent living, as well as their characterization and formalized context representation; second, we perform a classification of sensors and data processing methods that are suitable for the detection of the aforementioned activities. Our aim is to help researchers and developers in these lower-level technical aspects that are nevertheless fundamental for the success of the complete application. PMID:26007717

  8. Oasis 2: improved online analysis of small RNA-seq data.

    PubMed

    Rahman, Raza-Ur; Gautam, Abhivyakti; Bethune, Jörn; Sattar, Abdul; Fiosins, Maksims; Magruder, Daniel Sumner; Capece, Vincenzo; Shomroni, Orr; Bonn, Stefan

    2018-02-14

    Small RNA molecules play important roles in many biological processes and their dysregulation or dysfunction can cause disease. The current method of choice for genome-wide sRNA expression profiling is deep sequencing. Here we present Oasis 2, which is a new main release of the Oasis web application for the detection, differential expression, and classification of small RNAs in deep sequencing data. Compared to its predecessor Oasis, Oasis 2 features a novel and speed-optimized sRNA detection module that supports the identification of small RNAs in any organism with higher accuracy. Next to the improved detection of small RNAs in a target organism, the software now also recognizes potential cross-species miRNAs and viral and bacterial sRNAs in infected samples. In addition, novel miRNAs can now be queried and visualized interactively, providing essential information for over 700 high-quality miRNA predictions across 14 organisms. Robust biomarker signatures can now be obtained using the novel enhanced classification module. Oasis 2 enables biologists and medical researchers to rapidly analyze and query small RNA deep sequencing data with improved precision, recall, and speed, in an interactive and user-friendly environment. Oasis 2 is implemented in Java, J2EE, mysql, Python, R, PHP and JavaScript. It is freely available at https://oasis.dzne.de.

  9. The Elderly's Independent Living in Smart Homes: A Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development.

    PubMed

    Ni, Qin; García Hernando, Ana Belén; de la Cruz, Iván Pau

    2015-05-14

    Human activity detection within smart homes is one of the basis of unobtrusive wellness monitoring of a rapidly aging population in developed countries. Most works in this area use the concept of "activity" as the building block with which to construct applications such as healthcare monitoring or ambient assisted living. The process of identifying a specific activity encompasses the selection of the appropriate set of sensors, the correct preprocessing of their provided raw data and the learning/reasoning using this information. If the selection of the sensors and the data processing methods are wrongly performed, the whole activity detection process may fail, leading to the consequent failure of the whole application. Related to this, the main contributions of this review are the following: first, we propose a classification of the main activities considered in smart home scenarios which are targeted to older people's independent living, as well as their characterization and formalized context representation; second, we perform a classification of sensors and data processing methods that are suitable for the detection of the aforementioned activities. Our aim is to help researchers and developers in these lower-level technical aspects that are nevertheless fundamental for the success of the complete application.

  10. Developing New Coastal Forest Restoration Products Based on Landsat, ASTER, and MODIS Data

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Graham, William; Smoot, James

    2009-01-01

    This paper discusses an ongoing effort to develop new geospatial information products for aiding coastal forest restoration and conservation efforts in coastal Louisiana and Mississippi. This project employs Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data in conjunction with airborne elevation data to compute coastal forest cover type maps and change detection products. Improved forest mapping products are needed to aid coastal forest restoration and management efforts of State and Federal agencies in the Northern Gulf of Mexico (NGOM) region. In particular, such products may aid coastal forest land acquisition and conservation easement procurements. This region's forests are often disturbed and subjected to multiple biotic and abiotic threats, including subsidence, salt water intrusion, hurricanes, sea-level rise, insect-induced defoliation and mortality, altered hydrology, wildfire, and conversion to non-forest land use. In some cases, such forest disturbance has led to forest loss or loss of regeneration capacity. In response, a case study was conducted to assess and demonstrate the potential of satellite remote sensing products for improving forest type maps and for assessing forest change over the last 25 years. Change detection products are needed for assessing risks for specific priority coastal forest types, such as live oak and baldcypress-dominated forest. Preliminary results indicate Landsat time series data are capable of generating the needed forest type and change detection products. Useful classifications were obtained using 2 strategies: 1) general forest classification based on use of 3 seasons of Landsat data from the same year; and 2) classification of specific forest types of concern using a single date of Landsat data in which a given targeted type is spectrally distinct compared to adjacent forested cover. When available, ASTER data was useful as a complement to Landsat data. Elevation data helped to define areas in which targeted forest types occur, such as live oak forests on natural levees. MODIS Normalized Difference Vegetation Index time series data aided visual assessments of coastal forest damage and recovery from hurricanes. Landsat change detection products enabled change to be identified at the stand level and at 10- year intervals with the earliest date preceding available change detection products from the National Oceanic and Atmospheric Administration and from the U.S. Geological Survey. Additional work is being done in collaboration with State and Federal agency partners in a follow-on NASA ROSES project to refine and validate these new, promising products. The products from the ROSES project will be available for aiding NGOM coastal forest restoration and conservation.

  11. SAR target recognition and posture estimation using spatial pyramid pooling within CNN

    NASA Astrophysics Data System (ADS)

    Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-01-01

    Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.

  12. Constrained binary classification using ensemble learning: an application to cost-efficient targeted PrEP strategies.

    PubMed

    Zheng, Wenjing; Balzer, Laura; van der Laan, Mark; Petersen, Maya

    2018-01-30

    Binary classification problems are ubiquitous in health and social sciences. In many cases, one wishes to balance two competing optimality considerations for a binary classifier. For instance, in resource-limited settings, an human immunodeficiency virus prevention program based on offering pre-exposure prophylaxis (PrEP) to select high-risk individuals must balance the sensitivity of the binary classifier in detecting future seroconverters (and hence offering them PrEP regimens) with the total number of PrEP regimens that is financially and logistically feasible for the program. In this article, we consider a general class of constrained binary classification problems wherein the objective function and the constraint are both monotonic with respect to a threshold. These include the minimization of the rate of positive predictions subject to a minimum sensitivity, the maximization of sensitivity subject to a maximum rate of positive predictions, and the Neyman-Pearson paradigm, which minimizes the type II error subject to an upper bound on the type I error. We propose an ensemble approach to these binary classification problems based on the Super Learner methodology. This approach linearly combines a user-supplied library of scoring algorithms, with combination weights and a discriminating threshold chosen to minimize the constrained optimality criterion. We then illustrate the application of the proposed classifier to develop an individualized PrEP targeting strategy in a resource-limited setting, with the goal of minimizing the number of PrEP offerings while achieving a minimum required sensitivity. This proof of concept data analysis uses baseline data from the ongoing Sustainable East Africa Research in Community Health study. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Using Gaussian mixture models to detect and classify dolphin whistles and pulses.

    PubMed

    Peso Parada, Pablo; Cardenal-López, Antonio

    2014-06-01

    In recent years, a number of automatic detection systems for free-ranging cetaceans have been proposed that aim to detect not just surfaced, but also submerged, individuals. These systems are typically based on pattern-recognition techniques applied to underwater acoustic recordings. Using a Gaussian mixture model, a classification system was developed that detects sounds in recordings and classifies them as one of four types: background noise, whistles, pulses, and combined whistles and pulses. The classifier was tested using a database of underwater recordings made off the Spanish coast during 2011. Using cepstral-coefficient-based parameterization, a sound detection rate of 87.5% was achieved for a 23.6% classification error rate. To improve these results, two parameters computed using the multiple signal classification algorithm and an unpredictability measure were included in the classifier. These parameters, which helped to classify the segments containing whistles, increased the detection rate to 90.3% and reduced the classification error rate to 18.1%. Finally, the potential of the multiple signal classification algorithm and unpredictability measure for estimating whistle contours and classifying cetacean species was also explored, with promising results.

  14. Combined target factor analysis and Bayesian soft-classification of interference-contaminated samples: forensic fire debris analysis.

    PubMed

    Williams, Mary R; Sigman, Michael E; Lewis, Jennifer; Pitan, Kelly McHugh

    2012-10-10

    A bayesian soft classification method combined with target factor analysis (TFA) is described and tested for the analysis of fire debris data. The method relies on analysis of the average mass spectrum across the chromatographic profile (i.e., the total ion spectrum, TIS) from multiple samples taken from a single fire scene. A library of TIS from reference ignitable liquids with assigned ASTM classification is used as the target factors in TFA. The class-conditional distributions of correlations between the target and predicted factors for each ASTM class are represented by kernel functions and analyzed by bayesian decision theory. The soft classification approach assists in assessing the probability that ignitable liquid residue from a specific ASTM E1618 class, is present in a set of samples from a single fire scene, even in the presence of unspecified background contributions from pyrolysis products. The method is demonstrated with sample data sets and then tested on laboratory-scale burn data and large-scale field test burns. The overall performance achieved in laboratory and field test of the method is approximately 80% correct classification of fire debris samples. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Close-range sensors for small unmanned bottom vehicles: update

    NASA Astrophysics Data System (ADS)

    Bernstein, Charles L.

    2000-07-01

    The Surf Zone Reconnaissance Project is developing sensors for small, autonomous, Underwater Bottom-crawling Vehicles. The objective is to enable small, crawling robots to autonomously detect and classify mines and obstacles on the ocean bottom in depths between 0 and 10 feet. We have identified a promising set of techniques that will exploit the electromagnetic, shape, texture, image, and vibratory- modal features of this images. During FY99 and FY00 we have worked toward refining these techniques. Signature data sets have been collected for a standard target set to facilitate the development of sensor fusion and target detection and classification algorithms. Specific behaviors, termed microbehaviors, are developed to utilize the robot's mobility to position and operate the sensors. A first generation, close-range sensor suite, composed of 5 sensors, will be completed and tested on a crawling platform in FY00, and will be further refined and demonstrated in FY01 as part of the Mine Countermeasures 6.3 core program sponsored by the Office of Naval Research.

  16. ECG signal analysis through hidden Markov models.

    PubMed

    Andreão, Rodrigo V; Dorizzi, Bernadette; Boudy, Jérôme

    2006-08-01

    This paper presents an original hidden Markov model (HMM) approach for online beat segmentation and classification of electrocardiograms. The HMM framework has been visited because of its ability of beat detection, segmentation and classification, highly suitable to the electrocardiogram (ECG) problem. Our approach addresses a large panel of topics some of them never studied before in other HMM related works: waveforms modeling, multichannel beat segmentation and classification, and unsupervised adaptation to the patient's ECG. The performance was evaluated on the two-channel QT database in terms of waveform segmentation precision, beat detection and classification. Our waveform segmentation results compare favorably to other systems in the literature. We also obtained high beat detection performance with sensitivity of 99.79% and a positive predictivity of 99.96%, using a test set of 59 recordings. Moreover, premature ventricular contraction beats were detected using an original classification strategy. The results obtained validate our approach for real world application.

  17. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA.

    USDA-ARS?s Scientific Manuscript database

    A change detection experiment for an invasive species, saltcedar, near Lovelock, Nevada, was conducted with multi-date Compact Airborne Spectrographic Imager (CASI) hyperspectral datasets. Classification and NDVI differencing change detection methods were tested, In the classification strategy, a p...

  18. Continuous robust sound event classification using time-frequency features and deep learning

    PubMed Central

    Song, Yan; Xiao, Wei; Phan, Huy

    2017-01-01

    The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification. PMID:28892478

  19. Continuous robust sound event classification using time-frequency features and deep learning.

    PubMed

    McLoughlin, Ian; Zhang, Haomin; Xie, Zhipeng; Song, Yan; Xiao, Wei; Phan, Huy

    2017-01-01

    The automatic detection and recognition of sound events by computers is a requirement for a number of emerging sensing and human computer interaction technologies. Recent advances in this field have been achieved by machine learning classifiers working in conjunction with time-frequency feature representations. This combination has achieved excellent accuracy for classification of discrete sounds. The ability to recognise sounds under real-world noisy conditions, called robust sound event classification, is an especially challenging task that has attracted recent research attention. Another aspect of real-word conditions is the classification of continuous, occluded or overlapping sounds, rather than classification of short isolated sound recordings. This paper addresses the classification of noise-corrupted, occluded, overlapped, continuous sound recordings. It first proposes a standard evaluation task for such sounds based upon a common existing method for evaluating isolated sound classification. It then benchmarks several high performing isolated sound classifiers to operate with continuous sound data by incorporating an energy-based event detection front end. Results are reported for each tested system using the new task, to provide the first analysis of their performance for continuous sound event detection. In addition it proposes and evaluates a novel Bayesian-inspired front end for the segmentation and detection of continuous sound recordings prior to classification.

  20. Dynamic Agent Classification and Tracking Using an Ad Hoc Mobile Acoustic Sensor Network

    NASA Astrophysics Data System (ADS)

    Friedlander, David; Griffin, Christopher; Jacobson, Noah; Phoha, Shashi; Brooks, Richard R.

    2003-12-01

    Autonomous networks of sensor platforms can be designed to interact in dynamic and noisy environments to determine the occurrence of specified transient events that define the dynamic process of interest. For example, a sensor network may be used for battlefield surveillance with the purpose of detecting, identifying, and tracking enemy activity. When the number of nodes is large, human oversight and control of low-level operations is not feasible. Coordination and self-organization of multiple autonomous nodes is necessary to maintain connectivity and sensor coverage and to combine information for better understanding the dynamics of the environment. Resource conservation requires adaptive clustering in the vicinity of the event. This paper presents methods for dynamic distributed signal processing using an ad hoc mobile network of microsensors to detect, identify, and track targets in noisy environments. They seamlessly integrate data from fixed and mobile platforms and dynamically organize platforms into clusters to process local data along the trajectory of the targets. Local analysis of sensor data is used to determine a set of target attribute values and classify the target. Sensor data from a field test in the Marine base at Twentynine Palms, Calif, was analyzed using the techniques described in this paper. The results were compared to "ground truth" data obtained from GPS receivers on the vehicles.

  1. Brain fingerprinting classification concealed information test detects US Navy military medical information with P300

    PubMed Central

    Farwell, Lawrence A.; Richardson, Drew C.; Richardson, Graham M.; Furedy, John J.

    2014-01-01

    A classification concealed information test (CIT) used the “brain fingerprinting” method of applying P300 event-related potential (ERP) in detecting information that is (1) acquired in real life and (2) unique to US Navy experts in military medicine. Military medicine experts and non-experts were asked to push buttons in response to three types of text stimuli. Targets contain known information relevant to military medicine, are identified to subjects as relevant, and require pushing one button. Subjects are told to push another button to all other stimuli. Probes contain concealed information relevant to military medicine, and are not identified to subjects. Irrelevants contain equally plausible, but incorrect/irrelevant information. Error rate was 0%. Median and mean statistical confidences for individual determinations were 99.9% with no indeterminates (results lacking sufficiently high statistical confidence to be classified). We compared error rate and statistical confidence for determinations of both information present and information absent produced by classification CIT (Is a probe ERP more similar to a target or to an irrelevant ERP?) vs. comparison CIT (Does a probe produce a larger ERP than an irrelevant?) using P300 plus the late negative component (LNP; together, P300-MERMER). Comparison CIT produced a significantly higher error rate (20%) and lower statistical confidences: mean 67%; information-absent mean was 28.9%, less than chance (50%). We compared analysis using P300 alone with the P300 + LNP. P300 alone produced the same 0% error rate but significantly lower statistical confidences. These findings add to the evidence that the brain fingerprinting methods as described here provide sufficient conditions to produce less than 1% error rate and greater than 95% median statistical confidence in a CIT on information obtained in the course of real life that is characteristic of individuals with specific training, expertise, or organizational affiliation. PMID:25565941

  2. Subsurface event detection and classification using Wireless Signal Networks.

    PubMed

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T

    2012-11-05

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events.

  3. Subsurface Event Detection and Classification Using Wireless Signal Networks

    PubMed Central

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  4. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications

    NASA Astrophysics Data System (ADS)

    Zhu, Zhe

    2017-08-01

    The free and open access to all archived Landsat images in 2008 has completely changed the way of using Landsat data. Many novel change detection algorithms based on Landsat time series have been developed We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed the trend that the more recent the study, the higher the frequency of Landsat time series used. We reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical boundary, and regression. Within each category, six major characteristics of different algorithms, such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms were also discussed. Finally, we reviewed different change detection applications by dividing these applications into two categories, change target and change agent detection.

  5. Supervised non-negative tensor factorization for automatic hyperspectral feature extraction and target discrimination

    NASA Astrophysics Data System (ADS)

    Anderson, Dylan; Bapst, Aleksander; Coon, Joshua; Pung, Aaron; Kudenov, Michael

    2017-05-01

    Hyperspectral imaging provides a highly discriminative and powerful signature for target detection and discrimination. Recent literature has shown that considering additional target characteristics, such as spatial or temporal profiles, simultaneously with spectral content can greatly increase classifier performance. Considering these additional characteristics in a traditional discriminative algorithm requires a feature extraction step be performed first. An example of such a pipeline is computing a filter bank response to extract spatial features followed by a support vector machine (SVM) to discriminate between targets. This decoupling between feature extraction and target discrimination yields features that are suboptimal for discrimination, reducing performance. This performance reduction is especially pronounced when the number of features or available data is limited. In this paper, we propose the use of Supervised Nonnegative Tensor Factorization (SNTF) to jointly perform feature extraction and target discrimination over hyperspectral data products. SNTF learns a tensor factorization and a classification boundary from labeled training data simultaneously. This ensures that the features learned via tensor factorization are optimal for both summarizing the input data and separating the targets of interest. Practical considerations for applying SNTF to hyperspectral data are presented, and results from this framework are compared to decoupled feature extraction/target discrimination pipelines.

  6. Optimization of Adaboost Algorithm for Sonar Target Detection in a Multi-Stage ATR System

    NASA Technical Reports Server (NTRS)

    Lin, Tsung Han (Hank)

    2011-01-01

    JPL has developed a multi-stage Automated Target Recognition (ATR) system to locate objects in images. First, input images are preprocessed and sent to a Grayscale Optical Correlator (GOC) filter to identify possible regions-of-interest (ROIs). Second, feature extraction operations are performed using Texton filters and Principal Component Analysis (PCA). Finally, the features are fed to a classifier, to identify ROIs that contain the targets. Previous work used the Feed-forward Back-propagation Neural Network for classification. In this project we investigate a version of Adaboost as a classifier for comparison. The version we used is known as GentleBoost. We used the boosted decision tree as the weak classifier. We have tested our ATR system against real-world sonar images using the Adaboost approach. Results indicate an improvement in performance over a single Neural Network design.

  7. Experimental Tracking of Aerial Targets Using the Microflown Sensor

    DTIC Science & Technology

    2012-03-01

    Classification ( MUSIC ) is widely known to be able to do that. Given n vector sensors, the theory hypothesizes the detection of 4n-2 uncorrelated sources...8217,’none’); %nxm 3D plot at freq of interest set(gca,’ZDir’,’reverse’) camup([0 1 0]); campos ([20 15 20]) title(figtitle) xlabel...gca,’ZDir’,’reverse’) camup([0 1 0]); 66 campos ([20 15 20]) title(figtitle) xlabel(’y axis’) ylabel(’x axis’) %phi - n

  8. Hardware-in-the-loop simulation for undersea vehicle applications

    NASA Astrophysics Data System (ADS)

    Kelf, Michael A.

    2001-08-01

    Torpedoes and other Unmanned Undersea Vehicles (UUV) are employed by submarines and surface combatants, as well as aircraft, for undersea warfare. These vehicles are autonomous devices whose guidance systems rival the complexity of the most sophisticated air combat missiles. The tactical environment for undersea warfare is a difficult one in terms of target detection,k classification, and pursuit because of the physics of underwater sounds. Both hardware-in-the-loop and all-digital simulations have become vital tools in developing and evaluating undersea weapon and vehicle guidance performance in the undersea environment.

  9. Local pulmonary structure classification for computer-aided nodule detection

    NASA Astrophysics Data System (ADS)

    Bahlmann, Claus; Li, Xianlin; Okada, Kazunori

    2006-03-01

    We propose a new method of classifying the local structure types, such as nodules, vessels, and junctions, in thoracic CT scans. This classification is important in the context of computer aided detection (CAD) of lung nodules. The proposed method can be used as a post-process component of any lung CAD system. In such a scenario, the classification results provide an effective means of removing false positives caused by vessels and junctions thus improving overall performance. As main advantage, the proposed solution transforms the complex problem of classifying various 3D topological structures into much simpler 2D data clustering problem, to which more generic and flexible solutions are available in literature, and which is better suited for visualization. Given a nodule candidate, first, our solution robustly fits an anisotropic Gaussian to the data. The resulting Gaussian center and spread parameters are used to affine-normalize the data domain so as to warp the fitted anisotropic ellipsoid into a fixed-size isotropic sphere. We propose an automatic method to extract a 3D spherical manifold, containing the appropriate bounding surface of the target structure. Scale selection is performed by a data driven entropy minimization approach. The manifold is analyzed for high intensity clusters, corresponding to protruding structures. Techniques involve EMclustering with automatic mode number estimation, directional statistics, and hierarchical clustering with a modified Bhattacharyya distance. The estimated number of high intensity clusters explicitly determines the type of pulmonary structures: nodule (0), attached nodule (1), vessel (2), junction (>3). We show accurate classification results for selected examples in thoracic CT scans. This local procedure is more flexible and efficient than current state of the art and will help to improve the accuracy of general lung CAD systems.

  10. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine.

    PubMed

    Kovacs, Gabor G

    2016-02-02

    Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials.

  11. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine

    PubMed Central

    Kovacs, Gabor G.

    2016-01-01

    Neurodegenerative diseases (NDDs) are characterized by selective dysfunction and loss of neurons associated with pathologically altered proteins that deposit in the human brain but also in peripheral organs. These proteins and their biochemical modifications can be potentially targeted for therapy or used as biomarkers. Despite a plethora of modifications demonstrated for different neurodegeneration-related proteins, such as amyloid-β, prion protein, tau, α-synuclein, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma protein (FUS), molecular classification of NDDs relies on detailed morphological evaluation of protein deposits, their distribution in the brain, and their correlation to clinical symptoms together with specific genetic alterations. A further facet of the neuropathology-based classification is the fact that many protein deposits show a hierarchical involvement of brain regions. This has been shown for Alzheimer and Parkinson disease and some forms of tauopathies and TDP-43 proteinopathies. The present paper aims to summarize current molecular classification of NDDs, focusing on the most relevant biochemical and morphological aspects. Since the combination of proteinopathies is frequent, definition of novel clusters of patients with NDDs needs to be considered in the era of precision medicine. Optimally, neuropathological categorizing of NDDs should be translated into in vivo detectable biomarkers to support better prediction of prognosis and stratification of patients for therapy trials. PMID:26848654

  12. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.

  13. Feasibility of Multispectral Airborne Laser Scanning for Land Cover Classification, Road Mapping and Map Updating

    NASA Astrophysics Data System (ADS)

    Matikainen, L.; Karila, K.; Hyyppä, J.; Puttonen, E.; Litkey, P.; Ahokas, E.

    2017-10-01

    This article summarises our first results and experiences on the use of multispectral airborne laser scanner (ALS) data. Optech Titan multispectral ALS data over a large suburban area in Finland were acquired on three different dates in 2015-2016. We investigated the feasibility of the data from the first date for land cover classification and road mapping. Object-based analyses with segmentation and random forests classification were used. The potential of the data for change detection of buildings and roads was also demonstrated. The overall accuracy of land cover classification results with six classes was 96 % compared with validation points. The data also showed high potential for road detection, road surface classification and change detection. The multispectral intensity information appeared to be very important for automated classifications. Compared to passive aerial images, the intensity images have interesting advantages, such as the lack of shadows. Currently, we focus on analyses and applications with the multitemporal multispectral data. Important questions include, for example, the potential and challenges of the multitemporal data for change detection.

  14. EEG character identification using stimulus sequences designed to maximize mimimal hamming distance.

    PubMed

    Fukami, Tadanori; Shimada, Takamasa; Forney, Elliott; Anderson, Charles W

    2012-01-01

    In this study, we have improved upon the P300 speller Brain-Computer Interface paradigm by introducing a new character encoding method. Our concept in detection of the intended character is not based on a classification of target and nontarget responses, but based on an identifaction of the character which maximize the difference between P300 amplitudes in target and nontarget stimuli. Each bit included in the code corresponds to flashing character, '1', and non-flashing, '0'. Here, the codes were constructed in order to maximize the minimum hamming distance between the characters. Electroencephalography was used to identify the characters using a waveform calculated by adding and subtracting the response of the target and non-target stimulus according the codes respectively. This stimulus presentation method was applied to a 3×3 character matrix, and the results were compared with that of a conventional P300 speller of the same size. Our method reduced the time until the correct character was obtained by 24%.

  15. Three-dimensional laser radar modeling

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove K.; Carlsson, Tomas

    2001-09-01

    Laser radars have the unique capability to give intensity and full 3-D images of an object. Doppler lidars can give velocity and vibration characteristics of an objects. These systems have many civilian and military applications such as terrain modelling, depth sounding, object detection and classification as well as object positioning. In order to derive the signal waveform from the object one has to account for the laser pulse time characteristics, media effects such as the atmospheric attenuation and turbulence effects or scattering properties, the target shape and reflection (BRDF), speckle noise together with the receiver and background noise. Finally the type of waveform processing (peak detection, leading edge etc.) is needed to model the sensor output to be compared with observations. We have developed a computer model which models performance of a 3-D laser radar. We will give examples of signal waveforms generated from model different targets calculated by integrating the laser beam profile in space and time over the target including reflection characteristics during different speckle and turbulence conditions. The result will be of help when designing and using new laser radar systems. The importance of different type of signal processing of the waveform in order to fulfil performance goals will be shown.

  16. Conditional automaticity in subliminal morphosyntactic priming.

    PubMed

    Ansorge, Ulrich; Reynvoet, Bert; Hendler, Jessica; Oettl, Lennart; Evert, Stefan

    2013-07-01

    We used a gender-classification task to test the principles of subliminal morphosyntactic priming. In Experiment 1, masked, subliminal feminine or masculine articles were used as primes. They preceded a visible target noun. Subliminal articles either had a morphosyntactically congruent or incongruent gender with the targets. In a gender-classification task of the target nouns, subliminal articles primed the responses: responses were faster in congruent than incongruent conditions (Experiment 1). In Experiment 2, we tested whether this congruence effect depended on gender relevance. In line with a relevance-dependence, the congruence effect only occurred in a gender-classification task but was absent in another categorical discrimination of the target nouns (Experiment 2). The congruence effect also depended on correct word order. It was diminished when nouns preceded articles (Experiment 3). Finally, the congruence effect was replicated with a larger set of targets but only for masculine targets (Experiment 4). Results are discussed in light of theories of subliminal priming in general and of subliminal syntactic priming in particular.

  17. Water quality real-time monitoring system via biological detection based on video analysis

    NASA Astrophysics Data System (ADS)

    Xin, Chen; Fei, Yuan

    2017-11-01

    With the development of society, water pollution has become the most serious problem in China. Therefore, real-time water quality monitoring is an important part of human activities and water pollution prevention. In this paper, the behavior of zebrafish was monitored by computer vision. Firstly, the moving target was extracted by the method of saliency detection, and tracked by fitting the ellipse model. Then the motion parameters were extracted by optical flow method, and the data were monitored in real time by means of Hinkley warning and threshold warning. We achieved classification warning through a number of dimensions by comprehensive toxicity index. The experimental results show that the system can achieve more accurate real-time monitoring.

  18. GPU based cloud system for high-performance arrhythmia detection with parallel k-NN algorithm.

    PubMed

    Tae Joon Jun; Hyun Ji Park; Hyuk Yoo; Young-Hak Kim; Daeyoung Kim

    2016-08-01

    In this paper, we propose an GPU based Cloud system for high-performance arrhythmia detection. Pan-Tompkins algorithm is used for QRS detection and we optimized beat classification algorithm with K-Nearest Neighbor (K-NN). To support high performance beat classification on the system, we parallelized beat classification algorithm with CUDA to execute the algorithm on virtualized GPU devices on the Cloud system. MIT-BIH Arrhythmia database is used for validation of the algorithm. The system achieved about 93.5% of detection rate which is comparable to previous researches while our algorithm shows 2.5 times faster execution time compared to CPU only detection algorithm.

  19. Classification of video sequences into chosen generalized use classes of target size and lighting level.

    PubMed

    Leszczuk, Mikołaj; Dudek, Łukasz; Witkowski, Marcin

    The VQiPS (Video Quality in Public Safety) Working Group, supported by the U.S. Department of Homeland Security, has been developing a user guide for public safety video applications. According to VQiPS, five parameters have particular importance influencing the ability to achieve a recognition task. They are: usage time-frame, discrimination level, target size, lighting level, and level of motion. These parameters form what are referred to as Generalized Use Classes (GUCs). The aim of our research was to develop algorithms that would automatically assist classification of input sequences into one of the GUCs. Target size and lighting level parameters were approached. The experiment described reveals the experts' ambiguity and hesitation during the manual target size determination process. However, the automatic methods developed for target size classification make it possible to determine GUC parameters with 70 % compliance to the end-users' opinion. Lighting levels of the entire sequence can be classified with an efficiency reaching 93 %. To make the algorithms available for use, a test application has been developed. It is able to process video files and display classification results, the user interface being very simple and requiring only minimal user interaction.

  20. Robust online tracking via adaptive samples selection with saliency detection

    NASA Astrophysics Data System (ADS)

    Yan, Jia; Chen, Xi; Zhu, QiuPing

    2013-12-01

    Online tracking has shown to be successful in tracking of previously unknown objects. However, there are two important factors which lead to drift problem of online tracking, the one is how to select the exact labeled samples even when the target locations are inaccurate, and the other is how to handle the confusors which have similar features with the target. In this article, we propose a robust online tracking algorithm with adaptive samples selection based on saliency detection to overcome the drift problem. To deal with the problem of degrading the classifiers using mis-aligned samples, we introduce the saliency detection method to our tracking problem. Saliency maps and the strong classifiers are combined to extract the most correct positive samples. Our approach employs a simple yet saliency detection algorithm based on image spectral residual analysis. Furthermore, instead of using the random patches as the negative samples, we propose a reasonable selection criterion, in which both the saliency confidence and similarity are considered with the benefits that confusors in the surrounding background are incorporated into the classifiers update process before the drift occurs. The tracking task is formulated as a binary classification via online boosting framework. Experiment results in several challenging video sequences demonstrate the accuracy and stability of our tracker.

  1. Unsupervised and self-mapping category formation and semantic object recognition for mobile robot vision used in an actual environment

    NASA Astrophysics Data System (ADS)

    Madokoro, H.; Tsukada, M.; Sato, K.

    2013-07-01

    This paper presents an unsupervised learning-based object category formation and recognition method for mobile robot vision. Our method has the following features: detection of feature points and description of features using a scale-invariant feature transform (SIFT), selection of target feature points using one class support vector machines (OC-SVMs), generation of visual words using self-organizing maps (SOMs), formation of labels using adaptive resonance theory 2 (ART-2), and creation and classification of categories on a category map of counter propagation networks (CPNs) for visualizing spatial relations between categories. Classification results of dynamic images using time-series images obtained using two different-size robots and according to movements respectively demonstrate that our method can visualize spatial relations of categories while maintaining time-series characteristics. Moreover, we emphasize the effectiveness of our method for category formation of appearance changes of objects.

  2. Cytogenetics in the management of acute myeloid leukemia: an update by the Groupe francophone de cytogénétique hématologique (GFCH).

    PubMed

    Luquet, Isabelle; Bidet, Audrey; Cuccuini, Wendy; Lafage-Pochitaloff, Marina; Mozziconacci, Marie-Joëlle; Terré, Christine

    2016-10-01

    The karyotype is critical for the evaluation of acute myeloid leukemia (AML) at diagnosis. Cytogenetic abnormalities detected in AML are one of the most powerful independent prognostic factors. It impacts on the choice of treatment in clinical trials. All chromosomes can be targeted, common chromosomal abnormalities are recurrent and may be associated with a cytological well-defined type. In 40% of the cases, the karyotype is normal and must be associated with molecular biology studies that can refine the prognosis. The usefulness of the karyotype is more limited during the follow-up of the patient due to its limited sensitivity, but it is still useful in the clinical management of relapse. Since 2001, the WHO (World Health Organization) classification of hematological malignancies integrates cytogenetic data in the classification of AML. Karyotype is therefore mandatory in the diagnosis of AML.

  3. Image-based fall detection and classification of a user with a walking support system

    NASA Astrophysics Data System (ADS)

    Taghvaei, Sajjad; Kosuge, Kazuhiro

    2017-10-01

    The classification of visual human action is important in the development of systems that interact with humans. This study investigates an image-based classification of the human state while using a walking support system to improve the safety and dependability of these systems.We categorize the possible human behavior while utilizing a walker robot into eight states (i.e., sitting, standing, walking, and five falling types), and propose two different methods, namely, normal distribution and hidden Markov models (HMMs), to detect and recognize these states. The visual feature for the state classification is the centroid position of the upper body, which is extracted from the user's depth images. The first method shows that the centroid position follows a normal distribution while walking, which can be adopted to detect any non-walking state. The second method implements HMMs to detect and recognize these states. We then measure and compare the performance of both methods. The classification results are employed to control the motion of a passive-type walker (called "RT Walker") by activating its brakes in non-walking states. Thus, the system can be used for sit/stand support and fall prevention. The experiments are performed with four subjects, including an experienced physiotherapist. Results show that the algorithm can be adapted to the new user's motion pattern within 40 s, with a fall detection rate of 96.25% and state classification rate of 81.0%. The proposed method can be implemented to other abnormality detection/classification applications that employ depth image-sensing devices.

  4. Remote sensing based detection of forested wetlands: An evaluation of LiDAR, aerial imagery, and their data fusion

    NASA Astrophysics Data System (ADS)

    Suiter, Ashley Elizabeth

    Multi-spectral imagery provides a robust and low-cost dataset for assessing wetland extent and quality over broad regions and is frequently used for wetland inventories. However in forested wetlands, hydrology is obscured by tree canopy making it difficult to detect with multi-spectral imagery alone. Because of this, classification of forested wetlands often includes greater errors than that of other wetlands types. Elevation and terrain derivatives have been shown to be useful for modelling wetland hydrology. But, few studies have addressed the use of LiDAR intensity data detecting hydrology in forested wetlands. Due the tendency of LiDAR signal to be attenuated by water, this research proposed the fusion of LiDAR intensity data with LiDAR elevation, terrain data, and aerial imagery, for the detection of forested wetland hydrology. We examined the utility of LiDAR intensity data and determined whether the fusion of Lidar derived data with multispectral imagery increased the accuracy of forested wetland classification compared with a classification performed with only multi-spectral image. Four classifications were performed: Classification A -- All Imagery, Classification B -- All LiDAR, Classification C -- LiDAR without Intensity, and Classification D -- Fusion of All Data. These classifications were performed using random forest and each resulted in a 3-foot resolution thematic raster of forested upland and forested wetland locations in Vermilion County, Illinois. The accuracies of these classifications were compared using Kappa Coefficient of Agreement. Importance statistics produced within the random forest classifier were evaluated in order to understand the contribution of individual datasets. Classification D, which used the fusion of LiDAR and multi-spectral imagery as input variables, had moderate to strong agreement between reference data and classification results. It was found that Classification A performed using all the LiDAR data and its derivatives (intensity, elevation, slope, aspect, curvatures, and Topographic Wetness Index) was the most accurate classification with Kappa: 78.04%, indicating moderate to strong agreement. However, Classification C, performed with LiDAR derivative without intensity data had less agreement than would be expected by chance, indicating that LiDAR contributed significantly to the accuracy of Classification B.

  5. Applying Ancestry and Sex Computation as a Quality Control Tool in Targeted Next-Generation Sequencing.

    PubMed

    Mathias, Patrick C; Turner, Emily H; Scroggins, Sheena M; Salipante, Stephen J; Hoffman, Noah G; Pritchard, Colin C; Shirts, Brian H

    2016-03-01

    To apply techniques for ancestry and sex computation from next-generation sequencing (NGS) data as an approach to confirm sample identity and detect sample processing errors. We combined a principal component analysis method with k-nearest neighbors classification to compute the ancestry of patients undergoing NGS testing. By combining this calculation with X chromosome copy number data, we determined the sex and ancestry of patients for comparison with self-report. We also modeled the sensitivity of this technique in detecting sample processing errors. We applied this technique to 859 patient samples with reliable self-report data. Our k-nearest neighbors ancestry screen had an accuracy of 98.7% for patients reporting a single ancestry. Visual inspection of principal component plots was consistent with self-report in 99.6% of single-ancestry and mixed-ancestry patients. Our model demonstrates that approximately two-thirds of potential sample swaps could be detected in our patient population using this technique. Patient ancestry can be estimated from NGS data incidentally sequenced in targeted panels, enabling an inexpensive quality control method when coupled with patient self-report. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. An Adaptive Ship Detection Algorithm for Hrws SAR Images Under Complex Background: Application to SENTINEL1A Data

    NASA Astrophysics Data System (ADS)

    He, G.; Xia, Z.; Chen, H.; Li, K.; Zhao, Z.; Guo, Y.; Feng, P.

    2018-04-01

    Real-time ship detection using synthetic aperture radar (SAR) plays a vital role in disaster emergency and marine security. Especially the high resolution and wide swath (HRWS) SAR images, provides the advantages of high resolution and wide swath synchronously, significantly promotes the wide area ocean surveillance performance. In this study, a novel method is developed for ship target detection by using the HRWS SAR images. Firstly, an adaptive sliding window is developed to propose the suspected ship target areas, based upon the analysis of SAR backscattering intensity images. Then, backscattering intensity and texture features extracted from the training samples of manually selected ship and non-ship slice images, are used to train a support vector machine (SVM) to classify the proposed ship slice images. The approach is verified by using the Sentinl1A data working in interferometric wide swath mode. The results demonstrate the improvement performance of the proposed method over the constant false alarm rate (CFAR) method, where the classification accuracy improved from 88.5 % to 96.4 % and the false alarm rate mitigated from 11.5 % to 3.6 % compared with CFAR respectively.

  7. Surface Water Detection Using Fused Synthetic Aperture Radar, Airborne LiDAR and Optical Imagery

    NASA Astrophysics Data System (ADS)

    Braun, A.; Irwin, K.; Beaulne, D.; Fotopoulos, G.; Lougheed, S. C.

    2016-12-01

    Each remote sensing technique has its unique set of strengths and weaknesses, but by combining techniques the classification accuracy can be increased. The goal of this project is to underline the strengths and weaknesses of Synthetic Aperture Radar (SAR), LiDAR and optical imagery data and highlight the opportunities where integration of the three data types can increase the accuracy of identifying water in a principally natural landscape. The study area is located at the Queen's University Biological Station, Ontario, Canada. TerraSAR-X (TSX) data was acquired between April and July 2016, consisting of four single polarization (HH) staring spotlight mode backscatter intensity images. Grey-level thresholding is used to extract surface water bodies, before identifying and masking zones of radar shadow and layover by using LiDAR elevation models to estimate the canopy height and applying simple geometry algorithms. The airborne LiDAR survey was conducted in June 2014, resulting in a discrete return dataset with a density of 1 point/m2. Radiometric calibration to correct for range and incidence angle is applied, before classifying the points as water or land based on corrected intensity, elevation, roughness, and intensity density. Panchromatic and multispectral (4-band) imagery from Quickbird was collected in September 2005 at spatial resolutions of 0.6m and 2.5m respectively. Pixel-based classification is applied to identify and distinguish water bodies from land. A classification system which inputs SAR-, LiDAR- and optically-derived water presence models in raster formats is developed to exploit the strengths and weaknesses of each technique. The total percentage of water detected in the sample area for SAR backscatter, LiDAR intensity, and optical imagery was 27%, 19% and 18% respectively. The output matrix of the classification system indicates that in over 72% of the study area all three methods agree on the classification. Analysis was specifically targeted towards areas where the methods disagree, highlighting how each technique should be properly weighted over these areas to increase the classification accuracy of water. The conclusions and techniques developed in this study are applicable to other areas where similar environmental conditions and data availability exist.

  8. Superpixel-based classification of gastric chromoendoscopy images

    NASA Astrophysics Data System (ADS)

    Boschetto, Davide; Grisan, Enrico

    2017-03-01

    Chromoendoscopy (CH) is a gastroenterology imaging modality that involves the staining of tissues with methylene blue, which reacts with the internal walls of the gastrointestinal tract, improving the visual contrast in mucosal surfaces and thus enhancing a doctor's ability to screen precancerous lesions or early cancer. This technique helps identify areas that can be targeted for biopsy or treatment and in this work we will focus on gastric cancer detection. Gastric chromoendoscopy for cancer detection has several taxonomies available, one of which classifies CH images into three classes (normal, metaplasia, dysplasia) based on color, shape and regularity of pit patterns. Computer-assisted diagnosis is desirable to help us improve the reliability of the tissue classification and abnormalities detection. However, traditional computer vision methodologies, mainly segmentation, do not translate well to the specific visual characteristics of a gastroenterology imaging scenario. We propose the exploitation of a first unsupervised segmentation via superpixel, which groups pixels into perceptually meaningful atomic regions, used to replace the rigid structure of the pixel grid. For each superpixel, a set of features is extracted and then fed to a random forest based classifier, which computes a model used to predict the class of each superpixel. The average general accuracy of our model is 92.05% in the pixel domain (86.62% in the superpixel domain), while detection accuracies on the normal and abnormal class are respectively 85.71% and 95%. Eventually, the whole image class can be predicted image through a majority vote on each superpixel's predicted class.

  9. Stand-off spectroscopy for the detection of chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Clewes, Rhea J.; Howle, Chris R.; Stothard, David J. M.; Dunn, Malcolm H.; Robertson, Gordon; Miller, William; Malcolm, Graeme; Maker, Gareth; Cox, Rick; Williams, Brad; Russell, Matt

    2012-10-01

    The most desirable configuration for detection of toxic chemicals utilises the maximum distance between detector and hazard. This approach minimises the contamination of equipment or personnel. Where the target chemical is an involatile liquid, indirect detection of the liquid contamination is made difficult by inherently low vapour pressure. In this instance, direct detection of the chemical hazard is the best approach. Recent technology developments have allowed spectroscopic systems to provide multiple options for the stand-off detection of involatile chemical warfare agents (CWAs). Two different stand-off spectroscopic systems, based upon IR absorption and Raman spectroscopic techniques are described here. The Negative Contrast Imager (NCI) is based upon an optical parametric oscillator (OPO) source comprising a Q-switched intracavity MgO:PPLN crystal. This crystal has a fanned grating design and wavelength tuning is achieved by translating the PPLN crystal within the 1064 nm pump beam. This approach enables the production of shortwave and midwave IR radiation (1.5 - 1.8 μm and 2.6 - 3.8 μm, respectively), which is scanned across the scene of interest. Target materials that have an absorption feature commensurate with the wavelength of incoming radiation reduce the intensity of returned signal, resulting in dark pixels in the acquired image. This method enables location and classification of the target material. Stand-off Raman spectroscopy allows target chemicals to be identified at range through comparison of the acquired signature relative to a spectral database. In this work, we used a Raman system based upon a 1047 nm Nd:YLF laser source and a proprietary InGaAsP camera system. Utilisation of a longer excitation wavelength than most conventional stand-off detection systems (e.g. 532 or 785 nm) enables reduction of fluorescence from both the surface and the deposited chemicals, thereby revealing the Raman spectrum. NCI and Raman spectroscopy are able to detect CWAs on surfaces at distances of 2 - 10 metres and have potential to detect over longer ranges. We report the successful identification of at least 60 μl of nitrogen mustard at a distance of a 2 m and 10 m using NCI and Raman spectroscopy.

  10. A machine-learned computational functional genomics-based approach to drug classification.

    PubMed

    Lötsch, Jörn; Ultsch, Alfred

    2016-12-01

    The public accessibility of "big data" about the molecular targets of drugs and the biological functions of genes allows novel data science-based approaches to pharmacology that link drugs directly with their effects on pathophysiologic processes. This provides a phenotypic path to drug discovery and repurposing. This paper compares the performance of a functional genomics-based criterion to the traditional drug target-based classification. Knowledge discovery in the DrugBank and Gene Ontology databases allowed the construction of a "drug target versus biological process" matrix as a combination of "drug versus genes" and "genes versus biological processes" matrices. As a canonical example, such matrices were constructed for classical analgesic drugs. These matrices were projected onto a toroid grid of 50 × 82 artificial neurons using a self-organizing map (SOM). The distance, respectively, cluster structure of the high-dimensional feature space of the matrices was visualized on top of this SOM using a U-matrix. The cluster structure emerging on the U-matrix provided a correct classification of the analgesics into two main classes of opioid and non-opioid analgesics. The classification was flawless with both the functional genomics and the traditional target-based criterion. The functional genomics approach inherently included the drugs' modulatory effects on biological processes. The main pharmacological actions known from pharmacological science were captures, e.g., actions on lipid signaling for non-opioid analgesics that comprised many NSAIDs and actions on neuronal signal transmission for opioid analgesics. Using machine-learned techniques for computational drug classification in a comparative assessment, a functional genomics-based criterion was found to be similarly suitable for drug classification as the traditional target-based criterion. This supports a utility of functional genomics-based approaches to computational system pharmacology for drug discovery and repurposing.

  11. Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs

    DTIC Science & Technology

    2015-05-26

    FINAL REPORT Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs SERDP...DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is...2015 Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXO’s W912HQ-12-C-0049 MR

  12. Decentralized asset management for collaborative sensing

    NASA Astrophysics Data System (ADS)

    Malhotra, Raj P.; Pribilski, Michael J.; Toole, Patrick A.; Agate, Craig

    2017-05-01

    There has been increased impetus to leverage Small Unmanned Aerial Systems (SUAS) for collaborative sensing applications in which many platforms work together to provide critical situation awareness in dynamic environments. Such applications require critical sensor observations to be made at the right place and time to facilitate the detection, tracking, and classification of ground-based objects. This further requires rapid response to real-world events and the balancing of multiple, competing mission objectives. In this context, human operators become overwhelmed with management of many platforms. Further, current automated planning paradigms tend to be centralized and don't scale up well to many collaborating platforms. We introduce a decentralized approach based upon information-theory and distributed fusion which enable us to scale up to large numbers of collaborating Small Unmanned Aerial Systems (SUAS) platforms. This is exercised against a military application involving the autonomous detection, tracking, and classification of critical mobile targets. We further show that, based upon monte-carlo simulation results, our decentralized approach out-performs more static management strategies employed by human operators and achieves similar results to a centralized approach while being scalable and robust to degradation of communication. Finally, we describe the limitations of our approach and future directions for our research.

  13. Multisensory System for Fruit Harvesting Robots. Experimental Testing in Natural Scenarios and with Different Kinds of Crops

    PubMed Central

    Fernández, Roemi; Salinas, Carlota; Montes, Héctor; Sarria, Javier

    2014-01-01

    The motivation of this research was to explore the feasibility of detecting and locating fruits from different kinds of crops in natural scenarios. To this end, a unique, modular and easily adaptable multisensory system and a set of associated pre-processing algorithms are proposed. The offered multisensory rig combines a high resolution colour camera and a multispectral system for the detection of fruits, as well as for the discrimination of the different elements of the plants, and a Time-Of-Flight (TOF) camera that provides fast acquisition of distances enabling the localisation of the targets in the coordinate space. A controlled lighting system completes the set-up, increasing its flexibility for being used in different working conditions. The pre-processing algorithms designed for the proposed multisensory system include a pixel-based classification algorithm that labels areas of interest that belong to fruits and a registration algorithm that combines the results of the aforementioned classification algorithm with the data provided by the TOF camera for the 3D reconstruction of the desired regions. Several experimental tests have been carried out in outdoors conditions in order to validate the capabilities of the proposed system. PMID:25615730

  14. A model for anomaly classification in intrusion detection systems

    NASA Astrophysics Data System (ADS)

    Ferreira, V. O.; Galhardi, V. V.; Gonçalves, L. B. L.; Silva, R. C.; Cansian, A. M.

    2015-09-01

    Intrusion Detection Systems (IDS) are traditionally divided into two types according to the detection methods they employ, namely (i) misuse detection and (ii) anomaly detection. Anomaly detection has been widely used and its main advantage is the ability to detect new attacks. However, the analysis of anomalies generated can become expensive, since they often have no clear information about the malicious events they represent. In this context, this paper presents a model for automated classification of alerts generated by an anomaly based IDS. The main goal is either the classification of the detected anomalies in well-defined taxonomies of attacks or to identify whether it is a false positive misclassified by the IDS. Some common attacks to computer networks were considered and we achieved important results that can equip security analysts with best resources for their analyses.

  15. A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations.

    PubMed

    Alsalem, M A; Zaidan, A A; Zaidan, B B; Hashim, M; Madhloom, H T; Azeez, N D; Alsyisuf, S

    2018-05-01

    Acute leukaemia diagnosis is a field requiring automated solutions, tools and methods and the ability to facilitate early detection and even prediction. Many studies have focused on the automatic detection and classification of acute leukaemia and their subtypes to promote enable highly accurate diagnosis. This study aimed to review and analyse literature related to the detection and classification of acute leukaemia. The factors that were considered to improve understanding on the field's various contextual aspects in published studies and characteristics were motivation, open challenges that confronted researchers and recommendations presented to researchers to enhance this vital research area. We systematically searched all articles about the classification and detection of acute leukaemia, as well as their evaluation and benchmarking, in three main databases: ScienceDirect, Web of Science and IEEE Xplore from 2007 to 2017. These indices were considered to be sufficiently extensive to encompass our field of literature. Based on our inclusion and exclusion criteria, 89 articles were selected. Most studies (58/89) focused on the methods or algorithms of acute leukaemia classification, a number of papers (22/89) covered the developed systems for the detection or diagnosis of acute leukaemia and few papers (5/89) presented evaluation and comparative studies. The smallest portion (4/89) of articles comprised reviews and surveys. Acute leukaemia diagnosis, which is a field requiring automated solutions, tools and methods, entails the ability to facilitate early detection or even prediction. Many studies have been performed on the automatic detection and classification of acute leukaemia and their subtypes to promote accurate diagnosis. Research areas on medical-image classification vary, but they are all equally vital. We expect this systematic review to help emphasise current research opportunities and thus extend and create additional research fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The value of subtraction MRI in detection of amyloid-related imaging abnormalities with oedema or effusion in Alzheimer's patients: An interobserver study.

    PubMed

    Martens, Roland M; Bechten, Arianne; Ingala, Silvia; van Schijndel, Ronald A; Machado, Vania B; de Jong, Marcus C; Sanchez, Esther; Purcell, Derk; Arrighi, Michael H; Brashear, Robert H; Wattjes, Mike P; Barkhof, Frederik

    2018-03-01

    Immunotherapeutic treatments targeting amyloid-β plaques in Alzheimer's disease (AD) are associated with the presence of amyloid-related imaging abnormalities with oedema or effusion (ARIA-E), whose detection and classification is crucial to evaluate subjects enrolled in clinical trials. To investigate the applicability of subtraction MRI in the ARIA-E detection using an established ARIA-E-rating scale. We included 75 AD patients receiving bapineuzumab treatment, including 29 ARIA-E cases. Five neuroradiologists rated their brain MRI-scans with and without subtraction images. The accuracy of evaluating the presence of ARIA-E, intraclass correlation coefficient (ICC) and specific agreement was calculated. Subtraction resulted in higher sensitivity (0.966) and lower specificity (0.970) than native images (0.959, 0.991, respectively). Individual rater detection was excellent. ICC scores ranged from excellent to good, except for gyral swelling (moderate). Excellent negative and good positive specific agreement among all ARIA-E imaging features was reported in both groups. Combining sulcal hyperintensity and gyral swelling significantly increased positive agreement for subtraction images. Subtraction MRI has potential as a visual aid increasing the sensitivity of ARIA-E assessment. However, in order to improve its usefulness isotropic acquisition and enhanced training are required. The ARIA-E rating scale may benefit from combining sulcal hyperintensity and swelling. • Subtraction technique can improve detection amyloid-related imaging-abnormalities with edema/effusion in Alzheimer's patients. • The value of ARIA-E detection, classification and monitoring using subtraction was assessed. • Validation of an established ARIA-E rating scale, recommendations for improvement are reported. • Complementary statistical methods were employed to measure accuracy, inter-rater-reliability and specific agreement.

  17. Android malware detection based on evolutionary super-network

    NASA Astrophysics Data System (ADS)

    Yan, Haisheng; Peng, Lingling

    2018-04-01

    In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.

  18. Robust through-the-wall radar image classification using a target-model alignment procedure.

    PubMed

    Smith, Graeme E; Mobasseri, Bijan G

    2012-02-01

    A through-the-wall radar image (TWRI) bears little resemblance to the equivalent optical image, making it difficult to interpret. To maximize the intelligence that may be obtained, it is desirable to automate the classification of targets in the image to support human operators. This paper presents a technique for classifying stationary targets based on the high-range resolution profile (HRRP) extracted from 3-D TWRIs. The dependence of the image on the target location is discussed using a system point spread function (PSF) approach. It is shown that the position dependence will cause a classifier to fail, unless the image to be classified is aligned to a classifier-training location. A target image alignment technique based on deconvolution of the image with the system PSF is proposed. Comparison of the aligned target images with measured images shows the alignment process introducing normalized mean squared error (NMSE) ≤ 9%. The HRRP extracted from aligned target images are classified using a naive Bayesian classifier supported by principal component analysis. The classifier is tested using a real TWRI of canonical targets behind a concrete wall and shown to obtain correct classification rates ≥ 97%. © 2011 IEEE

  19. Classifying visuomotor workload in a driving simulator using subject specific spatial brain patterns

    PubMed Central

    Dijksterhuis, Chris; de Waard, Dick; Brookhuis, Karel A.; Mulder, Ben L. J. M.; de Jong, Ritske

    2013-01-01

    A passive Brain Computer Interface (BCI) is a system that responds to the spontaneously produced brain activity of its user and could be used to develop interactive task support. A human-machine system that could benefit from brain-based task support is the driver-car interaction system. To investigate the feasibility of such a system to detect changes in visuomotor workload, 34 drivers were exposed to several levels of driving demand in a driving simulator. Driving demand was manipulated by varying driving speed and by asking the drivers to comply to individually set lane keeping performance targets. Differences in the individual driver's workload levels were classified by applying the Common Spatial Pattern (CSP) and Fisher's linear discriminant analysis to frequency filtered electroencephalogram (EEG) data during an off line classification study. Several frequency ranges, EEG cap configurations, and condition pairs were explored. It was found that classifications were most accurate when based on high frequencies, larger electrode sets, and the frontal electrodes. Depending on these factors, classification accuracies across participants reached about 95% on average. The association between high accuracies and high frequencies suggests that part of the underlying information did not originate directly from neuronal activity. Nonetheless, average classification accuracies up to 75–80% were obtained from the lower EEG ranges that are likely to reflect neuronal activity. For a system designer, this implies that a passive BCI system may use several frequency ranges for workload classifications. PMID:23970851

  20. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    NASA Astrophysics Data System (ADS)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  1. Image patch-based method for automated classification and detection of focal liver lesions on CT

    NASA Astrophysics Data System (ADS)

    Safdari, Mustafa; Pasari, Raghav; Rubin, Daniel; Greenspan, Hayit

    2013-03-01

    We developed a method for automated classification and detection of liver lesions in CT images based on image patch representation and bag-of-visual-words (BoVW). BoVW analysis has been extensively used in the computer vision domain to analyze scenery images. In the current work we discuss how it can be used for liver lesion classification and detection. The methodology includes building a dictionary for a training set using local descriptors and representing a region in the image using a visual word histogram. Two tasks are described: a classification task, for lesion characterization, and a detection task in which a scan window moves across the image and is determined to be normal liver tissue or a lesion. Data: In the classification task 73 CT images of liver lesions were used, 25 images having cysts, 24 having metastasis and 24 having hemangiomas. A radiologist circumscribed the lesions, creating a region of interest (ROI), in each of the images. He then provided the diagnosis, which was established either by biopsy or clinical follow-up. Thus our data set comprises 73 images and 73 ROIs. In the detection task, a radiologist drew ROIs around each liver lesion and two regions of normal liver, for a total of 159 liver lesion ROIs and 146 normal liver ROIs. The radiologist also demarcated the liver boundary. Results: Classification results of more than 95% were obtained. In the detection task, F1 results obtained is 0.76. Recall is 84%, with precision of 73%. Results show the ability to detect lesions, regardless of shape.

  2. Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys

    PubMed Central

    Berry, David; Gutierrez, Tony

    2017-01-01

    Hydrocarbonoclastic bacteria (HCB) play a key role in the biodegradation of oil hydrocarbons in marine and other environments. A small number of taxa have been identified as obligate HCB, notably the Gammaproteobacterial genera Alcanivorax, Cycloclasticus, Marinobacter, Neptumonas, Oleiphilus, Oleispira, and Thalassolituus, as well as the Alphaproteobacterial genus Thalassospira. Detection of HCB in amplicon-based sequencing surveys relies on high coverage by PCR primers and accurate taxonomic classification. In this study, we performed a phylogenetic analysis to identify 16S rRNA gene sequence regions that represent the breadth of sequence diversity within these taxa. Using validated sequences, we evaluated 449 universal 16S rRNA gene-targeted bacterial PCR primer pairs for their coverage of these taxa. The results of this analysis provide a practical framework for selection of suitable primer sets for optimal detection of HCB in sequencing surveys. PMID:28567035

  3. Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys.

    PubMed

    Berry, David; Gutierrez, Tony

    2017-01-01

    Hydrocarbonoclastic bacteria (HCB) play a key role in the biodegradation of oil hydrocarbons in marine and other environments. A small number of taxa have been identified as obligate HCB, notably the Gammaproteobacterial genera Alcanivorax, Cycloclasticus, Marinobacter, Neptumonas, Oleiphilus, Oleispira , and Thalassolituus , as well as the Alphaproteobacterial genus Thalassospira . Detection of HCB in amplicon-based sequencing surveys relies on high coverage by PCR primers and accurate taxonomic classification. In this study, we performed a phylogenetic analysis to identify 16S rRNA gene sequence regions that represent the breadth of sequence diversity within these taxa. Using validated sequences, we evaluated 449 universal 16S rRNA gene-targeted bacterial PCR primer pairs for their coverage of these taxa. The results of this analysis provide a practical framework for selection of suitable primer sets for optimal detection of HCB in sequencing surveys.

  4. Microorganisms detection on substrates using QCL spectroscopy

    NASA Astrophysics Data System (ADS)

    Padilla-Jiménez, Amira C.; Ortiz-Rivera, William; Castro-Suarez, John R.; Ríos-Velázquez, Carlos; Vázquez-Ayala, Iris; Hernández-Rivera, Samuel P.

    2013-05-01

    Recent investigations have focused on the improvement of rapid and accurate methods to develop spectroscopic markers of compounds constituting microorganisms that are considered biological threats. Quantum cascade lasers (QCL) systems have revolutionized many areas of research and development in defense and security applications, including his area of research. Infrared spectroscopy detection based on QCL was employed to acquire mid infrared (MIR) spectral signatures of Bacillus thuringiensis (Bt), Escherichia coli (Ec) and Staphylococcus epidermidis (Se), which were used as biological agent simulants of biothreats. The experiments were carried out in reflection mode on various substrates such as cardboard, glass, travel baggage, wood and stainless steel. Chemometrics statistical routines such as principal component analysis (PCA) regression and partial least squares-discriminant analysis (PLS-DA) were applied to the recorded MIR spectra. The results show that the infrared vibrational techniques investigated are useful for classification/detection of the target microorganisms on the types of substrates studied.

  5. Improved MODIS aerosol retrieval in urban areas using a land classification approach and empirical orthogonal functions

    NASA Astrophysics Data System (ADS)

    Levitan, Nathaniel; Gross, Barry

    2016-10-01

    New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.

  6. Laser range profiling for small target recognition

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Tulldahl, Michael

    2017-03-01

    Long range identification (ID) or ID at closer range of small targets has its limitations in imaging due to the demand for very high-transverse sensor resolution. This is, therefore, a motivation to look for one-dimensional laser techniques for target ID. These include laser vibrometry and laser range profiling. Laser vibrometry can give good results, but is not always robust as it is sensitive to certain vibrating parts on the target being in the field of view. Laser range profiling is attractive because the maximum range can be substantial, especially for a small laser beam width. A range profiler can also be used in a scanning mode to detect targets within a certain sector. The same laser can also be used for active imaging when the target comes closer and is angularly resolved. Our laser range profiler is based on a laser with a pulse width of 6 ns (full width half maximum). This paper will show both experimental and simulated results for laser range profiling of small boats out to a 6 to 7-km range and a unmanned arrial vehicle (UAV) mockup at close range (1.3 km). The naval experiments took place in the Baltic Sea using many other active and passive electro-optical sensors in addition to the profiling system. The UAV experiments showed the need for a high-range resolution, thus we used a photon counting system in addition to the more conventional profiler used in the naval experiments. This paper shows the influence of target pose and range resolution on the capability of classification. The typical resolution (in our case 0.7 m) obtainable with a conventional range finder type of sensor can be used for large target classification with a depth structure over 5 to 10 m or more, but for smaller targets such as a UAV a high resolution (in our case 7.5 mm) is needed to reveal depth structures and surface shapes. This paper also shows the need for 3-D target information to build libraries for comparison of measured and simulated range profiles. At closer ranges, full 3-D images should be preferable.

  7. A Comparison of the Effects of Electrode Implantation and Targeting on Pattern Classification Accuracy for Prosthesis Control

    PubMed Central

    Farrell, Todd R.; Weir, Richard F. ff.

    2011-01-01

    The use of surface versus intramuscular electrodes as well as the effect of electrode targeting on pattern-recognition-based multifunctional prosthesis control was explored. Surface electrodes are touted for their ability to record activity from relatively large portions of muscle tissue. Intramuscular electromyograms (EMGs) can provide focal recordings from deep muscles of the forearm and independent signals relatively free of crosstalk. However, little work has been done to compare the two. Additionally, while previous investigations have either targeted electrodes to specific muscles or used untargeted (symmetric) electrode arrays, no work has compared these approaches to determine if one is superior. The classification accuracies of pattern-recognition-based classifiers utilizing surface and intramuscular as well as targeted and untargeted electrodes were compared across 11 subjects. A repeated-measures analysis of variance revealed that when only EMG amplitude information was used from all available EMG channels, the targeted surface, targeted intramuscular, and untargeted surface electrodes produced similar classification accuracies while the untargeted intramuscular electrodes produced significantly lower accuracies. However, no statistical differences were observed between any of the electrode conditions when additional features were extracted from the EMG signal. It was concluded that the choice of electrode should be driven by clinical factors, such as signal robustness/stability, cost, etc., instead of by classification accuracy. PMID:18713689

  8. Robust spike classification based on frequency domain neural waveform features.

    PubMed

    Yang, Chenhui; Yuan, Yuan; Si, Jennie

    2013-12-01

    We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.

  9. Distributed Peer-to-Peer Target Tracking in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Wang, Sheng; Bi, Dao-Wei; Ma, Jun-Jie

    2007-01-01

    Target tracking is usually a challenging application for wireless sensor networks (WSNs) because it is always computation-intensive and requires real-time processing. This paper proposes a practical target tracking system based on the auto regressive moving average (ARMA) model in a distributed peer-to-peer (P2P) signal processing framework. In the proposed framework, wireless sensor nodes act as peers that perform target detection, feature extraction, classification and tracking, whereas target localization requires the collaboration between wireless sensor nodes for improving the accuracy and robustness. For carrying out target tracking under the constraints imposed by the limited capabilities of the wireless sensor nodes, some practically feasible algorithms, such as the ARMA model and the 2-D integer lifting wavelet transform, are adopted in single wireless sensor nodes due to their outstanding performance and light computational burden. Furthermore, a progressive multi-view localization algorithm is proposed in distributed P2P signal processing framework considering the tradeoff between the accuracy and energy consumption. Finally, a real world target tracking experiment is illustrated. Results from experimental implementations have demonstrated that the proposed target tracking system based on a distributed P2P signal processing framework can make efficient use of scarce energy and communication resources and achieve target tracking successfully.

  10. Electromagnetic packable technology (EMPACT) for detection and characterization of ordnance in post-conflict areas

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory; Miller, Jonathan; Keranen, Joe

    2013-06-01

    Land reclamation efforts in post-conflict regions are often hampered by the presence of Unexploded Ordnance (UXO) or other Explosive Remnants of War (ERW). Surface geophysical methods, such as Electromagnetic Induction (EMI) and magnetometry, are typically applied to screen rehabilitation areas for UXO prior to excavation; however, the prevalence of innocuous magnetic clutter related to indigenous scrap, fragmentation, or geology can severely impede the progress and efficiency of these remediation efforts. Additionally, the variability in surface conditions and local topography necessitates the development of sensor technologies that can be applied to a range of sites including those that prohibit the use of vehicle-mounted or large array systems. We present a man-portable EMI sensor known as the Electromagnetic Packable Technology (EMPACT) system that features a multi-axis sensor configuration in a compact form factor. The system is designed for operation in challenging site conditions and can be used in low ground-standoff modes to detect small and low-metal content objects. The EMPACT acquires high spatial density, multi-axis data that enable high resolution of small objects. This high density data can also be used to provide characterization of target physical features, such as size, material content, and shape. We summarize the development of this system for humanitarian demining operations and present results from preliminary system evaluations against a range of target types. Specifically, we assess the general detection capabilities of the EMPACT system and we evaluate the potential for target classification based on analysis of data and target model features.

  11. Hyperspectral target detection analysis of a cluttered scene from a virtual airborne sensor platform using MuSES

    NASA Astrophysics Data System (ADS)

    Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.

    2017-10-01

    The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been extensively validated and provides a flexible process for signature evaluation and algorithm development.

  12. STUDYING FAINT ULTRA-HARD X-RAY EMISSION FROM AGN IN GOALS LIRGS WITH SWIFT/BAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koss, Michael; Casey, Caitlin M.; Mushotzky, Richard

    2013-03-10

    We present the first analysis of the all-sky Swift Burst Alert Telescope (BAT) ultra-hard X-ray (14-195 keV) data for a targeted list of objects. We find that the BAT data can be studied at three-times-fainter limits than in previous blind detection catalogs based on prior knowledge of source positions and using smaller energy ranges for source detection. We determine the active galactic nucleus (AGN) fraction in 134 nearby (z < 0.05) luminous infrared galaxies (LIRGs) from the GOALS sample. We find that LIRGs have a higher detection frequency than galaxies matched in stellar mass and redshift at 14-195 keV andmore » 24-35 keV. In agreement with work at other wavelengths, the AGN detection fraction increases strongly at high IR luminosity with half of the high-luminosity LIRGs (50%, 6/12, log L{sub IR}/L{sub Sun} > 11.8) detected. The BAT AGN classification shows 97% (37/38) agreement with Chandra and XMM-Newton AGN classification using hardness ratios or detection of an iron K{alpha} line. This confirms our statistical analysis and supports the use of the Swift/BAT all-sky survey to study fainter populations of any category of sources in the ultra-hard X-ray band. BAT AGNs in LIRGs tend to show higher column densities with 40% {+-} 9% showing 14-195 keV/2-10 keV hardness flux ratios suggestive of high or Compton-thick column densities (log N{sub H} > 24 cm{sup -2}), compared to only 12% {+-} 5% of non-LIRG BAT AGNs. We also find that using specific energy ranges of the BAT detector can yield additional sources over total band detections with 24% (5/21) of detections in LIRGs at 24-35 keV not detected at 14-195 keV.« less

  13. Multiple confidence estimates as indices of eyewitness memory.

    PubMed

    Sauer, James D; Brewer, Neil; Weber, Nathan

    2008-08-01

    Eyewitness identification decisions are vulnerable to various influences on witnesses' decision criteria that contribute to false identifications of innocent suspects and failures to choose perpetrators. An alternative procedure using confidence estimates to assess the degree of match between novel and previously viewed faces was investigated. Classification algorithms were applied to participants' confidence data to determine when a confidence value or pattern of confidence values indicated a positive response. Experiment 1 compared confidence group classification accuracy with a binary decision control group's accuracy on a standard old-new face recognition task and found superior accuracy for the confidence group for target-absent trials but not for target-present trials. Experiment 2 used a face mini-lineup task and found reduced target-present accuracy offset by large gains in target-absent accuracy. Using a standard lineup paradigm, Experiments 3 and 4 also found improved classification accuracy for target-absent lineups and, with a more sophisticated algorithm, for target-present lineups. This demonstrates the accessibility of evidence for recognition memory decisions and points to a more sensitive index of memory quality than is afforded by binary decisions.

  14. Epithelial cancer detection by oblique-incidence optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Uribe, Alejandro; Balareddy, Karthik C.; Zou, Jun; Wang, Kenneth K.; Duvic, Madeleine; Wang, Lihong V.

    2009-02-01

    This paper presents a study on non-invasive detection of two common epithelial cancers (skin and esophagus) based on oblique incidence diffuse reflectance spectroscopy (OIDRS). An OIDRS measurement system, which combines fiber optics and MEMS technologies, was developed. In our pilot studies, a total number of 137 cases have been measured in-vivo for skin cancer detection and a total number of 20 biopsy samples have been measured ex-vivo for esophageal cancer detection. To automatically differentiate the cancerous cases from benign ones, a statistical software classification program was also developed. An overall classification accuracy of 90% and 100% has been achieved for skin and esophageal cancer classification, respectively.

  15. UXO Detection and Characterization using new Berkeley UXO Discriminator (BUD)

    NASA Astrophysics Data System (ADS)

    Gasperikova, E.; Morrison, H. F.; Smith, J. T.; Becker, A.

    2006-05-01

    An optimally designed active electromagnetic system (AEM), Berkeley UXO Discriminator, BUD, has been developed for detection and characterization of UXO in the 20 mm to 150 mm size range. The system incorporates three orthogonal transmitters, and eight pairs of differenced receivers. The transmitter-receiver assembly together with the acquisition box, as well as the battery power and GPS receiver, is mounted on a small cart to assure system mobility. BUD not only detects the object itself but also quantitatively determines its size, shape, orientation, and metal content (ferrous or non-ferrous, mixed metals). Moreover, the principal polarizabilities and size of a metallic target can be determined from a single position of the BUD platform. The search for UXO is a two-step process. The object must first be detected and its location determined then the parameters of the object must be defined. A satisfactory classification scheme is one that determines the principal dipole polarizabilities of a target. While UXO objects have a single major polarizability (principal moment) coincident with the long axis of the object and two equal transverse polarizabilities, the scrap metal has all three principal moments entirely different. This description of the inherent polarizabilities of a target is a major advance in discriminating UXO from irregular scrap metal. Our results clearly show that BUD can resolve the intrinsic polarizabilities of a target and that there are very clear distinctions between symmetric intact UXO and irregular scrap metal. Target properties are determined by an inversion algorithm, which at any given time inverts the response to yield the location (x, y, z) of the target, its attitude and its principal polarizabilities (yielding an apparent aspect ratio). Signal-to-noise estimates (or measurements) are interpreted in this inversion to yield error estimates on the location, attitude and polarizabilities. This inversion at a succession of times provides the polarizabilities as a function of time, which can in turn yield the size, true aspect ratio and estimates of the conductivity and permeability of the target. The accuracy of these property estimates depends on the time window over which the polarizability measurements, and their accuracies, are known. Initial tests at a local site over a variety of test objects and inert UXOs showed excellent detection and characterization results within the predicted size-depth range. This research was funded by the U.S. Department of Defense under ESTCP Project # UX-0437.

  16. Infrared variation reduction by simultaneous background suppression and target contrast enhancement for deep convolutional neural network-based automatic target recognition

    NASA Astrophysics Data System (ADS)

    Kim, Sungho

    2017-06-01

    Automatic target recognition (ATR) is a traditionally challenging problem in military applications because of the wide range of infrared (IR) image variations and the limited number of training images. IR variations are caused by various three-dimensional target poses, noncooperative weather conditions (fog and rain), and difficult target acquisition environments. Recently, deep convolutional neural network-based approaches for RGB images (RGB-CNN) showed breakthrough performance in computer vision problems, such as object detection and classification. The direct use of RGB-CNN to the IR ATR problem fails to work because of the IR database problems (limited database size and IR image variations). An IR variation-reduced deep CNN (IVR-CNN) to cope with the problems is presented. The problem of limited IR database size is solved by a commercial thermal simulator (OKTAL-SE). The second problem of IR variations is mitigated by the proposed shifted ramp function-based intensity transformation. This can suppress the background and enhance the target contrast simultaneously. The experimental results on the synthesized IR images generated by the thermal simulator (OKTAL-SE) validated the feasibility of IVR-CNN for military ATR applications.

  17. Innovative vehicle classification strategies : using LIDAR to do more for less.

    DOT National Transportation Integrated Search

    2012-06-23

    This study examines LIDAR (light detection and ranging) based vehicle classification and classification : performance monitoring. First, we develop a portable LIDAR based vehicle classification system that can : be rapidly deployed, and then we use t...

  18. Single-trial EEG RSVP classification using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Shamwell, Jared; Lee, Hyungtae; Kwon, Heesung; Marathe, Amar R.; Lawhern, Vernon; Nothwang, William

    2016-05-01

    Traditionally, Brain-Computer Interfaces (BCI) have been explored as a means to return function to paralyzed or otherwise debilitated individuals. An emerging use for BCIs is in human-autonomy sensor fusion where physiological data from healthy subjects is combined with machine-generated information to enhance the capabilities of artificial systems. While human-autonomy fusion of physiological data and computer vision have been shown to improve classification during visual search tasks, to date these approaches have relied on separately trained classification models for each modality. We aim to improve human-autonomy classification performance by developing a single framework that builds codependent models of human electroencephalograph (EEG) and image data to generate fused target estimates. As a first step, we developed a novel convolutional neural network (CNN) architecture and applied it to EEG recordings of subjects classifying target and non-target image presentations during a rapid serial visual presentation (RSVP) image triage task. The low signal-to-noise ratio (SNR) of EEG inherently limits the accuracy of single-trial classification and when combined with the high dimensionality of EEG recordings, extremely large training sets are needed to prevent overfitting and achieve accurate classification from raw EEG data. This paper explores a new deep CNN architecture for generalized multi-class, single-trial EEG classification across subjects. We compare classification performance from the generalized CNN architecture trained across all subjects to the individualized XDAWN, HDCA, and CSP neural classifiers which are trained and tested on single subjects. Preliminary results show that our CNN meets and slightly exceeds the performance of the other classifiers despite being trained across subjects.

  19. Model selection for anomaly detection

    NASA Astrophysics Data System (ADS)

    Burnaev, E.; Erofeev, P.; Smolyakov, D.

    2015-12-01

    Anomaly detection based on one-class classification algorithms is broadly used in many applied domains like image processing (e.g. detection of whether a patient is "cancerous" or "healthy" from mammography image), network intrusion detection, etc. Performance of an anomaly detection algorithm crucially depends on a kernel, used to measure similarity in a feature space. The standard approaches (e.g. cross-validation) for kernel selection, used in two-class classification problems, can not be used directly due to the specific nature of a data (absence of a second, abnormal, class data). In this paper we generalize several kernel selection methods from binary-class case to the case of one-class classification and perform extensive comparison of these approaches using both synthetic and real-world data.

  20. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure.

    PubMed

    Bender, Andreas; Scheiber, Josef; Glick, Meir; Davies, John W; Azzaoui, Kamal; Hamon, Jacques; Urban, Laszlo; Whitebread, Steven; Jenkins, Jeremy L

    2007-06-01

    Preclinical Safety Pharmacology (PSP) attempts to anticipate adverse drug reactions (ADRs) during early phases of drug discovery by testing compounds in simple, in vitro binding assays (that is, preclinical profiling). The selection of PSP targets is based largely on circumstantial evidence of their contribution to known clinical ADRs, inferred from findings in clinical trials, animal experiments, and molecular studies going back more than forty years. In this work we explore PSP chemical space and its relevance for the prediction of adverse drug reactions. Firstly, in silico (computational) Bayesian models for 70 PSP-related targets were built, which are able to detect 93% of the ligands binding at IC(50) < or = 10 microM at an overall correct classification rate of about 94%. Secondly, employing the World Drug Index (WDI), a model for adverse drug reactions was built directly based on normalized side-effect annotations in the WDI, which does not require any underlying functional knowledge. This is, to our knowledge, the first attempt to predict adverse drug reactions across hundreds of categories from chemical structure alone. On average 90% of the adverse drug reactions observed with known, clinically used compounds were detected, an overall correct classification rate of 92%. Drugs withdrawn from the market (Rapacuronium, Suprofen) were tested in the model and their predicted ADRs align well with known ADRs. The analysis was repeated for acetylsalicylic acid and Benperidol which are still on the market. Importantly, features of the models are interpretable and back-projectable to chemical structure, raising the possibility of rationally engineering out adverse effects. By combining PSP and ADR models new hypotheses linking targets and adverse effects can be proposed and examples for the opioid mu and the muscarinic M2 receptors, as well as for cyclooxygenase-1 are presented. It is hoped that the generation of predictive models for adverse drug reactions is able to help support early SAR to accelerate drug discovery and decrease late stage attrition in drug discovery projects. In addition, models such as the ones presented here can be used for compound profiling in all development stages.

  1. Misclassification Errors in Unsupervised Classification Methods. Comparison Based on the Simulation of Targeted Proteomics Data

    PubMed Central

    Andreev, Victor P; Gillespie, Brenda W; Helfand, Brian T; Merion, Robert M

    2016-01-01

    Unsupervised classification methods are gaining acceptance in omics studies of complex common diseases, which are often vaguely defined and are likely the collections of disease subtypes. Unsupervised classification based on the molecular signatures identified in omics studies have the potential to reflect molecular mechanisms of the subtypes of the disease and to lead to more targeted and successful interventions for the identified subtypes. Multiple classification algorithms exist but none is ideal for all types of data. Importantly, there are no established methods to estimate sample size in unsupervised classification (unlike power analysis in hypothesis testing). Therefore, we developed a simulation approach allowing comparison of misclassification errors and estimating the required sample size for a given effect size, number, and correlation matrix of the differentially abundant proteins in targeted proteomics studies. All the experiments were performed in silico. The simulated data imitated the expected one from the study of the plasma of patients with lower urinary tract dysfunction with the aptamer proteomics assay Somascan (SomaLogic Inc, Boulder, CO), which targeted 1129 proteins, including 330 involved in inflammation, 180 in stress response, 80 in aging, etc. Three popular clustering methods (hierarchical, k-means, and k-medoids) were compared. K-means clustering performed much better for the simulated data than the other two methods and enabled classification with misclassification error below 5% in the simulated cohort of 100 patients based on the molecular signatures of 40 differentially abundant proteins (effect size 1.5) from among the 1129-protein panel. PMID:27524871

  2. Space-valence priming with subliminal and supraliminal words.

    PubMed

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime "up" before the target "happy") than with an incongruent prime (e.g., the prime "up" before the target "sad"). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments.

  3. Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces

    PubMed Central

    Sellers, Eric W.; Wang, Xingyu

    2013-01-01

    Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude, which can increase brain–computer interface (BCI) classification accuracy and decrease the number of flashes needed for accurate character classification. However, longer TTIs requires more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online results showed that the 16-flash pattern yielded the lowest classification accuracy among the three patterns. The results also showed that the 18-flash pattern provides a significantly higher information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high accuracy for all subjects. PMID:22350331

  4. A radar-enabled collaborative sensor network integrating COTS technology for surveillance and tracking.

    PubMed

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R; Demirer, R Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (<$50 US) miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  5. Novel Mahalanobis-based feature selection improves one-class classification of early hepatocellular carcinoma.

    PubMed

    Thomaz, Ricardo de Lima; Carneiro, Pedro Cunha; Bonin, João Eliton; Macedo, Túlio Augusto Alves; Patrocinio, Ana Claudia; Soares, Alcimar Barbosa

    2018-05-01

    Detection of early hepatocellular carcinoma (HCC) is responsible for increasing survival rates in up to 40%. One-class classifiers can be used for modeling early HCC in multidetector computed tomography (MDCT), but demand the specific knowledge pertaining to the set of features that best describes the target class. Although the literature outlines several features for characterizing liver lesions, it is unclear which is most relevant for describing early HCC. In this paper, we introduce an unconstrained GA feature selection algorithm based on a multi-objective Mahalanobis fitness function to improve the classification performance for early HCC. We compared our approach to a constrained Mahalanobis function and two other unconstrained functions using Welch's t-test and Gaussian Data Descriptors. The performance of each fitness function was evaluated by cross-validating a one-class SVM. The results show that the proposed multi-objective Mahalanobis fitness function is capable of significantly reducing data dimensionality (96.4%) and improving one-class classification of early HCC (0.84 AUC). Furthermore, the results provide strong evidence that intensity features extracted at the arterial to portal and arterial to equilibrium phases are important for classifying early HCC.

  6. Histological, molecular and functional subtypes of breast cancers

    PubMed Central

    Malhotra, Gautam K; Zhao, Xiangshan; Band, Hamid

    2010-01-01

    Increased understanding of the molecular heterogeneity that is intrinsic to the various subtypes of breast cancer will likely shape the future of breast cancer diagnosis, prognosis and treatment. Advances in the field over the last several decades have been remarkable and have clearly translated into better patient care as evidenced by the earlier detection, better prognosis and new targeted therapies. There have been two recent advances in the breast cancer research field that have lead to paradigm shifts: first, the identification of intrinsic breast tumor subtypes, which has changed the way we think about breast cancer and second, the recent characterization of cancer stem cells (CSCs), which are suspected to be responsible for tumor initiation, recurrence and resistance to therapy. These findings have opened new exciting avenues to think about breast cancer therapeutic strategies. While these advances constitute major paradigm shifts within the research realm, the clinical arena has yet to adopt and apply our understanding of the molecular basis of the disease to early diagnosis, prognosis and therapy of breast cancers. Here, we will review the current clinical approach to classification of breast cancers, newer molecular-based classification schemes and potential future of biomarkers representing a functional classification of breast cancer. PMID:21057215

  7. Local structure preserving sparse coding for infrared target recognition

    PubMed Central

    Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa

    2017-01-01

    Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824

  8. Fusion and Gaussian mixture based classifiers for SONAR data

    NASA Astrophysics Data System (ADS)

    Kotari, Vikas; Chang, KC

    2011-06-01

    Underwater mines are inexpensive and highly effective weapons. They are difficult to detect and classify. Hence detection and classification of underwater mines is essential for the safety of naval vessels. This necessitates a formulation of highly efficient classifiers and detection techniques. Current techniques primarily focus on signals from one source. Data fusion is known to increase the accuracy of detection and classification. In this paper, we formulated a fusion-based classifier and a Gaussian mixture model (GMM) based classifier for classification of underwater mines. The emphasis has been on sound navigation and ranging (SONAR) signals due to their extensive use in current naval operations. The classifiers have been tested on real SONAR data obtained from University of California Irvine (UCI) repository. The performance of both GMM based classifier and fusion based classifier clearly demonstrate their superior classification accuracy over conventional single source cases and validate our approach.

  9. Continuous Active Sonar for Undersea Vehicles Final Report: Input of Factor Graphs into the Detection, Classification, and Localization Chain and Continuous Active SONAR in Undersea Vehicles

    DTIC Science & Technology

    2015-12-31

    image from NURP annual report. in X The ray -cone code simulates the CAS signal received after being reflected form two different targets, and...Cm where m, m, ... , 1fn are X ’s parents, and nodes C1, C1, ... , C,, are X ’s children. Image based on (Duda, Hart, & Stork, 2001). The first...Sorenson, 1970). Using the reference (Welch & Bishop, 2006), the procedure for estimating the real state x , of a discrete-time controlled process , will

  10. Study of the atmospheric effects on the radiation detected by the sensor aboard orbiting platforms (ERTS/LANDSAT). M.S. Thesis - October 1978; [Ribeirao Preto and Brasilia, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Morimoto, T.

    1980-01-01

    The author has identified the following significant results. Multispectral scanner data for Brasilia was corrected for atmospheric interference using the LOWTRAN-3 computer program and the analytical solution of the radiative transfer equation. This improved the contrast between two natural targets and the corrected images of two different dates were more similar than the original ones. Corrected images of MSS data for Ribeirao Preto gave a classification accuracy for sugar cane about 10% higher as compared to the original images.

  11. Mid-Infrared Interferometric Monitoring of Evolved Stars: The Dust Shell Around the Mira Variable RR Aquilae at 13 Epochs

    DTIC Science & Technology

    2011-01-01

    photometric and interferometric data. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF...λ = 2.2 μm, Δλ = 0.4 μm) angular size with the Infrared Optical Telescope Array ( IOTA ). The uniform disk diameter (UD) of θUD = 10.73 ± 0.66 mas at...with IOTA in the H-band, and classified RR Aql as a target with no detectable asymmetries. The IRAS flux at 12 μm is 332 Jy. The light curve in the V

  12. Detection of bulk explosives using the GPR only portion of the HSTAMIDS system

    NASA Astrophysics Data System (ADS)

    Tabony, Joshua; Carlson, Douglas O.; Duvoisin, Herbert A., III; Torres-Rosario, Juan

    2010-04-01

    The legacy AN/PSS-14 (Army-Navy Portable Special Search-14) Handheld Mine Detecting Set (also called HSTAMIDS for Handheld Standoff Mine Detection System) has proven itself over the last 7 years as the state-of-the-art in land mine detection, both for the US Army and for Humanitarian Demining groups. Its dual GPR (Ground Penetrating Radar) and MD (Metal Detection) sensor has provided receiver operating characteristic curves (probability of detection or Pd versus false alarm rate or FAR) that routinely set the mark for such devices. Since its inception and type-classification in 2003 as the US (United States) Army standard, the desire for use of the AN/PSS-14 against alternate threats - such as bulk explosives - has recently become paramount. To this end, L-3 CyTerra has developed and tested bulk explosive detection and discrimination algorithms using only the Stepped Frequency Continuous Wave (SFCW) Ground Penetrating Radar (GPR) portion of the system, versus the fused version that is used to optimally detect land mines. Performance of the new bulk explosive algorithm against representative zero-metal bulk explosive target and clutter emplacements is depicted, with the utility to the operator also described.

  13. Arrogance analysis of several typical pattern recognition classifiers

    NASA Astrophysics Data System (ADS)

    Jing, Chen; Xia, Shengping; Hu, Weidong

    2007-04-01

    Various kinds of classification methods have been developed. However, most of these classical methods, such as Back-Propagation (BP), Bayesian method, Support Vector Machine(SVM), Self-Organizing Map (SOM) are arrogant. A so-called arrogance, for a human, means that his decision, which even is a mistake, overstates his actual experience. Accordingly, we say that he is a arrogant if he frequently makes arrogant decisions. Likewise, some classical pattern classifiers represent the similar characteristic of arrogance. Given an input feature vector, we say a classifier is arrogant in its classification if its veracity is high yet its experience is low. Typically, for a new sample which is distinguishable from original training samples, traditional classifiers recognize it as one of the known targets. Clearly, arrogance in classification is an undesirable attribute. Conversely, a classifier is non-arrogant in its classification if there is a reasonable balance between its veracity and its experience. Inquisitiveness is, in many ways, the opposite of arrogance. In nature, inquisitiveness is an eagerness for knowledge characterized by the drive to question, to seek a deeper understanding. The human capacity to doubt present beliefs allows us to acquire new experiences and to learn from our mistakes. Within the discrete world of computers, inquisitive pattern recognition is the constructive investigation and exploitation of conflict in information. Thus, we quantify this balance and discuss new techniques that will detect arrogance in a classifier.

  14. Track classification within wireless sensor network

    NASA Astrophysics Data System (ADS)

    Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2017-05-01

    In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  15. ICO amplicon NGS data analysis: a Web tool for variant detection in common high-risk hereditary cancer genes analyzed by amplicon GS Junior next-generation sequencing.

    PubMed

    Lopez-Doriga, Adriana; Feliubadaló, Lídia; Menéndez, Mireia; Lopez-Doriga, Sergio; Morón-Duran, Francisco D; del Valle, Jesús; Tornero, Eva; Montes, Eva; Cuesta, Raquel; Campos, Olga; Gómez, Carolina; Pineda, Marta; González, Sara; Moreno, Victor; Capellá, Gabriel; Lázaro, Conxi

    2014-03-01

    Next-generation sequencing (NGS) has revolutionized genomic research and is set to have a major impact on genetic diagnostics thanks to the advent of benchtop sequencers and flexible kits for targeted libraries. Among the main hurdles in NGS are the difficulty of performing bioinformatic analysis of the huge volume of data generated and the high number of false positive calls that could be obtained, depending on the NGS technology and the analysis pipeline. Here, we present the development of a free and user-friendly Web data analysis tool that detects and filters sequence variants, provides coverage information, and allows the user to customize some basic parameters. The tool has been developed to provide accurate genetic analysis of targeted sequencing of common high-risk hereditary cancer genes using amplicon libraries run in a GS Junior System. The Web resource is linked to our own mutation database, to assist in the clinical classification of identified variants. We believe that this tool will greatly facilitate the use of the NGS approach in routine laboratories.

  16. Iris Image Classification Based on Hierarchical Visual Codebook.

    PubMed

    Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang

    2014-06-01

    Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection.

  17. Automated detection and recognition of wildlife using thermal cameras.

    PubMed

    Christiansen, Peter; Steen, Kim Arild; Jørgensen, Rasmus Nyholm; Karstoft, Henrik

    2014-07-30

    In agricultural mowing operations, thousands of animals are injured or killed each year, due to the increased working widths and speeds of agricultural machinery. Detection and recognition of wildlife within the agricultural fields is important to reduce wildlife mortality and, thereby, promote wildlife-friendly farming. The work presented in this paper contributes to the automated detection and classification of animals in thermal imaging. The methods and results are based on top-view images taken manually from a lift to motivate work towards unmanned aerial vehicle-based detection and recognition. Hot objects are detected based on a threshold dynamically adjusted to each frame. For the classification of animals, we propose a novel thermal feature extraction algorithm. For each detected object, a thermal signature is calculated using morphological operations. The thermal signature describes heat characteristics of objects and is partly invariant to translation, rotation, scale and posture. The discrete cosine transform (DCT) is used to parameterize the thermal signature and, thereby, calculate a feature vector, which is used for subsequent classification. Using a k-nearest-neighbor (kNN) classifier, animals are discriminated from non-animals with a balanced classification accuracy of 84.7% in an altitude range of 3-10 m and an accuracy of 75.2% for an altitude range of 10-20 m. To incorporate temporal information in the classification, a tracking algorithm is proposed. Using temporal information improves the balanced classification accuracy to 93.3% in an altitude range 3-10 of meters and 77.7% in an altitude range of 10-20 m.

  18. Single-accelerometer-based daily physical activity classification.

    PubMed

    Long, Xi; Yin, Bin; Aarts, Ronald M

    2009-01-01

    In this study, a single tri-axial accelerometer placed on the waist was used to record the acceleration data for human physical activity classification. The data collection involved 24 subjects performing daily real-life activities in a naturalistic environment without researchers' intervention. For the purpose of assessing customers' daily energy expenditure, walking, running, cycling, driving, and sports were chosen as target activities for classification. This study compared a Bayesian classification with that of a Decision Tree based approach. A Bayes classifier has the advantage to be more extensible, requiring little effort in classifier retraining and software update upon further expansion or modification of the target activities. Principal components analysis was applied to remove the correlation among features and to reduce the feature vector dimension. Experiments using leave-one-subject-out and 10-fold cross validation protocols revealed a classification accuracy of approximately 80%, which was comparable with that obtained by a Decision Tree classifier.

  19. Training sample selection based on self-training for liver cirrhosis classification using ultrasound images

    NASA Astrophysics Data System (ADS)

    Fujita, Yusuke; Mitani, Yoshihiro; Hamamoto, Yoshihiko; Segawa, Makoto; Terai, Shuji; Sakaida, Isao

    2017-03-01

    Ultrasound imaging is a popular and non-invasive tool used in the diagnoses of liver disease. Cirrhosis is a chronic liver disease and it can advance to liver cancer. Early detection and appropriate treatment are crucial to prevent liver cancer. However, ultrasound image analysis is very challenging, because of the low signal-to-noise ratio of ultrasound images. To achieve the higher classification performance, selection of training regions of interest (ROIs) is very important that effect to classification accuracy. The purpose of our study is cirrhosis detection with high accuracy using liver ultrasound images. In our previous works, training ROI selection by MILBoost and multiple-ROI classification based on the product rule had been proposed, to achieve high classification performance. In this article, we propose self-training method to select training ROIs effectively. Evaluation experiments were performed to evaluate effect of self-training, using manually selected ROIs and also automatically selected ROIs. Experimental results show that self-training for manually selected ROIs achieved higher classification performance than other approaches, including our conventional methods. The manually ROI definition and sample selection are important to improve classification accuracy in cirrhosis detection using ultrasound images.

  20. Using phase for radar scatterer classification

    NASA Astrophysics Data System (ADS)

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  1. Detection And Classification Of Web Robots With Honeypots

    DTIC Science & Technology

    2016-03-01

    CLASSIFICATION OF WEB ROBOTS WITH HONEYPOTS by Sean F. McKenna March 2016 Thesis Advisor: Neil Rowe Second Reader: Justin P. Rohrer THIS...Master’s thesis 4. TITLE AND SUBTITLE DETECTION AND CLASSIFICATION OF WEB ROBOTS WITH HONEYPOTS 5. FUNDING NUMBERS 6. AUTHOR(S) Sean F. McKenna 7...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Web robots are automated programs that systematically browse the Web , collecting information. Although

  2. Learning to Classify with Possible Sensor Failures

    DTIC Science & Technology

    2014-05-04

    SVMs), have demonstrated good classification performance when the training data is representative of the test data [1, 2, 3]. However, in many real...Detection of people and animals using non- imaging sensors,” Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, pp...classification methods in terms of both classification accuracy and anomaly detection rate using 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13

  3. Average Likelihood Methods for Code Division Multiple Access (CDMA)

    DTIC Science & Technology

    2014-05-01

    lengths in the range of 22 to 213 and possibly higher. Keywords: DS / CDMA signals, classification, balanced CDMA load, synchronous CDMA , decision...likelihood ratio test (ALRT). We begin this classification problem by finding the size of the spreading matrix that generated the DS - CDMA signal. As...Theoretical Background The classification of DS / CDMA signals should not be confused with the problem of multiuser detection. The multiuser detection deals

  4. Visual classification of medical data using MLP mapping.

    PubMed

    Cağatay Güler, E; Sankur, B; Kahya, Y P; Raudys, S

    1998-05-01

    In this work we discuss the design of a novel non-linear mapping method for visual classification based on multilayer perceptrons (MLP) and assigned class target values. In training the perceptron, one or more target output values for each class in a 2-dimensional space are used. In other words, class membership information is interpreted visually as closeness to target values in a 2D feature space. This mapping is obtained by training the multilayer perceptron (MLP) using class membership information, input data and judiciously chosen target values. Weights are estimated in such a way that each training feature of the corresponding class is forced to be mapped onto the corresponding 2-dimensional target value.

  5. Abnormality detection of mammograms by discriminative dictionary learning on DSIFT descriptors.

    PubMed

    Tavakoli, Nasrin; Karimi, Maryam; Nejati, Mansour; Karimi, Nader; Reza Soroushmehr, S M; Samavi, Shadrokh; Najarian, Kayvan

    2017-07-01

    Detection and classification of breast lesions using mammographic images are one of the most difficult studies in medical image processing. A number of learning and non-learning methods have been proposed for detecting and classifying these lesions. However, the accuracy of the detection/classification still needs improvement. In this paper we propose a powerful classification method based on sparse learning to diagnose breast cancer in mammograms. For this purpose, a supervised discriminative dictionary learning approach is applied on dense scale invariant feature transform (DSIFT) features. A linear classifier is also simultaneously learned with the dictionary which can effectively classify the sparse representations. Our experimental results show the superior performance of our method compared to existing approaches.

  6. Detection and tracking of human targets in indoor and urban environments using through-the-wall radar sensors

    NASA Astrophysics Data System (ADS)

    Radzicki, Vincent R.; Boutte, David; Taylor, Paul; Lee, Hua

    2017-05-01

    Radar based detection of human targets behind walls or in dense urban environments is an important technical challenge with many practical applications in security, defense, and disaster recovery. Radar reflections from a human can be orders of magnitude weaker than those from objects encountered in urban settings such as walls, cars, or possibly rubble after a disaster. Furthermore, these objects can act as secondary reflectors and produce multipath returns from a person. To mitigate these issues, processing of radar return data needs to be optimized for recognizing human motion features such as walking, running, or breathing. This paper presents a theoretical analysis on the modulation effects human motion has on the radar waveform and how high levels of multipath can distort these motion effects. From this analysis, an algorithm is designed and optimized for tracking human motion in heavily clutter environments. The tracking results will be used as the fundamental detection/classification tool to discriminate human targets from others by identifying human motion traits such as predictable walking patterns and periodicity in breathing rates. The theoretical formulations will be tested against simulation and measured data collected using a low power, portable see-through-the-wall radar system that could be practically deployed in real-world scenarios. Lastly, the performance of the algorithm is evaluated in a series of experiments where both a single person and multiple people are moving in an indoor, cluttered environment.

  7. Using habitat suitability models to target invasive plant species surveys.

    PubMed

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P < 0.01), and targeted sampling did detect more species than nontargeted sampling with less sampling effort (chi2 = 47.42, P < 0.01). From these findings, we conclude that habitat suitability models can be highly useful tools for guiding invasive species monitoring, and we support the use of an iterative sampling design for guiding such efforts.

  8. Real-time ultrasound image classification for spine anesthesia using local directional Hadamard features.

    PubMed

    Pesteie, Mehran; Abolmaesumi, Purang; Ashab, Hussam Al-Deen; Lessoway, Victoria A; Massey, Simon; Gunka, Vit; Rohling, Robert N

    2015-06-01

    Injection therapy is a commonly used solution for back pain management. This procedure typically involves percutaneous insertion of a needle between or around the vertebrae, to deliver anesthetics near nerve bundles. Most frequently, spinal injections are performed either blindly using palpation or under the guidance of fluoroscopy or computed tomography. Recently, due to the drawbacks of the ionizing radiation of such imaging modalities, there has been a growing interest in using ultrasound imaging as an alternative. However, the complex spinal anatomy with different wave-like structures, affected by speckle noise, makes the accurate identification of the appropriate injection plane difficult. The aim of this study was to propose an automated system that can identify the optimal plane for epidural steroid injections and facet joint injections. A multi-scale and multi-directional feature extraction system to provide automated identification of the appropriate plane is proposed. Local Hadamard coefficients are obtained using the sequency-ordered Hadamard transform at multiple scales. Directional features are extracted from local coefficients which correspond to different regions in the ultrasound images. An artificial neural network is trained based on the local directional Hadamard features for classification. The proposed method yields distinctive features for classification which successfully classified 1032 images out of 1090 for epidural steroid injection and 990 images out of 1052 for facet joint injection. In order to validate the proposed method, a leave-one-out cross-validation was performed. The average classification accuracy for leave-one-out validation was 94 % for epidural and 90 % for facet joint targets. Also, the feature extraction time for the proposed method was 20 ms for a native 2D ultrasound image. A real-time machine learning system based on the local directional Hadamard features extracted by the sequency-ordered Hadamard transform for detecting the laminae and facet joints in ultrasound images has been proposed. The system has the potential to assist the anesthesiologists in quickly finding the target plane for epidural steroid injections and facet joint injections.

  9. Stratification of co-evolving genomic groups using ranked phylogenetic profiles

    PubMed Central

    Freilich, Shiri; Goldovsky, Leon; Gottlieb, Assaf; Blanc, Eric; Tsoka, Sophia; Ouzounis, Christos A

    2009-01-01

    Background Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database. Results The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples. Conclusion Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples. PMID:19860884

  10. A feasibility study of stateful automaton packet inspection for streaming application detection systems

    NASA Astrophysics Data System (ADS)

    Tseng, Kuo-Kun; Lo, Jiao; Liu, Yiming; Chang, Shih-Hao; Merabti, Madjid; Ng, Felix, C. K.; Wu, C. H.

    2017-10-01

    The rapid development of the internet has brought huge benefits and social impacts; however, internet security has also become a great problem for users, since traditional approaches to packet classification cannot achieve satisfactory detection performance due to their low accuracy and efficiency. In this paper, a new stateful packet inspection method is introduced, which can be embedded in the network gateway and used by a streaming application detection system. This new detection method leverages the inexact automaton approach, using part of the header field and part of the application layer data of a packet. Based on this approach, an advanced detection system is proposed for streaming applications. The workflow of the system involves two stages: the training stage and the detection stage. In the training stage, the system initially captures characteristic patterns from a set of application packet flows. After this training is completed, the detection stage allows the user to detect the target application by capturing new application flows. This new detection approach is also evaluated using experimental analysis; the results of this analysis show that this new approach not only simplifies the management of the state detection system, but also improves the accuracy of data flow detection, making it feasible for real-world network applications.

  11. Logo detection and classification in a sport video: video indexing for sponsorship revenue control

    NASA Astrophysics Data System (ADS)

    Kovar, Bohumil; Hanjalic, Alan

    2001-12-01

    This paper presents a novel approach to detecting and classifying a trademark logo in frames of a sport video. In view of the fact that we attempt to detect and recognize a logo in a natural scene, the algorithm developed in this paper differs from traditional techniques for logo detection and classification that are applicable either to well-structured general text documents (e.g. invoices, memos, bank cheques) or to specialized trademark logo databases, where logos appear isolated on a clear background and where their detection and classification is not disturbed by the surrounding visual detail. Although the development of our algorithm is still in its starting phase, experimental results performed so far on a set of soccer TV broadcasts are very encouraging.

  12. Spectroscopic Classifications of Optical Transients with Keck I/LRIS

    NASA Astrophysics Data System (ADS)

    Foley, R. J.; Rojas-Bravo, C.

    2018-05-01

    We report the following classifications of optical transients from spectroscopic observations with LRIS on the Keck I 10-m telescope. Targets were supplied by the ASAS-SN and PSH. All observations were made on 2018 May 10 UT. Classifications were performed with SNID (Blondin & Tonry, 2007, ApJ, 666, 1024).

  13. Applications of Diagnostic Classification Models: A Literature Review and Critical Commentary

    ERIC Educational Resources Information Center

    Sessoms, John; Henson, Robert A.

    2018-01-01

    Diagnostic classification models (DCMs) classify examinees based on the skills they have mastered given their test performance. This classification enables targeted feedback that can inform remedial instruction. Unfortunately, applications of DCMs have been criticized (e.g., no validity support). Generally, these evaluations have been brief and…

  14. Internal representations for face detection: an application of noise-based image classification to BOLD responses.

    PubMed

    Nestor, Adrian; Vettel, Jean M; Tarr, Michael J

    2013-11-01

    What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.

  15. Asynchronous P300 classification in a reactive brain-computer interface during an outlier detection task

    NASA Astrophysics Data System (ADS)

    Krumpe, Tanja; Walter, Carina; Rosenstiel, Wolfgang; Spüler, Martin

    2016-08-01

    Objective. In this study, the feasibility of detecting a P300 via an asynchronous classification mode in a reactive EEG-based brain-computer interface (BCI) was evaluated. The P300 is one of the most popular BCI control signals and therefore used in many applications, mostly for active communication purposes (e.g. P300 speller). As the majority of all systems work with a stimulus-locked mode of classification (synchronous), the field of applications is limited. A new approach needs to be applied in a setting in which a stimulus-locked classification cannot be used due to the fact that the presented stimuli cannot be controlled or predicted by the system. Approach. A continuous observation task requiring the detection of outliers was implemented to test such an approach. The study was divided into an offline and an online part. Main results. Both parts of the study revealed that an asynchronous detection of the P300 can successfully be used to detect single events with high specificity. It also revealed that no significant difference in performance was found between the synchronous and the asynchronous approach. Significance. The results encourage the use of an asynchronous classification approach in suitable applications without a potential loss in performance.

  16. Isolating Discriminant Neural Activity in the Presence of Eye Movements and Concurrent Task Demands

    PubMed Central

    Touryan, Jon; Lawhern, Vernon J.; Connolly, Patrick M.; Bigdely-Shamlo, Nima; Ries, Anthony J.

    2017-01-01

    A growing number of studies use the combination of eye-tracking and electroencephalographic (EEG) measures to explore the neural processes that underlie visual perception. In these studies, fixation-related potentials (FRPs) are commonly used to quantify early and late stages of visual processing that follow the onset of each fixation. However, FRPs reflect a mixture of bottom-up (sensory-driven) and top-down (goal-directed) processes, in addition to eye movement artifacts and unrelated neural activity. At present there is little consensus on how to separate this evoked response into its constituent elements. In this study we sought to isolate the neural sources of target detection in the presence of eye movements and over a range of concurrent task demands. Here, participants were asked to identify visual targets (Ts) amongst a grid of distractor stimuli (Ls), while simultaneously performing an auditory N-back task. To identify the discriminant activity, we used independent components analysis (ICA) for the separation of EEG into neural and non-neural sources. We then further separated the neural sources, using a modified measure-projection approach, into six regions of interest (ROIs): occipital, fusiform, temporal, parietal, cingulate, and frontal cortices. Using activity from these ROIs, we identified target from non-target fixations in all participants at a level similar to other state-of-the-art classification techniques. Importantly, we isolated the time course and spectral features of this discriminant activity in each ROI. In addition, we were able to quantify the effect of cognitive load on both fixation-locked potential and classification performance across regions. Together, our results show the utility of a measure-projection approach for separating task-relevant neural activity into meaningful ROIs within more complex contexts that include eye movements. PMID:28736519

  17. Functional Brain Connectivity as a New Feature for P300 Speller.

    PubMed

    Kabbara, Aya; Khalil, Mohamad; El-Falou, Wassim; Eid, Hassan; Hassan, Mahmoud

    2016-01-01

    The brain is a large-scale complex network often referred to as the "connectome". Cognitive functions and information processing are mainly based on the interactions between distant brain regions. However, most of the 'feature extraction' methods used in the context of Brain Computer Interface (BCI) ignored the possible functional relationships between different signals recorded from distinct brain areas. In this paper, the functional connectivity quantified by the phase locking value (PLV) was introduced to characterize the evoked responses (ERPs) obtained in the case of target and non-targets visual stimuli. We also tested the possibility of using the functional connectivity in the context of 'P300 speller'. The proposed approach was compared to the well-known methods proposed in the state of the art of "P300 Speller", mainly the peak picking, the area, time/frequency based features, the xDAWN spatial filtering and the stepwise linear discriminant analysis (SWLDA). The electroencephalographic (EEG) signals recorded from ten subjects were analyzed offline. The results indicated that phase synchrony offers relevant information for the classification in a P300 speller. High synchronization between the brain regions was clearly observed during target trials, although no significant synchronization was detected for a non-target trial. The results showed also that phase synchrony provides higher performance than some existing methods for letter classification in a P300 speller principally when large number of trials is available. Finally, we tested the possible combination of both approaches (classical features and phase synchrony). Our findings showed an overall improvement of the performance of the P300-speller when using Peak picking, the area and frequency based features. Similar performances were obtained compared to xDAWN and SWLDA when using large number of trials.

  18. Figure-ground asymmetries in the Implicit Association Test (IAT).

    PubMed

    Rothermund, K; Wentura, D

    2001-01-01

    Based on the assumption that binary classification tasks are often processed asymmetrically (figure-ground asymmetries), two experiments showed that association alone cannot account for effects observed in the Implicit Association Test (IAT). Experiment 1 (N = 16) replicated a standard version of the IAT effect using old vs. young names as target categories and good and bad words as attribute categories. However, reliable compatibility effects were also found for a modified version of the task in which neutral words vs. nonwords instead of good vs. bad words were used as attribute categories. In Experiment 2 (N = 8), a reversed IAT effect was observed after the figure-ground asymmetry in the target dimension had been inverted by a previous go/nogo detection task in which participants searched for exemplars of the category "young." The experiments support the hypothesis that figure-ground asymmetries produce compatibility effects in the IAT and suggest that IAT effects do not rely exclusively on evaluative associations between the target and attribute categories.

  19. The utility of polarimetry within passive military imaging systems

    NASA Astrophysics Data System (ADS)

    Hickman, Duncan L.; Smith, Moira I.; Kim, Kyung Su; Choi, Hyun-Jin

    2017-10-01

    An ongoing challenge for many military imaging systems is the detection and classification of weak target signatures in a cluttered environment. In such cases, the use of image contrast and relative target motion alone does not always provide a sufficient level of target discrimination to give operational confidence and it is therefore necessary to consider the use of other discriminatory scene information. Polarisation is one such source of information and this paper reports on an extensive series of polarimetric trials undertaken across the visible, NIR, SWIR, MWIR and LWIR spectral bands. Using this data, the benefits and limitations of polarisation discrimination are reviewed in the context of practical military scenarios. It is shown that polarisation signatures vary with viewing geometry and atmospheric conditions. This would lead to an unpredictable performance level if the sensor discrimination was based solely on polarisation. However, by carefully combining polarisation with other scene information, useful operational benefits can be obtained and this is illustrated through a consideration of different data fusion approaches.

  20. Large-scale classification of traffic signs under real-world conditions

    NASA Astrophysics Data System (ADS)

    Hazelhoff, Lykele; Creusen, Ivo; van de Wouw, Dennis; de With, Peter H. N.

    2012-02-01

    Traffic sign inventories are important to governmental agencies as they facilitate evaluation of traffic sign locations and are beneficial for road and sign maintenance. These inventories can be created (semi-)automatically based on street-level panoramic images. In these images, object detection is employed to detect the signs in each image, followed by a classification stage to retrieve the specific sign type. Classification of traffic signs is a complicated matter, since sign types are very similar with only minor differences within the sign, a high number of different signs is involved and multiple distortions occur, including variations in capturing conditions, occlusions, viewpoints and sign deformations. Therefore, we propose a method for robust classification of traffic signs, based on the Bag of Words approach for generic object classification. We extend the approach with a flexible, modular codebook to model the specific features of each sign type independently, in order to emphasize at the inter-sign differences instead of the parts common for all sign types. Additionally, this allows us to model and label the present false detections. Furthermore, analysis of the classification output provides the unreliable results. This classification system has been extensively tested for three different sign classes, covering 60 different sign types in total. These three data sets contain the sign detection results on street-level panoramic images, extracted from a country-wide database. The introduction of the modular codebook shows a significant improvement for all three sets, where the system is able to classify about 98% of the reliable results correctly.

  1. An automatic device for detection and classification of malaria parasite species in thick blood film.

    PubMed

    Kaewkamnerd, Saowaluck; Uthaipibull, Chairat; Intarapanich, Apichart; Pannarut, Montri; Chaotheing, Sastra; Tongsima, Sissades

    2012-01-01

    Current malaria diagnosis relies primarily on microscopic examination of Giemsa-stained thick and thin blood films. This method requires vigorously trained technicians to efficiently detect and classify the malaria parasite species such as Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) for an appropriate drug administration. However, accurate classification of parasite species is difficult to achieve because of inherent technical limitations and human inconsistency. To improve performance of malaria parasite classification, many researchers have proposed automated malaria detection devices using digital image analysis. These image processing tools, however, focus on detection of parasites on thin blood films, which may not detect the existence of parasites due to the parasite scarcity on the thin blood film. The problem is aggravated with low parasitemia condition. Automated detection and classification of parasites on thick blood films, which contain more numbers of parasite per detection area, would address the previous limitation. The prototype of an automatic malaria parasite identification system is equipped with mountable motorized units for controlling the movements of objective lens and microscope stage. This unit was tested for its precision to move objective lens (vertical movement, z-axis) and microscope stage (in x- and y-horizontal movements). The average precision of x-, y- and z-axes movements were 71.481 ± 7.266 μm, 40.009 ± 0.000 μm, and 7.540 ± 0.889 nm, respectively. Classification of parasites on 60 Giemsa-stained thick blood films (40 blood films containing infected red blood cells and 20 control blood films of normal red blood cells) was tested using the image analysis module. By comparing our results with the ones verified by trained malaria microscopists, the prototype detected parasite-positive and parasite-negative blood films at the rate of 95% and 68.5% accuracy, respectively. For classification performance, the thick blood films with Pv parasite was correctly classified with the success rate of 75% while the accuracy of Pf classification was 90%. This work presents an automatic device for both detection and classification of malaria parasite species on thick blood film. The system is based on digital image analysis and featured with motorized stage units, designed to easily be mounted on most conventional light microscopes used in the endemic areas. The constructed motorized module could control the movements of objective lens and microscope stage at high precision for effective acquisition of quality images for analysis. The analysis program could accurately classify parasite species, into Pf or Pv, based on distribution of chromatin size.

  2. Hyperspectral image classification by a variable interval spectral average and spectral curve matching combined algorithm

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, A.; Keerthi, V.; Manjunath, A. S.; Werff, Harald van der; Meer, Freek van der

    2010-08-01

    Classification of hyperspectral images has been receiving considerable attention with many new applications reported from commercial and military sectors. Hyperspectral images are composed of a large number of spectral channels, and have the potential to deliver a great deal of information about a remotely sensed scene. However, in addition to high dimensionality, hyperspectral image classification is compounded with a coarse ground pixel size of the sensor for want of adequate sensor signal to noise ratio within a fine spectral passband. This makes multiple ground features jointly occupying a single pixel. Spectral mixture analysis typically begins with pixel classification with spectral matching techniques, followed by the use of spectral unmixing algorithms for estimating endmembers abundance values in the pixel. The spectral matching techniques are analogous to supervised pattern recognition approaches, and try to estimate some similarity between spectral signatures of the pixel and reference target. In this paper, we propose a spectral matching approach by combining two schemes—variable interval spectral average (VISA) method and spectral curve matching (SCM) method. The VISA method helps to detect transient spectral features at different scales of spectral windows, while the SCM method finds a match between these features of the pixel and one of library spectra by least square fitting. Here we also compare the performance of the combined algorithm with other spectral matching techniques using a simulated and the AVIRIS hyperspectral data sets. Our results indicate that the proposed combination technique exhibits a stronger performance over the other methods in the classification of both the pure and mixed class pixels simultaneously.

  3. A novel approach to malignant-benign classification of pulmonary nodules by using ensemble learning classifiers.

    PubMed

    Tartar, A; Akan, A; Kilic, N

    2014-01-01

    Computer-aided detection systems can help radiologists to detect pulmonary nodules at an early stage. In this paper, a novel Computer-Aided Diagnosis system (CAD) is proposed for the classification of pulmonary nodules as malignant and benign. The proposed CAD system using ensemble learning classifiers, provides an important support to radiologists at the diagnosis process of the disease, achieves high classification performance. The proposed approach with bagging classifier results in 94.7 %, 90.0 % and 77.8 % classification sensitivities for benign, malignant and undetermined classes (89.5 % accuracy), respectively.

  4. Applications of remote sensing, volume 3

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Of the four change detection techniques (post classification comparison, delta data, spectral/temporal, and layered spectral temporal), the post classification comparison was selected for further development. This was based upon test performances of the four change detection method, straightforwardness of the procedures, and the output products desired. A standardized modified, supervised classification procedure for analyzing the Texas coastal zone data was compiled. This procedure was developed in order that all quadrangles in the study are would be classified using similar analysis techniques to allow for meaningful comparisons and evaluations of the classifications.

  5. Regression-Based Approach For Feature Selection In Classification Issues. Application To Breast Cancer Detection And Recurrence

    NASA Astrophysics Data System (ADS)

    Belciug, Smaranda; Serbanescu, Mircea-Sebastian

    2015-09-01

    Feature selection is considered a key factor in classifications/decision problems. It is currently used in designing intelligent decision systems to choose the best features which allow the best performance. This paper proposes a regression-based approach to select the most important predictors to significantly increase the classification performance. Application to breast cancer detection and recurrence using publically available datasets proved the efficiency of this technique.

  6. Markerless gating for lung cancer radiotherapy based on machine learning techniques

    NASA Astrophysics Data System (ADS)

    Lin, Tong; Li, Ruijiang; Tang, Xiaoli; Dy, Jennifer G.; Jiang, Steve B.

    2009-03-01

    In lung cancer radiotherapy, radiation to a mobile target can be delivered by respiratory gating, for which we need to know whether the target is inside or outside a predefined gating window at any time point during the treatment. This can be achieved by tracking one or more fiducial markers implanted inside or near the target, either fluoroscopically or electromagnetically. However, the clinical implementation of marker tracking is limited for lung cancer radiotherapy mainly due to the risk of pneumothorax. Therefore, gating without implanted fiducial markers is a promising clinical direction. We have developed several template-matching methods for fluoroscopic marker-less gating. Recently, we have modeled the gating problem as a binary pattern classification problem, in which principal component analysis (PCA) and support vector machine (SVM) are combined to perform the classification task. Following the same framework, we investigated different combinations of dimensionality reduction techniques (PCA and four nonlinear manifold learning methods) and two machine learning classification methods (artificial neural networks—ANN and SVM). Performance was evaluated on ten fluoroscopic image sequences of nine lung cancer patients. We found that among all combinations of dimensionality reduction techniques and classification methods, PCA combined with either ANN or SVM achieved a better performance than the other nonlinear manifold learning methods. ANN when combined with PCA achieves a better performance than SVM in terms of classification accuracy and recall rate, although the target coverage is similar for the two classification methods. Furthermore, the running time for both ANN and SVM with PCA is within tolerance for real-time applications. Overall, ANN combined with PCA is a better candidate than other combinations we investigated in this work for real-time gated radiotherapy.

  7. Measuring elimination of podoconiosis, endemicity classifications, case definition and targets: an international Delphi exercise.

    PubMed

    Deribe, Kebede; Wanji, Samuel; Shafi, Oumer; Muheki Tukahebwa, Edridah; Umulisa, Irenee; Davey, Gail

    2015-09-01

    Podoconiosis is one of the major causes of lymphoedema in the tropics. Nonetheless, currently there are no endemicity classifications or elimination targets to monitor the effects of interventions. This study aimed at establishing case definitions and indicators that can be used to assess endemicity, elimination and clinical outcomes of podoconiosis. This paper describes the result of a Delphi technique used among 28 experts. A questionnaire outlining possible case definitions, endemicity classifications, elimination targets and clinical outcomes was developed. The questionnaire was distributed to experts working on podoconiosis and other neglected tropical diseases in two rounds. The experts rated the importance of case definitions, endemic classifications, elimination targets and the clinical outcome measures. Median and mode were used to describe the central tendency of expert responses. The coefficient of variation was used to describe the dispersals of expert responses. Consensus on definitions and indicators for assessing endemicity, elimination and clinical outcomes of podoconiosis directed at policy makers and health workers was achieved following the two rounds of Delphi approach among the experts. Based on the two Delphi rounds we discuss potential indicators and endemicity classification of this disabling disease, and the ongoing challenges to its elimination in countries with the highest prevalence. Consensus will help to increase effectiveness of podoconiosis elimination efforts and ensure comparability of outcome data. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  8. Material-specific detection and classification of single nanoparticles

    PubMed Central

    Person, Steven; Deutsch, Bradley; Mitra, Anirban; Novotny, Lukas

    2010-01-01

    Detection and classification of nanoparticles is important for environmental monitoring, contamination mitigation, biological label tracking, and bio-defense. Detection techniques involve a trade-off between sensitivity, discrimination, and speed. This paper presents a material-specific dual-color common-path interferometric detection system. Two wavelengths are simultaneously used to discriminate between 60 nm silver and 80 nm diameter gold particles in solution with a detection time of τ ≈ 1 ms. The detection technique is applicable to situations where both particle size and material are of interest. PMID:21142033

  9. A novel biomarker of amnestic MCI based on dynamic cross-frequency coupling patterns during cognitive brain responses

    PubMed Central

    Dimitriadis, Stavros I.; Laskaris, Nikolaos A.; Bitzidou, Malamati P.; Tarnanas, Ioannis; Tsolaki, Magda N.

    2015-01-01

    The detection of mild cognitive impairment (MCI), the transitional stage between normal cognitive changes of aging and the cognitive decline caused by AD, is of paramount clinical importance, since MCI patients are at increased risk of progressing into AD. Electroencephalographic (EEG) alterations in the spectral content of brainwaves and connectivity at resting state have been associated with early-stage AD. Recently, cognitive event-related potentials (ERPs) have entered into the picture as an easy to perform screening test. Motivated by the recent findings about the role of cross-frequency coupling (CFC) in cognition, we introduce a relevant methodological approach for detecting MCI based on cognitive responses from a standard auditory oddball paradigm. By using the single trial signals recorded at Pz sensor and comparing the responses to target and non-target stimuli, we first demonstrate that increased CFC is associated with the cognitive task. Then, considering the dynamic character of CFC, we identify instances during which the coupling between particular pairs of brainwave frequencies carries sufficient information for discriminating between normal subjects and patients with MCI. In this way, we form a multiparametric signature of impaired cognition. The new composite biomarker was tested using data from a cohort that consists of 25 amnestic MCI patients and 15 age-matched controls. Standard machine-learning algorithms were employed so as to implement the binary classification task. Based on leave-one-out cross-validation, the measured classification rate was found reaching very high levels (95%). Our approach compares favorably with the traditional alternative of using the morphology of averaged ERP response to make the diagnosis and the usage of features from spectro-temporal analysis of single-trial responses. This further indicates that task-related CFC measurements can provide invaluable analytics in AD diagnosis and prognosis. PMID:26539070

  10. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Wang, Yijun; Gao, Shangkai; Jung, Tzyy-Ping; Gao, Xiaorong

    2015-08-01

    Objective. Recently, canonical correlation analysis (CCA) has been widely used in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) due to its high efficiency, robustness, and simple implementation. However, a method with which to make use of harmonic SSVEP components to enhance the CCA-based frequency detection has not been well established. Approach. This study proposed a filter bank canonical correlation analysis (FBCCA) method to incorporate fundamental and harmonic frequency components to improve the detection of SSVEPs. A 40-target BCI speller based on frequency coding (frequency range: 8-15.8 Hz, frequency interval: 0.2 Hz) was used for performance evaluation. To optimize the filter bank design, three methods (M1: sub-bands with equally spaced bandwidths; M2: sub-bands corresponding to individual harmonic frequency bands; M3: sub-bands covering multiple harmonic frequency bands) were proposed for comparison. Classification accuracy and information transfer rate (ITR) of the three FBCCA methods and the standard CCA method were estimated using an offline dataset from 12 subjects. Furthermore, an online BCI speller adopting the optimal FBCCA method was tested with a group of 10 subjects. Main results. The FBCCA methods significantly outperformed the standard CCA method. The method M3 achieved the highest classification performance. At a spelling rate of ˜33.3 characters/min, the online BCI speller obtained an average ITR of 151.18 ± 20.34 bits min-1. Significance. By incorporating the fundamental and harmonic SSVEP components in target identification, the proposed FBCCA method significantly improves the performance of the SSVEP-based BCI, and thereby facilitates its practical applications such as high-speed spelling.

  11. Vehicle detection in aerial surveillance using dynamic Bayesian networks.

    PubMed

    Cheng, Hsu-Yung; Weng, Chih-Chia; Chen, Yi-Ying

    2012-04-01

    We present an automatic vehicle detection system for aerial surveillance in this paper. In this system, we escape from the stereotype and existing frameworks of vehicle detection in aerial surveillance, which are either region based or sliding window based. We design a pixelwise classification method for vehicle detection. The novelty lies in the fact that, in spite of performing pixelwise classification, relations among neighboring pixels in a region are preserved in the feature extraction process. We consider features including vehicle colors and local features. For vehicle color extraction, we utilize a color transform to separate vehicle colors and nonvehicle colors effectively. For edge detection, we apply moment preserving to adjust the thresholds of the Canny edge detector automatically, which increases the adaptability and the accuracy for detection in various aerial images. Afterward, a dynamic Bayesian network (DBN) is constructed for the classification purpose. We convert regional local features into quantitative observations that can be referenced when applying pixelwise classification via DBN. Experiments were conducted on a wide variety of aerial videos. The results demonstrate flexibility and good generalization abilities of the proposed method on a challenging data set with aerial surveillance images taken at different heights and under different camera angles.

  12. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Miller, J.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-04-01

    We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST).

  13. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Narayan, G.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.

    2015-04-01

    We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST).

  14. Space-Valence Priming with Subliminal and Supraliminal Words

    PubMed Central

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime “up” before the target “happy”) than with an incongruent prime (e.g., the prime “up” before the target “sad”). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments. PMID:23439863

  15. [Diagnostic algorithm in chronic myeloproliferative diseases (CMPD)].

    PubMed

    Haferlach, Torsten; Bacher, Ulrike; Kern, Wolfgang; Schnittger, Susanne; Haferlach, Claudia

    2007-09-15

    The Philadelphia-negative chronic myeloproliferative diseases (CMPD) are very complex and heterogeneous disorders. They are represented by polycythemia vera (PV), chronic idiopathic myelofibrosis (CIMF), essential thrombocythemia (ET), CMPD/unclassifiable (CMPD-U), chronic neutrophilic leukemia (CNL), and chronic eosinophilic leukemia/hypereosinophilic syndrome (CEL/HES) according to the WHO classification. Before, diagnostics were mainly focused on clinical and morphological aspects, but in recent years cytogenetics and fluorescence in situ hybridization (FISH) found entrance in routine schedules as chromosomal abnormalities are relevant for prognosis and classification. Recently, there is rapid progress in the field of molecular characterization: the JAK2V617F mutation which shows a high incidence in PV, CIMF, and ET already plays a central role and will probably soon be included in follow-up procedures. Due to the detection of mutations in exon 12 of the JAK2 gene or mutations in the MPL gene the variety of activating mutations in the CMPD is still increasing. In CEL/HES the detection of the FIP1L1-PDGFRA fusion gene and overexpression of PDGFRA and PDGFRB led to targeted therapy with tyrosine kinase inhibitors. Thus, diagnostics in the CMPD transform toward a multimodal diagnostic concept based on a combination of methods - cyto-/histomorphology, cytogenetics, and individual molecular methods which can be included in a diagnostic algorithm.

  16. Polsar Land Cover Classification Based on Hidden Polarimetric Features in Rotation Domain and Svm Classifier

    NASA Astrophysics Data System (ADS)

    Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.

    2017-09-01

    Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy with the proposed classification scheme is 94.91 %, while that with the conventional classification scheme is 93.70 %. Moreover, for multi-temporal UAVSAR data, the averaged overall classification accuracy with the proposed classification scheme is up to 97.08 %, which is much higher than the 87.79 % from the conventional classification scheme. Furthermore, for multitemporal PolSAR data, the proposed classification scheme can achieve better robustness. The comparison studies also clearly demonstrate that mining and utilization of hidden polarimetric features and information in the rotation domain can gain the added benefits for PolSAR land cover classification and provide a new vision for PolSAR image interpretation and application.

  17. Toward On-Demand Deep Brain Stimulation Using Online Parkinson's Disease Prediction Driven by Dynamic Detection.

    PubMed

    Mohammed, Ameer; Zamani, Majid; Bayford, Richard; Demosthenous, Andreas

    2017-12-01

    In Parkinson's disease (PD), on-demand deep brain stimulation is required so that stimulation is regulated to reduce side effects resulting from continuous stimulation and PD exacerbation due to untimely stimulation. Also, the progressive nature of PD necessitates the use of dynamic detection schemes that can track the nonlinearities in PD. This paper proposes the use of dynamic feature extraction and dynamic pattern classification to achieve dynamic PD detection taking into account the demand for high accuracy, low computation, and real-time detection. The dynamic feature extraction and dynamic pattern classification are selected by evaluating a subset of feature extraction, dimensionality reduction, and classification algorithms that have been used in brain-machine interfaces. A novel dimensionality reduction technique, the maximum ratio method (MRM) is proposed, which provides the most efficient performance. In terms of accuracy and complexity for hardware implementation, a combination having discrete wavelet transform for feature extraction, MRM for dimensionality reduction, and dynamic k-nearest neighbor for classification was chosen as the most efficient. It achieves a classification accuracy of 99.29%, an F1-score of 97.90%, and a choice probability of 99.86%.

  18. Acoustic detection of biosonar activity of deep diving odontocetes at Josephine Seamount High Seas Marine Protected Area.

    PubMed

    Giorli, Giacomo; Au, Whitlow W L; Ou, Hui; Jarvis, Susan; Morrissey, Ronald; Moretti, David

    2015-05-01

    The temporal occurrence of deep diving cetaceans in the Josephine Seamount High Seas Marine Protected Area (JSHSMPA), south-west Portugal, was monitored using a passive acoustic recorder. The recorder was deployed on 13 May 2010 at a depth of 814 m during the North Atlantic Treaty Organization Centre for Maritime Research and Experimentation cruise "Sirena10" and recovered on 6 June 2010. The recorder was programmed to record 40 s of data every 2 min. Acoustic data analysis, for the detection and classification of echolocation clicks, was performed using automatic detector/classification systems: M3R (Marine Mammal Monitoring on Navy Ranges), a custom matlab program, and an operator-supervised custom matlab program to assess the classification performance of the detector/classification systems. M3R CS-SVM algorithm contains templates to detect beaked whales, sperm whales, blackfish (pilot and false killer whales), and Risso's dolphins. The detections of each group of odontocetes was monitored as a function of time. Blackfish and Risso's dolphins were detected every day, while beaked whales and sperm whales were detected almost every day. The hourly distribution of detections reveals that blackfish and Risso's dolphins were more active at night, while beaked whales and sperm whales were more active during daylight hours.

  19. Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales.

    PubMed

    Oh, Jihoon; Yun, Kyongsik; Hwang, Ji-Hyun; Chae, Jeong-Ho

    2017-01-01

    Classification and prediction of suicide attempts in high-risk groups is important for preventing suicide. The purpose of this study was to investigate whether the information from multiple clinical scales has classification power for identifying actual suicide attempts. Patients with depression and anxiety disorders ( N  = 573) were included, and each participant completed 31 self-report psychiatric scales and questionnaires about their history of suicide attempts. We then trained an artificial neural network classifier with 41 variables (31 psychiatric scales and 10 sociodemographic elements) and ranked the contribution of each variable for the classification of suicide attempts. To evaluate the clinical applicability of our model, we measured classification performance with top-ranked predictors. Our model had an overall accuracy of 93.7% in 1-month, 90.8% in 1-year, and 87.4% in lifetime suicide attempts detection. The area under the receiver operating characteristic curve (AUROC) was the highest for 1-month suicide attempts detection (0.93), followed by lifetime (0.89), and 1-year detection (0.87). Among all variables, the Emotion Regulation Questionnaire had the highest contribution, and the positive and negative characteristics of the scales similarly contributed to classification performance. Performance on suicide attempts classification was largely maintained when we only used the top five ranked variables for training (AUROC; 1-month, 0.75, 1-year, 0.85, lifetime suicide attempts detection, 0.87). Our findings indicate that information from self-report clinical scales can be useful for the classification of suicide attempts. Based on the reliable performance of the top five predictors alone, this machine learning approach could help clinicians identify high-risk patients in clinical settings.

  20. Comparative Demonstration and Evaluation of Classification Technologies: Closed Castner Range, Fort Bliss, Texas

    DTIC Science & Technology

    2017-01-23

    of classification technologies for Munitions Response (MR). This demonstration was designed to evaluate advanced classification methodology at the...advanced electromagnetic induction sensors and static, cued surveys to classify anomalies as either targets of interest (TOI) or non -TOI. Static data...17  5.1  Conceptual Experimental Design

  1. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Kilpatrick, C. D.; Siebert, M. R.; Foley, R. J.; Pan, Y.-C.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-08-01

    We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by Shunsuke Nagata, POSS, and ASAS-SN.

  2. An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images.

    PubMed

    Sidibé, Désiré; Sankar, Shrinivasan; Lemaître, Guillaume; Rastgoo, Mojdeh; Massich, Joan; Cheung, Carol Y; Tan, Gavin S W; Milea, Dan; Lamoureux, Ecosse; Wong, Tien Y; Mériaudeau, Fabrice

    2017-02-01

    This paper proposes a method for automatic classification of spectral domain OCT data for the identification of patients with retinal diseases such as Diabetic Macular Edema (DME). We address this issue as an anomaly detection problem and propose a method that not only allows the classification of the OCT volume, but also allows the identification of the individual diseased B-scans inside the volume. Our approach is based on modeling the appearance of normal OCT images with a Gaussian Mixture Model (GMM) and detecting abnormal OCT images as outliers. The classification of an OCT volume is based on the number of detected outliers. Experimental results with two different datasets show that the proposed method achieves a sensitivity and a specificity of 80% and 93% on the first dataset, and 100% and 80% on the second one. Moreover, the experiments show that the proposed method achieves better classification performance than other recently published works. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks.

    PubMed

    Chen, Huan-Yuan; Chen, Chih-Chang; Hwang, Wen-Jyi

    2017-09-28

    This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL) neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC) implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting.

  4. An Efficient Hardware Circuit for Spike Sorting Based on Competitive Learning Networks

    PubMed Central

    Chen, Huan-Yuan; Chen, Chih-Chang

    2017-01-01

    This study aims to present an effective VLSI circuit for multi-channel spike sorting. The circuit supports the spike detection, feature extraction and classification operations. The detection circuit is implemented in accordance with the nonlinear energy operator algorithm. Both the peak detection and area computation operations are adopted for the realization of the hardware architecture for feature extraction. The resulting feature vectors are classified by a circuit for competitive learning (CL) neural networks. The CL circuit supports both online training and classification. In the proposed architecture, all the channels share the same detection, feature extraction, learning and classification circuits for a low area cost hardware implementation. The clock-gating technique is also employed for reducing the power dissipation. To evaluate the performance of the architecture, an application-specific integrated circuit (ASIC) implementation is presented. Experimental results demonstrate that the proposed circuit exhibits the advantages of a low chip area, a low power dissipation and a high classification success rate for spike sorting. PMID:28956859

  5. Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform.

    PubMed

    Tripathy, Rajesh K; Zamora-Mendez, Alejandro; de la O Serna, José A; Paternina, Mario R Arrieta; Arrieta, Juan G; Naik, Ganesh R

    2018-01-01

    Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.

  6. Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform

    PubMed Central

    Tripathy, Rajesh K.; Zamora-Mendez, Alejandro; de la O Serna, José A.; Paternina, Mario R. Arrieta; Arrieta, Juan G.; Naik, Ganesh R.

    2018-01-01

    Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.

  7. Nuclear Power Plant Thermocouple Sensor-Fault Detection and Classification Using Deep Learning and Generalized Likelihood Ratio Test

    NASA Astrophysics Data System (ADS)

    Mandal, Shyamapada; Santhi, B.; Sridhar, S.; Vinolia, K.; Swaminathan, P.

    2017-06-01

    In this paper, an online fault detection and classification method is proposed for thermocouples used in nuclear power plants. In the proposed method, the fault data are detected by the classification method, which classifies the fault data from the normal data. Deep belief network (DBN), a technique for deep learning, is applied to classify the fault data. The DBN has a multilayer feature extraction scheme, which is highly sensitive to a small variation of data. Since the classification method is unable to detect the faulty sensor; therefore, a technique is proposed to identify the faulty sensor from the fault data. Finally, the composite statistical hypothesis test, namely generalized likelihood ratio test, is applied to compute the fault pattern of the faulty sensor signal based on the magnitude of the fault. The performance of the proposed method is validated by field data obtained from thermocouple sensors of the fast breeder test reactor.

  8. Use of classification trees to apportion single echo detections to species: Application to the pelagic fish community of Lake Superior

    USGS Publications Warehouse

    Yule, Daniel L.; Adams, Jean V.; Hrabik, Thomas R.; Vinson, Mark R.; Woiak, Zebadiah; Ahrenstroff, Tyler D.

    2013-01-01

    Acoustic methods are used to estimate the density of pelagic fish in large lakes with results of midwater trawling used to assign species composition. Apportionment in lakes having mixed species can be challenging because only a small fraction of the water sampled acoustically is sampled with trawl gear. Here we describe a new method where single echo detections (SEDs) are assigned to species based on classification tree models developed from catch data that separate species based on fish size and the spatial habitats they occupy. During the summer of 2011, we conducted a spatially-balanced lake-wide acoustic and midwater trawl survey of Lake Superior. A total of 51 sites in four bathymetric depth strata (0–30 m, 30–100 m, 100–200 m, and >200 m) were sampled. We developed classification tree models for each stratum and found fish length was the most important variable for separating species. To apply these trees to the acoustic data, we needed to identify a target strength to length (TS-to-L) relationship appropriate for all abundant Lake Superior pelagic species. We tested performance of 7 general (i.e., multi-species) relationships derived from three published studies. The best-performing relationship was identified by comparing predicted and observed catch compositions using a second independent Lake Superior data set. Once identified, the relationship was used to predict lengths of SEDs from the lake-wide survey, and the classification tree models were used to assign each SED to a species. Exotic rainbow smelt (Osmerus mordax) were the most common species at bathymetric depths 100 m (384 million; 6.0 kt). Cisco (Coregonus artedi) were widely distributed over all strata with their population estimated at 182 million (44 kt). The apportionment method we describe should be transferable to other large lakes provided fish are not tightly aggregated, and an appropriate TS-to-L relationship for abundant pelagic fish species can be determined.

  9. GENE-07. MOLECULAR NEUROPATHOLOGY 2.0 - INCREASING DIAGNOSTIC ACCURACY IN PEDIATRIC NEUROONCOLOGY

    PubMed Central

    Sturm, Dominik; Jones, David T.W.; Capper, David; Sahm, Felix; von Deimling, Andreas; Rutkoswki, Stefan; Warmuth-Metz, Monika; Bison, Brigitte; Gessi, Marco; Pietsch, Torsten; Pfister, Stefan M.

    2017-01-01

    Abstract The classification of central nervous system (CNS) tumors into clinically and biologically distinct entities and subgroups is challenging. Children and adolescents can be affected by >100 histological variants with very variable outcomes, some of which are exceedingly rare. The current WHO classification has introduced a number of novel molecular markers to aid routine neuropathological diagnostics, and DNA methylation profiling is emerging as a powerful tool to distinguish CNS tumor classes. The Molecular Neuropathology 2.0 study aims to integrate genome wide (epi-)genetic diagnostics with reference neuropathological assessment for all newly-diagnosed pediatric brain tumors in Germany. To date, >350 patients have been enrolled. A molecular diagnosis is established by epigenetic tumor classification through DNA methylation profiling and targeted panel sequencing of >130 genes to detect diagnostically and/or therapeutically useful DNA mutations, structural alterations, and fusion events. Results are aligned with the reference neuropathological diagnosis, and discrepant findings are discussed in a multi-disciplinary tumor board including reference neuroradiological evaluation. Ten FFPE sections as input material are sufficient to establish a molecular diagnosis in >95% of tumors. Alignment with reference pathology results in four broad categories: a) concordant classification (~77%), b) discrepant classification resolvable by tumor board discussion and/or additional data (~5%), c) discrepant classification without currently available options to resolve (~8%), and d) cases currently unclassifiable by molecular diagnostics (~10%). Discrepancies are enriched in certain histopathological entities, such as histological high grade gliomas with a molecularly low grade profile. Gene panel sequencing reveals predisposing germline events in ~10% of patients. Genome wide (epi-)genetic analyses add a valuable layer of information to routine neuropathological diagnostics. Our study provides insight into CNS tumors with divergent histopathological and molecular classification, opening new avenues for research discoveries and facilitating optimization of clinical management for affected patients in the future.

  10. Applying aerial digital photography as a spectral remote sensing technique for macrophytic cover assessment in small rural streams

    NASA Astrophysics Data System (ADS)

    Anker, Y.; Hershkovitz, Y.; Gasith, A.; Ben-Dor, E.

    2011-12-01

    Although remote sensing of fluvial ecosystems is well developed, the tradeoff between spectral and spatial resolutions prevents its application in small streams (<3m width). In the current study, a remote sensing approach for monitoring and research of small ecosystem was developed. The method is based on differentiation between two indicative vegetation species out of the ecosystem flora. Since when studied, the channel was covered mostly by a filamentous green alga (Cladophora glomerata) and watercress (Nasturtium officinale), these species were chosen as indicative; nonetheless, common reed (Phragmites australis) was also classified in order to exclude it from the stream ROI. The procedure included: A. For both section and habitat scales classifications, acquisition of aerial digital RGB datasets. B. For section scale classification, hyperspectral (HSR) dataset acquisition. C. For calibration, HSR reflectance measurements of specific ground targets, in close proximity to each dataset acquisition swath. D. For habitat scale classification, manual, in-stream flora grid transects classification. The digital RGB datasets were converted to reflectance units by spectral calibration against colored reference plates. These red, green, blue, white, and black EVA foam reference plates were measured by an ASD field spectrometer and each was given a spectral value. Each spectral value was later applied to the spectral calibration and radiometric correction of spectral RGB (SRGB) cube. Spectral calibration of the HSR dataset was done using the empirical line method, based on reference values of progressive grey scale targets. Differentiation between the vegetation species was done by supervised classification both for the HSR and for the SRGB datasets. This procedure was done using the Spectral Angle Mapper function with the spectral pattern of each vegetation species as a spectral end member. Comparison between the two remote sensing techniques and between the SRGB classification and the in-situ transects indicates that: A. Stream vegetation classification resolution is about 4 cm by the SRGB method compared to about 1 m by HSR. Moreover, this resolution is also higher than of the manual grid transect classification. B. The SRGB method is by far the most cost-efficient. The combination of spectral information (rather than the cognitive color) and high spatial resolution of aerial photography provides noise filtration and better sub-water detection capabilities than the HSR technique. C. Only the SRGB method applies for habitat and section scales; hence, its application together with in-situ grid transects for validation, may be optimal for use in similar scenarios.
    The HSR dataset was first degraded to 17 bands with the same spectral range as the RGB dataset and also to a dataset with 3 equivalent bands

  11. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system.

    PubMed

    Al-Masni, Mohammed A; Al-Antari, Mugahed A; Park, Jeong-Min; Gi, Geon; Kim, Tae-Yeon; Rivera, Patricio; Valarezo, Edwin; Choi, Mun-Taek; Han, Seung-Moo; Kim, Tae-Seong

    2018-04-01

    Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework. The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%. Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A Radar-Enabled Collaborative Sensor Network Integrating COTS Technology for Surveillance and Tracking

    PubMed Central

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R.; Demirer, R. Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (<$50 US) miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios. PMID:22438713

  13. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.

    PubMed

    Xu, Kele; Feng, Dawei; Mi, Haibo

    2017-11-23

    The automatic detection of diabetic retinopathy is of vital importance, as it is the main cause of irreversible vision loss in the working-age population in the developed world. The early detection of diabetic retinopathy occurrence can be very helpful for clinical treatment; although several different feature extraction approaches have been proposed, the classification task for retinal images is still tedious even for those trained clinicians. Recently, deep convolutional neural networks have manifested superior performance in image classification compared to previous handcrafted feature-based image classification methods. Thus, in this paper, we explored the use of deep convolutional neural network methodology for the automatic classification of diabetic retinopathy using color fundus image, and obtained an accuracy of 94.5% on our dataset, outperforming the results obtained by using classical approaches.

  14. Definition and classification of evaluation units for tertiary structure prediction in CASP12 facilitated through semi-automated metrics.

    PubMed

    Abriata, Luciano A; Kinch, Lisa N; Tamò, Giorgio E; Monastyrskyy, Bohdan; Kryshtafovych, Andriy; Dal Peraro, Matteo

    2018-03-01

    For assessment purposes, CASP targets are split into evaluation units. We herein present the official definition of CASP12 evaluation units (EUs) and their classification into difficulty categories. Each target can be evaluated as one EU (the whole target) or/and several EUs (separate structural domains or groups of structural domains). The specific scenario for a target split is determined by the domain organization of available templates, the difference in server performance on separate domains versus combination of the domains, and visual inspection. In the end, 71 targets were split into 96 EUs. Classification of the EUs into difficulty categories was done semi-automatically with the assistance of metrics provided by the Prediction Center. These metrics account for sequence and structural similarities of the EUs to potential structural templates from the Protein Data Bank, and for the baseline performance of automated server predictions. The metrics readily separate the 96 EUs into 38 EUs that should be straightforward for template-based modeling (TBM) and 39 that are expected to be hard for homology modeling and are thus left for free modeling (FM). The remaining 19 borderline evaluation units were dubbed FM/TBM, and were inspected case by case. The article also overviews structural and evolutionary features of selected targets relevant to our accompanying article presenting the assessment of FM and FM/TBM predictions, and overviews structural features of the hardest evaluation units from the FM category. We finally suggest improvements for the EU definition and classification procedures. © 2017 Wiley Periodicals, Inc.

  15. Spectroscopic Classifications of Optical Transients with the Lick Shane telescope

    NASA Astrophysics Data System (ADS)

    Rojas-Bravo, C.; Xhakaj, E.; Pan, Y.-C.; Kilpatrick, C. D.; Foley, R. J.

    2017-07-01

    We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane telescope. Targets were supplied by ASAS-SN, ATLAS, Gaia, and POSS.

  16. ATel 7534: Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Pan, Y.-C.; Foley, R. J.; Downing, S.; Jha, S. W.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.

    2015-05-01

    We report the following classifications of optical transients from spectroscopic observations with the KOSMOS on the Mayall telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST). ...

  17. A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.

    2011-01-01

    Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed

  18. Observer efficiency in free-localization tasks with correlated noise.

    PubMed

    Abbey, Craig K; Eckstein, Miguel P

    2014-01-01

    The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks.

  19. Observer efficiency in free-localization tasks with correlated noise

    PubMed Central

    Abbey, Craig K.; Eckstein, Miguel P.

    2014-01-01

    The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks. PMID:24817854

  20. Integrated Remote Sensing Modalities for Classification at a Legacy Test Site

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Anderson, D.; Craven, J.

    2016-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.

  1. Malware distributed collection and pre-classification system using honeypot technology

    NASA Astrophysics Data System (ADS)

    Grégio, André R. A.; Oliveira, Isabela L.; Santos, Rafael D. C.; Cansian, Adriano M.; de Geus, Paulo L.

    2009-04-01

    Malware has become a major threat in the last years due to the ease of spread through the Internet. Malware detection has become difficult with the use of compression, polymorphic methods and techniques to detect and disable security software. Those and other obfuscation techniques pose a problem for detection and classification schemes that analyze malware behavior. In this paper we propose a distributed architecture to improve malware collection using different honeypot technologies to increase the variety of malware collected. We also present a daemon tool developed to grab malware distributed through spam and a pre-classification technique that uses antivirus technology to separate malware in generic classes.

  2. Person detection and tracking with a 360° lidar system

    NASA Astrophysics Data System (ADS)

    Hammer, Marcus; Hebel, Marcus; Arens, Michael

    2017-10-01

    Today it is easily possible to generate dense point clouds of the sensor environment using 360° LiDAR (Light Detection and Ranging) sensors which are available since a number of years. The interpretation of these data is much more challenging. For the automated data evaluation the detection and classification of objects is a fundamental task. Especially in urban scenarios moving objects like persons or vehicles are of particular interest, for instance in automatic collision avoidance, for mobile sensor platforms or surveillance tasks. In literature there are several approaches for automated person detection in point clouds. While most techniques show acceptable results in object detection, the computation time is often crucial. The runtime can be problematic, especially due to the amount of data in the panoramic 360° point clouds. On the other hand, for most applications an object detection and classification in real time is needed. The paper presents a proposal for a fast, real-time capable algorithm for person detection, classification and tracking in panoramic point clouds.

  3. ESTCP Pilot Program - Classification Approaches in Munitions Response

    DTIC Science & Technology

    2008-11-17

    Electromagnetic induction sensors detect ferrous and 57 nonferrous metallic objects and can be effective in geology that challenges magnetometers. EM...harmless metallic objects or geology. Application of technology to separate the munitions from other objects, known as classification, offers the potential...detectable signals are excavated. Many of these detections do not correspond to munitions, but rather to other harmless metallic objects or geology, termed

  4. A robust algorithm for automated target recognition using precomputed radar cross sections

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.; Lanterman, Aaron D.

    2004-09-01

    Passive radar is an emerging technology that offers a number of unique benefits, including covert operation. Many such systems are already capable of detecting and tracking aircraft. The goal of this work is to develop a robust algorithm for adding automated target recognition (ATR) capabilities to existing passive radar systems. In previous papers, we proposed conducting ATR by comparing the precomputed RCS of known targets to that of detected targets. To make the precomputed RCS as accurate as possible, a coordinated flight model is used to estimate aircraft orientation. Once the aircraft's position and orientation are known, it is possible to determine the incident and observed angles on the aircraft, relative to the transmitter and receiver. This makes it possible to extract the appropriate radar cross section (RCS) from our simulated database. This RCS is then scaled to account for propagation losses and the receiver's antenna gain. A Rician likelihood model compares these expected signals from different targets to the received target profile. We have previously employed Monte Carlo runs to gauge the probability of error in the ATR algorithm; however, generation of a statistically significant set of Monte Carlo runs is computationally intensive. As an alternative to Monte Carlo runs, we derive the relative entropy (also known as Kullback-Liebler distance) between two Rician distributions. Since the probability of Type II error in our hypothesis testing problem can be expressed as a function of the relative entropy via Stein's Lemma, this provides us with a computationally efficient method for determining an upper bound on our algorithm's performance. It also provides great insight into the types of classification errors we can expect from our algorithm. This paper compares the numerically approximated probability of Type II error with the results obtained from a set of Monte Carlo runs.

  5. Airborne Laser Remote Sensor for Oil Detection and Classification : Engineering Requirements and Technical Considerations Relevant to a Performance Specification

    DOT National Transportation Integrated Search

    1975-08-01

    This report outlines the engineering requirements for an Airborne Laser Remote Sensor for Oil Detection and Classification System. Detailed engineering requirements are given for the major units of the system. Technical considerations pertinent to a ...

  6. Low-parachor solvents extraction and thermostated micro-thin-layer chromatography separation for fast screening and classification of spirulina from pharmaceutical formulations and food samples.

    PubMed

    Zarzycki, Paweł K; Zarzycka, Magdalena B; Clifton, Vicki L; Adamski, Jerzy; Głód, Bronisław K

    2011-08-19

    The goal of this paper is to demonstrate the separation and detection capability of eco-friendly micro-TLC technique for the classification of spirulina and selected herbs from pharmaceutical and food products. Target compounds were extracted using relatively low-parachor liquids. A number of the spirulina samples which originated from pharmaceutical formulations and food products, were isolated using a simple one step extraction with small volume of methanol, acetone or tetrahydrofuran. Herb samples rich in chlorophyll dyes were analyzed as reference materials. Quantitative data derived from micro-plates under visible light conditions and after iodine staining were explored using chemometrics tools including cluster analysis and principal components analysis. Using this method we could easily distinguish genuine spirulina and non-spirulina samples as well as fresh from expired commercial products and furthermore, we could identify some biodegradation peaks appearing on micro-TLC profiles. This methodology can be applied as a fast screening or fingerprinting tool for the classification of genuine spirulina and herb samples and in particular may be used commercially for the rapid quality control screening of products. Furthermore, this approach allows low-cost fractionation of target substances including cyanobacteria pigments in raw biological or environmental samples for preliminary chemotaxonomic investigations. Due to the low consumption of the mobile phase (usually less than 1 mL per run), this method can be considered as environmentally friendly analytical tool, which may be an alternative for fingerprinting protocols based on HPLC machines and simple separation systems involving planar micro-fluidic or micro-chip devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. ICA-Based Imagined Conceptual Words Classification on EEG Signals.

    PubMed

    Imani, Ehsan; Pourmohammad, Ali; Bagheri, Mahsa; Mobasheri, Vida

    2017-01-01

    Independent component analysis (ICA) has been used for detecting and removing the eye artifacts conventionally. However, in this research, it was used not only for detecting the eye artifacts, but also for detecting the brain-produced signals of two conceptual danger and information category words. In this cross-sectional research, electroencephalography (EEG) signals were recorded using Micromed and 19-channel helmet devices in unipolar mode, wherein Cz electrode was selected as the reference electrode. In the first part of this research, the statistical community test case included four men and four women, who were 25-30 years old. In the designed task, three groups of traffic signs were considered, in which two groups referred to the concept of danger, and the third one referred to the concept of information. In the second part, the three volunteers, two men and one woman, who had the best results, were chosen from among eight participants. In the second designed task, direction arrows (up, down, left, and right) were used. For the 2/8 volunteers in the rest times, very high-power alpha waves were observed from the back of the head; however, in the thinking times, they were different. According to this result, alpha waves for changing the task from thinking to rest condition took at least 3 s for the two volunteers, and it was at most 5 s until they went to the absolute rest condition. For the 7/8 volunteers, the danger and information signals were well classified; these differences for the 5/8 volunteers were observed in the right hemisphere, and, for the other three volunteers, the differences were observed in the left hemisphere. For the second task, simulations showed that the best classification accuracies resulted when the time window was 2.5 s. In addition, it also showed that the features of the autoregressive (AR)-15 model coefficients were the best choices for extracting the features. For all the states of neural network except hardlim discriminator function, the classification accuracies were almost the same and not very different. Linear discriminant analysis (LDA) in comparison with the neural network yielded higher classification accuracies. ICA is a suitable algorithm for recognizing of the word's concept and its place in the brain. Achieved results from this experiment were the same compared with the results from other methods such as functional magnetic resonance imaging and methods based on the brain signals (EEG) in the vowel imagination and covert speech. Herein, the highest classification accuracy was obtained by extracting the target signal from the output of the ICA and extracting the features of coefficients AR model with time interval of 2.5 s. Finally, LDA resulted in the highest classification accuracy more than 60%.

  8. BP network identification technology of infrared polarization based on fuzzy c-means clustering

    NASA Astrophysics Data System (ADS)

    Zeng, Haifang; Gu, Guohua; He, Weiji; Chen, Qian; Yang, Wei

    2011-08-01

    Infrared detection system is frequently employed on surveillance operations and reconnaissance mission to detect particular targets of interest in both civilian and military communities. By incorporating the polarization of light as supplementary information, the target discrimination performance could be enhanced. So this paper proposed an infrared target identification method which is based on fuzzy theory and neural network with polarization properties of targets. The paper utilizes polarization degree and light intensity to advance the unsupervised KFCM (kernel fuzzy C-Means) clustering method. And establish different material pol1arization properties database. In the built network, the system can feedback output corresponding material types of probability distribution toward any input polarized degree such as 10° 15°, 20°, 25°, 30°. KFCM, which has stronger robustness and accuracy than FCM, introduces kernel idea and gives the noise points and invalid value different but intuitively reasonable weights. Because of differences in characterization of material properties, there will be some conflicts in classification results. And D - S evidence theory was used in the combination of the polarization and intensity information. Related results show KFCM clustering precision and operation rate are higher than that of the FCM clustering method. The artificial neural network method realizes material identification, which reasonable solved the problems of complexity in environmental information of infrared polarization, and improperness of background knowledge and inference rule. This method of polarization identification is fast in speed, good in self-adaption and high in resolution.

  9. Optoelectronics applications in multimedia shooting training systems: SPARTAN

    NASA Astrophysics Data System (ADS)

    Glogowski, Tomasz; Hlosta, Pawel; Stepniak, Slawomir; Swiderski, Waldemar

    2017-10-01

    Multimedia shooting training systems are increasingly being used in the training of security staff and uniformed services. An advanced practicing-training system SPARTAN for simulation of small arms shooting has been designed and manufactured by Autocomp Management Ltd. and Military Institute of Armament Technology for the Polish Ministry of National Defence. SPARTAN is a stationary device designed to teach, monitor and evaluate the targeting of small arms and to prepare soldiers for: • firing the live ammunition at open ranges for combat targets and silhouettes • detection, classification and engagement of real targets upon different terrains, weather conditions and periods during the day • team work as a squad during the mission by using different types of arms • suitable reactions in untypical scenarios. Placed in any room the training set consists of: • the projection system that generates realistic 3D imaging of the battlefield (such as combat shooting range) in high-resolution • system that tracks weapons aiming points • sound system which delivers realistic mapping of acoustic surroundings • operator station with which the training is conducted and controlled • central processing unit based on PC computers equipped with specialist software realizing individual system functions • units of smart weapons equipped with radio communication modules, injection laser diodes and pneumatic reloading system. The system make possible training by firing in dynamic scenarios, using combat weapons and live ammunition against visible targets moving on a screen. The use of infrared camera for detecting the position of impact of a projectile.

  10. Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information.

    PubMed

    Wang, Chundong; Zhu, Likun; Gong, Liangyi; Zhao, Zhentang; Yang, Lei; Liu, Zheli; Cheng, Xiaochun

    2018-03-15

    With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks.

  11. Accurate Sybil Attack Detection Based on Fine-Grained Physical Channel Information

    PubMed Central

    Wang, Chundong; Zhao, Zhentang; Yang, Lei; Liu, Zheli; Cheng, Xiaochun

    2018-01-01

    With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless networks. PMID:29543773

  12. Contour-Based Corner Detection and Classification by Using Mean Projection Transform

    PubMed Central

    Kahaki, Seyed Mostafa Mousavi; Nordin, Md Jan; Ashtari, Amir Hossein

    2014-01-01

    Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT) as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP) and false-negative (FN) points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), is introduced. AR combines repeatability and the localization error (Le) for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images. PMID:24590354

  13. Contour-based corner detection and classification by using mean projection transform.

    PubMed

    Kahaki, Seyed Mostafa Mousavi; Nordin, Md Jan; Ashtari, Amir Hossein

    2014-02-28

    Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT) as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP) and false-negative (FN) points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), is introduced. AR combines repeatability and the localization error (Le) for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images.

  14. Hazardous gas detection for FTIR-based hyperspectral imaging system using DNN and CNN

    NASA Astrophysics Data System (ADS)

    Kim, Yong Chan; Yu, Hyeong-Geun; Lee, Jae-Hoon; Park, Dong-Jo; Nam, Hyun-Woo

    2017-10-01

    Recently, a hyperspectral imaging system (HIS) with a Fourier Transform InfraRed (FTIR) spectrometer has been widely used due to its strengths in detecting gaseous fumes. Even though numerous algorithms for detecting gaseous fumes have already been studied, it is still difficult to detect target gases properly because of atmospheric interference substances and unclear characteristics of low concentration gases. In this paper, we propose detection algorithms for classifying hazardous gases using a deep neural network (DNN) and a convolutional neural network (CNN). In both the DNN and CNN, spectral signal preprocessing, e.g., offset, noise, and baseline removal, are carried out. In the DNN algorithm, the preprocessed spectral signals are used as feature maps of the DNN with five layers, and it is trained by a stochastic gradient descent (SGD) algorithm (50 batch size) and dropout regularization (0.7 ratio). In the CNN algorithm, preprocessed spectral signals are trained with 1 × 3 convolution layers and 1 × 2 max-pooling layers. As a result, the proposed algorithms improve the classification accuracy rate by 1.5% over the existing support vector machine (SVM) algorithm for detecting and classifying hazardous gases.

  15. A suitable method to detect potential fraud of bringing Malayan box turtle (Cuora amboinensis) meat into the food chain.

    PubMed

    Ali, Md Eaqub; Asing; Hamid, Sharifah Bee Abd; Razzak, Md Abdur; Rashid, Nur Raifana Abd; Al Amin, Md; Mustafa, Shuhaimi

    2015-01-01

    Malayan box turtle (Cuora amboinensis) has been a wildlife-protected vulnerable turtle species in Malaysia since 2005. However, because of its purported usage in traditional medicine, tonic foods and feeds, clandestine black market trade is rampant. Several polymerase chain reaction (PCR) assays for the taxonomic detection and classification of turtle species have been proposed. These assays are based on long-length target amplicons which are assumed to break down under compromised states and, hence, might not be suitable for the forensic tracing and tracking of turtle trafficking. For the first time this paper develops a very short-amplicon-length PCR assay (120 bp) for the detection of Malayan box turtle meat in raw, processed and mixed matrices, and experimental evidence is produced that such an assay is not only more stable and reliable but also more sensitive than those previously published. We checked the assay specificity against 20 different species and no cross-species detection was observed. The possibility of any false-negative detection was eliminated by a universal endogenous control for eukaryotes. The assay detection limit was 0.0001 ng of box turtle DNA from pure meat and 0.01% turtle meat in binary and ternary admixtures and commercial meatballs. Superior target stability and sensitivity under extreme treatments of boiling, autoclaving and microwave cooking suggested that this newly developed assay would be suitable for any forensic and/or archaeological identification of Malayan box turtle species, even in severely degraded specimens. Further, in silico studies indicated that the assay has the potential to be used as a universal probe for the detection of nine Cuora species, all of which are critically endangered.

  16. Epileptic seizure detection in EEG signal with GModPCA and support vector machine.

    PubMed

    Jaiswal, Abeg Kumar; Banka, Haider

    2017-01-01

    Epilepsy is one of the most common neurological disorders caused by recurrent seizures. Electroencephalograms (EEGs) record neural activity and can detect epilepsy. Visual inspection of an EEG signal for epileptic seizure detection is a time-consuming process and may lead to human error; therefore, recently, a number of automated seizure detection frameworks were proposed to replace these traditional methods. Feature extraction and classification are two important steps in these procedures. Feature extraction focuses on finding the informative features that could be used for classification and correct decision-making. Therefore, proposing effective feature extraction techniques for seizure detection is of great significance. Principal Component Analysis (PCA) is a dimensionality reduction technique used in different fields of pattern recognition including EEG signal classification. Global modular PCA (GModPCA) is a variation of PCA. In this paper, an effective framework with GModPCA and Support Vector Machine (SVM) is presented for epileptic seizure detection in EEG signals. The feature extraction is performed with GModPCA, whereas SVM trained with radial basis function kernel performed the classification between seizure and nonseizure EEG signals. Seven different experimental cases were conducted on the benchmark epilepsy EEG dataset. The system performance was evaluated using 10-fold cross-validation. In addition, we prove analytically that GModPCA has less time and space complexities as compared to PCA. The experimental results show that EEG signals have strong inter-sub-pattern correlations. GModPCA and SVM have been able to achieve 100% accuracy for the classification between normal and epileptic signals. Along with this, seven different experimental cases were tested. The classification results of the proposed approach were better than were compared the results of some of the existing methods proposed in literature. It is also found that the time and space complexities of GModPCA are less as compared to PCA. This study suggests that GModPCA and SVM could be used for automated epileptic seizure detection in EEG signal.

  17. Epileptic seizure detection in EEG signal using machine learning techniques.

    PubMed

    Jaiswal, Abeg Kumar; Banka, Haider

    2018-03-01

    Epilepsy is a well-known nervous system disorder characterized by seizures. Electroencephalograms (EEGs), which capture brain neural activity, can detect epilepsy. Traditional methods for analyzing an EEG signal for epileptic seizure detection are time-consuming. Recently, several automated seizure detection frameworks using machine learning technique have been proposed to replace these traditional methods. The two basic steps involved in machine learning are feature extraction and classification. Feature extraction reduces the input pattern space by keeping informative features and the classifier assigns the appropriate class label. In this paper, we propose two effective approaches involving subpattern based PCA (SpPCA) and cross-subpattern correlation-based PCA (SubXPCA) with Support Vector Machine (SVM) for automated seizure detection in EEG signals. Feature extraction was performed using SpPCA and SubXPCA. Both techniques explore the subpattern correlation of EEG signals, which helps in decision-making process. SVM is used for classification of seizure and non-seizure EEG signals. The SVM was trained with radial basis kernel. All the experiments have been carried out on the benchmark epilepsy EEG dataset. The entire dataset consists of 500 EEG signals recorded under different scenarios. Seven different experimental cases for classification have been conducted. The classification accuracy was evaluated using tenfold cross validation. The classification results of the proposed approaches have been compared with the results of some of existing techniques proposed in the literature to establish the claim.

  18. Classification of electroencephalograph signals using time-frequency decomposition and linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Szuflitowska, B.; Orlowski, P.

    2017-08-01

    Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.

  19. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Coulter, D. A.; Pan, Y.-C.; Kilpatrick, C. D.; Foley, R. J.

    2017-06-01

    We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Pan-STARRS Survey for Transients (PSST) and Gaia.

  20. Automated classification of dolphin echolocation click types from the Gulf of Mexico.

    PubMed

    Frasier, Kaitlin E; Roch, Marie A; Soldevilla, Melissa S; Wiggins, Sean M; Garrison, Lance P; Hildebrand, John A

    2017-12-01

    Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types. Once click types were established, an algorithm for classifying novel detections using existing clusters was tested. The automated classification method was applied to a dataset of 52 million clicks detected across five monitoring sites over two years in the Gulf of Mexico (GOM). Seven distinct click types were identified, one of which is known to be associated with an acoustically identifiable delphinid (Risso's dolphin) and six of which are not yet identified. All types occurred at multiple monitoring locations, but the relative occurrence of types varied, particularly between continental shelf and slope locations. Automatically-identified click types from autonomous seafloor recorders without verifiable species identification were compared with clicks detected on sea-surface towed hydrophone arrays in the presence of visually identified delphinid species. These comparisons suggest potential species identities for the animals producing some echolocation click types. The network-based classification method presented here is effective for rapid, unsupervised delphinid click classification across large datasets in which the click types may not be known a priori.

  1. Automated classification of dolphin echolocation click types from the Gulf of Mexico

    PubMed Central

    Roch, Marie A.; Soldevilla, Melissa S.; Wiggins, Sean M.; Garrison, Lance P.; Hildebrand, John A.

    2017-01-01

    Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types. Once click types were established, an algorithm for classifying novel detections using existing clusters was tested. The automated classification method was applied to a dataset of 52 million clicks detected across five monitoring sites over two years in the Gulf of Mexico (GOM). Seven distinct click types were identified, one of which is known to be associated with an acoustically identifiable delphinid (Risso’s dolphin) and six of which are not yet identified. All types occurred at multiple monitoring locations, but the relative occurrence of types varied, particularly between continental shelf and slope locations. Automatically-identified click types from autonomous seafloor recorders without verifiable species identification were compared with clicks detected on sea-surface towed hydrophone arrays in the presence of visually identified delphinid species. These comparisons suggest potential species identities for the animals producing some echolocation click types. The network-based classification method presented here is effective for rapid, unsupervised delphinid click classification across large datasets in which the click types may not be known a priori. PMID:29216184

  2. Behavior Based Social Dimensions Extraction for Multi-Label Classification

    PubMed Central

    Li, Le; Xu, Junyi; Xiao, Weidong; Ge, Bin

    2016-01-01

    Classification based on social dimensions is commonly used to handle the multi-label classification task in heterogeneous networks. However, traditional methods, which mostly rely on the community detection algorithms to extract the latent social dimensions, produce unsatisfactory performance when community detection algorithms fail. In this paper, we propose a novel behavior based social dimensions extraction method to improve the classification performance in multi-label heterogeneous networks. In our method, nodes’ behavior features, instead of community memberships, are used to extract social dimensions. By introducing Latent Dirichlet Allocation (LDA) to model the network generation process, nodes’ connection behaviors with different communities can be extracted accurately, which are applied as latent social dimensions for classification. Experiments on various public datasets reveal that the proposed method can obtain satisfactory classification results in comparison to other state-of-the-art methods on smaller social dimensions. PMID:27049849

  3. Comparisons of neural networks to standard techniques for image classification and correlation

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1994-01-01

    Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.

  4. Present situation and trend of precision guidance technology and its intelligence

    NASA Astrophysics Data System (ADS)

    Shang, Zhengguo; Liu, Tiandong

    2017-11-01

    This paper first introduces the basic concepts of precision guidance technology and artificial intelligence technology. Then gives a brief introduction of intelligent precision guidance technology, and with the help of development of intelligent weapon based on deep learning project in foreign: LRASM missile project, TRACE project, and BLADE project, this paper gives an overview of the current foreign precision guidance technology. Finally, the future development trend of intelligent precision guidance technology is summarized, mainly concentrated in the multi objectives, intelligent classification, weak target detection and recognition, intelligent between complex environment intelligent jamming and multi-source, multi missile cooperative fighting and other aspects.

  5. Some Dimensions of Auditory Sonar Signal Perception and Their Relationships to Target Classification

    DTIC Science & Technology

    1981-02-13

    a priori how the sample of experimental stimuli related to the classification stereotypes of experienced sonar personnel, Question 6 was addressed by...projections on some of the experimentally identified dimensions are associ- ated with a high degree of classification success, but signals that lack ,strong...11 Hypotheses ......................... 11 Procedure ....... .. .. ......................... 11 Experimental Stimuli

  6. Classification image analysis: estimation and statistical inference for two-alternative forced-choice experiments

    NASA Technical Reports Server (NTRS)

    Abbey, Craig K.; Eckstein, Miguel P.

    2002-01-01

    We consider estimation and statistical hypothesis testing on classification images obtained from the two-alternative forced-choice experimental paradigm. We begin with a probabilistic model of task performance for simple forced-choice detection and discrimination tasks. Particular attention is paid to general linear filter models because these models lead to a direct interpretation of the classification image as an estimate of the filter weights. We then describe an estimation procedure for obtaining classification images from observer data. A number of statistical tests are presented for testing various hypotheses from classification images based on some more compact set of features derived from them. As an example of how the methods we describe can be used, we present a case study investigating detection of a Gaussian bump profile.

  7. Spectral-spatial classification using tensor modeling for cancer detection with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2014-03-01

    As an emerging technology, hyperspectral imaging (HSI) combines both the chemical specificity of spectroscopy and the spatial resolution of imaging, which may provide a non-invasive tool for cancer detection and diagnosis. Early detection of malignant lesions could improve both survival and quality of life of cancer patients. In this paper, we introduce a tensor-based computation and modeling framework for the analysis of hyperspectral images to detect head and neck cancer. The proposed classification method can distinguish between malignant tissue and healthy tissue with an average sensitivity of 96.97% and an average specificity of 91.42% in tumor-bearing mice. The hyperspectral imaging and classification technology has been demonstrated in animal models and can have many potential applications in cancer research and management.

  8. Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Qin, Xulei; Chen, Zhuo Georgia; Fei, Baowei

    2014-10-01

    Early detection of malignant lesions could improve both survival and quality of life of cancer patients. Hyperspectral imaging (HSI) has emerged as a powerful tool for noninvasive cancer detection and diagnosis, with the advantage of avoiding tissue biopsy and providing diagnostic signatures without the need of a contrast agent in real time. We developed a spectral-spatial classification method to distinguish cancer from normal tissue on hyperspectral images. We acquire hyperspectral reflectance images from 450 to 900 nm with a 2-nm increment from tumor-bearing mice. In our animal experiments, the HSI and classification method achieved a sensitivity of 93.7% and a specificity of 91.3%. The preliminary study demonstrated that HSI has the potential to be applied in vivo for noninvasive detection of tumors.

  9. Deep neural network-based domain adaptation for classification of remote sensing images

    NASA Astrophysics Data System (ADS)

    Ma, Li; Song, Jiazhen

    2017-10-01

    We investigate the effectiveness of deep neural network for cross-domain classification of remote sensing images in this paper. In the network, class centroid alignment is utilized as a domain adaptation strategy, making the network able to transfer knowledge from the source domain to target domain on a per-class basis. Since predicted labels of target data should be used to estimate the centroid of each class, we use overall centroid alignment as a coarse domain adaptation method to improve the estimation accuracy. In addition, rectified linear unit is used as the activation function to produce sparse features, which may improve the separation capability. The proposed network can provide both aligned features and an adaptive classifier, as well as obtain label-free classification of target domain data. The experimental results using Hyperion, NCALM, and WorldView-2 remote sensing images demonstrated the effectiveness of the proposed approach.

  10. Transfer Learning of Classification Rules for Biomarker Discovery and Verification from Molecular Profiling Studies

    PubMed Central

    Ganchev, Philip; Malehorn, David; Bigbee, William L.; Gopalakrishnan, Vanathi

    2013-01-01

    We present a novel framework for integrative biomarker discovery from related but separate data sets created in biomarker profiling studies. The framework takes prior knowledge in the form of interpretable, modular rules, and uses them during the learning of rules on a new data set. The framework consists of two methods of transfer of knowledge from source to target data: transfer of whole rules and transfer of rule structures. We evaluated the methods on three pairs of data sets: one genomic and two proteomic. We used standard measures of classification performance and three novel measures of amount of transfer. Preliminary evaluation shows that whole-rule transfer improves classification performance over using the target data alone, especially when there is more source data than target data. It also improves performance over using the union of the data sets. PMID:21571094

  11. Retargeted Least Squares Regression Algorithm.

    PubMed

    Zhang, Xu-Yao; Wang, Lingfeng; Xiang, Shiming; Liu, Cheng-Lin

    2015-09-01

    This brief presents a framework of retargeted least squares regression (ReLSR) for multicategory classification. The core idea is to directly learn the regression targets from data other than using the traditional zero-one matrix as regression targets. The learned target matrix can guarantee a large margin constraint for the requirement of correct classification for each data point. Compared with the traditional least squares regression (LSR) and a recently proposed discriminative LSR models, ReLSR is much more accurate in measuring the classification error of the regression model. Furthermore, ReLSR is a single and compact model, hence there is no need to train two-class (binary) machines that are independent of each other. The convex optimization problem of ReLSR is solved elegantly and efficiently with an alternating procedure including regression and retargeting as substeps. The experimental evaluation over a range of databases identifies the validity of our method.

  12. MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum.

    PubMed

    Chambers, Andrew G; Percy, Andrew J; Simon, Romain; Borchers, Christoph H

    2014-04-01

    Accurate cancer biomarkers are needed for early detection, disease classification, prediction of therapeutic response and monitoring treatment. While there appears to be no shortage of candidate biomarker proteins, a major bottleneck in the biomarker pipeline continues to be their verification by enzyme linked immunosorbent assays. Multiple reaction monitoring (MRM), also known as selected reaction monitoring, is a targeted mass spectrometry approach to protein quantitation and is emerging to bridge the gap between biomarker discovery and clinical validation. Highly multiplexed MRM assays are readily configured and enable simultaneous verification of large numbers of candidates facilitating the development of biomarker panels which can increase specificity. This review focuses on recent applications of MRM to the analysis of plasma and serum from cancer patients for biomarker verification. The current status of this approach is discussed along with future directions for targeted mass spectrometry in clinical biomarker validation.

  13. Divided attention can enhance memory encoding: the attentional boost effect in implicit memory.

    PubMed

    Spataro, Pietro; Mulligan, Neil W; Rossi-Arnaud, Clelia

    2013-07-01

    Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute facilitation was obtained in 2 perceptual implicit tasks (lexical decision and word fragment completion) but not in a conceptual implicit task (semantic classification). In the case of recognition memory, the facilitation was relative, bringing accuracy in the divided attention condition up to the level of accuracy in the full attention condition. The findings follow from the hypothesis that the attentional boost effect reflects enhanced visual encoding of the study stimulus consequent to the transient orienting response to the dual-task target. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  14. Surface characteristics modeling and performance evaluation of urban building materials using LiDAR data.

    PubMed

    Li, Xiaolu; Liang, Yu

    2015-05-20

    Analysis of light detection and ranging (LiDAR) intensity data to extract surface features is of great interest in remote sensing research. One potential application of LiDAR intensity data is target classification. A new bidirectional reflectance distribution function (BRDF) model is derived for target characterization of rough and smooth surfaces. Based on the geometry of our coaxial full-waveform LiDAR system, the integration method is improved through coordinate transformation to establish the relationship between the BRDF model and intensity data of LiDAR. A series of experiments using typical urban building materials are implemented to validate the proposed BRDF model and integration method. The fitting results show that three parameters extracted from the proposed BRDF model can distinguish the urban building materials from perspectives of roughness, specular reflectance, and diffuse reflectance. A comprehensive analysis of these parameters will help characterize surface features in a physically rigorous manner.

  15. Increasing accuracy of vehicle detection from conventional vehicle detectors - counts, speeds, classification, and travel time.

    DOT National Transportation Integrated Search

    2014-09-01

    Vehicle classification is an important traffic parameter for transportation planning and infrastructure : management. Length-based vehicle classification from dual loop detectors is among the lowest cost : technologies commonly used for collecting th...

  16. Fluorescently labeled bevacizumab in human breast cancer: defining the classification threshold

    NASA Astrophysics Data System (ADS)

    Koch, Maximilian; de Jong, Johannes S.; Glatz, Jürgen; Symvoulidis, Panagiotis; Lamberts, Laetitia E.; Adams, Arthur L. L.; Kranendonk, Mariëtte E. G.; Terwisscha van Scheltinga, Anton G. T.; Aichler, Michaela; Jansen, Liesbeth; de Vries, Jakob; Lub-de Hooge, Marjolijn N.; Schröder, Carolien P.; Jorritsma-Smit, Annelies; Linssen, Matthijs D.; de Boer, Esther; van der Vegt, Bert; Nagengast, Wouter B.; Elias, Sjoerd G.; Oliveira, Sabrina; Witkamp, Arjen J.; Mali, Willem P. Th. M.; Van der Wall, Elsken; Garcia-Allende, P. Beatriz; van Diest, Paul J.; de Vries, Elisabeth G. E.; Walch, Axel; van Dam, Gooitzen M.; Ntziachristos, Vasilis

    2017-07-01

    In-vivo fluorescently labelled drug (bevacizumab) breast cancer specimen where obtained from patients. We propose a new structured method to determine the optimal classification threshold in targeted fluorescence intra-operative imaging.

  17. Workshop on the Detection, Classification, Localization and Density Estimation of Marine Mammals Using Passive Acoustics - 2015

    DTIC Science & Technology

    2015-09-30

    together the research community working on marine mammal acoustics to discuss detection, classification, localization and density estimation methods...and Density Estimation of Marine Mammals Using Passive Acoustics - 2015 John A. Hildebrand Scripps Institution of Oceanography UCSD La Jolla...dclde LONG-TERM GOALS The goal of this project was to bring together the community of researchers working on methods for detection

  18. Attribute-based classification for zero-shot visual object categorization.

    PubMed

    Lampert, Christoph H; Nickisch, Hannes; Harmeling, Stefan

    2014-03-01

    We study the problem of object recognition for categories for which we have no training examples, a task also called zero--data or zero-shot learning. This situation has hardly been studied in computer vision research, even though it occurs frequently; the world contains tens of thousands of different object classes, and image collections have been formed and suitably annotated for only a few of them. To tackle the problem, we introduce attribute-based classification: Objects are identified based on a high-level description that is phrased in terms of semantic attributes, such as the object's color or shape. Because the identification of each such property transcends the specific learning task at hand, the attribute classifiers can be prelearned independently, for example, from existing image data sets unrelated to the current task. Afterward, new classes can be detected based on their attribute representation, without the need for a new training phase. In this paper, we also introduce a new data set, Animals with Attributes, of over 30,000 images of 50 animal classes, annotated with 85 semantic attributes. Extensive experiments on this and two more data sets show that attribute-based classification indeed is able to categorize images without access to any training images of the target classes.

  19. Lung tumor diagnosis and subtype discovery by gene expression profiling.

    PubMed

    Wang, Lu-yong; Tu, Zhuowen

    2006-01-01

    The optimal treatment of patients with complex diseases, such as cancers, depends on the accurate diagnosis by using a combination of clinical and histopathological data. In many scenarios, it becomes tremendously difficult because of the limitations in clinical presentation and histopathology. To accurate diagnose complex diseases, the molecular classification based on gene or protein expression profiles are indispensable for modern medicine. Moreover, many heterogeneous diseases consist of various potential subtypes in molecular basis and differ remarkably in their response to therapies. It is critical to accurate predict subgroup on disease gene expression profiles. More fundamental knowledge of the molecular basis and classification of disease could aid in the prediction of patient outcome, the informed selection of therapies, and identification of novel molecular targets for therapy. In this paper, we propose a new disease diagnostic method, probabilistic boosting tree (PB tree) method, on gene expression profiles of lung tumors. It enables accurate disease classification and subtype discovery in disease. It automatically constructs a tree in which each node combines a number of weak classifiers into a strong classifier. Also, subtype discovery is naturally embedded in the learning process. Our algorithm achieves excellent diagnostic performance, and meanwhile it is capable of detecting the disease subtype based on gene expression profile.

  20. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.

    PubMed

    Pollock, Samuel B; Hu, Amy; Mou, Yun; Martinko, Alexander J; Julien, Olivier; Hornsby, Michael; Ploder, Lynda; Adams, Jarrett J; Geng, Huimin; Müschen, Markus; Sidhu, Sachdev S; Moffat, Jason; Wells, James A

    2018-03-13

    Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states. Copyright © 2018 the Author(s). Published by PNAS.

  1. JVLA Observations of Young Brown Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, Luis F.; Zapata, Luis A.; Palau, Aina, E-mail: l.rodriguez@crya.unam.mx, E-mail: l.zapata@crya.unam.mx, E-mail: a.palau@crya.unam.mx

    We present sensitive 3.0 cm JVLA radio continuum observations of six regions of low-mass star formation that include twelve young brown dwarfs (BDs) and four young BD candidates. We detect a total of 49 compact radio sources in the fields observed, of which 24 have no reported counterparts and are considered new detections. Twelve of the radio sources show variability in timescales of weeks to months, suggesting gyrosynchrotron emission produced in active magnetospheres. Only one of the target BDs, FU Tau A, was detected. However, we detected radio emission associated with two of the BD candidates, WL 20S and CHLTmore » 2. The radio flux densities of the sources associated with these BD candidates are more than an order of magnitude larger than expected for a BD and suggest a revision of their classification. In contrast, FU Tau A falls on the well-known correlation between radio luminosity and bolometric luminosity, suggesting that the emission comes from a thermal jet and that this BD seems to be forming as a scaled-down version of low-mass stars.« less

  2. Structural impact detection with vibro-haptic interfaces

    NASA Astrophysics Data System (ADS)

    Jung, Hwee-Kwon; Park, Gyuhae; Todd, Michael D.

    2016-07-01

    This paper presents a new sensing paradigm for structural impact detection using vibro-haptic interfaces. The goal of this study is to allow humans to ‘feel’ structural responses (impact, shape changes, and damage) and eventually determine health conditions of a structure. The target applications for this study are aerospace structures, in particular, airplane wings. Both hardware and software components are developed to realize the vibro-haptic-based impact detection system. First, L-shape piezoelectric sensor arrays are deployed to measure the acoustic emission data generated by impacts on a wing. Unique haptic signals are then generated by processing the measured acoustic emission data. These haptic signals are wirelessly transmitted to human arms, and with vibro-haptic interface, human pilots could identify impact location, intensity and possibility of subsequent damage initiation. With the haptic interface, the experimental results demonstrate that human could correctly identify such events, while reducing false indications on structural conditions by capitalizing on human’s classification capability. Several important aspects of this study, including development of haptic interfaces, design of optimal human training strategies, and extension of the haptic capability into structural impact detection are summarized in this paper.

  3. [MicroRNA Target Prediction Based on Support Vector Machine Ensemble Classification Algorithm of Under-sampling Technique].

    PubMed

    Chen, Zhiru; Hong, Wenxue

    2016-02-01

    Considering the low accuracy of prediction in the positive samples and poor overall classification effects caused by unbalanced sample data of MicroRNA (miRNA) target, we proposes a support vector machine (SVM)-integration of under-sampling and weight (IUSM) algorithm in this paper, an under-sampling based on the ensemble learning algorithm. The algorithm adopts SVM as learning algorithm and AdaBoost as integration framework, and embeds clustering-based under-sampling into the iterative process, aiming at reducing the degree of unbalanced distribution of positive and negative samples. Meanwhile, in the process of adaptive weight adjustment of the samples, the SVM-IUSM algorithm eliminates the abnormal ones in negative samples with robust sample weights smoothing mechanism so as to avoid over-learning. Finally, the prediction of miRNA target integrated classifier is achieved with the combination of multiple weak classifiers through the voting mechanism. The experiment revealed that the SVM-IUSW, compared with other algorithms on unbalanced dataset collection, could not only improve the accuracy of positive targets and the overall effect of classification, but also enhance the generalization ability of miRNA target classifier.

  4. a Single-Exposure Dual-Energy Computed Radiography Technique for Improved Nodule Detection and Classification in Chest Imaging

    NASA Astrophysics Data System (ADS)

    Zink, Frank Edward

    The detection and classification of pulmonary nodules is of great interest in chest radiography. Nodules are often indicative of primary cancer, and their detection is particularly important in asymptomatic patients. The ability to classify nodules as calcified or non-calcified is important because calcification is a positive indicator that the nodule is benign. Dual-energy methods offer the potential to improve both the detection and classification of nodules by allowing the formation of material-selective images. Tissue-selective images can improve detection by virtue of the elimination of obscuring rib structure. Bone -selective images are essentially calcium images, allowing classification of the nodule. A dual-energy technique is introduced which uses a computed radiography system to acquire dual-energy chest radiographs in a single-exposure. All aspects of the dual-energy technique are described, with particular emphasis on scatter-correction, beam-hardening correction, and noise-reduction algorithms. The adaptive noise-reduction algorithm employed improves material-selective signal-to-noise ratio by up to a factor of seven with minimal sacrifice in selectivity. A clinical comparison study is described, undertaken to compare the dual-energy technique to conventional chest radiography for the tasks of nodule detection and classification. Observer performance data were collected using the Free Response Observer Characteristic (FROC) method and the bi-normal Alternative FROC (AFROC) performance model. Results of the comparison study, analyzed using two common multiple observer statistical models, showed that the dual-energy technique was superior to conventional chest radiography for detection of nodules at a statistically significant level (p < .05). Discussion of the comparison study emphasizes the unique combination of data collection and analysis techniques employed, as well as the limitations of comparison techniques in the larger context of technology assessment.

  5. Detection of inter-patient left and right bundle branch block heartbeats in ECG using ensemble classifiers

    PubMed Central

    2014-01-01

    Background Left bundle branch block (LBBB) and right bundle branch block (RBBB) not only mask electrocardiogram (ECG) changes that reflect diseases but also indicate important underlying pathology. The timely detection of LBBB and RBBB is critical in the treatment of cardiac diseases. Inter-patient heartbeat classification is based on independent training and testing sets to construct and evaluate a heartbeat classification system. Therefore, a heartbeat classification system with a high performance evaluation possesses a strong predictive capability for unknown data. The aim of this study was to propose a method for inter-patient classification of heartbeats to accurately detect LBBB and RBBB from the normal beat (NORM). Methods This study proposed a heartbeat classification method through a combination of three different types of classifiers: a minimum distance classifier constructed between NORM and LBBB; a weighted linear discriminant classifier between NORM and RBBB based on Bayesian decision making using posterior probabilities; and a linear support vector machine (SVM) between LBBB and RBBB. Each classifier was used with matching features to obtain better classification performance. The final types of the test heartbeats were determined using a majority voting strategy through the combination of class labels from the three classifiers. The optimal parameters for the classifiers were selected using cross-validation on the training set. The effects of different lead configurations on the classification results were assessed, and the performance of these three classifiers was compared for the detection of each pair of heartbeat types. Results The study results showed that a two-lead configuration exhibited better classification results compared with a single-lead configuration. The construction of a classifier with good performance between each pair of heartbeat types significantly improved the heartbeat classification performance. The results showed a sensitivity of 91.4% and a positive predictive value of 37.3% for LBBB and a sensitivity of 92.8% and a positive predictive value of 88.8% for RBBB. Conclusions A multi-classifier ensemble method was proposed based on inter-patient data and demonstrated a satisfactory classification performance. This approach has the potential for application in clinical practice to distinguish LBBB and RBBB from NORM of unknown patients. PMID:24903422

  6. Detection of inter-patient left and right bundle branch block heartbeats in ECG using ensemble classifiers.

    PubMed

    Huang, Huifang; Liu, Jie; Zhu, Qiang; Wang, Ruiping; Hu, Guangshu

    2014-06-05

    Left bundle branch block (LBBB) and right bundle branch block (RBBB) not only mask electrocardiogram (ECG) changes that reflect diseases but also indicate important underlying pathology. The timely detection of LBBB and RBBB is critical in the treatment of cardiac diseases. Inter-patient heartbeat classification is based on independent training and testing sets to construct and evaluate a heartbeat classification system. Therefore, a heartbeat classification system with a high performance evaluation possesses a strong predictive capability for unknown data. The aim of this study was to propose a method for inter-patient classification of heartbeats to accurately detect LBBB and RBBB from the normal beat (NORM). This study proposed a heartbeat classification method through a combination of three different types of classifiers: a minimum distance classifier constructed between NORM and LBBB; a weighted linear discriminant classifier between NORM and RBBB based on Bayesian decision making using posterior probabilities; and a linear support vector machine (SVM) between LBBB and RBBB. Each classifier was used with matching features to obtain better classification performance. The final types of the test heartbeats were determined using a majority voting strategy through the combination of class labels from the three classifiers. The optimal parameters for the classifiers were selected using cross-validation on the training set. The effects of different lead configurations on the classification results were assessed, and the performance of these three classifiers was compared for the detection of each pair of heartbeat types. The study results showed that a two-lead configuration exhibited better classification results compared with a single-lead configuration. The construction of a classifier with good performance between each pair of heartbeat types significantly improved the heartbeat classification performance. The results showed a sensitivity of 91.4% and a positive predictive value of 37.3% for LBBB and a sensitivity of 92.8% and a positive predictive value of 88.8% for RBBB. A multi-classifier ensemble method was proposed based on inter-patient data and demonstrated a satisfactory classification performance. This approach has the potential for application in clinical practice to distinguish LBBB and RBBB from NORM of unknown patients.

  7. Automatic Building Detection based on Supervised Classification using High Resolution Google Earth Images

    NASA Astrophysics Data System (ADS)

    Ghaffarian, S.; Ghaffarian, S.

    2014-08-01

    This paper presents a novel approach to detect the buildings by automization of the training area collecting stage for supervised classification. The method based on the fact that a 3d building structure should cast a shadow under suitable imaging conditions. Therefore, the methodology begins with the detection and masking out the shadow areas using luminance component of the LAB color space, which indicates the lightness of the image, and a novel double thresholding technique. Further, the training areas for supervised classification are selected by automatically determining a buffer zone on each building whose shadow is detected by using the shadow shape and the sun illumination direction. Thereafter, by calculating the statistic values of each buffer zone which is collected from the building areas the Improved Parallelepiped Supervised Classification is executed to detect the buildings. Standard deviation thresholding applied to the Parallelepiped classification method to improve its accuracy. Finally, simple morphological operations conducted for releasing the noises and increasing the accuracy of the results. The experiments were performed on set of high resolution Google Earth images. The performance of the proposed approach was assessed by comparing the results of the proposed approach with the reference data by using well-known quality measurements (Precision, Recall and F1-score) to evaluate the pixel-based and object-based performances of the proposed approach. Evaluation of the results illustrates that buildings detected from dense and suburban districts with divers characteristics and color combinations using our proposed method have 88.4 % and 853 % overall pixel-based and object-based precision performances, respectively.

  8. Automated detection and classification of dice

    NASA Astrophysics Data System (ADS)

    Correia, Bento A. B.; Silva, Jeronimo A.; Carvalho, Fernando D.; Guilherme, Rui; Rodrigues, Fernando C.; de Silva Ferreira, Antonio M.

    1995-03-01

    This paper describes a typical machine vision system in an unusual application, the automated visual inspection of a Casino's playing tables. The SORTE computer vision system was developed at INETI under a contract with the Portuguese Gaming Inspection Authorities IGJ. It aims to automate the tasks of detection and classification of the dice's scores on the playing tables of the game `Banca Francesa' (which means French Banking) in Casinos. The system is based on the on-line analysis of the images captured by a monochrome CCD camera placed over the playing tables, in order to extract relevant information concerning the score indicated by the dice. Image processing algorithms for real time automatic throwing detection and dice classification were developed and implemented.

  9. Deconvolution single shot multibox detector for supermarket commodity detection and classification

    NASA Astrophysics Data System (ADS)

    Li, Dejian; Li, Jian; Nie, Binling; Sun, Shouqian

    2017-07-01

    This paper proposes an image detection model to detect and classify supermarkets shelves' commodity. Based on the principle of the features directly affects the accuracy of the final classification, feature maps are performed to combine high level features with bottom level features. Then set some fixed anchors on those feature maps, finally the label and the position of commodity is generated by doing a box regression and classification. In this work, we proposed a model named Deconvolutiuon Single Shot MultiBox Detector, we evaluated the model using 300 images photographed from real supermarket shelves. Followed the same protocol in other recent methods, the results showed that our model outperformed other baseline methods.

  10. Improved detection of chemical substances from colorimetric sensor data using probabilistic machine learning

    NASA Astrophysics Data System (ADS)

    Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.

    2017-05-01

    We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control trafficking of illegal drugs, explosive detection, or in other law enforcement applications.

  11. Topic Detection in Online Chat

    DTIC Science & Technology

    2009-09-01

    CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18 . SECURITY CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION...Documents and Author-Author Documents—Radial Kernel. .............. 66 Figure 18 . Classifiers Results: LDA Models Created by Textbook-Author...Trained on Two Classes............................................................................................... 72 Table 18 . Maximum

  12. The impact of feature selection on one and two-class classification performance for plant microRNAs.

    PubMed

    Khalifa, Waleed; Yousef, Malik; Saçar Demirci, Müşerref Duygu; Allmer, Jens

    2016-01-01

    MicroRNAs (miRNAs) are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18-24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is involved to determine miRNAs experimentally and, therefore, machine learning is used to complement such endeavors. The success of machine learning mostly depends on proper input data and appropriate features for parameterization of the data. Although, in general, two-class classification (TCC) is used in the field; because negative examples are hard to come by, one-class classification (OCC) has been tried for pre-miRNA detection. Since both positive and negative examples are currently somewhat limited, feature selection can prove to be vital for furthering the field of pre-miRNA detection. In this study, we compare the performance of OCC and TCC using eight feature selection methods and seven different plant species providing positive pre-miRNA examples. Feature selection was very successful for OCC where the best feature selection method achieved an average accuracy of 95.6%, thereby being ∼29% better than the worst method which achieved 66.9% accuracy. While the performance is comparable to TCC, which performs up to 3% better than OCC, TCC is much less affected by feature selection and its largest performance gap is ∼13% which only occurs for two of the feature selection methodologies. We conclude that feature selection is crucially important for OCC and that it can perform on par with TCC given the proper set of features.

  13. Preliminary results of the comparative study between EO-1/Hyperion and ALOS/PALSAR

    NASA Astrophysics Data System (ADS)

    Koizumi, E.; Furuta, R.; Yamamoto, A.

    2011-12-01

    [Introduction]Hyper-spectral remote sensing images have been used for land-cover classification due to their high spectral resolutions. Synthetic Aperture Radar (SAR) remote sensing data are also useful to probe surface condition because radar image reflects surface geometry, although there are not so many reports about the land-cover detection with combination use of both hyper-spectral data and SAR data. Among SAR sensors, L-band SAR is thought to be useful tool to find physical properties because its comparatively long wave length can through small objects on surface. We are comparing the result of land cover classification and/or physical values from hyper-spectral and L-band SAR data to find the relationship between these two quite different sensors and to confirm the possibility of the combined analysis of hyper-spectral and L-band SAR data, and in this presentation we will report the preliminary result of this study. There are only few sources of both hyper-spectral and L-band SAR data from the space in this time, however, several space organizations plan to launch new satellites on which hyper-spectral or L-band SAR equipments are mounted in next few years. So, the importance of the combined analysis will increase more than ever. [Target Area]We are performing and planning analyses on the following areas in this study. (a)South of Cairo, Nile river area, Egypt, for sand, sandstone, limestone, river, crops. (b)Mount Sakurajima, Japan, for igneous rock and other related geological property. [Methods and Results]EO-1 Hyperion data are analyzed in this study as hyper-spectral data. The Hyperion equipment has 242 channels but some of them include full noise or have no data. We selected channels for analysis by checking each channel, and select about 150 channels (depend on the area). Before analysis, the atmospheric correction of ATCOR-3 was applied for the selected channels. The corrected data were analyzed by unsupervised classification or principal component analysis (PCA). We also did the unsupervised classification with the several components from PCA. According to the analysis results, several classifications can be extracted for each category (vegetation, sand and rocks, and water). One of the interesting results is that there are a few classes for sand as those of other categories, and these classes seem to reflect artificial and natural surface changes that are some result of excavation or scratching. ALOS PALSAR data are analyzed as L-band SAR data. We selected the Dual Polarization data for each target area. The data were converted to backscattered images, and then calculated some image statistic values. The topographic information also calculates with SAR interferometry technique as reference. Comparing the Hyperion classification results with the result of the calculation of statistic values from PALSAR, there are some areas where relativities seem to be confirmed. To confirm the combined analysis between hyper-spectral and L-band SAR data to detect and classify the surface material, further studies are still required. We will continue to investigate more efficient analytic methods and to examine other functions like the adopted channels, the number of class in classification, the kind of statistic information, and so on, to refine the method.

  14. The VLT-FLAMES Tarantula Survey. I. Introduction and observational overview

    NASA Astrophysics Data System (ADS)

    Evans, C. J.; Taylor, W. D.; Hénault-Brunet, V.; Sana, H.; de Koter, A.; Simón-Díaz, S.; Carraro, G.; Bagnoli, T.; Bastian, N.; Bestenlehner, J. M.; Bonanos, A. Z.; Bressert, E.; Brott, I.; Campbell, M. A.; Cantiello, M.; Clark, J. S.; Costa, E.; Crowther, P. A.; de Mink, S. E.; Doran, E.; Dufton, P. L.; Dunstall, P. R.; Friedrich, K.; Garcia, M.; Gieles, M.; Gräfener, G.; Herrero, A.; Howarth, I. D.; Izzard, R. G.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Ramirez, O. H.; Sabín-Sanjulián, C.; Smartt, S. J.; Stroud, V. E.; van Loon, J. Th.; Vink, J. S.; Walborn, N. R.

    2011-06-01

    The VLT-FLAMES Tarantula Survey (VFTS) is an ESO Large Programme that has obtained multi-epoch optical spectroscopy of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). Here we introduce our scientific motivations and give an overview of the survey targets, including optical and near-infrared photometry and comprehensive details of the data reduction. One of the principal objectives was to detect massive binary systems via variations in their radial velocities, thus shaping the multi-epoch observing strategy. Spectral classifications are given for the massive emission-line stars observed by the survey, including the discovery of a new Wolf-Rayet star (VFTS 682, classified as WN5h), 2' to the northeast of R136. To illustrate the diversity of objects encompassed by the survey, we investigate the spectral properties of sixteen targets identified by Gruendl & Chu from Spitzer photometry as candidate young stellar objects or stars with notable mid-infrared excesses. Detailed spectral classification and quantitative analysis of the O- and B-type stars in the VFTS sample, paying particular attention to the effects of rotational mixing and binarity, will be presented in a series of future articles to address fundamental questions in both stellar and cluster evolution. Figures 10-12, Tables 5 and 6, and Appendix A are available in electronic form at http://www.aanda.org

  15. Interactions between pre-processing and classification methods for event-related-potential classification: best-practice guidelines for brain-computer interfacing.

    PubMed

    Farquhar, J; Hill, N J

    2013-04-01

    Detecting event related potentials (ERPs) from single trials is critical to the operation of many stimulus-driven brain computer interface (BCI) systems. The low strength of the ERP signal compared to the noise (due to artifacts and BCI irrelevant brain processes) makes this a challenging signal detection problem. Previous work has tended to focus on how best to detect a single ERP type (such as the visual oddball response). However, the underlying ERP detection problem is essentially the same regardless of stimulus modality (e.g., visual or tactile), ERP component (e.g., P300 oddball response, or the error-potential), measurement system or electrode layout. To investigate whether a single ERP detection method might work for a wider range of ERP BCIs we compare detection performance over a large corpus of more than 50 ERP BCI datasets whilst systematically varying the electrode montage, spectral filter, spatial filter and classifier training methods. We identify an interesting interaction between spatial whitening and regularised classification which made detection performance independent of the choice of spectral filter low-pass frequency. Our results show that pipeline consisting of spectral filtering, spatial whitening, and regularised classification gives near maximal performance in all cases. Importantly, this pipeline is simple to implement and completely automatic with no expert feature selection or parameter tuning required. Thus, we recommend this combination as a "best-practice" method for ERP detection problems.

  16. Spectroscopic Classifications of AT2016esx with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Kilpatrick, C. D.; Siebert, M. R.; Coulter, D. A.; Foley, R. J.; Pan, Y.-C.; Jha, S. W.; Rest, A.; Scolnic, D.

    2016-08-01

    We report a classification of ASASSN-16io = AT2016esx from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN).

  17. Pedemis: a portable electromagnetic induction sensor with integrated positioning

    NASA Astrophysics Data System (ADS)

    Barrowes, Benjamin E.; Shubitidze, Fridon; Grzegorczyk, Tomasz M.; Fernández, Pablo; O'Neill, Kevin

    2012-06-01

    Pedemis (PortablE Decoupled Electromagnetic Induction Sensor) is a time-domain handheld electromagnetic induction (EMI) instrument with the intended purpose of improving the detection and classification of UneXploded Ordnance (UXO). Pedemis sports nine coplanar transmitters (the Tx assembly) and nine triaxial receivers held in a fixed geometry with respect to each other (the Rx assembly) but with that Rx assembly physically decoupled from the Tx assembly allowing flexible data acquisition modes and deployment options. The data acquisition (DAQ) electronics consists of the National Instruments (NI) cRIO platform which is much lighter and more energy efficient that prior DAQ platforms. Pedemis has successfully acquired initial data, and inversion of the data acquired during these initial tests has yielded satisfactory polarizabilities of a spherical target. In addition, precise positioning of the Rx assembly has been achieved via position inversion algorithms based solely on the data acquired from the receivers during the "on-time" of the primary field. Pedemis has been designed to be a flexible yet user friendly EMI instrument that can survey, detect and classify targets in a one pass solution. In this paper, the Pedemis instrument is introduced along with its operation protocols, initial data results, and current status.

  18. A novel BCI based on ERP components sensitive to configural processing of human faces

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Qibin; Jing, Jin; Wang, Xingyu; Cichocki, Andrzej

    2012-04-01

    This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min-1 using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.

  19. Application of speed-enhanced spatial domain correlation filters for real-time security monitoring

    NASA Astrophysics Data System (ADS)

    Gardezi, Akber; Bangalore, Nagachetan; Al-Kandri, Ahmed; Birch, Philip; Young, Rupert; Chatwin, Chris

    2011-11-01

    A speed enhanced space variant correlation filer which has been designed to be invariant to change in orientation and scale of the target object but also to be spatially variant, i.e. the filter function becoming dependant on local clutter conditions within the image. The speed enhancement of the filter is due to the use of optimization techniques employing low-pass filtering to restrict kernel movement to be within regions of interest. The detection and subsequent identification capability of the two-stage process has been evaluated in highly cluttered backgrounds using both visible and thermal imagery acquired from civil and defense domains along with associated training data sets for target detection and classification. In this paper a series of tests have been conducted in multiple scenarios relating to situations that pose a security threat. Performance matrices comprised of peak-to-correlation energy (PCE) and peak-to-side lobe ratio (PSR) measurements of the correlation output have been calculated to allow the definition of a recognition criterion. The hardware implementation of the system has been discussed in terms of Field Programmable Gate Array (FPGA) chipsets with implementation bottle necks and their solution being considered.

  20. Laser vibration sensing at Fraunhofer IOSB: review and applications

    NASA Astrophysics Data System (ADS)

    Lutzmann, Peter; Göhler, Benjamin; Hill, Chris A.; van Putten, Frank

    2017-03-01

    Laser vibrometry based on coherent detection allows noncontact measurements of small-amplitude vibration characteristics of objects. This technique, commonly using the Doppler effect, offers high potential for short-range civil applications and for medium- or long-range applications in defense and security. Most commercially available laser Doppler vibrometers are for short ranges (up to a few tens of meters) and use a single beam from a low-power HeNe laser source (λ=633 nm). Medium- or long-range applications need higher laser output power, and thus, appropriate vibrometers typically operate at 1.5, 2, or 10.6 μm to meet the laser safety regulations. Spatially resolved vibrational information can be obtained from an object by using scanning laser vibrometers. To reduce measuring time and to measure transient object movements and vibrational mode structures of objects, several approaches to multibeam laser Doppler vibrometry have been developed, and some of them are already commercially available for short ranges. We focus on applications in the field of defense and security, such as target classification and identification, including camouflaged or partly concealed targets, and the detection of buried land mines. Examples of civil medium-range applications are also given.

  1. A novel BCI based on ERP components sensitive to configural processing of human faces.

    PubMed

    Zhang, Yu; Zhao, Qibin; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2012-04-01

    This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min(-1) using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.

  2. Video mining using combinations of unsupervised and supervised learning techniques

    NASA Astrophysics Data System (ADS)

    Divakaran, Ajay; Miyahara, Koji; Peker, Kadir A.; Radhakrishnan, Regunathan; Xiong, Ziyou

    2003-12-01

    We discuss the meaning and significance of the video mining problem, and present our work on some aspects of video mining. A simple definition of video mining is unsupervised discovery of patterns in audio-visual content. Such purely unsupervised discovery is readily applicable to video surveillance as well as to consumer video browsing applications. We interpret video mining as content-adaptive or "blind" content processing, in which the first stage is content characterization and the second stage is event discovery based on the characterization obtained in stage 1. We discuss the target applications and find that using a purely unsupervised approach are too computationally complex to be implemented on our product platform. We then describe various combinations of unsupervised and supervised learning techniques that help discover patterns that are useful to the end-user of the application. We target consumer video browsing applications such as commercial message detection, sports highlights extraction etc. We employ both audio and video features. We find that supervised audio classification combined with unsupervised unusual event discovery enables accurate supervised detection of desired events. Our techniques are computationally simple and robust to common variations in production styles etc.

  3. Detection of distorted frames in retinal video-sequences via machine learning

    NASA Astrophysics Data System (ADS)

    Kolar, Radim; Liberdova, Ivana; Odstrcilik, Jan; Hracho, Michal; Tornow, Ralf P.

    2017-07-01

    This paper describes detection of distorted frames in retinal sequences based on set of global features extracted from each frame. The feature vector is consequently used in classification step, in which three types of classifiers are tested. The best classification accuracy 96% has been achieved with support vector machine approach.

  4. Detection and Evaluation of Cheating on College Exams Using Supervised Classification

    ERIC Educational Resources Information Center

    Cavalcanti, Elmano Ramalho; Pires, Carlos Eduardo; Cavalcanti, Elmano Pontes; Pires, Vládia Freire

    2012-01-01

    Text mining has been used for various purposes, such as document classification and extraction of domain-specific information from text. In this paper we present a study in which text mining methodology and algorithms were properly employed for academic dishonesty (cheating) detection and evaluation on open-ended college exams, based on document…

  5. Shallow-Water Mud Acoustics

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow- Water Mud Acoustics William L. Siegmann...shallow water over mud sediments and of acoustic detection, localization, and classification of objects buried in mud. OBJECTIVES • Develop...including long-range conveyance of information; detection, localization, and classification of objects buried in mud; and improvement of shallow water

  6. Acoustic firearm discharge detection and classification in an enclosed environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luzi, Lorenzo; Gonzalez, Eric; Bruillard, Paul

    2016-05-01

    Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty.

  7. A drone detection with aircraft classification based on a camera array

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Qu, Fangchao; Liu, Yingjian; Zhao, Wei; Chen, Yitong

    2018-03-01

    In recent years, because of the rapid popularity of drones, many people have begun to operate drones, bringing a range of security issues to sensitive areas such as airports and military locus. It is one of the important ways to solve these problems by realizing fine-grained classification and providing the fast and accurate detection of different models of drone. The main challenges of fine-grained classification are that: (1) there are various types of drones, and the models are more complex and diverse. (2) the recognition test is fast and accurate, in addition, the existing methods are not efficient. In this paper, we propose a fine-grained drone detection system based on the high resolution camera array. The system can quickly and accurately recognize the detection of fine grained drone based on hd camera.

  8. Multispectral and Panchromatic used Enhancement Resolution and Study Effective Enhancement on Supervised and Unsupervised Classification Land – Cover

    NASA Astrophysics Data System (ADS)

    Salman, S. S.; Abbas, W. A.

    2018-05-01

    The goal of the study is to support analysis Enhancement of Resolution and study effect on classification methods on bands spectral information of specific and quantitative approaches. In this study introduce a method to enhancement resolution Landsat 8 of combining the bands spectral of 30 meters resolution with panchromatic band 8 of 15 meters resolution, because of importance multispectral imagery to extracting land - cover. Classification methods used in this study to classify several lands -covers recorded from OLI- 8 imagery. Two methods of Data mining can be classified as either supervised or unsupervised. In supervised methods, there is a particular predefined target, that means the algorithm learn which values of the target are associated with which values of the predictor sample. K-nearest neighbors and maximum likelihood algorithms examine in this work as supervised methods. In other hand, no sample identified as target in unsupervised methods, the algorithm of data extraction searches for structure and patterns between all the variables, represented by Fuzzy C-mean clustering method as one of the unsupervised methods, NDVI vegetation index used to compare the results of classification method, the percent of dense vegetation in maximum likelihood method give a best results.

  9. Classification of Birds and Bats Using Flight Tracks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullinan, Valerie I.; Matzner, Shari; Duberstein, Corey A.

    Classification of birds and bats that use areas targeted for offshore wind farm development and the inference of their behavior is essential to evaluating the potential effects of development. The current approach to assessing the number and distribution of birds at sea involves transect surveys using trained individuals in boats or airplanes or using high-resolution imagery. These approaches are costly and have safety concerns. Based on a limited annotated library extracted from a single-camera thermal video, we provide a framework for building models that classify birds and bats and their associated behaviors. As an example, we developed a discriminant modelmore » for theoretical flight paths and applied it to data (N = 64 tracks) extracted from 5-min video clips. The agreement between model- and observer-classified path types was initially only 41%, but it increased to 73% when small-scale jitter was censored and path types were combined. Classification of 46 tracks of bats, swallows, gulls, and terns on average was 82% accurate, based on a jackknife cross-validation. Model classification of bats and terns (N = 4 and 2, respectively) was 94% and 91% correct, respectively; however, the variance associated with the tracks from these targets is poorly estimated. Model classification of gulls and swallows (N ≥ 18) was on average 73% and 85% correct, respectively. The models developed here should be considered preliminary because they are based on a small data set both in terms of the numbers of species and the identified flight tracks. Future classification models would be greatly improved by including a measure of distance between the camera and the target.« less

  10. The Development of DNA Based Methods for the Reliable and Efficient Identification of Nicotiana tabacum in Tobacco and Its Derived Products

    PubMed Central

    Fan, Wei; Li, Rong; Li, Sifan; Ping, Wenli; Li, Shujun; Naumova, Alexandra; Peelen, Tamara; Yuan, Zheng; Zhang, Dabing

    2016-01-01

    Reliable methods are needed to detect the presence of tobacco components in tobacco products to effectively control smuggling and classify tariff and excise in tobacco industry to control illegal tobacco trade. In this study, two sensitive and specific DNA based methods, one quantitative real-time PCR (qPCR) assay and the other loop-mediated isothermal amplification (LAMP) assay, were developed for the reliable and efficient detection of the presence of tobacco (Nicotiana tabacum) in various tobacco samples and commodities. Both assays targeted the same sequence of the uridine 5′-monophosphate synthase (UMPS), and their specificities and sensitivities were determined with various plant materials. Both qPCR and LAMP methods were reliable and accurate in the rapid detection of tobacco components in various practical samples, including customs samples, reconstituted tobacco samples, and locally purchased cigarettes, showing high potential for their application in tobacco identification, particularly in the special cases where the morphology or chemical compositions of tobacco have been disrupted. Therefore, combining both methods would facilitate not only the detection of tobacco smuggling control, but also the detection of tariff classification and of excise. PMID:27635142

  11. Performance-scalable volumetric data classification for online industrial inspection

    NASA Astrophysics Data System (ADS)

    Abraham, Aby J.; Sadki, Mustapha; Lea, R. M.

    2002-03-01

    Non-intrusive inspection and non-destructive testing of manufactured objects with complex internal structures typically requires the enhancement, analysis and visualization of high-resolution volumetric data. Given the increasing availability of fast 3D scanning technology (e.g. cone-beam CT), enabling on-line detection and accurate discrimination of components or sub-structures, the inherent complexity of classification algorithms inevitably leads to throughput bottlenecks. Indeed, whereas typical inspection throughput requirements range from 1 to 1000 volumes per hour, depending on density and resolution, current computational capability is one to two orders-of-magnitude less. Accordingly, speeding up classification algorithms requires both reduction of algorithm complexity and acceleration of computer performance. A shape-based classification algorithm, offering algorithm complexity reduction, by using ellipses as generic descriptors of solids-of-revolution, and supporting performance-scalability, by exploiting the inherent parallelism of volumetric data, is presented. A two-stage variant of the classical Hough transform is used for ellipse detection and correlation of the detected ellipses facilitates position-, scale- and orientation-invariant component classification. Performance-scalability is achieved cost-effectively by accelerating a PC host with one or more COTS (Commercial-Off-The-Shelf) PCI multiprocessor cards. Experimental results are reported to demonstrate the feasibility and cost-effectiveness of the data-parallel classification algorithm for on-line industrial inspection applications.

  12. Commentary: Using Impedance Cardiography to Detect Asymptomatic Cardiovascular Disease in Prehypertensive Adults with Risk Factors.

    PubMed

    DeMarzo, Arthur P

    2018-06-01

    New guidelines on hypertension eliminated the classification of prehypertension and divided those blood pressure (BP) levels into elevated BP and stage 1 hypertension. For elevated BP, this study showed that cardiovascular (CV) abnormalities were prevalent in adults over 40 years of age with at least 2 CV risk factors. Detecting abnormalities of the CV system moves a patient from being at high risk to having earlystage cardiovascular disease (CVD) and supports a decision to treat. By redefining stage 1 and lowering the target BP, the new guidelines have set an ambitious goal for early intervention to prevent progression of CVD. Proper drug selection and titration are critical. Hypertensive patients have diverse CV abnormalities that can be quantified by impedance cardiography. By stratifying patients with ventricular, vascular, and hemodynamic abnormalities, treatment can be customized based on the abnormal underlying mechanisms to rapidly control BP and prevent progression of CVD.

  13. Clutter suppression and classification using twin inverted pulse sonar in ship wakes.

    PubMed

    Leighton, T G; Finfer, D C; Chua, G H; White, P R; Dix, J K

    2011-11-01

    Twin inverted pulse sonar (TWIPS) is here deployed in the wake of a moored rigid inflatable boat (RIB) with propeller turning, and then in the wake of a moving tanker of 4580 dry weight tonnage (the Whitchallenger). This is done first to test its ability to distinguish between scatter from the wake and scatter from the seabed, and second to test its ability to improve detectability of the seabed through the wake, compared to conventional sonar processing techniques. TWIPS does this by distinguishing between linear and nonlinear scatterers and has the further property of distinguishing those nonlinear targets which scatter energy at the even-powered harmonics from those which scatter in the odd-powered harmonics. TWIPS can also, in some manifestations, require no range correction (and therefore does not require the a priori environment knowledge necessary for most remote detection technologies).

  14. DiskDetective.org: Finding Homes for Exoplanets Through Citizen Science

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2016-01-01

    The Disk Detective project is scouring the data archive from the WISE all-sky survey to find new debris disks and protoplanetary disks-the dusty dens where exoplanets form and dwell. Volunteers on this citizen science website have already performed 1.6 million classifications, searching a catalog 8x the size of any published WISE survey. We follow up candidates using ground based telescopes in California, Arizona, Chile, Hawaii, and Argentina. We ultimately expect to increase the pool of known debris disks by approx. 400 and triple the solid angle in clusters of young stars examined with WISE, providing a unique new catalog of isolated disk stars, key planet-search targets, and candidate advanced extraterrestrial civilizations. Come to this talk to hear the news about our latest dusty discoveries and the trials and the ecstasy of launching a new citizen science project. Please bring your laptop or smartphone if you like!

  15. Electrophysiological evidence for parallel and serial processing during visual search.

    PubMed

    Luck, S J; Hillyard, S A

    1990-12-01

    Event-related potentials were recorded from young adults during a visual search task in order to evaluate parallel and serial models of visual processing in the context of Treisman's feature integration theory. Parallel and serial search strategies were produced by the use of feature-present and feature-absent targets, respectively. In the feature-absent condition, the slopes of the functions relating reaction time and latency of the P3 component to set size were essentially identical, indicating that the longer reaction times observed for larger set sizes can be accounted for solely by changes in stimulus identification and classification time, rather than changes in post-perceptual processing stages. In addition, the amplitude of the P3 wave on target-present trials in this condition increased with set size and was greater when the preceding trial contained a target, whereas P3 activity was minimal on target-absent trials. These effects are consistent with the serial self-terminating search model and appear to contradict parallel processing accounts of attention-demanding visual search performance, at least for a subset of search paradigms. Differences in ERP scalp distributions further suggested that different physiological processes are utilized for the detection of feature presence and absence.

  16. Spectroscopic Classifications of Optical Transients with the Lick Shane 3-m telescope

    NASA Astrophysics Data System (ADS)

    Dimitriadis, G.; Foley, R. J.

    2018-05-01

    We report the following classifications of optical transients from spectroscopic observations with the Kast spectrograph on the Shane 3-m telescope. Targets were supplied by ATLAS, ASAS-SN, and the KEGS K2 SN search.

  17. Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS

    NASA Astrophysics Data System (ADS)

    Kilpatrick, C. D.; Pan, Y.-C.; Foley, R. J.; Jha, S. W.; Rest, A.; Scolnic, D.

    2017-01-01

    We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the All-Sky Automated Survey for Supernovae (ASAS-SN) and the ATLAS project (ATel #8680).

  18. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.

    PubMed

    Sharma, Harshita; Zerbe, Norman; Klempert, Iris; Hellwich, Olaf; Hufnagl, Peter

    2017-11-01

    Deep learning using convolutional neural networks is an actively emerging field in histological image analysis. This study explores deep learning methods for computer-aided classification in H&E stained histopathological whole slide images of gastric carcinoma. An introductory convolutional neural network architecture is proposed for two computerized applications, namely, cancer classification based on immunohistochemical response and necrosis detection based on the existence of tumor necrosis in the tissue. Classification performance of the developed deep learning approach is quantitatively compared with traditional image analysis methods in digital histopathology requiring prior computation of handcrafted features, such as statistical measures using gray level co-occurrence matrix, Gabor filter-bank responses, LBP histograms, gray histograms, HSV histograms and RGB histograms, followed by random forest machine learning. Additionally, the widely known AlexNet deep convolutional framework is comparatively analyzed for the corresponding classification problems. The proposed convolutional neural network architecture reports favorable results, with an overall classification accuracy of 0.6990 for cancer classification and 0.8144 for necrosis detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. PPS GPS: What Is It? And How Do I Get It

    DTIC Science & Technology

    1994-06-01

    Positioning Service, Selective Availabilit B.PRICE CODIE 17. SECURITY CLASSIFICATION II. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20...the TEC Water Detection Response Team which operates in remote areas of the world. These activities, require the GPS receiver to be capable of removing

  20. Domain Adaptation for Alzheimer’s Disease Diagnostics

    PubMed Central

    Wachinger, Christian; Reuter, Martin

    2016-01-01

    With the increasing prevalence of Alzheimer’s disease, research focuses on the early computer-aided diagnosis of dementia with the goal to understand the disease process, determine risk and preserving factors, and explore preventive therapies. By now, large amounts of data from multi-site studies have been made available for developing, training, and evaluating automated classifiers. Yet, their translation to the clinic remains challenging, in part due to their limited generalizability across different datasets. In this work, we describe a compact classification approach that mitigates overfitting by regularizing the multinomial regression with the mixed ℓ1/ℓ2 norm. We combine volume, thickness, and anatomical shape features from MRI scans to characterize neuroanatomy for the three-class classification of Alzheimer’s disease, mild cognitive impairment and healthy controls. We demonstrate high classification accuracy via independent evaluation within the scope of the CADDementia challenge. We, furthermore, demonstrate that variations between source and target datasets can substantially influence classification accuracy. The main contribution of this work addresses this problem by proposing an approach for supervised domain adaptation based on instance weighting. Integration of this method into our classifier allows us to assess different strategies for domain adaptation. Our results demonstrate (i) that training on only the target training set yields better results than the naïve combination (union) of source and target training sets, and (ii) that domain adaptation with instance weighting yields the best classification results, especially if only a small training component of the target dataset is available. These insights imply that successful deployment of systems for computer-aided diagnostics to the clinic depends not only on accurate classifiers that avoid overfitting, but also on a dedicated domain adaptation strategy. PMID:27262241

Top