Sample records for target detection range

  1. Performing target specific band reduction using artificial neural networks and assessment of its efficacy using various target detection algorithms

    NASA Astrophysics Data System (ADS)

    Yadav, Deepti; Arora, M. K.; Tiwari, K. C.; Ghosh, J. K.

    2016-04-01

    Hyperspectral imaging is a powerful tool in the field of remote sensing and has been used for many applications like mineral detection, detection of landmines, target detection etc. Major issues in target detection using HSI are spectral variability, noise, small size of the target, huge data dimensions, high computation cost, complex backgrounds etc. Many of the popular detection algorithms do not work for difficult targets like small, camouflaged etc. and may result in high false alarms. Thus, target/background discrimination is a key issue and therefore analyzing target's behaviour in realistic environments is crucial for the accurate interpretation of hyperspectral imagery. Use of standard libraries for studying target's spectral behaviour has limitation that targets are measured in different environmental conditions than application. This study uses the spectral data of the same target which is used during collection of the HSI image. This paper analyze spectrums of targets in a way that each target can be spectrally distinguished from a mixture of spectral data. Artificial neural network (ANN) has been used to identify the spectral range for reducing data and further its efficacy for improving target detection is verified. The results of ANN proposes discriminating band range for targets; these ranges were further used to perform target detection using four popular spectral matching target detection algorithm. Further, the results of algorithms were analyzed using ROC curves to evaluate the effectiveness of the ranges suggested by ANN over full spectrum for detection of desired targets. In addition, comparative assessment of algorithms is also performed using ROC.

  2. Effects of Resolution, Range, and Image Contrast on Target Acquisition Performance.

    PubMed

    Hollands, Justin G; Terhaar, Phil; Pavlovic, Nada J

    2018-05-01

    We sought to determine the joint influence of resolution, target range, and image contrast on the detection and identification of targets in simulated naturalistic scenes. Resolution requirements for target acquisition have been developed based on threshold values obtained using imaging systems, when target range was fixed, and image characteristics were determined by the system. Subsequent work has examined the influence of factors like target range and image contrast on target acquisition. We varied the resolution and contrast of static images in two experiments. Participants (soldiers) decided whether a human target was located in the scene (detection task) or whether a target was friendly or hostile (identification task). Target range was also varied (50-400 m). In Experiment 1, 30 participants saw color images with a single target exemplar. In Experiment 2, another 30 participants saw monochrome images containing different target exemplars. The effects of target range and image contrast were qualitatively different above and below 6 pixels per meter of target for both tasks in both experiments. Target detection and identification performance were a joint function of image resolution, range, and contrast for both color and monochrome images. The beneficial effects of increasing resolution for target acquisition performance are greater for closer (larger) targets.

  3. Estimate of the influence of muzzle smoke on function range of infrared system

    NASA Astrophysics Data System (ADS)

    Luo, Yan-ling; Wang, Jun; Wu, Jiang-hui; Wu, Jun; Gao, Meng; Gao, Fei; Zhao, Yu-jie; Zhang, Lei

    2013-09-01

    Muzzle smoke produced by weapons shooting has important influence on infrared (IR) system while detecting targets. Based on the theoretical model of detecting spot targets and surface targets of IR system while there is muzzle smoke, the function range for detecting spot targets and surface targets are deduced separately according to the definition of noise equivalent temperature difference(NETD) and minimum resolution temperature difference(MRTD). Also parameters of muzzle smoke affecting function range of IR system are analyzed. Base on measured data of muzzle smoke for single shot, the function range of an IR system for detecting typical targets are calculated separately while there is muzzle smoke and there is no muzzle smoke at 8-12 micron waveband. For our IR system function range has reduced by over 10% for detecting tank if muzzle smoke exists. The results will provide evidence for evaluating the influence of muzzle smoke on IR system and will help researchers to improve ammo craftwork.

  4. Underwater single beam circumferentially scanning detection system using range-gated receiver and adaptive filter

    NASA Astrophysics Data System (ADS)

    Tan, Yayun; Zhang, He; Zha, Bingting

    2017-09-01

    Underwater target detection and ranging in seawater are of interest in unmanned underwater vehicles. This study presents an underwater detection system that synchronously scans a collimated laser beam and a narrow field of view to circumferentially detect an underwater target. Hybrid methods of range-gated and variable step-size least mean squares (VSS-LMS) adaptive filter are proposed to suppress water backscattering. The range-gated receiver eliminates the backscattering of near-field water. The VSS-LMS filter extracts the target echo in the remaining backscattering and the constant fraction discriminator timing method is used to improve ranging accuracy. The optimal constant fraction is selected by analysing the jitter noise and slope of the target echo. The prototype of the underwater detection system is constructed and tested in coastal seawater, then the effectiveness of backscattering suppression and high-ranging accuracy is verified through experimental results and analysis discussed in this paper.

  5. Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration

    DTIC Science & Technology

    2014-06-01

    Radon -Fourier transform has been introduced to realize long- term coherent integration of the moving targets with range migration [8, 9]. Radon ...2010) Long-time coherent integration for radar target detection base on Radon -Fourier transform, in Proceedings of the IEEE Radar Conference, pp...432–436. 9. Xu, J., Yu, J., Peng, Y. & Xia, X. (2011) Radon -Fourier transform for radar target detection, I: Generalized Doppler filter bank, IEEE

  6. Moving target parameter estimation of SAR after two looks cancellation

    NASA Astrophysics Data System (ADS)

    Gan, Rongbing; Wang, Jianguo; Gao, Xiang

    2005-11-01

    Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.

  7. Laser range profiling for small target recognition

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Tulldahl, Michael

    2016-05-01

    The detection and classification of small surface and airborne targets at long ranges is a growing need for naval security. Long range ID or ID at closer range of small targets has its limitations in imaging due to the demand on very high transverse sensor resolution. It is therefore motivated to look for 1D laser techniques for target ID. These include vibrometry, and laser range profiling. Vibrometry can give good results but is also sensitive to certain vibrating parts on the target being in the field of view. Laser range profiling is attractive because the maximum range can be substantial, especially for a small laser beam width. A range profiler can also be used in a scanning mode to detect targets within a certain sector. The same laser can also be used for active imaging when the target comes closer and is angular resolved. The present paper will show both experimental and simulated results for laser range profiling of small boats out to 6-7 km range and a UAV mockup at close range (1.3 km). We obtained good results with the profiling system both for target detection and recognition. Comparison of experimental and simulated range waveforms based on CAD models of the target support the idea of having a profiling system as a first recognition sensor and thus narrowing the search space for the automatic target recognition based on imaging at close ranges. The naval experiments took place in the Baltic Sea with many other active and passive EO sensors beside the profiling system. Discussion of data fusion between laser profiling and imaging systems will be given. The UAV experiments were made from the rooftop laboratory at FOI.

  8. Target discrimination strategies in optics detection

    NASA Astrophysics Data System (ADS)

    Sjöqvist, Lars; Allard, Lars; Henriksson, Markus; Jonsson, Per; Pettersson, Magnus

    2013-10-01

    Detection and localisation of optical assemblies used for weapon guidance or sniper rifle scopes has attracted interest for security and military applications. Typically a laser system is used to interrogate a scene of interest and the retro-reflected radiation is detected. Different system approaches for area coverage can be realised ranging from flood illumination to step-and-stare or continuous scanning schemes. Independently of the chosen approach target discrimination is a crucial issue, particularly if a complex scene such as in an urban environment and autonomous operation is considered. In this work target discrimination strategies in optics detection are discussed. Typical parameters affecting the reflected laser radiation from the target are the wavelength, polarisation properties, temporal effects and the range resolution. Knowledge about the target characteristics is important to predict the target discrimination capability. Two different systems were used to investigate polarisation properties and range resolution information from targets including e.g. road signs, optical reflexes, rifle sights and optical references. The experimental results and implications on target discrimination will be discussed. If autonomous operation is required target discrimination becomes critical in order to reduce the number of false alarms.

  9. Fast range estimation based on active range-gated imaging for coastal surveillance

    NASA Astrophysics Data System (ADS)

    Kong, Qingshan; Cao, Yinan; Wang, Xinwei; Tong, Youwan; Zhou, Yan; Liu, Yuliang

    2012-11-01

    Coastal surveillance is very important because it is useful for search and rescue, illegal immigration, or harbor security and so on. Furthermore, range estimation is critical for precisely detecting the target. Range-gated laser imaging sensor is suitable for high accuracy range especially in night and no moonlight. Generally, before detecting the target, it is necessary to change delay time till the target is captured. There are two operating mode for range-gated imaging sensor, one is passive imaging mode, and the other is gate viewing mode. Firstly, the sensor is passive mode, only capturing scenes by ICCD, once the object appears in the range of monitoring area, we can obtain the course range of the target according to the imaging geometry/projecting transform. Then, the sensor is gate viewing mode, applying micro second laser pulses and sensor gate width, we can get the range of targets by at least two continuous images with trapezoid-shaped range intensity profile. This technique enables super-resolution depth mapping with a reduction of imaging data processing. Based on the first step, we can calculate the rough value and quickly fix delay time which the target is detected. This technique has overcome the depth resolution limitation for 3D active imaging and enables super-resolution depth mapping with a reduction of imaging data processing. By the two steps, we can quickly obtain the distance between the object and sensor.

  10. Three-dimensional microscope tracking system using the astigmatic lens method and a profile sensor

    NASA Astrophysics Data System (ADS)

    Kibata, Hiroki; Ishii, Katsuhiro

    2018-03-01

    We developed a three-dimensional microscope tracking system using the astigmatic lens method and a profile sensor, which provides three-dimensional position detection over a wide range at the rate of 3.2 kHz. First, we confirmed the range of target detection of the developed system, where the range of target detection was shown to be ± 90 µm in the horizontal plane and ± 9 µm in the vertical plane for a 10× objective lens. Next, we attempted to track a motion-controlled target. The developed system kept the target at the center of the field of view and in focus up to a target speed of 50 µm/s for a 20× objective lens. Finally, we tracked a freely moving target. We successfully demonstrated the tracking of a 10-µm-diameter polystyrene bead suspended in water for 40 min. The target was kept in the range of approximately 4.9 µm around the center of the field of view. In addition, the vertical direction was maintained in the range of ± 0.84 µm, which was sufficiently within the depth of focus.

  11. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Technical Reports Server (NTRS)

    Li, Jian

    1994-01-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  12. Continuous high PRF waveforms for challenging environments

    NASA Astrophysics Data System (ADS)

    Jaroszewski, Steven; Corbeil, Allan; Ryland, Robert; Sobota, David

    2017-05-01

    Current airborne radar systems segment the available time-on-target during each beam dwell into multiple Coherent Processing Intervals (CPIs) in order to eliminate range eclipsing, solve for unambiguous range, and increase the detection performance against larger Radar Cross Section (RCS) targets. As a consequence, these radars do not realize the full Signal-to-Noise Ratio (SNR) increase and detection performance improvement that is possible. Continuous High Pulse Repetition Frequency (HPRF) waveforms and processing enables the coherent integration of all available radar data over the full time-on-target. This can greatly increase the SNR for air targets at long range and/or with weak radar returns and significantly improve the detection performance against such targets. TSC worked with its partner KeyW to implement a Continuous HPRF waveform in their Sahara radar testbed and obtained measured radar data on both a ground vehicle target and an airborne target of opportunity. This experimental data was processed by TSC to validate the expected benefits of Continuous HPRF waveforms.

  13. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  14. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets

    PubMed Central

    Xiang, Yu; Lu, Yi

    2012-01-01

    Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 μM detection limit) to an important biological cofactor (adenosine, 18 μM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA–invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers DNAzymes or aptazymes). PMID:21860458

  15. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Lu, Yi

    2011-09-01

    Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 µM detection limit) to an important biological cofactor (adenosine, 18 µM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA-invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers, DNAzymes or aptazymes).

  16. Lidar detection algorithm for time and range anomalies.

    PubMed

    Ben-David, Avishai; Davidson, Charles E; Vanderbeek, Richard G

    2007-10-10

    A new detection algorithm for lidar applications has been developed. The detection is based on hyperspectral anomaly detection that is implemented for time anomaly where the question "is a target (aerosol cloud) present at range R within time t(1) to t(2)" is addressed, and for range anomaly where the question "is a target present at time t within ranges R(1) and R(2)" is addressed. A detection score significantly different in magnitude from the detection scores for background measurements suggests that an anomaly (interpreted as the presence of a target signal in space/time) exists. The algorithm employs an option for a preprocessing stage where undesired oscillations and artifacts are filtered out with a low-rank orthogonal projection technique. The filtering technique adaptively removes the one over range-squared dependence of the background contribution of the lidar signal and also aids visualization of features in the data when the signal-to-noise ratio is low. A Gaussian-mixture probability model for two hypotheses (anomaly present or absent) is computed with an expectation-maximization algorithm to produce a detection threshold and probabilities of detection and false alarm. Results of the algorithm for CO(2) lidar measurements of bioaerosol clouds Bacillus atrophaeus (formerly known as Bacillus subtilis niger, BG) and Pantoea agglomerans, Pa (formerly known as Erwinia herbicola, Eh) are shown and discussed.

  17. Towards Enhanced Underwater Lidar Detection via Source Separation

    NASA Astrophysics Data System (ADS)

    Illig, David W.

    Interest in underwater optical sensors has grown as technologies enabling autonomous underwater vehicles have been developed. Propagation of light through water is complicated by the dual challenges of absorption and scattering. While absorption can be reduced by operating in the blue-green region of the visible spectrum, reducing scattering is a more significant challenge. Collection of scattered light negatively impacts underwater optical ranging, imaging, and communications applications. This thesis concentrates on the ranging application, where scattering reduces operating range as well as range accuracy. The focus of this thesis is on the problem of backscatter, which can create a "clutter" return that may obscure submerged target(s) of interest. The main contributions of this thesis are explorations of signal processing approaches to increase the separation between the target and backscatter returns. Increasing this separation allows detection of weak targets in the presence of strong scatter, increasing both operating range and range accuracy. Simulation and experimental results will be presented for a variety of approaches as functions of water clarity and target position. This work provides several novel contributions to the underwater lidar field: 1. Quantification of temporal separation approaches: While temporal separation has been studied extensively, this work provides a quantitative assessment of the extent to which both high frequency modulation and spatial filter approaches improve the separation between target and backscatter. 2. Development and assessment of frequency separation: This work includes the first frequency-based separation approach for underwater lidar, in which the channel frequency response is measured with a wideband waveform. Transforming to the time-domain gives a channel impulse response, in which target and backscatter returns may appear in unique range bins and thus be separated. 3. Development and assessment of statistical separation: The first investigations of statistical separation approaches for underwater lidar are presented. By demonstrating that target and backscatter returns have different statistical properties, a new separation axis is opened. This work investigates and quantifies performance of three statistical separation approaches. 4. Application of detection theory to underwater lidar: While many similar applications use detection theory to assess performance, less development has occurred in the underwater lidar field. This work applies these concepts to statistical separation approaches, providing another perspective in which to assess performance. In addition, by using detection theory approaches, statistical metrics can be used to associate a level of confidence in each ranging measurement. 5. Preliminary investigation of forward scatter suppression: If backscatter is sufficiently suppressed, forward scattering becomes a performance-limiting factor. This work presents a proof-of-concept demonstration of the potential for statistical separation approaches to suppress both forward and backward scatter. These results provide a demonstration of the capability that signal processing has to improve separation between target and backscatter. Separation capability improves in the transition from temporal to frequency to statistical separation approaches, with the statistical separation approaches improving target detection sensitivity by as much as 30 dB. Ranging and detection results demonstrate the enhanced performance this would allow in ranging applications. This increased performance is an important step in moving underwater lidar capability towards the requirements of the next generation of sensors.

  18. Flight evaluation of advanced third-generation midwave infrared sensor

    NASA Astrophysics Data System (ADS)

    Shen, Chyau N.; Donn, Matthew

    1998-08-01

    In FY-97 the Counter Drug Optical Upgrade (CDOU) demonstration program was initiated by the Program Executive Office for Counter Drug to increase the detection and classification ranges of P-3 counter drug aircraft by using advanced staring infrared sensors. The demonstration hardware is a `pin-for-pin' replacement of the AAS-36 Infrared Detection Set (IRDS) located under the nose radome of a P-3 aircraft. The hardware consists of a 3rd generation mid-wave infrared (MWIR) sensor integrated into a three axis-stabilized turret. The sensor, when installed on the P- 3, has a hemispheric field of regard and analysis has shown it will be capable of detecting and classifying Suspected Drug Trafficking Aircraft and Vessels at ranges several factors over the current IRDS. This paper will discuss the CDOU system and it's lab, ground, and flight evaluation results. Test targets included target templates, range targets, dedicated target boats, and targets of opportunity at the Naval Air Warfare Center Aircraft Division and at operational test sites. The objectives of these tests were to: (1) Validate the integration concept of the CDOU package into the P-3 aircraft. (2) Validate the end-to-end functionality of the system, including sensor/turret controls and recording of imagery during flight. (3) Evaluate the system sensitivity and resolution on a set of verified resolution targets templates. (4) Validate the ability of the 3rd generation MWIR sensor to detect and classify targets at a significantly increased range.

  19. The feature extraction of "cat-eye" targets based on bi-spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghua; Fan, Guihua; Sun, Huayan

    2016-10-01

    In order to resolve the difficult problem of detection and identification of optical targets in complex background or in long-distance transmission, this paper mainly study the range profiles of "cat-eye" targets using bi-spectrum. For the problems of laser echo signal attenuation serious and low Signal-Noise Ratio (SNR), the multi-pulse laser signal echo signal detection algorithm which is based on high-order cumulant, filter processing and the accumulation of multi-pulse is proposed. This could improve the detection range effectively. In order to extract the stable characteristics of the one-dimensional range profile coming from the cat-eye targets, a method is proposed which extracts the bi-spectrum feature, and uses the singular value decomposition to simplify the calculation. Then, by extracting data samples of different distance, type and incidence angle, verify the stability of the eigenvector and effectiveness extracted by bi-spectrum.

  20. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1995-01-01

    Laser altimeters measure the time of flight of the laser pulses to determine the range of the target. The simplest altimeter receiver consists of a photodetector followed by a leading edge detector. A time interval unit (TIU) measures the time from the transmitted laser pulse to the leading edge of the received pulse as it crosses a preset threshold. However, the ranging error of this simple detection scheme depends on the received, pulse amplitude, pulse shape, and the threshold. In practice, the pulse shape and the amplitude are determined by the target target characteristics which has to be assumed unknown prior to the measurement. The ranging error can be improved if one also measures the pulse width and use the average of the leading and trailing edges (half pulse width) as the pulse arrival time. The ranging error becomes independent of the received pulse amplitude and the pulse width as long as the pulse shape is symmetric. The pulse width also gives the slope of the target. The ultimate detection scheme is to digitize the received waveform and calculate the centroid as the pulse arrival time. The centroid detection always gives unbiased measurement even for asymmetric pulses. In this report, we analyze the laser altimeter ranging errors for these three detection schemes using the Mars Orbital Laser Altimeter (MOLA) as an example.

  1. Personal glucose meters for detection and quantification of a broad range of analytes

    DOEpatents

    Lu, Yi; Xiang, Yu

    2015-02-03

    A general methodology for the development of highly sensitive and selective sensors that can achieve portable, low-cost and quantitative detection of a broad range of targets using only a personal glucose meter (PGM) is disclosed. The method uses recognition molecules that are specific for a target agent, enzymes that can convert an enzyme substrate into glucose, and PGM. Also provided are sensors, which can include a solid support to which is attached a recognition molecule that permits detection of a target agent, wherein the recognition molecule specifically binds to the target agent in the presence of the target agent but not significantly to other agents as well as an enzyme that can catalyze the conversion of a substance into glucose, wherein the enzyme is attached directly or indirectly to the recognition molecule, and wherein in the presence of the target agent the enzyme can convert the substance into glucose. The disclosed sensors can be part of a lateral flow device. Methods of using such sensors for detecting target agents are also provided.

  2. Multitarget detection algorithm for automotive FMCW radar

    NASA Astrophysics Data System (ADS)

    Hyun, Eugin; Oh, Woo-Jin; Lee, Jong-Hun

    2012-06-01

    Today, 77 GHz FMCW (Frequency Modulation Continuous Wave) radar has strong advantages of range and velocity detection for automotive applications. However, FMCW radar brings out ghost targets and missed targets in multi-target situations. In this paper, in order to resolve these limitations, we propose an effective pairing algorithm, which consists of two steps. In the proposed method, a waveform with different slopes in two periods is used. In the 1st pairing processing, all combinations of range and velocity are obtained in each of two wave periods. In the 2nd pairing step, using the results of the 1st pairing processing, fine range and velocity are detected. In that case, we propose the range-velocity windowing technique in order to compensate for the non-ideal beat-frequency characteristic that arises due to the non-linearity of the RF module. Based on experimental results, the performance of the proposed algorithm is improved compared with that of the typical method.

  3. Adaptive waveform optimization design for target detection in cognitive radar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao

    2017-01-01

    The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.

  4. Comparison of human and algorithmic target detection in passive infrared imagery

    NASA Astrophysics Data System (ADS)

    Weber, Bruce A.; Hutchinson, Meredith

    2003-09-01

    We have designed an experiment that compares the performance of human observers and a scale-insensitive target detection algorithm that uses pixel level information for the detection of ground targets in passive infrared imagery. The test database contains targets near clutter whose detectability ranged from easy to very difficult. Results indicate that human observers detect more "easy-to-detect" targets, and with far fewer false alarms, than the algorithm. For "difficult-to-detect" targets, human and algorithm detection rates are considerably degraded, and algorithm false alarms excessive. Analysis of detections as a function of observer confidence shows that algorithm confidence attribution does not correspond to human attribution, and does not adequately correlate with correct detections. The best target detection score for any human observer was 84%, as compared to 55% for the algorithm for the same false alarm rate. At 81%, the maximum detection score for the algorithm, the same human observer had 6 false alarms per frame as compared to 29 for the algorithm. Detector ROC curves and observer-confidence analysis benchmarks the algorithm and provides insights into algorithm deficiencies and possible paths to improvement.

  5. Manually controlled targeted prostate biopsy with real-time fusion imaging of multiparametric magnetic resonance imaging and transrectal ultrasound: an early experience.

    PubMed

    Shoji, Sunao; Hiraiwa, Shinichiro; Endo, Jun; Hashida, Kazunobu; Tomonaga, Tetsuro; Nakano, Mayura; Sugiyama, Tomoko; Tajiri, Takuma; Terachi, Toshiro; Uchida, Toyoaki

    2015-02-01

    To report our early experience with manually controlled targeted biopsy with real-time multiparametric magnetic resonance imaging and transrectal ultrasound fusion images for the diagnosis of prostate cancer. A total of 20 consecutive patients suspicious of prostate cancer at the multiparametric magnetic resonance imaging scan were recruited prospectively. Targeted biopsies were carried out for each cancer-suspicious lesion, and 12 systematic biopsies using the BioJet system. Pathological findings of targeted and systematic biopsies were analyzed. The median age of the patients was 70 years (range 52-83 years). The median preoperative prostate-specific antigen value was 7.4 ng/mL (range 3.54-19.9 ng/mL). Median preoperative prostate volume was 38 mL (range 24-68 mL). The number of cancer-detected cases was 14 (70%). The median Gleason score was 6.5 (range 6-8). Cancer-detected rates of the systematic and targeted biopsy cores were 6.7 and 31.8%, respectively (P < 0.0001). In six patients who underwent radical prostatectomy, the geographic locations and pathological grades of clinically significant cancers and index lesions corresponded to the pathological results of the targeted biopsies. Prostate cancers detected by targeted biopsies with manually controlled targeted biopsy using real-time multiparametric magnetic resonance imaging and transrectal ultrasound fusion imaging have significantly higher grades and longer length compared with those detected by systematic biopsies. Further studies and comparison with the pathological findings of whole-gland specimens have the potential to determine the role of this biopsy methodology in patients selected for focal therapy and those under active surveillance. © 2014 The Japanese Urological Association.

  6. Effect of radar frequency on the detection of shaped (low RCS) targets

    NASA Astrophysics Data System (ADS)

    Moraitis, D.; Alland, S.

    The use of shaping to reduce the radar cross-section (RCS) of aircraft and missiles can result in the RCS varying significantly with radar operating frequency. This RCS sensitivity to frequency should be considered when selecting radar frequency and should be accounted for when evaluating radar performance. A detection range increase for shaped (low RCS) targets of a factor of two or greater can be realized for lower frequency radar (e.g., UHF-Band or L-Band) when compared to higher frequency radar (C-Band or X-Band). For low flying (sea skimming) targets, the RCS variation with frequency for shaped (low RCS) targets neutralizes the advantage that higher radar frequencies realize in multipath propagation resulting in approximately the same detection range across the radar bands from UHF to X-Band.

  7. Design and application of a structured phantom for detection performance comparison between breast tomosynthesis and digital mammography

    NASA Astrophysics Data System (ADS)

    Cockmartin, L.; Marshall, N. W.; Zhang, G.; Lemmens, K.; Shaheen, E.; Van Ongeval, C.; Fredenberg, E.; Dance, D. R.; Salvagnini, E.; Michielsen, K.; Bosmans, H.

    2017-02-01

    This paper introduces and applies a structured phantom with inserted target objects for the comparison of detection performance of digital breast tomosynthesis (DBT) against 2D full field digital mammography (FFDM). The phantom consists of a 48 mm thick breast-shaped polymethyl methacrylate (PMMA) container filled with water and PMMA spheres of different diameters. Three-dimensionally (3D) printed spiculated masses (diameter range: 3.8-9.7 mm) and non-spiculated masses (1.6-6.2 mm) along with microcalcifications (90-250 µm) were inserted as targets. Reproducibility of the phantom application was studied on a single system using 30 acquisitions. Next, the phantom was evaluated on five different combined FFDM & DBT systems and target detection was compared for FFDM and DBT modes. Ten phantom images in both FFDM and DBT modes were acquired on these 5 systems using automatic exposure control. Five readers evaluated target detectability. Images were read with the four-alternative forced-choice (4-AFC) paradigm, with always one segment including a target and 3 normal background segments. The percentage of correct responses (PC) was assessed based on 10 trials of each reader for each object type, size and imaging modality. Additionally, detection threshold diameters at 62.5 PC were assessed via non-linear regression fitting of the psychometric curve. The reproducibility study showed no significant differences in PC values. Evaluation of target detection in FFDM showed that microcalcification detection thresholds ranged between 110 and 118 µm and were similar compared to the detection in DBT (range of 106-158 µm). In DBT, detection of both mass types increased significantly (p  =  0.0001 and p  =  0.0002 for non-spiculated and spiculated masses respectively) compared to FFDM, achieving almost 100% detection for all spiculated mass diameters. In conclusion, a structured phantom with inserted targets was able to show evidence for detectability differences between FFDM and DBT modes for five commercial systems. This phantom has potential for application in task-based assessment at acceptance and commissioning testing of DBT systems.

  8. Golay Complementary Waveforms in Reed–Müller Sequences for Radar Detection of Nonzero Doppler Targets

    PubMed Central

    Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill

    2018-01-01

    Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708

  9. An Algorithm Based Wavelet Entropy for Shadowing Effect of Human Detection Using Ultra-Wideband Bio-Radar

    PubMed Central

    Liu, Miao; Zhang, Yang; Liang, Fulai; Qi, Fugui; Lv, Hao; Wang, Jianqi; Zhang, Yang

    2017-01-01

    Ultra-wide band (UWB) radar for short-range human target detection is widely used to find and locate survivors in some rescue missions after a disaster. The results of the application of bistatic UWB radar for detecting multi-stationary human targets have shown that human targets close to the radar antennas are very often visible, while those farther from radar antennas are detected with less reliability. In this paper, on account of the significant difference of frequency content between the echo signal of the human target and that of noise in the shadowing region, an algorithm based on wavelet entropy is proposed to detect multiple targets. Our findings indicate that the entropy value of human targets was much lower than that of noise. Compared with the method of adaptive filtering and the energy spectrum, wavelet entropy can accurately detect the person farther from the radar antennas, and it can be employed as a useful tool in detecting multiple targets by bistatic UWB radar. PMID:28973988

  10. An Algorithm Based Wavelet Entropy for Shadowing Effect of Human Detection Using Ultra-Wideband Bio-Radar.

    PubMed

    Xue, Huijun; Liu, Miao; Zhang, Yang; Liang, Fulai; Qi, Fugui; Chen, Fuming; Lv, Hao; Wang, Jianqi; Zhang, Yang

    2017-09-30

    Ultra-wide band (UWB) radar for short-range human target detection is widely used to find and locate survivors in some rescue missions after a disaster. The results of the application of bistatic UWB radar for detecting multi-stationary human targets have shown that human targets close to the radar antennas are very often visible, while those farther from radar antennas are detected with less reliability. In this paper, on account of the significant difference of frequency content between the echo signal of the human target and that of noise in the shadowing region, an algorithm based on wavelet entropy is proposed to detect multiple targets. Our findings indicate that the entropy value of human targets was much lower than that of noise. Compared with the method of adaptive filtering and the energy spectrum, wavelet entropy can accurately detect the person farther from the radar antennas, and it can be employed as a useful tool in detecting multiple targets by bistatic UWB radar.

  11. Study on a two-dimensional scanning micro-mirror and its application in a MOEMS target detector.

    PubMed

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation.

  12. Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector

    PubMed Central

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation. PMID:22163580

  13. Object tracking algorithm based on the color histogram probability distribution

    NASA Astrophysics Data System (ADS)

    Li, Ning; Lu, Tongwei; Zhang, Yanduo

    2018-04-01

    In order to resolve tracking failure resulted from target's being occlusion and follower jamming caused by objects similar to target in the background, reduce the influence of light intensity. This paper change HSV and YCbCr color channel correction the update center of the target, continuously updated image threshold self-adaptive target detection effect, Clustering the initial obstacles is roughly range, shorten the threshold range, maximum to detect the target. In order to improve the accuracy of detector, this paper increased the Kalman filter to estimate the target state area. The direction predictor based on the Markov model is added to realize the target state estimation under the condition of background color interference and enhance the ability of the detector to identify similar objects. The experimental results show that the improved algorithm more accurate and faster speed of processing.

  14. A Technique for Real-Time Ionospheric Ranging Error Correction Based On Radar Dual-Frequency Detection

    NASA Astrophysics Data System (ADS)

    Lyu, Jiang-Tao; Zhou, Chen

    2017-12-01

    Ionospheric refraction is one of the principal error sources for limiting the accuracy of radar systems for space target detection. High-accuracy measurement of the ionospheric electron density along the propagation path of radar wave is the most important procedure for the ionospheric refraction correction. Traditionally, the ionospheric model and the ionospheric detection instruments, like ionosonde or GPS receivers, are employed for obtaining the electron density. However, both methods are not capable of satisfying the requirements of correction accuracy for the advanced space target radar system. In this study, we propose a novel technique for ionospheric refraction correction based on radar dual-frequency detection. Radar target range measurements at two adjacent frequencies are utilized for calculating the electron density integral exactly along the propagation path of the radar wave, which can generate accurate ionospheric range correction. The implementation of radar dual-frequency detection is validated by a P band radar located in midlatitude China. The experimental results present that the accuracy of this novel technique is more accurate than the traditional ionospheric model correction. The technique proposed in this study is very promising for the high-accuracy radar detection and tracking of objects in geospace.

  15. Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason

    2014-01-01

    Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal processing of the photocurrent processes at the outputs of the two detectors is to perform log-matched filtering followed by a summation and peak detection. This implies that neither difference detection, nor Fourier-domain peak detection, which are the staples of the state-of-the-art systems, is optimal when a weak local oscillator is employed.

  16. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method

    PubMed Central

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-01-01

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets. PMID:27801795

  17. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method.

    PubMed

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-10-27

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  18. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing

    PubMed Central

    Mee, Edward T.; Preston, Mark D.; Minor, Philip D.; Schepelmann, Silke; Huang, Xuening; Nguyen, Jenny; Wall, David; Hargrove, Stacey; Fu, Thomas; Xu, George; Li, Li; Cote, Colette; Delwart, Eric; Li, Linlin; Hewlett, Indira; Simonyan, Vahan; Ragupathy, Viswanath; Alin, Voskanian-Kordi; Mermod, Nicolas; Hill, Christiane; Ottenwälder, Birgit; Richter, Daniel C.; Tehrani, Arman; Jacqueline, Weber-Lehmann; Cassart, Jean-Pol; Letellier, Carine; Vandeputte, Olivier; Ruelle, Jean-Louis; Deyati, Avisek; La Neve, Fabio; Modena, Chiara; Mee, Edward; Schepelmann, Silke; Preston, Mark; Minor, Philip; Eloit, Marc; Muth, Erika; Lamamy, Arnaud; Jagorel, Florence; Cheval, Justine; Anscombe, Catherine; Misra, Raju; Wooldridge, David; Gharbia, Saheer; Rose, Graham; Ng, Siemon H.S.; Charlebois, Robert L.; Gisonni-Lex, Lucy; Mallet, Laurent; Dorange, Fabien; Chiu, Charles; Naccache, Samia; Kellam, Paul; van der Hoek, Lia; Cotten, Matt; Mitchell, Christine; Baier, Brian S.; Sun, Wenping; Malicki, Heather D.

    2016-01-01

    Background Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. Methods A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Results Fifteen laboratories returned results, obtained using a wide range of wet-lab and informatics methods. Six of 25 target viruses were detected by all laboratories, with the remaining viruses detected by 4–14 laboratories. Six non-target viruses were detected by three or more laboratories. Conclusion The study demonstrated that a wide range of methods are currently used for adventitious virus detection screening in biological products by deep sequencing and that they can yield significantly different results. This underscores the need for common reference materials to ensure satisfactory assay performance and enable comparisons between laboratories. PMID:26709640

  19. A Sensitive DNA Capacitive Biosensor Using Interdigitated Electrodes

    PubMed Central

    Wang, Lei; Veselinovic, Milena; Yang, Lang; Geiss, Brian J.; Dandy, David S.; Chen, Tom

    2017-01-01

    This paper presents a label-free affinity-based capacitive biosensor using interdigitated electrodes. Using an optimized process of DNA probe preparation to minimize the effect of contaminants in commercial thiolated DNA probe, the electrode surface was functionalized with the 24-nucleotide DNA probes based on the West Nile virus sequence (Kunjin strain). The biosensor has the ability to detect complementary DNA fragments with a detection limit down to 20 DNA target molecules (1.5 aM range), making it suitable for a practical point-of-care (POC) platform for low target count clinical applications without the need for amplification. The reproducibility of the biosensor detection was improved with efficient covalent immobilization of purified single-stranded DNA probe oligomers on cleaned gold microelectrodes. In addition to the low detection limit, the biosensor showed a dynamic range of detection from 1 μL−1 to 105 μL−1 target molecules (20 to 2 million targets), making it suitable for sample analysis in a typical clinical application environment. The binding results presented in this paper were validated using fluorescent oligomers. PMID:27619528

  20. Quantum Illumination-Based Target Detection and Discrimination

    DTIC Science & Technology

    2014-06-30

    amplifier (EDFA) was combined with the signal to simulate a high-noise environment, with a noise photon number per mode NB in the range 40–300. The...Research Triangle Park, NC 27709-2211 quantum communication, target detection, entanglement , parametric downconversion, optical parametric amplifiers...laser system of the same average transmitted photon number, when the target return has random-amplitude behavior. Receiver operating characteristic

  1. Camouflage target reconnaissance based on hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Hua, Wenshen; Guo, Tong; Liu, Xun

    2015-08-01

    Efficient camouflaged target reconnaissance technology makes great influence on modern warfare. Hyperspectral images can provide large spectral range and high spectral resolution, which are invaluable in discriminating between camouflaged targets and backgrounds. Hyperspectral target detection and classification technology are utilized to achieve single class and multi-class camouflaged targets reconnaissance respectively. Constrained energy minimization (CEM), a widely used algorithm in hyperspectral target detection, is employed to achieve one class camouflage target reconnaissance. Then, support vector machine (SVM), a classification method, is proposed to achieve multi-class camouflage target reconnaissance. Experiments have been conducted to demonstrate the efficiency of the proposed method.

  2. Top-attack modeling and automatic target detection using synthetic FLIR scenery

    NASA Astrophysics Data System (ADS)

    Weber, Bruce A.; Penn, Joseph A.

    2004-09-01

    A series of experiments have been performed to verify the utility of algorithmic tools for the modeling and analysis of cold-target signatures in synthetic, top-attack, FLIR video sequences. The tools include: MuSES/CREATION for the creation of synthetic imagery with targets, an ARL target detection algorithm to detect imbedded synthetic targets in scenes, and an ARL scoring algorithm, using Receiver-Operating-Characteristic (ROC) curve analysis, to evaluate detector performance. Cold-target detection variability was examined as a function of target emissivity, surrounding clutter type, and target placement in non-obscuring clutter locations. Detector metrics were also individually scored so as to characterize the effect of signature/clutter variations. Results show that using these tools, a detailed, physically meaningful, target detection analysis is possible and that scenario specific target detectors may be developed by selective choice and/or weighting of detector metrics. However, developing these tools into a reliable predictive capability will require the extension of these results to the modeling and analysis of a large number of data sets configured for a wide range of target and clutter conditions. Finally, these tools should also be useful for the comparison of competitive detection algorithms by providing well defined, and controllable target detection scenarios, as well as for the training and testing of expert human observers.

  3. Multi-color IR sensors based on QWIP technology for security and surveillance applications

    NASA Astrophysics Data System (ADS)

    Sundaram, Mani; Reisinger, Axel; Dennis, Richard; Patnaude, Kelly; Burrows, Douglas; Cook, Robert; Bundas, Jason

    2006-05-01

    Room-temperature targets are detected at the furthest distance by imaging them in the long wavelength (LW: 8-12 μm) infrared spectral band where they glow brightest. Focal plane arrays (FPAs) based on quantum well infrared photodetectors (QWIPs) have sensitivity, noise, and cost metrics that have enabled them to become the best commercial solution for certain security and surveillance applications. Recently, QWIP technology has advanced to provide pixelregistered dual-band imaging in both the midwave (MW: 3-5 μm) and longwave infrared spectral bands in a single chip. This elegant technology affords a degree of target discrimination as well as the ability to maximize detection range for hot targets (e.g. missile plumes) by imaging in the midwave and for room-temperature targets (e.g. humans, trucks) by imaging in the longwave with one simple camera. Detection-range calculations are illustrated and FPA performance is presented.

  4. Detection of electromagnetic radiation using nonlinear materials

    DOEpatents

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  5. Study on multispectral imaging detection and recognition

    NASA Astrophysics Data System (ADS)

    Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng

    2009-07-01

    Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.

  6. A new method for detecting small and dim targets in starry background

    NASA Astrophysics Data System (ADS)

    Yao, Rui; Zhang, Yanning; Jiang, Lei

    2011-08-01

    Small visible optical space targets detection is one of the key issues in the research of long-range early warning and space debris surveillance. The SNR(Signal to Noise Ratio) of the target is very low because of the self influence of image device. Random noise and background movement also increase the difficulty of target detection. In order to detect small visible optical space targets effectively and rapidly, we bring up a novel detecting method based on statistic theory. Firstly, we get a reasonable statistical model of visible optical space image. Secondly, we extract SIFT(Scale-Invariant Feature Transform) feature of the image frames, and calculate the transform relationship, then use the transform relationship to compensate whole visual field's movement. Thirdly, the influence of star was wiped off by using interframe difference method. We find segmentation threshold to differentiate candidate targets and noise by using OTSU method. Finally, we calculate statistical quantity to judge whether there is the target for every pixel position in the image. Theory analysis shows the relationship of false alarm probability and detection probability at different SNR. The experiment result shows that this method could detect target efficiently, even the target passing through stars.

  7. Visual performance on detection tasks with double-targets of the same and different difficulty.

    PubMed

    Chan, Alan H S; Courtney, Alan J; Ma, C W

    2002-10-20

    This paper reports a study of measurement of horizontal visual sensitivity limits for 16 subjects in single-target and double-targets detection tasks. Two phases of tests were conducted in the double-targets task; targets of the same difficulty were tested in phase one while targets of different difficulty were tested in phase two. The range of sensitivity for the double-targets test was found to be smaller than that for single-target in both the same and different target difficulty cases. The presence of another target was found to affect performance to a marked degree. Interference effect of the difficult target on detection of the easy one was greater than that of the easy one on the detection of the difficult one. Performance decrement was noted when correct percentage detection was plotted against eccentricity of target in both the single-target and double-targets tests. Nevertheless, the non-significant correlation found between the performance for the two tasks demonstrated that it was impossible to predict quantitatively ability for detection of double targets from the data for single targets. This indicated probable problems in generalizing data for single target visual lobes to those for multiple targets. Also lobe area values obtained from measurements using a single-target task cannot be applied in a mathematical model for situations with multiple occurrences of targets.

  8. Investigation of the detection of shallow tunnels using electromagnetic and seismic waves

    NASA Astrophysics Data System (ADS)

    Counts, Tegan; Larson, Gregg; Gürbüz, Ali Cafer; McClellan, James H.; Scott, Waymond R., Jr.

    2007-04-01

    Multimodal detection of subsurface targets such as tunnels, pipes, reinforcement bars, and structures has been investigated using both ground-penetrating radar (GPR) and seismic sensors with signal processing techniques to enhance localization capabilities. Both systems have been tested in bi-static configurations but the GPR has been expanded to a multi-static configuration for improved performance. The use of two compatible sensors that sense different phenomena (GPR detects changes in electrical properties while the seismic system measures mechanical properties) increases the overall system's effectiveness in a wider range of soils and conditions. Two experimental scenarios have been investigated in a laboratory model with nearly homogeneous sand. Images formed from the raw data have been enhanced using beamforming inversion techniques and Hough Transform techniques to specifically address the detection of linear targets. The processed data clearly indicate the locations of the buried targets of various sizes at a range of depths.

  9. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  10. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-20

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method.

  11. Highly sensitive detection of target molecules using a new fluorescence-based bead assay

    NASA Astrophysics Data System (ADS)

    Scheffler, Silvia; Strauß, Denis; Sauer, Markus

    2007-07-01

    Development of immunoassays with improved sensitivity, specificity and reliability are of major interest in modern bioanalytical research. We describe the development of a new immunomagnetic fluorescence detection (IM-FD) assay based on specific antigen/antibody interactions and on accumulation of the fluorescence signal on superparamagnetic PE beads in combination with the use of extrinsic fluorescent labels. IM-FD can be easily modified by varying the order of coatings and assay conditions. Depending on the target molecule, antibodies (ABs), entire proteins, or small protein epitopes can be used as capture molecules. The presence of target molecules is detected by fluorescence microscopy using fluorescently labeled secondary or detection antibodies. Here, we demonstrate the potential of the new assay detecting the two tumor markers IGF-I and p53 antibodies in the clinically relevant concentration range. Our data show that the fluorescence-based bead assay exhibits a large dynamic range and a high sensitivity down to the subpicomolar level.

  12. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.

    PubMed

    Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J

    2017-01-01

    Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

  13. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    PubMed Central

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE. PMID:27447635

  14. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.

    PubMed

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-07-19

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE.

  15. Design of large zoom for visible and infrared optical system in hemisphere space

    NASA Astrophysics Data System (ADS)

    Xing, Yang-guang; Li, Lin; Zhang, Juan

    2018-01-01

    In the field of space optical, the application of advanced optical instruments for related target detection and identification has become an advanced technology in modern optics. In order to complete the task of search in wide field of view and detailed investigation in small field of view, it is inevitable to use the structure of the zoom system to achieve a better observation for important targets. The innovation of this paper lies in using the zoom optical system in space detection, which achieve firstly military needs of searched target in the large field of view and recognized target in the small field of view. At the same time, this paper also completes firstly the design of variable focus optical detection system in the range of hemisphere space, the zoom optical system is working in the range of visible and infrared wavelengths, the perspective angle reaches 360 ° and the zoom ratio of the visible system is up to 15. The visible system has a zoom range of 60-900 mm, a detection band of 0.48-0.70μm, and a F-number of 2.0 to 5.0. The infrared system has a zoom range of 150 900mm, a detection band of 8-12μm, and a F-number of 1.2 to 3.0. The MTF of the visible zoom system is above 0.4 at spatial frequency of 45 lp / mm, and the infrared zoom system is above 0.4 at spatial frequency of 11 lp / mm. The design results show that the system has a good image quality.

  16. Improved target detection by IR dual-band image fusion

    NASA Astrophysics Data System (ADS)

    Adomeit, U.; Ebert, R.

    2009-09-01

    Dual-band thermal imagers acquire information simultaneously in both the 8-12 μm (long-wave infrared, LWIR) and the 3-5 μm (mid-wave infrared, MWIR) spectral range. Compared to single-band thermal imagers they are expected to have several advantages in military applications. These advantages include the opportunity to use the best band for given atmospheric conditions (e. g. cold climate: LWIR, hot and humid climate: MWIR), the potential to better detect camouflaged targets and an improved discrimination between targets and decoys. Most of these advantages have not yet been verified and/or quantified. It is expected that image fusion allows better exploitation of the information content available with dual-band imagers especially with respect to detection of targets. We have developed a method for dual-band image fusion based on the apparent temperature differences in the two bands. This method showed promising results in laboratory tests. In order to evaluate its performance under operational conditions we conducted a field trial in an area with high thermal clutter. In such areas, targets are hardly to detect in single-band images because they vanish in the clutter structure. The image data collected in this field trial was used for a perception experiment. This perception experiment showed an enhanced target detection range and reduced false alarm rate for the fused images compared to the single-band images.

  17. A Waveform Detector that Targets Template-Decorrelated Signals and Achieves its Predicted Performance: Demonstration with IMS Data

    NASA Astrophysics Data System (ADS)

    Carmichael, J.

    2016-12-01

    Waveform correlation detectors used in seismic monitoring scan multichannel data to test two competing hypotheses: that data contain (1) a noisy, amplitude-scaled version of a template waveform, or, (2) only noise. In reality, seismic wavefields include signals triggered by non-target sources (background seismicity) and target signals that are only partially correlated with the waveform template. We reform the waveform correlation detector hypothesis test to accommodate deterministic uncertainty in template/target waveform similarity and thereby derive a new detector from convex set projections (the "cone detector") for use in explosion monitoring. Our analyses give probability density functions that quantify the detectors' degraded performance with decreasing waveform similarity. We then apply our results to three announced North Korean nuclear tests and use International Monitoring System (IMS) arrays to determine the probability that low magnitude, off-site explosions can be reliably detected with a given waveform template. We demonstrate that cone detectors provide (1) an improved predictive capability over correlation detectors to identify such spatially separated explosive sources, (2) competitive detection rates, and (3) reduced false alarms on background seismicity. Figure Caption: Observed and predicted receiver operating characteristic curves for correlation statistic r(x) (left) and cone statistic s(x) (right) versus semi-empirical explosion magnitude. a: Shaded region shows range of ROC curves for r(x) that give the predicted detection performance in noise conditions recorded over 24 hrs on 8 October 2006. Superimposed stair plot shows the empirical detection performance (recorded detections/total events) averaged over 24 hr of data. Error bars indicate the demeaned range in observed detection probability over the day; means are removed to avoid risk of misinterpreting range to indicate probabilities can exceed one. b: Shaded region shows range of ROC curves for s(x) that give the predicted detection performance for the cone detector. Superimposed stair plot show observed detection performance averaged over 24 hr of data analogous to that shown in a.

  18. Target detection, shape discrimination, and signal characteristics of an echolocating false killer whale (Pseudorca crassidens).

    PubMed

    Brill, R L; Pawloski, J L; Helweg, D A; Au, W W; Moore, P W

    1992-09-01

    This study demonstrated the ability of a false killer whale (Pseudorca crassidens) to discriminate between two targets and investigated the parameters of the whale's emitted signals for changes related to test conditions. Target detection performance comparable to the bottlenose dolphin's (Tursiops truncatus) has previously been reported for echolocating false killer whales. No other echolocation capabilities have been reported. A false killer whale, naive to conditioned echolocation tasks, was initially trained to detect a cylinder in a "go/no-go" procedure over ranges of 3 to 8 m. The transition from a detection task to a discrimination task was readily achieved by introducing a spherical comparison target. Finally, the cylinder was successfully compared to spheres of two different sizes and target strengths. Multivariate analyses were used to evaluate the parameters of emitted signals. Duncan's multiple range tests showed significant decreases (df = 185, p less than 0.05) in both source level and bandwidth in the transition from detection to discrimination. Analysis of variance revealed a significant decrease in the number of clicks over test conditions [F(5.26) = 5.23, p less than 0.0001]. These data suggest that the whale relied on cues relevant to target shape as well as target strength, that changes in source level and bandwidth were task-related, that the decrease in clicks was associated with learning experience, and that Pseudorca's ability to discriminate shapes using echolocation may be comparable to that of Tursiops truncatus.

  19. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  20. Approach range and velocity determination using laser sensors and retroreflector targets

    NASA Technical Reports Server (NTRS)

    Donovan, William J.

    1991-01-01

    A laser docking sensor study is currently in the third year of development. The design concept is considered to be validated. The concept is based on using standard radar techniques to provide range, velocity, and bearing information. Multiple targets are utilized to provide relative attitude data. The design requirements were to utilize existing space-qualifiable technology and require low system power, weight, and size yet, operate from 0.3 to 150 meters with a range accuracy greater than 3 millimeters and a range rate accuracy greater than 3 mm per second. The field of regard for the system is +/- 20 deg. The transmitter and receiver design features a diode laser, microlens beam steering, and power control as a function of range. The target design consists of five target sets, each having seven 3-inch retroreflectors, arranged around the docking port. The target map is stored in the sensor memory. Phase detection is used for ranging, with the frequency range-optimized. Coarse bearing measurement is provided by the scanning system (one set of binary optics) angle. Fine bearing measurement is provided by a quad detector. A MIL-STD-1750 A/B computer is used for processing. Initial test results indicate a probability of detection greater than 99 percent and a probability of false alarm less than 0.0001. The functional system is currently at the MIT/Lincoln Lab for demonstration.

  1. Comparison of 16S rDNA-based PCR and checkerboard DNA-DNA hybridisation for detection of selected endodontic pathogens.

    PubMed

    Siqueira, José F; Rôças, Isabela N; De Uzeda, Milton; Colombo, Ana P; Santos, Kátia R N

    2002-12-01

    Molecular methods have been used recently to investigate the bacteria encountered in human endodontic infections. The aim of the present study was to compare the ability of a 16S rDNA-based PCR assay and checkerboard DNA-DNA hybridisation in detecting Actinobacillus actinomycetemcomitans, Bacteroides forsythus, Peptostreptococcus micros, Porphyromonas endodontalis, Por. gingivalis and Treponema denticola directly from clinical samples. Specimens were obtained from 50 cases of endodontic infections and the presence of the target species was investigated by whole genomic DNA probes and checkerboard DNA-DNA hybridisation or taxon-specific oligonucleotides with PCR assay. Prevalence of the target species was based on data obtained by each method. The sensitivity and specificity of each molecular method was compared with the data generated by the other method as the reference--a value of 1.0 representing total agreement with the chosen standard. The methods were also compared with regard to the prevalence values for each target species. Regardless of the detection method used, T. denticola, Por. gingivalis, Por. endodontalis and B. forsythus were the most prevalent species. If the checkerboard data for these four species were used as the reference, PCR detection sensitivities ranged from 0.53 to 1.0, and specificities from 0.5 to 0.88, depending on the target bacterial species. When PCR data for the same species were used as the reference, the detection sensitivities for the checkerboard method ranged from 0.17 to 0.73, and specificities from 0.75 to 1.0. Accuracy values ranged from 0.6 to 0.74. On the whole, matching results between the two molecular methods ranged from 60% to 97.5%, depending on the target species. The major discrepancies between the methods comprised a number of PCR-positive but checkerboard-negative results. Significantly higher prevalence figures for Por. endodontalis and T. denticola were observed after PCR assessment. There was no further significant difference between the methods with regard to detection of the other target species.

  2. Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging.

    PubMed

    Li, Xiaolu; Liang, Yu; Xu, Lijun

    2014-09-01

    To provide a credible model for light detection and ranging (LiDAR) target classification, the focus of this study is on the relationship between intensity data of LiDAR and the bidirectional reflectance distribution function (BRDF). An integration method based on the built-in-lab coaxial laser detection system was advanced. A kind of intermediary BRDF model advanced by Schlick was introduced into the integration method, considering diffuse and specular backscattering characteristics of the surface. A group of measurement campaigns were carried out to investigate the influence of the incident angle and detection range on the measured intensity data. Two extracted parameters r and S(λ) are influenced by different surface features, which illustrate the surface features of the distribution and magnitude of reflected energy, respectively. The combination of two parameters can be used to describe the surface characteristics for target classification in a more plausible way.

  3. Effects of extraneous odors on canine detection

    NASA Astrophysics Data System (ADS)

    Waggoner, L. Paul; Jones, Meredith H.; Williams, Marc; Johnston, J. M.; Edge, Cindy C.; Petrousky, James A.

    1998-12-01

    Dogs are often required to detect target substances under challenging conditions. One of these challenges is to detect contraband in the presence of extraneous odors, whether they are part of the ambient environment or placed there for the purpose of evading detection. This paper presents the results of two studies evaluating the ability of dogs to detect target substances in the presence of varying concentrations of extraneous odors. The studies were conducted under behavioral laboratory conditions, providing good control over vapor sources and a clear basis for evaluation of detection responses. Dogs were trained to sample an air stream consisting of the extraneous odor only or the extraneous odor plus the target odor and then press the appropriate lever to earn food. The results are described in terns of the ability of dogs to detect target odors in the presence of a wide range of concentrations of the extraneous odors.

  4. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  5. Biochemical Detection and Identification False Alarm Rate Dependence on Wavelength Using Laser Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Bhartia, R.; Hug, W. F.; Sala, E. C.; Sijapati, K.; Lane, A. L.; Reid, R. D.; Conrad, P. G.

    2006-01-01

    Most organic and many inorganic materials absorb strongly in specific wavelength ranges in the deep UV between about 220nm and 300nm. Excitation within these absorption bands results in native fluorescence emission. Each compound or composite material, such as a bacterial spore, has a unique excitation-emission fingerprint that can be used to provide information about the material. The sensitivity and specificity with which these materials can be detected and identified depends on the excitation wavelength and the number and location of observation wavelengths.We will present data on our deep ultraviolet Targeted Ultraviolet Chemical Sensors that demonstrate the sensitivity and specificity of the sensors. In particular, we will demonstrate the ability to quantitatively differentiate a wide range of biochemical agent targets against a wide range of background materials. We will describe the relationship between spectral resolution and specificity in target identification, as well as simple, fast, algorithms to identify materials.Hand-held, battery operated instruments using a deep UV laser and multi-band detection have been developed and deployed on missions to the Antarctic, the Arctic, and the deep ocean with the capability of detecting a single bacterial spore and to differentiate a wide range of organic and biological compounds.

  6. Influence of target reflection on three-dimensional range gated reconstruction.

    PubMed

    Chua, Sing Yee; Wang, Xin; Guo, Ningqun; Tan, Ching Seong

    2016-08-20

    The range gated technique is a promising laser ranging method that is widely used in different fields such as surveillance, industry, and military. In a range gated system, a reflected laser pulse returned from the target scene contains key information for range reconstruction, which directly affects the system performance. Therefore, it is necessary to study the characteristics and effects of the target reflection factor. In this paper, theoretical and experimental analyses are performed to investigate the influence of target reflection on three-dimensional (3D) range gated reconstruction. Based on laser detection and ranging (LADAR) and bidirectional reflection distribution function (BRDF) theory, a 3D range gated reconstruction model is derived and the effect on range accuracy is analyzed from the perspectives of target surface reflectivity and angle of laser incidence. Our theoretical and experimental study shows that the range accuracy is proportional to the target surface reflectivity, but it decreases when the angle of incidence increases to adhere to the BRDF model. The presented findings establish a comprehensive understanding of target reflection in 3D range gated reconstruction, which is of interest to various applications such as target recognition and object modeling. This paper provides a reference for future improvement to perform accurate range compensation or correction.

  7. Analysis of the infrared detection system operating range based on polarization degree

    NASA Astrophysics Data System (ADS)

    Jiang, Kai; Liu, Wen; Liu, Kai; Duan, Jing; Yan, Pei-pei; Shan, Qiu-sha

    2018-02-01

    Infrared polarization detection technology has unique advantages in the field of target detection and identification because of using the polarization information of radiation. The mechanism of infrared polarization is introduced. Comparing with traditional infrared detection distance model, infrared detection operating range and Signal to Noise Ratio (SNR) model is built according to the polarization degree and noise. The influence of polarization degree on the SNR of infrared system is analyzed. At last, the basic condition of polarization detection SNR better than traditional infrared detection SNR is obtained.

  8. Nanoporous-Gold-Based Electrode Morphology Libraries for Investigating Structure-Property Relationships in Nucleic Acid Based Electrochemical Biosensors.

    PubMed

    Matharu, Zimple; Daggumati, Pallavi; Wang, Ling; Dorofeeva, Tatiana S; Li, Zidong; Seker, Erkin

    2017-04-19

    Nanoporous gold (np-Au) electrode coatings significantly enhance the performance of electrochemical nucleic acid biosensors because of their three-dimensional nanoscale network, high electrical conductivity, facile surface functionalization, and biocompatibility. Contrary to planar electrodes, the np-Au electrodes also exhibit sensitive detection in the presence of common biofouling media due to their porous structure. However, the pore size of the nanomatrix plays a critical role in dictating the extent of biomolecular capture and transport. Small pores perform better in the case of target detection in complex samples by filtering out the large nonspecific proteins. On the other hand, larger pores increase the accessibility of target nucleic acids in the nanoporous structure, enhancing the detection limits of the sensor at the expense of more interference from biofouling molecules. Here, we report a microfabricated np-Au multiple electrode array that displays a range of electrode morphologies on the same chip for identifying feature sizes that reduce the nonspecific adsorption of proteins but facilitate the permeation of target DNA molecules into the pores. We demonstrate the utility of the electrode morphology library in studying DNA functionalization and target detection in complex biological media with a special emphasis on revealing ranges of electrode morphologies that mutually enhance the limit of detection and biofouling resilience. We expect this technique to assist in the development of high-performance biosensors for point-of-care diagnostics and facilitate studies on the electrode structure-property relationships in potential applications ranging from neural electrodes to catalysts.

  9. Disulfide-induced self-assembled targets: A novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Shokri, Ehsan; Hosseini, Morteza; Davari, Mehdi D.; Ganjali, Mohammad R.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2017-04-01

    A modified non-cross-linking gold-nanoparticles (Au-NPs) aggregation strategy has been developed for the label free colorimetric detection of DNAs/RNAs based on self-assembling target species in the presence of thiolated probes. Two complementary thiol- modified probes, each of which specifically binds at one half of the target introduced SH groups at both ends of dsDNA. Continuous disulfide bond formation at 3‧ and 5‧ terminals of targets leads to the self-assembly of dsDNAs into the sulfur- rich and flexible products with different lengths. These products have a high affinity for the surface of Au-NPs and efficiently protect the surface from salt induced aggregation. To evaluate the assay efficacy, a small part of the citrus tristeza virus (CTV) genome was targeted, leading to a detection limit of about 5 × 10-9 mol.L-1 over a linear ranged from 20 × 10-9 to 10 × 10-7 mol.L-1. This approach also exhibits good reproducibility and recovery levels in the presence of plant total RNA or human plasma total circulating RNA extracts. Self-assembled targets can be then sensitively distinguished from non-assembled or mismatched targets after gel electrophoresis. The disulfide reaction method and integrating self-assembled DNAs/RNAs targets with bare AuNPs as a sensitive indicator provide us a powerful and simple visual detection tool for a wide range of applications.

  10. Broadly targeted multiprobe QPCR for detection of coronaviruses: Coronavirus is common among mallard ducks (Anas platyrhynchos).

    PubMed

    Muradrasoli, Shaman; Mohamed, Nahla; Hornyák, Akos; Fohlman, Jan; Olsen, Björn; Belák, Sándor; Blomberg, Jonas

    2009-08-01

    Coronaviruses (CoVs) can cause trivial or fatal disease in humans and in animals. Detection methods for a wide range of CoVs are needed, to understand viral evolution, host range, transmission and maintenance in reservoirs. A new concept, "Multiprobe QPCR", which uses a balanced mixture of competing discrete non- or moderately degenerated nuclease degradable (TaqMan) probes was employed. It provides a broadly targeted and rational single tube real-time reverse transcription PCR ("NQPCR") for the generic detection and discovery of CoV. Degenerate primers, previously published, and the new probes, were from a conserved stretch of open reading frame 1b, encoding the replicase. This multiprobe design reduced the degree of probe degeneration, which otherwise decreases the sensitivity, and allowed a preliminary classification of the amplified sequence directly from the QPCR trace. The split probe strategy allowed detection of down to 10 viral nucleic acid equivalents of CoV from all known CoV groups. Evaluation was with reference CoV strains, synthetic targets, human respiratory samples and avian fecal samples. Infectious-Bronchitis-Virus (IBV)-related variants were found in 7 of 35 sample pools, from 100 wild mallards (Anas platyrhynchos). Ducks may spread and harbour CoVs. NQPCR can detect a wide range of CoVs, as illustrated for humans and ducks.

  11. Thermal infrared panoramic imaging sensor

    NASA Astrophysics Data System (ADS)

    Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-05-01

    Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to serve in a wide range of applications of homeland security, as well as serve the Army in tasks of improved situational awareness (SA) in defense and offensive operations, and as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The novel ViperView TM high-resolution panoramic thermal imager is the heart of the APTIS system. It features an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS system include network communications, advanced power management, and wakeup capability. Recent developments include image processing, optical design being expanded into the visible spectral range, and wireless communications design. This paper describes the development status of the APTIS system.

  12. Anti-dynamic-crosstalk method for single photon LIDAR detection

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Liu, Qiang; Gong, Mali; Fu, Xing

    2017-11-01

    With increasing number of vehicles equipped with light detection and ranging (LIDAR), crosstalk is identified as a critical and urgent issue in the range detection for active collision avoidance. Chaotic pulse position modulation (CPPM) applied in the transmitting pulse train has been shown to prevent crosstalk as well as range ambiguity. However, static and unified strategy on discrimination threshold and the number of accumulated pulse is not valid against crosstalk with varying number of sources and varying intensity of each source. This paper presents an adaptive algorithm to distinguish the target echo from crosstalk with dynamic and unknown level of intensity in the context of intelligent vehicles. New strategy is given based on receiver operating characteristics (ROC) curves that consider the detection requirements of the probability of detection and false alarm for the scenario with varying crosstalk. In the adaptive algorithm, the detected results are compared by the new strategy with both the number of accumulated pulses and the threshold being raised step by step, so that the target echo can be exactly identified from crosstalk with the dynamic and unknown level of intensity. The validity of the algorithm has been verified through the experiments with a single photon detector and the time correlated single photo counting (TCSPC) technique, demonstrating a marked drop in required shots for identifying the target compared with static and unified strategy

  13. Detection of beer spoilage bacteria Pectinatus and Megasphaera with acridinium ester labelled DNA probes using a hybridisation protection assay.

    PubMed

    Paradh, A D; Hill, A E; Mitchell, W J

    2014-01-01

    DNA probes specific for rRNA of selected target species were utilised for the detection of beer spoilage bacteria of the genera Pectinatus and Megasphaera using a hybridisation protection assay (HPA). All the probes were modified during synthesis by addition of an amino linker arm at the 5' end or were internally modified by inserting an amine modified thymidine base. Synthesised probes then were labelled with acridinium ester (AE) and purified using reverse phase HPLC. The internally AE labelled probes were able to detect target RNA within the range of 0.016-0.0032pmol. All the designed probes showed high specificity towards target RNA and could detect bacterial contamination within the range of ca. 5×10(2)1×10(3) CFU using the HPA. The developed assay was also compatible with MRS, NBB and SMMP beer enrichment media, routinely used in brewing laboratories. © 2013 Elsevier B.V. All rights reserved.

  14. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching.

    PubMed

    Zhang, Yanan; Ning, Xinping; Mao, Guobin; Ji, Xinghu; He, Zhike

    2018-05-01

    We have developed a new enzyme-free method for target sequence DNA detection based on the dynamic quenching of fluorescent silicon nanodots (SiNDs) toward Cy5-tagged DNA probe. Fascinatingly, the water-soluble SiNDs can quench the fluorescence of cyanine (Cy5) in Cy5-tagged DNA probe in homogeneous solution, and the fluorescence of Cy5-tagged DNA probe can be restored in the presence of target sequence DNA (the synthetic target miRNA-27a). Based on this phenomenon, a SiND-featured fluorescent sensor has been constructed for "turn-on" detection of the synthetic target miRNA-27a for the first time. This newly developed approach possesses the merits of low cost, simple design, and convenient operation since no enzymatic reaction, toxic reagents, or separation procedures are involved. The established method achieves a detection limit of 0.16 nM, and the relative standard deviation of this method is 9% (1 nM, n = 5). The linear range is 0.5-20 nM, and the recoveries in spiked human fluids are in the range of 90-122%. This protocol provides a new tactic in the development of the nonenzymic miRNA biosensors and opens a promising avenue for early diagnosis of miRNA-associated disease. Graphical abstract The SiND-based fluorescent sensor for detection of S-miR-27a.

  15. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  16. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    NASA Astrophysics Data System (ADS)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  17. Moving target detection in flash mode against stroboscopic mode by active range-gated laser imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanyu; Wang, Xinwei; Sun, Liang; Fan, Songtao; Lei, Pingshun; Zhou, Yan; Liu, Yuliang

    2018-01-01

    Moving target detection is important for the application of target tracking and remote surveillance in active range-gated laser imaging. This technique has two operation modes based on the difference of the number of pulses per frame: stroboscopic mode with the accumulation of multiple laser pulses per frame and flash mode with a single shot of laser pulse per frame. In this paper, we have established a range-gated laser imaging system. In the system, two types of lasers with different frequency were chosen for the two modes. Electric fan and horizontal sliding track were selected as the moving targets to compare the moving blurring between two modes. Consequently, the system working in flash mode shows more excellent performance in motion blurring against stroboscopic mode. Furthermore, based on experiments and theoretical analysis, we presented the higher signal-to-noise ratio of image acquired by stroboscopic mode than flash mode in indoor and underwater environment.

  18. Target detection using microwave irradiances from natural sources: A passive, local and global surveillance system

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.

    1984-01-01

    Detection of metal objects on or near the Earth's surface was investigated using existing, passive, microwave sensors operating from Earth orbit. The range equations are derived from basic microwave principles and theories and the expressions are given explicitly to estimate the signal to noise ratio for detecting metal targets operating as bistatic scatterers. Actual measurements are made on a range of metal objects observed from orbit using existing passive microwave receiving systems. The details of the measurements and the results are tabulated and discussed. The advantages of a passive microwave sensor as it is applied to surveillance of metal objects as viewed from aerial platforms or from orbit, are examined.

  19. The application and research of the multi-receiving telescopes technology in laser ranging to space targets

    NASA Astrophysics Data System (ADS)

    Wu, Zhibo; Zhang, Haifeng; Zhang, Zhongping; Deng, Huarong; Li, Pu; Meng, Wendong; Cheng, Zhien; Shen, Lurun; Tang, Zhenhong

    2014-11-01

    Laser ranging technology can directly measure the distance between space targets and ground stations with the highest measurement precision and will play an irreplaceable role in orbit check and calibrating microwave measurement system. The precise orbit determination and accurate catalogue of space targets can also be realized by laser ranging with multi-stations. Among space targets, most of ones are inactive targets and space debris, which should be paid the great attentions for the safety of active spacecrafts. Because of laser diffuse reflection from the surface of targets, laser ranging to space debris has the characteristics of wide coverage and weak strength of laser echoes, even though the powerful laser system is applied. In order to increase the receiving ability of laser echoes, the large aperture telescope should be adopted. As well known, some disadvantages for one set of large aperture telescope, technical development difficulty and system running and maintenance complexity, will limit its flexible applications. The multi-receiving telescopes technology in laser ranging to space targets is put forward to realize the equivalent receiving ability produced by one larger aperture telescope by way of using multi-receiving telescopes, with the advantages of flexibility and maintenance. The theoretical analysis of the feasibility and key technologies of multi-receiving telescopes technology in laser ranging to space targets are presented in this paper. The experimental measurement system based on the 60cm SLR system and 1.56m astronomical telescopes with a distance of about 50m is established to provide the platform for researching on the multi-receiving telescopes technology. The laser ranging experiments to satellites equipped with retro-reflectors are successfully performed by using the above experimental system and verify the technical feasibility to increase the ability of echo detection. And the multi-receiving telescopes technology will become a novel effective way to improve the detection ability of laser ranging to space debris.

  20. Neutron detection using a crystal ball calorimeter

    NASA Astrophysics Data System (ADS)

    Martem'yanov, M. A.; Kulikov, V. V.; Krutenkova, A. P.

    2015-12-01

    The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describe the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.

  1. Event-specific real-time detection and quantification of genetically modified Roundup Ready soybean.

    PubMed

    Huang, Chia-Chia; Pan, Tzu-Ming

    2005-05-18

    The event-specific real-time detection and quantification of Roundup Ready soybean (RRS) using an ABI PRISM 7700 sequence detection system with light upon extension (LUX) primer was developed in this study. The event-specific primers were designed, targeting the junction of the RRS 5' integration site and the endogenous gene lectin1. Then, a standard reference plasmid was constructed that carried both of the targeted sequences for quantitative analysis. The detection limit of the LUX real-time PCR system was 0.05 ng of 100% RRS genomic DNA, which was equal to 20.5 copies. The range of quantification was from 0.1 to 100%. The sensitivity and range of quantification successfully met the requirement of the labeling rules in the European Union and Taiwan.

  2. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing.

    PubMed

    Li, Jun; Lin, Qiu-Hua; Kang, Chun-Yu; Wang, Kai; Yang, Xiu-Ting

    2018-03-18

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets.

  3. The simulation study on optical target laser active detection performance

    NASA Astrophysics Data System (ADS)

    Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen

    2014-12-01

    According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.

  4. Algorithms used in the Airborne Lidar Processing System (ALPS)

    USGS Publications Warehouse

    Nagle, David B.; Wright, C. Wayne

    2016-05-23

    The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vegetation-covered topographies.ALPS uses three waveform target-detection algorithms to determine target positions within a given waveform: centroid analysis, leading edge detection, and bottom detection using water-column backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom detection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid water.The report describes slant range calculations and explains how ALPS uses laser range and orientation measurements to project measurement points into the Universal Transverse Mercator coordinate system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data Language-based methods for gridding EAARL point cloud data to derive digital elevation models. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed pseudocode, mathematical equations, and Yorick source code accompany the report.

  5. Passive range estimation using dual baseline triangulation

    NASA Astrophysics Data System (ADS)

    Pieper, Ronald J.; Cooper, Alfred W.; Pelegris, G.

    1996-03-01

    Modern combat systems based on active radar sensing suffer disadvantages against low-flying targets in cluttered backgrounds. Use of passive infrared sensors with these systems, either in cooperation or as an alternative, shows potential for improving target detection and declaration range for targets crossing the horizon. Realization of this potential requires fusion of target position data from dissimilar sensors, or passive sensor measurement of target range. The availability of passive sensors that can supply both range and bearing data on such targets would significantly extend the robustness of an integrated ship self-defense system. This paper considers a new method of range determination with passive sensors based on the principle of triangulation, extending the principle to two orthogonal baselines. The performance of single or double baseline triangulation depends on sensor bearing precision and direction to target. An expression for maximum triangulation range at a required accuracy is derived as a function of polar angle relative to the center of the dual-baseline system. Limitations in the dual- baseline model due to the geometrically assessed horizon are also considered.

  6. A novel scattering switch-on detection technique for target-induced plasmon-coupling based sensing by single-particle optical anisotropy imaging.

    PubMed

    Peng, Lan; Cao, Xuan; Xiong, Bin; He, Yan; Yeung, Edward S

    2016-06-18

    We reported a novel scattering switch-on detection technique using flash-lamp polarization darkfield microscopy (FLPDM) for target-induced plasmon-coupling based sensing in homogeneous solution. With this method, we demonstrated sub-nM sensitivity for hydrogen sulfide (H2S) detection over a dynamic range of five orders of magnitude. This robust technique holds great promise for applications in toxic environmental pollutants and biological molecules.

  7. Research on capability of detecting ballistic missile by near space infrared system

    NASA Astrophysics Data System (ADS)

    Lu, Li; Sheng, Wen; Jiang, Wei; Jiang, Feng

    2018-01-01

    The infrared detection technology of ballistic missile based on near space platform can effectively make up the shortcomings of high-cost of traditional early warning satellites and the limited earth curvature of ground-based early warning radar. In terms of target detection capability, aiming at the problem that the formula of the action distance based on contrast performance ignores the background emissivity in the calculation process and the formula is only valid for the monochromatic light, an improved formula of the detecting range based on contrast performance is proposed. The near space infrared imaging system parameters are introduced, the expression of the contrastive action distance formula based on the target detection of the near space platform is deduced. The detection range of the near space infrared system for the booster stage ballistic missile skin, the tail nozzle and the tail flame is calculated. The simulation results show that the near-space infrared system has the best effect on the detection of tail-flame radiation.

  8. Laser-ranging scanning system to observe topographical deformations of volcanoes.

    PubMed

    Aoki, T; Takabe, M; Mizutani, K; Itabe, T

    1997-02-20

    We have developed a laser-ranging system to observe the topographical structure of volcanoes. This system can be used to measure the distance to a target by a laser and shows the three-dimensional topographical structure of a volcano with an accuracy of 30 cm. This accuracy is greater than that of a typical laser-ranging system that uses a corner-cube reflector as a target because the reflected light jitters as a result of inclination and unevenness of the target ground surface. However, this laser-ranging system is useful for detecting deformations of topographical features in which placement of a reflector is difficult, such as in volcanic regions.

  9. Application of infrared uncooled cameras in surveillance systems

    NASA Astrophysics Data System (ADS)

    Dulski, R.; Bareła, J.; Trzaskawka, P.; PiÄ tkowski, T.

    2013-10-01

    The recent necessity to protect military bases, convoys and patrols gave serious impact to the development of multisensor security systems for perimeter protection. One of the most important devices used in such systems are IR cameras. The paper discusses technical possibilities and limitations to use uncooled IR camera in a multi-sensor surveillance system for perimeter protection. Effective ranges of detection depend on the class of the sensor used and the observed scene itself. Application of IR camera increases the probability of intruder detection regardless of the time of day or weather conditions. It also simultaneously decreased the false alarm rate produced by the surveillance system. The role of IR cameras in the system was discussed as well as technical possibilities to detect human being. Comparison of commercially available IR cameras, capable to achieve desired ranges was done. The required spatial resolution for detection, recognition and identification was calculated. The simulation of detection ranges was done using a new model for predicting target acquisition performance which uses the Targeting Task Performance (TTP) metric. Like its predecessor, the Johnson criteria, the new model bounds the range performance with image quality. The scope of presented analysis is limited to the estimation of detection, recognition and identification ranges for typical thermal cameras with uncooled microbolometer focal plane arrays. This type of cameras is most widely used in security systems because of competitive price to performance ratio. Detection, recognition and identification range calculations were made, and the appropriate results for the devices with selected technical specifications were compared and discussed.

  10. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    NASA Astrophysics Data System (ADS)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

  11. System considerations for detection and tracking of small targets using passive sensors

    NASA Astrophysics Data System (ADS)

    DeBell, David A.

    1991-08-01

    Passive sensors provide only a few discriminants to assist in threat assessment of small targets. Tracking of the small targets provides additional discriminants. This paper discusses the system considerations for tracking small targets using passive sensors, in particular EO sensors. Tracking helps establish good versus bad detections. Discussed are the requirements to be placed on the sensor system's accuracy, with respect to knowledge of the sightline direction. The detection of weak targets sets a requirement for two levels of tracking in order to reduce processor throughput. A system characteristic is the need to track all detections. For low thresholds, this can mean a heavy track burden. Therefore, thresholds must be adaptive in order not to saturate the processors. Second-level tracks must develop a range estimate in order to assess threat. Sensor platform maneuvers are required if the targets are moving. The need for accurate pointing, good stability, and a good update rate will be shown quantitatively, relating to track accuracy and track association.

  12. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, wasmore » shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.« less

  13. Neutron detection using a crystal ball calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martem’yanov, M. A., E-mail: mmartemi@gmail.com; Kulikov, V. V.; Krutenkova, A. P.

    2015-12-15

    The program of experiments of the A2 Collaboration performed on a beam of tagged photons of the MAMI electron microtron in Mainz (Germany) includes precision measurements of the total and differential cross sections of the pion photoproduction on neutrons of a deuterium target. The determination of the detector ability to detect neutrons is undoubtedly one of the important problems of the experiment. The calorimetric system of the detector contains a segmented NaI Crystal Ball detector, which gives information about the position, energy, and detection time of neutral and charged particles in a wide angular range. In this work, we describemore » the measurement of the neutron detection efficiency in the energy range from 20 to 400MeV. The results are compared with BNL data obtained on a pion beam and proton target.« less

  14. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA.

    PubMed Central

    Fahrimal, Y; Goff, W L; Jasmer, D P

    1992-01-01

    Carrier cattle infected with Babesia bovis are difficult to detect because of the low numbers of parasites that occur in peripheral blood. However, diagnosis of low-level infections with the parasite is important for evaluating the efficacies of vaccines and in transmission and epidemiological studies. We used the polymerase chain reaction (PCR) to amplify a portion of the apocytochrome b gene from the parasite and tested the ability of this method to detect carrier cattle. The target sequence is associated with a 7.4-kb DNA element in undigested B. bovis genomic DNA (as shown previously), and the amplified product was detected by Southern and dot blot hybridization. The assay was specific for B. bovis, since no amplification was detected with Babesia bigemina, Trypanosoma brucei, Anaplasma marginale, or leukocyte DNA. The target sequence was amplified in DNA from B. bovis Mexico, Texas, and Australia S and L strains, demonstrating the applicability of the method to strains from different geographic regions. The sensitivity of the method ranged from 1 to 10 infected erythrocytes extracted from 0.5 ml of blood. This sensitivity was about 1,000 times greater than that from the use of unamplified parasite DNA. By the PCR method, six B. bovis carrier cattle were detected 86% of the time (range, 66 to 100%) when they were tested 11 times, while with microscopic examination of thick blood smears, the same carrier cattle were detected only 36% of the time (range, 17 to 66%). The method provides a useful diagnostic tool for detecting B. bovis carrier cattle, and the sensitivity is significantly improved over that of current methods. The results also suggest that characteristics of the apocytchrome b gene may make this a valuable target DNA for PCR-based detection of other hemoparasites. Images PMID:1624551

  15. Beyond the margins: real-time detection of cancer using targeted fluorophores

    PubMed Central

    Zhang, Ray R.; Schroeder, Alexandra B.; Grudzinski, Joseph J.; Rosenthal, Eben L.; Warram, Jason M.; Pinchuk, Anatoly N.; Eliceiri, Kevin W.; Kuo, John S.; Weichert, Jamey P.

    2017-01-01

    Over the past two decades, synergistic innovations in imaging technology have resulted in a revolution in which a range of biomedical applications are now benefiting from fluorescence imaging. Specifically, advances in fluorophore chemistry and imaging hardware, and the identification of targetable biomarkers have now positioned intraoperative fluorescence as a highly specific real-time detection modality for surgeons in oncology. In particular, the deeper tissue penetration and limited autofluorescence of near-infrared (NIR) fluorescence imaging improves the translational potential of this modality over visible-light fluorescence imaging. Rapid developments in fluorophores with improved characteristics, detection instrumentation, and targeting strategies led to the clinical testing in the early 2010s of the first targeted NIR fluorophores for intraoperative cancer detection. The foundations for the advances that underline this technology continue to be nurtured by the multidisciplinary collaboration of chemists, biologists, engineers, and clinicians. In this Review, we highlight the latest developments in NIR fluorophores, cancer-targeting strategies, and detection instrumentation for intraoperative cancer detection, and consider the unique challenges associated with their effective application in clinical settings. PMID:28094261

  16. Multisensor fusion for the detection of mines and minelike targets

    NASA Astrophysics Data System (ADS)

    Hanshaw, Terilee

    1995-06-01

    The US Army's Communications and Electronics Command through the auspices of its Night Vision and Electronics Sensors Directorate (CECOM-NVESD) is actively applying multisensor techniques to the detection of mine targets. This multisensor research results from the 'detection activity' with its broad range of operational conditions and targets. Multisensor operation justifies significant attention by yielding high target detection and low false alarm statistics. Furthermore, recent advances in sensor and computing technologies make its practical application realistic and affordable. The mine detection field-of-endeavor has since its WWI baptismal investigated the known spectra for applicable mine observation phenomena. Countless sensors, algorithms, processors, networks, and other techniques have been investigated to determine candidacy for mine detection. CECOM-NVESD efforts have addressed a wide range of sensors spanning the spectrum from gravity field perturbations, magentic field disturbances, seismic sounding, electromagnetic fields, earth penetrating radar imagery, and infrared/visible/ultraviolet surface imaging technologies. Supplementary analysis has considered sensor candidate applicability by testing under field conditions (versus laboratory), in determination of fieldability. As these field conditions directly effect the probability of detection and false alarms, sensor employment and design must be considered. Consequently, as a given sensor's performance is influenced directly by the operational conditions, tradeoffs are necessary. At present, mass produced and fielded mine detection techniques are limited to those incorporating a single sensor/processor methodology such as, pulse induction and megnetometry, as found in hand held detectors. The most sensitive fielded systems can detect minute metal components in small mine targets but result in very high false alarm rates reducing velocity in operation environments. Furthermore, the actual speed of advance for the entire mission (convoy, movement to engagement, etc.) is determined by the level of difficulty presented in clearance or avoidance activities required in response to the potential 'targets' marked throughout a detection activity. Therefore the application of fielded hand held systems to convoy operations in clearly impractical. CECOM-NVESD efforts are presently seeking to overcome these operational limitations by substantially increasing speed of detection while reducing the false alarm rate through the application of multisensor techniques. The CECOM-NVESD application of multisensor techniques through integration/fusion methods will be defined in this paper.

  17. Cumulative detection probabilities and range accuracy of a pulsed Geiger-mode avalanche photodiode laser ranging system

    NASA Astrophysics Data System (ADS)

    Luo, Hanjun; Ouyang, Zhengbiao; Liu, Qiang; Chen, Zhiliang; Lu, Hualan

    2017-10-01

    Cumulative pulses detection with appropriate cumulative pulses number and threshold has the ability to improve the detection performance of the pulsed laser ranging system with GM-APD. In this paper, based on Poisson statistics and multi-pulses cumulative process, the cumulative detection probabilities and their influence factors are investigated. With the normalized probability distribution of each time bin, the theoretical model of the range accuracy and precision is established, and the factors limiting the range accuracy and precision are discussed. The results show that the cumulative pulses detection can produce higher target detection probability and lower false alarm probability. However, for a heavy noise level and extremely weak echo intensity, the false alarm suppression performance of the cumulative pulses detection deteriorates quickly. The range accuracy and precision is another important parameter evaluating the detection performance, the echo intensity and pulse width are main influence factors on the range accuracy and precision, and higher range accuracy and precision is acquired with stronger echo intensity and narrower echo pulse width, for 5-ns echo pulse width, when the echo intensity is larger than 10, the range accuracy and precision lower than 7.5 cm can be achieved.

  18. Detection of concealed explosives at stand-off distances using wide band swept millimetre waves

    NASA Astrophysics Data System (ADS)

    Andrews, David A.; Rezgui, Nacer D.; Smith, Sarah E.; Bowring, Nicholas; Southgate, Matthew; Baker, John G.

    2008-10-01

    Millimetre waves in the range 20 to 110 GHz have been used to detect the presence and thickness of dielectric materials, such as explosives, by measuring the frequency response of the return signal. Interference between the reflected signals from the front and back surfaces of the dielectric provides a characteristic frequency variation in the return signal, which may be processed to yield its optical depth [Bowring et al, Meas. Sci. Technol. 19, 024004 (2008)]. The depth resolution depends on the sweep bandwidth, which is typically 10 to 30 GHz. By using super-heterodyne detection the range of the object can also be determined, which enables a signal from a target, such as a suicide bomber to be extracted from background clutter. Using millimetre wave optics only a small area of the target is illuminated at a time, thus reducing interference from different parts of a human target. Results are presented for simulated explosive materials with water or human backing at stand-off distances. A method of data analysis that involves pattern recognition enables effective differentiation of target types.

  19. Research on the algorithm of infrared target detection based on the frame difference and background subtraction method

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Hui, Mei; Liu, Xiaohua; Wu, Yijian

    2015-09-01

    As an important branch of infrared imaging technology, infrared target tracking and detection has a very important scientific value and a wide range of applications in both military and civilian areas. For the infrared image which is characterized by low SNR and serious disturbance of background noise, an innovative and effective target detection algorithm is proposed in this paper, according to the correlation of moving target frame-to-frame and the irrelevance of noise in sequential images based on OpenCV. Firstly, since the temporal differencing and background subtraction are very complementary, we use a combined detection method of frame difference and background subtraction which is based on adaptive background updating. Results indicate that it is simple and can extract the foreground moving target from the video sequence stably. For the background updating mechanism continuously updating each pixel, we can detect the infrared moving target more accurately. It paves the way for eventually realizing real-time infrared target detection and tracking, when transplanting the algorithms on OpenCV to the DSP platform. Afterwards, we use the optimal thresholding arithmetic to segment image. It transforms the gray images to black-white images in order to provide a better condition for the image sequences detection. Finally, according to the relevance of moving objects between different frames and mathematical morphology processing, we can eliminate noise, decrease the area, and smooth region boundaries. Experimental results proves that our algorithm precisely achieve the purpose of rapid detection of small infrared target.

  20. Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention.

    PubMed

    Ljubojevic, Vladimir; Luu, Paul; Gill, Patrick Robert; Beckett, Lee-Anne; Takehara-Nishiuchi, Kaori; De Rosa, Eve

    2018-04-18

    A critical function of attention is to support a state of readiness to enhance stimulus detection, independent of stimulus modality. The nucleus basalis magnocellularis (NBM) is the major source of the neurochemical acetylcholine (ACh) for frontoparietal cortical networks thought to support attention. We examined a potential supramodal role of ACh in a frontoparietal cortical attentional network supporting target detection. We recorded local field potentials (LFPs) in the prelimbic frontal cortex (PFC) and the posterior parietal cortex (PPC) to assess whether ACh contributed to a state of readiness to alert rats to an impending presentation of visual or olfactory targets in one of five locations. Twenty male Long-Evans rats underwent training and then lesions of the NBM using the selective cholinergic immunotoxin 192 IgG-saporin (0.3 μg/μl; ACh-NBM-lesion) to reduce cholinergic afferentation of the cortical mantle. Postsurgery, ACh-NBM-lesioned rats had less correct responses and more omissions than sham-lesioned rats, which changed parametrically as we increased the attentional demands of the task with decreased target duration. This parametric deficit was found equally for both sensory targets. Accurate detection of visual and olfactory targets was associated specifically with increased LFP coherence, in the beta range, between the PFC and PPC, and with increased beta power in the PPC before the target's appearance in sham-lesioned rats. Readiness-associated changes in brain activity and visual and olfactory target detection were attenuated in the ACh-NBM-lesioned group. Accordingly, ACh may support supramodal attention via modulating activity in a frontoparietal cortical network, orchestrating a state of readiness to enhance target detection. SIGNIFICANCE STATEMENT We examined whether the neurochemical acetylcholine (ACh) contributes to a state of readiness for target detection, by engaging frontoparietal cortical attentional networks independent of modality. We show that ACh supported alerting attention to an impending presentation of either visual or olfactory targets. Using local field potentials, enhanced stimulus detection was associated with an anticipatory increase in power in the beta oscillation range before the target's appearance within the posterior parietal cortex (PPC) as well as increased synchrony, also in beta, between the prefrontal cortex and PPC. These readiness-associated changes in brain activity and behavior were attenuated in rats with reduced cortical ACh. Thus, ACh may act, in a supramodal manner, to prepare frontoparietal cortical attentional networks for target detection. Copyright © 2018 the authors 0270-6474/18/383988-18$15.00/0.

  1. Detection of buried mines with seismic sonar

    NASA Astrophysics Data System (ADS)

    Muir, Thomas G.; Baker, Steven R.; Gaghan, Frederick E.; Fitzpatrick, Sean M.; Hall, Patrick W.; Sheetz, Kraig E.; Guy, Jeremie

    2003-10-01

    Prior research on seismo-acoustic sonar for detection of buried targets [J. Acoust. Soc. Am. 103, 2333-2343 (1998)] has continued with examination of the target strengths of buried test targets as well as targets of interest, and has also examined detection and confirmatory classification of these, all using arrays of seismic sources and receivers as well as signal processing techniques to enhance target recognition. The target strengths of two test targets (one a steel gas bottle, the other an aluminum powder keg), buried in a sand beach, were examined as a function of internal mass load, to evaluate theory developed for seismic sonar target strength [J. Acoust. Soc. Am. 103, 2344-2353 (1998)]. The detection of buried naval and military targets of interest was achieved with an array of 7 shaker sources and 5, three-axis seismometers, at a range of 5 m. Vector polarization filtering was the main signal processing technique for detection. It capitalizes on the fact that the vertical and horizontal components in Rayleigh wave echoes are 90 deg out of phase, enabling complex variable processing to obtain the imaginary component of the signal power versus time, which is unique to Rayleigh waves. Gabor matrix processing of this signal component was the main technique used to determine whether the target was man-made or just a natural target in the environment. [Work sponsored by ONR.

  2. A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Angellier, G.; Balleyguier, L.; Dauvergne, D.; Freud, N.; Hérault, J.; Létang, J. M.; Mathez, H.; Pinto, M.; Testa, E.; Zoccarato, Y.

    2017-04-01

    For the purpose of detecting deviations from the prescribed treatment during particle therapy, the integrals of uncollimated prompt gamma-ray timing distributions are investigated. The intention is to provide information, with a simple and cost-effective setup, independent from monitoring devices of the beamline. Measurements have been performed with 65 MeV protons at a clinical cyclotron. Prompt gamma-rays emitted from the target are identified by means of time-of-flight. The proton range inside the PMMA target has been varied via a modulator wheel. The measured variation of the prompt gamma peak integrals as a function of the modulator position is consistent with simulations. With detectors covering a solid angle of 25 msr (corresponding to a diameter of 3-4 in. at a distance of 50 cm from the beam axis) and 108 incident protons, deviations of a few per cent in the prompt gamma-ray count rate can be detected. For the present configuration, this change in the count rate corresponds to a 3 mm change in the proton range in a PMMA target. Furthermore, simulation studies show that a combination of the signals from multiple detectors may be used to detect a misplacement of the target. A different combination of these signals results in a precise number of the detected prompt gamma rays, which is independent on the actual target position.

  3. A new EMI system for detection and classification of challenging targets

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    Advanced electromagnetic induction (EMI) sensors currently feature multi-axis illumination of targets and tri-axial vector sensing (e.g., MetalMapper), or exploit multi-static array data acquisition (e.g., TEMTADS). They produce data of high density, quality, and diversity, and have been combined with advanced EMI models to provide superb classification performance relative to the previous generation of single-axis, monostatic sensors. However, these advances yet have to improve significantly our ability to classify small, deep, and otherwise challenging targets. Particularly, recent live-site discrimination studies at Camp Butner, NC and Camp Beale, CA have revealed that it is more challenging to detect and discriminate small munitions (with calibers ranging from 20 mm to 60 mm) than larger ones. In addition, a live-site test at the Massachusetts Military Reservation, MA highlighted the difficulties for current sensors to classify large, deep, and overlapping targets with high confidence. There are two main approaches to overcome these problems: 1) adapt advanced EMI models to the existing systems and 2) improve the detection limits of current sensors by modifying their hardware. In this paper we demonstrate a combined software/hardware approach that will provide extended detection range and spatial resolution to next-generation EMI systems; we analyze and invert EMI data to extract classification features for small and deep targets; and we propose a new system that features a large transmitter coil.

  4. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing

    PubMed Central

    2018-01-01

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets. PMID:29562642

  5. Comparison of human observer and algorithmic target detection in nonurban forward-looking infrared imagery

    NASA Astrophysics Data System (ADS)

    Weber, Bruce A.

    2005-07-01

    We have performed an experiment that compares the performance of human observers with that of a robust algorithm for the detection of targets in difficult, nonurban forward-looking infrared imagery. Our purpose was to benchmark the comparison and document performance differences for future algorithm improvement. The scale-insensitive detection algorithm, used as a benchmark by the Night Vision Electronic Sensors Directorate for algorithm evaluation, employed a combination of contrastlike features to locate targets. Detection receiver operating characteristic curves and observer-confidence analyses were used to compare human and algorithmic responses and to gain insight into differences. The test database contained ground targets, in natural clutter, whose detectability, as judged by human observers, ranged from easy to very difficult. In general, as compared with human observers, the algorithm detected most of the same targets, but correlated confidence with correct detections poorly and produced many more false alarms at any useful level of performance. Though characterizing human performance was not the intent of this study, results suggest that previous observational experience was not a strong predictor of human performance, and that combining individual human observations by majority vote significantly reduced false-alarm rates.

  6. Experimental evaluation of penetration capabilities of a Geiger-mode APD array laser radar system

    NASA Astrophysics Data System (ADS)

    Jonsson, Per; Tulldahl, Michael; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars

    2017-10-01

    Laser radar 3D imaging has the potential to improve target recognition in many scenarios. One case that is challenging for most optical sensors is to recognize targets hidden in vegetation or behind camouflage. The range resolution of timeof- flight 3D sensors allows segmentation of obscuration and target if the surfaces are separated far enough so that they can be resolved as two distances. Systems based on time-correlated single-photon counting (TCSPC) have the potential to resolve surfaces closer to each other compared to laser radar systems based on proportional mode detection technologies and is therefore especially interesting. Photon counting detection is commonly performed with Geigermode Avalanche Photodiodes (GmAPD) that have the disadvantage that they can only detect one photon per laser pulse per pixel. A strong return from an obscuring object may saturate the detector and thus limit the possibility to detect the hidden target even if photons from the target reach the detector. The operational range where good foliage penetration is observed is therefore relatively narrow for GmAPD systems. In this paper we investigate the penetration capability through semi-transparent surfaces for a laser radar with a 128×32 pixel GmAPD array and a 1542 nm wavelength laser operating at a pulse repetition frequency of 90 kHz. In the evaluation a screen was placed behind different canvases with varying transmissions and the detected signals from the surfaces for different laser intensities were measured. The maximum return from the second surface occurs when the total detection probability is around 0.65-0.75 per pulse. At higher laser excitation power the signal from the second surface decreases. To optimize the foliage penetration capability it is thus necessary to adaptively control the laser power to keep the returned signal within this region. In addition to the experimental results, simulations to study the influence of the pulse energy on penetration through foliage in a scene with targets behind vegetation are presented. The optimum detection of targets occurs here at a slightly higher total photon count rate probability because a number of pixel have no obscuration in front the target in their field of view.

  7. Technology for low-cost PIR security sensors

    NASA Astrophysics Data System (ADS)

    Liddiard, Kevin C.

    2008-03-01

    Current passive infrared (PIR) security sensors employing pyroelectric detectors are simple, cheap and reliable, but have several deficiencies. These sensors, developed two decades ago, are essentially short-range moving-target hotspot detectors. They cannot detect slow temperature changes, and thus are unable to respond to radiation stimuli indicating potential danger such as overheating electrical appliances and developing fires. They have a poor optical resolution and limited ability to recognize detected targets. Modern uncooled thermal infrared technology has vastly superior performance but as yet is too costly to challenge the PIR security sensor market. In this paper microbolometer technology will be discussed which can provide enhanced performance at acceptable cost. In addition to security sensing the technology has numerous applications in the military, industrial and domestic markets where target range is short and low cost is paramount.

  8. Analysis of Technology for Compact Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    1997-01-01

    In view of the recent advances in the area of solid state and semiconductor lasers has created new possibilities for the development of compact and reliable coherent lidars for a wide range of applications. These applications include: Automated Rendezvous and Capture, wind shear and clear air turbulence detection, aircraft wake vortex detection, and automobile collision avoidance. The work performed by the UAH personnel under this Delivery Order, concentrated on design and analyses of a compact coherent lidar system capable of measuring range and velocity of hard targets, and providing air mass velocity data. The following is the scope of this work. a. Investigate various laser sources and optical signal detection configurations in support of a compact and lightweight coherent laser radar to be developed for precision range and velocity measurements of hard and fuzzy targets. Through interaction with MSFC engineers, the most suitable laser source and signal detection technique that can provide a reliable compact and lightweight laser radar design will be selected. b. Analyze and specify the coherent laser radar system configuration and assist with its optical and electronic design efforts. Develop a system design including its optical layout design. Specify all optical components and provide the general requirements of the electronic subsystems including laser beam modulator and demodulator drivers, detector electronic interface, and the signal processor. c. Perform a thorough performance analysis to predict the system measurement range and accuracy. This analysis will utilize various coherent laser radar sensitivity formulations and different target models.

  9. Feature long axis size and local luminance contrast determine ship target acquisition performance: strong evidence for the TOD case

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; Toet, Alexander; Kooi, Frank L.

    2016-10-01

    Visual images of a civilian target ship on a sea background were produced using a CAD model. The total set consisted of 264 images and included 3 different color schemes, 2 ship viewing aspects, 5 sun illumination conditions, 2 sea reflection values, 2 ship positions with respect to the horizon and 3 values of atmospheric contrast reduction. In a perception experiment, the images were presented on a display in a long darkened corridor. Observers were asked to indicate the range at which they were able to detect the ship and classify the following 5 ship elements: accommodation, funnel, hull, mast, and hat above the bridge. This resulted in a total of 1584 Target Acquisition (TA) range estimates for two observers. Next, the ship contour, ship elements and corresponding TA ranges were analyzed applying several feature size and contrast measures. Most data coincide on a contrast versus angular size plot using (1) the long axis as characteristic ship/ship feature size and (2) local Weber contrast as characteristic ship/ship feature contrast. Finally, the data were compared with a variety of visual performance functions assumed to be representative for Target Acquisition: the TOD (Triangle Orientation Discrimination), MRC (Minimum Resolvable Contrast), CTF (Contrast Threshold Function), TTP (Targeting Task Performance) metric and circular disc detection data for the unaided eye (Blackwell). The results provide strong evidence for the TOD case: both position and slope of the TOD curve match the ship detection and classification data without any free parameter. In contrast, the MRC and CTF are too steep, the TTP and disc detection curves are too shallow and all these curves need an overall scaling factor in order to coincide with the ship and ship feature recognition data.

  10. Coherent Doppler lidar for automated space vehicle rendezvous, stationkeeping and capture

    NASA Technical Reports Server (NTRS)

    Bilbro, James A.

    1991-01-01

    The inherent spatial resolution of laser radar makes ladar or lidar an attractive candidate for Automated Rendezvous and Capture application. Previous applications were based on incoherent lidar techniques, requiring retro-reflectors on the target vehicle. Technology improvements (reduced size, no cryogenic cooling requirement) have greatly enhanced the construction of coherent lidar systems. Coherent lidar permits the acquisition of non-cooperative targets at ranges that are limited by the detection capability rather than by the signal-to-noise ratio (SNR) requirements. The sensor can provide translational state information (range, velocity, and angle) by direct measurement and, when used with any array detector, also can provide attitude information by Doppler imaging techniques. Identification of the target is accomplished by scanning with a high pulse repetition frequency (dependent on the SNR). The system performance is independent of range and should not be constrained by sun angle. An initial effort to characterize a multi-element detection system has resulted in a system that is expected to work to a minimum range of 1 meter. The system size, weight and power requirements are dependent on the operating range; 10 km range requires a diameter of 3 centimeters with overall size at 3 x 3 x 15 to 30 cm, while 100 km range requires a 30 cm diameter.

  11. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  12. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  13. Advances in image compression and automatic target recognition; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    NASA Technical Reports Server (NTRS)

    Tescher, Andrew G. (Editor)

    1989-01-01

    Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.

  14. Parallel search for conjunctions with stimuli in apparent motion.

    PubMed

    Casco, C; Ganis, G

    1999-01-01

    A series of experiments was conducted to determine whether apparent motion tends to follow the similarity rule (i.e. is attribute-specific) and to investigate the underlying mechanism. Stimulus duration thresholds were measured during a two-alternative forced-choice task in which observers detected either the location or the motion direction of target groups defined by the conjunction of size and orientation. Target element positions were randomly chosen within a nominally defined rectangular subregion of the display (target region). The target region was presented either statically (followed by a 250 ms duration mask) or dynamically, displaced by a small distance (18 min of arc) from frame to frame. In the motion display, the position of both target and background elements was changed randomly from frame to frame within the respective areas to abolish spatial correspondence over time. Stimulus duration thresholds were lower in the motion than in the static task, indicating that target detection in the dynamic condition does not rely on the explicit identification of target elements in each static frame. Increasing the distractor-to-target ratio was found to reduce detectability in the static, but not in the motion task. This indicates that the perceptual segregation of the target is effortless and parallel with motion but not with static displays. The pattern of results holds regardless of the task or search paradigm employed. The detectability in the motion condition can be improved by increasing the number of frames and/or by reducing the width of the target area. Furthermore, parallel search in the dynamic condition can be conducted with both short-range and long-range motion stimuli. Finally, apparent motion of conjunctions is insufficient on its own to support location decision and is disrupted by random visual noise. Overall, these findings show that (i) the mechanism underlying apparent motion is attribute-specific; (ii) the motion system mediates temporal integration of feature conjunctions before they are identified by the static system; and (iii) target detectability in these stimuli relies upon a nonattentive, cooperative, directionally selective motion mechanism that responds to high-level attributes (conjunction of size and orientation).

  15. Sensor and Processing COI (Briefing Charts)

    DTIC Science & Technology

    2014-05-27

    Persistent Surveillance • Target Detection, Recognition & ID at Standoff Ranges • Force/Platform/Sensor Protection • Target Tracking • Early Warning • BDA ...inhomogeneous and complex media is also a foundational challenge for President’s BRAIN initiative. 38 Explore Advanced Sensors And Processing

  16. Determination of target detection limits in hyperspectral data using band selection and dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.

    2016-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally, generally useful wavelength ranges are determined and the optimal amount of principal components is analyzed.

  17. Portable and sensitive quantitative detection of DNA based on personal glucose meters and isothermal circular strand-displacement polymerization reaction.

    PubMed

    Xu, Xue-tao; Liang, Kai-yi; Zeng, Jia-ying

    2015-02-15

    A portable and sensitive quantitative DNA detection method based on personal glucose meters and isothermal circular strand-displacement polymerization reaction was developed. The target DNA triggered target recycling process, which opened capture DNA. The released target then found another capture DNA to trigger another polymerization cycle, which was repeated for many rounds, resulting in the multiplication of the DNA-invertase conjugation on the surface of Streptavidin-MNBs. The DNA-invertase was used to catalyze the hydrolysis of sucrose into glucose for PGM readout. There was a liner relationship between the signal of PGM and the concentration of target DNA in the range of 5.0 to 1000 fM, which is lower than some DNA detection method. In addition, the method exhibited excellent sequence selectivity and there was almost no effect of biological complex to the detection performance, which suggested our method can be successfully applied to DNA detection in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Simulation Model of Mobile Detection Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunds, T; Faissol, D; Yao, Y

    2009-01-27

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped withmore » 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains a constant range to the vessel being inspected. Finally, a variation of the sequential probability ratio test that is more appropriate when source and detector are not at constant range is available [Nelson 2005]. Each patrol boat in the fleet can be assigned a particular zone of the bay, or all boats can be assigned to monitor the entire bay. Boats assigned to a zone will only intercept and inspect other boats when they enter their zone. In our example simulation, each of two patrol boats operate in a 5 km by 5 km zone. Other parameters for this example include: (1) Detection range - 15 m range maintained between patrol boat and inspected boat; (2) Inbound boat arrival rate - Poisson process with mean arrival rate of 30 boats per hour; (3) Speed of boats to be inspected - Random between 4.5 and 9 knots; (4) Patrol boat speed - 10 knots; (5) Number of detectors per patrol boat - 4-2-inch x 4-inch x 16-inch NaI detectors; (6) Background radiation - 40 counts/sec per detector; and (7) Detector response due to radiation source at 1 meter - 1,589 counts/sec per detector. Simulation results indicate that two patrol boats are able to detect the source 81% of the time without zones and 90% of the time with zones. The average distances between the source and target at the end of the simulation is 5,866 km and 5,712 km for non-zoned and zoned patrols, respectively. Of those that did not reach the target, the average distance to the target is 7,305 km and 6,441 km respectively. Note that a design trade-off exists. While zoned patrols provide a higher probability of detection, the nonzoned patrols tend to detect the source farther from its target. Figure 1 displays the location of the source at the end of 1,000 simulations for the 5 x 10 km bay simulation. The simulation model and analysis described here can be used to determine the number of mobile detectors one would need to deploy in order to have a have reasonable chance of detecting a source in transit. By fixing the source speed to zero, the same model could be used to estimate how long it would take to detect a stationary source. For example, the model could predict how long it would take plant staff performing assigned duties carrying dosimeters to discover a contaminated spot in the facility.« less

  19. Focused ultrasound: concept for automated transcutaneous control of hemorrhage in austere settings.

    PubMed

    Kucewicz, John C; Bailey, Michael R; Kaczkowski, Peter J; Carter, Stephen J

    2009-04-01

    High intensity focused ultrasound (HIFU) is being developed for a range of clinical applications. Of particular interest to NASA and the military is the use of HIFU for traumatic injuries because HIFU has the unique ability to transcutaneously stop bleeding. Automation of this technology would make possible its use in remote, austere settings by personnel not specialized in medical ultrasound. Here a system to automatically detect and target bleeding is tested and reported. The system uses Doppler ultrasound images from a clinical ultrasound scanner for bleeding detection and hardware for HIFU therapy. The system was tested using a moving string to simulate blood flow and targeting was visualized by Schlieren imaging to show the focusing of the HIFU acoustic waves. When instructed by the operator, a Doppler ultrasound image is acquired and processed to detect and localize the moving string, and the focus of the HIFU array is electronically adjusted to target the string. Precise and accurate targeting was verified in the Schlieren images. An automated system to detect and target simulated bleeding has been built and tested. The system could be combined with existing algorithms to detect, target, and treat clinical bleeding.

  20. Pulse-compression ghost imaging lidar via coherent detection.

    PubMed

    Deng, Chenjin; Gong, Wenlin; Han, Shensheng

    2016-11-14

    Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.

  1. Antenna Allocation in MIMO Radar with Widely Separated Antennas for Multi-Target Detection

    PubMed Central

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-01-01

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes. PMID:25350505

  2. Antenna allocation in MIMO radar with widely separated antennas for multi-target detection.

    PubMed

    Gao, Hao; Wang, Jian; Jiang, Chunxiao; Zhang, Xudong

    2014-10-27

    In this paper, we explore a new resource called multi-target diversity to optimize the performance of multiple input multiple output (MIMO) radar with widely separated antennas for detecting multiple targets. In particular, we allocate antennas of the MIMO radar to probe different targets simultaneously in a flexible manner based on the performance metric of relative entropy. Two antenna allocation schemes are proposed. In the first scheme, each antenna is allocated to illuminate a proper target over the entire illumination time, so that the detection performance of each target is guaranteed. The problem is formulated as a minimum makespan scheduling problem in the combinatorial optimization framework. Antenna allocation is implemented through a branch-and-bound algorithm and an enhanced factor 2 algorithm. In the second scheme, called antenna-time allocation, each antenna is allocated to illuminate different targets with different illumination time. Both antenna allocation and time allocation are optimized based on illumination probabilities. Over a large range of transmitted power, target fluctuations and target numbers, both of the proposed antenna allocation schemes outperform the scheme without antenna allocation. Moreover, the antenna-time allocation scheme achieves a more robust detection performance than branch-and-bound algorithm and the enhanced factor 2 algorithm when the target number changes.

  3. Effects of age and eccentricity on visual target detection.

    PubMed

    Gruber, Nicole; Müri, René M; Mosimann, Urs P; Bieri, Rahel; Aeschimann, Andrea; Zito, Giuseppe A; Urwyler, Prabitha; Nyffeler, Thomas; Nef, Tobias

    2013-01-01

    The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20-78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance.

  4. Foliage penetration by using 4-D point cloud data

    NASA Astrophysics Data System (ADS)

    Méndez Rodríguez, Javier; Sánchez-Reyes, Pedro J.; Cruz-Rivera, Sol M.

    2012-06-01

    Real-time awareness and rapid target detection are critical for the success of military missions. New technologies capable of detecting targets concealed in forest areas are needed in order to track and identify possible threats. Currently, LAser Detection And Ranging (LADAR) systems are capable of detecting obscured targets; however, tracking capabilities are severely limited. Now, a new LADAR-derived technology is under development to generate 4-D datasets (3-D video in a point cloud format). As such, there is a new need for algorithms that are able to process data in real time. We propose an algorithm capable of removing vegetation and other objects that may obfuscate concealed targets in a real 3-D environment. The algorithm is based on wavelets and can be used as a pre-processing step in a target recognition algorithm. Applications of the algorithm in a real-time 3-D system could help make pilots aware of high risk hidden targets such as tanks and weapons, among others. We will be using a 4-D simulated point cloud data to demonstrate the capabilities of our algorithm.

  5. Analytically Sensitive Protein Detection in Microtiter Plates by Proximity Ligation with Rolling Circle Amplification.

    PubMed

    Ebai, Tonge; Souza de Oliveira, Felipe Marques; Löf, Liza; Wik, Lotta; Schweiger, Caroline; Larsson, Anders; Keilholtz, Ulrich; Haybaeck, Johannes; Landegren, Ulf; Kamali-Moghaddam, Masood

    2017-09-01

    Detecting proteins at low concentrations in plasma is crucial for early diagnosis. Current techniques in clinical routine, such as sandwich ELISA, provide sensitive protein detection because of a dependence on target recognition by pairs of antibodies, but detection of still lower protein concentrations is often called for. Proximity ligation assay with rolling circle amplification (PLARCA) is a modified proximity ligation assay (PLA) for analytically specific and sensitive protein detection via binding of target proteins by 3 antibodies, and signal amplification via rolling circle amplification (RCA) in microtiter wells, easily adapted to instrumentation in use in hospitals. Proteins captured by immobilized antibodies were detected using a pair of oligonucleotide-conjugated antibodies. Upon target recognition these PLA probes guided oligonucleotide ligation, followed by amplification via RCA of circular DNA strands that formed in the reaction. The RCA products were detected by horseradish peroxidase-labeled oligonucleotides to generate colorimetric reaction products with readout in an absorbance microplate reader. We compared detection of interleukin (IL)-4, IL-6, IL-8, p53, and growth differentiation factor 15 (GDF-15) by PLARCA and conventional sandwich ELISA or immuno-RCA. PLARCA detected lower concentrations of proteins and exhibited a broader dynamic range compared to ELISA and iRCA using the same antibodies. IL-4 and IL-6 were detected in clinical samples at femtomolar concentrations, considerably lower than for ELISA. PLARCA offers detection of lower protein levels and increased dynamic ranges compared to ELISA. The PLARCA procedure may be adapted to routine instrumentation available in hospitals and research laboratories. © 2017 American Association for Clinical Chemistry.

  6. Choosing options for ultrasound screening in pregnancy and comparing cost effectiveness: a decision analysis approach.

    PubMed

    Roberts, T; Mugford, M; Piercy, J

    1998-09-01

    To compare the cost effectiveness of different programmes of routine antenatal ultrasound screening to detect four key fetal anomalies: serious cardiac anomalies, spina bifida, Down's syndrome and lethal anomalies, using existing evidence. Decision analysis was used based on the best data currently available, including expert opinion from the Royal College of Obstetricians and Gynaecologists, Working Party and secondary data from the literature, to predict the likely outcomes in terms of malformations detected by each screening programme. Results applicable in clinics, hospitals or GP practices delivering antenatal screening. The number of cases with a 'target' malformation correctly detected antenatally. There was substantial overlap between the cost ranges of each screening programme demonstrating considerable uncertainty about the relative economic efficiency of alternative programmes for ultrasound screening. The cheapest, but not the most effective, screening programme consisted of one second trimester ultrasound scan. The cost per target anomaly detected (cost effectiveness) for this programme was in the range 5,000 pound silver-109,000, pound silver but in any 1000 women it will also fail to detect between 3.6 and 4.7 target anomalies. The range of uncertainty in the costs did not allow selection of any one programme as a clear choice for NHS purchasers. The results suggested that the overall allocation of resources for routine ultrasound screening in the UK is not currently economically efficient, but that certain scenarios for ultrasound screening are potentially within the range of cost effectiveness reached by other, possibly competing, screening programmes. The model highlighted the weakness of available evidence and demonstrated the need for more information both about current practice and costs.

  7. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors

    PubMed Central

    2018-01-01

    All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity. PMID:29768011

  8. Detection of Sub-fM DNA with Target Recycling and Self-Assembly Amplification on Graphene Field-Effect Biosensors.

    PubMed

    Gao, Zhaoli; Xia, Han; Zauberman, Jonathan; Tomaiuolo, Maurizio; Ping, Jinglei; Zhang, Qicheng; Ducos, Pedro; Ye, Huacheng; Wang, Sheng; Yang, Xinping; Lubna, Fahmida; Luo, Zhengtang; Ren, Li; Johnson, Alan T Charlie

    2018-06-13

    All-electronic DNA biosensors based on graphene field-effect transistors (GFETs) offer the prospect of simple and cost-effective diagnostics. For GFET sensors based on complementary probe DNA, the sensitivity is limited by the binding affinity of the target oligonucleotide, in the nM range for 20 mer targets. We report a ∼20 000× improvement in sensitivity through the use of engineered hairpin probe DNA that allows for target recycling and hybridization chain reaction. This enables detection of 21 mer target DNA at sub-fM concentration and provides superior specificity against single-base mismatched oligomers. The work is based on a scalable fabrication process for biosensor arrays that is suitable for multiplexed detection. This approach overcomes the binding-affinity-dependent sensitivity of nucleic acid biosensors and offers a pathway toward multiplexed and label-free nucleic acid testing with high accuracy and selectivity.

  9. A neural mechanism for detecting the distance of a selected target by modulating the FM sweep rate of biosonar in echolocation of bat.

    PubMed

    Kamata, Eigo; Inoue, Satoru; Zheng, MeiHong; Kashimori, Yoshiki; Kambara, Takeshi

    2004-01-01

    Most species of bats making echolocation use frequency modulated (FM) ultrasonic pulses to measure the distance to targets. These bats detect with a high accuracy the arrival time differences between emitted pulses and their echoes generated by targets. In order to clarify the neural mechanism for echolocation, we present neural model of inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) along which information of echo delay times is processed. The bats increase the downward frequency sweep rate of emitted FM pulse as they approach the target. The functional role of this modulation of sweep rate is not yet clear. In order to investigate the role, we calculated the response properties of our models of IC, MGB, and AC changing the target distance and the sweep rate. We found based on the simulations that the distance of a target in various ranges may be encoded the most clearly into the activity pattern of delay time map network in AC, when the sweep rate of FM pulse used is coincided with the observed value which the bats adopt for each range of target distance.

  10. Study of pseudo noise CW diode laser for ranging applications

    NASA Technical Reports Server (NTRS)

    Lee, Hyo S.; Ramaswami, Ravi

    1992-01-01

    A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.

  11. Effectiveness of enhanced pulse oximetry sonifications for conveying oxygen saturation ranges: a laboratory comparison of five auditory displays.

    PubMed

    Paterson, E; Sanderson, P M; Paterson, N A B; Loeb, R G

    2017-12-01

    Anaesthetists monitor auditory information about a patient's vital signs in an environment that can be noisy and while performing other cognitively demanding tasks. It can be difficult to identify oxygen saturation (SpO2) values using existing pulse oximeter auditory displays (sonifications). In a laboratory setting, we compared the ability of non-clinician participants to detect transitions into and out of an SpO2 target range using five different sonifications while they performed a secondary distractor arithmetic task in the presence of background noise. The control sonification was based on the auditory display of current pulse oximeters and comprised a variable pitch with an alarm. The four experimental conditions included an Alarm Only condition, a Variable pitch only condition, and two conditions using sonifications enhanced with additional sound dimensions. Accuracy to detect SpO2 target transitions was the primary outcome. We found that participants using the two sonifications enhanced with the additional sound dimensions of tremolo and brightness were significantly more accurate (83 and 96%, respectively) at detecting transitions to and from a target SpO2 range than participants using a pitch only sonification plus alarms (57%) as implemented in current pulse oximeters. Enhanced sonifications are more informative than conventional sonification. The implication is that they might allow anaesthetists to judge better when desaturation decreases below, or returns to, a target range. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Zurek, Kathryn M.; Grushin, Adolfo G.; Ilan, Roni; Griffin, Sinéad M.; Liu, Zhen-Fei; Weber, Sophie F.; Neaton, Jeffrey B.

    2018-01-01

    We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O (meV ) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.

  13. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing.

    PubMed

    Zhang, Fangzheng; Guo, Qingshui; Pan, Shilong

    2017-10-23

    Real-time and high-resolution target detection is highly desirable in modern radar applications. Electronic techniques have encountered grave difficulties in the development of such radars, which strictly rely on a large instantaneous bandwidth. In this article, a photonics-based real-time high-range-resolution radar is proposed with optical generation and processing of broadband linear frequency modulation (LFM) signals. A broadband LFM signal is generated in the transmitter by photonic frequency quadrupling, and the received echo is de-chirped to a low frequency signal by photonic frequency mixing. The system can operate at a high frequency and a large bandwidth while enabling real-time processing by low-speed analog-to-digital conversion and digital signal processing. A conceptual radar is established. Real-time processing of an 8-GHz LFM signal is achieved with a sampling rate of 500 MSa/s. Accurate distance measurement is implemented with a maximum error of 4 mm within a range of ~3.5 meters. Detection of two targets is demonstrated with a range-resolution as high as 1.875 cm. We believe the proposed radar architecture is a reliable solution to overcome the limitations of current radar on operation bandwidth and processing speed, and it is hopefully to be used in future radars for real-time and high-resolution target detection and imaging.

  14. Hybridization chain reaction-based instantaneous derivatization technology for chemiluminescence detection of specific DNA sequences.

    PubMed

    Wang, Xin; Lau, Choiwan; Kai, Masaaki; Lu, Jianzhong

    2013-05-07

    We propose here a new amplifying strategy that uses hybridization chain reaction (HCR) to detect specific sequences of DNA, where stable DNA monomers assemble on the magnetic beads only upon exposure to a target DNA. Briefly, in the HCR process, two complementary stable species of hairpins coexist in solution until the introduction of initiator reporter strands triggers a cascade of hybridization events that yield nicked double helices analogous to alternating copolymers. Moreover, a "sandwich-type" detection strategy is employed in our design. Magnetic beads, which are functionalized with capture DNA, are reacted with the target, and sandwiched with the above nicked double helices. Then, chemiluminescence (CL) detection proceeds via an instantaneous derivatization reaction between a specific CL reagent, 3,4,5-trimethoxylphenylglyoxal (TMPG), and the guanine nucleotides within the target DNA, reporter strands and DNA monomers for the generation of light. Our results clearly show that the amplification detection of specific sequences of DNA achieves a better performance (e.g. wide linear response range, low detection limit, and high specificity) as compared to the traditional sandwich type (capture/target/reporter) assays. Upon modification, the approach presented could be extended to detect other types of targets. We believe that this simple technique is promising for improving medical diagnosis and treatment.

  15. Antibody-Mediated Small Molecule Detection Using Programmable DNA-Switches.

    PubMed

    Rossetti, Marianna; Ippodrino, Rudy; Marini, Bruna; Palleschi, Giuseppe; Porchetta, Alessandro

    2018-06-13

    The development of rapid, cost-effective, and single-step methods for the detection of small molecules is crucial for improving the quality and efficiency of many applications ranging from life science to environmental analysis. Unfortunately, current methodologies still require multiple complex, time-consuming washing and incubation steps, which limit their applicability. In this work we present a competitive DNA-based platform that makes use of both programmable DNA-switches and antibodies to detect small target molecules. The strategy exploits both the advantages of proximity-based methods and structure-switching DNA-probes. The platform is modular and versatile and it can potentially be applied for the detection of any small target molecule that can be conjugated to a nucleic acid sequence. Here the rational design of programmable DNA-switches is discussed, and the sensitive, rapid, and single-step detection of different environmentally relevant small target molecules is demonstrated.

  16. Combination of cascade chemical reactions with graphene-DNA interaction to develop new strategy for biosensor fabrication.

    PubMed

    Zhu, Xiaoli; Sun, Liya; Chen, Yangyang; Ye, Zonghuang; Shen, Zhongming; Li, Genxi

    2013-09-15

    Graphene, a single atom thick and two dimensional carbon nano-material, has been proven to possess many unique properties, one of which is the recent discovery that it can interact with single-stranded DNA through noncovalent π-π stacking. In this work, we demonstrate that a new strategy to fabricate many kinds of biosensors can be developed by combining this property with cascade chemical reactions. Taking the fabrication of glucose sensor as an example, while the detection target, glucose, may regulate the graphene-DNA interaction through three cascade chemical reactions, electrochemical techniques are employed to detect the target-regulated graphene-DNA interaction. Experimental results show that in a range from 5μM to 20mM, the glucose concentration is in a natural logarithm with the logarithm of the amperometric response, suggesting a best detection limit and detection range. The proposed biosensor also shows favorable selectivity, and it has the advantage of no need for labeling. What is more, by controlling the cascade chemical reactions, detection of a variety of other targets may be achieved, thus the strategy proposed in this work may have a wide application potential in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Dielectrophoretic label-free immunoassay for rare-analyte quantification in biological samples

    NASA Astrophysics Data System (ADS)

    Velmanickam, Logeeshan; Laudenbach, Darrin; Nawarathna, Dharmakeerthi

    2016-10-01

    The current gold standard for detecting or quantifying target analytes from blood samples is the ELISA (enzyme-linked immunosorbent assay). The detection limit of ELISA is about 250 pg/ml. However, to quantify analytes that are related to various stages of tumors including early detection requires detecting well below the current limit of the ELISA test. For example, Interleukin 6 (IL-6) levels of early oral cancer patients are <100 pg/ml and the prostate specific antigen level of the early stage of prostate cancer is about 1 ng/ml. Further, it has been reported that there are significantly less than 1 pg /mL of analytes in the early stage of tumors. Therefore, depending on the tumor type and the stage of the tumors, it is required to quantify various levels of analytes ranging from ng/ml to pg/ml. To accommodate these critical needs in the current diagnosis, there is a need for a technique that has a large dynamic range with an ability to detect extremely low levels of target analytes (

  18. Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis?

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2012-10-02

    To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision.

  19. Analysis of the restricting factors of laser countermeasure active detection technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yufa; Sun, Xiaoquan

    2016-07-01

    The detection effect of laser active detection system is affected by various kinds of factors. In view of the application requirement of laser active detection, the influence factors for laser active detection are analyzed. The mathematical model of cat eye target detection distance has been built, influence of the parameters of laser detection system and the environment on detection range and the detection efficiency are analyzed. Various parameters constraint detection performance is simulated. The results show that the discovery distance of laser active detection is affected by the laser divergence angle, the incident angle and the visibility of the atmosphere. For a given detection range, the laser divergence angle and the detection efficiency are mutually restricted. Therefore, in view of specific application environment, it is necessary to select appropriate laser detection parameters to achieve optimal detection effect.

  20. DNA-based species detection capabilities using laser transmission spectroscopy

    PubMed Central

    Mahon, A. R.; Barnes, M. A.; Li, F.; Egan, S. P.; Tanner, C. E.; Ruggiero, S. T.; Feder, J. L.; Lodge, D. M.

    2013-01-01

    Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel (Dreissena bugensis) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications. PMID:23015524

  1. Underwater linear polarization: physical limitations to biological functions

    PubMed Central

    Shashar, Nadav; Johnsen, Sönke; Lerner, Amit; Sabbah, Shai; Chiao, Chuan-Chin; Mäthger, Lydia M.; Hanlon, Roger T.

    2011-01-01

    Polarization sensitivity is documented in a range of marine animals. The variety of tasks for which animals can use this sensitivity, and the range over which they do so, are confined by the visual systems of these animals and by the propagation of the polarization information in the aquatic environment. We examine the environmental physical constraints in an attempt to reveal the depth, range and other limitations to the use of polarization sensitivity by marine animals. In clear oceanic waters, navigation that is based on the polarization pattern of the sky appears to be limited to shallow waters, while solar-based navigation is possible down to 200–400 m. When combined with intensity difference, polarization sensitivity allows an increase in target detection range by 70–80% with an upper limit of 15 m for large-eyed animals. This distance will be significantly smaller for small animals, such as plankton, and in turbid waters. Polarization-contrast detection, which is relevant to object detection and communication, is strongly affected by water conditions and in clear waters its range limit may reach 15 m as well. We show that polarization sensitivity may also serve for target distance estimation, when examining point source bioluminescent objects in the photic mesopelagic depth range. PMID:21282168

  2. Laser rangefinders for autonomous intelligent cruise control systems

    NASA Astrophysics Data System (ADS)

    Journet, Bernard A.; Bazin, Gaelle

    1998-01-01

    THe purpose of this paper is to show to what kind of application laser range-finders can be used inside Autonomous Intelligent Cruise Control systems. Even if laser systems present good performances the safety and technical considerations are very restrictive. As the system is used in the outside, the emitted average output power must respect the rather low level of 1A class. Obstacle detection or collision avoidance require a 200 meters range. Moreover bad weather conditions, like rain or fog, ar disastrous. We have conducted measurements on laser rangefinder using different targets and at different distances. We can infer that except for cooperative targets low power laser rangefinder are not powerful enough for long distance measurement. Radars, like 77 GHz systems, are better adapted to such cases. But in case of short distances measurement, range around 10 meters, with a minimum distance around twenty centimeters, laser rangefinders are really useful with good resolution and rather low cost. Applications can have the following of white lines on the road, the target being easily cooperative, detection of vehicles in the vicinity, that means car convoy traffic control or parking assistance, the target surface being indifferent at short distances.

  3. Feature Transformation Detection Method with Best Spectral Band Selection Process for Hyper-spectral Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Wen; McGurr, Mike; Brickhouse, Mark

    2015-11-01

    We present a newly developed feature transformation (FT) detection method for hyper-spectral imagery (HSI) sensors. In essence, the FT method, by transforming the original features (spectral bands) to a different feature domain, may considerably increase the statistical separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral, one can completely separate targets from the background using a single spectral band, leading to perfect detection results. In addition, we have proposed an automated best spectral band selection process with a double-threshold scheme that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also proposed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1000 nm) by selecting the best spectral band pair with multivariate analysis. Promising detection performance has been achieved using a small background material signature library for concept-proving, and has then been further evaluated and verified using a real background HSI scene collected by a HYDICE sensor.

  4. A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling.

    PubMed

    Yan, Zhongdan; Gan, Ning; Li, Tianhua; Cao, Yuting; Chen, Yinji

    2016-04-15

    A multiplex electrochemical aptasensor was developed for simultaneous detection of two antibiotics such as chloramphenicol (CAP) and oxytetracycline (OTC), and high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted target recycling was used to improve sensitivity. The cascade amplification process consists of the exonuclease-assisted target recycling amplification and metal ions encoded magnetic hollow porous nanoparticles (MHPs) to produce voltammetry signals. Upon the specific recognition of aptamers to targets (CAP and OTC), exonuclease I (Exo I) selectively digested the aptamers which were bound with CAP and OTC, then the released CAP and OTC participated new cycling to produce more single DNA, which can act as trigger strands to hybrid with nanotracers to generate further signal amplification. MHPs were used as carriers to load more amounts of metal ions and coupling with Exo I assisted cascade target recycling can amplify the signal for about 12 folds compared with silica based nanotracers. Owing to the dual signal amplification, the linear range between signals and the concentrations of CAP and OTC were obtained in the range of 0.0005-50 ng mL(-1). The detection limits of CAP and OTC were 0.15 and 0.10 ng mL(-1) (S/N=3) which is more than 2 orders lower than commercial enzyme-linked immunosorbent immunoassay (ELISA) method, respectively. The proposed method was successfully applied to simultaneously detection of CAP and OTC in milk samples. Besides, this aptasensor can be applied to other antibiotics detection by changing the corresponding aptamer. The whole scheme is facile, selective and sensitive enough for antibiotics screening in food safety. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. 3D range-gated super-resolution imaging based on stereo matching for moving platforms and targets

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Wang, Xinwei; Zhou, Yan

    2017-11-01

    3D range-gated superresolution imaging is a novel 3D reconstruction technique for target detection and recognition with good real-time performance. However, for moving targets or platforms such as airborne, shipborne, remote operated vehicle and autonomous vehicle, 3D reconstruction has a large error or failure. In order to overcome this drawback, we propose a method of stereo matching for 3D range-gated superresolution reconstruction algorithm. In experiment, the target is a doll of Mario with a height of 38cm at the location of 34m, and we obtain two successive frame images of the Mario. To confirm our method is effective, we transform the original images with translation, rotation, scale and perspective, respectively. The experimental result shows that our method has a good result of 3D reconstruction for moving targets or platforms.

  6. Development of three-dimensional tracking system using astigmatic lens method for microscopes

    NASA Astrophysics Data System (ADS)

    Kibata, Hiroki; Ishii, Katsuhiro

    2017-07-01

    We have developed a three-dimensional tracking system for microscopes. Using the astigmatic lens method and a CMOS image sensor, we realize a rapid detection of a target position in a wide range. We demonstrate a target tracking using the developed system.

  7. ADRPM-VII applied to the long-range acoustic detection problem

    NASA Technical Reports Server (NTRS)

    Shalis, Edward; Koenig, Gerald

    1990-01-01

    An acoustic detection range prediction model (ADRPM-VII) has been written for IBM PC/AT machines running on the MS-DOS operating system. The software allows the user to predict detection distances of ground combat vehicles and their associated targets when they are involved in quasi-military settings. The program can also calculate individual attenuation losses due to spherical spreading, atmospheric absorption, ground reflection and atmospheric refraction due to temperature and wind gradients while varying parameters effecting the source-receiver problem. The purpose here is to examine the strengths and limitations of ADRPM-VII by modeling the losses due to atmospheric refraction and ground absorption, commonly known as excess attenuation, when applied to the long range detection problem for distances greater than 3 kilometers.

  8. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    PubMed

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  9. Radar waveform requirements for reliable detection of an aircraft-launched missile

    NASA Astrophysics Data System (ADS)

    Blair, W. Dale; Brandt-Pearce, Maite

    1996-06-01

    When tracking a manned aircraft with a phase array radar, detecting a missile launch (i.e., a target split) is particularly important because the missile can have a very small radar cross section (RCS) and drop below the horizon of the radar shortly after launch. Reliable detection of the launch is made difficult because the RCS of the missile is very small compared to that of the manned aircraft and the radar typically revisits a manned aircraft every few seconds. Furthermore, any measurements of the aircraft and missile taken shortly after the launch will be merged until the two targets are resolved in range, frequency, or space. In this paper, detection of the launched missile is addressed through the detection of the presence of target multiplicity with the in-phase and quadrature monopulse measurements. The probability of detecting the launch using monopulse processing will be studied with regard to the tracking signal-to-noise ratio and the number of pulses n the radar waveform.

  10. Infrared maritime target detection using the high order statistic filtering in fractional Fourier domain

    NASA Astrophysics Data System (ADS)

    Zhou, Anran; Xie, Weixin; Pei, Jihong

    2018-06-01

    Accurate detection of maritime targets in infrared imagery under various sea clutter conditions is always a challenging task. The fractional Fourier transform (FRFT) is the extension of the Fourier transform in the fractional order, and has richer spatial-frequency information. By combining it with the high order statistic filtering, a new ship detection method is proposed. First, the proper range of angle parameter is determined to make it easier for the ship components and background to be separated. Second, a new high order statistic curve (HOSC) at each fractional frequency point is designed. It is proved that maximal peak interval in HOSC reflects the target information, while the points outside the interval reflect the background. And the value of HOSC relative to the ship is much bigger than that to the sea clutter. Then, search the curve's maximal target peak interval and extract the interval by bandpass filtering in fractional Fourier domain. The value outside the peak interval of HOSC decreases rapidly to 0, so the background is effectively suppressed. Finally, the detection result is obtained by the double threshold segmenting and the target region selection method. The results show the proposed method is excellent for maritime targets detection with high clutters.

  11. Designing efficient surveys: spatial arrangement of sample points for detection of invasive species

    Treesearch

    Ludek Berec; John M. Kean; Rebecca Epanchin-Niell; Andrew M. Liebhold; Robert G. Haight

    2015-01-01

    Effective surveillance is critical to managing biological invasions via early detection and eradication. The efficiency of surveillance systems may be affected by the spatial arrangement of sample locations. We investigate how the spatial arrangement of sample points, ranging from random to fixed grid arrangements, affects the probability of detecting a target...

  12. Carbon nanosphere-based fluorescence aptasensor for targeted detection of breast cancer cell MCF-7.

    PubMed

    Yang, Dandan; Liu, Mei; Xu, Jing; Yang, Chao; Wang, Xiaoxiao; Lou, Yongbing; He, Nongyue; Wang, Zhifei

    2018-08-01

    In this work, carbon nanosphere (CNS)-based fluorescence "turn off/on" aptasensor was developed for targeted detection of breast cancer cell MCF-7 by conjugation with FAM (a dye)-labeled mucin1 (MUC1) aptamer P0 (P0-FAM), which can recognize MUC1 protein overexpressed on the surface of MCF-7. Different from other carbon based fluorescence quenching materials, CNSs prepared by the carbonization of glucose not only have the high fluorescence quenching efficiency (98.8%), but also possess negligible cytotoxicity (in the concentration range of 0-1 mg/mL, which is 10 times higher than that of traditional carbon nanotubes or graphene oxide (0-100 µg/mL)). As for the detection of the mimic of the tumor antigen MUC1, the resulting fluorescence intensity increases nearly linearly in the range of 0-6 μM with the limit of detection (LOD) of 25 nM. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Colorimetric Detection of Small Molecules in Complex Matrixes via Target-Mediated Growth of Aptamer-Functionalized Gold Nanoparticles.

    PubMed

    Soh, Jun Hui; Lin, Yiyang; Rana, Subinoy; Ying, Jackie Y; Stevens, Molly M

    2015-08-04

    A versatile and sensitive colorimetric assay that allows the rapid detection of small-molecule targets using the naked eye is demonstrated. The working principle of the assay integrates aptamer-target recognition and the aptamer-controlled growth of gold nanoparticles (Au NPs). Aptamer-target interactions modulate the amount of aptamer strands adsorbed on the surface of aptamer-functionalized Au NPs via desorption of the aptamer strands when target molecules bind with the aptamer. Depending on the resulting aptamer coverage, Au NPs grow into morphologically varied nanostructures, which give rise to different colored solutions. Au NPs with low aptamer coverage grow into spherical NPs, which produce red-colored solutions, whereas Au NPs with high aptamer coverage grow into branched NPs, which produce blue-colored solutions. We achieved visible colorimetric response and nanomolar detection limits for the detection of ochratoxin A (1 nM) in red wine samples, as well as cocaine (1 nM) and 17β-estradiol (0.2 nM) in spiked synthetic urine and saliva, respectively. The detection limits were well within clinically and physiologically relevant ranges, and below the maximum food safety limits. The assay is highly sensitive, specific, and able to detect an array of analytes rapidly without requiring sophisticated equipment, making it relevant for many applications, such as high-throughput drug and clinical screening, food sampling, and diagnostics. Furthermore, the assay is easily adapted as a chip-based platform for rapid and portable target detection.

  14. Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy.

    PubMed

    Wang, Kun; Fan, Daoqing; Liu, Yaqing; Wang, Erkang

    2015-11-15

    Simple, rapid, sensitive and specific detection of cancer cells is of great importance for early and accurate cancer diagnostics and therapy. By coupling nanotechnology and dual-aptamer target binding strategies, we developed a colorimetric assay for visually detecting cancer cells with high sensitivity and specificity. The nanotechnology including high catalytic activity of PtAuNP and magnetic separation & concentration plays a vital role on the signal amplification and improvement of detection sensitivity. The color change caused by small amount of target cancer cells (10 cells/mL) can be clearly distinguished by naked eyes. The dual-aptamer target binding strategy guarantees the detection specificity that large amount of non-cancer cells and different cancer cells (10(4) cells/mL) cannot cause obvious color change. A detection limit as low as 10 cells/mL with detection linear range from 10 to 10(5) cells/mL was reached according to the experimental detections in phosphate buffer solution as well as serum sample. The developed enzyme-free and cost effective colorimetric assay is simple and no need of instrument while still provides excellent sensitivity, specificity and repeatability, having potential application on point-of-care cancer diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. YIP Expansion: Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    DTIC Science & Technology

    2015-09-30

    analysis of trends and shifts in characteristics of specific sources contributing to the soundscape over time. The primary sources of interest are baleen... soundscape . Many of the target acoustic signal categories have been well characterized allowing for development of automated spectrogram correlation...to determine the extent and range over which each class of sources contributes to the regional soundscape . Estimates of signal detection range will

  16. Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.

    The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signaturesmore » in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.« less

  17. Research on regional intrusion prevention and control system based on target tracking

    NASA Astrophysics Data System (ADS)

    Liu, Yanfei; Wang, Jieling; Jiang, Ke; He, Yanhui; Wu, Zhilin

    2017-08-01

    In view of the fact that China’s border is very long and the border prevention and control measures are single, we designed a regional intrusion prevention and control system which based on target-tracking. The system consists of four parts: solar panel, radar, electro-optical equipment, unmanned aerial vehicle and intelligent tracking platform. The solar panel provides independent power for the entire system. The radar detects the target in real time and realizes the high precision positioning of suspicious targets, then through the linkage of electro-optical equipment, it can achieve full-time automatic precise tracking of targets. When the target appears within the range of detection, the drone will be launched to continue the tracking. The system is mainly to realize the full time, full coverage, whole process integration and active realtime control of the border area.

  18. Anti-ship missile tracking with a chirped amplitude modulation ladar

    NASA Astrophysics Data System (ADS)

    Redman, Brian C.; Stann, Barry L.; Ruff, William C.; Giza, Mark M.; Aliberti, Keith; Lawler, William B.

    2004-09-01

    Shipboard infrared search and track (IRST) systems can detect sea-skimming anti-ship missiles at long ranges. Since IRST systems cannot measure range and velocity, they have difficulty distinguishing missiles from slowly moving false targets and clutter. ARL is developing a ladar based on its patented chirped amplitude modulation (AM) technique to provide unambiguous range and velocity measurements of targets handed over to it by the IRST. Using the ladar's range and velocity data, false alarms and clutter objects will be distinguished from valid targets. If the target is valid, it's angular location, range, and velocity, will be used to update the target track until remediation has been effected. By using an array receiver, ARL's ladar can also provide 3D imagery of potential threats in support of force protection. The ladar development program will be accomplished in two phases. In Phase I, currently in progress, ARL is designing and building a breadboard ladar test system for proof-of-principle static platform field tests. In Phase II, ARL will build a brassboard ladar test system that will meet operational goals in shipboard testing against realistic targets. The principles of operation for the chirped AM ladar for range and velocity measurements, the ladar performance model, and the top-level design for the Phase I breadboard are presented in this paper.

  19. Demonstrator Detection System for the Active Target and Time Projection Chamber (ACTAR TPC) project

    NASA Astrophysics Data System (ADS)

    Roger, T.; Pancin, J.; Grinyer, G. F.; Mauss, B.; Laffoley, A. T.; Rosier, P.; Alvarez-Pol, H.; Babo, M.; Blank, B.; Caamaño, M.; Ceruti, S.; Daemen, J.; Damoy, S.; Duclos, B.; Fernández-Domínguez, B.; Flavigny, F.; Giovinazzo, J.; Goigoux, T.; Henares, J. L.; Konczykowski, P.; Marchi, T.; Lebertre, G.; Lecesne, N.; Legeard, L.; Maugeais, C.; Minier, G.; Osmond, B.; Pedroza, J. L.; Pibernat, J.; Poleshchuk, O.; Pollacco, E. C.; Raabe, R.; Raine, B.; Renzi, F.; Saillant, F.; Sénécal, P.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Wouters, C.; Wittwer, G.; Yang, J. C.

    2018-07-01

    The design, realization and operation of a prototype or "demonstrator" version of an active target and time projection chamber (ACTAR TPC) for experiments in nuclear physics is presented in detail. The heart of the detection system features a MICROMEGAS gas amplifier coupled to a high-density pixelated pad plane with square pad sizes of 2 × 2 mm2. The detector has been thoroughly tested with several different gas mixtures over a wide range of pressures and using a variety of sources of ionizing radiation including laser light, an α-particle source and heavy-ion beams of 24Mg and 58Ni accelerated to energies of 4.0 MeV/u. Results from these tests and characterization of the detector response over a wide range of operating conditions will be described. These developments have served as the basis for the design of a larger detection system that is presently under construction.

  20. Aptamer-Based Paper Strip Sensor for Detecting Vibrio fischeri.

    PubMed

    Shin, Woo-Ri; Sekhon, Simranjeet Singh; Rhee, Sung-Keun; Ko, Jung Ho; Ahn, Ji-Young; Min, Jiho; Kim, Yang-Hoon

    2018-05-14

    Aptamer-based paper strip sensor for detecting Vibrio fischeri was developed. Our method was based on the aptamer sandwich assay between whole live cells, V. fischeri and DNA aptamer probes. Following 9 rounds of Cell-SELEX and one of the negative-SELEX, V. fischeri Cell Aptamer (VFCA)-02 and -03 were isolated, with the former showing approximately 10-fold greater avidity (in the subnanomolar range) for the target cells when arrayed on a surface. The colorimetric response of a paper sensor based on VFCA-02 was linear in the range of 4 × 10 1 to 4 × 10 5 CFU/mL of target cell by using scanning reader. The linear regression correlation coefficient ( R 2 ) was 0.9809. This system shows promise for use in aptamer-conjugated gold nanoparticle probes in paper strip format for in-field detection of marine bioindicating bacteria.

  1. Laser range profiling for small target recognition

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Tulldahl, Michael

    2017-03-01

    Long range identification (ID) or ID at closer range of small targets has its limitations in imaging due to the demand for very high-transverse sensor resolution. This is, therefore, a motivation to look for one-dimensional laser techniques for target ID. These include laser vibrometry and laser range profiling. Laser vibrometry can give good results, but is not always robust as it is sensitive to certain vibrating parts on the target being in the field of view. Laser range profiling is attractive because the maximum range can be substantial, especially for a small laser beam width. A range profiler can also be used in a scanning mode to detect targets within a certain sector. The same laser can also be used for active imaging when the target comes closer and is angularly resolved. Our laser range profiler is based on a laser with a pulse width of 6 ns (full width half maximum). This paper will show both experimental and simulated results for laser range profiling of small boats out to a 6 to 7-km range and a unmanned arrial vehicle (UAV) mockup at close range (1.3 km). The naval experiments took place in the Baltic Sea using many other active and passive electro-optical sensors in addition to the profiling system. The UAV experiments showed the need for a high-range resolution, thus we used a photon counting system in addition to the more conventional profiler used in the naval experiments. This paper shows the influence of target pose and range resolution on the capability of classification. The typical resolution (in our case 0.7 m) obtainable with a conventional range finder type of sensor can be used for large target classification with a depth structure over 5 to 10 m or more, but for smaller targets such as a UAV a high resolution (in our case 7.5 mm) is needed to reveal depth structures and surface shapes. This paper also shows the need for 3-D target information to build libraries for comparison of measured and simulated range profiles. At closer ranges, full 3-D images should be preferable.

  2. Hybrid nanoporous silicon optical biosensor architectures for biological sample analysis

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa M.; Zheng, Hong; DeLouise, Lisa A.

    2010-02-01

    This work focuses on demonstrating proof-of-concept for a novel nanoparticle optical signal amplification scheme employing hybrid porous silicon (PSi) sensors. We are investigating the development of target responsive hydrogels integrated with PSi optical transducers. These hybrid-PSi sensors can be designed to provide a tunable material response to target concentration ranging from swelling to complete chain dissolution. The corresponding refractive index changes are significant and readily detected by the PSi transducer. However, to increase signal to noise, lower the limit of detection, and provide a visual read out capability, we are investigating the incorporation of high refractive index nanoparticles (NP) into the hydrogel for optical signal amplification. These NPs can be nonspecifically encapsulated, or functionalized with bioactive ligands to bind polymer chains or participate in cross linking. In this work, we demonstrate encapsulation of high refractive index QD nanoparticles into a 5wt% polyacrylamide hydrogel crosslinked with N,N'-methylenebisacrylamide (BIS) and N,N Bis-acryloyl cystamine (BAC). A QD loading (~0.29 wt%) produced a 2X larger optical shift compared to the control. Dissolution of disulphide crosslinks, using Tris[2-carboxyethyl] phosphine (TCEP) reducing agent, induced gel swelling and efficient QD release. We believe this hybrid sensor concept constitutes a versatile technology platform capable of detecting a wide range of bio/chemical targets provided target analogs can be linked to the polymer backbone and crosslinks can be achieved with target responsive multivalent receptors, such a antibodies. The optical signal amplification scheme will enable a lower limit of detection sensitivity not yet demonstrated with PSi technology and colorimetric readout visible to the naked eye.

  3. Sniper detection using infrared camera: technical possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2010-04-01

    The paper discusses technical possibilities to build an effective system for sniper detection using infrared cameras. Descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. Cooled and uncooled detectors were considered. Three phases of sniper activities were taken into consideration: before, during and after the shot. On the basis of experimental data the parameters defining the target were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets. The simulation of detection ranges was done for the assumed scenario of sniper detection task. The infrared sniper detection system was discussed, capable of fulfilling the requirements. The discussion of the results of analysis and simulations was finally presented.

  4. Advances in chemical labeling of proteins in living cells.

    PubMed

    Yan, Qi; Bruchez, Marcel P

    2015-04-01

    The pursuit of quantitative biological information via imaging requires robust labeling approaches that can be used in multiple applications and with a variety of detectable colors and properties. In addition to conventional fluorescent proteins, chemists and biologists have come together to provide a range of approaches that combine dye chemistry with the convenience of genetic targeting. This hybrid-tagging approach amalgamates the rational design of properties available through synthetic dye chemistry with the robust biological targeting available with genetic encoding. In this review, we discuss the current range of approaches that have been exploited for dye targeting or for targeting and activation and some of the recent applications that are uniquely permitted by these hybrid-tagging approaches.

  5. Detection and classification of underwater targets by echolocating dolphins

    NASA Astrophysics Data System (ADS)

    Au, Whitlow

    2003-10-01

    Many experiments have been performed with echolocating dolphins to determine their target detection and discrimination capabilities. Target detection experiments have been performed in a naturally noisy environment, with masking noise and with both phantom echoes and masking noise, and in reverberation. The echo energy to rms noise spectral density for the Atlantic bottlenose dolphin (Tursiops truncatus) at the 75% correct response threshold is approximately 7.5 dB whereas for the beluga whale (Delphinapterus leucas) the threshold is approximately 1 dB. The dolphin's detection threshold in reverberation is approximately 2.5 dB vs 2 dB for the beluga. The difference in performance between species can probably be ascribed to differences in how both species perceived the task. The bottlenose dolphin may be performing a combination detection/discrimination task whereas the beluga may be performing a simple detection task. Echolocating dolphins also have the capability to make fine discriminate of target properties such as wall thickness difference of water-filled cylinders and material differences in metallic plates. The high resolution property of the animal's echolocation signals and the high dynamic range of its auditory system are important factors in their outstanding discrimination capabilities.

  6. High-sensitive electrochemical detection of point mutation based on polymerization-induced enzymatic amplification.

    PubMed

    Feng, Kejun; Zhao, Jingjin; Wu, Zai-Sheng; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin

    2011-03-15

    Here a highly sensitive electrochemical method is described for the detection of point mutation in DNA. Polymerization extension reaction is applied to specifically initiate enzymatic electrochemical amplification to improve the sensitivity and enhance the performance of point mutation detection. In this work, 5'-thiolated DNA probe sequences complementary to the wild target DNA are assembled on the gold electrode. In the presence of wild target DNA, the probe is extended by DNA polymerase over the free segment of target as the template. After washing with NaOH solution, the target DNA is removed while the elongated probe sequence remains on the sensing surface. Via hybridizing to the designed biotin-labeled detection probe, the extended sequence is capable of capturing detection probe. After introducing streptavidin-conjugated alkaline phosphatase (SA-ALP), the specific binding between streptavidin and biotin mediates a catalytic reaction of ascorbic acid 2-phosphate (AA-P) substrate to produce a reducing agent ascorbic acid (AA). Then the silver ions in solution are reduced by AA, leading to the deposition of silver metal onto the electrode surface. The amount of deposited silver which is determined by the amount of wild target can be quantified by the linear sweep voltammetry (LSV). The present approach proved to be capable of detecting the wild target DNA down to a detection limit of 1.0×10(-14) M in a wide target concentration range and identifying -28 site (A to G) of the β-thalassemia gene, demonstrating that this scheme offers a highly sensitive and specific approach for point mutation detection. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Use of Protein G Microcolumns in Chromatographic Immunoassays: A Comparison of Competitive Binding Formats

    PubMed Central

    Pfaunmiller, Erika L.; Anguizola, Jeanethe A.; Milanuk, Mitchell L.; Carter, NaTasha; Hage, David S.

    2016-01-01

    Affinity microcolumns containing protein G were used as general platforms for creating chromatographic-based competitive binding immunoassays. Human serum albumin (HSA) was used as a model target for this work and HSA tagged with a near infrared fluorescent dye was utilized as the label. The protein G microcolumns were evaluated for use in several assay formats, including both solution-based and column-based competitive binding immunoassays and simultaneous or sequential injection formats. All of these methods were characterized by using the same amounts of labeled HSA and anti-HSA antibodies per sample, as chosen for the analysis of a protein target in the low-to-mid ng/mL range. The results were used to compare these formats in terms of their response, precision, limits of detection, and analysis time. All these methods gave detection limits in the range of 8–19 ng/mL and precisions ranging from ± 5% to ± 10% when using an injection flow rate of 0.10 mL/min. The column-based sequential injection immunoassay provided the best limit of detection and the greatest change in response at low target concentrations, while the solution-based simultaneous injection method had the broadest linear and dynamic ranges. These results provided valuable guidelines that can be employed to develop and extend the use of protein G microcolumns and these competitive binding formats to other protein biomarkers or biological agents of clinical or pharmaceutical interest. PMID:26777776

  8. Knowledge-based tracking algorithm

    NASA Astrophysics Data System (ADS)

    Corbeil, Allan F.; Hawkins, Linda J.; Gilgallon, Paul F.

    1990-10-01

    This paper describes the Knowledge-Based Tracking (KBT) algorithm for which a real-time flight test demonstration was recently conducted at Rome Air Development Center (RADC). In KBT processing, the radar signal in each resolution cell is thresholded at a lower than normal setting to detect low RCS targets. This lower threshold produces a larger than normal false alarm rate. Therefore, additional signal processing including spectral filtering, CFAR and knowledge-based acceptance testing are performed to eliminate some of the false alarms. TSC's knowledge-based Track-Before-Detect (TBD) algorithm is then applied to the data from each azimuth sector to detect target tracks. In this algorithm, tentative track templates are formed for each threshold crossing and knowledge-based association rules are applied to the range, Doppler, and azimuth measurements from successive scans. Lastly, an M-association out of N-scan rule is used to declare a detection. This scan-to-scan integration enhances the probability of target detection while maintaining an acceptably low output false alarm rate. For a real-time demonstration of the KBT algorithm, the L-band radar in the Surveillance Laboratory (SL) at RADC was used to illuminate a small Cessna 310 test aircraft. The received radar signal wa digitized and processed by a ST-100 Array Processor and VAX computer network in the lab. The ST-100 performed all of the radar signal processing functions, including Moving Target Indicator (MTI) pulse cancelling, FFT Doppler filtering, and CFAR detection. The VAX computers performed the remaining range-Doppler clustering, beamsplitting and TBD processing functions. The KBT algorithm provided a 9.5 dB improvement relative to single scan performance with a nominal real time delay of less than one second between illumination and display.

  9. Sensitive detection of unlabeled oligonucleotides using a paired surface plasma waves biosensor.

    PubMed

    Li, Ying-Chang; Chiou, Chiuan-Chian; Luo, Ji-Dung; Chen, Wei-Ju; Su, Li-Chen; Chang, Ying-Feng; Chang, Yu-Sun; Lai, Chao-Sung; Lee, Cheng-Chung; Chou, Chien

    2012-05-15

    Detection of unlabeled oligonucleotides using surface plasmon resonance (SPR) is difficult because of the oligonucleotides' relatively lower molecular weight compared with proteins. In this paper, we describe a method for detecting unlabeled oligonucleotides at low concentration using a paired surface plasma waves biosensor (PSPWB). The biosensor uses a sensor chip with an immobilized probe to detect a target oligonucleotide via sequence-specific hybridization. PSPWB measures the demodulated amplitude of the heterodyne signal in real time. In the meantime, the ratio of the amplitudes between the detected output signal and reference can reduce the excess noise from the laser intensity fluctuation. Also, the common-path propagation of p and s waves cancels the common phase noise induced by temperature variation. Thus, a high signal-to-noise ratio (SNR) of the heterodyne signal is detected. The sequence specificity of oligonucleotide hybridization ensures that the platform is precisely discriminating between target and non-target oligonucleotides. Under optimized experimental conditions, the detected heterodyne signal increases linearly with the logarithm of the concentration of target oligonucleotide over the range 0.5-500 pM. The detection limit is 0.5 pM in this experiment. In addition, the non-target oligonucleotide at concentrations of 10 pM and 10nM generated signals only slightly higher than background, indicating the high selectivity and specificity of this method. Different length of perfectly matched oligonucleotide targets at 10-mer, 15-mer and 20-mer were identified at the concentration of 150 pM. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ai Cheng; Du, Dan; Chen, Baowei

    2014-09-07

    Here we describe an ultrasensitive electrochemical nucleic acids assay amplified by carbon nanotubes (CNTs)-based labels for the detection of human acute lymphocytic leukemia (ALL) related p185 BCR-ABL fusion transcript. The carboxylated CNTs were functionalized with horseradish peroxidase (HRP) molecules and target-specific detection probes (DP) via diimide-activated amidation, and used to label and amplify target hybridization signal. The activity of captured HRP was monitored by square-wave voltammetry measuring the electroactive enzymatic product in the presence of 2-aminophenol and hydrogen peroxide substrate solution. The effect of DP and HRP loading of the CNT-based labels on its signal-to-noise ratio of electrochemical detection wasmore » studied systematically for the first time. Under optimized conditions, the signal-amplified assay achieved a detection limit of 83 fM targets oligonuecleotides and a 4-order wide dynamic range of target concentration. The resulting assay allowed a robust discrimination between the perfect match and a three-base mismatch sequence. When subjected to full-length (491 bp) DNA oncogene, the approach demonstrated a detection limit of approximately 33 pg of the target gene. The high sensitivity and specificity of assay enabled PCR-free detection of target transcripts in as little as 65 ng of mRNA extracted from positive ALL cell lines SUP-B15, in comparison to those obtained from negative cell lines HL-60. The approach holds promise for simple, low cost and ultrasensitive electrochemical nucleic acids detection in portable devices, point-of-care and early disease diagnostic applications.« less

  11. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    PubMed Central

    Ruscito, Annamaria; DeRosa, Maria C.

    2016-01-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then used in various applications. These applications range from therapeutic uses to biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is needed for the protection and wellbeing of humans and animals. However, the small molecular weights of these targets, including the drastic size difference between the target and the oligonucleotides, make it challenging to select, characterize, and apply aptamers for their detection. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed. PMID:27242994

  12. Coherent infrared imaging camera (CIRIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerousmore » and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.« less

  13. Study to investigate and evaluate means of optimizing the Ku-band combined radar/communication functions for the space shuttle

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Udalov, S.; Alem, W.

    1977-01-01

    The performance of the space shuttle orbiter's Ku-Band integrated radar and communications equipment is analyzed for the radar mode of operation. The block diagram of the rendezvous radar subsystem is described. Power budgets for passive target detection are calculated, based on the estimated values of system losses. Requirements for processing of radar signals in the search and track modes are examined. Time multiplexed, single-channel, angle tracking of passive scintillating targets is analyzed. Radar performance in the presence of main lobe ground clutter is considered and candidate techniques for clutter suppression are discussed. Principal system parameter drivers are examined for the case of stationkeeping at ranges comparable to target dimension. Candidate ranging waveforms for short range operation are analyzed and compared. The logarithmic error discriminant utilized for range, range rate and angle tracking is formulated and applied to the quantitative analysis of radar subsystem tracking loops.

  14. Angular dependence of Kβ/Kα intensity ratios of thick Ti and Cu pure elements from 10-25 keV electron bombardment

    NASA Astrophysics Data System (ADS)

    Singh, B.; Kumar, S.; Prajapati, S.; Singh, B. K.; Llovet, X.; Shanker, R.

    2018-02-01

    Measurements yielding the first results on angular dependence of Kβ/Kα X-ray intensity ratios of thick Ti (Z = 22) and Cu (Z = 29) targets induced by 10-25 keV electrons are presented. The measurements were done by rotating the target surface around the electron beam direction in the angular detection range 105° ≤ θ ≤ 165° in the reflection mode using an energy dispersive Si PIN photodiode detector. The measured angular dependence of Kβ/Kα intensity ratios is shown to be almost isotropic for Ti and Cu targets for the range of detection angles, 105° ≤ θ ≤ 150°, while there is a very weak increase beyond 150° for both targets. No dependence of Kβ/Kα intensity ratios on impact energy is observed; while on average, the value of the Kβ/Kα X-ray intensity ratio for Cu is larger by about 8% than that for Ti, which indicates a weak Z-dependence of the target. The experimental results are compared with those obtained from PENELOPE MC calculations and from the Evaluated Atomic Data Library (EADL) ratios. These results on Kβ/Kα X-ray intensity ratios are found to be in reasonable agreement in the detection angle range 105° ≤ θ ≤ 150° to within uncertainties, whereas the simulation and experimental results show a very slight increase in the intensity ratio with θ as the latter attains higher values. The results presented in this work provide a direct check on the accuracy of PENELOPE at oblique incidence angles for which there has been a lack of measurements in the literature until now.

  15. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    DOE PAGES

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...

    2018-01-08

    Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less

  16. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela

    Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less

  17. M Dwarf Variability and Periodicities in Praesepe

    NASA Astrophysics Data System (ADS)

    Hamper, R.; Honeycutt, R. K.

    2018-02-01

    212 M dwarfs in the Praesepe cluster have been monitored photometrically for three observing seasons. It is found that Praesepe M dwarfs earlier than ∼M4 often have significant photometric variations, while variability is not detected for >M4. Time series analysis was performed on 147 of the targets having likely variability in order to study possible periodicities. For 83% of these targets, we detected no periodicities; these null results included targets with published photometric periods from earlier work. Our detected periods ranged from 20 to 45 days, and we are not able to confirm any of the 1–5 day periods in Praesepe periods reported by Schultz et al., which we attribute to the very different observing cadences of the two studies. We conjecture that our more widely spaced data cannot adequately sample the Schultz et al. periodicities before the growth and decay of spots have a chance to ruin the coherence. The new periods we find in the range 20–45 days (in targets that do not overlap with those from Schultz having shorter periods) have very small false alarm probabilities. We argue that rotation is unlikely to be responsible for these 20–45 day periods. Perhaps short activity cycles in the Praesepe M dwarfs play a role in generating such periodicities.

  18. Impact of frequency and polarization diversity on a terahertz radar's imaging performance

    NASA Astrophysics Data System (ADS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria

    2011-05-01

    The Jet Propulsion Laboratory's 675 GHz, 25 m standoff imaging radar can achieve >1 Hz real time frame rates over 40x40 cm fields of view for rapid detection of person-borne concealed weapons. In its normal mode of operation, the radar generates imagery based solely on the time-of-flight, or range, between the radar and target. With good clothing penetration at 675 GHz, a hidden object will be detectable as an anomaly in the range-to-surface profile of a subject. Here we report on results of two modifications in the radar system that were made to asses its performance using somewhat different detection approaches. First, the radar's operating frequency and bandwidth were cut in half, to 340 GHz and 13 GHz, where there potential system advantages include superior transmit power and clothing penetration, as well as a lower cost of components. In this case, we found that the twofold reduction in range and cross-range resolution sharply limited the quality of through-clothes imagery, although some improvement is observed for detection of large targets concealed by very thick clothing. The second radar modification tested involved operation in a fully polarimetric mode, where enhanced image contrast might occur between surfaces with different material or geometric characteristics. Results from these tests indicated that random speckle dominates polarimetric power imagery, making it an unattractive approach for contrast improvement. Taken together, the experiments described here underscore the primary importance of high resolution imaging in THz radar applications for concealed weapons detection.

  19. Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP nanopattern.

    PubMed

    Mohammadniaei, Mohsen; Yoon, Jinho; Lee, Taek; Choi, Jeong-Woo

    2018-05-20

    We fabricated a microRNA biosensor using the combination of surface enhanced Raman spectroscopy (SERS) and electrochemical (EC) techniques. For the first time, the weaknesses of each techniques for microRNA detection was compensated by the other ones to give rise to the specific and wide-range detection of miR-155. A single stranded 3' methylene blue (MB) and 5' thiol-modified RNA (MB-ssRNA-SH) was designed to detect the target miR-155 and immobilized onto the gold nanoparticle-modified ITO (ITO/GNP). Upon the invasion of target strand, the double-stranded RNA transformed rapidly to an upright structure resulting in a notable decrease in SERS and redox signals of the MB. For the first time, by combination of SERS and EC techniques in a single platform we extended the dynamic range of both techniques from 10 pM to 450 nM (SERS: 10 pM-5 nM and EC: 5 nM-450 nM). As well, the SERS technique improved the detection limit of the EC method from 100 pM to 100 fM, while the EC method covered single-mismatch detection which was the SERS deficiency. The fabricated single-step biosensor possessing a good capability of miRNA detection in human serum, could be employed throughout the broad ranges of biomedical and bioelectronics applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Rapid detection of multiple class pharmaceuticals in both municipal wastewater and sludge with ultra high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Yuan, Xiangjuan; Qiang, Zhimin; Ben, Weiwei; Zhu, Bing; Liu, Junxin

    2014-09-01

    This work described the development, optimization and validation of an analytical method for rapid detection of multiple-class pharmaceuticals in both municipal wastewater and sludge samples based on ultrasonic solvent extraction, solid-phase extraction, and ultra high performance liquid chromatography-tandem mass spectrometry quantification. The results indicated that the developed method could effectively extract all the target pharmaceuticals (25) in a single process and analyze them within 24min. The recoveries of the target pharmaceuticals were in the range of 69%-131% for wastewater and 54%-130% for sludge at different spiked concentration levels. The method quantification limits in wastewater and sludge ranged from 0.02 to 0.73ng/L and from 0.02 to 1.00μg/kg, respectively. Subsequently, this method was validated and applied for residual pharmaceutical analysis in a wastewater treatment plant located in Beijing, China. All the target pharmaceuticals were detected in the influent samples with concentrations varying from 0.09ng/L (tiamulin) to 15.24μg/L (caffeine); meanwhile, up to 23 pharmaceuticals were detected in sludge samples with concentrations varying from 60ng/kg (sulfamethizole) to 8.55mg/kg (ofloxacin). The developed method demonstrated its selectivity, sensitivity, and reliability for detecting multiple-class pharmaceuticals in complex matrices such as municipal wastewater and sludge. Copyright © 2014. Published by Elsevier B.V.

  1. Novel Pulse Oximetry Sonifications for Neonatal Oxygen Saturation Monitoring: A Laboratory Study.

    PubMed

    Hinckfuss, Kelly; Sanderson, Penelope; Loeb, Robert G; Liley, Helen G; Liu, David

    2016-03-01

    We aimed to test whether the use of novel pulse oximetry sounds (sonifications) better informs listeners when a neonate's oxygen saturation (SpO2) deviates from the recommended range. Variable-pitch pulse oximeters do not accurately inform clinicians via sound alone when SpO2 is outside the target range of 90% to 95% for neonates on supplemental oxygen. Risk of blindness, organ damage, and death increase if SpO2 remains outside the target range. A more informative sonification may improve clinicians' ability to maintain the target range. In two desktop experiments, nonclinicians' ability to detect SpO2 range and direction of change was tested with novel versus conventional sonifications of simulated patient data. In Experiment 1, a "shoulder" sonification used larger pitch differences between adjacent saturation percentages for SpO2 values outside the target range. In Experiment 2, a "beacon" sonification used equal-appearing pitch differences, but when SpO2 was outside the target range, a fixed-pitch reference tone from the center of the target SpO2 range preceded every fourth pulse tone. The beacon sonification improved range identification accuracy over the control display (85% vs. 60%; p < .001), but the shoulder sonification did not (55% vs. 52%). The beacon provided a distinct auditory alert and reference that significantly improved nonclinical participants' ability to identify SpO2 range. Adding a beacon to the variable-pitch pulse oximeter sound may help clinicians identify when, and by how much, a neonate's SpO2 deviates from the target range, particularly during patient transport situations when auditory information becomes essential. © 2015, Human Factors and Ergonomics Society.

  2. Quantification of DNA using the luminescent oxygen channeling assay.

    PubMed

    Patel, R; Pollner, R; de Keczer, S; Pease, J; Pirio, M; DeChene, N; Dafforn, A; Rose, S

    2000-09-01

    Simplified and cost-effective methods for the detection and quantification of nucleic acid targets are still a challenge in molecular diagnostics. Luminescent oxygen channeling assay (LOCI(TM)) latex particles can be conjugated to synthetic oligodeoxynucleotides and hybridized, via linking probes, to different DNA targets. These oligomer-conjugated LOCI particles survive thermocycling in a PCR reaction and allow quantified detection of DNA targets in both real-time and endpoint formats. The endpoint DNA quantification format utilized two sensitizer bead types that are sensitive to separate illumination wavelengths. These two bead types were uniquely annealed to target or control amplicons, and separate illuminations generated time-resolved chemiluminescence, which distinguished the two amplicon types. In the endpoint method, ratios of the two signals allowed determination of the target DNA concentration over a three-log range. The real-time format allowed quantification of the DNA target over a six-log range with a linear relationship between threshold cycle and log of the number of DNA targets. This is the first report of the use of an oligomer-labeled latex particle assay capable of producing DNA quantification and sequence-specific chemiluminescent signals in a homogeneous format. It is also the first report of the generation of two signals from a LOCI assay. The methods described here have been shown to be easily adaptable to new DNA targets because of the generic nature of the oligomer-labeled LOCI particles.

  3. Radar detection of surface oil accumulations

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Oneill, P.; Wilson, M.

    1980-01-01

    The United States Coast Guard is developing AIREYE, an all weather, day/night airborne surveillance system, for installation aboard future medium range surveillance aircraft. As part of this program, a series of controlled tests were conducted off southern California to evaluate the oil slick detection capabilities of two Motorola developed, side looking radars. The systems, a real aperture AN/APS-94D and a synthetic aperture coherent on receive (COR) were flown over the Santa Barbara Channel on May 19, 1976. Targets imaged during the coincident overflights included natural oil seepage, simulated oil spills, oil production platforms, piers, mooring buoys, commercial boats and barges at other targets. Based on an analysis of imagery from the coincident radar runs, COR provides better detection of natural and man made oil slicks, whereas the AN/APS-94D consistently exhibited higher surface target detection results. This and other tests have shown that active microwave systems have considerable potential for aiding in the detection and analysis of surface oil accumulations.

  4. Carbon nanotube-based labels for highly sensitive colorimetric and aggregation-based visual detection of nucleic acids

    NASA Astrophysics Data System (ADS)

    Lee, Ai Cheng; Ye, Jian-Shan; Ngin Tan, Swee; Poenar, Daniel P.; Sheu, Fwu-Shan; Kiat Heng, Chew; Meng Lim, Tit

    2007-11-01

    A novel carbon nanotube (CNT) derived label capable of dramatic signal amplification of nucleic acid detection and direct visual detection of target hybridization has been developed. Highly sensitive colorimetric detection of human acute lymphocytic leukemia (ALL) related oncogene sequences amplified by the novel CNT-based label was demonstrated. Atomic force microscope (AFM) images confirmed that a monolayer of horseradish peroxidase and detection probe molecules was immobilized along the carboxylated CNT carrier. The resulting CNT labels significantly enhanced the nucleic acid assay sensitivity by at least 1000 times compared to that of conventional labels used in enzyme-linked oligosorbent assay (ELOSA). An excellent detection limit of 1 × 10-12 M (60 × 10-18 mol in 60 µl) and a four-order wide dynamic range of target concentration were achieved. Hybridizations using these labels were coupled to a concentration-dependent formation of visible dark aggregates. Targets can thus be detected simply with visual inspection, eliminating the need for expensive and sophisticated detection systems. The approach holds promise for ultrasensitive and low cost visual inspection and colorimetric nucleic acid detection in point-of-care and early disease diagnostic application.

  5. Low-resolution ship detection from high-altitude aerial images

    NASA Astrophysics Data System (ADS)

    Qi, Shengxiang; Wu, Jianmin; Zhou, Qing; Kang, Minyang

    2018-02-01

    Ship detection from optical images taken by high-altitude aircrafts such as unmanned long-endurance airships and unmanned aerial vehicles has broad applications in marine fishery management, ship monitoring and vessel salvage. However, the major challenge is the limited capability of information processing on unmanned high-altitude platforms. Furthermore, in order to guarantee the wide detection range, unmanned aircrafts generally cruise at high altitudes, resulting in imagery with low-resolution targets and strong clutters suffered by heavy clouds. In this paper, we propose a low-resolution ship detection method to extract ships from these high-altitude optical images. Inspired by a recent research on visual saliency detection indicating that small salient signals could be well detected by a gradient enhancement operation combined with Gaussian smoothing, we propose the facet kernel filtering to rapidly suppress cluttered backgrounds and delineate candidate target regions from the sea surface. Then, the principal component analysis (PCA) is used to compute the orientation of the target axis, followed by a simplified histogram of oriented gradient (HOG) descriptor to characterize the ship shape property. Finally, support vector machine (SVM) is applied to discriminate real targets and false alarms. Experimental results show that the proposed method actually has high efficiency in low-resolution ship detection.

  6. Detection of Non-Nucleic Acid Targets with an Unmodified Aptamer and a Fluorogenic Competitor

    PubMed Central

    Li, Na

    2010-01-01

    Aptamers are oligonucleotides that can bind to various non-nucleic acid targets, ranging from proteins to small molecules, with a specificity and affinity comparable to that of antibodies. Most aptamer-based detection strategies require modification on the aptamer, which could lead to a significant loss in its affinity and specificity to the target. Here we reported a generic strategy to design aptamer-based optical probes. An unmodified aptamer specific to the target and a fluorogenic competitor complementary to the aptamer are utilized for target recognition and signal generation, respectively. The competitor is a hairpin oligonucleotide with a fluorophore attached on one end and a quencher attached on the other. When no target is present, the competitor binds to the aptamer. However, when the target is introduced, the competitor will be displaced from the aptamer by the target, thus resulting in a target-specific decrease in fluorescence signal. Successful application of this strategy to different types of targets (small molecules and proteins) as well as different types of aptamers (DNA and RNA) has been demonstrated. Furthermore, a thermodynamics-based prediction model was established to further rationalize the optimization process. Due to its rapidness and simplicity, this aptamer-based detection strategy holds great promise in high throughput applications. PMID:20563298

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J. V.

    Chirp signals have evolved primarily from radar/sonar signal processing applications specifically attempting to estimate the location of a target in surveillance/tracking volume. The chirp, which is essentially a sinusoidal signal whose phase changes instantaneously at each time sample, has an interesting property in that its correlation approximates an impulse function. It is well-known that a matched-filter detector in radar/sonar estimates the target range by cross-correlating a replicant of the transmitted chirp with the measurement data reflected from the target back to the radar/sonar receiver yielding a maximum peak corresponding to the echo time and therefore enabling the desired range estimate.more » In this application, we perform the same operation as a radar or sonar system, that is, we transmit a “chirp-like pulse” into the target medium and attempt to first detect its presence and second estimate its location or range. Our problem is complicated by the presence of disturbance signals from surrounding broadcast stations as well as extraneous sources of interference in our frequency bands and of course the ever present random noise from instrumentation. First, we discuss the chirp signal itself and illustrate its inherent properties and then develop a model-based processing scheme enabling both the detection and estimation of the signal from noisy measurement data.« less

  8. Experimental determination of particle range and dose distribution in thick targets through fragmentation reactions of stable heavy ions.

    PubMed

    Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Urakabe, Eriko; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki

    2006-09-07

    In radiation therapy with highly energetic heavy ions, the conformal irradiation of a tumour can be achieved by using their advantageous features such as the good dose localization and the high relative biological effectiveness around their mean range. For effective utilization of such properties, it is necessary to evaluate the range of incident ions and the deposited dose distribution in a patient's body. Several methods have been proposed to derive such physical quantities; one of them uses positron emitters generated through projectile fragmentation reactions of incident ions with target nuclei. We have proposed the application of the maximum likelihood estimation (MLE) method to a detected annihilation gamma-ray distribution for determination of the range of incident ions in a target and we have demonstrated the effectiveness of the method with computer simulations. In this paper, a water, a polyethylene and a polymethyl methacrylate target were each irradiated with stable (12)C, (14)N, (16)O and (20)Ne beams. Except for a few combinations of incident beams and targets, the MLE method could determine the range of incident ions R(MLE) with a difference between R(MLE) and the experimental range of less than 2.0 mm under the circumstance that the measurement of annihilation gamma rays was started just after the irradiation of 61.4 s and lasted for 500 s. In the process of evaluating the range of incident ions with the MLE method, we must calculate many physical quantities such as the fluence and the energy of both primary ions and fragments as a function of depth in a target. Consequently, by using them we can obtain the dose distribution. Thus, when the mean range of incident ions is determined with the MLE method, the annihilation gamma-ray distribution and the deposited dose distribution can be derived simultaneously. The derived dose distributions in water for the mono-energetic heavy-ion beams of four species were compared with those measured with an ionization chamber. The good agreement between the derived and the measured distributions implies that the deposited dose distribution in a target can be estimated from the detected annihilation gamma-ray distribution with a positron camera.

  9. A real-time optical tracking and measurement processing system for flying targets.

    PubMed

    Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu

    2014-01-01

    Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control.

  10. A Real-Time Optical Tracking and Measurement Processing System for Flying Targets

    PubMed Central

    Guo, Pengyu; Ding, Shaowen; Zhang, Hongliang; Zhang, Xiaohu

    2014-01-01

    Optical tracking and measurement for flying targets is unlike the close range photography under a controllable observation environment, which brings extreme conditions like diverse target changes as a result of high maneuver ability and long cruising range. This paper first designed and realized a distributed image interpretation and measurement processing system to achieve resource centralized management, multisite simultaneous interpretation and adaptive estimation algorithm selection; then proposed a real-time interpretation method which contains automatic foreground detection, online target tracking, multiple features location, and human guidance. An experiment is carried out at performance and efficiency evaluation of the method by semisynthetic video. The system can be used in the field of aerospace tests like target analysis including dynamic parameter, transient states, and optical physics characteristics, with security control. PMID:24987748

  11. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative

    NASA Astrophysics Data System (ADS)

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-01

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550 nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5 × 10- 7 to 1.0 × 10- 5 mol·L- 1 and the detection limit is 6.9 × 10- 8 mol·L- 1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols.

  12. Micromechanical antibody sensor

    DOEpatents

    Thundat, Thomas G.; Jacobson, K. Bruce; Doktycz, Mitchel J.; Kennel, Stephen J.; Warmack, Robert J.

    2001-01-01

    A sensor apparatus is provided using a microcantilevered spring element having a coating of a detector molecule such as an antibody or antigen. A sample containing a target molecule or substrate is provided to the coating. The spring element bends in response to the stress induced by the binding which occurs between the detector and target molecules. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers.

  13. Enzyme-enhanced fluorescence detection of DNA on etched optical fibers.

    PubMed

    Niu, Shu-yan; Li, Quan-yi; Ren, Rui; Zhang, Shu-sheng

    2009-05-15

    A novel DNA biosensor based on enzyme-enhanced fluorescence detection on etched optical fibers was developed. The hybridization complex of DNA probe and biotinylated target was formed on the etched optical fiber, and was then bound with streptavidin labeled horseradish peroxidase (streptavidin-HRP). The target DNA was quantified through the fluorescent detection of bi-p,p'-4-hydroxyphenylacetic acid (DBDA) generated from the substrate 4-hydroxyphenylacetic acid (p-HPA) under the catalysis of HRP, with a detection limit of 1 pM and a linear range from 1.69 pM to 169 pM. It is facile to regenerate this sensor through surface treatment with concentrated urea solution. It was discovered that the sensor can retain 70% of its original activity after three detection-regeneration cycles.

  14. Evaluation of a laser scanning sensor on detection of complex shaped targets for variable-rate sprayer development

    USDA-ARS?s Scientific Manuscript database

    Sensors that can accurately measure canopy structures are prerequisites for development of advanced variable-rate sprayers. A 270° radial range laser sensor was evaluated for its accuracy to measure dimensions of target surfaces with complex shapes and sizes. An algorithm for data acquisition and 3-...

  15. Human target acquisition performance

    NASA Astrophysics Data System (ADS)

    Teaney, Brian P.; Du Bosq, Todd W.; Reynolds, Joseph P.; Thompson, Roger; Aghera, Sameer; Moyer, Steven K.; Flug, Eric; Espinola, Richard; Hixson, Jonathan

    2012-06-01

    The battlefield has shifted from armored vehicles to armed insurgents. Target acquisition (identification, recognition, and detection) range performance involving humans as targets is vital for modern warfare. The acquisition and neutralization of armed insurgents while at the same time minimizing fratricide and civilian casualties is a mounting concern. U.S. Army RDECOM CERDEC NVESD has conducted many experiments involving human targets for infrared and reflective band sensors. The target sets include human activities, hand-held objects, uniforms & armament, and other tactically relevant targets. This paper will define a set of standard task difficulty values for identification and recognition associated with human target acquisition performance.

  16. Coherent and Noncoherent Joint Processing of Sonar for Detection of Small Targets in Shallow Water.

    PubMed

    Pan, Xiang; Jiang, Jingning; Li, Si; Ding, Zhenping; Pan, Chen; Gong, Xianyi

    2018-04-10

    A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments.

  17. Homogenous assay for protein detection based on proximity DNA hybridization and isothermal circular strand displacement amplification reaction.

    PubMed

    Zhang, Manjun; Li, Ruimin; Ling, Liansheng

    2017-06-01

    This work proposed a homogenous fluorescence assay for proteins, based on the target-triggered proximity DNA hybridization in combination with strand displacement amplification (SDA). It benefited from target-triggered proximity DNA hybridization to specifically recognize the target and SDA making recycling signal amplification. The system included a molecular beacon (MB), an extended probe (EP), and an assistant probe (AP), which were not self-assembly in the absence of target proteins, due to the short length of the designed complementary sequence among MB, EP, and AP. Upon addition of the target proteins, EP and AP are bound to the target proteins, which induced the occurrence of proximity hybridization between MB, EP, and AP and followed by strand displacement amplification. Through the primer extension, a tripartite complex of probes and target was displaced and recycled to hybridize with another MB, and the more opened MB enabled the detection signal to amplify. Under optimum conditions, it was used for the detection of streptavidin and thrombin. Fluorescence intensity was proportional to the concentration of streptavidin and thrombin in the range of 0.2-30 and 0.2-35 nmol/L, respectively. Furthermore, this fluorescent method has a good selectivity, in which the fluorescence intensity of thrombin was ~37-fold or even larger than that of the other proteins at the same concentration. It is a new and simple method for SDA-involved target protein detection and possesses a great potential for other protein detection in the future. Graphical abstract A homogenous assay for protein detection is based on proximity DNA hybridization and strand displacement amplification reaction.

  18. Enhanced Reliability and Accuracy for Field Deployable Bioforensic Detection and Discrimination of Xylella fastidiosa subsp. pauca, Causal Agent of Citrus Variegated Chlorosis Using Razor Ex Technology and TaqMan Quantitative PCR

    PubMed Central

    Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel

    2013-01-01

    A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets. PMID:24312333

  19. Enhanced reliability and accuracy for field deployable bioforensic detection and discrimination of Xylella fastidiosa subsp. pauca, causal agent of citrus variegated chlorosis using razor ex technology and TaqMan quantitative PCR.

    PubMed

    Ouyang, Ping; Arif, Mohammad; Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel

    2013-01-01

    A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.

  20. Elaborately designed diblock nanoprobes for simultaneous multicolor detection of microRNAs

    NASA Astrophysics Data System (ADS)

    Wang, Chenguang; Zhang, Huan; Zeng, Dongdong; Sun, Wenliang; Zhang, Honglu; Aldalbahi, Ali; Wang, Yunsheng; San, Lili; Fan, Chunhai; Zuo, Xiaolei; Mi, Xianqiang

    2015-09-01

    Simultaneous detection of multiple biomarkers has important prospects in the biomedical field. In this work, we demonstrated a novel strategy for the detection of multiple microRNAs (miRNAs) based on gold nanoparticles (Au NPs) and polyadenine (polyA) mediated nanoscale molecular beacon (MB) probes (denoted p-nanoMBs). Novel fluorescent labeled p-nanoMBs bearing consecutive adenines were designed, of which polyA served as an effective anchoring block binding to the surface of Au NPs, and the appended hairpin block formed an upright conformation that favored the hybridization with targets. Using the co-assembling method and the improved hybridization conformation of the hairpin probes, we achieved high selectivity for specifically distinguishing DNA targets from single-base mismatched DNA targets. We also realized multicolor detection of three different synthetic miRNAs in a wide dynamic range from 0.01 nM to 200 nM with a detection limit of 10 pM. What's more, we even detected miRNAs in a simulated serum environment, which indicated that our method could be used in complex media. Compared with the traditional method, our strategy provides a promising alternative method for the qualitative and quantitative detection of miRNAs.Simultaneous detection of multiple biomarkers has important prospects in the biomedical field. In this work, we demonstrated a novel strategy for the detection of multiple microRNAs (miRNAs) based on gold nanoparticles (Au NPs) and polyadenine (polyA) mediated nanoscale molecular beacon (MB) probes (denoted p-nanoMBs). Novel fluorescent labeled p-nanoMBs bearing consecutive adenines were designed, of which polyA served as an effective anchoring block binding to the surface of Au NPs, and the appended hairpin block formed an upright conformation that favored the hybridization with targets. Using the co-assembling method and the improved hybridization conformation of the hairpin probes, we achieved high selectivity for specifically distinguishing DNA targets from single-base mismatched DNA targets. We also realized multicolor detection of three different synthetic miRNAs in a wide dynamic range from 0.01 nM to 200 nM with a detection limit of 10 pM. What's more, we even detected miRNAs in a simulated serum environment, which indicated that our method could be used in complex media. Compared with the traditional method, our strategy provides a promising alternative method for the qualitative and quantitative detection of miRNAs. Electronic supplementary information (ESI) available: Sequences for oligonucleotides used for this work, dynamic light scattering (DLS) measurements, fluorescent signal intensity with different ratios between p-MBs and A5 oligonucleotides, quantification of the fluorescent p-MB, and UV-Vis spectra for naked AuNPs and the p-nanoMB. See DOI: 10.1039/c5nr04618a

  1. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    PubMed

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  2. Multi-channel, passive, short-range anti-aircraft defence system

    NASA Astrophysics Data System (ADS)

    Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew

    2018-01-01

    The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.

  3. Fast Vessel Detection in Gaofen-3 SAR Images with Ultrafine Strip-Map Mode

    PubMed Central

    Liu, Lei; Qiu, Xiaolan; Lei, Bin

    2017-01-01

    This study aims to detect vessels with lengths ranging from about 70 to 300 m, in Gaofen-3 (GF-3) SAR images with ultrafine strip-map (UFS) mode as fast as possible. Based on the analysis of the characteristics of vessels in GF-3 SAR imagery, an effective vessel detection method is proposed in this paper. Firstly, the iterative constant false alarm rate (CFAR) method is employed to detect the potential ship pixels. Secondly, the mean-shift operation is applied on each potential ship pixel to identify the candidate target region. During the mean-shift process, we maintain a selection matrix recording which pixels can be taken, and these pixels are called as the valid points of the candidate target. The l1 norm regression is used to extract the principal axis and detect the valid points. Finally, two kinds of false alarms, the bright line and the azimuth ambiguity, are removed by comparing the valid area of the candidate target with a pre-defined value and computing the displacement between the true target and the corresponding replicas respectively. Experimental results on three GF-3 SAR images with UFS mode demonstrate the effectiveness and efficiency of the proposed method. PMID:28678197

  4. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  5. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    PubMed Central

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  6. Bias-Corrected Targeted Next-Generation Sequencing for Rapid, Multiplexed Detection of Actionable Alterations in Cell-Free DNA from Advanced Lung Cancer Patients.

    PubMed

    Paweletz, Cloud P; Sacher, Adrian G; Raymond, Chris K; Alden, Ryan S; O'Connell, Allison; Mach, Stacy L; Kuang, Yanan; Gandhi, Leena; Kirschmeier, Paul; English, Jessie M; Lim, Lee P; Jänne, Pasi A; Oxnard, Geoffrey R

    2016-02-15

    Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care; however, comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. NGS could identify mutations present in DNA dilutions at ≥ 0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. ©2015 American Association for Cancer Research.

  7. Bias-corrected targeted next-generation sequencing for rapid, multiplexed detection of actionable alterations in cell-free DNA from advanced lung cancer patients

    PubMed Central

    Paweletz, Cloud P.; Sacher, Adrian G.; Raymond, Chris K.; Alden, Ryan S.; O'Connell, Allison; Mach, Stacy L.; Kuang, Yanan; Gandhi, Leena; Kirschmeier, Paul; English, Jessie M.; Lim, Lee P.; Jänne, Pasi A.; Oxnard, Geoffrey R.

    2015-01-01

    Purpose Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care, however comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). Experimental Design An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. Results NGS could identify mutations present in DNA dilutions at ≥0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Conclusion Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. PMID:26459174

  8. Development of a Software-Defined Radar

    DTIC Science & Technology

    2017-10-01

    waveform to the widest available (unoccupied) instantaneous bandwidth in real time. Consequently, the radar range resolution and target detection are...LabVIEW The matched filter range profile is calculated in real time using fast Fourier transform (FFT) operations to perform a cross-correlation...between the transmitted waveform and the received complex data. Figure 4 demonstrates the block logic used to achieve real -time range profile

  9. Laser vibration sensing at Fraunhofer IOSB: review and applications

    NASA Astrophysics Data System (ADS)

    Lutzmann, Peter; Göhler, Benjamin; Hill, Chris A.; van Putten, Frank

    2017-03-01

    Laser vibrometry based on coherent detection allows noncontact measurements of small-amplitude vibration characteristics of objects. This technique, commonly using the Doppler effect, offers high potential for short-range civil applications and for medium- or long-range applications in defense and security. Most commercially available laser Doppler vibrometers are for short ranges (up to a few tens of meters) and use a single beam from a low-power HeNe laser source (λ=633 nm). Medium- or long-range applications need higher laser output power, and thus, appropriate vibrometers typically operate at 1.5, 2, or 10.6 μm to meet the laser safety regulations. Spatially resolved vibrational information can be obtained from an object by using scanning laser vibrometers. To reduce measuring time and to measure transient object movements and vibrational mode structures of objects, several approaches to multibeam laser Doppler vibrometry have been developed, and some of them are already commercially available for short ranges. We focus on applications in the field of defense and security, such as target classification and identification, including camouflaged or partly concealed targets, and the detection of buried land mines. Examples of civil medium-range applications are also given.

  10. Indoor imagery with a 3D through-wall synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan

    2012-06-01

    Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.

  11. Photoinitiator Nucleotide for Quantifying Nucleic Acid Hybridization

    PubMed Central

    Johnson, Leah M.; Hansen, Ryan R.; Urban, Milan; Kuchta, Robert D.; Bowman, Christopher N.

    2010-01-01

    This first report of a photoinitiator-nucleotide conjugate demonstrates a novel approach for sensitive, rapid and visual detection of DNA hybridization events. This approach holds potential for various DNA labeling schemes and for applications benefiting from selective DNA-based polymerization initiators. Here, we demonstrate covalent, enzymatic incorporation of an eosin-photoinitiator 2′-deoxyuridine-5′-triphosphate (EITC-dUTP) conjugate into surface-immobilized DNA hybrids. Subsequent radical chain photoinitiation from these sites using an acrylamide/bis-acrylamide formulation yields a dynamic detection range between 500pM and 50nM of DNA target. Increasing EITC-nucleotide surface densities leads to an increase in surface-based polymer film heights until achieving a film height plateau of 280nm ±20nm at 610 ±70 EITC-nucleotides/μm2. Film heights of 10–20 nm were obtained from eosin surface densities of approximately 20 EITC-nucleotides/μm2 while below the detection limit of ~10 EITC-nucleotides/μm2, no detectable films were formed. This unique threshold behavior is utilized for instrument-free, visual quantification of target DNA concentration ranges. PMID:20337438

  12. Molecular Machine Powered Surface Programmatic Chain Reaction for Highly Sensitive Electrochemical Detection of Protein.

    PubMed

    Zhu, Jing; Gan, Haiying; Wu, Jie; Ju, Huangxian

    2018-04-17

    A bipedal molecular machine powered surface programmatic chain reaction was designed for electrochemical signal amplification and highly sensitive electrochemical detection of protein. The bipedal molecular machine was built through aptamer-target specific recognition for the binding of one target protein with two DNA probes, which hybridized with surface-tethered hairpin DNA 1 (H1) via proximity effect to expose the prelocked toehold domain of H1 for the hybridization of ferrocene-labeled hairpin DNA 2 (H2-Fc). The toehold-mediated strand displacement reaction brought the electrochemical signal molecule Fc close to the electrode and meanwhile released the bipedal molecular machine to traverse the sensing surface by the surface programmatic chain reaction. Eventually, a large number of duplex structures of H1-H2 with ferrocene groups facing to the electrode were formed on the sensor surface to generate an amplified electrochemical signal. Using thrombin as a model target, this method showed a linear detection range from 2 pM to 20 nM with a detection limit of 0.76 pM. The proposed detection strategy was enzyme-free and allowed highly sensitive and selective detection of a variety of protein targets by using corresponding DNA-based affinity probes, showing potential application in bioanalysis.

  13. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    PubMed Central

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification. PMID:26729209

  14. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    NASA Astrophysics Data System (ADS)

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  15. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification.

    PubMed

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-05

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  16. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Stewart, Hamilton; McDaniel, Robert V.

    2004-12-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: 1) target identification; 2) target tracking; 3) target location; 4) identification friend-or-foe (IFF); 5) parcel tracking, and; 6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  17. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Jost, Steven R.; Smith, M. J.; McDaniel, Robert V.

    2004-01-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: (1) target identification; (2) target tracking; (3) target location; (4) identification friend-or-foe (IFF); (5) parcel tracking, and; (6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  18. Infrared detection, recognition and identification of handheld objects

    NASA Astrophysics Data System (ADS)

    Adomeit, Uwe

    2012-10-01

    A main criterion for comparison and selection of thermal imagers for military applications is their nominal range performance. This nominal range performance is calculated for a defined task and standardized target and environmental conditions. The only standardization available to date is STANAG 4347. The target defined there is based on a main battle tank in front view. Because of modified military requirements, this target is no longer up-to-date. Today, different topics of interest are of interest, especially differentiation between friend and foe and identification of humans. There is no direct way to differentiate between friend and foe in asymmetric scenarios, but one clue can be that someone is carrying a weapon. This clue can be transformed in the observer tasks detection: a person is carrying or is not carrying an object, recognition: the object is a long / medium / short range weapon or civil equipment and identification: the object can be named (e. g. AK-47, M-4, G36, RPG7, Axe, Shovel etc.). These tasks can be assessed experimentally and from the results of such an assessment, a standard target for handheld objects may be derived. For a first assessment, a human carrying 13 different handheld objects in front of his chest was recorded at four different ranges with an IR-dual-band camera. From the recorded data, a perception experiment was prepared. It was conducted with 17 observers in a 13-alternative forced choice, unlimited observation time arrangement. The results of the test together with Minimum Temperature Difference Perceived measurements of the camera and temperature difference and critical dimension derived from the recorded imagery allowed defining a first standard target according to the above tasks. This standard target consist of 2.5 / 3.5 / 5 DRI line pairs on target, 0.24 m critical size and 1 K temperature difference. The values are preliminary and have to be refined in the future. Necessary are different aspect angles, different carriage and movement.

  19. A note on stray light in the Tübingen perimeter.

    PubMed Central

    Weale, R A; Wheeler, C

    1977-01-01

    Measurements were made of the relative intensity of light scattered in the neighbourhood of the large and small targets on the Tübingen perimeter. Two target intensities were studied. The scattered light fraction ranged from 0-1 to 25% and its effect was detected more readily by young than by older observers. PMID:843510

  20. Detection of Accelerating Targets in Clutter Using a De-Chirping Technique

    DTIC Science & Technology

    2014-06-01

    Academy, also in Canberra, working on the the- ory and simulation of spatial optical solitons and light-induced optical switching in nonlinear...signal gain in the receiver. UNCLASSIFIED 1 DSTO–RR–0399 UNCLASSIFIED target along the velocity vector , or equivalently by radar platform. The change of...the tracker uses range rate in its track initiation logic. (2) Lateral acceleration perpendicular to the velocity vector - the target is turning and

  1. Piezoelectric cantilever sensors

    NASA Technical Reports Server (NTRS)

    Shih, Wan Y. (Inventor); Shih, Wei-Heng (Inventor); Shen, Zuyan (Inventor)

    2008-01-01

    A piezoelectric cantilever with a non-piezoelectric, or piezoelectric tip useful as mass and viscosity sensors. The change in the cantilever mass can be accurately quantified by monitoring a resonance frequency shift of the cantilever. For bio-detection, antibodies or other specific receptors of target antigens may be immobilized on the cantilever surface, preferably on the non-piezoelectric tip. For chemical detection, high surface-area selective absorbent materials are coated on the cantilever tip. Binding of the target antigens or analytes to the cantilever surface increases the cantilever mass. Detection of target antigens or analytes is achieved by monitoring the cantilever's resonance frequency and determining the resonance frequency shift that is due to the mass of the adsorbed target antigens on the cantilever surface. The use of a piezoelectric unimorph cantilever allows both electrical actuation and electrical sensing. Incorporating a non-piezoelectric tip (14) enhances the sensitivity of the sensor. In addition, the piezoelectric cantilever can withstand damping in highly viscous liquids and can be used as a viscosity sensor in wide viscosity range.

  2. On Chip Protein Pre-Concentration for Enhancing the Sensitivity of Porous Silicon Biosensors.

    PubMed

    Arshavsky-Graham, Sofia; Massad-Ivanir, Naama; Paratore, Federico; Scheper, Thomas; Bercovici, Moran; Segal, Ester

    2017-12-22

    Porous silicon (PSi) nanomaterials have been widely studied as label-free optical biosensors for protein detection. However, these biosensors' performance, specifically in terms of their sensitivity (which is typically in the micromolar range), is insufficient for many applications. Herein, we present a proof-of-concept application of the electrokinetic isotachophoresis (ITP) technique for real-time preconcentration of a target protein on a PSi biosensor. With ITP, a highly concentrated target zone is delivered to the sensing area, where the protein target is captured by immobilized aptamers. The detection of the binding events is conducted in a label-free manner by reflective interferometric Fourier transformation spectroscopy (RIFTS). Up to 1000-fold enhancement in local concentration of the protein target and the biosensor's sensitivity are achieved, with a measured limit of detection of 7.5 nM. Furthermore, the assay is successfully performed in complex media, such as bacteria lysate samples, while the selectivity of the biosensor is retained. The presented assay could be further utilized for other protein targets, and to promote the development of clinically useful PSi biosensors.

  3. Berkeley UXO Discriminator (BUD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperikova, Erika; Smith, J. Torquil; Morrison, H. Frank

    2007-01-01

    The Berkeley UXO Discriminator (BUD) is an optimally designed active electromagnetic system that not only detects but also characterizes UXO. The system incorporates three orthogonal transmitters and eight pairs of differenced receivers. it has two modes of operation: (1) search mode, in which BUD moves along a profile and exclusively detects targets in its vicinity, providing target depth and horizontal location, and (2) discrimination mode, in which BUD, stationary above a target, from a single position, determines three discriminating polarizability responses together with the object location and orientation. The performance of the system is governed by a target size-depth curve.more » Maximum detection depth is 1.5 m. While UXO objects have a single major polarizability coincident with the long axis of the object and two equal transverse polarizabilities, scrap metal has three different principal polarizabilities. The results clearly show that there are very clear distinctions between symmetric intact UXO and irregular scrap metal, and that BUD can resolve the intrinsic polarizabilities of the target. The field survey at the Yuma Proving Ground in Arizona showed excellent results within the predicted size-depth range.« less

  4. Multi-dimensional position sensor using range detectors

    DOEpatents

    Vann, Charles S.

    2000-01-01

    A small, non-contact optical sensor uses ranges and images to detect its relative position to an object in up to six degrees of freedom. The sensor has three light emitting range detectors which illuminate a target and can be used to determine distance and two tilt angles. A camera located between the three range detectors senses the three remaining degrees of freedom, two translations and one rotation. Various range detectors, with different light sources, e.g. lasers and LEDs, different collection options, and different detection schemes, e.g. diminishing return and time of flight can be used. This sensor increases the capability and flexibility of computer controlled machines, e.g. it can instruct a robot how to adjust automatically to different positions and orientations of a part.

  5. Duplexed sandwich immunoassays on a fiber-optic microarray.

    PubMed

    Rissin, David M; Walt, David R

    2006-03-30

    In this paper, we describe a duplexed imaging optical fiber array-based immunoassay for immunoglobulin A (IgA) and lactoferrin. To fabricate the individually addressable array, microspheres were functionalized with highly specific monoclonal antibodies. The microspheres were loaded in microwells etched into the distal face of an imaging optical fiber bundle. Two microsphere-based sandwich immunoassays were developed to simultaneously detect IgA and lactoferrin, two innate immune system proteins found in human saliva. Individual microspheres could be interrogated for the simultaneous measurement of both proteins. The working concentration range for IgA detection was between 700 pM and 100 nM, while the working concentration range for lactoferrin was between 385 pM and 10 nM. The cross-reactivity between detection antibodies and their non-specific targets was relatively low in comparison to the signal generated by the specific binding with their targets. These results suggest that the degree of multiplexing on this fiber-optic array platform can be increased beyond a duplex.

  6. Toxicological relevance of pharmaceuticals in drinking water.

    PubMed

    Bruce, Gretchen M; Pleus, Richard C; Snyder, Shane A

    2010-07-15

    Interest in the public health significance of trace levels of pharmaceuticals in potable water is increasing, particularly with regard to the effects of long-term, low-dose exposures. To assess health risks and establish target concentrations for water treatment, human health risk-based screening levels for 15 pharmaceutically active ingredients and four metabolites were compared to concentrations detected at 19 drinking water treatment plants across the United States. Compounds were selected based on rate of use, likelihood of occurrence, and potential for toxicity. Screening levels were established based on animal toxicity data and adverse effects at therapeutic doses, focusing largely on reproductive and developmental toxicity and carcinogenicity. Calculated drinking water equivalent levels (DWELs) ranged from 0.49 microg/L (risperidone) to 20,000 microg/L (naproxen). None of the 10 detected compounds exceeded their DWEL. Ratios of DWELs to maximum detected concentrations ranged from 110 (phenytoin) to 6,000,000 (sulfamethoxazole). Based on this evaluation, adverse health effects from targeted pharmaceuticals occurring in U.S. drinking water are not expected.

  7. Simple Monitoring of Gene Targeting Efficiency in Human Somatic Cell Lines Using the PIGA Gene

    PubMed Central

    Karnan, Sivasundaram; Konishi, Yuko; Ota, Akinobu; Takahashi, Miyuki; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-01-01

    Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines. PMID:23056640

  8. Double-hairpin molecular-beacon-based amplification detection for gene diagnosis linked to cancer.

    PubMed

    Xu, Huo; Zhang, Rongbo; Li, Feng; Zhou, Yingying; Peng, Ting; Wang, Xuedong; Shen, Zhifa

    2016-09-01

    A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related KRAS gene detection based on the one-to-two stoichiometry. During target DNA detection, DHMB can execute signal transduction even if no any exogenous element is involved. Unlike the conventional molecular beacon based on the one-to-one interaction, one target DNA not only hybridizes with one DHMB and opens its hairpin but also promotes the interaction between two DHMBs, causing the separation of two fluorophores from quenchers. This leads to an enhanced fluorescence signal. As a result, the target KRAS gene is able to be detected within a wide dynamic range from 0.05 to 200 nM with the detection limit of 50 pM, indicating a dramatic improvement compared with traditional molecular beacons. Moreover, the point mutations existing in target DNAs can be easily screened. The potential application for target species in real samples was indicated by the analysis of PCR amplicons of DNAs from the DNA extracted from SW620 cell. Besides becoming a promising candidate probe for molecular biology research and clinical diagnosis of genetic diseases, the DHMB is expected to provide a significant insight into the design of DNA probe-based homogenous sensing systems. Graphical Abstract A powerful double-hairpin molecular beacon (DHMB) was developed for cancer-related gene KRAS detection based on the one-to-two stoichiometry. Without the help of any exogenous probe, the point mutation is easily screened, and the target DNA can be quantified down to 50 pM, indicating a dramatic improvement compared with traditional molecular beacons.

  9. A novel spatial-temporal detection method of dim infrared moving small target

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Deng, Tao; Gao, Lei; Zhou, Heng; Luo, Song

    2014-09-01

    Moving small target detection under complex background in infrared image sequence is one of the major challenges of modern military in Early Warning Systems (EWS) and the use of Long-Range Strike (LRS). However, because of the low SNR and undulating background, the infrared moving small target detection is a difficult problem in a long time. To solve this problem, a novel spatial-temporal detection method based on bi-dimensional empirical mode decomposition (EMD) and time-domain difference is proposed in this paper. This method is downright self-data decomposition and do not rely on any transition kernel function, so it has a strong adaptive capacity. Firstly, we generalized the 1D EMD algorithm to the 2D case. In this process, the project has solved serial issues in 2D EMD, such as large amount of data operations, define and identify extrema in 2D case, and two-dimensional signal boundary corrosion. The EMD algorithm studied in this project can be well adapted to the automatic detection of small targets under low SNR and complex background. Secondly, considering the characteristics of moving target, we proposed an improved filtering method based on three-frame difference on basis of the original difference filtering in time-domain, which greatly improves the ability of anti-jamming algorithm. Finally, we proposed a new time-space fusion method based on a combined processing of 2D EMD and improved time-domain differential filtering. And, experimental results show that this method works well in infrared small moving target detection under low SNR and complex background.

  10. Titanium Dioxide Nanoparticles (TiO₂) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection.

    PubMed

    Sharma, Atul; Hayat, Akhtar; Mishra, Rupesh K; Catanante, Gaëlle; Bhand, Sunil; Marty, Jean Louis

    2015-09-22

    We demonstrate for the first time, the development of titanium dioxide nanoparticles (TiO₂) quenching based aptasensing platform for detection of target molecules. TiO₂ quench the fluorescence of FAM-labeled aptamer (fluorescein labeled aptamer) upon the non-covalent adsorption of fluorescent labeled aptamer on TiO₂ surface. When OTA interacts with the aptamer, it induced aptamer G-quadruplex complex formation, weakens the interaction between FAM-labeled aptamer and TiO₂, resulting in fluorescence recovery. As a proof of concept, an assay was employed for detection of Ochratoxin A (OTA). At optimized experimental condition, the obtained limit of detection (LOD) was 1.5 nM with a good linearity in the range 1.5 nM to 1.0 µM for OTA. The obtained results showed the high selectivity of assay towards OTA without interference to structurally similar analogue Ochratoxin B (OTB). The developed aptamer assay was evaluated for detection of OTA in beer sample and recoveries were recorded in the range from 94.30%-99.20%. Analytical figures of the merits of the developed aptasensing platform confirmed its applicability to real samples analysis. However, this is a generic aptasensing platform and can be extended for detection of other toxins or target analyte.

  11. It's not black or white—on the range of vision and echolocation in echolocating bats

    PubMed Central

    Boonman, Arjan; Bar-On, Yinon; Cvikel, Noam; Yovel, Yossi

    2013-01-01

    Around 1000 species of bats in the world use echolocation to navigate, orient, and detect insect prey. Many of these bats emerge from their roost at dusk and start foraging when there is still light available. It is however unclear in what way and to which extent navigation, or even prey detection in these bats is aided by vision. Here we compare the echolocation and visual detection ranges of two such species of bats which rely on different foraging strategies (Rhinopoma microphyllum and Pipistrellus kuhlii). We find that echolocation is better than vision for detecting small insects even in intermediate light levels (1–10 lux), while vision is advantageous for monitoring far-away landscape elements in both species. We thus hypothesize that, bats constantly integrate information acquired by the two sensory modalities. We suggest that during evolution, echolocation was refined to detect increasingly small targets in conjunction with using vision. To do so, the ability to hear ultrasonic sound is a prerequisite which was readily available in small mammals, but absent in many other animal groups. The ability to exploit ultrasound to detect very small targets, such as insects, has opened up a large nocturnal niche to bats and may have spurred diversification in both echolocation and foraging tactics. PMID:24065924

  12. A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection.

    PubMed

    Ocaña, Cristina; Hayat, Akhtar; Mishra, Rupesh; Vasilescu, Alina; del Valle, Manel; Marty, Jean-Louis

    2015-06-21

    In this paper, we have reported a novel electrochemical aptamer-antibody based sandwich biosensor for the detection of lysozyme. In the sensing strategy, an anti-lysozyme aptamer was immobilized onto the carbon electrode surface by covalent binding via diazonium salt chemistry. After incubating with a target protein (lysozyme), a biotinylated antibody was used to complete the sandwich format. The subsequent additions of avidin-alkaline phosphatase as an enzyme label, and a 1-naphthyl phosphate substrate (1-NPP) allowed us to determine the concentration of lysozyme (Lys) via Differential Pulse Voltammetry (DPV) of the generated enzyme reaction product, 1-naphthol. Using this strategy, a wide detection range from 5 fM to 5 nM was obtained for a target lysozyme, with a detection limit of 4.3 fM. The control experiments were carried out by using bovine serum albumin (BSA), cytochrome c and casein. The results showed that the proposed biosensor had good specificity, stability and reproducibility for lysozyme analysis. In addition, the biosensor was applied for detecting lysozyme in spiked wine samples, and very good recovery rates were obtained in the range from 95.2 to 102.0% for lysozyme detection. This implies that the proposed sandwich biosensor is a promising analytical tool for the analysis of lysozyme in real samples.

  13. Effect of Age and Glaucoma on the Detection of Darks and Lights

    PubMed Central

    Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-01-01

    Purpose We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. Methods We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. Results We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. Conclusions We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma. PMID:26513506

  14. Effect of Age and Glaucoma on the Detection of Darks and Lights.

    PubMed

    Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma.

  15. Automated cloud and shadow detection and filling using two-date Landsat imagery in the United States

    USGS Publications Warehouse

    Jin, Suming; Homer, Collin G.; Yang, Limin; Xian, George; Fry, Joyce; Danielson, Patrick; Townsend, Philip A.

    2013-01-01

    A simple, efficient, and practical approach for detecting cloud and shadow areas in satellite imagery and restoring them with clean pixel values has been developed. Cloud and shadow areas are detected using spectral information from the blue, shortwave infrared, and thermal infrared bands of Landsat Thematic Mapper or Enhanced Thematic Mapper Plus imagery from two dates (a target image and a reference image). These detected cloud and shadow areas are further refined using an integration process and a false shadow removal process according to the geometric relationship between cloud and shadow. Cloud and shadow filling is based on the concept of the Spectral Similarity Group (SSG), which uses the reference image to find similar alternative pixels in the target image to serve as replacement values for restored areas. Pixels are considered to belong to one SSG if the pixel values from Landsat bands 3, 4, and 5 in the reference image are within the same spectral ranges. This new approach was applied to five Landsat path/rows across different landscapes and seasons with various types of cloud patterns. Results show that almost all of the clouds were captured with minimal commission errors, and shadows were detected reasonably well. Among five test scenes, the lowest producer's accuracy of cloud detection was 93.9% and the lowest user's accuracy was 89%. The overall cloud and shadow detection accuracy ranged from 83.6% to 99.3%. The pixel-filling approach resulted in a new cloud-free image that appears seamless and spatially continuous despite differences in phenology between the target and reference images. Our methods offer a straightforward and robust approach for preparing images for the new 2011 National Land Cover Database production.

  16. Building a Three-Dimensional Nano-Bio Interface for Aptasensing: An Analytical Methodology Based on Steric Hindrance Initiated Signal Amplification Effect.

    PubMed

    Du, Xiaojiao; Jiang, Ding; Hao, Nan; Qian, Jing; Dai, Liming; Zhou, Lei; Hu, Jianping; Wang, Kun

    2016-10-04

    The development of novel detection methodologies in electrochemiluminescence (ECL) aptasensor fields with simplicity and ultrasensitivity is essential for constructing biosensing architectures. Herein, a facile, specific, and sensitive methodology was developed unprecedentedly for quantitative detection of microcystin-LR (MC-LR) based on three-dimensional boron and nitrogen codoped graphene hydrogels (BN-GHs) assisted steric hindrance amplifying effect between the aptamer and target analytes. The recognition reaction was monitored by quartz crystal microbalance (QCM) to validate the possible steric hindrance effect. First, the BN-GHs were synthesized via self-assembled hydrothermal method and then applied as the Ru(bpy) 3 2+ immobilization platform for further loading the biomolecule aptamers due to their nanoporous structure and large specific surface area. Interestingly, we discovered for the first time that, without the aid of conventional double-stranded DNA configuration, such three-dimensional nanomaterials can directly amplify the steric hindrance effect between the aptamer and target analytes to a detectable level, and this facile methodology could be for an exquisite assay. With the MC-LR as a model, this novel ECL biosensor showed a high sensitivity and a wide linear range. This strategy supplies a simple and versatile platform for specific and sensitive determination of a wide range of aptamer-related targets, implying that three-dimensional nanomaterials would play a crucial role in engineering and developing novel detection methodologies for ECL aptasensing fields.

  17. Thermal bioaerosol cloud tracking with Bayesian classification

    NASA Astrophysics Data System (ADS)

    Smith, Christian W.; Dupuis, Julia R.; Schundler, Elizabeth C.; Marinelli, William J.

    2017-05-01

    The development of a wide area, bioaerosol early warning capability employing existing uncooled thermal imaging systems used for persistent perimeter surveillance is discussed. The capability exploits thermal imagers with other available data streams including meteorological data and employs a recursive Bayesian classifier to detect, track, and classify observed thermal objects with attributes consistent with a bioaerosol plume. Target detection is achieved based on similarity to a phenomenological model which predicts the scene-dependent thermal signature of bioaerosol plumes. Change detection in thermal sensor data is combined with local meteorological data to locate targets with the appropriate thermal characteristics. Target motion is tracked utilizing a Kalman filter and nearly constant velocity motion model for cloud state estimation. Track management is performed using a logic-based upkeep system, and data association is accomplished using a combinatorial optimization technique. Bioaerosol threat classification is determined using a recursive Bayesian classifier to quantify the threat probability of each tracked object. The classifier can accept additional inputs from visible imagers, acoustic sensors, and point biological sensors to improve classification confidence. This capability was successfully demonstrated for bioaerosol simulant releases during field testing at Dugway Proving Grounds. Standoff detection at a range of 700m was achieved for as little as 500g of anthrax simulant. Developmental test results will be reviewed for a range of simulant releases, and future development and transition plans for the bioaerosol early warning platform will be discussed.

  18. Synthesis of a multi-functional DNA nanosphere barcode system for direct cell detection.

    PubMed

    Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum

    2017-09-28

    Nucleic acid-based technologies have been applied to numerous biomedical applications. As a novel material for target detection, DNA has been used to construct a barcode system with a range of structures. This paper reports multi-functionalized DNA nanospheres (DNANSs) by rolling circle amplification (RCA) with several functionalized nucleotides. DNANSs with a barcode system were designed to exhibit fluorescence for coding enhanced signals and contain biotin for more functionalities, including targeting through the biotin-streptavidin (biotin-STA) interaction. Functionalized deoxynucleotide triphosphates (dNTPs) were mixed in the RCA process and functional moieties can be expressed on the DNANSs. The anti-epidermal growth factor receptor antibodies (anti-EGFR Abs) can be conjugated on DNANSs for targeting cancer cells specifically. As a proof of concept, the potential of the multi-functional DNANS barcode was demonstrated by direct cell detection as a simple detection method. The DNANS barcode provides a new route for the simple and rapid selective recognition of cancer cells.

  19. A remote sensing laser fluorometer. [for detecting oil, ligninsulfonates, and chlorophyll in water

    NASA Technical Reports Server (NTRS)

    Oneill, R. A.; Davis, A. R.; Gross, H. G.; Kruus, J.

    1975-01-01

    A sensor is reported which is able to identify certain specific substances in water by means of their fluorescence spectra. In particular, the sensor detects oil, ligninsulfonates and chlorophyll. The device is able to measure the fluorescence spectra of water at ranges up to 75 m and to detect oil spills on water at altitudes up to 300 m. Blue light from a laser is used to excite the fluorescence of the target. Any light from the ambient background illumination, from the reflected laser light or from the induced fluorescence is gathered by a small telescope focused on the target. Optical filters are used to block the reflected laser light and to select the wavelengths of interest in the fluorescence spectrum of the target. The remaining light is detected with a photomultiplier tube. The amplitude of the laser induced fluorescence in the wavelength interval selected by the optical filters is displayed on a meter or strip chart recorder.

  20. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi

    2014-11-01

    A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Observer efficiency in free-localization tasks with correlated noise.

    PubMed

    Abbey, Craig K; Eckstein, Miguel P

    2014-01-01

    The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks.

  2. Observer efficiency in free-localization tasks with correlated noise

    PubMed Central

    Abbey, Craig K.; Eckstein, Miguel P.

    2014-01-01

    The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks. PMID:24817854

  3. Analysis of RF emissions from laser induced breakdown of atmospheric air and metals

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Lakshmi, Vinoth Kumar; Elle, Manikanta; Chelikani, Leela

    2013-10-01

    The low frequency (RF, microwave) emissions from laser produced plasma (LPP) are of great interest because of their variety of applications. The RF waves emitted by the nanosecond LPP of atmospheric air and metal (Al, Cu) targets were detected using antennas over frequency ranges (30 MHz-18 GHz) and were monitored using a spectrum analyzer (3 Hz-50 GHz). With different target materials, the dominant emission lines were observed to fall in different specific frequency ranges within the detection limit. The emissions from Cu were in the higher frequency range (100-200 MHz) than that of Al (30-100 MHz) may be due to the higher electron density of Cu, which contributes to the LPP conductivity. From the LPP of atmospheric air, the RF output was found to be increasing with the input laser energy up to certain value, beyond which almost no emission was observed. This effect is attributed to the modification in the net induced dipole moment due to the multiple plasma sources in the LPP at higher input laser energies. The detected radiation was observed to be dependent on laser and antenna polarization. Further studies may lead to an efficient technique for material identification from the RF characteristic peaks.

  4. A method to improve the range resolution in stepped frequency continuous wave radar

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Paweł

    2018-04-01

    In the paper one of high range resolution methods - Aperture Sampling - was analysed. Unlike MUSIC based techniques it proved to be very efficient in terms of achieving unambiguous synthetic range profile for ultra-wideband stepped frequency continuous wave radar. Assuming that minimal distance required to separate two targets in depth (distance) corresponds to -3 dB width of received echo, AS provided a 30,8 % improvement in range resolution in analysed scenario, when compared to results of applying IFFT. Output data is far superior in terms of both improved range resolution and reduced side lobe level than used typically in this area Inverse Fourier Transform. Furthermore it does not require prior knowledge or an estimate of number of targets to be detected in a given scan.

  5. Remote sensing based on hyperspectral data analysis

    NASA Astrophysics Data System (ADS)

    Sharifahmadian, Ershad

    In remote sensing, accurate identification of far objects, especially concealed objects is difficult. In this study, to improve object detection from a distance, the hyperspecral imaging and wideband technology are employed with the emphasis on wideband radar. As the wideband data includes a broad range of frequencies, it can reveal information about both the surface of the object and its content. Two main contributions are made in this study: 1) Developing concept of return loss for target detection: Unlike typical radar detection methods which uses radar cross section to detect an object, it is possible to enhance the process of detection and identification of concealed targets using the wideband radar based on the electromagnetic characteristics --conductivity, permeability, permittivity, and return loss-- of materials. During the identification process, collected wideband data is evaluated with information from wideband signature library which has already been built. In fact, several classes (e.g. metal, wood, etc.) and subclasses (ex. metals with high conductivity) have been defined based on their electromagnetic characteristics. Materials in a scene are then classified based on these classes. As an example, materials with high electrical conductivity can be conveniently detected. In fact, increasing relative conductivity leads to a reduction in the return loss. Therefore, metals with high conductivity (ex. copper) shows stronger radar reflections compared with metals with low conductivity (ex. stainless steel). Thus, it is possible to appropriately discriminate copper from stainless steel. 2) Target recognition techniques: To detect and identify targets, several techniques have been proposed, in particular the Multi-Spectral Wideband Radar Image (MSWRI) which is able to localize and identify concealed targets. The MSWRI is based on the theory of robust capon beamformer. During identification process, information from wideband signature library is utilized. The WB signature library includes such parameters as conductivity, permeability, permittivity, and return loss at different frequencies for possible materials related to a target. In the MSWRI approach, identification procedure is performed by calculating the RLs at different selected frequencies. Based on similarity of the calculated RLs and RL from WB signature library, targets are detected and identified. Based on the simulation and experimental results, it is concluded that the MSWRI technique is a promising approach for standoff target detection.

  6. Swept Frequency Laser Metrology System

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2010-01-01

    A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.

  7. Spectrophotometric and ultrasensitive DNA bioassay by circular-strand displacement polymerization reaction.

    PubMed

    Yu, Luxin; Wu, Wei; Chen, Junhua; Xiao, Zhuo; Ge, Chenchen; Lie, Puchang; Fang, Zhiyuan; Chen, Lingbo; Zhang, Ya; Zeng, Lingwen

    2013-12-07

    We demonstrated a new spectrophotometric DNA detection approach based on a circular strand-displacement polymerization reaction for the quantitative detection of sequence specific DNA. In this assay, the hybridization of an immobilized hairpin probe on the microtiter plate, to target DNA, results in a conformational change and leads to a stem separation. A short primer thus anneals with the open stem and triggers a polymerization reaction, allowing a cyclic reaction comprising the release of target DNA and hybridization of the target with the remaining immobilized hairpin probe. Through this cyclical process, a large number of duplex DNA complexes are produced. Finally, the biotin modified duplex DNA products can be detected via the HRP catalyzed substrate 3,3',5,5'-tetramethylbenzidine using a spectrophotometer. As a proof of concept, a short DNA sequence (20-nt) related to the South East Asia (SEA) type deletion of α-thalassemia was chosen as the model target. This proposed assay has a very high sensitivity and selectivity with a dynamic response ranging from 0.1 fM to 10 nM and the detection limit was 8 aM. It can be performed within 2 hours, and it can differentiate target SEA DNA from wild-type DNA. By substituting the hairpin probes used in the present work, this assay can be used to detect other subtypes of genetic disorders.

  8. An enzyme free electrochemical biosensor for sensitive detection of miRNA with a high discrimination factor by coupling the strand displacement reaction and catalytic hairpin assembly recycling.

    PubMed

    Yao, Juan; Zhang, Zhang; Deng, Zhenghua; Wang, Youqiang; Guo, Yongcan

    2017-10-23

    An isothermal, enzyme free, ultra-specific and ultra-sensitive protocol for electrochemical detection of miRNAs is proposed based on the toehold-mediated strand displacement reaction (SDR) and non-enzymatic catalytic hairpin reaction (CHA) recycling. The SDR was first triggered only in the presence of target miRNA and this process also affects other miRNA interferences having similar target sequences, thus guaranteeing a high discrimination factor and could be used in rare content miRNA detection with various amounts of interferences having similar target sequences. The output protector strand then triggered enzyme free CHA amplification and generates plenty of hairpin self-assembly products. This process in turn influences SDR equilibrium to move to the right and generates large amounts of protector output to ensure analysis sensitivity. Compared with traditional CHA, our proposed method greatly improved the signal to noise ratio and shows excellent performance in rare miRNA detection with miRNA analogue interference. Under the optimal experimental conditions and using square wave voltammetry, the established biosensor could detect target miRNA-21 down to 30 fM (S/N = 3) with a dynamic range from 100 fM to 2 nM, and discriminate rare target miRNA-21 from mismatched miRNA with high selectivity. This method holds great promise in miRNA detection from human cancer cell lines and would be a versatile and powerful tool for clinical molecular diagnostics.

  9. Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events.

    PubMed

    Yoo, Min-Sang; Shin, Minguk; Kim, Younghun; Jang, Min; Choi, Yoon-E; Park, Si Jae; Choi, Jonghoon; Lee, Jinyoung; Park, Chulhwan

    2017-05-01

    We developed a single-walled carbon nanotubes (SWCNTs)-based electrochemical biosensor for the detection of Bacillus subtilis, one of the microorganisms observed in Asian dust events, which causes respiratory diseases such as asthma and pneumonia. SWCNTs plays the role of a transducer in biological antigen/antibody reaction for the electrical signal while 1-pyrenebutanoic acid succinimidyl ester (1-PBSE) and ant-B. subtilis were performed as a chemical linker and an acceptor, respectively, for the adhesion of target microorganism in the developed biosensor. The detection range (10 2 -10 10  CFU/mL) and the detection limit (10 2  CFU/mL) of the developed biosensor were identified while the response time was 10 min. The amount of target B. subtilis was the highest in the specificity test of the developed biosensor, compared with the other tested microorganisms (Staphylococcus aureus, Flavobacterium psychrolimnae, and Aquabacterium commune). In addition, target B. subtilis detected by the developed biosensor was observed by scanning electron microscope (SEM) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Automated intelligent video surveillance system for ships

    NASA Astrophysics Data System (ADS)

    Wei, Hai; Nguyen, Hieu; Ramu, Prakash; Raju, Chaitanya; Liu, Xiaoqing; Yadegar, Jacob

    2009-05-01

    To protect naval and commercial ships from attack by terrorists and pirates, it is important to have automatic surveillance systems able to detect, identify, track and alert the crew on small watercrafts that might pursue malicious intentions, while ruling out non-threat entities. Radar systems have limitations on the minimum detectable range and lack high-level classification power. In this paper, we present an innovative Automated Intelligent Video Surveillance System for Ships (AIVS3) as a vision-based solution for ship security. Capitalizing on advanced computer vision algorithms and practical machine learning methodologies, the developed AIVS3 is not only capable of efficiently and robustly detecting, classifying, and tracking various maritime targets, but also able to fuse heterogeneous target information to interpret scene activities, associate targets with levels of threat, and issue the corresponding alerts/recommendations to the man-in- the-loop (MITL). AIVS3 has been tested in various maritime scenarios and shown accurate and effective threat detection performance. By reducing the reliance on human eyes to monitor cluttered scenes, AIVS3 will save the manpower while increasing the accuracy in detection and identification of asymmetric attacks for ship protection.

  11. Geophysical background and as-built target characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.W.

    1994-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas inmore » Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ``very easy to detect`` to ``challenging to the most advanced systems.`` Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets.« less

  12. Assistive obstacle detection and navigation devices for vision-impaired users.

    PubMed

    Ong, S K; Zhang, J; Nee, A Y C

    2013-09-01

    Quality of life for the visually impaired is an urgent worldwide issue that needs to be addressed. Obstacle detection is one of the most important navigation tasks for the visually impaired. In this research, a novel range sensor placement scheme is proposed in this paper for the development of obstacle detection devices. Based on this scheme, two prototypes have been developed targeting at different user groups. This paper discusses the design issues, functional modules and the evaluation tests carried out for both prototypes. Implications for Rehabilitation Visual impairment problem is becoming more severe due to the worldwide ageing population. Individuals with visual impairment require assistance from assistive devices in daily navigation tasks. Traditional assistive devices that assist navigation may have certain drawbacks, such as the limited sensing range of a white cane. Obstacle detection devices applying the range sensor technology can identify road conditions with a higher sensing range to notify the users of potential dangers in advance.

  13. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments

    NASA Astrophysics Data System (ADS)

    Bagheri, Zahra M.; Cazzolato, Benjamin S.; Grainger, Steven; O'Carroll, David C.; Wiederman, Steven D.

    2017-08-01

    Objective. Many computer vision and robotic applications require the implementation of robust and efficient target-tracking algorithms on a moving platform. However, deployment of a real-time system is challenging, even with the computational power of modern hardware. Lightweight and low-powered flying insects, such as dragonflies, track prey or conspecifics within cluttered natural environments, illustrating an efficient biological solution to the target-tracking problem. Approach. We used our recent recordings from ‘small target motion detector’ neurons in the dragonfly brain to inspire the development of a closed-loop target detection and tracking algorithm. This model exploits facilitation, a slow build-up of response to targets which move along long, continuous trajectories, as seen in our electrophysiological data. To test performance in real-world conditions, we implemented this model on a robotic platform that uses active pursuit strategies based on insect behaviour. Main results. Our robot performs robustly in closed-loop pursuit of targets, despite a range of challenging conditions used in our experiments; low contrast targets, heavily cluttered environments and the presence of distracters. We show that the facilitation stage boosts responses to targets moving along continuous trajectories, improving contrast sensitivity and detection of small moving targets against textured backgrounds. Moreover, the temporal properties of facilitation play a useful role in handling vibration of the robotic platform. We also show that the adoption of feed-forward models which predict the sensory consequences of self-movement can significantly improve target detection during saccadic movements. Significance. Our results provide insight into the neuronal mechanisms that underlie biological target detection and selection (from a moving platform), as well as highlight the effectiveness of our bio-inspired algorithm in an artificial visual system.

  14. Trawling bats exploit an echo-acoustic ground effect

    PubMed Central

    Zsebok, Sandor; Kroll, Ferdinand; Heinrich, Melina; Genzel, Daria; Siemers, Björn M.; Wiegrebe, Lutz

    2013-01-01

    A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both target detection and -discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc). Psychophysical performance was measured as a function of height above either smooth surfaces (water or PVC) or above a clutter surface (artificial grass). At low heights above the clutter surface (10, 20, or 35 cm), the bats' detection performance was worse than above a smooth surface. At a height of 50 cm, the surface structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats' echolocation calls during target approach shows that above the clutter surface, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an target from below over water but from above over a clutter surface. These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and -discrimination not only for prey on the water but also for some range above. PMID:23576990

  15. Bearings Only Air-to-Air Ranging

    DTIC Science & Technology

    1988-07-25

    directly in fiut of the observer whem first detected, more time will be needed for a good estimate. A sound uinp them is for the observer, having...altitude angle to provide an estimate of the z component. Moving targets commonly require some 60 seconds for good estimates of target location and...fixed target case, where a good strategy for the observer can be determined a priori, highly effective maneuvers for the observer in the case of a moving

  16. Enhanced Detection of Sea-Disposed Man-Made Objects in Backscatter Data

    NASA Astrophysics Data System (ADS)

    Edwards, M.; Davis, R. B.

    2016-12-01

    The Hawai'i Undersea Military Munitions Assessment (HUMMA) project developed software to increase data visualization capabilities applicable to seafloor reflectivity datasets acquired by a variety of bottom-mapping sonar systems. The purpose of these improvements is to detect different intensity values within an arbitrary amplitude range that may be associated with relative target reflectivity as well as extend the overall amplitude range across which detailed dynamic contrast may be effectively displayed. The backscatter dataset used to develop this software imaged tens of thousands of reflective targets resting on the seabed that were systematically sea disposed south of Oahu, Hawaii, around the end of World War II in waters ranging from 300-600 meters depth. Human-occupied and remotely operated vehicles conducted ground-truth video and photographic reconnaissance of thousands of these reflective targets, documenting and geo-referencing long curvilinear trials of items including munitions, paint cans, airplane parts, scuttled ships, cars and bundled anti-submarine nets. Edwards et al. [2012] determined that most individual trails consist of objects of one particular type. The software described in this presentation, in combination with the ground-truth images, was developed to help recognize different types of objects based on reflectivity, size, and shape from altitudes of tens of meters above the seabed. The fundamental goal of the software is to facilitate rapid underway detection and geo-location of specific sea-disposed objects so their impact on the environment can be assessed.

  17. Object acquisition and tracking for space-based surveillance

    NASA Astrophysics Data System (ADS)

    1991-11-01

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase 1) and N00014-89-C-0015 (Phase 2). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processing into time dependent, object dependent, and data dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.

  18. Object acquisition and tracking for space-based surveillance. Final report, Dec 88-May 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-27

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase I) and N00014-89-C-0015 (Phase II). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processingmore » into time dependent, object-dependent, and data-dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.« less

  19. Electro-optical system for gunshot detection: analysis, concept, and performance

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Madura, H.; Trzaskawka, P.; Bieszczad, G.; Sosnowski, T.

    2011-08-01

    The paper discusses technical possibilities to build an effective electro-optical sensor unit for sniper detection using infrared cameras. This unit, comprising of thermal and daylight cameras, can operate as a standalone device but its primary application is a multi-sensor sniper and shot detection system. At first, the analysis was presented of three distinguished phases of sniper activity: before, during and after the shot. On the basis of experimental data the parameters defining the relevant sniper signatures were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets and the descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. The analyzed infrared systems were simulated using NVTherm software. The calculations for several cameras, equipped with different lenses and detector types were performed. The simulation of detection ranges was performed for the selected scenarios of sniper detection tasks. After the analysis of simulation results, the technical specifications of infrared sniper detection system were discussed, required to provide assumed detection range. Finally the infrared camera setup was proposed which can detected sniper from 1000 meters range.

  20. The application of IR detector with windowing technique in the small and dim target detection

    NASA Astrophysics Data System (ADS)

    Su, Xiaofeng; Chen, Fansheng; Dong, Yucui; Cui, Kun; Huang, Sijie

    2015-04-01

    The performance of small and dim IR target detection is mostly affected by the signal to noise ratio(SNR) and signal to clutter ratio(SCR), for the MWIR especially LWIR array detector, because of the background radiation and the optical system radiation, the SCR cannot be unlimited increased by using a longer integral time, so the frame rate of the detector was mainly limited by the data readout time especially in a large-scale infrared detector, in this paper a new MWIR array detector with windowing technique was used to do the experiment, which can get a faster frame rate around the target by using the windowing mode, so the redundant information could be ignore, and the background subtraction was used to remove the fixed pattern noise and adjust the dynamic range of the target, then a local NUC(non uniformity correction) technique was proposed to improve the SCR of the target, the advantage between local NUC and global NUC was analyzed in detail, finally the multi local window frame accumulation was adopted to enhance the target further, and the SNR of the target was improved. The experiment showed the SCR of the target can improved from 1.3 to 36 at 30 frames accumulation, which make the target detection and tracking become very easily by using the new method.

  1. Development and test of photon counting lidar

    NASA Astrophysics Data System (ADS)

    Wang, Chun-hui; Wang, Ao-you; Tao, Yu-liang; Li, Xu; Peng, Huan; Meng, Pei-bei

    2018-02-01

    In order to satisfy the application requirements of spaceborne three dimensional imaging lidar , a prototype of nonscanning multi-channel lidar based on receiver field of view segmentation was designed and developed. High repetition frequency micro-pulse lasers, optics fiber array and Geiger-mode APD, combination with time-correlated single photon counting technology, were adopted to achieve multi-channel detection. Ranging experiments were carried out outdoors. In low echo photon condition, target photon counting showed time correlated and noise photon counting were random. Detection probability and range precision versus threshold were described and range precision increased from 0.44 to 0.11 when threshold increased from 4 to 8.

  2. Visually directed vs. software-based targeted biopsy compared to transperineal template mapping biopsy in the detection of clinically significant prostate cancer.

    PubMed

    Valerio, Massimo; McCartan, Neil; Freeman, Alex; Punwani, Shonit; Emberton, Mark; Ahmed, Hashim U

    2015-10-01

    Targeted biopsy based on cognitive or software magnetic resonance imaging (MRI) to transrectal ultrasound registration seems to increase the detection rate of clinically significant prostate cancer as compared with standard biopsy. However, these strategies have not been directly compared against an accurate test yet. The aim of this study was to obtain pilot data on the diagnostic ability of visually directed targeted biopsy vs. software-based targeted biopsy, considering transperineal template mapping (TPM) biopsy as the reference test. Prospective paired cohort study included 50 consecutive men undergoing TPM with one or more visible targets detected on preoperative multiparametric MRI. Targets were contoured on the Biojet software. Patients initially underwent software-based targeted biopsies, then visually directed targeted biopsies, and finally systematic TPM. The detection rate of clinically significant disease (Gleason score ≥3+4 and/or maximum cancer core length ≥4mm) of one strategy against another was compared by 3×3 contingency tables. Secondary analyses were performed using a less stringent threshold of significance (Gleason score ≥4+3 and/or maximum cancer core length ≥6mm). Median age was 68 (interquartile range: 63-73); median prostate-specific antigen level was 7.9ng/mL (6.4-10.2). A total of 79 targets were detected with a mean of 1.6 targets per patient. Of these, 27 (34%), 28 (35%), and 24 (31%) were scored 3, 4, and 5, respectively. At a patient level, the detection rate was 32 (64%), 34 (68%), and 38 (76%) for visually directed targeted, software-based biopsy, and TPM, respectively. Combining the 2 targeted strategies would have led to detection rate of 39 (78%). At a patient level and at a target level, software-based targeted biopsy found more clinically significant diseases than did visually directed targeted biopsy, although this was not statistically significant (22% vs. 14%, P = 0.48; 51.9% vs. 44.3%, P = 0.24). Secondary analysis showed similar results. Based on these findings, a paired cohort study enrolling at least 257 men would verify whether this difference is statistically significant. The diagnostic ability of software-based targeted biopsy and visually directed targeted biopsy seems almost comparable, although utility and efficiency both seem to be slightly in favor of the software-based strategy. Ongoing trials are sufficiently powered to prove or disprove these findings. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    PubMed

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Real-time multisensor data fusion for target detection, classification, tracking, counting, and range estimates

    NASA Astrophysics Data System (ADS)

    Tsui, Eddy K.; Thomas, Russell L.

    2004-09-01

    As part of the Commanding General of Army Material Command's Research, Development & Engineering Command (RDECOM), the U.S. Army Research Development and Engineering Center (ARDEC), Picatinny funded a joint development effort with McQ Associates, Inc. to develop an Advanced Minefield Sensor (AMS) as a technology evaluation prototype for the Anti-Personnel Landmine Alternatives (APLA) Track III program. This effort laid the fundamental groundwork of smart sensors for detection and classification of targets, identification of combatant or noncombatant, target location and tracking at and between sensors, fusion of information across targets and sensors, and automatic situation awareness to the 1st responder. The efforts have culminated in developing a performance oriented architecture meeting the requirements of size, weight, and power (SWAP). The integrated digital signal processor (DSP) paradigm is capable of computing signals from sensor modalities to extract needed information within either a 360° or fixed field of view with acceptable false alarm rate. This paper discusses the challenges in the developments of such a sensor, focusing on achieving reasonable operating ranges, achieving low power, small size and low cost, and applications for extensions of this technology.

  5. Target detection and localization in shallow water: an experimental demonstration of the acoustic barrier problem at the laboratory scale.

    PubMed

    Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme

    2011-01-01

    This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.

  6. Multiple-Targeted Graphene-based Nanocarrier for Intracellular Imaging of mRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ying; Li, Zhaohui; Liu, Misha

    Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labeledmore » single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis.« less

  7. Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams.

    PubMed

    Bradley, Paul M; Journey, Celeste A; Romanok, Kristin M; Barber, Larry B; Buxton, Herbert T; Foreman, William T; Furlong, Edward T; Glassmeyer, Susan T; Hladik, Michelle L; Iwanowicz, Luke R; Jones, Daniel K; Kolpin, Dana W; Kuivila, Kathryn M; Loftin, Keith A; Mills, Marc A; Meyer, Michael T; Orlando, James L; Reilly, Timothy J; Smalling, Kelly L; Villeneuve, Daniel L

    2017-05-02

    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites. Detected contaminant concentrations varied from less than 1 ng L -1 to greater than 10 μg L -1 , with 77 and 278 having median detected concentrations greater than 100 ng L -1 and 10 ng L -1 , respectively. Cumulative detections and concentrations ranged 4-161 compounds (median 70) and 8.5-102 847 ng L -1 , respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log 10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71-82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001-0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at μg L -1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L -1 .

  8. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in USA streams

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Romanok, Kristin; Barber, Larry B.; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Glassmeyer, Susan T.; Hladik, Michelle L.; Iwanowicz, Luke R.; Jones, Daniel K.; Kolpin, Dana W.; Kuivila, Kathryn M.; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Reilly, Timothy J.; Smalling, Kelly L.; Villeneuve, Daniel L.

    2017-01-01

    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied from less than 1 ng L–1 to greater than 10 μg L–1, with 77 and 278 having median detected concentrations greater than 100 ng L–1 and 10 ng L–1, respectively. Cumulative detections and concentrations ranged 4–161 compounds (median 70) and 8.5–102 847 ng L–1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71–82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001–0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at μg L–1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L–1.

  9. Photoacoustic microcantilevers

    DOEpatents

    Thundat, Thomas G [Knoxville, TN; Van Neste, Charles W [Kingston, TN; Brown, Gilbert M [Knoxville, TN; Senesac, Lawrence R [Knoxville, TN

    2012-06-05

    A system generates a photoacoustic spectrum in an open or closed environment with reduced noise. A source focuses a beam on a target substance disposed on a base. The base supports a cantilever that measures acoustic waves generated as light is absorbed by the target substance. By focusing a chopped/pulsed light beam on the target substance, a range of optical absorbance may be measured as the wavelength of light changes. An identifying spectrum of the target may detected by monitoring the vibration intensity variation of the cantilever as a function of illuminating wavelength or color.

  10. Non-Cooperative Target Recognition by Means of Singular Value Decomposition Applied to Radar High Resolution Range Profiles †

    PubMed Central

    López-Rodríguez, Patricia; Escot-Bocanegra, David; Fernández-Recio, Raúl; Bravo, Ignacio

    2015-01-01

    Radar high resolution range profiles are widely used among the target recognition community for the detection and identification of flying targets. In this paper, singular value decomposition is applied to extract the relevant information and to model each aircraft as a subspace. The identification algorithm is based on angle between subspaces and takes place in a transformed domain. In order to have a wide database of radar signatures and evaluate the performance, simulated range profiles are used as the recognition database while the test samples comprise data of actual range profiles collected in a measurement campaign. Thanks to the modeling of aircraft as subspaces only the valuable information of each target is used in the recognition process. Thus, one of the main advantages of using singular value decomposition, is that it helps to overcome the notable dissimilarities found in the shape and signal-to-noise ratio between actual and simulated profiles due to their difference in nature. Despite these differences, the recognition rates obtained with the algorithm are quite promising. PMID:25551484

  11. Depth dependent variation of the echolocation pulse rate of bottlenose dolphins (Tursiops truncatus).

    PubMed

    Simard, Peter; Hibbard, Ashley L; McCallister, Kimberly A; Frankel, Adam S; Zeddies, David G; Sisson, Geoffrey M; Gowans, Shannon; Forys, Elizabeth A; Mann, David A

    2010-01-01

    Trained odontocetes appear to have good control over the timing (pulse rate) of their echolocation clicks; however, there is comparatively little information about how free-ranging odontocetes modify their echolocation in relation to their environment. This study investigates echolocation pulse rate in 14 groups of free-ranging bottlenose dolphins (Tursiops truncatus) at a variety of depths (2.4-30.1 m) in the Gulf of Mexico. Linear regression models indicated a significant decrease in mean pulse rate with mean water depth. Pulse rates for most groups were multi-modal. Distance to target estimates were as high as 91.8 m, assuming that echolocation was produced at a maximal rate for the target distance. A 5.29-ms processing lag time was necessary to explain the pulse rate modes observed. Although echolocation is likely reverberation limited, these results support the hypotheses that free-ranging bottlenose dolphins in this area are adapting their echolocation signals for a variety of target detection and ranging purposes, and that the target distance is a function of water depth.

  12. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection.

    PubMed

    Zheng, Laibao; Wan, Yi; Qi, Peng; Sun, Yan; Zhang, Dun; Yu, Liangmin

    2017-05-15

    The detection of pathogenic bacteria is essential in various fields, such as food safety, water environmental analysis, or clinical diagnosis. Although rapid and selective techniques have been achieved based on the fast and specific binding of recognitions elements and target, the sensitive detection of bacterial pathogens was limited by their low targets-binding efficiency. The three-dimensional (3D) nano-biointerface, compared with the two-dimensional (2D) flat substrate, has a much higher binding capacity, which can offer more reactive sites to bind with bacterial targets, resulting in a great improvement of detection sensitivity. Herein, a lectin functionalized ZnO nanorod (ZnO-NR) array has been fabricated and employed as a 3D nano-biointerface for Escherichia coli (E. coli) capture and detection by multivalent binding of concanavalin A (ConA) with polysaccharides on the cellular surface of E. coli. The 3D lectin functionalized ZnO-NR array-based assay shows reasonable detection limit and efficiently expanded linear range (1.0×10 3 to 1.0×10 7 cfumL -1 ) for pathogen detection. The platform has a potential for further applications and provides an excellent sensitivity approach for detection of pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Coherent and Noncoherent Joint Processing of Sonar for Detection of Small Targets in Shallow Water

    PubMed Central

    Jiang, Jingning; Li, Si; Ding, Zhenping; Pan, Chen; Gong, Xianyi

    2018-01-01

    A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments. PMID:29642637

  14. Overview of hybridization and detection techniques.

    PubMed

    Hilario, Elena

    2007-01-01

    A misconception regarding the sensitivity of nonradioactive methods for screening genomic DNA libraries often hinders the establishment of these environmentally friendly techniques in molecular biology laboratories. Nonradioactive probes, properly prepared and quantified, can detect DNA target molecules to the femtomole range. However, appropriate hybridization techniques and detection methods should also be adopted for an efficient use of nonradioactive techniques. Detailed descriptions of genomic library handling before and during the nonradioactive hybridization and detection are often omitted from publications. This chapter aims to fill this void by providing a collection of technical tips on hybridization and detection techniques.

  15. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.

    PubMed

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-03-16

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  16. Stand-off spectroscopy for the detection of chemical warfare agents

    NASA Astrophysics Data System (ADS)

    Clewes, Rhea J.; Howle, Chris R.; Stothard, David J. M.; Dunn, Malcolm H.; Robertson, Gordon; Miller, William; Malcolm, Graeme; Maker, Gareth; Cox, Rick; Williams, Brad; Russell, Matt

    2012-10-01

    The most desirable configuration for detection of toxic chemicals utilises the maximum distance between detector and hazard. This approach minimises the contamination of equipment or personnel. Where the target chemical is an involatile liquid, indirect detection of the liquid contamination is made difficult by inherently low vapour pressure. In this instance, direct detection of the chemical hazard is the best approach. Recent technology developments have allowed spectroscopic systems to provide multiple options for the stand-off detection of involatile chemical warfare agents (CWAs). Two different stand-off spectroscopic systems, based upon IR absorption and Raman spectroscopic techniques are described here. The Negative Contrast Imager (NCI) is based upon an optical parametric oscillator (OPO) source comprising a Q-switched intracavity MgO:PPLN crystal. This crystal has a fanned grating design and wavelength tuning is achieved by translating the PPLN crystal within the 1064 nm pump beam. This approach enables the production of shortwave and midwave IR radiation (1.5 - 1.8 μm and 2.6 - 3.8 μm, respectively), which is scanned across the scene of interest. Target materials that have an absorption feature commensurate with the wavelength of incoming radiation reduce the intensity of returned signal, resulting in dark pixels in the acquired image. This method enables location and classification of the target material. Stand-off Raman spectroscopy allows target chemicals to be identified at range through comparison of the acquired signature relative to a spectral database. In this work, we used a Raman system based upon a 1047 nm Nd:YLF laser source and a proprietary InGaAsP camera system. Utilisation of a longer excitation wavelength than most conventional stand-off detection systems (e.g. 532 or 785 nm) enables reduction of fluorescence from both the surface and the deposited chemicals, thereby revealing the Raman spectrum. NCI and Raman spectroscopy are able to detect CWAs on surfaces at distances of 2 - 10 metres and have potential to detect over longer ranges. We report the successful identification of at least 60 μl of nitrogen mustard at a distance of a 2 m and 10 m using NCI and Raman spectroscopy.

  17. Assessment of UWB radar for improvised explosive device detection

    NASA Astrophysics Data System (ADS)

    Kegege, Obadiah; Li, Junfei; Foltz, Heinrich

    2006-05-01

    The goal of our research is to assess the capability of ultra-wide-band (UWB) radar for detection of roadside improvised explosive devices (IEDs). Radar scattering signatures of artillery shells over a broadband frequency range, with different Tx/Rx polarizations, and at various aspect angles have been explored based on simulation and indoor measurement. Characteristics of IEDs versus clutter, wave penetration at different frequencies are also investigated. Finally, visibility of IED targets is tested on a moving cart in outdoor settings, with IED targets on ground surface, recessed, and buried underground at different distances away from the radar.

  18. Data collection and simulation of high range resolution laser radar for surface mine detection

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Chevalier, Tomas; Larsson, Håkan

    2006-05-01

    Rapid and efficient detection of surface mines, IED's (Improvised Explosive Devices) and UXO (Unexploded Ordnance) is of high priority in military conflicts. High range resolution laser radars combined with passive hyper/multispectral sensors offer an interesting concept to help solving this problem. This paper reports on laser radar data collection of various surface mines in different types of terrain. In order to evaluate the capability of 3D imaging for detecting and classifying the objects of interest a scanning laser radar was used to scan mines and surrounding terrain with high angular and range resolution. These data were then fed into a laser radar model capable of generating range waveforms for a variety of system parameters and combinations of different targets and backgrounds. We can thus simulate a potential system by down sampling to relevant pixel sizes and laser/receiver characteristics. Data, simulations and examples will be presented.

  19. Aptamer-Encoded Nanopore for Ultrasensitive Detection of Bioterrorist Agent Ricin at Single-Molecule Resolution

    PubMed Central

    Gu, Li-Qun; Ding, Shu; Gao, Changlu

    2011-01-01

    The molecular-scale pore structure, called nanopore, can be formed from protein ion channels by genetic engineering or fabricated on solid substrates using fashion nanotechnology. Target molecules in interaction with the functionalized lumen of nanopore, can produce characteristic changes in the pore conductance, which act as fingerprints, allowing us to identify single molecules and simultaneously quantify each target species in the mixture. Nanopore sensors have been created for tremendous biomedical detections, with targets ranging from metal ions, drug compounds and cellular second messengers, to proteins and DNAs. Here we will review our recent discoveries with a lab-in-hand glass nanopore: single-molecule discrimination of chiral enantiomers with a trapped cyclodextrin, and sensing of bioterrorist agent ricin. PMID:19964179

  20. Metacognitive monitoring and control in visual change detection: Implications for situation awareness and cognitive control

    PubMed Central

    McAnally, Ken I.; Morris, Adam P.; Best, Christopher

    2017-01-01

    Metacognitive monitoring and control of situation awareness (SA) are important for a range of safety-critical roles (e.g., air traffic control, military command and control). We examined the factors affecting these processes using a visual change detection task that included representative tactical displays. SA was assessed by asking novice observers to detect changes to a tactical display. Metacognitive monitoring was assessed by asking observers to estimate the probability that they would correctly detect a change, either after study of the display and before the change (judgement of learning; JOL) or after the change and detection response (judgement of performance; JOP). In Experiment 1, observers failed to detect some changes to the display, indicating imperfect SA, but JOPs were reasonably well calibrated to objective performance. Experiment 2 examined JOLs and JOPs in two task contexts: with study-time limits imposed by the task or with self-pacing to meet specified performance targets. JOPs were well calibrated in both conditions as were JOLs for high performance targets. In summary, observers had limited SA, but good insight about their performance and learning for high performance targets and allocated study time appropriately. PMID:28915244

  1. ManPortable and UGV LIVAR: advances in sensor suite integration bring improvements to target observation and identification for the electronic battlefield

    NASA Astrophysics Data System (ADS)

    Lynam, Jeff R.

    2001-09-01

    A more highly integrated, electro-optical sensor suite using Laser Illuminated Viewing and Ranging (LIVAR) techniques is being developed under the Army Advanced Concept Technology- II (ACT-II) program for enhanced manportable target surveillance and identification. The ManPortable LIVAR system currently in development employs a wide-array of sensor technologies that provides the foot-bound soldier and UGV significant advantages and capabilities in lightweight, fieldable, target location, ranging and imaging systems. The unit incorporates a wide field-of-view, 5DEG x 3DEG, uncooled LWIR passive sensor for primary target location. Laser range finding and active illumination is done with a triggered, flash-lamp pumped, eyesafe micro-laser operating in the 1.5 micron region, and is used in conjunction with a range-gated, electron-bombarded CCD digital camera to then image the target objective in a more- narrow, 0.3$DEG, field-of-view. Target range determination is acquired using the integrated LRF and a target position is calculated using data from other onboard devices providing GPS coordinates, tilt, bank and corrected magnetic azimuth. Range gate timing and coordinated receiver optics focus control allow for target imaging operations to be optimized. The onboard control electronics provide power efficient, system operations for extended field use periods from the internal, rechargeable battery packs. Image data storage, transmission, and processing performance capabilities are also being incorporated to provide the best all-around support, for the electronic battlefield, in this type of system. The paper will describe flash laser illumination technology, EBCCD camera technology with flash laser detection system, and image resolution improvement through frame averaging.

  2. From Mosques to Classrooms: Mobilizing the Community to Enhance Case Detection of Tuberculosis

    PubMed Central

    Rifat, Mahfuza; Rusen, I. D.; Mahmud, Mohammad Hasan; Nayer, Israt; Islam, Akramul; Ahmed, Faruque

    2008-01-01

    In response to the global challenge of inadequate case detection of tuberculosis (TB), the Fund for Innovative DOTS Expansion through Local Initiatives to Stop Tuberculosis (FIDELIS) was developed in 2003 to rapidly assess and implement innovative approaches to increase the detection of new smear-positive TB cases. As previously reported, a wide range of target populations and interventions has been incorporated into successful FIDELIS projects. PMID:18633095

  3. Combining functionalised nanoparticles and SERS for the detection of DNA relating to disease.

    PubMed

    Graham, Duncan; Stevenson, Ross; Thompson, David G; Barrett, Lee; Dalton, Colette; Faulds, Karen

    2011-01-01

    DNA functionalised nanoparticle probes offer new opportunities in analyte detection. Ultrasensitive, molecularly specific targeting of analytes is possible through the use of metallic nanoparticles and their ability to generate a surface enhanced Raman scattering (SERS) response. This is leading to a new range of diagnostic clinical probes based on SERS detection. Our approaches have shown how such probes can detect specific DNA sequences by using a biomolecular recognition event to 'turn on' a SERS response through a controlled assembly process of the DNA functionalised nanoparticles. Further, we have prepared DNA aptamer functionalised SERS probes and demonstrated how introduction of a protein target can change the aggregation state of the nanoparticles in a dose-dependant manner. These approaches are being used as methods to detect biomolecules that indicate a specific disease being present with a view to improving disease management.

  4. A mathematical analysis of the Janus combat simulation weather effects models and sensitivity analysis of sky-to-ground brightness ratio on target detection

    NASA Astrophysics Data System (ADS)

    Shorts, Vincient F.

    1994-09-01

    The Janus combat simulation offers the user a wide variety of weather effects options to employ during the execution of any simulation run, which can directly influence detection of opposing forces. Realistic weather effects are required if the simulation is to accurately reproduce 'real world' results. This thesis examines the mathematics of the Janus weather effects models. A weather effect option in Janus is the sky-to-ground brightness ratio (SGR). SGR affects an optical sensor's ability to detect targets. It is a measure of the sun angle in relation to the horizon. A review of the derivation of SGR is performed and an analysis of SGR's affect on the number of optical detections and detection ranges is performed using an unmanned aerial vehicle (UAV) search scenario. For comparison, the UAV's are equipped with a combination of optical and thermal sensors.

  5. Coherent detection of position errors in inter-satellite laser communications

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Liu, De'an; Sun, Jianfeng; Luan, Zhu

    2007-09-01

    Due to the improved receiver sensitivity and wavelength selectivity, coherent detection became an attractive alternative to direct detection in inter-satellite laser communications. A novel method to coherent detection of position errors information is proposed. Coherent communication system generally consists of receive telescope, local oscillator, optical hybrid, photoelectric detector and optical phase lock loop (OPLL). Based on the system composing, this method adds CCD and computer as position error detector. CCD captures interference pattern while detection of transmission data from the transmitter laser. After processed and analyzed by computer, target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signal of PAT subsystem drive the receiver telescope to keep tracking to the target. Theoretical deviation and analysis is presented. The application extends to coherent laser rang finder, in which object distance and position information can be obtained simultaneously.

  6. Research on application of LADAR in ground vehicle recognition

    NASA Astrophysics Data System (ADS)

    Lan, Jinhui; Shen, Zhuoxun

    2009-11-01

    For the requirement of many practical applications in the field of military, the research of 3D target recognition is active. The representation that captures the salient attributes of a 3D target independent of the viewing angle will be especially useful to the automatic 3D target recognition system. This paper presents a new approach of image generation based on Laser Detection and Ranging (LADAR) data. Range image of target is obtained by transformation of point cloud. In order to extract features of different ground vehicle targets and to recognize targets, zernike moment properties of typical ground vehicle targets are researched in this paper. A technique of support vector machine is applied to the classification and recognition of target. The new method of image generation and feature representation has been applied to the outdoor experiments. Through outdoor experiments, it can be proven that the method of image generation is stability, the moments are effective to be used as features for recognition, and the LADAR can be applied to the field of 3D target recognition.

  7. Polyaniline/cyclodextrin composite coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detection for the analysis of trace polychlorinated biphenyls in environmental waters.

    PubMed

    Lei, Yun; He, Man; Chen, Beibei; Hu, Bin

    2016-04-01

    A novel polyaniline/α-cyclodextrin (PANI/α-CD) composite coated stir bar was prepared by sol-gel process for the analysis of polychlorinated biphenyls (PCBs) in this work. The preparation reproducibility of the PANI/α-CD-coated stir bar was good, with relative standard deviations (RSDs) ranging from 2.3% to 3.7% (n=7) and 2.0% to 3.8% (n=7) for bar to bar and batch to batch, respectively. Based on it, a novel method of PANI/α-CD-coated stir bar sorptive extraction (SBSE) followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection was developed for the determination of trace PCBs in environmental waters. To obtain the best extraction performance for target PCBs, several parameters affecting SBSE, such as extraction time, stirring rate, and ionic strength were investigated. Under optimal experimental conditions, the limits of detection (LODs) of the proposed method for seven PCBs were in the range of 0.048-0.22 μg/L, and the RSDs were 5.3-9.8% (n=7, c=1 μg/L). Enrichment factors (EFs) ranging from 39.8 to 68.4-fold (theoretical EF, 83.3-fold) for target analytes were achieved. The proposed method was successfully applied for the determination of seven target PCBs in Yangtze River water and East Lake water, and the recoveries were in the range of 73.0-120% for the spiked East Lake water samples and 82.7-121% for the spiked Yangtze River water samples, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices.

    PubMed

    Diao, Wei; Tang, Min; Ding, Shijia; Li, Xinmin; Cheng, Wenbin; Mo, Fei; Yan, Xiaoyu; Ma, Hongmin; Yan, Yurong

    2018-02-15

    Early detection, diagnosis and treatment of human immune deficiency virus (HIV) infection is the key to reduce acquired immunodeficiency syndrome (AIDS) mortality. In our research, an innovative surface plasmon resonance (SPR) biosensing strategy has been developed for highly sensitive detection of HIV-related DNA based on entropy-driven strand displacement reactions (ESDRs) and double-layer DNA tetrahedrons (DDTs). ESDRs as enzyme-free and label-free signal amplification circuit can be specifically triggered by target DNA, leading to the cyclic utilization of target DNA and the formation of plentiful double-stranded DNA (dsDNA) products. Subsequently, the dsDNA products bind to the immobilized hairpin capture probes and further combine with DDTs nanostructures. Due to the high efficiency of ESDRs and large molecular weight of DDTs, the SPR response signal was enhanced dramatically. The proposed SPR biosensor could detect target DNA sensitively and specifically in a linear range from 1pM to 150nM with a detection limit of 48fM. In addition, the whole detecting process can be accomplished in 60min with high accuracy and duplicability. In particular, the developed SPR biosensor was successfully used to analyze target DNA in complex biological sample, indicating that the developed strategy is promising for rapid and early clinical diagnosis of HIV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Three-dimensional Radar Imaging of a Building

    DTIC Science & Technology

    2012-12-01

    spotlight configuration and H-V ( cross ) polarization as seen from two different aspect angles. The feature colors correspond to their brightness... cross - ranges but at different heights. This effect may create significant confusion in image interpretation and result in missed target detections...over a range of azimuth angles ( centered at  = 0°) and elevation angles ( centered at 0), creating cross -range and height resolution, while

  10. Prospects for high accuracy time dissemination and synchronization using coded radar pulses from a low-earth orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Detoma, Edoardo V.; Dionisio, C.

    1995-01-01

    The radar (an acronym for radio detection and ranging) is an instrument developed just before the WW-II to precisely measure the position of an object (target) in space. This is done by emitting a narrow pulse of electromagnetic energy in the RF spectrum, receiving the return echo and measuring the time of flight in the two-way path from the emitter to the target. The propagation delay provides a measure of the range to the target, which is not in itself sufficient to uniquely locate the position of the same in space. However, if a directional antenna is used, the direction of the echo can be assessed by the antenna pointing angles. In this way the position of the target can be uniquely determined in space. How well this can be done is a function of the resolution of the measurements performed (range and direction, i.e.: angles); in turn, the resolution will dictate the time and frequency requirements of the reference oscillator.

  11. Modeling and performance of HF/OTH (High-Frequency/Over-the-Horizon) radar target identification systems

    NASA Astrophysics Data System (ADS)

    Strausberger, Donald J.

    Several Radar Target Identification (RTI) techniques have been developed at The Ohio State University in recent years. Using the ElectroScience Laboratory compact range a large database of coherent RCS measurement has been constructed for several types of targets (aircraft, ships, and ground vehicles) at a variety of polarizations, aspect angles, and frequency bands. This extensive database has been used to analyze the performance of several different classification algorithms through the use of computer simulations. In order to optimize classification performance, it was concluded that the radar frequency range should lie in the Rayleigh-resonance frequency range, where the wavelength is on the order of or larger than the target size. For aircraft and ships with general dimensions on the order of 10 meters to 100 meters it is apparent that the High Frequency (HF) band provides optimal classification performance. Since existing HF radars are currently being used for detection and tracking or aircraft and ships of these dimensions, it is natural to further investigate the possibility of using these existing radars as the measurement devices in a radar target classification system.

  12. Propagation of narrow-band-high-frequency clicks: measured and modeled transmission loss of porpoise-like clicks in porpoise habitats.

    PubMed

    DeRuiter, Stacy L; Hansen, Michael; Koopman, Heather N; Westgate, Andrew J; Tyack, Peter L; Madsen, Peter T

    2010-01-01

    Estimating the range at which harbor porpoises can detect prey items and environmental objects is integral to understanding their biosonar. Understanding the ranges at which they can use echolocation to detect and avoid obstacles is particularly important for strategies to reduce bycatch. Transmission loss (TL) during acoustic propagation is an important determinant of those detection ranges, and it also influences animal detection functions used in passive acoustic monitoring. However, common assumptions regarding TL have rarely been tested. Here, TL of synthetic porpoise clicks was measured in porpoise habitats in Canada and Denmark, and field data were compared with spherical spreading law and ray-trace (Bellhop) model predictions. Both models matched mean observations quite well in most cases, indicating that a spherical spreading law can usually provide an accurate first-order estimate of TL for porpoise sounds in porpoise habitat. However, TL varied significantly (+/-10 dB) between sites and over time in response to variability in seafloor characteristics, sound-speed profiles, and other short-timescale environmental fluctuations. Such variability should be taken into account in estimates of the ranges at which porpoises can communicate acoustically, detect echolocation targets, and be detected via passive acoustic monitoring.

  13. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging and Fusion Guided Targeted Biopsy Evaluated by Transperineal Template Saturation Prostate Biopsy for the Detection and Characterization of Prostate Cancer.

    PubMed

    Mortezavi, Ashkan; Märzendorfer, Olivia; Donati, Olivio F; Rizzi, Gianluca; Rupp, Niels J; Wettstein, Marian S; Gross, Oliver; Sulser, Tullio; Hermanns, Thomas; Eberli, Daniel

    2018-02-21

    We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 or greater was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of multiparametric magnetic resonance imaging and fusion guided targeted biopsy for clinically significant prostate cancer was 84.6% and 56.7% with a negative likelihood ratio of 0.35 and 0.46, respectively. Multiparametric magnetic resonance imaging alone should not be performed as a triage test due to a substantial number of false-negative cases with clinically significant prostate cancer. Systematic biopsy outperformed fusion guided targeted biopsy. Therefore, it will remain crucial in the diagnostic pathway of prostate cancer. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. UXO Detection and Characterization using new Berkeley UXO Discriminator (BUD)

    NASA Astrophysics Data System (ADS)

    Gasperikova, E.; Morrison, H. F.; Smith, J. T.; Becker, A.

    2006-05-01

    An optimally designed active electromagnetic system (AEM), Berkeley UXO Discriminator, BUD, has been developed for detection and characterization of UXO in the 20 mm to 150 mm size range. The system incorporates three orthogonal transmitters, and eight pairs of differenced receivers. The transmitter-receiver assembly together with the acquisition box, as well as the battery power and GPS receiver, is mounted on a small cart to assure system mobility. BUD not only detects the object itself but also quantitatively determines its size, shape, orientation, and metal content (ferrous or non-ferrous, mixed metals). Moreover, the principal polarizabilities and size of a metallic target can be determined from a single position of the BUD platform. The search for UXO is a two-step process. The object must first be detected and its location determined then the parameters of the object must be defined. A satisfactory classification scheme is one that determines the principal dipole polarizabilities of a target. While UXO objects have a single major polarizability (principal moment) coincident with the long axis of the object and two equal transverse polarizabilities, the scrap metal has all three principal moments entirely different. This description of the inherent polarizabilities of a target is a major advance in discriminating UXO from irregular scrap metal. Our results clearly show that BUD can resolve the intrinsic polarizabilities of a target and that there are very clear distinctions between symmetric intact UXO and irregular scrap metal. Target properties are determined by an inversion algorithm, which at any given time inverts the response to yield the location (x, y, z) of the target, its attitude and its principal polarizabilities (yielding an apparent aspect ratio). Signal-to-noise estimates (or measurements) are interpreted in this inversion to yield error estimates on the location, attitude and polarizabilities. This inversion at a succession of times provides the polarizabilities as a function of time, which can in turn yield the size, true aspect ratio and estimates of the conductivity and permeability of the target. The accuracy of these property estimates depends on the time window over which the polarizability measurements, and their accuracies, are known. Initial tests at a local site over a variety of test objects and inert UXOs showed excellent detection and characterization results within the predicted size-depth range. This research was funded by the U.S. Department of Defense under ESTCP Project # UX-0437.

  15. Insect Detection of Small Targets Moving in Visual Clutter

    PubMed Central

    Barnett, Paul D; O'Carroll, David C

    2006-01-01

    Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron. PMID:16448249

  16. Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-of-flight mass spectrometry.

    PubMed

    Hakme, E; Lozano, A; Gómez-Ramos, M M; Hernando, M D; Fernández-Alba, A R

    2017-10-01

    This work presents a non-targeted screening approach for the detection and quantitation of contaminants in bees and pollen, collected from the same hive, by GC-EI-ToF-MS. It consists of a spectral library datasets search using a compound database followed by a manual investigation and analytical standard confirmation together with semi-quantitation purposes. Over 20% of the compounds found automatically by the library search could not be confirmed manually. This number of false positive detections was mainly a consequence of an inadequate ion ratio criterion (±30%), not considered in the automatic searching procedure. Eight compounds were detected in bees and pollen. They include insecticides/acaricides (chlorpyrifos, coumaphos, fluvalinate-tau, chlorfenvinphos, pyridaben, and propyl cresol) at a concentration range of 1-1207 μg kg -1 , herbicides (oxyfluorfen) at a concentration range of 212-1773 μg kg -1 and a growth regulator hormone (methoprene). Some compounds were detected only in pollen; such as herbicides (clomazone), insecticides/acaricides and fungicides used to control Varroa mites as benzylbenzoate, bufencarb, allethrin, permethrin, eugenol and cyprodinil. Additional compounds were detected only in bees: flamprop-methyl, 2-methylphenol (2-49 μg kg -1 ) and naphthalene (1-23 μg kg -1 ). The proposed method presents important advantages as it can avoid the use of an unachievable number of analytical standards considered target compounds "a priori" but not present in the analyzed samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Electrochemical impedimetric sensor based on molecularly imprinted polymers/sol-gel chemistry for methidathion organophosphorous insecticide recognition.

    PubMed

    Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis

    2014-12-01

    We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Inexpensive camera systems for detecting martens, fishers, and other animals: guidelines for use and standardization.

    Treesearch

    Lawrence L.C. Jones; Martin G. Raphael

    1993-01-01

    Inexpensive camera systems have been successfully used to detect the occurrence of martens, fishers, and other wildlife species. The use of cameras is becoming widespread, and we give suggestions for standardizing techniques so that comparisons of data can occur across the geographic range of the target species. Details are given on equipment needs, setting up the...

  19. Study on high power ultraviolet laser oil detection system

    NASA Astrophysics Data System (ADS)

    Jin, Qi; Cui, Zihao; Bi, Zongjie; Zhang, Yanchao; Tian, Zhaoshuo; Fu, Shiyou

    2018-03-01

    Laser Induce Fluorescence (LIF) is a widely used new telemetry technology. It obtains information about oil spill and oil film thickness by analyzing the characteristics of stimulated fluorescence and has an important application in the field of rapid analysis of water composition. A set of LIF detection system for marine oil pollution is designed in this paper, which uses 355nm high-energy pulsed laser as the excitation light source. A high-sensitivity image intensifier is used in the detector. The upper machine sends a digital signal through a serial port to achieve nanoseconds range-gated width control for image intensifier. The target fluorescence spectrum image is displayed on the image intensifier by adjusting the delay time and the width of the pulse signal. The spectral image is coupled to CCD by lens imaging to achieve spectral display and data analysis function by computer. The system is used to detect the surface of the floating oil film in the distance of 25m to obtain the fluorescence spectra of different oil products respectively. The fluorescence spectra of oil products are obvious. The experimental results show that the system can realize high-precision long-range fluorescence detection and reflect the fluorescence characteristics of the target accurately, with broad application prospects in marine oil pollution identification and oil film thickness detection.

  20. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative.

    PubMed

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-05

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5×10 -7 to 1.0×10 -5 mol·L -1 and the detection limit is 6.9×10 -8 mol·L -1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification

    PubMed Central

    2010-01-01

    Background Reverse phase protein arrays (RPPA) emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA) strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89) between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range. PMID:20569466

  2. Development of DNA biosensor based on TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A novel technique of DNA hybridization on the TiO2 nanoparticles film was developed by dropping a single droplet of target DNA onto the surface of TiO2 for the study of various concentrations of target DNA. The surface of TiO2 nanoparticle film was functionalized with APTES and covalently immobilized with 1 µM probe DNA on the silanized TiO2 nanoparticles surface. The effect of silanization, immobilization and hybridization were quantitatively measured by the output current signal obtained using a picoammeter. The 1 µM target DNA was found to be the most effective target towards the 1 µM probe DNA as the output current signal was within range; while the output current signal of the 10 µM target DNA was observed to beyond the range of the probe DNA control due to the excessive concentration as compared to the probe DNA. This approach has several advantages such as rapid, simple, low cost, and sensitive current signal during detection of different target DNA concentrations.

  3. Research on effect of rough surface on FMCW laser radar range accuracy

    NASA Astrophysics Data System (ADS)

    Tao, Huirong

    2018-03-01

    The non-cooperative targets large scale measurement system based on frequency-modulated continuous-wave (FMCW) laser detection and ranging technology has broad application prospects. It is easy to automate measurement without cooperative targets. However, the complexity and diversity of the surface characteristics of the measured surface directly affects the measurement accuracy. First, the theoretical analysis of range accuracy for a FMCW laser radar was studied, the relationship between surface reflectivity and accuracy was obtained. Then, to verify the effect of surface reflectance for ranging accuracy, a standard tool ball and three standard roughness samples were measured within 7 m to 24 m. The uncertainty of each target was obtained. The results show that the measurement accuracy is found to increase as the surface reflectivity gets larger. Good agreements were obtained between theoretical analysis and measurements from rough surfaces. Otherwise, when the laser spot diameter is smaller than the surface correlation length, a multi-point averaged measurement can reduce the measurement uncertainty. The experimental results show that this method is feasible.

  4. Simultaneous Determination of Perfluorinated Compounds in Edible Oil by Gel-Permeation Chromatography Combined with Dispersive Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Yang, Lili; Jin, Fen; Zhang, Peng; Zhang, Yanxin; Wang, Jian; Shao, Hua; Jin, Maojun; Wang, Shanshan; Zheng, Lufei; Wang, Jing

    2015-09-30

    A simple analytical method was developed for the simultaneous analysis of 18 perfluorinated compounds (PFCs) in edible oil. The target compounds were extracted by acetonitrile, purified by gel permeation chromatography (GPC) and dispersive solid-phase extraction (DSPE) using graphitized carbon black (GCB) and octadecyl (C18), and analyzed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ES-MS/MS) in negative ion mode. Recovery studies were performed at three fortification levels. The average recoveries of all target PFCs ranged from 60 to 129%, with an acceptable relative standard deviation (RSD) (1-20%, n = 3). The method detection limits (MDLs) ranged from 0.004 to 0.4 μg/kg, which was significantly improved compared with the existing liquid-liquid extraction and cleanup method. The method was successfully applied for the analysis of all target PFCs in edible oil samples collected from markets in Beijing, China, and the results revealed that C6-C10 perfluorocarboxylic acid (PFCAs) and C7 perfluorosulfonic acid PFSAs were the major PFCs detected in oil samples.

  5. Dynamic time-correlated single-photon counting laser ranging

    NASA Astrophysics Data System (ADS)

    Peng, Huan; Wang, Yu-rong; Meng, Wen-dong; Yan, Pei-qin; Li, Zhao-hui; Li, Chen; Pan, Hai-feng; Wu, Guang

    2018-03-01

    We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector (SPD). The multi-channel SPD improve the counting rate more than 4×107 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting (TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×107 cps.

  6. Object Tracking and Target Reacquisition Based on 3-D Range Data for Moving Vehicles

    PubMed Central

    Lee, Jehoon; Lankton, Shawn; Tannenbaum, Allen

    2013-01-01

    In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios. PMID:21486717

  7. Real-time classification of vehicles by type within infrared imagery

    NASA Astrophysics Data System (ADS)

    Kundegorski, Mikolaj E.; Akçay, Samet; Payen de La Garanderie, Grégoire; Breckon, Toby P.

    2016-10-01

    Real-time classification of vehicles into sub-category types poses a significant challenge within infra-red imagery due to the high levels of intra-class variation in thermal vehicle signatures caused by aspects of design, current operating duration and ambient thermal conditions. Despite these challenges, infra-red sensing offers significant generalized target object detection advantages in terms of all-weather operation and invariance to visual camouflage techniques. This work investigates the accuracy of a number of real-time object classification approaches for this task within the wider context of an existing initial object detection and tracking framework. Specifically we evaluate the use of traditional feature-driven bag of visual words and histogram of oriented gradient classification approaches against modern convolutional neural network architectures. Furthermore, we use classical photogrammetry, within the context of current target detection and classification techniques, as a means of approximating 3D target position within the scene based on this vehicle type classification. Based on photogrammetric estimation of target position, we then illustrate the use of regular Kalman filter based tracking operating on actual 3D vehicle trajectories. Results are presented using a conventional thermal-band infra-red (IR) sensor arrangement where targets are tracked over a range of evaluation scenarios.

  8. Micro-vibration detection with heterodyne holography based on time-averaged method

    NASA Astrophysics Data System (ADS)

    Qin, XiaoDong; Pan, Feng; Chen, ZongHui; Hou, XueQin; Xiao, Wen

    2017-02-01

    We propose a micro-vibration detection method by introducing heterodyne interferometry to time-averaged holography. This method compensates for the deficiency of time-average holography in quantitative measurements and widens its range of application effectively. Acousto-optic modulators are used to modulate the frequencies of the reference beam and the object beam. Accurate detection of the maximum amplitude of each point in the vibration plane is performed by altering the frequency difference of both beams. The range of amplitude detection of plane vibration is extended. In the stable vibration mode, the distribution of the maximum amplitude of each point is measured and the fitted curves are plotted. Hence the plane vibration mode of the object is demonstrated intuitively and detected quantitatively. We analyzed the method in theory and built an experimental system with a sine signal as the excitation source and a typical piezoelectric ceramic plate as the target. The experimental results indicate that, within a certain error range, the detected vibration mode agrees with the intrinsic vibration characteristics of the object, thus proving the validity of this method.

  9. Evaluating De-centralised and Distributional Options for the Distributed Electronic Warfare Situation Awareness and Response Test Bed

    DTIC Science & Technology

    2013-12-01

    effectors (deployed on ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF...ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF emitting targets. In the...Electronic Support EO Electro-Optic FPGAs Field Programmable Gate Arrays IR Infra-red LADAR Laser Detection and Ranging OSX Mac OS X; the apple

  10. High sensitivity detection of trace gases at atmospheric pressure using tunable diode lasers

    NASA Technical Reports Server (NTRS)

    Reid, J.; Sinclair, R. L.; Grant, W. B.; Menzies, R. T.

    1985-01-01

    A detailed study of the detection of trace gases at atmospheric pressure using tunable diode lasers is described. The influence of multipass cells, retroreflectors and topographical targets is examined. The minimum detectable infrared absorption ranges from 0.1 percent for a pathlength of 1.2 km to 0.01 percent over short pathlengths. The factors which limit this sensitivity are discussed, and the techniques are illustrated by monitoring atmospehric CO2 and CH4.

  11. Protein Detection via Direct Enzymatic Amplification of Short DNA Aptamers

    PubMed Central

    Fischer, Nicholas O.; Tarasow, Theodore M.; Tok, Jeffrey B.-H.

    2008-01-01

    Aptamers are single-stranded nucleic acids that fold into defined tertiary structures to bind target molecules with high specificities and affinities. DNA aptamers have garnered much interest as recognition elements for biodetection and diagnostic applications due to their small size, ease of discovery and synthesis, and chemical and thermal stability. Herein, we describe the design and application of a short DNA molecule capable of both protein target binding and amplifiable bioreadout processes. As both recognition and readout capabilities are incorporated into a single DNA molecule, tedious conjugation procedures required for protein-DNA hybrids can be omitted. The DNA aptamer is designed to be amplified directly by either the polymerase chain reaction (PCR) or rolling circle amplification (RCA) processes, taking advantage of real-time amplification monitoring techniques for target detection. A combination of both RCA and PCR provides a wide protein target dynamic range (1 μM to 10 pM). PMID:17980857

  12. A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes

    PubMed Central

    Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-yung

    2016-01-01

    Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency. PMID:27792156

  13. A Camera-Based Target Detection and Positioning UAV System for Search and Rescue (SAR) Purposes.

    PubMed

    Sun, Jingxuan; Li, Boyang; Jiang, Yifan; Wen, Chih-Yung

    2016-10-25

    Wilderness search and rescue entails performing a wide-range of work in complex environments and large regions. Given the concerns inherent in large regions due to limited rescue distribution, unmanned aerial vehicle (UAV)-based frameworks are a promising platform for providing aerial imaging. In recent years, technological advances in areas such as micro-technology, sensors and navigation have influenced the various applications of UAVs. In this study, an all-in-one camera-based target detection and positioning system is developed and integrated into a fully autonomous fixed-wing UAV. The system presented in this paper is capable of on-board, real-time target identification, post-target identification and location and aerial image collection for further mapping applications. Its performance is examined using several simulated search and rescue missions, and the test results demonstrate its reliability and efficiency.

  14. G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food.

    PubMed

    Jiang, Xiaohua; Zhang, Huimin; Wu, Jun; Yang, Xiang; Shao, Jingwei; Lu, Yujing; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2014-10-01

    In this paper, a novel label-free G-quadruplex DNAzyme sensor has been proposed for colorimetric identification of GMO using CaMV 35S promoter sequence as the target. The binary probes can fold into G-quadruplex structure in the presence of DNA-T (Target DNA) and then combine with hemin to form a DNAzyme resembling horseradish peroxidase. The detection system consists of two G-rich probes with 2:2 split mode by using the absorbance and color of ABTS(2-) as signal reporter. Upon the addition of a target sequence, two probes both hybridize with target and then their G-rich sequences combine to form a G-quadruplex DNAzyme, and the DNAzyme can catalyze the reaction of ABTS(2-) with H2O2. Then the linear range is from 0.05 to 0.5 μM while detection limit is 5nM. These results demonstrate that the proposed G-quadruplex DNAzyme method could be used as a simple, sensitive and cost-effective approach for assays of GMO. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. MAGID-II: a next-generation magnetic unattended ground sensor (UGS)

    NASA Astrophysics Data System (ADS)

    Walter, Paul A.; Mauriello, Fred; Huber, Philip

    2012-06-01

    A next generation magnetic sensor is being developed at L-3 Communications, Communication Systems East to enhance the ability of Army and Marine Corps unattended ground sensor (UGS) systems to detect and track targets on the battlefield. This paper describes a magnetic sensor that provides superior detection range for both armed personnel and vehicle targets, at a reduced size, weight, and level of power consumption (SWAP) over currently available magnetic sensors. The design integrates the proven technology of a flux gate magnetometer combined with advanced digital signal processing algorithms to provide the warfighter with a rapidly deployable, extremely low false-alarm-rate sensor. This new sensor improves on currently available magnetic UGS systems by providing not only target detection and direction information, but also a magnetic disturbance readout, indicating the size of the target. The sensor integrates with Government Off-the-Shelf (GOTS) systems such as the United States Army's Battlefield Anti-Intrusion System (BAIS) and the United States Marine Corps Tactical Remote Sensor System (TRSS). The system has undergone testing by the US Marine Corps, as well as extensive company testing. Results from these field tests are given.

  16. Object detection from images obtained through underwater turbulence medium

    NASA Astrophysics Data System (ADS)

    Furhad, Md. Hasan; Tahtali, Murat; Lambert, Andrew

    2017-09-01

    Imaging through underwater experiences severe distortions due to random fluctuations of temperature and salinity in water, which produces underwater turbulence through diffraction limited blur. Lights reflecting from objects perturb and attenuate contrast, making the recognition of objects of interest difficult. Thus, the information available for detecting underwater objects of interest becomes a challenging task as they have inherent confusion among the background, foreground and other image properties. In this paper, a saliency-based approach is proposed to detect the objects acquired through an underwater turbulent medium. This approach has drawn attention among a wide range of computer vision applications, such as image retrieval, artificial intelligence, neuro-imaging and object detection. The image is first processed through a deblurring filter. Next, a saliency technique is used on the image for object detection. In this step, a saliency map that highlights the target regions is generated and then a graph-based model is proposed to extract these target regions for object detection.

  17. Ultrasensitive and Multiple Disease-Related MicroRNA Detection Based on Tetrahedral DNA Nanostructures and Duplex-Specific Nuclease-Assisted Signal Amplification.

    PubMed

    Xu, Fang; Dong, Haifeng; Cao, Yu; Lu, Huiting; Meng, Xiangdan; Dai, Wenhao; Zhang, Xueji; Al-Ghanim, Khalid Abdullah; Mahboob, Shahid

    2016-12-14

    A highly sensitive and multiple microRNA (miRNA) detection method by combining three-dimensional (3D) DNA tetrahedron-structured probes (TSPs) to increase the probe reactivity and accessibility with duplex-specific nuclease (DSN) for signal amplification for sensitive miRNA detection was proposed. Briefly, 3D DNA TSPs labeled with different fluorescent dyes for specific target miRNA recognition were modified on a gold nanoparticle (GNP) surface to increase the reactivity and accessibility. Upon hybridization with a specific target, the TSPs immobilized on the GNP surface hybridized with the corresponding target miRNA to form DNA-RNA heteroduplexes, and the DSN can recognize the formed DNA-RNA heteroduplexes to hydrolyze the DNA in the heteroduplexes to produce a specific fluorescent signal corresponding to a specific miRNA, while the released target miRNA strands can initiate another cycle, resulting in a significant signal amplification for sensitive miRNA detection. Different targets can produce different fluorescent signals, leading to the development of a sensitive detection for multiple miRNAs in a homogeneous solution. Under optimized conditions, the proposed assay can simultaneously detect three different miRNAs in a homogeneous solution with a logarithmic linear range spanning 5 magnitudes (10 -12 -10 -16 ) and achieving a limit of detection down to attomolar concentrations. Meanwhile, the proposed miRNA assay exhibited the capability of discriminating single bases (three bases mismatched miRNAs) and showed good eligibility in the analysis of miRNAs extracted from cell lysates and miRNAs in cell incubation media, which indicates its potential use in biomedical research and clinical analysis.

  18. Pulse oximeter saturation target limits for preterm infants: a survey among European neonatal intensive care units.

    PubMed

    Huizing, Maurice J; Villamor-Martínez, Eduardo; Vento, Máximo; Villamor, Eduardo

    2017-01-01

    The optimum range of pulse oximeter oxygen saturation (SpO 2 ) for preterm infants remains controversial. Between November 2015 and February 2016, we conducted a web-based survey aimed to investigate the current and former practices on SpO 2 targets in European neonatal intensive care units (NICUs). We obtained valid responses from 193 NICUs, treating 8590 newborns ≤28 weeks per year, across 27 countries. Forty different saturation ranges were reported, ranging from 82-93 to 94-99%. The most frequently utilized SpO 2 ranges were 90-95% (28%), 88-95% (12%), 90-94% (5%), and 91-95% (5%). A total of 156 NICUs (81%) changed their SpO 2 limits over the last 10 years. The most frequently reported former limits were 88-92% (18%), 85-95% (9%), 88-93 (7%), and 85-92% (6%). The NICUs that increased their SpO 2 ranges expected to obtain a reduction in mortality. A 54% of the NICUs found the scientific evidence supporting their SpO 2 targeting policy strong or very strong. We detected a high degree of heterogeneity in pulse oximeter SpO 2 target limits across European NICUs. The currently used limits are 3 to 5% higher than the former limits, and the most extreme limits, such as lower below 85% or upper above 96%, have almost been abandoned. What is Known: • For preterm infants requiring supplemental oxygen, the optimum range of pulse oximeter oxygen saturation (SpO 2 ) to minimize organ damage, without causing hypoxic injury, remains controversial. What is New: • This survey highlights the lack of consensus regarding SpO 2 target limits for preterm infants among European neonatal intensive care units (NICUs). We detected 40 different SpO 2 ranges, and even the most frequently reported range (i.e., 90-95%) was used in only 28% of the 193 respondent NICUs. • A total of 156 NICUs (81%) changed their SpO 2 limits over the last 10 years. The currently used limits are 3 to 5% higher than the former limits, and the most extreme limits, such as lower below 85% or upper above 96%, have almost been abandoned.

  19. UPLC-MS/MS Method for Simultaneous Determination of Three Major Metabolites of Mequindox in Holothurian

    PubMed Central

    Liu, Huihui; Han, Dianfeng; Huang, Hui; Xu, Yingjiang; Gong, Xianghong

    2018-01-01

    This study developed an ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the detection of three major metabolites of mequindox, including 3-methyl-quinoxaline-2-carboxylic acid, 1-desoxymequindox, and 1,4-bisdesoxymequindox (MQCA, 1-DMEQ, and BDMEQ), in holothurian. Target analytes were simplified with ultrasound-assisted acidolysis extracted without complicated enzymolysis steps. After that, each sample was centrifuged and purified by an Oasis MAX cartridge. Then, the processed samples were separated and monitored by UPLC-MS/MS. This developed method has been validated according to FDA criteria. At fortified levels of 2, 10, and 20 μg/kg, recoveries ranged from 82.5% to 93.5% with the intraday RSD less than 7.27% and interday RSD less than 11.8%. The limit of detection (LOD) of all the three metabolites ranged from 0.21 to 0.48 μg/kg, while the limit of quantification (LOQ) ranged from 0.79 to 1.59 μg/kg. On application to commercial samples, 14 of 20 samples were detected positive for the three target analytes, with positive rate at 70 percentage. The result indicated that this method was specific, sensitive, and suitable for the quantification and conformation of the three major metabolites of MEQ in holothurian. PMID:29805832

  20. UPLC-MS/MS Method for Simultaneous Determination of Three Major Metabolites of Mequindox in Holothurian.

    PubMed

    Liu, Huihui; Ren, Chuanbo; Han, Dianfeng; Huang, Hui; Zou, Rongjie; Zhang, Huawei; Xu, Yingjiang; Gong, Xianghong; Zhang, Xiuzhen; Li, Yanshen

    2018-01-01

    This study developed an ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for the detection of three major metabolites of mequindox, including 3-methyl-quinoxaline-2-carboxylic acid, 1-desoxymequindox, and 1,4-bisdesoxymequindox (MQCA, 1-DMEQ, and BDMEQ), in holothurian. Target analytes were simplified with ultrasound-assisted acidolysis extracted without complicated enzymolysis steps. After that, each sample was centrifuged and purified by an Oasis MAX cartridge. Then, the processed samples were separated and monitored by UPLC-MS/MS. This developed method has been validated according to FDA criteria. At fortified levels of 2, 10, and 20  μ g/kg, recoveries ranged from 82.5% to 93.5% with the intraday RSD less than 7.27% and interday RSD less than 11.8%. The limit of detection (LOD) of all the three metabolites ranged from 0.21 to 0.48  μ g/kg, while the limit of quantification (LOQ) ranged from 0.79 to 1.59  μ g/kg. On application to commercial samples, 14 of 20 samples were detected positive for the three target analytes, with positive rate at 70 percentage. The result indicated that this method was specific, sensitive, and suitable for the quantification and conformation of the three major metabolites of MEQ in holothurian.

  1. Flower-like ZnO nanostructure based electrochemical DNA biosensor for bacterial meningitis detection.

    PubMed

    Tak, Manvi; Gupta, Vinay; Tomar, Monika

    2014-09-15

    Zinc oxide (ZnO) nanostructures possessing flower-like morphology have been synthesised onto platinized silicon substrate by simple and economical hydrothermal method. The interaction of physically immobilized single stranded thiolated DNA (ss th-DNA) probe of N. meningitides onto the nanostructured ZnO (ZNF) matrix surface have been investigated using cyclic voltammetry (CV) and electrochemical impeadance spectroscopy (EIS). The electrochemical sensing response behaviour of the DNA bioelectrode (ss th-DNA/ZNF/Pt/Si) has been studied by both differential pulse voltammetric (DPV) as well as impedimetric techniques. The fabricated DNA biosensor can quantify wide range of the complementary target ss th-DNA in the range 5-240 ng μl(-1) with good linearity (R=0.98), high sensitivity (168.64 μA ng(-1) μl cm(-2)) and low detection limit of about 5 ng μl(-1). Results emphasise that the fabricated flower-like ZnO nanostructures offer a useful platform for the immobilization of DNA molecules and could be exploited for efficient detection of complementary target single stranded DNA corresponding to N. meningitides. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Applications of high-frequency radar

    NASA Astrophysics Data System (ADS)

    Headrick, J. M.; Thomason, J. F.

    1998-07-01

    Efforts to extend radar range by an order of magnitude with use of the ionosphere as a virtual mirror started after the end of World War II. A number of HF radar programs were pursued, with long-range nuclear burst and missile launch detection demonstrated by 1956. Successful east coast radar aircraft detect and track tests extending across the Atlantic were conducted by 1961. The major obstacles to success, the large target-to-clutter ratio and low signal-to-noise ratio, were overcome with matched filter Doppler processing. To search the areas that a 2000 nautical mile (3700 km) radar can reach, very complex and high dynamic range processing is required. The spectacular advances in digital processing technology have made truly wide-area surveillance possible. Use of the surface attached wave over the oceans can enable HF radar to obtain modest extension of range beyond the horizon. The decameter wavelengths used by both skywave and surface wave radars require large physical antenna apertures, but they have unique capabilities for air and surface targets, many of which are of resonant scattering dimensions. Resonant scattering from the ocean permits sea state and direction estimation. Military and commercial applications of HF radar are in their infancy.

  3. The Design of a Quantitative Western Blot Experiment

    PubMed Central

    Taylor, Sean C.; Posch, Anton

    2014-01-01

    Western blotting is a technique that has been in practice for more than three decades that began as a means of detecting a protein target in a complex sample. Although there have been significant advances in both the imaging and reagent technologies to improve sensitivity, dynamic range of detection, and the applicability of multiplexed target detection, the basic technique has remained essentially unchanged. In the past, western blotting was used simply to detect a specific target protein in a complex mixture, but now journal editors and reviewers are requesting the quantitative interpretation of western blot data in terms of fold changes in protein expression between samples. The calculations are based on the differential densitometry of the associated chemiluminescent and/or fluorescent signals from the blots and this now requires a fundamental shift in the experimental methodology, acquisition, and interpretation of the data. We have recently published an updated approach to produce quantitative densitometric data from western blots (Taylor et al., 2013) and here we summarize the complete western blot workflow with a focus on sample preparation and data analysis for quantitative western blotting. PMID:24738055

  4. Characterization of single α-tracks by photoresist detection and AFM analysis-focus on biomedical science and technology

    NASA Astrophysics Data System (ADS)

    Falzone, Nadia; Myhra, Sverre; Chakalova, Radka; Hill, Mark A.; Thomson, James; Vallis, Katherine A.

    2013-11-01

    The interactions between energetic ions and biological and/or organic target materials have recently attracted theoretical and experimental attention, due to their implications for detector and device technologies, and for therapeutic applications. Most of the attention has focused on detection of the primary ionization tracks, and their effects, while recoil target atom tracks remain largely unexplored. Detection of tracks by a negative tone photoresist (SU-8), followed by standard development, in combination with analysis by atomic force microscopy, shows that both primary and recoil tracks are revealed as conical spikes, and can be characterized at high spatial resolution. The methodology has the potential to provide detailed information about single impact events, which may lead to more effective and informative detector technologies and advanced therapeutic procedures. In comparison with current characterization methods the advantageous features include: greater spatial resolution by an order of magnitude (20 nm) detection of single primary and associated recoil tracks; increased range of fluence (to 2.5 × 109 cm-2) sensitivity to impacts at grazing angle incidence; and better definition of the lateral interaction volume in target materials.

  5. Peptidic β-sheet binding with Congo Red allows both reduction of error variance and signal amplification for immunoassays.

    PubMed

    Wang, Yunyun; Liu, Ye; Deng, Xinli; Cong, Yulong; Jiang, Xingyu

    2016-12-15

    Although conventional enzyme-linked immunosorbent assays (ELISA) and related assays have been widely applied for the diagnosis of diseases, many of them suffer from large error variance for monitoring the concentration of targets over time, and insufficient limit of detection (LOD) for assaying dilute targets. We herein report a readout mode of ELISA based on the binding between peptidic β-sheet structure and Congo Red. The formation of peptidic β-sheet structure is triggered by alkaline phosphatase (ALP). For the detection of P-Selectin which is a crucial indicator for evaluating thrombus diseases in clinic, the 'β-sheet and Congo Red' mode significantly decreases both the error variance and the LOD (from 9.7ng/ml to 1.1 ng/ml) of detection, compared with commercial ELISA (an existing gold-standard method for detecting P-Selectin in clinic). Considering the wide range of ALP-based antibodies for immunoassays, such novel method could be applicable to the analysis of many types of targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Rapid Detection of the Chlamydiaceae and Other Families in the Order Chlamydiales: Three PCR Tests

    PubMed Central

    Everett, Karin D. E.; Hornung, Linda J.; Andersen, Arthur A.

    1999-01-01

    Few identification methods will rapidly or specifically detect all bacteria in the order Chlamydiales, family Chlamydiaceae. In this study, three PCR tests based on sequence data from over 48 chlamydial strains were developed for identification of these bacteria. Two tests exclusively recognized the Chlamydiaceae: a multiplex test targeting the ompA gene and the rRNA intergenic spacer and a TaqMan test targeting the 23S ribosomal DNA. The multiplex test was able to detect as few as 200 inclusion-forming units (IFU), while the TaqMan test could detect 2 IFU. The amplicons produced in these tests ranged from 132 to 320 bp in length. The third test, targeting the 23S rRNA gene, produced a 600-bp amplicon from strains belonging to several families in the order Chlamydiales. Direct sequence analysis of this amplicon has facilitated the identification of new chlamydial strains. These three tests permit ready identification of chlamydiae for diagnostic and epidemiologic study. The specificity of these tests indicates that they might also be used to identify chlamydiae without culture or isolation. PMID:9986815

  7. Active standoff detection of CH4 and N2O leaks using hard-target backscattered light using an open-path quantum cascade laser sensor

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-05-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they contribute to the global increase of greenhouse gas concentrations. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents standoff detection of CH4 and N2O leaks using a quantum cascade laser open-path system that retrieves path-averaged concentrations by collecting the backscattered light from a remote hard target. It is a true standoff system and differs from other open-path systems that are deployed as point samplers or long-path transmission systems that use retroreflectors. The measured absorption spectra are obtained using a thermal intra-pulse frequency chirped DFB quantum cascade laser at ~7.7 µm wavelength range with ~200 ns pulse width. Making fast time resolved observations, the system simultaneously realizes high spectral resolution and range to the target, resulting in path-averaged concentration retrieval. The system performs measurements at high speed ~15 Hz and sufficient range (up to 45 m, ~148 feet) achieving an uncertainty of 3.1 % and normalized sensitivity of 3.3 ppm m Hz-1/2 for N2O and 9.3 % and normalized sensitivity of 30 ppm m Hz-1/2 for CH4 with a 0.31 mW average power QCL. Given these characteristics, this system is promising for mobile or multidirectional search and remote detection of gas leaks.

  8. Advanced Video Guidance Sensor (AVGS) Development Testing

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.

    2004-01-01

    NASA's Marshall Space Flight Center was the driving force behind the development of the Advanced Video Guidance Sensor, an active sensor system that provides near-range sensor data as part of an automatic rendezvous and docking system. The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state camera to detect the return from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The AVGS will fly as part of the Demonstration of Autonomous Rendezvous Technologies (DART) in October, 2004. This development effort has required a great deal of testing of various sorts at every phase of development. Some of the test efforts included optical characterization of performance with the intended target, thermal vacuum testing, performance tests in long range vacuum facilities, EMI/EMC tests, and performance testing in dynamic situations. The sensor has been shown to track a target at ranges of up to 300 meters, both in vacuum and ambient conditions, to survive and operate during the thermal vacuum cycling specific to the DART mission, to handle EM1 well, and to perform well in dynamic situations.

  9. Lesion detectability in 2D-mammography and digital breast tomosynthesis using different targets and observers

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2018-05-01

    This work investigates the detection performance of specialist and non-specialist observers for different targets in 2D-mammography and digital breast tomosynthesis (DBT) using the OPTIMAM virtual clinical trials (VCT) Toolbox and a 4-alternative forced choice (4AFC) assessment paradigm. Using 2D-mammography and DBT images of virtual breast phantoms, we compare the detection limits of simple uniform spherical targets and irregular solid masses. Target diameters of 4 mm and 6 mm have been chosen to represent target sizes close to the minimum detectable size found in breast screening, across a range of controlled contrast levels. The images were viewed by a set of specialist observers (five medical physicists and six experienced clinical readers) and five non-specialists. Combined results from both observer groups indicate that DBT has a significantly lower detectable threshold contrast than 2D-mammography for small masses (4 mm: 2.1% [DBT] versus 6.9% [2D]; 6 mm: 0.7% [DBT] versus 3.9% [2D]) and spheres (4 mm: 2.9% [DBT] versus 5.3% [2D]; 6 mm: 0.3% [DBT] versus 2.2% [2D]) (p  <  0.0001). Both observer groups found spheres significantly easier to detect than irregular solid masses for both sizes and modalities (p  <  0.0001) (except 4 mm DBT). The detection performances of specialist and non-specialist observers were generally found to be comparable, where each group marginally outperformed the other in particular detection tasks. Within the specialist group, the clinical readers performed better than the medical physicists with irregular masses (p  <  0.0001). The results indicate that using spherical targets in such studies may produce over-optimistic detection thresholds compared to more complex masses, and that the superiority of DBT for detecting masses over 2D-mammography has been quantified. The results also suggest specialist observers may be supplemented by non-specialist observers (with training) in some types of 4AFC studies.

  10. Spiny Nanorod and Upconversion Nanoparticle Satellite Assemblies for Ultrasensitive Detection of Messenger RNA in Living Cells.

    PubMed

    Gao, Rui; Hao, Changlong; Xu, Liguang; Xu, Chuanlai; Kuang, Hua

    2018-04-17

    Quantitation and in situ monitoring of target mRNA (mRNA) in living cells remains a significant challenge for the chemical and biomedical communities. To quantitatively detect mRNA expression levels in living cells, we have developed DNA-driven gold nanorod coated platinum-upconversion nanoparticle satellite assemblies (termed Au NR@Pt-UCNP satellites) for intracellular thymidine kinase 1 (TK1) mRNA analysis. The nanostructures were capable of recognizing target mRNA in a sequence-specific manner as luminescence of UCNPs was effectively quenched by Au NR@Pt within the assemblies. Following recognition, UCNPs detached from Au NR@Pt, resulting in luminescence restoration to achieve effective in situ imaging and quantifiable detection of target mRNA. The upconversional luminescence intensity of confocal images showed a good linear relationship with intracellular TK1 mRNA ranging from 1.17 to 65.21 fmol/10 μg RNA and a limit of detection (LOD) of 0.67 fmol/10 μg RNA. We believe that our present assay can be broadly applied for detection of endogenous biomolecules at the cellular and tissue levels and restoration of tissue homeostasis in vivo.

  11. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  12. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform

    NASA Astrophysics Data System (ADS)

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-11-01

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05839b

  13. Occurrence and In Vitro Bioactivity of Estrogen, Androgen, and Glucocorticoid Compounds in a Nationwide Screen of United States Stream Waters.

    PubMed

    Conley, Justin M; Evans, Nicola; Cardon, Mary C; Rosenblum, Laura; Iwanowicz, Luke R; Hartig, Phillip C; Schenck, Kathleen M; Bradley, Paul M; Wilson, Vickie S

    2017-05-02

    In vitro bioassays are sensitive, effect-based tools used to quantitatively screen for chemicals with nuclear receptor activity in environmental samples. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR) activity, along with a broad suite of chemical analytes, in streamwater from 35 well-characterized sites (3 reference and 32 impacted) across 24 states and Puerto Rico. ER agonism was the most frequently detected with nearly all sites (34/35) displaying activity (range, 0.054-116 ng E2Eq L -1 ). There was a strong linear relationship (r 2 = 0.917) between in vitro ER activity and concentrations of steroidal estrogens after correcting for the in vitro potency of each compound. AR agonism was detected in 5/35 samples (range, 1.6-4.8 ng DHTEq L -1 ) but concentrations of androgenic compounds were largely unable to account for the in vitro activity. Similarly, GR agonism was detected in 9/35 samples (range, 6.0-43 ng DexEq L -1 ); however, none of the recognized GR-active compounds on the target-chemical analyte list were detected. The utility of in vitro assays in water quality monitoring was evident from both the quantitative agreement between ER activity and estrogen concentrations, as well as the detection of AR and GR activity for which there were limited or no corresponding target-chemical detections to explain the bioactivity. Incorporation of in vitro bioassays as complements to chemical analyses in standard water quality monitoring efforts would allow for more complete assessment of the chemical mixtures present in many surface waters.

  14. EARLY SCIENCE WITH THE KOREAN VLBI NETWORK: THE QCAL-1 43 GHz CALIBRATOR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, Leonid; Lee, Sang-Sung; Kim, Jongsoo

    2012-11-01

    This paper presents the catalog of correlated flux densities in three ranges of baseline projection lengths of 637 sources from a 43 GHz (Q band) survey observed with the Korean VLBI Network. Of them, 14 objects used as calibrators were previously observed, but 623 sources have not been observed before in the Q band with very long baseline interferometry (VLBI). The goal of this work in the early science phase of the new VLBI array is twofold: to evaluate the performance of the new instrument that operates in a frequency range of 22-129 GHz and to build a list ofmore » objects that can be used as targets and as calibrators. We have observed the list of 799 target sources with declinations down to -40 Degree-Sign . Among them, 724 were observed before with VLBI at 22 GHz and had correlated flux densities greater than 200 mJy. The overall detection rate is 78%. The detection limit, defined as the minimum flux density for a source to be detected with 90% probability in a single observation, was in the range of 115-180 mJy depending on declination. However, some sources as weak as 70 mJy have been detected. Of 623 detected sources, 33 objects are detected for the first time in VLBI mode. We determined their coordinates with a median formal uncertainty of 20 mas. The results of this work set the basis for future efforts to build the complete flux-limited sample of extragalactic sources at frequencies of 22 GHz and higher at 3/4 of the celestial sphere.« less

  15. Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters

    USGS Publications Warehouse

    Conley, Justin M.; Evans, Nicola; Cardon, Mary C.; Rosenblum, Laura; Iwanowicz, Luke R.; Hartig, Phillip C.; Schenck, Kathleen M.; Bradley, Paul M.; Wilson, Vickie S.

    2017-01-01

    In vitro bioassays are sensitive, effect-based tools used to quantitatively screen for chemicals with nuclear receptor activity in environmental samples. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR) activity, along with a broad suite of chemical analytes, in streamwater from 35 well-characterized sites (3 reference and 32 impacted) across 24 states and Puerto Rico. ER agonism was the most frequently detected with nearly all sites (34/35) displaying activity (range, 0.054–116 ng E2Eq L–1). There was a strong linear relationship (r2 = 0.917) between in vitro ER activity and concentrations of steroidal estrogens after correcting for the in vitro potency of each compound. AR agonism was detected in 5/35 samples (range, 1.6–4.8 ng DHTEq L–1) but concentrations of androgenic compounds were largely unable to account for the in vitro activity. Similarly, GR agonism was detected in 9/35 samples (range, 6.0–43 ng DexEq L–1); however, none of the recognized GR-active compounds on the target-chemical analyte list were detected. The utility of in vitro assays in water quality monitoring was evident from both the quantitative agreement between ER activity and estrogen concentrations, as well as the detection of AR and GR activity for which there were limited or no corresponding target-chemical detections to explain the bioactivity. Incorporation of in vitro bioassays as complements to chemical analyses in standard water quality monitoring efforts would allow for more complete assessment of the chemical mixtures present in many surface waters.

  16. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs.

    PubMed

    Benvidi, Ali; Tezerjani, Marzieh Dehghan; Jahanbani, Shahriar; Mazloum Ardakani, Mohammad; Moshtaghioun, Seyed Mohammad

    2016-01-15

    In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time. The immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were performed under optimum conditions using different electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed biosensors were used for determination of complementary DNA sequences. The non-modified DNA biosensor (1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS)/GCE), revealed a linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-16)molL(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.992, for DNA biosensors modified with multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) wider linear range and lower detection limit were obtained. For ssDNA/PANHS/MWCNTs/GCE a linear range 1.0×10(-17)mol L(-1)-1.0×10(-10)mol L(-1) with a correlation coefficient of 0.993 and for ssDNA/PANHS/RGO/GCE a linear range from 1.0×10(-18)mol L(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.985 were obtained. In addition, the mentioned biosensors were satisfactorily applied for discriminating of complementary sequences from noncomplementary sequences, so the mentioned biosensors can be used for the detection of BRCA1-associated breast cancer. Copyright © 2015. Published by Elsevier B.V.

  17. Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing.

    PubMed

    Li, Zibo; Guo, Xinwu; Tang, Lili; Peng, Limin; Chen, Ming; Luo, Xipeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Xia, Kun; Wang, Jun

    2016-10-01

    Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients' plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.

  18. The occurrence of antibiotics in an urban watershed: From wastewater to drinking water

    USGS Publications Warehouse

    Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Costanzo, S.D.

    2009-01-01

    The presence of 28 antibiotics in three hospital effluents, five wastewater treatment plants (WWTPs), six rivers and a drinking water storage catchment were investigated within watersheds of South–East Queensland, Australia. All antibiotics were detected at least once, with the exception of the polypeptide bacitracin which was not detected at all. Antibiotics were found in hospital effluent ranging from 0.01–14.5 μg L-1, dominated by the β-lactam, quinolone and sulphonamide groups. Antibiotics were found in WWTP influent up to 64 μg L-1, dominated by the β-lactam, quinolone and sulphonamide groups. Investigated WWTPs were highly effective in removing antibiotics from the water phase, with an average removal rate of greater than 80% for all targeted antibiotics. However, antibiotics were still detected in WWTP effluents in the low ng L-1 range up to a maximum of 3.4 μg L-1, with the macrolide, quinolone and sulphonamide antibiotics most prevalent. Similarly, antibiotics were detected quite frequently in the low ng L-1 range, up to 2 μg L-1 in the surface waters of six investigated rivers including freshwater, estuarine and marine samples. The total investigated antibiotic concentration (TIAC) within the Nerang River was significantly lower (p p < 0.001) was identified between TIACs at surface water sites with WWTP discharge compared to sites with no WWTP discharge, providing further evidence that WWTPs are an important source of antibiotics to streams. Despite the presence of antibiotics in surface waters used for drinking water extraction, no targeted antibiotics were detected in any drinking water samples.

  19. Development of a photodiode array biochip using a bipolar semiconductor and its application to detection of human papilloma virus.

    PubMed

    Baek, Taek Jin; Park, Pan Yun; Han, Kwi Nam; Kwon, Ho Taik; Seong, Gi Hun

    2008-03-01

    We describe a DNA microarray system using a bipolar integrated circuit photodiode array (PDA) chip as a new platform for DNA analysis. The PDA chip comprises an 8 x 6 array of photodiodes each with a diameter of 600 microm. Each photodiode element acts both as a support for an immobilizing probe DNA and as a two-dimensional photodetector. The usefulness of the PDA microarray platform is demonstrated by the detection of high-risk subtypes of human papilloma virus (HPV). The polymerase chain reaction (PCR)-amplified biotinylated HPV target DNA was hybridized with the immobilized probe DNA on the photodiode surface, and the chip was incubated in an anti-biotin antibody-conjugated gold nanoparticle solution. The silver enhancement by the gold nanoparticles bound to the biotin of the HPV target DNA precipitates silver metal particles at the chip surfaces, which block light irradiated from above. The resulting drop in output voltage depends on the amount of target DNA present in the sample solution, which allows the specific detection and the quantitative analysis of the complementary target DNA. The PDA chip showed high relative signal ratios of HPV probe DNA hybridized with complementary target DNA, indicating an excellent capability in discriminating HPV subtypes. The detection limit for the HPV target DNA analysis improved from 1.2 nM to 30 pM by changing the silver development time from 5 to 10 min. Moreover, the enhanced silver development promoted by the gold nanoparticles could be applied to a broader range of target DNA concentration by controlling the silver development time.

  20. Age-standardisation when target setting and auditing performance of Down syndrome screening programmes.

    PubMed

    Cuckle, Howard; Aitken, David; Goodburn, Sandra; Senior, Brian; Spencer, Kevin; Standing, Sue

    2004-11-01

    To describe and illustrate a method of setting Down syndrome screening targets and auditing performance that allows for differences in the maternal age distribution. A reference population was determined from a Gaussian model of maternal age. Target detection and false-positive rates were determined by standard statistical modelling techniques, except that the reference population rather than an observed population was used. Second-trimester marker parameters were obtained for Down syndrome from a large meta-analysis, and for unaffected pregnancies from the combined results of more than 600,000 screens in five centres. Audited detection and false-positive rates were the weighted average of the rates in five broad age groups corrected for viability bias. Weights were based on the age distributions in the reference population. Maternal age was found to approximate reasonably well to a Gaussian distribution with mean 27 years and standard deviation 5.5 years. Depending on marker combination, the target detection rates were 59 to 64% and false-positive rate 4.2 to 5.4% for a 1 in 250 term cut-off; 65 to 68% and 6.1 to 7.3% for 1 in 270 at mid-trimester. Among the five centres, the audited detection rate ranged from 7% below target to 10% above target, with audited false-positive rates better than the target by 0.3 to 1.5%. Age-standardisation should help to improve screening quality by allowing for intrinsic differences between programmes, so that valid comparisons can be made. Copyright 2004 John Wiley & Sons, Ltd.

  1. A label-free ultrasensitive fluorescence detection of viable Salmonella enteritidis using enzyme-induced cascade two-stage toehold strand-displacement-driven assembly of G-quadruplex DNA.

    PubMed

    Zhang, Peng; Liu, Hui; Ma, Suzhen; Men, Shuai; Li, Qingzhou; Yang, Xin; Wang, Hongning; Zhang, Anyun

    2016-06-15

    The harm of Salmonella enteritidis (S. enteritidis ) to public health mainly by contaminating fresh food and water emphasizes the urgent need for rapid detection techniques to help control the spread of the pathogen. In this assay, an newly designed capture probe complex that contained specific S. enteritidis-aptamer and hybridized signal target sequence was used for viable S. enteritidis recognition directly. In the presence of the target S. enteritidis, single-stranded target sequences were liberated and initiated the replication-cleavage reaction, producing numerous G-quadruplex structures with a linker on the 3'-end. And then, the sensing system took innovative advantage of quadratic linker-induced strand-displacement for the first time to release target sequence in succession, leading to the cyclic reuse of the target sequences and cascade signal amplification, thereby achieving the successive production of G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binded to these G-quadruplex structures and generated significantly enhanced fluorescent signals to achieve highly sensitive detection of S. enteritidis down to 60 CFU/mL with a linear range from 10(2) to 10(7)CFU/mL. By coupling the cascade two-stage target sequences-recyclable toehold strand-displacement with aptamer-based target recognition successfully, it is the first report on a novel non-label, modification-free and DNA extraction-free ultrasensitive fluorescence biosensor for detecting viable S. enteritidis directly, which can discriminate from dead S. enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Ultraviolet corona detection sensor study

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; MATHERN

    1976-01-01

    The feasibility of detecting electrical corona discharge phenomena in a space simulation chamber via emission of ultraviolet light was evaluated. A corona simulator, with a hemispherically capped point to plane electrode geometry, was used to generate corona glows over a wide range of pressure, voltage, current, electrode gap length and electrode point radius. Several ultraviolet detectors, including a copper cathode gas discharge tube and a UV enhanced silicon photodiode detector, were evaluated in the course of the spectral intensity measurements. The performance of both silicon target vidicons and silicon intensified target vidicons was evaluated analytically using the data generated by the spectroradiometer scans and the performance data supplied by the manufacturers.

  3. Small battery operated unattended radar sensor for security systems

    NASA Astrophysics Data System (ADS)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  4. [Target gene sequence capture and next generation sequencing technology to diagnose four children with Alagille syndrome].

    PubMed

    Gao, M L; Zhong, X M; Ma, X; Ning, H J; Zhu, D; Zou, J Z

    2016-06-02

    To make genetic diagnosis of Alagille syndrome (ALGS) patients using target gene sequence capture and next generation sequencing technology. Target gene sequence capture and next generation sequencing were used to detect ALGS gene of 4 patients. They were hospitalized at the Affiliated Hospital, Capital Institute of Pediatrics between January 2014 and December 2015, referred to clinical diagnosis of ALGS typical and atypical respectively in 2 cases. Blood samples were collected from patients and their parents and genomic DNA was extracted from lymphocytes. Target gene sequence capture and next generation sequencing was detected. Sanger sequencing was used to confirm the results of the patients and their parents. Cholestasis, heart defects, inverted triangular face and butterfly vertebrae were presented as main clinical features in 4 male patients. The first hospital visiting ages ranged from 3 months and 14 days to 3 years and 1 month. The age of onset ranged from 3 days to 42 days (median 23 days). According to the clinical diagnostic criteria of ALGS, patient 1 and patient 2 were considered as typical ALGS. The other 2 patients were considered as atypical ALGS. Four Jagged 1(JAG1) pathogenic mutations were detected. Three different missense mutations were detected in patient 1 to patient 3 with ALGS(c.839C>T(p.W280X), c. 703G>A(p.R235X), c. 1720C>T(p.V574M)). The JAG1 mutation of patient 3 was first reported. Patient 4 had one novel insertion mutation (c.1779_1780insA(p.Ile594AsnfsTer23)). Parental analysis verified that the JAG1 missense mutation of 3 patients were de novo. The results of sanger sequencing was consistent with the results of the next generation sequencing. Target gene sequence capture combined with next generation sequencing can detect two pathogenic genes in ALGS and test genes of other related diseases in infantile cholestatic diseases simultaneously and presents a high throughput, high efficiency and low cost. It may provide molecular diagnosis and treatment for clinicians with good clinical application prospects.

  5. Ultra-Wideband Chaos Life-Detection Radar with Sinusoidal Wave Modulation

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Li, Ying; Zhang, Jianguo; Han, Hong; Zhang, Bing; Wang, Longsheng; Wang, Yuncai; Wang, Anbang

    2017-12-01

    We propose and experimentally demonstrate an ultra-wideband (UWB) chaos life-detection radar. The proposed radar transmits a wideband chaotic-pulse-position modulation (CPPM) signal modulated by a single-tone sinusoidal wave. A narrow-band split ring sensor is used to collect the reflected sinusoidal wave, and a lock-in amplifier is utilized to identify frequencies of respiration and heartbeat by detecting the phase change of the sinusoidal echo signal. Meanwhile, human location is realized by correlating the CPPM echo signal with its delayed duplicate and combining the synthetic aperture technology. Experimental results demonstrate that the human target can be located accurately and his vital signs can be detected in a large dynamic range through a 20-cm-thick wall using our radar system. The down-range resolution is 15cm, benefiting from the 1-GHz bandwidth of the CPPM signal. The dynamic range for human location is 50dB, and the dynamic ranges for heartbeat and respiration detection respectively are 20dB and 60dB in our radar system. In addition, the bandwidth of the CPPM signal can be adjusted from 620MHz to 1.56GHz to adapt to different requirements.

  6. Eddy current gauge for monitoring displacement using printed circuit coil

    DOEpatents

    Visioli, Jr., Armando J.

    1977-01-01

    A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.

  7. 24/7 security system: 60-FPS color EMCCD camera with integral human recognition

    NASA Astrophysics Data System (ADS)

    Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.

    2007-04-01

    An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.

  8. Fluorescent aptasensor for detection of four tetracycline veterinary drugs in milk based on catalytic hairpin assembly reaction and displacement of G-quadruplex.

    PubMed

    Zhou, Chen; Zou, Haimin; Sun, Chengjun; Ren, Dongxia; Xiong, Wei; Li, Yongxin

    2018-05-01

    Based on a novel signal amplification strategy by catalytic hairpin assembly and displacement of G-quadruplex DNA, an enzyme-free, non-label fluorescent aptasensing approach was established for sensitive detection of four tetracycline veterinary drugs in milk. The network consisted of a pair of partially complementary DNA hairpins (HP1 and HP2). The DNA aptamer of four tetracycline veterinary drugs was located at the sticky end of the HP1. The ring region of HP1 rich in G and C could form a stable G-quadruplex structure, which could emit specific fluorescence signal after binding with the fluorescent dye and N-methylmesoporphyrin IX (NMM). When presented in the system, the target analytes would be repeatedly used to trigger a recycling procedure between the hairpins, generating numerous HP1-HP2 duplex complexes and displacing G-quadruplex DNA. Thus, the sensitive detection of target analytes was achieved in a wide linear range (0-1000 μg/L) with the detection limit of 4.6 μg/L. Moreover, this proposed method showed high discrimination efficiency towards target analytes against other common mismatched veterinary drugs, and could be successfully applied to the analysis of milk samples. Graphical abstract Schematic of target analyte detection based on catalytic hairpin assembly reaction and displacement of G-quadruplex.

  9. Palindromic Molecule Beacon-Based Cascade Amplification for Colorimetric Detection of Cancer Genes.

    PubMed

    Shen, Zhi-Fa; Li, Feng; Jiang, Yi-Fan; Chen, Chang; Xu, Huo; Li, Cong-Cong; Yang, Zhe; Wu, Zai-Sheng

    2018-03-06

    A highly sensitive and selective colorimetric assay based on a multifunctional molecular beacon with palindromic tail (PMB) was proposed for the detection of target p53 gene. The PMB probe can serve as recognition element, primer, and polymerization template and contains a nicking site and a C-rich region complementary to a DNAzyme. In the presence of target DNA, the hairpin of PMB is opened, and the released palindromic tails intermolecularly hybridize with each other, triggering the autonomous polymerization/nicking/displacement cycles. Although only one type of probe is involved, the system can execute triple and continuous polymerization strand displacement amplifications, generating large amounts of G-quadruplex fragments. These G-rich fragments can bind to hemin and form the DNAzymes that possess the catalytic activity similar to horseradish peroxidase, catalyzing the oxidation of ABTS by H 2 O 2 and producing the colorimetric signal. Utilizing the newly proposed sensing system, target DNA can be detected down to 10 pM with a linear response range from 10 pM to 200 nM, and mutant target DNAs are able to be distinguished even by the naked eye. The desirable detection sensitivity, high specificity, and operation convenience without any separation step and chemical modification demonstrate that the palindromic molecular beacon holds the potential for detecting and monitoring a variety of nucleic acid-related biomarkers.

  10. Optical distance measurement device and method thereof

    DOEpatents

    Bowers, Mark W.

    2003-05-27

    A system and method of efficiently obtaining distance measurements of a target. A modulated optical beam may be used to determine the distance to the target. A first beam splitter may be used to split the optical beam and a second beam splitter may be used to recombine a reference beam with a return ranging beam. An optical mixing detector may be used in a receiver to efficiently detect distance measurement information.

  11. Distributed RF Tomography for Tunnel Detection: Suitable Inversion Schemes

    DTIC Science & Technology

    2009-01-01

    methods, ranging from seismic to electromagnetic waves, or from gravity to optics, from impedance tomography to magnetotellurics, no technique...unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Borehole GPR, which may...one manner to different targets (when targets are well-resolved). In particular, the wavefront generated by the array , when excited by one of these

  12. Visual and highly sensitive detection of cancer cells by a colorimetric aptasensor based on cell-triggered cyclic enzymatic signal amplification.

    PubMed

    Zhang, Xianxia; Xiao, Kunyi; Cheng, Liwei; Chen, Hui; Liu, Baohong; Zhang, Song; Kong, Jilie

    2014-06-03

    Rapid and efficient detection of cancer cells at their earliest stages is one of the central challenges in cancer diagnostics. We developed a simple, cost-effective, and highly sensitive colorimetric method for visually detecting rare cancer cells based on cell-triggered cyclic enzymatic signal amplification (CTCESA). In the absence of target cells, hairpin aptamer probes (HAPs) and linker DNAs stably coexist in solution, and the linker DNA assembles DNA-AuNPs, producing a purple solution. In the presence of target cells, the specific binding of HAPs to the target cells triggers a conformational switch that results in linker DNA hybridization and cleavage by nicking endonuclease-strand scission cycles. Consequently, the cleaved fragments of linker DNA can no longer assemble into DNA-AuNPs, resulting in a red color. UV-vis spectrometry and photograph analyses demonstrated that this CTCESA-based method exhibited selective and sensitive colorimetric responses to the presence of target CCRF-CEM cells, which could be detected by the naked eye. The linear response for CCRF-CEM cells in a concentration range from 10(2) to 10(4) cells was obtained with a detection limit of 40 cells, which is approximately 20 times lower than the detection limit of normal AuNP-based methods without amplification. Given the high specificity and sensitivity of CTCESA, this colorimetric method provides a sensitive, label-free, and cost-effective approach for early cancer diagnosis and point-to-care applications.

  13. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    PubMed

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-07

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins.

  14. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    PubMed

    Bakhori, Noremylia Mohd; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-12

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10-9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  15. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense.

    PubMed

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-12-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.

  16. Advancing Porous Silicon Biosensor Technology for Use in Clinical Diagnostics

    NASA Astrophysics Data System (ADS)

    Bonanno, Lisa Marie

    Inexpensive and robust analytical techniques for detecting molecular recognition events are in great demand in healthcare, food safety, and environmental monitoring. Despite vast research in this area, challanges remain to develop practical biomolecular platforms that, meet the rigorous demands of real-world applications. This includes maintaining low-cost devices that are sensitive and specific in complex test specimens, are stable after storage, have short assay time, and possess minimal complexity of instrumentation for readout. Nanostructured porous silicon (PSi) material has been identified as an ideal candidate towards achieving these goals and the past decade has seen diverse proof-of-principle studies developing optical-based sensing techniques. In Part 1 of this thesis, the impact of surface chemistry and PSi morphology on detection sensitivity of target molecules is investigated. Initial proof-of-concept that PSi devices facilitate detection of protein in whole blood is demonstrated. This work highlights the importance of material stability and blocking chemistry for sensor use in real world biological samples. In addition, the intrinisic filtering capability of the 3-D PSi morphology is shown as an advantage in complex solutions, such as whole blood. Ultimately, this initial work identified a need to improve detection sensitivity of the PSI biosensor technique to facilitate clinical diagnostic use over relevant target concentration ranges. The second part of this thesis, builds upon sensitivity challenges that are highlighted in the first part of the thesis and development of a surface-bound competitive inhibition immunoassay facilitated improved detection sensitivity of small molecular weight targets (opiates) over a relevant clinical concentration range. In addition, optimization of assay protocol addressed issues of maintaining stability of sensors after storage. Performance of the developed assay (specificity and sensitivity) was then validated in a blind clinical study that screened real patient urine samples (n=70) for opiates in collaboration with Strong Memorial Hospital Clinical Toxicology Laboratory. PSI sensor results showed improved clinical specificity over current commercial opiate immunoassay techniques and therefore, identified potential for a reduction in false-negative and false-positive screening results. Here, we demonstrate for the first time, successful clinical capability of a PSi sensor to detect opiates as a model target in real-world patient samples. The final part of this thesis explores novel sensor designs to leverage the tunable optical properties of PSi photonic devices and facilitate colorimetric readout of molecular recognition events by the unaided eye. Such a design is ideal for uncomplicated diagnostic screening at point-of-care as no instrumentation is needed for result readout. The photonic PSi transducers were integrated with target analyte-responsive hydrogels (TRAP-gels) that upon exposure to a target solution would swell and dissolute, inducing material property changes that were optically detected by the incorporated PSi transducer. This strategy extends target detection throughout the 3-ll internal volume of the PSi, improving upon current techniques that limit detection to the surface area (2-ll) of PSi. Work to acheive this approach involved design of TRAP-gel networks, polymer synthesis and characterization techniques, and optical characterization of the hybrid hydrogel-PSi material sensor. Successful implementation of a hybrid sensor design was exhibited for a. model chemical target (reducing agent), in which visual colorimetric change from red to green was observed for above-threshold exposure to the chemical target. In addition, initial proof-of-concept of an opiate responsive TRAP-gel is also demonstrated where cross-links are formed between antibody-antigen interactions and exposure to opiates induces bulk gel dissolution.

  17. Research on measurement method of optical camouflage effect of moving object

    NASA Astrophysics Data System (ADS)

    Wang, Juntang; Xu, Weidong; Qu, Yang; Cui, Guangzhen

    2016-10-01

    Camouflage effectiveness measurement as an important part of the camouflage technology, which testing and measuring the camouflage effect of the target and the performance of the camouflage equipment according to the tactical and technical requirements. The camouflage effectiveness measurement of current optical band is mainly aimed at the static target which could not objectively reflect the dynamic camouflage effect of the moving target. This paper synthetical used technology of dynamic object detection and camouflage effect detection, the digital camouflage of the moving object as the research object, the adaptive background update algorithm of Surendra was improved, a method of optical camouflage effect detection using Lab-color space in the detection of moving-object was presented. The binary image of moving object is extracted by this measurement technology, in the sequence diagram, the characteristic parameters such as the degree of dispersion, eccentricity, complexity and moment invariants are constructed to construct the feature vector space. The Euclidean distance of moving target which through digital camouflage was calculated, the results show that the average Euclidean distance of 375 frames was 189.45, which indicated that the degree of dispersion, eccentricity, complexity and moment invariants of the digital camouflage graphics has a great difference with the moving target which not spray digital camouflage. The measurement results showed that the camouflage effect was good. Meanwhile with the performance evaluation module, the correlation coefficient of the dynamic target image range 0.1275 from 0.0035, and presented some ups and down. Under the dynamic condition, the adaptability of target and background was reflected. In view of the existing infrared camouflage technology, the next step, we want to carry out the camouflage effect measurement technology of the moving target based on infrared band.

  18. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    PubMed Central

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Wei-Jun; Smith, Richard D.

    2012-01-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications (PTMs), as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed. PMID:22577010

  19. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Su, Dian; Liu, Tao

    2012-04-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, whichmore » have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.« less

  20. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    NASA Astrophysics Data System (ADS)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.; Baker, Erin S.; Liu, Tao; Smith, Richard D.; Fernandez-Lima, Francisco

    2018-05-01

    In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150-250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMS-CID-TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptide biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10-200 nM range, while simultaneously achieving discovery measurements of not initially targeted peptides as markers from the same proteins and, eventually, other proteins. [Figure not available: see fulltext.

  1. Directing driver attention with augmented reality cues

    PubMed Central

    Rusch, Michelle L.; Schall, Mark C.; Gavin, Patrick; Lee, John D.; Dawson, Jeffrey D.; Vecera, Shaun; Rizzo, Matthew

    2013-01-01

    This simulator study evaluated the effects of augmented reality (AR) cues designed to direct the attention of experienced drivers to roadside hazards. Twenty-seven healthy middle-aged licensed drivers with a range of attention capacity participated in a 54 mile (1.5 hour) drive in an interactive fixed-base driving simulator. Each participant received AR cues to potential roadside hazards in six simulated straight (9 mile long) rural roadway segments. Drivers were evaluated on response time for detecting a potentially hazardous event, detection accuracy for target (hazard) and non-target objects, and headway with respect to the hazards. Results showed no negative outcomes associated with interference. AR cues did not impair perception of non-target objects, including for drivers with lower attentional capacity. Results showed near significant response time benefits for AR cued hazards. AR cueing increased response rate for detecting pedestrians and warning signs but not vehicles. AR system false alarms and misses did not impair driver responses to potential hazards. PMID:24436635

  2. Absorption of light dark matter in semiconductors

    DOE PAGES

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2017-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derivemore » the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. Finally, with only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.« less

  3. Binding-induced DNA walker for signal amplification in highly selective electrochemical detection of protein.

    PubMed

    Ji, Yuhang; Zhang, Lei; Zhu, Longyi; Lei, Jianping; Wu, Jie; Ju, Huangxian

    2017-10-15

    A binding-induced DNA walker-assisted signal amplification was developed for highly selective electrochemical detection of protein. Firstly, the track of DNA walker was constructed by self-assembly of the high density ferrocene (Fc)-labeled anchor DNA and aptamer 1 on the gold electrode surface. Sequentially, a long swing-arm chain containing aptamer 2 and walking strand DNA was introduced onto gold electrode through aptamers-target specific recognition, and thus initiated walker strand sequences to hybridize with anchor DNA. Then, the DNA walker was activated by the stepwise cleavage of the hybridized anchor DNA by nicking endonuclease to release multiple Fc molecules for signal amplification. Taking thrombin as the model target, the Fc-generated electrochemical signal decreased linearly with logarithm value of thrombin concentration ranging from 10pM to 100nM with a detection limit of 2.5pM under the optimal conditions. By integrating the specific recognition of aptamers to target with the enzymatic cleavage of nicking endonuclease, the aptasensor showed the high selectivity. The binding-induced DNA walker provides a promising strategy for signal amplification in electrochemical biosensor, and has the extensive applications in sensitive and selective detection of the various targets. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Programmable near-infrared ranging system

    DOEpatents

    Everett, Jr., Hobart R.

    1989-01-01

    A high angular resolution ranging system particularly suitable for indoor plications involving mobile robot navigation and collision avoidance uses a programmable array of light emitters that can be sequentially incremented by a microprocessor. A plurality of adjustable level threshold detectors are used in an optical receiver for detecting the threshold level of the light echoes produced when light emitted from one or more of the emitters is reflected by a target or object in the scan path of the ranging system.

  5. SU-F-J-160: Clinical Evaluation of Targeting Accuracy in Radiosurgery Using Tractography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juh, R; Han, J; Kim, C

    Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 males, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodosemore » line underwent 1.5Tesla MR trigeminal nerve. Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated. Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement. Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment effects.« less

  6. SU-E-J-34: Clinical Evaluation of Targeting Accuracy and Tractogrphy Delineation of Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juh, R; Suh, T; Kim, Y

    2014-06-01

    Purpose: Focal radiosurgery is a common treatment modality for trigeminal neuralgia (TN), a neuropathic facial pain condition. Assessment of treatment effectiveness is primarily clinical, given the paucity of investigational tools to assess trigeminal nerve changes. The efficiency of radiosurgery is related to its highly precise targeting. We assessed clinically the targeting accuracy of radiosurgery with Gamma knife. We hypothesized that trigeminal tractography provides more information than 2D-MR imaging, allowing detection of unique, focal changes in the target area after radiosurgery. Methods: Sixteen TN patients (2 females, 4 male, average age 65.3 years) treated with Gamma Knife radiosurgery, 40 Gy/50% isodosemore » line underwent 1.5Tesla MR trigeminal nerve . Target accuracy was assessed from deviation of the coordinates of the target compared with the center of enhancement on post MRI. Radiation dose delivered at the borders of contrast enhancement was evaluated Results: The median deviation of the coordinates between the intended target and the center of contrast enhancement was within 1mm. The radiation doses fitting within the borders of the contrast enhancement the target ranged from 37.5 to 40 Gy. Trigeminal tractography accurately detected the radiosurgical target. Radiosurgery resulted in 47% drop in FA values at the target with no significant change in FA outside the target, suggesting that radiosurgery primarily affects myelin. Tractography was more sensitive, since FA changes were detected regardless of trigeminal nerve enhancement Conclusion: The median deviation found in clinical assessment of gamma knife treatment for TN Is low and compatible with its high rate of efficiency. DTI parameters accurately detect the effects of focal radiosurgery on the trigeminal nerve, serving as an in vivo imaging tool to study TN. This study is a proof of principle for further assessment of DTI parameters to understand the pathophysiology of TN and treatment effects.« less

  7. Target analysis of primary aromatic amines combined with a comprehensive screening of migrating substances in kitchen utensils by liquid chromatography-high resolution mass spectrometry.

    PubMed

    Sanchis, Yovana; Coscollà, Clara; Roca, Marta; Yusà, Vicent

    2015-06-01

    An analytical strategy including both the quantitative target analysis of 8 regulated primary aromatic amines (PAAs), as well as a comprehensive post-run target screening of 77 migrating substances, was developed for nylon utensils, using liquid chromatography-orbitrap-high resolution mass spectrometry (LC-HRMS) operating in full scan mode. The accurate mass data were acquired with a resolving power of 50,000 FWHM (scan speed, 2 Hz), and by alternating two acquisition events, ESI+ with and without fragmentation. The target method was validated after statistical optimization of the main ionization and fragmentation parameters. The quantitative method presented appropriate performance to be used in official monitoring with recoveries ranging from 78% to 112%, precision in terms of Relative Standard Deviation (RSD) was less than 15%, and the limits of quantification were between 2 and 2.5 µg kg(-1). For post-target screening, a customized theoretical database was built for food contact material migrants, including bisphenols, phthalates, and other amines. For identification purposes, accurate exact mass (<5 ppm) and some diagnostic ions including fragments were used. The strategy was applied to 10 real samples collected from different retailers in the Valencian Region (Spain) during 2014. Six out of eight target PAAs were detected in at least one sample in the target analysis. The most frequently detected compounds were 4,4'-methylenedianiline and aniline, with concentrations ranging from 2.4 to 19,715 µg kg(-1) and 2.5 to 283 µg kg(-1), respectively. Two phthalates were identified and confirmed in the post-run target screening analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers.

    PubMed

    Dou, Xinjing; Mao, Jin; Zhang, Liangxiao; Xie, Huali; Chen, Lin; Yu, Li; Ma, Fei; Wang, Xiupin; Zhang, Qi; Li, Peiwu

    2018-01-25

    Adulteration of edible oils has attracted attention from more researchers and consumers in recent years. Complex multispecies adulteration is a commonly used strategy to mask the traditional adulteration detection methods. Most of the researchers were only concerned about single targeted adulterants, however, it was difficult to identify complex multispecies adulteration or untargeted adulterants. To detect adulteration of edible oil, identification of characteristic markers of adulterants was proposed to be an effective method, which could provide a solution for multispecies adulteration detection. In this study, a simple method of multispecies adulteration detection for camellia oil (adulterated with soybean oil, peanut oil, rapeseed oil) was developed by quantifying chemical markers including four isoflavones, trans-resveratrol and sinapic acid, which used liquid chromatography tandem mass spectrometry (LC-MS/MS) combined with solid phase extraction (SPE). In commercial camellia oil, only two of them were detected of daidzin with the average content of 0.06 ng/g while other markers were absent. The developed method was highly sensitive as the limits of detection (LODs) ranged from 0.02 ng/mL to 0.16 ng/mL and the mean recoveries ranged from 79.7% to 113.5%, indicating that this method was reliable to detect potential characteristic markers in edible oils. Six target compounds for pure camellia oils, soybean oils, peanut oils and rapeseed oils had been analyzed to get the results. The validation results indicated that this simple and rapid method was successfully employed to determine multispecies adulteration of camellia oil adulterated with soybean, peanut and rapeseed oils.

  9. A Novel Method for Proximity Detection of Moving Targets Using a Large-Scale Planar Capacitive Sensor System

    PubMed Central

    Ye, Yong; Deng, Jiahao; Shen, Sanmin; Hou, Zhuo; Liu, Yuting

    2016-01-01

    A novel method for proximity detection of moving targets (with high dielectric constants) using a large-scale (the size of each sensor is 31 cm × 19 cm) planar capacitive sensor system (PCSS) is proposed. The capacitive variation with distance is derived, and a pair of electrodes in a planar capacitive sensor unit (PCSU) with a spiral shape is found to have better performance on sensitivity distribution homogeneity and dynamic range than three other shapes (comb shape, rectangular shape, and circular shape). A driving excitation circuit with a Clapp oscillator is proposed, and a capacitance measuring circuit with sensitivity of 0.21 Vp−p/pF is designed. The results of static experiments and dynamic experiments demonstrate that the voltage curves of static experiments are similar to those of dynamic experiments; therefore, the static data can be used to simulate the dynamic curves. The dynamic range of proximity detection for three projectiles is up to 60 cm, and the results of the following static experiments show that the PCSU with four neighboring units has the highest sensitivity (the sensitivities of other units are at least 4% lower); when the attack angle decreases, the intensity of sensor signal increases. This proposed method leads to the design of a feasible moving target detector with simple structure and low cost, which can be applied in the interception system. PMID:27196905

  10. Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.

    2015-07-01

    The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (< 0.5 mm) permits monitoring the pharmacokinetics of labeled gene constructs in vivo in small animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.

  11. Electromagnetic packable technology (EMPACT) for detection and characterization of ordnance in post-conflict areas

    NASA Astrophysics Data System (ADS)

    Schultz, Gregory; Miller, Jonathan; Keranen, Joe

    2013-06-01

    Land reclamation efforts in post-conflict regions are often hampered by the presence of Unexploded Ordnance (UXO) or other Explosive Remnants of War (ERW). Surface geophysical methods, such as Electromagnetic Induction (EMI) and magnetometry, are typically applied to screen rehabilitation areas for UXO prior to excavation; however, the prevalence of innocuous magnetic clutter related to indigenous scrap, fragmentation, or geology can severely impede the progress and efficiency of these remediation efforts. Additionally, the variability in surface conditions and local topography necessitates the development of sensor technologies that can be applied to a range of sites including those that prohibit the use of vehicle-mounted or large array systems. We present a man-portable EMI sensor known as the Electromagnetic Packable Technology (EMPACT) system that features a multi-axis sensor configuration in a compact form factor. The system is designed for operation in challenging site conditions and can be used in low ground-standoff modes to detect small and low-metal content objects. The EMPACT acquires high spatial density, multi-axis data that enable high resolution of small objects. This high density data can also be used to provide characterization of target physical features, such as size, material content, and shape. We summarize the development of this system for humanitarian demining operations and present results from preliminary system evaluations against a range of target types. Specifically, we assess the general detection capabilities of the EMPACT system and we evaluate the potential for target classification based on analysis of data and target model features.

  12. Hyperheat: a thermal signature model for super- and hypersonic missiles

    NASA Astrophysics Data System (ADS)

    van Binsbergen, S. A.; van Zelderen, B.; Veraar, R. G.; Bouquet, F.; Halswijk, W. H. C.; Schleijpen, H. M. A.

    2017-10-01

    In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures of missile targets. This typically results in an overestimate of the target temperature with correspondingly large infrared signatures and detection ranges. Especially for even higher velocities, this approach is no longer accurate. Alternatives like CFD calculations typically require more complex sets of inputs and significantly more computing power. The MATLAB code Hyperheat was developed to calculate the time-resolved skin temperature of axisymmetric high speed missiles during flight, taking into account the behaviour of non-perfect gas and proper heat transfer to the missile surface. Allowing for variations in parameters like missile shape, altitude, atmospheric profile, angle of attack, flight duration and super- and hypersonic velocities up to Mach 30 enables more accurate calculations of the actual target temperature. The model calculates a map of the skin temperature of the missile, which is updated over the flight time of the missile. The sets of skin temperature maps are calculated within minutes, even for >100 km trajectories, and can be easily converted in thermal infrared signatures for further processing. This paper discusses the approach taken in Hyperheat. Then, the thermal signature of a set of typical missile threats is calculated using both the simple aerodynamic heating model and the Hyperheat code. The respective infrared signatures are compared, as well as the difference in the corresponding calculated detection ranges.

  13. Potential Pitfalls Related to Space-Based Lidar Remote Sensing of the Earth With an Emphasis on Wind Measurement

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Spiers, Gary D.; Frehlich, Rod G.

    2000-01-01

    A collection of issues is discussed that are potential pitfalls, if handled incorrectly, for earth-orbiting lidar remote sensing instruments. These issues arise due to the long target ranges, high lidar-to-target relative velocities, low signal levels, use of laser scanners, and other unique aspects of using lasers in earth orbit. Consequences of misunderstanding these topics range from minor inconvenience to improper calibration to total failure. We will focus on wind measurement using coherent detection Doppler lidar, but many of the potential pitfalls apply also to noncoherent lidar wind measurement, and to measurement of parameters other than wind.

  14. A novel electrochemical cytosensor for selective and highly sensitive detection of cancer cells using binding-induced dual catalytic hairpin assembly.

    PubMed

    Zhang, Ye; Luo, Shihua; Situ, Bo; Chai, Zhixin; Li, Bo; Liu, Jumei; Zheng, Lei

    2018-04-15

    Rare cancer cells in body fluid could be useful biomarkers for noninvasive diagnosis of cancer. However, detection of these rare cells is currently challenging. In this work, a binding-induced dual catalytic hairpin assembly (DCHA) electrochemical cytosensor was developed for highly selective and sensitive detection of cancer cells. The fuel probe, released by hybridization between the capture probe and catalytic hairpin assembly (CHA) products of target cell-responsive reaction, initiated dual CHA recycling, leading to multiple CHA products. Furthermore, the hybridization between fuel probe and capture probe decreased non-specific CHA products, improving the signal-to-noise ratio and detection sensitivity. Under the optimal conditions, the developed cytosensor was able to detect cells down to 30 cells mL -1 (S/N = 3) with a linear range from 50 to 100,000 cells mL -1 and was capable of distinguishing target cells from normal cells in clinical blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A Novel Detection Platform for Shrimp White Spot Syndrome Virus Using an ICP11-Dependent Immunomagnetic Reduction (IMR) Assay.

    PubMed

    Liu, Bing-Hsien; Lin, Yu-Chen; Ho, Chia-Shin; Yang, Che-Chuan; Chang, Yun-Tsui; Chang, Jui-Feng; Li, Chun-Yuan; Cheng, Cheng-Shun; Huang, Jiun-Yan; Lee, Yen-Fu; Hsu, Ming-Hung; Lin, Feng-Chun; Wang, Hao-Ching; Lo, Chu-Fang; Yang, Shieh-Yueh; Wang, Han-Ching

    2015-01-01

    Shrimp white spot disease (WSD), which is caused by white spot syndrome virus (WSSV), is one of the world's most serious shrimp diseases. Our objective in this study was to use an immunomagnetic reduction (IMR) assay to develop a highly sensitive, automatic WSSV detection platform targeted against ICP11 (the most highly expressed WSSV protein). After characterizing the magnetic reagents (Fe3O4 magnetic nanoparticles coated with anti ICP11), the detection limit for ICP11 protein using IMR was approximately 2 x 10(-3) ng/ml, and the linear dynamic range of the assay was 0.1~1 x 10(6) ng/ml. In assays of ICP11 protein in pleopod protein lysates from healthy and WSSV-infected shrimp, IMR signals were successfully detected from shrimp with low WSSV genome copy numbers. We concluded that this IMR assay targeting ICP11 has potential for detecting the WSSV.

  16. Biosensing of DNA oxidative damage: a model of using glucose meter for non-glucose biomarker detection.

    PubMed

    Zhu, Xuena; Sarwar, Mehenur; Yue, Qiaoli; Chen, Chunying; Li, Chen-Zhong

    2017-01-01

    Non-glucose biomarker-DNA oxidative damage biomarker 8-hydroxy-2'-deoxyguanosine (8-OHdG) has been successfully detected using a smartphone-enabled glucose meter. Through a series of immune reactions and enzymatic reactions on a solid lateral flow platform, 8-OHdG concentration has been converted to a relative amount of glucose, and therefore can be detected by conventional glucose meter directly. The device was able to detect 8-OHdG concentrations in phosphate buffer saline as low as 1.73 ng mL -1 with a dynamic range of 1-200 ng mL -1 . Considering the inherent advantages of the personal glucose meter, the demonstration of this device, therefore, should provide new opportunities for the monitoring of a wide range of biomarkers and various target analytes in connection with different molecular recognition events.

  17. Target recognitions in multiple-camera closed-circuit television using color constancy

    NASA Astrophysics Data System (ADS)

    Soori, Umair; Yuen, Peter; Han, Ji Wen; Ibrahim, Izzati; Chen, Wentao; Hong, Kan; Merfort, Christian; James, David; Richardson, Mark

    2013-04-01

    People tracking in crowded scenes from closed-circuit television (CCTV) footage has been a popular and challenging task in computer vision. Due to the limited spatial resolution in the CCTV footage, the color of people's dress may offer an alternative feature for their recognition and tracking. However, there are many factors, such as variable illumination conditions, viewing angles, and camera calibration, that may induce illusive modification of intrinsic color signatures of the target. Our objective is to recognize and track targets in multiple camera views using color as the detection feature, and to understand if a color constancy (CC) approach may help to reduce these color illusions due to illumination and camera artifacts and thereby improve target recognition performance. We have tested a number of CC algorithms using various color descriptors to assess the efficiency of target recognition from a real multicamera Imagery Library for Intelligent Detection Systems (i-LIDS) data set. Various classifiers have been used for target detection, and the figure of merit to assess the efficiency of target recognition is achieved through the area under the receiver operating characteristics (AUROC). We have proposed two modifications of luminance-based CC algorithms: one with a color transfer mechanism and the other using a pixel-wise sigmoid function for an adaptive dynamic range compression, a method termed enhanced luminance reflectance CC (ELRCC). We found that both algorithms improve the efficiency of target recognitions substantially better than that of the raw data without CC treatment, and in some cases the ELRCC improves target tracking by over 100% within the AUROC assessment metric. The performance of the ELRCC has been assessed over 10 selected targets from three different camera views of the i-LIDS footage, and the averaged target recognition efficiency over all these targets is found to be improved by about 54% in AUROC after the data are processed by the proposed ELRCC algorithm. This amount of improvement represents a reduction of probability of false alarm by about a factor of 5 at the probability of detection of 0.5. Our study concerns mainly the detection of colored targets; and issues for the recognition of white or gray targets will be addressed in a forthcoming study.

  18. Vision and foraging in cormorants: more like herons than hawks?

    PubMed

    White, Craig R; Day, Norman; Butler, Patrick J; Martin, Graham R

    2007-07-25

    Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique. We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m). We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons.

  19. Evaluation of the performance of quantitative detection of the Listeria monocytogenes prfA locus with droplet digital PCR.

    PubMed

    Witte, Anna Kristina; Fister, Susanne; Mester, Patrick; Schoder, Dagmar; Rossmanith, Peter

    2016-11-01

    Fast and reliable pathogen detection is an important issue for human health. Since conventional microbiological methods are rather slow, there is growing interest in detection and quantification using molecular methods. The droplet digital polymerase chain reaction (ddPCR) is a relatively new PCR method for absolute and accurate quantification without external standards. Using the Listeria monocytogenes specific prfA assay, we focused on the questions of whether the assay was directly transferable to ddPCR and whether ddPCR was suitable for samples derived from heterogeneous matrices, such as foodstuffs that often included inhibitors and a non-target bacterial background flora. Although the prfA assay showed suboptimal cluster formation, use of ddPCR for quantification of L. monocytogenes from pure bacterial cultures, artificially contaminated cheese, and naturally contaminated foodstuff was satisfactory over a relatively broad dynamic range. Moreover, results demonstrated the outstanding detection limit of one copy. However, while poorer DNA quality, such as resulting from longer storage, can impair ddPCR, internal amplification control (IAC) of prfA by ddPCR, that is integrated in the genome of L. monocytogenes ΔprfA, showed even slightly better quantification over a broader dynamic range. Graphical Abstract Evaluating the absolute quantification potential of ddPCR targeting Listeria monocytogenes prfA.

  20. Developmental Conductive Hearing Loss Reduces Modulation Masking Release

    PubMed Central

    Chen, Yi-Wen; Sanes, Dan H.

    2016-01-01

    Hearing-impaired individuals experience difficulties in detecting or understanding speech, especially in background sounds within the same frequency range. However, normally hearing (NH) human listeners experience less difficulty detecting a target tone in background noise when the envelope of that noise is temporally gated (modulated) than when that envelope is flat across time (unmodulated). This perceptual benefit is called modulation masking release (MMR). When flanking masker energy is added well outside the frequency band of the target, and comodulated with the original modulated masker, detection thresholds improve further (MMR+). In contrast, if the flanking masker is antimodulated with the original masker, thresholds worsen (MMR−). These interactions across disparate frequency ranges are thought to require central nervous system (CNS) processing. Therefore, we explored the effect of developmental conductive hearing loss (CHL) in gerbils on MMR characteristics, as a test for putative CNS mechanisms. The detection thresholds of NH gerbils were lower in modulated noise, when compared with unmodulated noise. The addition of a comodulated flanker further improved performance, whereas an antimodulated flanker worsened performance. However, for CHL-reared gerbils, all three forms of masking release were reduced when compared with NH animals. These results suggest that developmental CHL impairs both within- and across-frequency processing and provide behavioral evidence that CNS mechanisms are affected by a peripheral hearing impairment. PMID:28215119

  1. Quantum cascade laser-based sensor system for nitric oxide detection

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Allred, James J.; Cao, Yingchun; Sanchez, Nancy P.; Ren, Wei; Jiang, Wenzhe; Jiang, Dongfang; Griffin, Robert J.

    2015-01-01

    Sensitive detection of nitric oxide (NO) at ppbv concentration levels has an important impact in diverse fields of applications including environmental monitoring, industrial process control and medical diagnostics. For example, NO can be used as a biomarker of asthma and inflammatory lung diseases such as chronic obstructive pulmonary disease. Trace gas sensor systems capable of high sensitivity require the targeting of strong rotational-vibrational bands in the mid-IR spectral range. These bands are accessible using state-of-the-art high heat load (HHL) packaged, continuous wave (CW), distributed feedback (DFB) quantum cascade lasers (QCLs). Quartz-enhanced photoacoustic spectroscopy (QEPAS) permits the design of fast, sensitive, selective, and compact sensor systems. A QEPAS sensor was developed employing a room-temperature CW DFB-QCL emitting at 5.26 μm with an optical excitation power of 60 mW. High sensitivity is achieved by targeting a NO absorption line at 1900.08 cm-1 free of interference by H2O and CO2. The minimum detection limit of the sensor is 7.5 and 1 ppbv of NO with 1and 100 second averaging time respectively . The sensitivity of the sensor system is sufficient for detecting NO in exhaled human breath, with typical concentration levels ranging from 24.0 ppbv to 54.0 ppbv.

  2. Auditory enhancement of visual perception at threshold depends on visual abilities.

    PubMed

    Caclin, Anne; Bouchet, Patrick; Djoulah, Farida; Pirat, Elodie; Pernier, Jacques; Giard, Marie-Hélène

    2011-06-17

    Whether or not multisensory interactions can improve detection thresholds, and thus widen the range of perceptible events is a long-standing debate. Here we revisit this question, by testing the influence of auditory stimuli on visual detection threshold, in subjects exhibiting a wide range of visual-only performance. Above the perceptual threshold, crossmodal interactions have indeed been reported to depend on the subject's performance when the modalities are presented in isolation. We thus tested normal-seeing subjects and short-sighted subjects wearing their usual glasses. We used a paradigm limiting potential shortcomings of previous studies: we chose a criterion-free threshold measurement procedure and precluded exogenous cueing effects by systematically presenting a visual cue whenever a visual target (a faint Gabor patch) might occur. Using this carefully controlled procedure, we found that concurrent sounds only improved visual detection thresholds in the sub-group of subjects exhibiting the poorest performance in the visual-only conditions. In these subjects, for oblique orientations of the visual stimuli (but not for vertical or horizontal targets), the auditory improvement was still present when visual detection was already helped with flanking visual stimuli generating a collinear facilitation effect. These findings highlight that crossmodal interactions are most efficient to improve perceptual performance when an isolated modality is deficient. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Mulchaey, John S.

    We perform a comprehensive study of X-ray cavities using a large sample of X-ray targets selected from the Chandra archive. The sample is selected to cover a large dynamic range including galaxy clusters, groups, and individual galaxies. Using β -modeling and unsharp masking techniques, we investigate the presence of X-ray cavities for 133 targets that have sufficient X-ray photons for analysis. We detect 148 X-ray cavities from 69 targets and measure their properties, including cavity size, angle, and distance from the center of the diffuse X-ray gas. We confirm the strong correlation between cavity size and distance from the X-raymore » center similar to previous studies. We find that the detection rates of X-ray cavities are similar among galaxy clusters, groups and individual galaxies, suggesting that the formation mechanism of X-ray cavities is independent of environment.« less

  4. Combination of Competitive Quantitative PCR and Constant-Denaturant Capillary Electrophoresis for High-Resolution Detection and Enumeration of Microbial Cells

    PubMed Central

    Lim, Eelin L.; Tomita, Aoy V.; Thilly, William G.; Polz, Martin F.

    2001-01-01

    A novel quantitative PCR (QPCR) approach, which combines competitive PCR with constant-denaturant capillary electrophoresis (CDCE), was adapted for enumerating microbial cells in environmental samples using the marine nanoflagellate Cafeteria roenbergensis as a model organism. Competitive PCR has been used successfully for quantification of DNA in environmental samples. However, this technique is labor intensive, and its accuracy is dependent on an internal competitor, which must possess the same amplification efficiency as the target yet can be easily discriminated from the target DNA. The use of CDCE circumvented these problems, as its high resolution permitted the use of an internal competitor which differed from the target DNA fragment by a single base and thus ensured that both sequences could be amplified with equal efficiency. The sensitivity of CDCE also enabled specific and precise detection of sequences over a broad range of concentrations. The combined competitive QPCR and CDCE approach accurately enumerated C. roenbergensis cells in eutrophic, coastal seawater at abundances ranging from approximately 10 to 104 cells ml−1. The QPCR cell estimates were confirmed by fluorescent in situ hybridization counts, but estimates of samples with <50 cells ml−1 by QPCR were less variable. This novel approach extends the usefulness of competitive QPCR by demonstrating its ability to reliably enumerate microorganisms at a range of environmentally relevant cell concentrations in complex aquatic samples. PMID:11525983

  5. Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples.

    PubMed

    Ferrando-Climent, L; Rodriguez-Mozaz, S; Barceló, D

    2013-07-01

    In the present work, the development, optimization, and validation (including a whole stability study) of a fast, reliable, and comprehensive method for the analysis of ten anticancer drugs in hospital and urban wastewater is described. Extraction of these pharmaceutical compounds was performed using automated off-line solid-phase extraction followed by their determination by ultra-performance liquid chromatography coupled to a triple quadrupole-linear ion trap mass spectrometer. Target compounds include nine cytotoxic agents: cyclophosphamide, ifosfamide, docetaxel, paclitaxel, etoposide, vincristine, tamoxifen, methotrexate, and azathioprine; and the cytotoxic quinolone, ciprofloxacin. Method detection limits (MDL) ranged from 0.8 to 24 ng/L. Levels found of cytostatic agents in the hospital and wastewater influents did not differ significantly, and therefore, hospitals cannot be considered as the primary source of this type of contaminants. All the target compounds were detected in at least one of the influent samples analyzed: Ciprofloxacin, cyclophosphamide, tamoxifen, and azathioprine were found in most of them and achieving maximum levels of 14.725, 0.201, 0.133, and 0.188 μg/L, respectively. The rest of target cancer drugs were less frequently detected and at values ranging between MDL and 0.406 μg/L. Furthermore, a feasible, useful, and advantageous approach based on information acquisition tool (information-dependent acquisition) was used for the screening of human metabolites in hospital effluents, where the hydroxy tamoxifen, endoxifen, and carboxyphosphamide were detected.

  6. Visual detection following retinal damage: predictions of an inhomogeneous retino-cortical model

    NASA Astrophysics Data System (ADS)

    Arnow, Thomas L.; Geisler, Wilson S.

    1996-04-01

    A model of human visual detection performance has been developed, based on available anatomical and physiological data for the primate visual system. The inhomogeneous retino- cortical (IRC) model computes detection thresholds by comparing simulated neural responses to target patterns with responses to a uniform background of the same luminance. The model incorporates human ganglion cell sampling distributions; macaque monkey ganglion cell receptive field properties; macaque cortical cell contrast nonlinearities; and a optical decision rule based on ideal observer theory. Spatial receptive field properties of cortical neurons were not included. Two parameters were allowed to vary while minimizing the squared error between predicted and observed thresholds. One parameter was decision efficiency, the other was the relative strength of the ganglion-cell center and surround. The latter was only allowed to vary within a small range consistent with known physiology. Contrast sensitivity was measured for sinewave gratings as a function of spatial frequency, target size and eccentricity. Contrast sensitivity was also measured for an airplane target as a function of target size, with and without artificial scotomas. The results of these experiments, as well as contrast sensitivity data from the literature were compared to predictions of the IRC model. Predictions were reasonably good for grating and airplane targets.

  7. Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes.

    PubMed

    Zheng, Jing; Hu, Yaping; Bai, Junhui; Ma, Cheng; Li, Jishan; Li, Yinhui; Shi, Muling; Tan, Weihong; Yang, Ronghua

    2014-02-18

    Up to now, the successful fabrication of efficient hot-spot substrates for surface-enhanced Raman scattering (SERS) remains an unsolved problem. To address this issue, we describe herein a universal aptamer-based SERS biodetection approach that uses a single-stranded DNA as a universal trigger (UT) to induce SERS-active hot-spot formation, allowing, in turn, detection of a broad range of targets. More specifically, interaction between the aptamer probe and its target perturbs a triple-helix aptamer/UT structure in a manner that activates a hybridization chain reaction (HCR) among three short DNA building blocks that self-assemble into a long DNA polymer. The SERS-active hot-spots are formed by conjugating 4-aminobenzenethiol (4-ABT)-encoded gold nanoparticles with the DNA polymer through a specific Au-S bond. As proof-of-principle, we used this approach to quantify multiple target analytes, including thrombin, adenosine, and CEM cancer cells, achieving lowest limit of detection values of 18 pM, 1.5 nM, and 10 cells/mL, respectively. As a universal SERS detector, this prototype can be applied to many other target analytes through the use of suitable DNA-functional partners, thus inspiring new designs and applications of SERS for bioanalysis.

  8. Species-specific markers for the differential diagnosis of Trypanosoma cruzi and Trypanosoma rangeli and polymorphisms detection in Trypanosoma rangeli.

    PubMed

    Ferreira, Keila Adriana Magalhães; Fajardo, Emanuella Francisco; Baptista, Rodrigo P; Macedo, Andrea Mara; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2014-06-01

    Trypanosoma cruzi and Trypanosoma rangeli are kinetoplastid parasites which are able to infect humans in Central and South America. Misdiagnosis between these trypanosomes can be avoided by targeting barcoding sequences or genes of each organism. This work aims to analyze the feasibility of using species-specific markers for identification of intraspecific polymorphisms and as target for diagnostic methods by PCR. Accordingly, primers which are able to specifically detect T. cruzi or T. rangeli genomic DNA were characterized. The use of intergenic regions, generally divergent in the trypanosomatids, and the serine carboxypeptidase gene were successful. Using T. rangeli genomic sequences for the identification of group-specific polymorphisms and a polymorphic AT(n) dinucleotide repeat permitted the classification of the strains into two groups, which are entirely coincident with T. rangeli main lineages, KP1 (+) and KP1 (-), previously determined by kinetoplast DNA (kDNA) characterization. The sequences analyzed totalize 622 bp (382 bp represent a hypothetical protein sequence, and 240 bp represent an anonymous sequence), and of these, 581 (93.3%) are conserved sites and 41 bp (6.7%) are polymorphic, with 9 transitions (21.9%), 2 transversions (4.9%), and 30 (73.2%) insertion/deletion events. Taken together, the species-specific markers analyzed may be useful for the development of new strategies for the accurate diagnosis of infections. Furthermore, the identification of T. rangeli polymorphisms has a direct impact in the understanding of the population structure of this parasite.

  9. A low-cost through-the-wall FMCW radar for stand-off operation and activity detection

    NASA Astrophysics Data System (ADS)

    Chetty, Kevin; Chen, Qingchao; Ritchie, Matthew; Woodbridge, Karl

    2017-05-01

    In this paper we present a new through-wall (TW) FMCW radar system. The architecture of the radar enables both high sensitivity and range resolutions of <1.5 m. Moreover, the radar employs moving target indication (MTI) signal processing to remove the problematic primary wall reflection, allowing higher signal-to- noise and signal-to-interference ratios, which can be traded-off for increased operational stand-off. The TW radar operates at 5.8 GHz with a 200 MHz bandwidth. Its dual-frequency design minimises interference from signal leakage, and permits a baseband output after deramping which is digitized using an inexpensive 24-bit off-the-shelf sound card. The system is therefore an order of magnitude lower in cost than competitor ultrawideband (UWB) TW systems. The high sensitivity afforded by this wide dynamic range has allowed us to develop a wall removal technique whereby high-order digital filters provide a flexible means of MTI filtering based on the phases of the returned echoes. Experimental data demonstrates through-wall detection of individuals and groups of people in various scenarios. Target positions were located to within +/-1.25 m in range, allowing us distinguish between two closely separated targets. Furthermore, at 8.5 m standoff, our wall removal technique can recover target responses that would have otherwise been masked by the primary wall reflection, thus increasing the stand-off capability of the radar. Using phase processing, our experimental data also reveals a clear difference in the micro-Doppler signatures across various types of everyday actions

  10. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.

    PubMed

    Hu, Kun; Liu, Jinwen; Chen, Jia; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Zhang, Guohai

    2013-04-15

    An amplified graphene oxide (GO) based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling is developed for bioassays. The dye-labeled single-strand DNA (aptamer hairpin) was adsorbed on the surface of GO, which result in the fluorescence quenching of dye, and exhibiting minimal background fluorescence. Upon the target, primer and polymerase, the stem of the aptamer hairpin was opened, and binds with the primer to triggers the circular target strand-displacement polymerization reaction, which produces huge amounts of duplex helixes DNA and lead to strong fluorescence emission due to shielding of nucelobases within its double-helix structure. During the polymerization reaction, the primer was extended, and target was displaced. And the displaced target recognizes and hybridizes with another hairpin probe, triggering the next round of polymerization reaction, and the circle process induces fluorescence signal amplification for the detection of analyte. To test the feasibility of the aptasensor systems, interferon-gamma (IFN-γ) was employed as a model analyte. A detection limit as low as 1.5 fM is obtained based on the GO aptasensor with a linear range of three orders of magnitude. The present method was successfully applied for the detection of IFN-γ in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Study on the high-frequency laser measurement of slot surface difference

    NASA Astrophysics Data System (ADS)

    Bing, Jia; Lv, Qiongying; Cao, Guohua

    2017-10-01

    In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.

  12. A study of payload specialist station monitor size constraints. [space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.

    1975-01-01

    Constraints on the CRT display size for the shuttle orbiter cabin are studied. The viewing requirements placed on these monitors were assumed to involve display of imaged scenes providing visual feedback during payload operations and display of alphanumeric characters. Data on target recognition/resolution, target recognition, and range rate detection by human observers were utilized to determine viewing requirements for imaged scenes. Field-of-view and acuity requirements for a variety of payload operations were obtained along with the necessary detection capability in terms of range-to-target size ratios. The monitor size necessary to meet the acuity requirements was established. An empirical test was conducted to determine required recognition sizes for displayed alphanumeric characters. The results of the test were used to determine the number of characters which could be simultaneously displayed based on the recognition size requirements using the proposed monitor size. A CRT display of 20 x 20 cm is recommended. A portion of the display area is used for displaying imaged scenes and the remaining display area is used for alphanumeric characters pertaining to the displayed scene. The entire display is used for the character alone mode.

  13. Fluorescent trimethyl-substituted naphthyridine as a label-free signal reporter for one-step and highly sensitive fluorescent detection of DNA in serum samples.

    PubMed

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Che, Ruping; Luo, Pinchen; Meng, Changgong

    2017-01-15

    A facile label-free sensing method is developed for the one-step and highly sensitive fluorescent detection of DNA, which couples the specific C-C mismatch bonding and fluorescent quenching property of a trimethyl-substituted naphthyridine dye (ATMND) with the exonuclease III (Exo III) assisted cascade target recycling amplification strategy. In the absence of target DNA, the DNA hairpin probe with a C-C mismatch in the stem and more than 4 bases overhung at the 3' terminus could entrap and quench the fluorescence of ATMND and resist the digestion of Exo III, thus showing a low fluorescence background. In the presence of the target, however, the hybridization event between the two protruding segments and the target triggers the digestion reaction of Exo III, recycles the initial target, and simultaneously releases both the secondary target analogue and the ATMND caged in the stem. The released initial and secondary targets take part in another cycle of digestion, thus leading to the release of a huge amount of free ATMND for signal transducing. Based on the fluorescence recovery, the as-proposed label-free fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 10pM to 1μM, a low limit of detection of 6pM, good selectivity, and a facile one-step operation at room temperature. Practical sample analysis in serum samples indicates the method has good precision and accuracy, which may thus have application potentials for point-of-care screening of DNA in complex clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Range verification for eye proton therapy based on proton-induced x-ray emissions from implanted metal markers

    NASA Astrophysics Data System (ADS)

    La Rosa, Vanessa; Kacperek, Andrzej; Royle, Gary; Gibson, Adam

    2014-06-01

    Metal fiducial markers are often implanted on the back of the eye before proton therapy to improve target localization and reduce patient setup errors. We aim to detect characteristic x-ray emissions from metal targets during proton therapy to verify the treatment range accuracy. Initially gold was chosen for its biocompatibility properties. Proton-induced x-ray emissions (PIXE) from a 15 mm diameter gold marker were detected at different penetration depths of a 59 MeV proton beam at the CATANA proton facility at INFN-LNS (Italy). The Monte Carlo code Geant4 was used to reproduce the experiment and to investigate the effect of different size markers, materials, and the response to both mono-energetic and fully modulated beams. The intensity of the emitted x-rays decreases with decreasing proton energy and thus decreases with depth. If we assume the range to be the depth at which the dose is reduced to 10% of its maximum value and we define the residual range as the distance between the marker and the range of the beam, then the minimum residual range which can be detected with 95% confidence level is the depth at which the PIXE peak is equal to 1.96 σbkg, which is the standard variation of the background noise. With our system and experimental setup this value is 3 mm, when 20 GyE are delivered to a gold marker of 15 mm diameter. Results from silver are more promising. Even when a 5 mm diameter silver marker is placed at a depth equal to the range, the PIXE peak is 2.1 σbkg. Although these quantitative results are dependent on the experimental setup used in this research study, they demonstrate that the real-time analysis of the PIXE emitted by fiducial metal markers can be used to derive beam range. Further analysis are needed to demonstrate the feasibility of the technique in a clinical setup.

  15. Environmental DNA assays for the sister taxa sauger (Sander canadensis) and walleye (Sander vitreus)

    PubMed Central

    Carim, Kellie J.; Ruggles, Michael; McKelvey, Kevin S.; Young, Michael K.; Schwartz, Michael K.

    2017-01-01

    Sauger (Sander canadensis) and walleye (S. vitreus) are percid fishes that naturally co-occur throughout much of the eastern United States. The native range of sauger extends into the upper Missouri River drainage where walleye did not historically occur, but have been stocked as a sport fish. Sauger populations have been declining due to habitat loss, fragmentation, and competition with non-native species, such as walleye. To effectively manage sauger populations, it is necessary to identify areas where sauger occur, and particularly where they co-occur with walleye. We developed quantitative PCR assays that can detect sauger and walleye DNA in filtered water samples. Each assay efficiently detected low quantities of target DNA and failed to detect DNA of non-target species with which they commonly co-occur. PMID:28441436

  16. Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa.

    PubMed

    Madikizela, Lawrence Mzukisi; Chimuka, Luke

    2017-07-01

    The present paper reports a detailed study that is based on the monitoring of naproxen, ibuprofen, and diclofenac in Mbokodweni River and wastewater treatment plants (WWTPs) located around the city of Durban in KwaZulu-Natal Province of South Africa. Target compounds were extracted from water samples using a multi-template molecularly imprinted solid-phase extraction prior to separation and quantification on a high-performance liquid chromatography equipped with photo diode array detector. The analytical method yielded the detection limits of 0.15, 1.00, and 0.63 μg/L for naproxen, ibuprofen, and diclofenac, respectively. Solid-phase extraction method was evaluated for its performance using deionized water samples that were spiked with 5 and 50 μg/L of target compounds. Recoveries were greater than 80% for all target compounds with RSD values in the range of 4.1 to 10%. Target compounds were detected in most wastewater and river water samples with ibuprofen being the most frequently detected pharmaceutical. Maximum concentrations detected in river water for naproxen, ibuprofen, and diclofenac were 6.84, 19.2, and 9.69 μg/L, respectively. The concentrations of target compounds found in effluent and river water samples compared well with some studies. The analytical method employed in this work is fast, selective, sensitive, and affordable; therefore, it can be used routinely to evaluate the occurrence of acidic pharmaceuticals in South African water resources.

  17. One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts.

    PubMed

    Osman, Fatima; Dang, Tyler; Bodaghi, Sohrab; Vidalakis, Georgios

    2017-07-01

    A one-step multiplex reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) based on species-specific minor groove binding (MGB) probes, was developed for the simultaneous detection, identification, and quantification of three citrus viroids belonging to different genera. Citrus exocortis viroid (Pospiviroid), Hop stunt viroid (Hostuviroid), and Citrus bark cracking viroid (Cocadviroid) cause a variety of maladies in agriculturally significant crops. Therefore, reliable assays for their detection are essential tools for various government and industry organizations implementing disease management programs. Singleplex qPCR primers and MGB probes were designed individually for the detection of the three targeted viroids, and subsequently combined in a one-step multiplex RT-qPCR reaction. A wide host range of woody plants, including citrus, grapevines, apricots, plums and herbaceous plants such as tomato, cucumber, eggplant and chrysanthemum different world regions were used to validate the assay. Single, double and triple viroid infections were identified in the tested samples. The developed multiplex RT-qPCR assay was compared with a previously reported SYBR Green I RT-qPCR for the universal detection of citrus viroids. Both assays accurately identified all citrus viroid infected samples. The multiplex assay complemented the SYBR Green I universal detection assay by differentiating among citrus viroid species in the positive samples. The developed multiplex RT-qPCR assay has the potential to simultaneously detect each targeted viroid and could be used in high throughput screenings for citrus viroids in field surveys, germplasm banks, nurseries and other viroid disease management programs. Copyright © 2017. Published by Elsevier B.V.

  18. Effectiveness of scat detection dogs for detecting forest carnivores

    USGS Publications Warehouse

    Long, Robert A.; Donovan, T.M.; MacKay, Paula; Zielinski, William J.; Buzas, Jeffrey S.

    2007-01-01

    We assessed the detection and accuracy rates of detection dogs trained to locate scats from free-ranging black bears (Ursus americanus), fishers (Martes pennanti), and bobcats (Lynx rufus). During the summers of 2003-2004, 5 detection teams located 1,565 scats (747 putative black bear, 665 putative fisher, and 153 putative bobcat) at 168 survey sites throughout Vermont, USA. Of 347 scats genetically analyzed for species identification, 179 (51.6%) yielded a positive identification, 131 (37.8%) failed to yield DNA information, and 37 (10.7%) yielded DNA but provided no species confirmation. For 70 survey sites where confirmation of a putative target species' scat was not possible, we assessed the probability that ???1 of the scats collected at the site was deposited by the target species (probability of correct identification; P ID). Based on species confirmations or PID values, we detected bears at 57.1% (96) of sites, fishers at 61.3% (103) of sites, and bobcats at 12.5%o (21) of sites. We estimated that the mean probability of detecting the target species (when present) during a single visit to a site was 0.86 for black bears, 0.95 for fishers, and 0.40 for bobcats. The probability of detecting black bears was largely unaffected by site- or visit-specific covariates, but the probability of detecting fishers varied by detection team. We found little or no effect of topographic ruggedness, vegetation density, or local weather (e.g., temp, humidity) on detection probability for fishers or black bears (data were insufficient for bobcat analyses). Detection dogs were highly effective at locating scats from forest carnivores and provided an efficient and accurate method for collecting detection-nondetection data on multiple species.

  19. Development and Validation of a Rotor-Gene Real-Time PCR Assay for Detection, Identification, and Quantification of Chlamydia trachomatis in a Single Reaction

    PubMed Central

    Jalal, Hamid; Stephen, Hannah; Curran, Martin D.; Burton, Janet; Bradley, Michelle; Carne, Christopher

    2006-01-01

    A multitarget real-time PCR (MRT-PCR) for detection of Chlamydia trachomatis DNA was developed and validated. There were three targets for amplification in a single reaction: the cryptic plasmid (CP), the major outer membrane protein (MOMP) gene, and an internal control. The assay had the following characteristics: (i) detection and confirmation of the presence of C. trachomatis DNA in a single reaction, (ii) detection of all genovars of C. trachomatis without any cross-reactivity with pathogenic bacteria or commensal organisms of the oropharynx and genital tract, (iii) a 95% probability of detection with three copies of MOMP and one copy of CP per reaction mixture, (iv) identification of the inhibition of amplification, (v) a quantitative dynamic range of 25 to 250,000 genome copies per reaction mixture, (vi) high intra- and interassay reproducibilities, and (vii) correct identification of all samples in the validation panel. There were 146 COBAS Amplicor PCR (Amplicor PCR)-positive samples and 122 Amplicor PCR-negative samples in the panel. MRT-PCR detected CP DNA alone in 6 (4%) Amplicor PCR-positive samples and both CP and MOMP DNAs in 140 (96%) of 146 Amplicor PCR-positive samples. The quantity of MOMP DNA in 95 (68%) of 140 samples was within the dynamic range of the assay. The median C. trachomatis load in these samples was 321 genome copies per reaction mixture (range, 26 to 40,137 genome copies per reaction mixture). Due to the inclusion of two different C. trachomatis-specific targets, the assay confirmed 259 (97%) of 268 results in a single reaction. This assay could be used in the qualitative format for the routine detection of C. trachomatis and in the quantitative format for study of the pathogenesis of C. trachomatis-associated diseases. The assay demonstrated the potential to eliminate the need for confirmatory testing in almost all samples, thus reducing the turnaround time and the workload. PMID:16390971

  20. Active Stand-off Detection of Gas Leaks Using a Short Range Hard-target Backscatter Differential Optical Absorption System Based on a Quantum Cascade Laser Transmitter

    NASA Astrophysics Data System (ADS)

    Diaz, Adrian; Thomas, Benjamin; Castillo, Paulo; Gross, Barry; Moshary, Fred

    2016-06-01

    Fugitive gas emissions from agricultural or industrial plants and gas pipelines are an important environmental concern as they can contribute to the global increase of greenhouse gas concentration. Moreover, they are also a security and safety concern because of possible risk of fire/explosion or toxicity. This study presents gas concentration measurements using a quantum cascade laser open path system (QCLOPS). The system retrieves the pathaveraged concentration of N2O and CH4 by collecting the backscattered light from a scattering target. The gas concentration measurements have a high temporal resolution (68 ms) and are achieved at sufficient range (up to 40 m, ~ 130 feet) with a detection limit of 2.6 ppm CH4 and 0.4 ppm for N2O. Given these characteristics, this system is promising for mobile/multidirectional remote detection and evaluation of gas leaks. The instrument is monostatic with a tunable QCL emitting at ~ 7.7 μm wavelength range. The backscattered radiation is collected by a Newtonian telescope and focused on an infrared light detector. Puffs of N2O and CH4 are released along the optical path to simulate a gas leak. The measured absorption spectrum is obtained using the thermal intra-pulse frequency chirped DFB QCL and is analyzed to obtain path averaged gas concentrations.

  1. Method for the quantification of current use and persistent pesticides in cow milk, human milk and baby formula using gas chromatography tandem mass spectrometry.

    PubMed

    Chen, Xianyu; Panuwet, Parinya; Hunter, Ronald E; Riederer, Anne M; Bernoudy, Geneva C; Barr, Dana Boyd; Ryan, P Barry

    2014-11-01

    The aim of this study was to develop an analytical method for the quantification of organochlorine (OC), organophosphate (OP), carbamate, and pyrethroid insecticide residues in cow milk, human milk, and baby formula. A total of 25 compounds were included in this method. Sample extraction procedures combined liquid-liquid extraction, freezing-lipid filtration, dispersive primary-secondary amine cleanup, and solid-phase extraction together for effective extraction and elimination of matrix interferences. Target compounds were analyzed using gas chromatography with electron impact ionization-tandem mass spectrometry (GC-EI-MS/MS) in the multiple reaction monitoring (MRM) mode. Average extraction recoveries obtained from cow milk samples fortified at two different concentrations (10 ng/mL and 25 ng/mL), ranged from 34% to 102%, with recoveries for the majority of target compounds falling between 60% and 80%. Similar ranges were found for formula fortified at 25 ng/mL. The estimated limits of detection for most target analytes were in the low pg/mL level (range 3-1600 pg/mL). The accuracies and precisions were within the range of 80-120% and less than 15%, respectively. This method was tested for its viability by analyzing 10 human milk samples collected from anonymous donors, 10 cow milk samples and 10 baby formula samples purchased from local grocery stores in the United States. Hexachlorobenzene, p,p-dicofol, o,p-DDE, p,p-DDE, and chlorpyrifos were found in all samples analyzed. We found detectable levels of permethrin, cyfluthrin, and fenvalerate in some of the cow milk samples but not in human milk or baby formula samples. Some of the pesticides, such as azinphos-methyl, heptachlor epoxide, and the pesticide synergist piperonyl butoxide, were detected in some of the cow milk and human milk samples but not in baby formula samples. Copyright © 2014. Published by Elsevier B.V.

  2. Detection of organic compounds with whole-cell bioluminescent bioassays.

    PubMed

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary

    2014-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.

  3. Generic detection of poleroviruses using an RT-PCR assay targeting the RdRp coding sequence.

    PubMed

    Lotos, Leonidas; Efthimiou, Konstantinos; Maliogka, Varvara I; Katis, Nikolaos I

    2014-03-01

    In this study a two-step RT-PCR assay was developed for the generic detection of poleroviruses. The RdRp coding region was selected as the primers' target, since it differs significantly from that of other members in the family Luteoviridae and its sequence can be more informative than other regions in the viral genome. Species specific RT-PCR assays targeting the same region were also developed for the detection of the six most widespread poleroviral species (Beet mild yellowing virus, Beet western yellows virus, Cucurbit aphid-borne virus, Carrot red leaf virus, Potato leafroll virus and Turnip yellows virus) in Greece and the collection of isolates. These isolates along with other characterized ones were used for the evaluation of the generic PCR's detection range. The developed assay efficiently amplified a 593bp RdRp fragment from 46 isolates of 10 different Polerovirus species. Phylogenetic analysis using the generic PCR's amplicon sequence showed that although it cannot accurately infer evolutionary relationships within the genus it can differentiate poleroviruses at the species level. Overall, the described generic assay could be applied for the reliable detection of Polerovirus infections and, in combination with the specific PCRs, for the identification of new and uncharacterized species in the genus. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Missile Defense in the 21st Century Acquisition Environment: Exploring a BMD-Capable LCS Mission Package

    DTIC Science & Technology

    2013-09-01

    75 Figure 25: Swing Weight Analysis....................................................................................76 Figure 26...AN/SPY-1D radar “can track golf ball-sized targets at ranges in excess of 165 kilometers” (Robinson, 2004). Given the radar cross section (RCS) of a... golf ball (calculated as a simple metallic sphere), it was determined that this would correspond to a maximum detection range beyond the Launch

  5. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range.

    PubMed

    Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi

    2016-12-15

    Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Electrochemical branched-DNA assay for polymerase chain reaction-free detection and quantification of oncogenes in messenger RNA.

    PubMed

    Lee, Ai-Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-15

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcripts in the population of messenger ribonucleic acid (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify the target signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-naphthyl phosphate. The voltammetric characteristics of substrate and enzymatic product as well as the parameters of SWV analysis were systematically optimized. A detection limit of 1 fM (1 x 10(-19) mol of target transcripts in 100 microL) and a 3-order-wide dynamic range of target concentration were achieved by the electrochemical bDNA assay. Such limit corresponded to approximately 17 fg of the p185 BCR-ABL fusion transcripts. The specificity and sensitivity of assay enabled direct detection of target transcripts in as little as 4.6 ng of mRNA population without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcripts in mRNA population. A mean transcript copy number of 62,900/ng of mRNA was determined, which was at least 50-fold higher than that of real-time quantitative PCR (qPCR). The finding was consistent with the underestimation of targets by qPCR reported earlier. In addition, the unique design based on bDNA technology increases the assay specificity as only the p185 BCR-ABL fusion transcripts will respond to the detection. The approach thus provides a simple, sensitive, accurate, and quantitative tool alternative to the qPCR for early disease diagnosis.

  7. Range detection using entangled optical photons

    NASA Astrophysics Data System (ADS)

    Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco

    2015-05-01

    Quantum radar is an emerging field that shows a lot of promise in providing significantly improved resolution compared to its classical radar counterpart. The key to this kind of resolution lies in the correlations created from the entanglement of the photons being used. Currently, the technology available only supports quantum radar implementation and validation in the optical regime, as opposed to the microwave regime, because microwave photons have very low energy compared to optical photons. Furthermore, there currently do not exist practical single photon detectors and generators in the microwave spectrum. Viable applications in the optical regime include deep sea target detection and high resolution detection in space. In this paper, we propose a conceptual architecture of a quantum radar which uses entangled optical photons based on Spontaneous Parametric Down Conversion (SPDC) methods. After the entangled photons are created and emerge from the crystal, the idler photon is detected very shortly thereafter. At the same time, the signal photon is sent out towards the target and upon its reflection will impinge on the detector of the radar. From these two measurements, correlation data processing is done to obtain the distance of the target away from the radar. Various simulations are then shown to display the resolution that is possible.

  8. Mirage: a visible signature evaluation tool

    NASA Astrophysics Data System (ADS)

    Culpepper, Joanne B.; Meehan, Alaster J.; Shao, Q. T.; Richards, Noel

    2017-10-01

    This paper presents the Mirage visible signature evaluation tool, designed to provide a visible signature evaluation capability that will appropriately reflect the effect of scene content on the detectability of targets, providing a capability to assess visible signatures in the context of the environment. Mirage is based on a parametric evaluation of input images, assessing the value of a range of image metrics and combining them using the boosted decision tree machine learning method to produce target detectability estimates. It has been developed using experimental data from photosimulation experiments, where human observers search for vehicle targets in a variety of digital images. The images used for tool development are synthetic (computer generated) images, showing vehicles in many different scenes and exhibiting a wide variation in scene content. A preliminary validation has been performed using k-fold cross validation, where 90% of the image data set was used for training and 10% of the image data set was used for testing. The results of the k-fold validation from 200 independent tests show a prediction accuracy between Mirage predictions of detection probability and observed probability of detection of r(262) = 0:63, p < 0:0001 (Pearson correlation) and a MAE = 0:21 (mean absolute error).

  9. Use of Primary Human Cell Systems for Creating Predictive Toxicology Profiles

    EPA Science Inventory

    Use of cellular regulatory networks to detect and distinguish effects of compounds with a broad range of on- and off-target mechanisms and biological processes provides an opportunity to understand toxicity mechanisms of action. Here we use the Biologically Multiplexed Activity P...

  10. [Simultaneous determination of delta-9-tetrahydrocannabinol cannabidiol and cannabinol in edible oil using ultra performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Zhang, Aizhi; Wang, Quanlin; Mo, Shijie

    2010-11-01

    A method for the simultaneous determination of delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in edible oil was developed using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The target compounds were extracted with methanol, purified by an LC-Alumina-N solid phase extraction cartridge, separated and detected by the UPLC-MS/MS. Quantitative analysis was corrected by an isotope internal standard method using delta-9-THC-D3 as internal standard. Average recoveries for the target compounds varied from 68.0% to 101.6% with the relative standard deviations ranging from 7.0% to 20.1% at three spiked levels. The limits of detection (LOD) of the method were from 0.06-0.17 microg/kg and the limits of quantification (LOQ) were in the range of 0.20-0.52 microg/kg. The results showed that the method is able to meet the requirements for the simultaneous determination of THC, CBD and CBN in edible oil.

  11. Close-range sensors for small unmanned bottom vehicles: update

    NASA Astrophysics Data System (ADS)

    Bernstein, Charles L.

    2000-07-01

    The Surf Zone Reconnaissance Project is developing sensors for small, autonomous, Underwater Bottom-crawling Vehicles. The objective is to enable small, crawling robots to autonomously detect and classify mines and obstacles on the ocean bottom in depths between 0 and 10 feet. We have identified a promising set of techniques that will exploit the electromagnetic, shape, texture, image, and vibratory- modal features of this images. During FY99 and FY00 we have worked toward refining these techniques. Signature data sets have been collected for a standard target set to facilitate the development of sensor fusion and target detection and classification algorithms. Specific behaviors, termed microbehaviors, are developed to utilize the robot's mobility to position and operate the sensors. A first generation, close-range sensor suite, composed of 5 sensors, will be completed and tested on a crawling platform in FY00, and will be further refined and demonstrated in FY01 as part of the Mine Countermeasures 6.3 core program sponsored by the Office of Naval Research.

  12. Magnetic molecularly imprinted polymer for the isolation and detection of biotin and biotinylated biomolecules.

    PubMed

    Ben Aissa, A; Herrera-Chacon, A; Pupin, R R; Sotomayor, M D P T; Pividori, M I

    2017-02-15

    Magnetic separation based on biologically-modified magnetic particles is a preconcentration procedure commonly integrated in magneto actuated platforms for the detection of a huge range of targets. However, the main drawback of this material is the low stability and high cost. In this work, a novel hybrid molecularly-imprinted polymer with magnetic properties is presented with affinity towards biotin and biotinylated biomolecules. During the synthesis of the magneto core-shell particles, biotin was used as a template. The characterization of this material by microscopy techniques including SEM, TEM and confocal microscopy is presented. The application of the magnetic-MIPs for the detection of biotin and biotinylated DNA in magneto-actuated platforms is also described for the first time. The magnetic-MIP showed a significant immobilization capacity of biotinylated molecules, giving rise to a cheaper and a robust method (it is not required to be stored at 4°C) with high binding capacity for the separation and purification under magnetic actuation of a wide range of biotinylated molecules, and their downstream application including determination of their specific targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Analytical performance of the various acquisition modes in Orbitrap MS and MS/MS.

    PubMed

    Kaufmann, Anton

    2018-04-30

    Quadrupole Orbitrap instruments (Q Orbitrap) permit high-resolution mass spectrometry (HRMS)-based full scan acquisitions and have a number of acquisition modes where the quadrupole isolates a particular mass range prior to a possible fragmentation and HRMS-based acquisition. Selecting the proper acquisition mode(s) is essential if trace analytes are to be quantified in complex matrix extracts. Depending on the particular requirements, such as sensitivity, selectivity of detection, linear dynamic range, and speed of analysis, different acquisition modes may have to be chosen. This is particularly important in the field of multi-residue analysis (e.g., pesticides or veterinary drugs in food samples) where a large number of analytes within a complex matrix have to be detected and reliably quantified. Meeting the specific detection and quantification performance criteria for every targeted compound may be challenging. It is the aim of this paper to describe the strengths and the limitations of the currently available Q Orbitrap acquisition modes. In addition, the incorporation of targeted acquisitions between full scan experiments is discussed. This approach is intended to integrate compounds that require an additional degree of sensitivity or selectivity into multi-residue methods. This article is protected by copyright. All rights reserved.

  14. Detection of respiratory viruses and bacteria in children using a twenty-two target reverse-transcription real-time PCR (RT-qPCR) panel.

    PubMed

    Ellis, Chelsey; Misir, Amita; Hui, Charles; Jabbour, Mona; Barrowman, Nicholas; Langill, Jonathan; Bowes, Jennifer; Slinger, Robert

    2016-05-01

    Rapid detection of the wide range of viruses and bacteria that cause respiratory infection in children is important for patient care and antibiotic stewardship. We therefore designed and evaluated a ready-to-use 22 target respiratory infection reverse-transcription real-time polymerase chain reaction (RT-qPCR) panel to determine if this would improve detection of these agents at our pediatric hospital. RT-qPCR assays for twenty-two target organisms were dried-down in individual wells of 96 well plates and saved at room temperature. Targets included 18 respiratory viruses and 4 bacteria. After automated nucleic acid extraction of nasopharyngeal aspirate (NPA) samples, rapid qPCR was performed. RT-qPCR results were compared with those obtained by the testing methods used at our hospital laboratories. One hundred fifty-nine pediatric NPA samples were tested with the RT-qPCR panel. One or more respiratory pathogens were detected in 132/159 (83%) samples. This was significantly higher than the detection rate of standard methods (94/159, 59%) (P<0.001). This difference was mainly due to improved RT-qPCR detection of rhinoviruses, parainfluenza viruses, bocavirus, and coronaviruses. The panel internal control assay performance remained stable at room temperature storage over a two-month testing period. The RT-qPCR panel was able to identify pathogens in a high proportion of respiratory samples. The panel detected more positive specimens than the methods in use at our hospital. The pre-made panel format was easy to use and rapid, with results available in approximately 90 minutes. We now plan to determine if use of this panel improves patient care and antibiotic stewardship.

  15. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    NASA Astrophysics Data System (ADS)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  16. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy.

    PubMed

    Zhao, Yang; Tan, Lu; Gao, Xiaoshan; Jie, Guifen; Huang, Tingyu

    2018-07-01

    Herein, we successfully devised a novel photoelectrochemical (PEC) platform for ultrasensitive detection of adenosine by target-triggering cascade multiple cycle amplification based on the silver nanoparticles-assisted ion-exchange reaction with CdTe quantum dots (QDs). In the presence of target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1), which could initiate the cycling cleavage process under the reaction of nicking endonuclease. Then the product (DNA b) of cycle I could act as the "DNA trigger" of cycle II to further generate a large number of DNA s1, which again go back to cycle I, thus a cascade multiple DNA cycle amplification was carried out to produce abundant DNA c. These DNA c fragments with the cytosine (C)-rich loop were captured by magnetic beads, and numerous silver nanoclusters (Ag NCs) were synthesized by AgNO 3 and sodium borohydride. The dissolved AgNCs released numerous silver ions which could induce ion exchange reaction with the CdTe QDs, thus resulting in greatly amplified change of photocurrent for target detection. The detection linear range for adenosine was 1.0 fM ~10 nM with the detection limit of 0.5 fM. The present PEC strategy combining cascade multiple DNA cycle amplification and AgNCs-induced ion-exchange reaction with QDs provides new insight into rapid, and ultrasensitive PEC detection of different biomolecules, which showed great potential for detecting trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Development of a Fluorescence Resonance Energy Transfer (FRET)-Based DNA Biosensor for Detection of Synthetic Oligonucleotide of Ganoderma boninense

    PubMed Central

    Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir

    2013-01-01

    An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense. PMID:25587406

  18. Fitting new technologies into the safety paradigm: use of microarrays in transfusion.

    PubMed

    Fournier-Wirth, C; Coste, J

    2007-01-01

    Until the late 1990s, mandatory blood screening for transmissible infectious agents depended entirely on antigen/antibody-based detection assays. The recent emergence of Nucleic acid Amplification Technologies (NAT) has revolutionised viral diagnosis, not only by increasing the level of sensitivity but also by facilitating the detection of several viruses in parallel by multiplexing specific primers. In more complex biological situations, when a broad spectrum of pathogens must be screened, the limitations of these first generation technologies became apparent. High throughput systems, such as DNA Arrays, permit a conceptually new approach. These miniaturised micro systems allow the detection of hundreds of different targets simultaneously, inducing a dramatic decrease in reagent consumption, a reduction in the number of confirmation tests and a simplification of data interpretation. However, the systems currently available require additional instrumentation and reagents for sample preparation and target amplification prior to detection on the DNA array. A major challenge in the area of DNA detection is the development of methods that do not rely on target amplification systems. Likewise, the advances of protein microarrays have lagged because of poor stability of proteins, complex coupling chemistry and weak detection signals. Emerging technologies like Biosensors and nano-particle based DNA or Protein Bio-Barcode Amplification Assays are promising diagnostic tools for a wide range of clinical applications, including blood donation screening.

  19. Highly sensitive BTX detection using surface functionalized QCM sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkurt, Asuman Aşıkoğlu; Özdemir, Okan; Altındal, Ahmet, E-mail: altindal@yildiz.edu.tr

    2016-03-25

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of themore » resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.« less

  20. Highly sensitive BTX detection using surface functionalized QCM sensor

    NASA Astrophysics Data System (ADS)

    Bozkurt, Asuman Aşıkoǧlu; Özdemir, Okan; Altındal, Ahmet

    2016-03-01

    A novel organic compound was designed and successfully synthesized for the fabrication of QCM based sensors to detect the low concentrations of BTX gases in indoor air. The effect of the long-range electron orbital delocalization on the BTX vapour sensing properties of azo-bridged Pcs based chemiresistor-type sensors have also been investigated in this work. The sensing behaviour of the film for the online detection of volatile organic solvent vapors was investigated by utilizing an AT-cut quartz crystal resonator. It was observed that the adsorption of the target molecules on the coating surface cause a reversible negative frequency shift of the resonator. Thus, a variety of solvent vapors can be detected by using the phthalocyanine film as sensitive coating, with sensitivity in the ppm range and response times in the order of several seconds depending on the molecular structure of the organic solvent.

  1. Detection of the earth with the SETI microwave observing system assumed to be operating out in the Galaxy

    NASA Technical Reports Server (NTRS)

    Billingham, John; Tarter, Jill

    1989-01-01

    The maximum range is calculated at which radar signals from the earth could be detected by a search system similar to the NASA SETI Microwave Observing Project (SETI MOP) assumed to be operating out in the Galaxy. Figures are calculated for the Targeted Search and for the Sky Survey parts of the MOP, both planned to be operating in the 1990s. The probability of detection is calculated for the two most powerful transmitters, the planetary radar at Arecibo (Puerto Rico) and the ballistic missile early warning systems (BMEWSs), assuming that the terrestrial radars are only in the eavesdropping mode. It was found that, for the case of a single transmitter within the maximum range, the highest probability is for the sky survey detecting BMEWSs; this is directly proportional to BMEWS sky coverage and is therefore 0.25.

  2. Continuous improvement of medical test reliability using reference methods and matrix-corrected target values in proficiency testing schemes: application to glucose assay.

    PubMed

    Delatour, Vincent; Lalere, Beatrice; Saint-Albin, Karène; Peignaux, Maryline; Hattchouel, Jean-Marc; Dumont, Gilles; De Graeve, Jacques; Vaslin-Reimann, Sophie; Gillery, Philippe

    2012-11-20

    The reliability of biological tests is a major issue for patient care in terms of public health that involves high economic stakes. Reference methods, as well as regular external quality assessment schemes (EQAS), are needed to monitor the analytical performance of field methods. However, control material commutability is a major concern to assess method accuracy. To overcome material non-commutability, we investigated the possibility of using lyophilized serum samples together with a limited number of frozen serum samples to assign matrix-corrected target values, taking the example of glucose assays. Trueness of the current glucose assays was first measured against a primary reference method by using human frozen sera. Methods using hexokinase and glucose oxidase with spectroreflectometric detection proved very accurate, with bias ranging between -2.2% and +2.3%. Bias of methods using glucose oxidase with spectrophotometric detection was +4.5%. Matrix-related bias of the lyophilized materials was then determined and ranged from +2.5% to -14.4%. Matrix-corrected target values were assigned and used to assess trueness of 22 sub-peer groups. We demonstrated that matrix-corrected target values can be a valuable tool to assess field method accuracy in large scale surveys where commutable materials are not available in sufficient amount with acceptable costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles

    PubMed Central

    2014-01-01

    Background Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment. Results Ligand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm2 of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm2 of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm-1 × sr-1) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone). Conclusions Early diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm matrices difficult. The combination of ultrasound and targeted UCAs can be used to enhance biofilm imaging and early detection. Our findings suggest that the combination of targeted UCAs and ultrasound is a novel molecular imaging technique for the detection of biofilms. We show that high-frequency acoustic microscopy provides sufficient spatial resolution for quantification of biofilm mechanoelastic properties. PMID:24997588

  4. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles.

    PubMed

    Anastasiadis, Pavlos; Mojica, Kristina D A; Allen, John S; Matter, Michelle L

    2014-07-06

    Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment. Ligand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm(2) of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm(2) of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm(-1) × sr(-1)) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone). Early diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm matrices difficult. The combination of ultrasound and targeted UCAs can be used to enhance biofilm imaging and early detection. Our findings suggest that the combination of targeted UCAs and ultrasound is a novel molecular imaging technique for the detection of biofilms. We show that high-frequency acoustic microscopy provides sufficient spatial resolution for quantification of biofilm mechanoelastic properties.

  5. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots

    NASA Astrophysics Data System (ADS)

    Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.

    2016-05-01

    The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis. Electronic supplementary information (ESI) available: Base pair mismatch tuning of CProbes. Binding capacity of the QDs. Theoretical limit of detection (LOD) for the monoplex systems. Kinetics of strand displacement. Kinetics of QProbe-CProbe binding. LOD and saturation point calculations. See DOI: 10.1039/c6nr00484a

  6. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification.

    PubMed

    Wang, Ye; Gan, Ning; Zhou, You; Li, Tianhua; Hu, Futao; Cao, Yuting; Chen, Yinji

    2017-11-15

    Novel label-free and multiplex aptasensors have been developed for simultaneous detection of several antibiotics based on a microchip electrophoresis (MCE) platform and target catalyzed hairpin assembly (CHA) for signal amplification. Kanamycin (Kana) and oxytetracycline (OTC) were employed as models for testing the system. These aptasensors contained six DNA strands termed as Kana aptamer-catalysis strand (Kana apt-C), Kana inhibit strand (Kana inh), OTC aptamer-catalysis strand (OTC apt-C), OTC inhibit strand (OTC inh), hairpin structures H1 and H2 which were partially complementary. Upon the addition of Kana or OTC, the binding event of aptamer and target triggered the self-assembly between H1 and H2, resulting in the formation of many H1-H2 complexes. They could show strong signals which represented the concentration of Kana or OTC respectively in the MCE system. With the help of the well-designed and high-quality CHA amplification, the assay could yield 300-fold amplified signal comparing that from non-amplified system. Under optimal conditions, this assay exhibited a linear correlation in the ranges from 0.001ngmL -1 to 10ngmL -1 , with the detection limits of 0.7pgmL -1 and 0.9pgmL -1 (S/N=3) toward Kana and OTC, respectively. The platform has the following advantages: firstly, the aptamer probes can be fabricated easily without labeling signal tags for MCE detection; Secondly, the targets can just react with probes and produce the amplified signal in one-pot. Finally, the targets can be simultaneously detected within 10min in different channels, thus high-throughput measurement can be achieved. Based on this work, it is estimated that this detection platform will be universally served as a simple, sensitive and portable platform for antibiotic contaminants detection in biological and environmental samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR-122 in human serum.

    PubMed

    Li, Yuliang; Yu, Chao; Yang, Bo; Liu, Zhirui; Xia, Peiyuan; Wang, Qian

    2018-04-15

    Herein, a new type of multifunctional iron based metal-organic frameworks (PdNPs@Fe-MOFs) has been synthesized by assembly palladium nanoparticles on the surface of Fe-MIL-88NH 2 MOFs microcrystals, and first applied in electrochemical biosensor for ultrasensitive detection of microRNA-122 (miR-122, a biomarker of drug-induced liver injury). The nanohybrids have not only been utilized as ideal nanocarriers for immobilization of signal probes, but also used as redox probes and electrocatalysts. In this biosensor, two hairpin probes were designed as capture probes and signal probes, respectively. The nanohybrids conjugated with streptavidin and biotinylated signal probes were used as the tracer labels, target miR-122 was sandwiched between the tracer labels and thiol-terminated capture probes inserted in MCH monolayer on the gold nanoparticles-functionalized nitrogen-doped graphene sheets (AuNPs@N-G) modified electrode. Based on target-catalyzed hairpin assembly, target miR-122 could trigger the hybridization of capture probes and signal probes to further be released to initiate the next reaction process resulted in numerous tracer indicators anchored onto the sensing interfaces. Thus, the detection signal could be dramatically enhanced towards the electrocatalytic oxidation of 3,3',5,5'-tetramethylbenzidine in the presence of H 2 O 2 owing to the intrinsic and intriguing peroxidase-like activity of the nanohybrids. With the assist of target-catalyzed hairpin assembly and PdNPs@Fe-MOFs mimetic co-reaction for signal amplification, a wide detection range from 0.01fM to 10pM was achieved with a low detection limit of 0.003fM (S/N =3). Furthermore, the proposed biosensor exhibited excellent specificity and recovery in spiked serum samples, and was successfully used for detecting miR-122 in real biological samples, which provided a rapid and efficient method for detecting drug-induced liver injury at an early stage. Copyright © 2017. Published by Elsevier B.V.

  8. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays

    DOE PAGES

    Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas; ...

    2016-07-11

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less

  9. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas

    The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less

  10. An enzyme-free and label-free surface plasmon resonance biosensor for ultrasensitive detection of fusion gene based on DNA self-assembly hydrogel with streptavidin encapsulation.

    PubMed

    Guo, Bin; Wen, Bo; Cheng, Wei; Zhou, Xiaoyan; Duan, Xiaolei; Zhao, Min; Xia, Qianfeng; Ding, Shijia

    2018-07-30

    In this research, an enzyme-free and label-free surface plasmon resonance (SPR) biosensing strategy has been developed for ultrasensitive detection of fusion gene based on the heterogeneous target-triggered DNA self-assembly aptamer-based hydrogel with streptavidin (SA) encapsulation. In the presence of target, the capture probes (Cp) immobilized on the chip surface can capture the PML/RARα, forming a Cp-PML/RARα duplex. After that, the aptamer-based network hydrogel nanostructure is formed on the gold surface via target-triggered self-assembly of X shaped polymers. Subsequently, the SA can be encapsulated into hydrogel by the specific binding of SA aptamer, forming the complex with super molecular weight. Thus, the developed strategy achieves dramatic enhancement of the SPR signal. Using PML/RARα "S" subtype as model analyte, the developed biosensing method can detect target down to 45.22 fM with a wide linear range from 100 fM to 10 nM. Moreover, the high efficiency biosensing method shows excellent practical ability to identify the clinical PCR products of PML/RARα. Thus, this proposed strategy presents a powerful platform for ultrasensitive detection of fusion gene and early diagnosis and monitoring of disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Potential Pitfalls Related to Space-Based Lidar Remote Sensing of the Earth with an Emphasis on Wind Measurement

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Spiers, Gary D.; Frehlich, Rod G.; Arnold, James E. (Technical Monitor)

    2000-01-01

    A collection of issues is discussed that are potential pitfalls, if handled incorrectly, for earth-orbiting lidar remote sensing instruments. These issues arise due to the long target ranges, high lidar-to-target relative velocities, low signal levels, use of laser scanners, and other unique aspects of using lasers in earth orbit. Consequences of misunderstanding these topics range from minor inconvenience to improper calibration to total failure. We will focus on wind measurement using coherent detection Doppler lidar, but many of the potential pitfalls apply also to noncoherent lidar wind measurement, and to measurement of parameters other than wind. Each area will be identified as to its applicability.

  12. Study to investigate and evaluate means of optimizing the radar function for the space shuttle

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A detailed analysis of the spiral scan was performed for antenna sizes ranging from 20 inches to 36 inches in diameter and for search angles characteristic of both the radar and the communication acquisition modes. The power budgets for passive target radar detection were calculated for antenna diameters ranging from 20 to 36 inches. Dwell times commensurate with spiral scan were used for these budget calculations. The signal design for the candidate pulse Doppler system is summarized. Ground return analysis carried out for the passive target radar mode is examined, and the details are presented. A concluding description of the proposed candidate radar/communication system configuration is given.

  13. Experimental detection and focusing in shallow water by decomposition of the time reversal operator.

    PubMed

    Prada, Claire; de Rosny, Julien; Clorennec, Dominique; Minonzio, Jean-Gabriel; Aubry, Alexandre; Fink, Mathias; Berniere, Lothar; Billand, Philippe; Hibral, Sidonie; Folegot, Thomas

    2007-08-01

    A rigid 24-element source-receiver array in the 10-15 kHz frequency band, connected to a programmable electronic system, was deployed in the Bay of Brest during spring 2005. In this 10- to 18-m-deep environment, backscattered data from submerged targets were recorded. Successful detection and focusing experiments in very shallow water using the decomposition of the time reversal operator (DORT method) are shown. The ability of the DORT method to separate the echo of a target from reverberation as well as the echo from two different targets at 250 m is shown. An example of active focusing within the waveguide using the first invariant of the time reversal operator is presented, showing the enhanced focusing capability. Furthermore, the localization of the scatterers in the water column is obtained using a range-dependent acoustic model.

  14. Image visualization of hyperspectral spectrum for LWIR

    NASA Astrophysics Data System (ADS)

    Chong, Eugene; Jeong, Young-Su; Lee, Jai-Hoon; Park, Dong Jo; Kim, Ju Hyun

    2015-07-01

    The image visualization of a real-time hyperspectral spectrum in the long-wave infrared (LWIR) range of 900-1450 cm-1 by a color-matching function is addressed. It is well known that the absorption spectra of main toxic industrial chemical (TIC) and chemical warfare agent (CWA) clouds are detected in this spectral region. Furthermore, a significant spectral peak due to various background species and unknown targets are also present. However, those are dismissed as noise, resulting in utilization limit. Herein, we applied a color-matching function that uses the information from hyperspectral data, which is emitted from the materials and surfaces of artificial or natural backgrounds in the LWIR region. This information was used to classify and differentiate the background signals from the targeted substances, and the results were visualized as image data without additional visual equipment. The tristimulus value based visualization information can quickly identify the background species and target in real-time detection in LWIR.

  15. An active acoustic tripwire for simultaneous detection and localization of multiple underwater intruders.

    PubMed

    Folegot, Thomas; Martinelli, Giovanna; Guerrini, Piero; Stevenson, J Mark

    2008-11-01

    An algorithm allowing simultaneous detection and localization of multiple submerged targets crossing an acoustic tripwire based on forward scattering is described and then evaluated based upon data collected at sea. This paper quantifies the agreement between the theoretical performance and the results obtained from processing data gathered at sea for crossings at several depths and ranges. Targets crossing the acoustic field produce shadows on each side of the barrier, for specific sensors and for specific acoustic paths. In post-processing, a model is invoked to associate expected paths with the observed shadows. This process allows triangulation of the target's position inside the acoustic field. Precise localization is achieved by taking advantage of the multipath propagation structure of the received signal, together with the diversity of the source and receiver locations. Environmental robustness is demonstrated using simulations and can be explained by the use of an array of sources spatially distributed through the water column.

  16. Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy

    PubMed Central

    Kuzuya, Akinori; Sakai, Yusuke; Yamazaki, Takahiro; Xu, Yan; Komiyama, Makoto

    2011-01-01

    DNA origami involves the folding of long single-stranded DNA into designed structures with the aid of short staple strands; such structures may enable the development of useful nanomechanical DNA devices. Here we develop versatile sensing systems for a variety of chemical and biological targets at molecular resolution. We have designed functional nanomechanical DNA origami devices that can be used as 'single-molecule beacons', and function as pinching devices. Using 'DNA origami pliers' and 'DNA origami forceps', which consist of two levers ~170 nm long connected at a fulcrum, various single-molecule inorganic and organic targets ranging from metal ions to proteins can be visually detected using atomic force microscopy by a shape transition of the origami devices. Any detection mechanism suitable for the target of interest, pinching, zipping or unzipping, can be chosen and used orthogonally with differently shaped origami devices in the same mixture using a single platform. PMID:21863016

  17. Target recognition of ladar range images using slice image: comparison of four improved algorithms

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Cao, Jingya; Wang, Liang; Zhai, Yu; Cheng, Yang

    2017-07-01

    Compared with traditional 3-D shape data, ladar range images possess properties of strong noise, shape degeneracy, and sparsity, which make feature extraction and representation difficult. The slice image is an effective feature descriptor to resolve this problem. We propose four improved algorithms on target recognition of ladar range images using slice image. In order to improve resolution invariance of the slice image, mean value detection instead of maximum value detection is applied in these four improved algorithms. In order to improve rotation invariance of the slice image, three new improved feature descriptors-which are feature slice image, slice-Zernike moments, and slice-Fourier moments-are applied to the last three improved algorithms, respectively. Backpropagation neural networks are used as feature classifiers in the last two improved algorithms. The performance of these four improved recognition systems is analyzed comprehensively in the aspects of the three invariances, recognition rate, and execution time. The final experiment results show that the improvements for these four algorithms reach the desired effect, the three invariances of feature descriptors are not directly related to the final recognition performance of recognition systems, and these four improved recognition systems have different performances under different conditions.

  18. Facilitation of contrast detection in near-peripheral vision.

    PubMed

    Giorgi, Robert G; Soong, Grace P; Woods, Russell L; Peli, Eli

    2004-12-01

    Foveal detection of a Gabor patch (target) is facilitated by collinear, displaced high-contrast flankers. Polat and Sagi reported that the same phenomenon occurred in the periphery, but no data were presented [Proc. Natl. Acad. Sci. 91 (1994) 1206]. Others have found no facilitation in a limited number of conditions tested. To resolve this apparent conflict, we measured lateral facilitation in the near-periphery using a range of stimulus parameters. We found facilitation for a range of target-flanker distances for peripheral eccentricities up to 6 degrees , but the magnitude of the effect was less than found in central vision. Facilitation varied across subjects and with spatial frequency. Flanker contrast had no effect over the range evaluated (10-80%). Equal facilitation was found for two global arrangements of the stimulus pattern. Facilitation was found using a temporal, but not a spatial two-alternative forced-choice paradigm, accounting for the different results among previous studies. This finding supports previous indications of the role of attention in altering such facilitation. The value of facilitation from lateral interactions for persons with central vision impairment, who have to shift their attention to a peripheral locus constantly, needs to be examined.

  19. Research on the underwater target imaging based on the streak tube laser lidar

    NASA Astrophysics Data System (ADS)

    Cui, Zihao; Tian, Zhaoshuo; Zhang, Yanchao; Bi, Zongjie; Yang, Gang; Gu, Erdan

    2018-03-01

    A high frame rate streak tube imaging lidar (STIL) for real-time 3D imaging of underwater targets is presented in this paper. The system uses 532nm pulse laser as the light source, the maximum repetition rate is 120Hz, and the pulse width is 8ns. LabVIEW platform is used in the system, the system control, synchronous image acquisition, 3D data processing and display are realized through PC. 3D imaging experiment of underwater target is carried out in a flume with attenuation coefficient of 0.2, and the images of different depth and different material targets are obtained, the imaging frame rate is 100Hz, and the maximum detection depth is 31m. For an underwater target with a distance of 22m, the high resolution 3D image real-time acquisition is realized with range resolution of 1cm and space resolution of 0.3cm, the spatial relationship of the targets can be clearly identified by the image. The experimental results show that STIL has a good application prospect in underwater terrain detection, underwater search and rescue, and other fields.

  20. Robust Targeting for the Smartphone Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Carter, Christopher

    2017-01-01

    The Smartphone Video Guidance Sensor (SVGS) is a miniature, self-contained autonomous rendezvous and docking sensor developed using a commercial off the shelf Android-based smartphone. It aims to provide a miniaturized solution for rendezvous and docking, enabling small satellites to conduct proximity operations and formation flying while minimizing interference with a primary payload. Previously, the sensor was limited by a slow (2 Hz) refresh rate and its use of retro-reflectors, both of which contributed to a limited operating environment. To advance the technology readiness level, a modified approach was developed, combining a multi-colored LED target with a focused target-detection algorithm. Alone, the use of an LED system was determined to be much more reliable, though slower, than the retro-reflector system. The focused target-detection system was developed in response to this problem to mitigate the speed reduction of using color. However, it also improved the reliability. In combination these two methods have been demonstrated to dramatically increase sensor speed and allow the sensor to select the target even with significant noise interfering with the sensor, providing millimeter level accuracy at a range of two meters with a 1U target.

  1. Robust Targeting for the Smartphone Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Carter, C.

    2017-01-01

    The Smartphone Video Guidance Sensor (SVGS) is a miniature, self-contained autonomous rendezvous and docking sensor developed using a commercial off the shelf Android-based smartphone. It aims to provide a miniaturized solution for rendezvous and docking, enabling small satellites to conduct proximity operations and formation flying while minimizing interference with a primary payload. Previously, the sensor was limited by a slow (2 Hz) refresh rate and its use of retro-reflectors, both of which contributed to a limited operating environment. To advance the technology readiness level, a modified approach was developed, combining a multi-colored LED target with a focused target-detection algorithm. Alone, the use of an LED system was determined to be much more reliable, though slower, than the retro-reflector system. The focused target-detection system was developed in response to this problem to mitigate the speed reduction of using color. However it also improved the reliability. In combination these two methods have been demonstrated to dramatically increase sensor speed and allow the sensor to select the target even with significant noise interfering with the sensor, providing millimeter level precision at a range of two meters with a 1U target.

  2. Electrochemical detection of sequence-specific DNA based on formation of G-quadruplex-hemin through continuous hybridization chain reaction.

    PubMed

    Sun, Xiaofan; Chen, Haohan; Wang, Shuling; Zhang, Yiping; Tian, Yaping; Zhou, Nandi

    2018-08-27

    A high-sensitive detection of sequence-specific DNA was established based on the formation of G-quadruplex-hemin complex through continuous hybridization chain reaction (HCR). Taking HIV DNA sequence as an example, a capture probe complementary to part of HIV DNA was firstly self-assembled onto the surface of Au electrode. Then a specially designed assistant probe with both terminals complementary to the target DNA and a G-quadruplex-forming sequence in the center was introduced into the detection solution. In the presence of both the target DNA and the assistant probe, the target DNA can be captured on the electrode surface and then a continuous HCR can be conducted due to the mutual recognition of the target DNA and the assistant probe, leading to the formation of a large number of G-quadruplex on the electrode surface. With the help of hemin, a pronounced electrochemical signal can be observed in differential pulse voltammetry (DPV), due to the formation of G-quadruplex-hemin complex. The peak current is linearly related with the logarithm of the concentration of the target DNA in the range from 10 fM to 10 pM. The electrochemical sensor has high selectivity to clearly discriminate single-base mismatched and three-base mismatched sequences from the original HIV DNA sequence. Moreover, the established DNA sensor was challenged by detection of HIV DNA in human serum samples, which showed the low detection limit of 6.3 fM. Thus it has great application prospect in the field of clinical diagnosis and environmental monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. [Magnetic solid phase extraction combined with gas chromatography-flame photometric detection for the determination of organophosphorus pesticides in juice samples].

    PubMed

    Huang, Qian; He, Man; Chen, Beibei; Hu, Bin

    2014-10-01

    A novel method for the determination of organophosphorous pesticides (OPPs) in fresh juice samples was developed. Fe3O4 @ P (St-co-MAA) magnetic microparticles were synthesized and modified with styrene (St) and methacrylic acid (MAA) by coating St and MAA on magnetic particles and characterized by a series of techniques. The results indicated that Fe3 O4 magnetic nanoparticles (MNPs) have been successfully modified with St and MAA. Based on the prepared FeO4 @ P (St-co-MAA) magnetic microparticles, a novel method of magnetic solid phase extraction (MSPE)-gas chromatography (GC)-flame photometric detection (FPD) was developed for the determination of OPPs. The extraction/desorption conditions of MSPE were optimized, and the analytical performance was evaluated under the optimal conditions. The limits of detection (LODs, S/N = 3) for target OPPs were in the range of 0.013-0.305 μg/L with the RSDs (n = 7) ranging from 3.1% to 8.8%. The enrichment factors varied from 406 to 951. The linear ranges were over three orders of magnitudes (R2 > 0.99) and the reproducibilities were 7.4%-14.5% (n = 5). Finally, the proposed MSPE-GC-FPD method was successfully applied to the analysis of the five OPPs in fresh tomato and strawberry juice samples, with the recoveries of target OPPs in the range of 85.4%-118.9% for the spiked samples. The proposed MSPE-GC-FPD method is featured with low cost, fast separation and high enrichment factor.

  4. Simultaneous detection of flumethasone, dl-methylephedrine, and 2-hydroxy-4,6-dimethylpyrimidine in porcine muscle and pasteurized cow milk using liquid chromatography coupled with triple-quadrupole mass spectrometry.

    PubMed

    Zhang, Dan; Park, Jin-A; Kim, Seong-Kwan; Cho, Sang-Hyun; Jeong, Daun; Cho, Soo-Min; Yi, Hee; Shim, Jae-Han; Kim, Jin-Suk; Abd El-Aty, A M; Shin, Ho-Chul

    2016-02-15

    A simple analytical method based on liquid chromatography coupled with triple-quadrupole mass spectrometry was developed for detection of the veterinary drugs flumethasone, dl-methylephedrine, and 2-hydroxy-4,6-dimethylpyrimidine in porcine muscle and pasteurized cow milk. The target drugs were extracted from samples using 10mM ammonium formate in acetonitrile followed by clean-up with n-hexane and primary secondary amine sorbent (PSA). The analytes were separated on an XBridge™ hydrophilic interaction liquid chromatography (HILIC) column using 10mM ammonium formate in ultrapure water and acetonitrile. Good linearity was achieved over the tested concentrations in matrix-fortified calibrations with correlation coefficients (R(2))≥0.9686. Recovery at two spiking levels ranged between 73.62-112.70% with intra- and inter-day precisions of ≤20.33%. The limits of quantification ranged from 2-10ng/g in porcine muscle and pasteurized cow milk. A survey of market samples showed that none of them contained any of the target analytes. Liquid-liquid purification using n-hexane in combination with PSA efficiently removed the interferences during porcine and milk sample extraction. The developed method is sensitive and reliable for detection of the three target drugs in a single chromatographic run. Furthermore, it exhibits high selectivity and low quantification limits for animal-derived food products destined for human consumption. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA-gold nanocluster

    NASA Astrophysics Data System (ADS)

    Hosseini, Morteza; Ahmadi, Elnaz; Borghei, Yasaman-Sadat; Ganjali, Mohammad Reza

    2017-03-01

    In this study, DNA/gold nanoclusters (AuNCs) were used to develop an AuNC-based turn-on fluorescence probe for the analysis of mi-RNA-21, which is a potential screening biomarker for cancer detection. AuNCs on a DNA scaffold were prepared through a one-pot wet-chemical route and evaluated by transmission electron microscopy and dynamic light scattering. Experiments revealed that the fluorescence intensity of the DNA-AuNCs showed a gradual increase with the addition of the target species in a concentration range from 1pM to 10 nM. The method had a detection limit of 0.7 pM and was able to discriminate the target species from mismatched mi-RNAs very efficiently. The method was used for the determination of mi-RNA spiked human plasma samples, and was evaluated as a promising nanobiosensor for application in the selective detection of mi-RNA in various biomedical and clinical tests.

  6. Smaller to larger biomolecule detection using a lab-built surface plasmon resonance based instrument

    NASA Astrophysics Data System (ADS)

    Lukose, J.; Kulal, V.; Chidangil, S.; Sinha, R. K.

    2016-10-01

    We have developed a low-cost surface plasmon resonance (SPR) instrument based on the Kretschmann configuration for biosensing applications. The fabricated instrument is capable of operating in both angular and intensity interrogation schemes. The proposed sensor has proved enormously versatile by detecting a range of analytes with low to high molecular weights. The refractive index based sensor has been used for detecting the variation in the concentration of the aqueous solution of glucose and glycerine. Real time immobilization of protein molecules, bovine serum albumin on a gold (Au) film surface, has also been detected using the SPR imaging technique. Alkanethiol functionalization of the Au surface was performed, and bovine serum albumin was immobilized onto the carboxyl functionalized surface using amine reactive cross linker chemistry. In future, the present approach can also be utilized for the selective detection of a wide range of target biomolecules with the help of specific capture probes, as well as for monitoring protein-drug interactions.

  7. Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine.

    PubMed

    Thanh, Tran Duy; Balamurugan, Jayaraman; Lee, Seung Hee; Kim, Nam Hoon; Lee, Joong Hee

    2016-07-15

    A novel gold nanoparticle-anchored nitrogen-doped graphene (AuNP/NG) nanohybrid was synthesized through a seed-assisted growth method, as an effective electrocatalyst for glucose and dopamine detection. The AuNP/NG nanohybrids exhibited high sensitivity and selectivity toward glucose and dopamine sensing applications. The as-synthesized nanohybrids exhibited excellent catalytic activity toward glucose, with a linear response throughout the concentration range from 40μM to 16.1mM, a detection limit of 12μM, and a short response time (∼ 10s). It also exhibited an excellent response toward DA, with a wide detection range from 30nM to 48μM, a low detection limit of 10nM, and a short response time (∼ 8s). Furthermore, it also showed long-term stability and high selectivity for the target analytes. These results imply that such nanohybrids show a great potential for electrochemical biosensing application. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Visible Contrast Energy Metrics for Detection and Discrimination

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert; Watson, Andrew

    2013-01-01

    Contrast energy was proposed by Watson, Robson, & Barlow as a useful metric for representing luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer. Like the eye, the ear is a complex transducer system, but relatively simple sound level meters are used to characterize sounds. These meters provide a range of frequency sensitivity functions and integration times depending on the intended use. We propose here the use of a range of contrast energy measures with different spatial frequency contrast sensitivity weightings, eccentricity sensitivity weightings, and temporal integration times. When detection threshold are plotting using such measures, the results show what the eye sees best when these variables are taken into account in a standard way. The suggested weighting functions revise the Standard Spatial Observer for luminance contrast detection and extend it into the near periphery. Under the assumption that the detection is limited only by internal noise, discrimination performance can be predicted by metrics based on the visible energy of the difference images

  9. Prediction of topographic and bathymetric measurement performance of airborne low-SNR lidar systems

    NASA Astrophysics Data System (ADS)

    Cossio, Tristan

    Low signal-to-noise ratio (LSNR) lidar (light detection and ranging) is an alternative paradigm to traditional lidar based on the detection of return signals at the single photoelectron level. The objective of this work was to predict low altitude (600 m) LSNR lidar system performance with regards to elevation measurement and target detection capability in topographic (dry land) and bathymetric (shallow water) scenarios. A modular numerical sensor model has been developed to provide data for further analysis due to the dearth of operational low altitude LSNR lidar systems. This simulator tool is described in detail, with consideration given to atmospheric effects, surface conditions, and the effects of laser phenomenology. Measurement performance analysis of the simulated topographic data showed results comparable to commercially available lidar systems, with a standard deviation of less than 12 cm for calculated elevation values. Bathymetric results, although dependent largely on water turbidity, were indicative of meter-scale horizontal data spacing for sea depths less than 5 m. The high prevalence of noise in LSNR lidar data introduces significant difficulties in data analysis. Novel algorithms to reduce noise are described, with particular focus on their integration into an end-to-end target detection classifier for both dry and submerged targets (cube blocks, 0.5 m to 1.0 m on a side). The key characteristic exploited to discriminate signal and noise is the temporal coherence of signal events versus the random distribution of noise events. Target detection performance over dry earth was observed to be robust, reliably detecting over 90% of targets with a minimal false alarm rate. Comparable results were observed in waters of high clarity, where the investigated system was generally able to detect more than 70% of targets to a depth of 5 m. The results of the study show that CATS, the University of Florida's LSNR lidar prototype, is capable of high fidelity (decimeter-scale) coverage of the topographic zone with limited applicability to shallow waters less than 5 m deep. To increase the spatial-temporal contrast between signal and noise events, laser pulse rate is the optimal system characteristic to improve in future LSNR lidar units.

  10. Multi Ray Model for Near-Ground Millimeter Wave Radar

    PubMed Central

    Litvak, Boris; Pinhasi, Yosef

    2017-01-01

    A quasi-optical multi-ray model for a short-range millimeter wave radar is presented. The model considers multi-path effects emerging while multiple rays are scattered from the target and reflected to the radar receiver. Among the examined scenarios, the special case of grazing ground reflections is analyzed. Such a case becomes relevant when short range anti-collision radars are employed in vehicles. Such radars operate at millimeter wavelengths, and are aimed at the detection of targets located several tens of meters from the transmitter. Reflections from the road are expected to play a role in the received signal strength, together with the direct line-of-sight beams illuminated and scattered from the target. The model is demonstrated experimentally using radar operating in the W-band. Controlled measurements were done to distinguish between several scattering target features. The experimental setup was designed to imitate vehicle near-ground millimeter wave radars operating in vehicles. A comparison between analytical calculations and experimental results is made and discussed. PMID:28867776

  11. Shuttle orbiter KU-band radar/communications system design evaluation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An expanded introduction is presented which addresses the in-depth nature of the tasks and indicates continuity of the reported effort and results with previous work and related contracts, and the two major modes of operation which exist in the Ku-band system, namely, the radar mode and the communication mode, are described. The Ku-band radar system is designed to search for a target in a designated or undesignated mode, then track the detected target, which might be cooperative (active) or passive, providing accurate, estimates of the target range, range rate, angle and angle rate to enable the orbiter to rendezvous with this target. The radar mode is described along with a summary of its predicted performance. The principal sub-unit that implements the radar function is the electronics assembly 2(EA-2). The relationship of EA-2 to the remainder of the Ku-band system is shown. A block diagram of EA-2 is presented including the main command and status signals between EA-2 and the other Ku-band units.

  12. Planar chromatography mediated screening of tetracycline and fluoroquinolone antibiotics in milk by fluorescence and mass selective detection.

    PubMed

    Chen, Yisheng; Schwack, Wolfgang

    2013-10-18

    A rapid and efficient method for preliminary screening of four tetracyclines (tetracycline, chlortetracycline, oxytetracycline, doxycline) and three fluoroquinolones (enrofloxacin, ciprofloxacin, marbofloxacin), mostly detected in milk, by high-performance thin-layer chromatography-fluorescence detection and electrospray ionization mass spectrometry (HPTLC-FLD-ESI/MS) is highlighted. The optimized separation of the target antibiotics on ethylenediamine tetraacetic acid modified silica gel plates showed marked benefits for screening purposes. Besides, selective and sensitive densitometry in fluorescence mode was established with excitation at 366nm for the tetracyclines, 300nm for enrofloxacin and ciprofloxacin, and 280nm for marbofloxacin. Limits of detection (LOD) and quantitation (LOQ) with 95% confidence were in the range of 12-25 and 45-95μg/kg, respectively, in milk samples. Recoveries of target antibiotics from milk samples spiked at three critical levels (50, 100 and 150μg/kg) ranged from 76% to 105%. More importantly, a mass selective detection (MSD) was established as additional tool for confirmatory purposes. Using the elution-head based TLC-MS interface, the optimized elution flow consisting of acetonitrile/ammonium formate buffer (9/1, v/v) at a rate of 0.3mL/min enabled time-dependent resolution of analytes from the major interfering compounds, thus circumventing serious ion suppression effects. The established MSD assay also offered high sensitivity (25μg/kg) for confirmation, meeting Commission Regulation (EU) No. 37/2010. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor.

    PubMed

    Zheng, Wanli; Teng, Jun; Cheng, Lin; Ye, Yingwang; Pan, Daodong; Wu, Jingjing; Xue, Feng; Liu, Guodong; Chen, Wei

    2016-06-15

    An electrochemical aptasensor for trace detection of aflatoxin B1 (AFB1) was developed by using an aptamer as the recognition unit while adopting the telomerase and EXO III based two-round signal amplification strategy as the signal enhancement units. The telomerase amplification was used to elongate the ssDNA probes on the surface of gold nanoparticles, by which the signal response range of the signal-off model electrochemical aptasensor could be correspondingly enlarged. Then, the EXO III amplification was used to hydrolyze the 3'-end of the dsDNA after the recognition of target AFB1, which caused the release of bounded AFB1 into the sensing system, where it participated in the next recognition-sensing cycle. With this two-round signal amplified electrochemical aptasensor, target AFB1 was successfully measured at trace concentrations with excellent detection limit of 0.6*10(-4)ppt and satisfied specificity due to the excellent affinity of the aptamer against AFB1. Based on this designed two-round signal amplification strategy, both the sensing range and detection limit were greatly improved. This proposed ultrasensitive electrochemical aptasensor method was also validated by comparison with the classic instrumental methods. Importantly, this hetero-enzyme based two-round signal amplified electrochemical aptasensor offers a great promising protocol for ultrasensitive detection of AFB1 and other mycotoxins by replacing the core recognition sequence of the aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Detection of small surface vessels in near, medium, and far infrared spectral bands

    NASA Astrophysics Data System (ADS)

    Dulski, R.; Milewski, S.; Kastek, M.; Trzaskawka, P.; Szustakowski, M.; Ciurapinski, W.; Zyczkowski, M.

    2011-11-01

    Protection of naval bases and harbors requires close co-operation between security and access control systems covering land areas and those monitoring sea approach routes. The typical location of naval bases and harbors - usually next to a large city - makes it difficult to detect and identify a threat in the dense regular traffic of various sea vessels (i.e. merchant ships, fishing boats, tourist ships). Due to the properties of vessel control systems, such as AIS (Automatic Identification System), and the effectiveness of radar and optoelectronic systems against different targets it seems that fast motor boats called RIB (Rigid Inflatable Boat) could be the most serious threat to ships and harbor infrastructure. In the paper the process and conditions for the detection and identification of high-speed boats in the areas of ports and naval bases in the near, medium and far infrared is presented. Based on the results of measurements and recorded thermal images the actual temperature contrast delta T (RIB / sea) will be determined, which will further allow to specify the theoretical ranges of detection and identification of the RIB-type targets for an operating security system. The data will also help to determine the possible advantages of image fusion where the component images are taken in different spectral ranges. This will increase the probability of identifying the object by the multi-sensor security system equipped additionally with the appropriate algorithms for detecting, tracking and performing the fusion of images from the visible and infrared cameras.

  15. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE PAGES

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; ...

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  16. Characterizing Perceptual Performance at Multiple Discrimination Precisions in External Noise

    PubMed Central

    Jeon, Seong-Taek; Lu, Zhong-Lin; Dosher, Barbara Anne

    2010-01-01

    Existing observer models developed for studies with the external noise paradigm are strictly only applicable to target detection or identification/discrimination of orthogonal target(s). We elaborated the perceptual template model (PTM) to account for contrast thresholds in identifying non-orthogonal targets. Full contrast psychometric functions were measured in an orientation identification task with four orientation differences across a wide range of external noise levels. We showed that observer performance can be modeled by the elaborated PTM with two templates that correspond to the two stimulus categories. Sampling efficiencies of the human observers were also estimated. The elaborated PTM provides a theoretical framework to characterize joint feature and contrast sensitivity of human observers. PMID:19884915

  17. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    USGS Publications Warehouse

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef environment.

  18. Optical rangefinding applications using communications modulation technique

    NASA Astrophysics Data System (ADS)

    Caplan, William D.; Morcom, Christopher John

    2010-10-01

    A novel range detection technique combines optical pulse modulation patterns with signal cross-correlation to produce an accurate range estimate from low power signals. The cross-correlation peak is analyzed by a post-processing algorithm such that the phase delay is proportional to the range to target. This technique produces a stable range estimate from noisy signals. The advantage is higher accuracy obtained with relatively low optical power transmitted. The technique is useful for low cost, low power and low mass sensors suitable for tactical use. The signal coding technique allows applications including IFF and battlefield identification systems.

  19. Pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA.

    PubMed

    Boyd, Glen R; Palmeri, Jordan M; Zhang, Shaoyuan; Grimm, Deborah A

    2004-10-15

    Samples were collected from two stormwater canals and a recreational urban waterway known as Bayou St. John in New Orleans, Louisiana, USA and analyzed for a range of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). Concentrations of 7 PPCPs and EDCs were measured by a method that provides for simultaneous extraction and quantification of the following compounds: clofibric acid, naproxen, ibuprofen, fluoxetine, clorophene, triclosan, bisphenol A. The method also was used as an indicator of the occurrence of estrogenic compounds by targeting estrone and 17beta-estradiol. The two canals (Orleans and London) are used to drain a portion of the city's stormwater directly into the Mississippi River or Lake Pontchartrain. Bayou St. John is located between the two canals and supplied with water from Lake Pontchartrain. Results from the 6-month sampling period indicated the following concentration ranges for the two stormwater canals: naproxen (ND - 145 ng/l), ibuprofen (ND - 674 ng/l), triclosan (ND - 29 ng/l) and bisphenol A (1.9-158 ng/l). Concentrations of these target analytes increased with cumulative rainfall. For bayou waters, only naproxen (2.1-4.8 ng/l) and bisphenol A (0.9-44 ng/l) were detected. Estrone was detected but determined non-quantifiable for multiple sampling events at the 3 sites. None of the other target analytes (clofibric acid, fluoxetine, clorophene, and 17beta-estradiol) were detected above their method detection levels. Results of this study demonstrate the occurrence of PPCPs and EDCs in New Orleans stormwater canals and Bayou St. John. Results also demonstrate the use of this analytical technique as an indicator of non-point source sewage contamination in New Orleans stormwater canals.

  20. Detection of Marine Radar Targets

    NASA Astrophysics Data System (ADS)

    Briggs, John N.

    A radar must detect targets before it can display them. Yet manufacturers' data sheets rarely tell us what the products will detect at what range. Many of the bigger radars are Type Approved so we consult the relevant IMO performance standard A 477 (XII). Paraphrasing Section 3.1 of the draft forthcoming revision (NAV 41/6): under normal propagation conditions with the scanner at height of 15 m, in the absence of clutter, the radar is required to give clear indication of an object such as a navigational buoy having a radar cross section area (RCS) of 10 m2 at 2 n.m. and, as examples, coastlines whose ground rises to 60/6 m at ranges of 20/7 n.m., a ship of 5000 tons at any aspect at 7 n.m. and a small vessel 10 m long at 3 n.m.This helps, but suppose we must pick up a 5 m2 buoy at g km? What happens in clutter? Should we prefer S- or X-band? To answer such questions we use equations which define the performance of surveillance radars, but the textbooks and specialist papers containing them often generalize with aeronautical and defence topics, making life difficult for the nonspecialist.This paper attempts a concise and self-contained engineering account of all main factors affecting detection of passive and active targets on civil marine and vessel traffic service (VTS) radars. We develop a set of equations for X- and S-band (3 and 10 cm, centred on 9400 and 3000 MHz respectively), suited for spreadsheet calculation.Sufficient theory is sketched in to indicate where results should be valid. Some simplifications of conventional treatments have been identified.

  1. Development of an analytical method for the targeted screening and multi-residue quantification of environmental contaminants in urine by liquid chromatography coupled to high resolution mass spectrometry for evaluation of human exposures.

    PubMed

    Cortéjade, A; Kiss, A; Cren, C; Vulliet, E; Buleté, A

    2016-01-01

    The aim of this study was to develop an analytical method and contribute to the assessment of the Exposome. Thus, a targeted analysis of a wide range of contaminants in contact with humans on daily routines in urine was developed. The method focused on a list of 38 contaminants, including 12 pesticides, one metabolite of pesticide, seven veterinary drugs, five parabens, one UV filter, one plastic additive, two surfactants and nine substances found in different products present in the everyday human environment. These contaminants were analyzed by high performance liquid chromatography coupled to high resolution mass spectrometry (HPLC-HRMS) with a quadrupole-time-of-flight (QqToF) instrument from a raw urinary matrix. A validation according to the FDA guidelines was employed to evaluate the specificity, linear or quadratic curve fitting, inter- and intra-day precision, accuracy and limits of detection and quantification (LOQ). The developed analysis allows for the quantification of 23 contaminants in the urine samples, with the LOQs ranging between 4.3 ng.mL(-1) and 113.2 ng.mL(-1). This method was applied to 17 urine samples. Among the targeted contaminants, four compounds were detected in samples. One of the contaminants (tributyl phosphate) was detected below the LOQ. The three others (4-hydroxybenzoic acid, sodium dodecylbenzenesulfonate and O,O-diethyl thiophosphate potassium) were detected but did not fulfill the validation criteria for quantification. Among these four compounds, two of them were found in all samples: tributyl phosphate and the surfactant sodium dodecylbenzenesulfonate. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Development and evaluation of an up-converting phosphor technology-based lateral flow assay for the rapid, simultaneous detection of Vibrio cholerae serogroups O1 and O139

    PubMed Central

    Li, Baisheng; Liu, Xiao; Zhao, Yong; Tan, Hailing; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Qiu, Haiyan; Wang, Duochun; Diao, Baowei; Jing, Huaiqi; Yang, Ruifu; Kan, Biao

    2017-01-01

    Vibrio cholerae serogroups O1 and O139 are etiological agents of cholera, a serious and acute diarrheal disease, and rapid detection of V. cholerae is a key method for preventing and controlling cholera epidemics. Here, a point of care testing (POCT) method called Vch-UPT-LF, which is an up-converting phosphor technology-based lateral flow (UPT-LF) assay with a dual-target detection mode, was developed to detect V. cholerae O1 and O139 simultaneously from one sample loading. Although applying an independent reaction pair made both detection results for the two Vch-UPT-LF detection channels more stable, the sensitivity slightly declined from 104 to 105 colony-forming units (CFU) mL−1 compared with that of the single-target assay, while the quantification ranges covering four orders of magnitude were maintained. The strip showed excellent specificity for seven Vibrio species that are highly related genetically, and nine food-borne species whose transmission routes are similar to those of V. cholerae. The legitimate arrangement of the two adjacent test lines lessened the mutual impact of the quantitation results between the two targets, and the quantification values did not differ by more than one order of magnitude when the samples contained high concentrations of both V. cholerae O1 and O139. Under pre-incubation conditions, 1×101 CFU mL−1 of V. cholerae O1 or O139 could be detected in fewer than 7 h, while the Vch-UPT-LF assay exhibited sensitivity as high as a real-time fluorescent polymerase chain reaction with fewer false-positive results. Therefore, successful development of Vch-UPT-LF as a dual-target assay for quantitative detection makes this assay a good candidate POCT method for the detection and surveillance of epidemic cholera. PMID:28662147

  3. Validation of PCR methods for quantitation of genetically modified plants in food.

    PubMed

    Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P

    2001-01-01

    For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.

  4. Fluorometric determination of nucleic acids based on the use of polydopamine nanotubes and target-induced strand displacement amplification.

    PubMed

    Ge, Jia; Bai, Dong-Mei; -Geng, Xin; Hu, Ya-Lei; Cai, Qi-Yong; Xing, Ke; Zhang, Lin; Li, Zhao-Hui

    2018-01-10

    The authors describe a fluorometric method for the quantitation of nucleic acids by combining (a) cycled strand displacement amplification, (b) the unique features of the DNA probe SYBR Green, and (c) polydopamine nanotubes. SYBR Green undergoes strong fluorescence enhancement upon intercalation into double-stranded DNA (dsDNA). The polydopamine nanotubes selectively adsorb single-stranded DNA (ssDNA) and molecular beacons. In the absence of target DNA, the molecular beacon, primer and SYBR Green are adsorbed on the surface of polydopamine nanotubes. This results in quenching of the fluorescence of SYBR Green, typically measured at excitation/emission wavelengths of 488/518 nm. Upon addition of analyte (target DNA) and polymerase, the stem of the molecular beacon is opened so that it can bind to the primer. This triggers target strand displacement polymerization, during which dsDNA is synthesized. The hybridized target is then displaced due to the strand displacement activity of the polymerase. The displaced target hybridizes with another molecular beacon. This triggers the next round of polymerization. Consequently, a large amount of dsDNA is formed which is detected by addition of SYBR Green. Thus, sensitive and selective fluorometric detection is realized. The fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 0.05 to 25 nM with a low limit of detection of 20 pM. Graphical abstract Schematic of a fluorometric strategy for highly sensitive and selective determination of nucleic acids by combining strand displacement amplification and the unique features of SYBR Green I (SG) and polydopamine nanotubes.

  5. Attomolar detection of proteins via cascade strand-displacement amplification and polystyrene nanoparticle enhancement in fluorescence polarization aptasensors.

    PubMed

    Huang, Yong; Liu, Xiaoqian; Huang, Huakui; Qin, Jian; Zhang, Liangliang; Zhao, Shulin; Chen, Zhen-Feng; Liang, Hong

    2015-08-18

    Extremely sensitive and accurate measurements of protein markers for early detection and monitoring of diseases pose a formidable challenge. Herein, we develop a new type of amplified fluorescence polarization (FP) aptasensor based on allostery-triggered cascade strand-displacement amplification (CSDA) and polystyrene nanoparticle (PS NP) enhancement for ultrasensitive detection of proteins. The assay system consists of a fluorescent dye-labeled aptamer hairpin probe and a PS NP-modified DNA duplex (assistant DNA/trigger DNA duplex) probe with a single-stranded part and DNA polymerase. Two probes coexist stably in the absence of target, and the dye exhibits relatively low FP background. Upon recognition and binding with a target protein, the stem of the aptamer hairpin probe is opened, after which the opened hairpin probe hybridizes with the single-stranded part in the PS NP-modified DNA duplex probe and triggers the CSDA reaction through the polymerase-catalyzed recycling of both target protein and trigger DNA. Throughout this CSDA process, numerous massive dyes are assembled onto PS NPs, which results in a substantial FP increase that provides a readout signal for the amplified sensing process. Our newly proposed amplified FP aptasensor enables the quantitative measurement of proteins with the detection limit in attomolar range, which is about 6 orders of magnitude lower than that of traditional homogeneous aptasensors. Moreover, this sensing method also exhibits high specificity for target proteins and can be performed in homogeneous solutions. In addition, the suitability of this method for the quantification of target protein in biological samples has also been shown. Considering these distinct advantages, the proposed sensing method can be expected to provide an ultrasensitive platform for the analysis of various types of target molecules.

  6. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination.

    PubMed

    Chen, Zhonghui; Tan, Yue; Xu, Kefeng; Zhang, Lan; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-01-15

    Mesoporous silica nanoparticles (MSN) based controlled release system had been coupled with diverse detection technologies to establish biosensors for different targets. Chemiluminescence (CL) system of luminol/H2O2 owns the characters of simplicity, low cost and high sensitivity, but the targets of which are mostly focused on some oxidants or which can participate in a chemical reaction that yields a product with a role in the CL reaction. In this study, chemiluminescent detection technique had been coupled with mesoporous silica-based controlled released system for the first time to develop a sensitive biosensor for the target which does not cause effect to the CL system itself. Cocaine had been chosen a model target, the MSN support was firstly loaded with glucose, then the positively charged MSN interacted with negatively charged oligonucleotides (the aptamer cocaine) to close the mesopores of MSN. At the present of target, cocaine binds with its aptamer with high affinity; the flexible linear aptamer structured will become stems structured through currently well-defined non-Waston-Crick interactions and causes the releasing of entrapped glucose into the solution. With the assistant of glucose oxidase (GOx), the released glucose can react with the dissolved oxgen to produce gluconic acid and H2O2, the latter can enhance the CL of luminol in the NaOH solution. The enhanced CL intensity has a relationship with the cocaine concentration in the range of 5.0-60μM with the detection limit of 1.43μM. The proposed method had been successfully applied to detect cocaine in serum samples with high selectivity. The same strategy can be applied to develop biosensors for different targets. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Impact of Aerosol Dust on xMAP Multiplex Detection of Different Class Pathogens

    PubMed Central

    Kleymenov, Denis A.; Gushchin, Vladimir A.; Gintsburg, Alexander L.; Tkachuk, Artem P.

    2017-01-01

    Environmental or city-scale bioaerosol surveillance can provide additional value for biodefense and public health. Efficient bioaerosol monitoring should rely on multiplex systems capable of detecting a wide range of biologically hazardous components potentially present in air (bacteria, viruses, toxins and allergens). xMAP technology from LuminexTM allows multiplex bead-based detection of antigens or nucleic acids, but its use for simultaneous detection of different classes of pathogens (bacteria, virus, toxin) is questionable. Another problem is the detection of pathogens in complex matrices, e.g., in the presence of dust. In the this research, we developed the model xMAP multiplex test-system aiRDeTeX 1.0, which enables detection of influenza A virus, Adenovirus type 6 Salmonella typhimurium, and cholera toxin B subunit representing RNA virus, DNA virus, gram-negative bacteria and toxin respectively as model organisms of biologically hazardous components potentially present in or spreadable through the air. We have extensively studied the effect of matrix solution (PBS, distilled water), environmental dust and ultrasound treatment for monoplex and multiplex detection efficiency of individual targets. All targets were efficiently detectable in PBS and in the presence of dust. Ultrasound does not improve the detection except for bacterial LPS. PMID:29238328

  8. Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, Alyssa; Benigni, Paolo; Ramirez, Cesar E.

    Abstract. In the present work, the potential of trapped ion mobility spectrometry coupled to TOF mass spectrometry (TIMS-TOF MS) for discovery and targeted monitoring of peptide biomarkers from human-in-mouse xenograft tumor tissue was evaluated. In particular, a TIMS-MS workflow was developed for the detection and quantification of peptide biomarkers using internal heavy analogs, taking advantage of the high mobility resolution (R = 150–250) prior to mass analysis. Five peptide biomarkers were separated, identified, and quantified using offline nanoESI-TIMSCID- TOF MS; the results were in good agreement with measurements using a traditional LC-ESI-MS/MS proteomics workflow. The TIMS-TOF MS analysis permitted peptidemore » biomarker detection based on accurate mobility, mass measurements, and high sequence coverage for concentrations in the 10–200 nM range, while simultaneously achieving discovery measurements« less

  9. New microwave modulation LIDAR scheme for naval mine detection

    NASA Astrophysics Data System (ADS)

    Alem, Nour; Pellen, Fabrice; Le Jeune, Bernard

    2017-10-01

    In this paper, a new modulator design suited for hybrid Lidar-radar applications is proposed and implemented. This modulator delivers a stable and tunable modulated optical pulse. Modulation frequency is in the GHz range, and associated with a bandpass filtering at the detection allow detecting a target echo embedded in the backscattering noise. This principle is known as hybrid Lidar-radar. We expose in this article theoretical principle of this new modulator and its experimental implementation. As polarization filtering can be coupled with the hybrid Lidar-radar technique to further improve target return, polarimetric sensitivity of this modulator was investigated. Since, theoretical results mismatched the experimental ones, thus, further investigations were taken. Mechanical constraint induced by mirror mount caused birefringent behavior to the mirror substrate. As this effect was not homogeneously distributed in the material, we were not being able to compensate it by modelling. However, we propose an experimental approach to solve this problem.

  10. Real-time label-free quantitative fluorescence microscopy-based detection of ATP using a tunable fluorescent nano-aptasensor platform.

    PubMed

    Shrivastava, Sajal; Sohn, Il-Yung; Son, Young-Min; Lee, Won-Il; Lee, Nae-Eung

    2015-12-14

    Although real-time label-free fluorescent aptasensors based on nanomaterials are increasingly recognized as a useful strategy for the detection of target biomolecules with high fidelity, the lack of an imaging-based quantitative measurement platform limits their implementation with biological samples. Here we introduce an ensemble strategy for a real-time label-free fluorescent graphene (Gr) aptasensor platform. This platform employs aptamer length-dependent tunability, thus enabling the reagentless quantitative detection of biomolecules through computational processing coupled with real-time fluorescence imaging data. We demonstrate that this strategy effectively delivers dose-dependent quantitative readouts of adenosine triphosphate (ATP) concentration on chemical vapor deposited (CVD) Gr and reduced graphene oxide (rGO) surfaces, thereby providing cytotoxicity assessment. Compared with conventional fluorescence spectrometry methods, our highly efficient, universally applicable, and rational approach will facilitate broader implementation of imaging-based biosensing platforms for the quantitative evaluation of a range of target molecules.

  11. Botulinum toxin detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Tseng, Y.; Pearton, S. J.; Ramage, J.; Hooten, D.; Dabiran, A.; Chow, P. P.; Ren, F.

    2008-12-01

    Antibody-functionalized, Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect botulinum toxin. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when the target toxin in a buffer was added to the antibody-immobilized surface. We could detect a range of concentrations from 1to10ng/ml. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN /GaN HEMTs for botulinum toxin detection.

  12. A novel nonenzymatic cascade amplification for ultrasensitive photoelectrochemical DNA sensing based on target driven to initiate cyclic assembly of hairpins.

    PubMed

    Wen, Guangming; Dong, Wenxia; Liu, Bin; Li, Zhongping; Fan, Lifang

    2018-05-29

    A novel cascade photoelectrochemical (PEC) signal amplification biosensing tactics was developed for DNA detection based on a target-driven DNA association to induce cyclic hairpin assembly. In the circulatory system there are two ssDNA (A and B) and two hairpins (C and D). The hybridization of these ssDNA led to the formation of an A-target-B structure. The close proximity of their toehold and branch-migration regions was able to induce the cyclic hairpin assembly. Afterwards, the assembly result further causes the separation of a double-stranded probe DNA (Q:F) to switch the PEC signal via toehold-mediated strand replacement. As such, the signal stranded DNA-CdS QDs (F) as the signal tag was released in the presence of the target DNA. The signal DNA-CdS QDs was then coated to F-doped tin oxide (FTO) electrode leading to the "signal-on" PEC signal. The designed biosensing strategy showed a low detection limit of 21.3 pM for target DNA and a broad linear range from 50 pM to 100 nM. This signal amplification PEC sensing method exhibited a potential application to detect protein molecules, RNA or metal ions via changing the sequence of A and B recognition. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering.

    PubMed

    Guven, Burcu; Boyacı, İsmail Hakkı; Tamer, Ugur; Çalık, Pınar

    2012-01-07

    In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and the second probe of the 35 S DNA target was immobilized on the activated nanorod surfaces. Probes on the nanoparticles were hybridized with the target oligonucleotide. Optimization parameters for hybridization were investigated by high performance liquid chromatography. Optimum hybridization parameters were determined as: 4 μM probe concentration, 20 min immobilization time, 30 min hybridization time, 55 °C hybridization temperature, 750 mM buffer salt concentration and pH: 7.4. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. The correlation between the target concentration and the SERS signal was found to be linear within the range of 25-100 nM. The analyses were performed with only one hybridization step in 40 min. Real sample analysis was conducted using Bt-176 maize sample. The results showed that the developed MS-SERS assay is capable of detecting GMOs in a rapid and selective manner. This journal is © The Royal Society of Chemistry 2012

  14. Target Detection Routine (TADER). User’s Guide.

    DTIC Science & Technology

    1987-09-01

    o System range capability subset (one record - omitted for standoff SLAR and penetrating system) o System inherent detection probability subset ( IELT ...records, i.e., one per element type) * System capability modifier subset/A=1, E=1 ( IELT records) o System capability modifier subset/A=1, E=2 ( IELT ...records) s System capability modifier subset/A=2, E=1 ( IELT records) o System capability modifier subset/A=2, E=2 ( IELT records) Unit Data Set (one set

  15. First Surface-resolved Results with the Infrared Optical Telescope Array Imaging Interferometer: Detection of Asymmetries in Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Traub, W. A.; Berger, J.-P.; Danchi, W. C.; Monnier, J. D.; Willson, L. A.; Carleton, N. P.; Lacasse, M. G.; Millan-Gabet, R.; Pedretti, E.; Schloerb, F. P.; Cotton, W. D.; Townes, C. H.; Brewer, M.; Haguenauer, P.; Kern, P.; Labeye, P.; Malbet, F.; Malin, D.; Pearlman, M.; Perraut, K.; Souccar, K.; Wallace, G.

    2006-11-01

    We have measured nonzero closure phases for about 29% of our sample of 56 nearby asymptotic giant branch (AGB) stars, using the three-telescope Infrared Optical Telescope Array (IOTA) interferometer at near-infrared wavelengths (H band) and with angular resolutions in the range 5-10 mas. These nonzero closure phases can only be generated by asymmetric brightness distributions of the target stars or their surroundings. We discuss how these results were obtained and how they might be interpreted in terms of structures on or near the target stars. We also report measured angular sizes and hypothesize that most Mira stars would show detectable asymmetry if observed with adequate angular resolution.

  16. Evaluation of the Measles Surveillance System in Kaduna State, Nigeria (2010-2012).

    PubMed

    Ameh, Celestine A; Sufiyan, Muawiyyah B; Jacob, Matthew; Waziri, Ndadilnasiya E; Olayinka, Adebola T

    2016-01-01

    To evaluate the case-based measles surveillance system in Kaduna State of Nigeria and identify gaps in its operation. In Africa, approximately 13 million cases, 650,000 deaths due to measles occur annually, with sub-Saharan Africa having the highest morbidity and mortality. Measles infection is endemic in Nigeria and has been documented to occur all year round, despite high measles routine and supplemental immunization coverage. The frequent outbreaks of measles in Kaduna State prompted the need for the evaluation of the measles case-based surveillance system. We interviewed stakeholders and conducted a retrospective record review of the measles case-based surveillance data from 2010 - 2012 and adapted the 2001 CDC guidelines on surveillance evaluation and the Framework for Evaluating Public Health Surveillance Systems for Early Detection of Outbreaks, to assess the systems usefulness, representativeness, timeliness, stability, acceptability and data quality. We calculated the annualized detection rate of measles and non-measles febrile rash, proportion of available results, proportion of LGAs (Districts) that investigated at least one case with blood, proportion of cases that were IgM positive and the incidence of measles. We compared the results with WHO(2004) recommended performance indicators to determine the quality and effectiveness of measles surveillance system. According to the Stakeholders, the case-based surveillance system was useful and acceptable. Median interval between specimen collection and release of result was 7days (1 - 25 days) in 2010, 38 days (Range: 16 - 109 days) in 2011 and 11 days (Range: 1 - 105 days) in 2012. The annualized detection rate of measles rash in 2010 was 2.1 (target: 3 2), 1.0 (target: 3 2) in 2011 and 1.4 (target: 3 2) in 2012. The annualized detection rate of non-measles febrile rash in 2010 was 2.1 (target: 3 2), 0.6 (target: 3 2) in 2011 and 0.8 (target: 3 2) in 2012. Case definitions are simple and understood by all the operators. This evaluation showed that the surveillance system was still useful. Also, the efficiency and effectiveness of the laboratory component as captured by the "median interval between specimen collection and the release of results improved in 2010 and 2012 compared to 2011. However, there was a progressive decline in the timeliness and completeness of weekly reports in the years under review.

  17. EOID Evaluation and Automated Target Recognition

    DTIC Science & Technology

    2002-09-30

    Electro - Optic IDentification (EOID) sensors into shallow water littoral zone minehunting systems on towed, remotely operated, and autonomous platforms. These downlooking laser-based sensors operate at unparalleled standoff ranges in visible wavelengths to image and identify mine-like objects (MLOs) that have been detected through other sensing means such as magnetic induction and various modes of acoustic imaging. Our long term goal is to provide a robust automated target cueing and identification capability for use with these imaging sensors. It is also our goal to assist

  18. EOID Evaluation and Automated Target Recognition

    DTIC Science & Technology

    2001-09-30

    Electro - Optic IDentification (EOID) sensors into shallow water littoral zone minehunting systems on towed, remotely operated, and autonomous platforms. These downlooking laser-based sensors operate at unparalleled standoff ranges in visible wavelengths to image and identify mine-like objects that have been detected through other sensing means such as magnetic induction and various modes of acoustic imaging. Our long term goal is to provide a robust automated target cueing and identification capability for use with these imaging sensors. It is also our goal to assist the

  19. XPAR-2 Search Mode Initial Design

    DTIC Science & Technology

    2013-11-01

    by an azimuth sector, an elevation sector, and out to a required maximum range. The frame-time, which is defined as the time it takes the antenna beam...continues its scan, more targets are detected and the measurements are used to form their track files, which are then updated when the beam scans over...every additional target to be tracked. Although the track update rate can be made much faster than that in the TWS mode, it is obvious that there is a

  20. Automatic Target Cueing (ATC) Task 1 Report - Literature Survey on ATC

    DTIC Science & Technology

    2013-10-30

    xa s In st ru m en t D aV in ci c hi p C ++ O ut da te d in fo rm at io n as w eb pa ge w as la st u pd at ed in...techniques such as contrast/ edge enhancement to increase the detectability of targets in the urban terrain. [P-4] restores long-distance thermal...Range? Sensor Experimental Setup Results [P-3] Contrast enhancement Edge enhancement Multi-scale edge domain Still images Yes IR

  1. Vector neural network signal integration for radar application

    NASA Astrophysics Data System (ADS)

    Bierman, Gregory S.

    1994-07-01

    The Litton Data Systems Vector Neural Network (VNN) is a unique multi-scan integration algorithm currently in development. The target of interest is a low-flying cruise missile. Current tactical radar cannot detect and track the missile in ground clutter at tactically useful ranges. The VNN solves this problem by integrating the energy from multiple frames to effectively increase the target's signal-to-noise ratio. The implementation plan is addressing the APG-63 radar. Real-time results will be available by March 1994.

  2. Logistics Implications of the B-52G in a Conventional Role in Support of the Air Land Battle and Beyond

    DTIC Science & Technology

    1988-01-01

    Operation. This regulation details the concepts and capabilities for the mobility of SAC forces in support of contingency operations. Also, 28-43 defines...cases may be quite significant stand off ranges, the SOM must be capable of hitting small, hardened, and sometimes mobile targets all with using a...radar will allow for detection and tracking of smaller more mobile targets. This calculation presupposes the need for such a modification and can be

  3. Dark Matter Detection Using Helium Evaporation and Field Ionization

    NASA Astrophysics Data System (ADS)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  4. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    PubMed

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  5. Ladar imaging detection of salient map based on PWVD and Rényi entropy

    NASA Astrophysics Data System (ADS)

    Xu, Yuannan; Zhao, Yuan; Deng, Rong; Dong, Yanbing

    2013-10-01

    Spatial-frequency information of a given image can be extracted by associating the grey-level spatial data with one of the well-known spatial/spatial-frequency distributions. The Wigner-Ville distribution (WVD) has a good characteristic that the images can be represented in spatial/spatial-frequency domains. For intensity and range images of ladar, through the pseudo Wigner-Ville distribution (PWVD) using one or two dimension window, the statistical property of Rényi entropy is studied. We also analyzed the change of Rényi entropy's statistical property in the ladar intensity and range images when the man-made objects appear. From this foundation, a novel method for generating saliency map based on PWVD and Rényi entropy is proposed. After that, target detection is completed when the saliency map is segmented using a simple and convenient threshold method. For the ladar intensity and range images, experimental results show the proposed method can effectively detect the military vehicles from complex earth background with low false alarm.

  6. Specification for a surface-search radar-detection-range model

    NASA Astrophysics Data System (ADS)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  7. High-Target Versus Low-Target Blood Pressure Management During Cardiopulmonary Bypass to Prevent Cerebral Injury in Cardiac Surgery Patients: A Randomized Controlled Trial.

    PubMed

    Vedel, Anne G; Holmgaard, Frederik; Rasmussen, Lars S; Langkilde, Annika; Paulson, Olaf B; Lange, Theis; Thomsen, Carsten; Olsen, Peter Skov; Ravn, Hanne Berg; Nilsson, Jens C

    2018-04-24

    Cerebral injury is an important complication after cardiac surgery with the use of cardiopulmonary bypass. The rate of overt stroke after cardiac surgery is 1% to 2%, whereas silent strokes, detected by diffusion-weighted magnetic resonance imaging, are found in up to 50% of patients. It is unclear whether a higher versus a lower blood pressure during cardiopulmonary bypass reduces cerebral infarction in these patients. In a patient- and assessor-blinded randomized trial, we allocated patients to a higher (70-80 mm Hg) or lower (40-50 mm Hg) target for mean arterial pressure by the titration of norepinephrine during cardiopulmonary bypass. Pump flow was fixed at 2.4 L·min -1 ·m -2 . The primary outcome was the total volume of new ischemic cerebral lesions (summed in millimeters cubed), expressed as the difference between diffusion-weighted imaging conducted preoperatively and again postoperatively between days 3 and 6. Secondary outcomes included diffusion-weighted imaging-evaluated total number of new ischemic lesions. Among the 197 enrolled patients, mean (SD) age was 65.0 (10.7) years in the low-target group (n=99) and 69.4 (8.9) years in the high-target group (n=98). Procedural risk scores were comparable between groups. Overall, diffusion-weighted imaging revealed new cerebral lesions in 52.8% of patients in the low-target group versus 55.7% in the high-target group ( P =0.76). The primary outcome of volume of new cerebral lesions was comparable between groups, 25 mm 3 (interquartile range, 0-118 mm 3 ; range, 0-25 261 mm 3 ) in the low-target group versus 29 mm 3 (interquartile range, 0-143 mm 3 ; range, 0-22 116 mm 3 ) in the high-target group (median difference estimate, 0; 95% confidence interval, -25 to 0.028; P =0.99), as was the secondary outcome of number of new lesions (1 [interquartile range, 0-2; range, 0-24] versus 1 [interquartile range, 0-2; range, 0-29] respectively; median difference estimate, 0; 95% confidence interval, 0-0; P =0.71). No significant difference was observed in frequency of severe adverse events. Among patients undergoing on-pump cardiac surgery, targeting a higher versus a lower mean arterial pressure during cardiopulmonary bypass did not seem to affect the volume or number of new cerebral infarcts. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02185885. © 2018 American Heart Association, Inc.

  8. Perception time and movement time in dolphin pulsing and whistling

    NASA Astrophysics Data System (ADS)

    Ridgway, Sam; Carder, Donald

    2002-05-01

    Auditory/vocal response time was separated into perception time (PT) and movement time (MT) in trials with bottlenose dolphins (Tursiops truncatus)-two males and one female. Pressure catheters accepted into the nasal cavity by each dolphin recorded the pressure increase that preceded sound production. Time from acoustic stimulus onset to onset of pressure rise was recorded as PT (range 57 to 314 ms) and pressure rise onset to dolphin sound onset was recorded as MT (range 63 to 363 ms). Blindfolded dolphins trained to report a target by whistling often responded before completion of their 200- to 800-ms echolocation click trains. Detection of the target, indicated by whistling, before termination of the animal's own click train, suggests that dolphins do not voluntarily respond to each successive click but rather set a rhythm such that each click is emitted about 20 ms after the target echo arrives.

  9. Laser Range and Bearing Finder with No Moving Parts

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    2007-01-01

    A proposed laser-based instrument would quickly measure the approximate distance and approximate direction to the closest target within its field of view. The instrument would not contain any moving parts and its mode of operation would not entail scanning over of its field of view. Typically, the instrument would be used to locate a target at a distance on the order of meters to kilometers. The instrument would be best suited for use in an uncluttered setting in which the target is the only or, at worst, the closest object in the vicinity; for example, it could be used aboard an aircraft to detect and track another aircraft flying nearby. The proposed instrument would include a conventional time-of-flight or echo-phase-shift laser range finder, but unlike most other range finders, this one would not generate a narrow cylindrical laser beam; instead, it would generate a conical laser beam spanning the field of view. The instrument would also include a quadrant detector, optics to focus the light returning from the target onto the quadrant detector, and circuitry to synchronize the acquisition of the quadrant-detector output with the arrival of laser light returning from the nearest target. A quadrant detector constantly gathers information from the entire field of view, without scanning; its output is a direct measure of the position of the target-return light spot on the focal plane and is thus a measure of the direction to the target. The instrument should be able to operate at a repetition rate high enough to enable it to track a rapidly moving target. Of course, a target that is not sufficiently reflective could not be located by this instrument. Preferably, retroreflectors should be attached to the target to make it sufficiently reflective.

  10. Vocal reporting of echolocation targets: dolphins often report before click trains end.

    PubMed

    Ridgway, S H; Elsberry, W R; Blackwood, D J; Kamolnick, T; Todd, M; Carder, D A; Chaplin, Monica; Cranford, T W

    2012-01-01

    Bottlenose dolphins (Tursiops truncatus) wore opaque suction cups over their eyes while stationing behind an acoustically opaque door. This put the dolphins in a known position and orientation. When the door opened, the dolphin clicked to detect targets. Trainers specified that Dolphin S emit a whistle if the target was a 7.5 cm water filled sphere, or a pulse burst if the target was a rock. S remained quiet if there was no target. Dolphin B whistled for the sphere. She remained quiet for rock and for no target. Thus, S had to choose between three different responses, whistle, pulse burst, or remain quiet. B had to choose between two different responses, whistle or remain quiet. S gave correct vocal responses averaging 114 ms after her last echolocation click (range 182 ms before and 219 ms after the last click). Average response for B was 21 ms before her last echolocation click (range 250 ms before and 95 ms after the last click in the train). More often than not, B began her whistle response before her echolocation train ended. The findings suggest separate neural pathways for generation of response vocalizations as opposed to echolocation clicks. © 2012 Acoustical Society of America.

  11. Improved sensing using simultaneous deep-UV Raman and fluorescence detection-II

    NASA Astrophysics Data System (ADS)

    Hug, W. F.; Bhartia, R.; Sijapati, K.; Beegle, L. W.; Reid, R. D.

    2014-05-01

    Photon Systems in collaboration with JPL is continuing development of a new technology robot-mounted or hand-held sensor for reagentless, short-range, standoff detection and identification of trace levels chemical, biological, and explosive (CBE) materials on surfaces. This deep ultraviolet CBE sensor is the result of Army STTR and DTRA programs. The evolving 10 to 15 lb, 20 W, sensor can discriminate CBE from background clutter materials using a fusion of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions collected is less than 1 ms. RR is a method that provides information about molecular bonds, while LINF spectroscopy is a much more sensitive method that provides information regarding the electronic configuration of target molecules. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using excitation in the deep UV where there are four main advantages compared to near-UV, visible or near-IR counterparts. 1) Excited between 220 and 250 nm, Raman emission occur within a fluorescence-free region of the spectrum, eliminating obscuration of weak Raman signals by fluorescence from target or surrounding materials. 2) Because Raman and fluorescence occupy separate spectral regions, detection can be done simultaneously, providing an orthogonal set of information to improve both sensitivity and lower false alarm rates. 3) Rayleigh law and resonance effects increase Raman signal strength and sensitivity of detection. 4) Penetration depth into target in the deep UV is short, providing spatial/spectral separation of a target material from its background or substrate. 5) Detection in the deep UV eliminates ambient light background and enable daylight detection.

  12. Streamlined, PCR-based testing for pfhrp2- and pfhrp3-negative Plasmodium falciparum.

    PubMed

    Parr, Jonathan B; Anderson, Olivia; Juliano, Jonathan J; Meshnick, Steven R

    2018-04-02

    Rapid diagnostic tests (RDTs) that detect histidine-rich protein 2 (PfHRP2) are used throughout Africa for the diagnosis of Plasmodium falciparum malaria. However, recent reports indicate that parasites lacking the pfhrp2 and/or histidine-rich protein 3 (pfhrp3) genes, which produce antigens detected by these RDTs, are common in select regions of South America, Asia, and Africa. Proving the absence of a gene is challenging, and multiple PCR assays targeting these genes have been described. A detailed characterization and comparison of published assays is needed to facilitate robust and streamlined testing approaches. Among six pfhrp2 and pfhrp3 PCR assays tested, the lower limit of detection ranged from 0.01 pg/µL to 0.1 ng/µL of P. falciparum 3D7 strain DNA, or approximately 0.4-4000 parasite genomes/µL. By lowering the elongation temperature to 60 °C, a tenfold improvement in the limit of detection and/or darker bands for all exon 1 targets and for the first-round reaction of a single exon 2 target was achieved. Additionally, assays targeting exon 1 of either gene yielded spurious amplification of the paralogous gene. Using these data, an optimized testing algorithm for the detection of pfhrp2- and pfhrp3-negative P. falciparum is proposed. Surveillance of pfhrp2- and pfhrp3-negative P. falciparum requires careful laboratory workflows. PCR-based testing methods coupled with microscopy and/or antigen testing serve as useful tools to support policy development. Standardized approaches to the detection of pfhrp2- and pfhrp3-negative P. falciparum should inform efforts to define the impact of these parasites.

  13. Development of real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the differential detection of digital dermatitis associated treponemes.

    PubMed

    Anklam, Kelly; Kulow, Megan; Yamazaki, Wataru; Döpfer, Dörte

    2017-01-01

    Bovine digital dermatitis (DD) is a severe infectious cause of lameness in cattle worldwide, with important economic and welfare consequences. There are three treponeme phylogroups (T. pedis, T. phagedenis, and T. medium) that are implicated in playing an important causative role in DD. This study was conducted to develop real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the detection and differentiation of the three treponeme phylogroups associated with DD. The real-time PCR treponeme phylogroup assays targeted the 16S-23S rDNA intergenic space (ITS) for T. pedis and T. phagedenis, and the flagellin gene (flaB2) for T. medium. The 3 treponeme phylogroup LAMP assays targeted the flagellin gene (flaB2) and the 16S rRNA was targeted for the Treponeme ssp. LAMP assay. The real-time PCR and LAMP assays correctly detected the target sequence of all control strains examined, and no cross-reactions were observed, representing 100% specificity. The limit of detection for each of the three treponeme phylogroup real-time PCR and LAMP assays was ≤ 70 fg/μl. The detection limit for the Treponema spp. LAMP assay ranged from 7-690 fg/μl depending on phylogroup. Treponemes were isolated from 40 DD lesion biopsies using an immunomagnetic separation culture method. The treponeme isolation samples were then subjected to the real-time PCR and LAMP assays for analysis. The treponeme phylogroup real-time PCR and LAMP assay results had 100% agreement, matching on all isolation samples. These results indicate that the developed assays are a sensitive and specific test for the detection and differentiation of the three main treponeme phylogroups implicated in DD.

  14. Magneto-controlled aptasensor for simultaneous electrochemical detection of dual mycotoxins in maize using metal sulfide quantum dots coated silica as labels.

    PubMed

    Wang, Chengquan; Qian, Jing; An, Keqi; Huang, Xingyi; Zhao, Lufang; Liu, Qian; Hao, Nan; Wang, Kun

    2017-03-15

    Currently there is an urgent need for multi-mycotoxin detection methods due to the co-occurrence of multiple mycotoxins in food raw materials and their augmented toxicity. Herein, a magneto-controlled aptasensor has been developed for simultaneous electrochemical detection of ochratoxin A (OTA) and fumonisin B1 (FB1), two typical mycotoxins found in food crops world-wide. This aptasensor was designed using the high specificity between the target and aptamer with heavy CdTe or PbS quantum dots (QDs) coated silica as labels and the complementary DNA functionalized magnetic beads as capture probes. In presence of targets, the aptamer preferred to form the target-aptamer binding which forced the partial release of the preloaded labels from the magnetic beads. After a one-step incubation and a simple magnetic separation, the electrochemical signals of Cd 2+ and Pb 2+ dissolved from the reserved labels which had negative correlation with targets contents, was measured based on the difference of peak potentials. This aptasensor provided a wide detection range of 10pgmL -1 to 10ngmL -1 for OTA and 50pgmL -1 to 50ngmL -1 for FB1, and succeeded in real maize samples. This method provides a new avenue for high throughput screen of mycotoxins due to the advantages of simple instrument, low sample consumption, short assay times, and lower detection costs per assay. Moreover, it could be readily expanded for the simultaneous detection of a large panel of mycotoxins by using different metal sulfide QDs when their specific aptamers are available. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Development of real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the differential detection of digital dermatitis associated treponemes

    PubMed Central

    Kulow, Megan; Yamazaki, Wataru; Döpfer, Dörte

    2017-01-01

    Bovine digital dermatitis (DD) is a severe infectious cause of lameness in cattle worldwide, with important economic and welfare consequences. There are three treponeme phylogroups (T. pedis, T. phagedenis, and T. medium) that are implicated in playing an important causative role in DD. This study was conducted to develop real-time PCR and loop-mediated isothermal amplification (LAMP) assays for the detection and differentiation of the three treponeme phylogroups associated with DD. The real-time PCR treponeme phylogroup assays targeted the 16S-23S rDNA intergenic space (ITS) for T. pedis and T. phagedenis, and the flagellin gene (flaB2) for T. medium. The 3 treponeme phylogroup LAMP assays targeted the flagellin gene (flaB2) and the 16S rRNA was targeted for the Treponeme ssp. LAMP assay. The real-time PCR and LAMP assays correctly detected the target sequence of all control strains examined, and no cross-reactions were observed, representing 100% specificity. The limit of detection for each of the three treponeme phylogroup real-time PCR and LAMP assays was ≤ 70 fg/μl. The detection limit for the Treponema spp. LAMP assay ranged from 7–690 fg/μl depending on phylogroup. Treponemes were isolated from 40 DD lesion biopsies using an immunomagnetic separation culture method. The treponeme isolation samples were then subjected to the real-time PCR and LAMP assays for analysis. The treponeme phylogroup real-time PCR and LAMP assay results had 100% agreement, matching on all isolation samples. These results indicate that the developed assays are a sensitive and specific test for the detection and differentiation of the three main treponeme phylogroups implicated in DD. PMID:28542573

  16. Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence.

    PubMed

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2017-06-15

    Bio-barcode DNA based on gold nanoparticle (bDNA-GNPs) as a new generation of biosensor based detection tools, holds promise for biological science studies. They are of enormous importance in the emergence of rapid and sensitive procedures for detecting toxins of microorganisms. Exotoxin A (ETA) is the most toxic virulence factor of Pseudomonas aeruginosa. ETA has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. In the present study, we developed a fluorescence bio-barcode technology to trace P. aeruginosa ETA. The GNPs were coated with the first target-specific DNA probe 1 (1pDNA) and bio-barcode DNA, which acted as a signal reporter. The magnetic nanoparticles (MNPs) were coated with the second target-specific DNA probe 2 (2pDNA) that was able to recognize the other end of the target DNA. After binding the nanoparticles with the target DNA, the following sandwich structure was formed: MNP 2pDNA/tDNA/1pDNA-GNP-bDNA. After isolating the sandwiches by a magnetic field, the DNAs of the probes which have been hybridized to their complementary DNA, GNPs and MNPs, via the hydrogen, electrostatic and covalently bonds, were released from the sandwiches after dissolving in dithiothreitol solution (DTT 0.8M). This bio-barcode DNA with known DNA sequence was then detected by fluorescence spectrophotometry. The findings showed that the new method has the advantages of fast, high sensitivity (the detection limit was 1.2ng/ml), good selectivity, and wide linear range of 5-200ng/ml. The regression analysis also showed that there was a good linear relationship (∆F=0.57 [target DNA]+21.31, R 2 =0.9984) between the fluorescent intensity and the target DNA concentration in the samples. Copyright © 2016. Published by Elsevier B.V.

  17. Label-free DNA hybridization detection and single base-mismatch discrimination using CE-ICP-MS assay.

    PubMed

    Li, Yan; Sun, Shao-kai; Yang, Jia-lin; Jiang, Yan

    2011-12-07

    Detecting a specific DNA sequence and discriminating single base-mismatch is critical to clinical diagnosis, paternity testing, forensic sciences, food and drug industry, pathology, genetics, environmental monitoring, and anti-bioterrorism. To this end, capillary electrophoresis (CE) coupled with the inductively coupled plasma mass spectrometry (ICP-MS) method is developed using the displacing interaction between the target ssDNA and the competitor Hg(2+) for the first time. The thymine-rich capture ssDNA 1 is interacted with the competitor Hg(2+), forming an assembled complex in a hairpin-structure between the thymine bases arrangement at both sides of the capture ssDNA 1. In the presence of a target ssDNA with stronger affinity than that of the competitor Hg(2+), the energetically favorable hybridization between capture ssDNA 1 and the target ssDNA destroys the hairpin-structure and releases the competitor as free Hg(2+), which was then read out and accurately quantified by CE-ICP-MS assay. Under the optimal CE separation conditions, free Hg(2+) ions and its capture ssDNA 1 adduct were baseline separated and detected on-line by ICP-MS; the increased peak intensity of free Hg(2+) against the concentration of perfectly complementary target ssDNA was linear over the concentration range of 30-600 nmol L(-1) with a limit of detection of 8 nmol L(-1) (3s, n = 11) in the pre-incubated mixture containing 1 μmol L(-1) Hg(2+) and 0.2 μmol L(-1) capture ssDNA 1. This new assay method is simple in design since any target ssDNA binding can in principle result in free Hg(2+) release by 6-fold Hg(2+) signal amplification, avoiding oligonucleotide labeling or assistance by excess signal transducer and signal reporter to read out the target. Due to element-specific detection of ICP-MS in our assay procedure, the interference from the autofluorescence of substrata was eliminated.

  18. Design and optimization of a novel reverse transcription linear-after-the-exponential PCR for the detection of foot-and-mouth disease virus.

    PubMed

    Pierce, K E; Mistry, R; Reid, S M; Bharya, S; Dukes, J P; Hartshorn, C; King, D P; Wangh, L J

    2010-07-01

    A novel molecular assay for the detection of foot-and-mouth disease virus (FMDV) was developed using linear-after-the-exponential polymerase chain reaction (LATE-PCR). Pilot experiments using synthetic DNA targets demonstrated the ability of LATE-PCR to quantify initial target concentration through endpoint detection. A two-step protocol involving reverse transcription (RT) followed by LATE-PCR was then used to confirm the ability of the assay to detect FMDV RNA. Finally, RT and LATE-PCR were combined in a one-step duplex assay for co-amplification of an FMDV RNA segment and an internal control comprised of an Armored RNA. In that form, each of the excess primers in the reaction mixture hybridize to their respective RNA targets during a short pre-incubation, then generate cDNA strands during a 3-min RT step at 60°C, and the resulting cDNA is amplified by LATE-PCR without intervening sample processing. The RT-LATE-PCR assay generates fluorescent signals at endpoint that are proportional to the starting number of RNA targets and can detect a range of sequence variants using a single mismatch-tolerant probe. In addition to offering improvements over current laboratory-based molecular diagnostic assays for FMDV, this new assay is compatible with a novel portable ('point-of-care') device, the BioSeeq II, designed for the rapid diagnosis of FMD in the field. © 2009 The Authors. Journal compilation © 2009 The Society for Applied Microbiology.

  19. Environmental DNA Marker Development with Sparse Biological Information: A Case Study on Opossum Shrimp (Mysis diluviana).

    PubMed

    Carim, Kellie J; Christianson, Kyle R; McKelvey, Kevin M; Pate, William M; Silver, Douglas B; Johnson, Brett M; Galloway, Benjamin T; Young, Michael K; Schwartz, Michael K

    2016-01-01

    The spread of Mysis diluviana, a small glacial relict crustacean, outside its native range has led to unintended shifts in the composition of native fish communities throughout western North America. As a result, biologists seek accurate methods of determining the presence of M. diluviana, especially at low densities or during the initial stages of an invasion. Environmental DNA (eDNA) provides one solution for detecting M. diluviana, but building eDNA markers that are both sensitive and species-specific is challenging when the distribution and taxonomy of closely related non-target taxa are poorly understood, published genetic data are sparse, and tissue samples are difficult to obtain. To address these issues, we developed a pair of independent eDNA markers to increase the likelihood of a positive detection of M. diluviana when present and reduce the probability of false positive detections from closely related non-target species. Because tissue samples of closely-related and possibly sympatric, non-target taxa could not be obtained, we used synthetic DNA sequences of closely related non-target species to test the specificity of eDNA markers. Both eDNA markers yielded positive detections from five waterbodies where M. diluviana was known to be present, and no detections in five others where this species was thought to be absent. Daytime samples from varying depths in one waterbody occupied by M. diluviana demonstrated that samples near the lake bottom produced 5 to more than 300 times as many eDNA copies as samples taken at other depths, but all samples tested positive regardless of depth.

  20. Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies Musca domestica.

    PubMed

    Burton, Brian G; Laughlin, Simon B

    2003-11-01

    Male houseflies use a sex-specific frontal eye region, the lovespot, to detect and pursue mates. We recorded the electrical responses of photoreceptors to optical stimuli that simulate the signals received by a male or female photoreceptor as a conspecific passes through its field of view. We analysed the ability of male and female frontal photoreceptors to code conspecifics over the range of speeds and distances encountered during pursuit, and reconstructed the neural images of these targets in photoreceptor arrays. A male's lovespot photoreceptor detects a conspecific at twice the distance of a female photoreceptor, largely through better optics. This detection distance greatly exceeds those reported in previous behavioural studies. Lovespot photoreceptors respond more strongly than female photoreceptors to targets tracked during pursuit, with amplitudes reaching 25 mV. The male photoreceptor also has a faster response, exhibits a unique preference for stimuli of 20-30 ms duration that selects for conspecifics and deblurs moving images with response transients. White-noise analysis substantially underestimates these improvements. We conclude that in the lovespot, both optics and phototransduction are specialised to enhance and deblur the neural images of moving targets, and propose that analogous mechanisms may sharpen the neural image still further as it is transferred to visual interneurones.

Top