Sample records for target development facility

  1. National Ignition Facility Target Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The twomore » isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  2. Target development for 67Cu, 82Sr radionuclide production at the RIC-80 facility

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Krotov, S. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Volkov, Yu. M.

    2018-01-01

    A high-current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed and commissioned at PNPI (Petersburg Nuclear Physics Institute). One of the main goals of cyclotron C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. To date, the project development of a radioisotope facility RIC-80 (radioisotopes at cyclotron C-80) has been completed. The feature of the project is the use of a mass-separator combined with the ion-target device for obtaining ion beams of radioisotopes with a high purity of separation that is especially important for medical applications. The first results of a new high-temperature method for extracting 82Sr and 67Cu radioisotopes from irradiated targets have been presented.

  3. Facility Targeting, Protection and Mission Decision Making Using the VISAC Code

    NASA Technical Reports Server (NTRS)

    Morris, Robert H.; Sulfredge, C. David

    2011-01-01

    The Visual Interactive Site Analysis Code (VISAC) has been used by DTRA and several other agencies to aid in targeting facilities and to predict the associated collateral effects for the go, no go mission decision making process. VISAC integrates the three concepts of target geometric modeling, damage assessment capabilities, and an event/fault tree methodology for evaluating accident/incident consequences. It can analyze a variety of accidents/incidents at nuclear or industrial facilities, ranging from simple component sabotage to an attack with military or terrorist weapons. For nuclear facilities, VISAC predicts the facility damage, estimated downtime, amount and timing of any radionuclides released. Used in conjunction with DTRA's HPAC code, VISAC also can analyze transport and dispersion of the radionuclides, levels of contamination of the surrounding area, and the population at risk. VISAC has also been used by the NRC to aid in the development of protective measures for nuclear facilities that may be subjected to attacks by car/truck bombs.

  4. The target vacuum storage facility at iThemba LABS

    NASA Astrophysics Data System (ADS)

    Neveling, R.; Kheswa, N. Y.; Papka, P.

    2018-05-01

    A number of nuclear physics experiments at iThemba LABS require target foils that consist of specific isotopes of elements which are reactive in air. Not only is it important to prepare these targets in a suitable environment to prevent oxidation, but consideration should also be given to the long term storage and handling facilities of such targets. The target vacuum storage facility at iThemba LABS, as well as additional hardware necessary to transport and install the target foils in the experimental chamber, will be discussed.

  5. Facility target insert shielding assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In themore » present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.« less

  6. Developing targets for radiation transport experiments at the Omega laser facility

    DOE PAGES

    Capelli, Deanna; Charsley-Groffman, C. A.; Randolph, Randall Blaine; ...

    2017-07-13

    Targets have been developed to measure supersonic radiation transport in aerogel foams using absorption spectroscopy. The target consists of an aerogel foam uniformly doped with either titanium or scandium inserted into an undoped aerogel foam package. This creates a localized doped foam region to provide spatial resolution for the measurement. Development and characterization of the foams is a key challenge in addition to machining and assembling the two foams so they mate without gaps. The foam package is inserted into a beryllium sleeve and mounted on a gold hohlraum. The target is mounted to a holder created using additive manufacturingmore » and mounted on a stalk. As a result, the manufacturing of the components, along with assembly and metrology of the target are described here.« less

  7. Developing targets for radiation transport experiments at the Omega laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capelli, Deanna; Charsley-Groffman, C. A.; Randolph, Randall Blaine

    Targets have been developed to measure supersonic radiation transport in aerogel foams using absorption spectroscopy. The target consists of an aerogel foam uniformly doped with either titanium or scandium inserted into an undoped aerogel foam package. This creates a localized doped foam region to provide spatial resolution for the measurement. Development and characterization of the foams is a key challenge in addition to machining and assembling the two foams so they mate without gaps. The foam package is inserted into a beryllium sleeve and mounted on a gold hohlraum. The target is mounted to a holder created using additive manufacturingmore » and mounted on a stalk. As a result, the manufacturing of the components, along with assembly and metrology of the target are described here.« less

  8. Segmented beryllium target for a 2 MW super beam facility

    DOE PAGES

    Davenne, T.; Caretta, O.; Densham, C.; ...

    2015-09-14

    The Long Baseline Neutrino Facility (LBNF, formerly the Long Baseline Neutrino Experiment) is under design as a next generation neutrino oscillation experiment, with primary objectives to search for CP violation in the leptonic sector, to determine the neutrino mass hierarchy and to provide a precise measurement of θ 23. The facility will generate a neutrino beam at Fermilab by the interaction of a proton beam with a target material. At the ultimate anticipated proton beam power of 2.3 MW the target material must dissipate a heat load of between 10 and 25 kW depending on the target size. This paper presents amore » target concept based on an array of spheres and compares it to a cylindrical monolithic target such as that which currently operates at the T2K facility. Thus simulation results show that the proposed technology offers efficient cooling and lower stresses whilst delivering a neutrino production comparable with that of a conventional solid cylindrical target.« less

  9. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    NASA Astrophysics Data System (ADS)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  10. A time-of-flight system for the external target facility

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Heng; Yu, Yu-Hong; Sun, Zhi-Yu; Mao, Rui-Shi; Wang, Shi-Tao; Zhou, Yong; Yan, Duo; Liu, Long-Xiang

    2013-05-01

    A time-of-flight system with a plastic scintillator coupled to photomultipliers is developed for the external target facility (ETF). This system can satisfy the requirement of an ultrahigh vacuum (~10-9 mbar), a high counting rate (~106 particles per second) and a magnetic field environment. In the beam test experiment, a total time resolution of 580 ps FWHM was obtained for the whole system, and nuclei with a mass of up to 80 could be identified using this system.

  11. A target development program for beamhole spallation neutron sources in the megawatt range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, G.S.; Atchison, F.

    1995-10-01

    Spallation sources as an alternative to fission neutron sources have been operating successfully up to 160 kW of beam power. With the next generation of these facilities aiming at the medium power range between 0.5 and 5 MW, loads on the targets will be high enough to make present experience of little relevance. With the 0.6 MW continuous facility SINQ under construction, and a 5 MW pulsed facility (ESS) under study in Europe, a research and development program is about to be started which aimes at assessing the limits of stationary and moving solid targets and the feasibility and potentialmore » benefits of flowing liquid metal targets. Apart from theoretical work and examination of existing irradiated material, including used targets from ISIS, it is intended to take advantage of the SINQ solid rod target design to improve the relevant data base by building the target in such a way that individual rods can be equipped as irradiation capsules.« less

  12. Development of cloud-operating platform for detention facility design

    NASA Astrophysics Data System (ADS)

    Tun Lee, Kwan; Hung, Meng-Chiu; Tseng, Wei-Fan; Chan, Yi-Ping

    2017-04-01

    In the past 20 years, the population of Taiwan has accumulated in urban areas. The land development has changed the hydrological environment and resulted in the increase of surface runoff and shortened the time to peak discharge. The change of runoff characteristics increases the flood risk and reduces resilient ability of the city during flood. Considering that engineering measures may not be easy to implement in populated cities, detention facilities set on building basements have been proposed to compromise the increase of surface runoff resulting from development activities. In this study, a web-based operational platform has been developed to integrate the GIS technologies, hydrological analyses, as well as relevant regulations for the design of detention facilities. The design procedure embedded in the system includes a prior selection of type and size of the detention facility, integrated hydrological analysis for the developing site, and inspection of relevant regulations. After login the platform, designers can access the system database to retrieve road maps, land use coverages, and storm sewer information. Once the type, size, inlet, and outlet of the detention facility are assigned, the system can acquire the rainfall intensity-duration-frequency information from adjacent rain gauges to perform hydrological analyses for the developing site. The increase of the runoff volume due to the development and the reduction of the outflow peak through the construction of the detention facility can be estimated. The outflow peak at the target site is then checked with relevant regulations to confirm the suitability of the detention facility design. The proposed web-based platform can provide a concise layout of the detention facility and the drainageway of the developing site on a graphical interface. The design information can also be delivered directly through a web link to authorities for inspecting to simplify the complex administrative procedures.

  13. D 2 and D-T Liquid-Layer Target Shots at the National Ignition Facility

    DOE PAGES

    Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas; ...

    2018-01-19

    Experiments at the National Ignition Facility (NIF) using targets containing a deuterium-tritium (D-T) fuel layer have, until recently, required that a high-quality layer of solid D-T (herein referred to as an ice layer) be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of ice layers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam-lined capsule but also changes to the capsule filling processmore » and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. Finally, these changes and the target’s performance during four target shots on NIF are discussed.« less

  14. D 2 and D-T Liquid-Layer Target Shots at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas

    Experiments at the National Ignition Facility (NIF) using targets containing a deuterium-tritium (D-T) fuel layer have, until recently, required that a high-quality layer of solid D-T (herein referred to as an ice layer) be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of ice layers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam-lined capsule but also changes to the capsule filling processmore » and the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. Finally, these changes and the target’s performance during four target shots on NIF are discussed.« less

  15. Implementation of a solid target production facility

    NASA Astrophysics Data System (ADS)

    Tochon-Danguy, H. J.; Poniger, S. S.; Sachinidis, J. I.; Panopoulos, H. P.; Scott, A. M.

    2012-12-01

    The desire to utilize long-lived PET isotopes in Australia has significantly increased over the years and several research projects for labelling of peptides, proteins and biomolecules, including labelling of recombinant antibodies has been restricted due to the limited availability of suitable isotopes. This need has led to the recent installation and commissioning of a new facility dedicated to fully automated solid target isotope production, including 24I, 64Cu, 89Zr and 86Y at the Austin Health Centre for PET.

  16. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE PAGES

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  17. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, E. I.; Lindl, J. D.; Spaeth, M. L.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density stockpile science, national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The National Ignition Campaign (NIC), established by the U.S. National Nuclear Security Administration in 2005, was responsible for transitioning NIF from a construction project to a national user facility. Besidesmore » the operation and optimization of the use of the NIF laser, the NIC program was responsible for developing capabilities including target fabrication facilities; cryogenic layering capabilities; over 60 optical, X-ray, and nuclear diagnostic systems; experimental platforms; and a wide range of other NIF facility infrastructure. This study provides a summary of some of the key experimental results for NIF to date, an overview of the NIF facility capabilities, and the challenges that were met in achieving these capabilities. Finally, they are covered in more detail in the papers that follow.« less

  18. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.; ...

    2017-12-22

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  19. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  20. The accomplishments of lithium target and test facility validation activities in the IFMIF/EVEDA phase

    NASA Astrophysics Data System (ADS)

    Arbeiter, Frederik; Baluc, Nadine; Favuzza, Paolo; Gröschel, Friedrich; Heidinger, Roland; Ibarra, Angel; Knaster, Juan; Kanemura, Takuji; Kondo, Hiroo; Massaut, Vincent; Saverio Nitti, Francesco; Miccichè, Gioacchino; O'hira, Shigeru; Rapisarda, David; Sugimoto, Masayoshi; Wakai, Eiichi; Yokomine, Takehiko

    2018-01-01

    As part of the engineering validation and engineering design activities (EVEDA) phase for the international fusion materials irradiation facility IFMIF, major elements of a lithium target facility and the test facility were designed, prototyped and validated. For the lithium target facility, the EVEDA lithium test loop was built at JAEA and used to test the stability (waves and long term) of the lithium flow in the target, work out the startup procedures, and test lithium purification and analysis. It was confirmed by experiments in the Lifus 6 plant at ENEA that lithium corrosion on ferritic martensitic steels is acceptably low. Furthermore, complex remote handling procedures for the remote maintenance of the target in the test cell environment were successfully practiced. For the test facility, two variants of a high flux test module were prototyped and tested in helium loops, demonstrating their good capabilities of maintaining the material specimens at the desired temperature with a low temperature spread. Irradiation tests were performed for heated specimen capsules and irradiation instrumentation in the BR2 reactor at SCK-CEN. The small specimen test technique, essential for obtaining material test results with limited irradiation volume, was advanced by evaluating specimen shape and test technique influences.

  1. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  2. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-02-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including

  3. EVA Training and Development Facilities

    NASA Technical Reports Server (NTRS)

    Cupples, Scott

    2016-01-01

    Overview: Vast majority of US EVA (ExtraVehicular Activity) training and EVA hardware development occurs at JSC; EVA training facilities used to develop and refine procedures and improve skills; EVA hardware development facilities test hardware to evaluate performance and certify requirement compliance; Environmental chambers enable testing of hardware from as large as suits to as small as individual components in thermal vacuum conditions.

  4. Development and Validation of Pathogen Environmental Monitoring Programs for Small Cheese Processing Facilities.

    PubMed

    Beno, Sarah M; Stasiewicz, Matthew J; Andrus, Alexis D; Ralyea, Robert D; Kent, David J; Martin, Nicole H; Wiedmann, Martin; Boor, Kathryn J

    2016-12-01

    Pathogen environmental monitoring programs (EMPs) are essential for food processing facilities of all sizes that produce ready-to-eat food products exposed to the processing environment. We developed, implemented, and evaluated EMPs targeting Listeria spp. and Salmonella in nine small cheese processing facilities, including seven farmstead facilities. Individual EMPs with monthly sample collection protocols were designed specifically for each facility. Salmonella was detected in only one facility, with likely introduction from the adjacent farm indicated by pulsed-field gel electrophoresis data. Listeria spp. were isolated from all nine facilities during routine sampling. The overall Listeria spp. (other than Listeria monocytogenes ) and L. monocytogenes prevalences in the 4,430 environmental samples collected were 6.03 and 1.35%, respectively. Molecular characterization and subtyping data suggested persistence of a given Listeria spp. strain in seven facilities and persistence of L. monocytogenes in four facilities. To assess routine sampling plans, validation sampling for Listeria spp. was performed in seven facilities after at least 6 months of routine sampling. This validation sampling was performed by independent individuals and included collection of 50 to 150 samples per facility, based on statistical sample size calculations. Two of the facilities had a significantly higher frequency of detection of Listeria spp. during the validation sampling than during routine sampling, whereas two other facilities had significantly lower frequencies of detection. This study provides a model for a science- and statistics-based approach to developing and validating pathogen EMPs.

  5. The Nike KrF laser facility: Performance and initial target experiments

    NASA Astrophysics Data System (ADS)

    Obenschain, S. P.; Bodner, S. E.; Colombant, D.; Gerber, K.; Lehmberg, R. H.; McLean, E. A.; Mostovych, A. N.; Pronko, M. S.; Pawley, C. J.; Schmitt, A. J.; Sethian, J. D.; Serlin, V.; Stamper, J. A.; Sullivan, C. A.; Dahlburg, J. P.; Gardner, J. H.; Chan, Y.; Deniz, A. V.; Hardgrove, J.; Lehecka, T.; Klapisch, M.

    1996-05-01

    Krypton-fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability (≳THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser-target coupling. Nike is a recently completed 56-beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half-maximum), Nike produces more uniform focal distributions than any other high-energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/p<2%). Targets have been accelerated for distances sufficient to study hydrodynamic instability while maintaining good planarity. In this review we present the performance of the Nike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets.

  6. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  7. Developing the Rehabilitation Facility Personnel Manual.

    ERIC Educational Resources Information Center

    Gilbertson, Alan D.

    This guide is intended to provide rehabilitation facilities with assistance in developing or improving their facility personnel manual, along with examples of what some rehabilitation facilities are including within their personnel manuals. The introduction to the guide discusses how a facility can begin the formulation of its personnel manual.…

  8. Nuclear electric propulsion development and qualification facilities

    NASA Technical Reports Server (NTRS)

    Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario

    1991-01-01

    This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.

  9. Debris and shrapnel assessments for National Ignition Facility targets and diagnostics

    NASA Astrophysics Data System (ADS)

    Masters, N. D.; Fisher, A.; Kalantar, D.; Stölken, J.; Smith, C.; Vignes, R.; Burns, S.; Doeppner, T.; Kritcher, A.; Park, H.-S.

    2016-05-01

    High-energy laser experiments at the National Ignition Facility (NIF) can create debris and shrapnel capable of damaging laser optics and diagnostic instruments. The size, composition and location of target components and sacrificial shielding (e.g., disposable debris shields, or diagnostic filters) and the protection they provide is constrained by many factors, including: chamber and diagnostic geometries, experimental goals and material considerations. An assessment of the generation, nature and velocity of shrapnel and debris and their potential threats is necessary prior to fielding targets or diagnostics. These assessments may influence target and shielding design, filter configurations and diagnostic selection. This paper will outline the approach used to manage the debris and shrapnel risk associated with NIF targets and diagnostics and present some aspects of two such cases: the Material Strength Rayleigh- Taylor campaign and the Mono Angle Crystal Spectrometer (MACS).

  10. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    NASA Astrophysics Data System (ADS)

    Tiedemann, D.; Stiebing, K. E.; Winters, D. F. A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, Th.

    2014-11-01

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×1012 atoms/cm3 for helium and 8.1×1012 atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  12. UCx target preparations and characterizations

    NASA Astrophysics Data System (ADS)

    Andrighetto, Alberto; Corradetti, Stefano; Manzolaro, Mattia; Scarpa, Daniele; Monetti, Alberto; Rossignoli, Massimo; Borgna, Francesca; Ballan, Michele; Agostini, Mattia; D'Agostini, Fabio; Ferrari, Matteo; Zenoni, Aldo

    2018-05-01

    The Target-Ion Source unit is the core of an ISOL-RIB facility. Many international ISOL facilities have chosen different layouts of this unit. Many research groups are involved in research and development of targets capable of dissipating high power and, at the same time, be able to have a fast isotope release. This is mandatory in order to produce beams of short half-life isotopes. The research of new materials with advanced microstructural features is crucial in this field. The design of a proper target is indeed strictly related to the obtainment of porous refractory materials, which are capable to work under extreme conditions (temperatures up to 2000 °C in high vacuum) with a high release efficiency. For SPES, the second generation Italian ISOL-RIB Facility, the target will be made of uranium carbide (UCx) in which, by fission induced by a proton beam of 40 MeV of energy (8 kW of power), isotopes in the 60-160 amu mass region are produced. The current technological developments are also crucial in the study of third generation ISOL facilities.

  13. Both Patient and Facility Contribute to Achieving the Centers for Medicare and Medicaid Services' Pay-for-Performance Target for Dialysis Adequacy

    PubMed Central

    Tighiouart, Hocine; Meyer, Klemens B.; Miskulin, Dana C.

    2011-01-01

    The Centers for Medicare and Medicaid Services (CMS) designated the achieved urea reduction ratio (URR) as a pay-for-performance measure, but to what extent this measure reflects patient characteristics and adherence instead of its intent to reflect facility performance is unknown. Here, we quantified the contributions of patient case-mix and adherence to the variability in achieving URR targets across dialysis facilities. We found that 92% of 10,069 hemodialysis patients treated at 173 facilities during the last quarter of 2004 achieved the target URR ≥65%. Mixed-effect models with random intercept for dialysis facility revealed a significant facility effect: 11.5% of the variation in achievement of target URR was attributable to the facility level. Adjusting for patient case-mix reduced the proportion of variation attributable to the facility level to 6.7%. Patient gender, body surface area, dialysis access, and adherence with treatment strongly associated with achievement of the URR target. We could not identify specific facility characteristics that explained the remaining variation between facilities. These data suggest that if adherence is not a modifiable patient characteristic, providers could be unfairly penalized for caring for these patients under current CMS policy. These penalties may have unintended consequences. PMID:22025629

  14. The first target experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.

    2007-08-01

    A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.

  15. Development of target ion source systems for radioactive beams at GANIL

    NASA Astrophysics Data System (ADS)

    Bajeat, O.; Delahaye, P.; Couratin, C.; Dubois, M.; Franberg-Delahaye, H.; Henares, J. L.; Huguet, Y.; Jardin, P.; Lecesne, N.; Lecomte, P.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M.

    2013-12-01

    The GANIL facility (Caen, France) is dedicated to the acceleration of heavy ion beams including radioactive beams produced by the Isotope Separation On-Line (ISOL) method at the SPIRAL1 facility. To extend the range of radioactive ion beams available at GANIL, using the ISOL method two projects are underway: SPIRAL1 upgrade and the construction of SPIRAL2. For SPIRAL1, a new target ion source system (TISS) using the VADIS FEBIAD ion source coupled to the SPIRAL1 carbon target will be tested on-line by the end of 2013 and installed in the cave of SPIRAL1 for operation in 2015. The SPIRAL2 project is under construction and is being design for using different production methods as fission, fusion or spallation reactions to cover a large area of the chart of nuclei. It will produce among others neutron rich beams obtained by the fission of uranium induced by fast neutrons. The production target made from uranium carbide and heated at 2000 °C will be associated with several types of ion sources. Developments currently in progress at GANIL for each of these projects are presented.

  16. National facilities study. Volume 5: Space research and development facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With the beginnings of the U.S. space program, there was a pressing need to develop facilities that could support the technology research and development, testing, and operations of evolving space systems. Redundancy in facilities that was once and advantage in providing flexibility and schedule accommodation is instead fast becoming a burden on scarce resources. As a result, there is a clear perception in many sectors that the U.S. has many space R&D facilities that are under-utilized and which are no longer cost-effective to maintain. At the same time, it is clear that the U.S. continues to possess many space R&D facilities which are the best -- or among the best -- in the world. In order to remain world class in key areas, careful assessment of current capabilities and planning for new facilities is needed. The National Facility Study (NFS) was initiated in 1992 to develop a comprehensive and integrated long-term plan for future aerospace facilities that meets current and projected government and commercial needs. In order to assess the nation's capability to support space research and development (R&D), a Space R&D Task Group was formed. The Task Group was co-chaired by NASA and DOD. The Task Group formed four major, technologically- and functionally- oriented working groups: Human and Machine Operations; Information and Communications; Propulsion and Power; and Materials, Structures, and Flight Dynamics. In addition to these groups, three supporting working groups were formed: Systems Engineering and Requirements; Strategy and Policy; and Costing Analysis. The Space R&D Task Group examined several hundred facilities against the template of a baseline mission and requirements model (developed in common with the Space Operations Task Group) and a set of excursions from the baseline. The model and excursions are described in Volume 3 of the NFS final report. In addition, as a part of the effort, the group examined key strategic issues associated with space R

  17. Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohar, M. Y. A; Sofu, T.; Zhong, Z.

    2008-10-30

    A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed viamore » the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from

  18. Nuclear thermal propulsion test facility requirements and development strategy

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  19. Neutron measurements from beam-target reactions at the ELISE neutral beam test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T.; Nocente, M.

    2014-11-15

    Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understandmore » neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.« less

  20. Development of HWIL Testing Capabilities for Satellite Target Emulation at AEDC

    NASA Astrophysics Data System (ADS)

    Lowry, H.; Crider, D.; Burns, J.; Thompson, R.; Goldsmith, G., II; Sholes, W.

    Programs involved in Space Situational Awareness (SSA) need the capability to test satellite sensors in a Hardware-in-the-Loop (HWIL) environment. Testing in a ground system avoids the significant cost of on-orbit test targets and the resulting issues such as debris mitigation, and in-space testing implications. The space sensor test facilities at AEDC consist of cryo-vacuum chambers that have been developed to project simulated targets to air-borne, space-borne, and ballistic platforms. The 7V chamber performs calibration and characterization of surveillance and seeker systems, as well as some mission simulation. The 10V chamber is being upgraded to provide real-time target simulation during the detection, acquisition, discrimination, and terminal phases of a seeker mission. The objective of the Satellite Emulation project is to upgrade this existing capability to support the ability to discern and track other satellites and orbital debris in a HWIL capability. It would provide a baseline for realistic testing of satellite surveillance sensors, which would be operated in a controlled environment. Many sensor functions could be tested, including scene recognition and maneuvering control software, using real interceptor hardware and software. Statistically significant and repeatable datasets produced by the satellite emulation system can be acquired during such test and saved for further analysis. In addition, the robustness of the discrimination and tracking algorithms can be investigated by a parametric analysis using slightly different scenarios; this will be used to determine critical points where a sensor system might fail. The radiometric characteristics of satellites are expected to be similar to the targets and decoys that make up a typical interceptor mission scenario, since they are near ambient temperature. Their spectral reflectivity, emissivity, and shape must also be considered, but the projection systems employed in the 7V and 10V chambers should be

  1. 40 CFR 256.42 - Recommendations for assuring facility development.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Facility Planning and Implementation § 256.42 Recommendations for assuring facility development. (a) The State plan... facilities, and (4) Development of schedules of implementation. (d) The State plan should encourage private...

  2. 40 CFR 256.42 - Recommendations for assuring facility development.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Facility Planning and Implementation § 256.42 Recommendations for assuring facility development. (a) The State plan... facilities, and (4) Development of schedules of implementation. (d) The State plan should encourage private...

  3. 40 CFR 256.42 - Recommendations for assuring facility development.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Facility Planning and Implementation § 256.42 Recommendations for assuring facility development. (a) The State plan... facilities, and (4) Development of schedules of implementation. (d) The State plan should encourage private...

  4. Understanding Release from Actinide Targets -- Recent Results from RIB Development

    NASA Astrophysics Data System (ADS)

    Kronenberg, Andreas; Carter, H. K.; Spejewski, E. H.; Stracener, D. W.

    2006-10-01

    Development of ion beams of short-lived isotopes is crucial for modern nuclear structure and nuclear astrophysics. The Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory uses the ISOL (Isotope Separation Online) technique to provide radioactive ion beams. So far, uranium carbide has been used as a target to produce neutron-rich fission fragments. Thermodynamic calculations indicate the possibility of in-situ chemical side band formations of volatile species of refractory metals, such as V and Re. These elements release out of oxide targets after production in a nuclear reaction, and can occur only through in-situ formation of their volatile oxide. These have been confirmed experimentally. The results from recent, more detailed investigations of ThO2, UB4 and other actinide targets as well as conclusions from systematic studies will be presented. This research was sponsored by the NNSA under Stewardship Science Academic Alliance program through DOE Cooperative Agreement # DE-FC03-3NA00143.

  5. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  6. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tom

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films weremore » smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.« less

  7. Simulation of Targets Feeding Pipe Rupture in Wendelstein 7-X Facility Using RELAP5 and COCOSYS Codes

    NASA Astrophysics Data System (ADS)

    Kaliatka, T.; Povilaitis, M.; Kaliatka, A.; Urbonavicius, E.

    2012-10-01

    Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the "baking" regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. "Baking" regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal-hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.

  8. Overview of Progress on the LANSCE Accelerator and Target Facilities Improvement Program

    NASA Astrophysics Data System (ADS)

    Macek, R. J.; Brun, T.; Donahue, J. B.; Fitzgerald, D. H.

    1997-05-01

    Three projects to improve the performance of the accelerator and target facilities for the Los Alamos Neutron Science Center have been initiated since 1994. The LANSCE Reliability Improvement Project was separated into two phases. Phase I, completed in 1995, was targeted at near-term improvements to beam availability that could be completed in a year. Phase II, now underway, consists of two projects: 1) converting the beam injection into the Proton Storage Ring (PSR) from the present two-step process H^- to H^0 to H^+) to direct injection of H^- beam in one step (H^- to H^+), and 2) an upgrade of the spallation neutron production target which will reduce the target change-out time from about a year to about three weeks. The third project, the SPSS Enhancement Project, is aimed at increasing the PSR output beam current from the present 70 μA at 20 Hz to 200 μA at 30 Hz, plus implementing seven new neutron scattering instruments. Objectives, plans, results and progress to date will be summarized.

  9. The radioactive beam facility ALTO

    NASA Astrophysics Data System (ADS)

    Essabaa, Saïd; Barré-Boscher, Nicole; Cheikh Mhamed, Maher; Cottereau, Evelyne; Franchoo, Serge; Ibrahim, Fadi; Lau, Christophe; Roussière, Brigitte; Saïd, Abdelhakim; Tusseau-Nenez, Sandrine; Verney, David

    2013-12-01

    The Transnational Access facility ALTO (TNA07-ENSAR/FP7) has been commissioned and received from the French safety authorities, the operation license. It is allowed to run at nominal intensity to produce 1011 fissions/s in a thick uranium carbide target by photo-fission using a 10 μA, 50 MeV electron beam. In addition the recent success in operating the selective laser ion source broadens the physics program with neutron-rich nuclear beams possible at this facility installed at IPN Orsay. The facility also aims at being a test bench for the SPIRAL2 project. In that framework an ambitious R&D program on the target ion source system is being developed.

  10. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  11. The drift chamber array at the external target facility in HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Sun, Y. Z.; Sun, Z. Y.; Wang, S. T.; Duan, L. M.; Sun, Y.; Yan, D.; Tang, S. W.; Yang, H. R.; Lu, C. G.; Ma, P.; Yu, Y. H.; Zhang, X. H.; Yue, K.; Fang, F.; Su, H.

    2018-06-01

    A drift chamber array at the External Target Facility in HIRFL-CSR has been constructed for three-dimensional particle tracking in high-energy radioactive ion beam experiments. The design, readout, track reconstruction program and calibration procedures for the detector are described. The drift chamber array was tested in a 311 AMeV 40Ar beam experiment. The detector performance based on the measurements of the beam test is presented. A spatial resolution of 230 μm is achieved.

  12. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Gatu Johnson, M.; Birkel, A.; Kabadi, N. V.; Lahmann, B.; Milanese, L. M.; Simpson, R. A.; Sio, H.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2016-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, DT and DD neutron sources, and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s-1 are routinely achieved. The DT and DD neutron sources generate up to 6x108, and 1x107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  13. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    NASA Astrophysics Data System (ADS)

    Sio, H.; Gatu Johnson, M.; Birkel, A.; Doeg, E.; Frankel, R.; Kabadi, N. V.; Lahmann, B.; Manzin, M.; Simpson, R. A.; Parker, C. E.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Hahn, K.; Ruiz, C. L.; Sangster, T. C.; Hilsabeck, T.

    2017-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV, linear electrostatic ion accelerator; DT and DD neutron sources; and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s- 1 are routinely achieved. The DT and DD neutron sources generate up to 6×108 and 1×107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  14. SECOND TARGET STATION MODERATOR PERFORMANCE WITH A ROTATING TARGET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Gallmeier, Franz X; Rennich, Mark J

    2016-01-01

    Oak Ridge National Laboratory manages and operates the Spallation Neutron Source and the High Flux Isotope Reactor, two of the world's most advanced neutron scattering facilities. Both facilities are funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, and are available to researchers from all over the world. Delivering cutting edge science requires continuous improvements and development of the facilities and instruments. The SNS was designed from the outset to accommodate an additional target station, or Second Target Station (STS), and an upgraded accelerator feeding proton beams to STS and the existing First Targetmore » Station (FTS). Upgrade of the accelerator and the design and construction of STS are being proposed. The presently considered STS configuration is driven with short (<1 s) proton pulses at 10 Hz repetition rate and 467 kW proton beam power, and is optimized for high intensity and high resolution long wavelength neutron applications. STS will allow installation of 22 beamlines and will expand and complement the current national neutron scattering capabilities. In 2015 the STS studies were performed for a compact tungsten target; first a stationary tungsten plate target was analyzed to considerable details and then dropped in favor of a rotating target. For both target options the proton beam footprint as small as acceptable from mechanical and heat removal aspects is required to arrive at a compact-volume neutron production zone in the target, which is essential for tight coupling of target and moderators and for achieving high-intensity peak neutron fluxes. This paper will present recent STS work with the emphasis on neutronics and moderator performance.« less

  15. An off-line method to characterize the fission product release from uranium carbide-target prototypes developed for SPIRAL2 project

    NASA Astrophysics Data System (ADS)

    Hy, B.; Barré-Boscher, N.; Özgümüs, A.; Roussière, B.; Tusseau-Nenez, S.; Lau, C.; Cheikh Mhamed, M.; Raynaud, M.; Said, A.; Kolos, K.; Cottereau, E.; Essabaa, S.; Tougait, O.; Pasturel, M.

    2012-10-01

    In the context of radioactive ion beams, fission targets, often based on uranium compounds, have been used for more than 50 years at isotope separator on line facilities. The development of several projects of second generation facilities aiming at intensities two or three orders of magnitude higher than today puts an emphasis on the properties of the uranium fission targets. A study, driven by Institut de Physique Nucléaire d'Orsay (IPNO), has been started within the SPIRAL2 project to try and fully understand the behavior of these targets. In this paper, we have focused on five uranium carbide based targets. We present an off-line method to characterize their fission product release and the results are examined in conjunction with physical characteristics of each material such as the microstructure, the porosity and the chemical composition.

  16. Targeted proteomics coming of age - SRM, PRM and DIA performance evaluated from a core facility perspective.

    PubMed

    Kockmann, Tobias; Trachsel, Christian; Panse, Christian; Wahlander, Asa; Selevsek, Nathalie; Grossmann, Jonas; Wolski, Witold E; Schlapbach, Ralph

    2016-08-01

    Quantitative mass spectrometry is a rapidly evolving methodology applied in a large number of omics-type research projects. During the past years, new designs of mass spectrometers have been developed and launched as commercial systems while in parallel new data acquisition schemes and data analysis paradigms have been introduced. Core facilities provide access to such technologies, but also actively support the researchers in finding and applying the best-suited analytical approach. In order to implement a solid fundament for this decision making process, core facilities need to constantly compare and benchmark the various approaches. In this article we compare the quantitative accuracy and precision of current state of the art targeted proteomics approaches single reaction monitoring (SRM), parallel reaction monitoring (PRM) and data independent acquisition (DIA) across multiple liquid chromatography mass spectrometry (LC-MS) platforms, using a readily available commercial standard sample. All workflows are able to reproducibly generate accurate quantitative data. However, SRM and PRM workflows show higher accuracy and precision compared to DIA approaches, especially when analyzing low concentrated analytes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Wavefront correction by target-phase-locking technology in a 500 TW laser facility

    NASA Astrophysics Data System (ADS)

    Wang, D. E.; Dai, W. J.; Zhou, K. N.; Su, J. Q.; Xue, Q.; Yuan, Q.; Zhang, X.; Deng, X. W.; Yang, Y.; Wang, Y. C.; Xie, N.; Sun, L.; Hu, D. X.; Zhu, Q. H.

    2017-03-01

    We demonstrate a novel approach termed target-phase-locking that could improve the entire beam wavefront quality of a 500 TW Nd3+:phosphate glass laser facility. The thermal and static wavefront from front-end to target is corrected by using one deformable mirror that receives feedback from both the focal-spot sensor and wavefront sensor, and only the main laser of the laser system is employed in the correction process, with auxiliary calibration light no longer necessary. As a result, a static focal spot with full width at half maximum of 8.87  ×  5.74 µm is achieved, the thermal wavefront induced by flash-lamp-pumped Nd3+:phosphate glass is compensated with PV from 3.54-0.43 µm, and a dynamic focal spot with intensity exceeding 1020 W cm-2 is precisely predicted at the target with such an approach.

  18. Development of a Master Health Facility List in Nigeria

    PubMed Central

    Azeez, Aderemi; Bamidele, Samson; Oyemakinde, Akin; Oyediran, Kolawole Azeez; Adebayo, Wura; Fapohunda, Bolaji; Abioye, Abimbola; Mullen, Stephanie

    2014-01-01

    Abstract Introduction Routine Health Information Systems (RHIS) are increasingly transitioning to electronic platforms in several developing countries. Establishment of a Master Facility List (MFL) to standardize the allocation of unique identifiers for health facilities can overcome identification issues and support health facility management. The Nigerian Federal Ministry of Health (FMOH) recently developed a MFL, and we present the process and outcome. Methods The MFL was developed from the ground up, and includes a state code, a local government area (LGA) code, health facility ownership (public or private), the level of care, and an exclusive LGA level health facility serial number, as part of the unique identifier system in Nigeria. To develop the MFL, the LGAs sent the list of all health facilities in their jurisdiction to the state, which in turn collated for all LGAs under them before sending to the FMOH. At the FMOH, a group of RHIS experts verified the list and identifiers for each state. Results The national MFL consists of 34,423 health facilities uniquely identified. The list has been published and is available for worldwide access; it is currently used for planning and management of health services in Nigeria. Discussion Unique identifiers are a basic component of any information system. However, poor planning and execution of implementing this key standard can diminish the success of the RHIS. Conclusion Development and adherence to standards is the hallmark for a national health information infrastructure. Explicit processes and multi-level stakeholder engagement is necessary to ensuring the success of the effort. PMID:25422720

  19. Development of a master health facility list in Nigeria.

    PubMed

    Makinde, Olusesan Ayodeji; Azeez, Aderemi; Bamidele, Samson; Oyemakinde, Akin; Oyediran, Kolawole Azeez; Adebayo, Wura; Fapohunda, Bolaji; Abioye, Abimbola; Mullen, Stephanie

    2014-01-01

    Abstract. Routine Health Information Systems (RHIS) are increasingly transitioning to electronic platforms in several developing countries. Establishment of a Master Facility List (MFL) to standardize the allocation of unique identifiers for health facilities can overcome identification issues and support health facility management. The Nigerian Federal Ministry of Health (FMOH) recently developed a MFL, and we present the process and outcome. The MFL was developed from the ground up, and includes a state code, a local government area (LGA) code, health facility ownership (public or private), the level of care, and an exclusive LGA level health facility serial number, as part of the unique identifier system in Nigeria. To develop the MFL, the LGAs sent the list of all health facilities in their jurisdiction to the state, which in turn collated for all LGAs under them before sending to the FMOH. At the FMOH, a group of RHIS experts verified the list and identifiers for each state. The national MFL consists of 34,423 health facilities uniquely identified. The list has been published and is available for worldwide access; it is currently used for planning and management of health services in Nigeria. Unique identifiers are a basic component of any information system. However, poor planning and execution of implementing this key standard can diminish the success of the RHIS. Development and adherence to standards is the hallmark for a national health information infrastructure. Explicit processes and multi-level stakeholder engagement is necessary to ensuring the success of the effort.

  20. Development of a Medical Cyclotron Production Facility

    NASA Astrophysics Data System (ADS)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  1. Plant model of KIPT neutron source facility simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less

  2. The Development of a Quality Management Framework for Evaluating Medical Device Reprocessing Practice in Healthcare Facilities.

    PubMed

    Lorv, Bailey; Horodyski, Robin; Welton, Cynthia; Vail, John; Simonetto, Luca; Jokanovic, Danilo; Sharma, Richa; Mahoney, Angela Rea; Savoy-Bird, Shay; Bains, Shalu

    2017-01-01

    There is increasing awareness of the importance of medical device reprocessing (MDR) for the provision of safe patient care. Although industry service standards are available to guide MDR practices, there remains a lack of published key performance indicators (KPIs) and targets that are necessary to evaluate MDR quality for feedback and improvement. This article outlines the development of an initial framework that builds on established guidelines and includes service standards, KPIs and targets for evaluating MDR operations. This framework can support healthcare facilities in strengthening existing practices and enables a platform for collaboration towards better MDR performance management.

  3. Novel neutron sources at the Radiological Research Accelerator Facility.

    PubMed

    Xu, Yanping; Garty, Guy; Marino, Stephen A; Massey, Thomas N; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons.We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target.A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the (7)Li(p,n)(7)Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  4. Novel neutron sources at the Radiological Research Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Garty, G.; Marino, S. A.; Massey, T. N.; Randers-Pehrson, G.; Johnson, G. W.; Brenner, D. J.

    2012-03-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.

  5. The emergence of care facilities in Thailand for older German-speaking people: structural backgrounds and facility operators as transnational actors.

    PubMed

    Bender, Désirée; Hollstein, Tina; Schweppe, Cornelia

    2017-12-01

    This paper presents findings from an ethnographic study of old age care facilities for German-speaking people in Thailand. It analyses the conditions and processes behind the development and specific designs of such facilities. It first looks at the intertwinement, at the socio-structural level, of different transborder developments in which the facilities' emergence is embedded. Second, it analyses the processes that accompany the emergence, development and organisation of these facilities at the local level. In this regard, it points out the central role of the facility operators as transnational actors who mediate between different frames of reference and groups of actors involved in these facilities. It concludes that the processes of mediation and intertwining are an important and distinctive feature of the emergence of these facilities, necessitated by the fact that, although the facilities are located in Thailand, their 'markets' are in the German-speaking countries of their target groups.

  6. National Biomedical Tracer Facility: Project definition study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heaton, R.; Peterson, E.; Smith, P.

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPFmore » to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.« less

  7. Development of a Medical Cyclotron Production Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Danny R.

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply.more » We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.« less

  8. 40 CFR 256.42 - Recommendations for assuring facility development.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Recommendations for assuring facility development. 256.42 Section 256.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... Planning and Implementation § 256.42 Recommendations for assuring facility development. (a) The State plan...

  9. Report of the committee on a commercially developed space facility

    NASA Technical Reports Server (NTRS)

    Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III

    1989-01-01

    Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.

  10. Development of Bone Targeting Drugs.

    PubMed

    Stapleton, Molly; Sawamoto, Kazuki; Alméciga-Díaz, Carlos J; Mackenzie, William G; Mason, Robert W; Orii, Tadao; Tomatsu, Shunji

    2017-06-23

    The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca 2+ . The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments.

  11. Development of Bone Targeting Drugs

    PubMed Central

    Stapleton, Molly; Sawamoto, Kazuki; Alméciga-Díaz, Carlos J.; Mackenzie, William G.; Mason, Robert W.; Orii, Tadao; Tomatsu, Shunji

    2017-01-01

    The skeletal system, comprising bones, ligaments, cartilage and their connective tissues, is critical for the structure and support of the body. Diseases that affect the skeletal system can be difficult to treat, mainly because of the avascular cartilage region. Targeting drugs to the site of action can not only increase efficacy but also reduce toxicity. Bone-targeting drugs are designed with either of two general targeting moieties, aimed at the entire skeletal system or a specific cell type. Most bone-targeting drugs utilize an affinity to hydroxyapatite, a major component of the bone matrix that includes a high concentration of positively-charged Ca2+. The strategies for designing such targeting moieties can involve synthetic and/or biological components including negatively-charged amino acid peptides or bisphosphonates. Efficient delivery of bone-specific drugs provides significant impact in the treatment of skeletal related disorders including infectious diseases (osteoarthritis, osteomyelitis, etc.), osteoporosis, and metabolic skeletal dysplasia. Despite recent advances, however, both delivering the drug to its target without losing activity and avoiding adverse local effects remain a challenge. In this review, we investigate the current development of bone-targeting moieties, their efficacy and limitations, and discuss future directions for the development of these specific targeted treatments. PMID:28644392

  12. Radiation effects on active camera electronics in the target chamber at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dayton, M.; Datte, P.; Carpenter, A.; Eckart, M.; Manuel, A.; Khater, H.; Hargrove, D.; Bell, P.

    2017-08-01

    The National Ignition Facility's (NIF) harsh radiation environment can cause electronics to malfunction during high-yield DT shots. Until now there has been little experience fielding electronic-based cameras in the target chamber under these conditions; hence, the performance of electronic components in NIF's radiation environment was unknown. It is possible to purchase radiation tolerant devices, however, they are usually qualified for radiation environments different to NIF, such as space flight or nuclear reactors. This paper presents the results from a series of online experiments that used two different prototype camera systems built from non-radiation hardened components and one commercially available camera that permanently failed at relatively low total integrated dose. The custom design built in Livermore endured a 5 × 1015 neutron shot without upset, while the other custom design upset at 2 × 1014 neutrons. These results agreed with offline testing done with a flash x-ray source and a 14 MeV neutron source, which suggested a methodology for developing and qualifying electronic systems for NIF. Further work will likely lead to the use of embedded electronic systems in the target chamber during high-yield shots.

  13. Facile Preparation of Doxorubicin-Loaded and Folic Acid-Conjugated Carbon Nanotubes@Poly(N-vinyl pyrrole) for Targeted Synergistic Chemo-Photothermal Cancer Treatment.

    PubMed

    Wang, Daquan; Ren, Yibo; Shao, Yongping; Yu, Demei; Meng, Lingjie

    2017-11-15

    We developed a bifunctional nanoplatform for targeted synergistic chemo-photothermal cancer treatment. The nanoplatform was constructed through a facile method in which poly(N-vinyl pyrrole) (PVPy) was coated on cut multiwalled carbon nanotubes (c-MWNTs); FA-PEG-SH was then linked by thiol-ene click reaction to improve the active targeting ability, water dispersibility, and biocompatibility and to extend the circulation time in blood. The PVPy shell not only enhanced the photothermal effect of c-MWNTs significantly but also provided a surface that could tailor targeting molecules and drugs. The resulting MWNT@PVPy-S-PEG-FA possessed high drug-loading ratio as well as pH-sensitive unloading capacity for a broad-spectrum anticancer agent, doxorubicin. Owing to its outstanding efficiency in photothermal conversion and ability in targeted drug delivery, the material could potentially be used as an efficient chemo-photothermal therapeutic nanoagent to treat cancer.

  14. Development of tumor-targeted near infrared probes for fluorescence guided surgery.

    PubMed

    Kelderhouse, Lindsay E; Chelvam, Venkatesh; Wayua, Charity; Mahalingam, Sakkarapalayam; Poh, Scott; Kularatne, Sumith A; Low, Philip S

    2013-06-19

    Complete surgical resection of malignant disease is the only reliable method to cure cancer. Unfortunately, quantitative tumor resection is often limited by a surgeon's ability to locate all malignant disease and distinguish it from healthy tissue. Fluorescence-guided surgery has emerged as a tool to aid surgeons in the identification and removal of malignant lesions. While nontargeted fluorescent dyes have been shown to passively accumulate in some tumors, the resulting tumor-to-background ratios are often poor, and the boundaries between malignant and healthy tissues can be difficult to define. To circumvent these problems, our laboratory has developed high affinity tumor targeting ligands that bind to receptors that are overexpressed on cancer cells and deliver attached molecules selectively into these cells. In this study, we explore the use of two tumor-specific targeting ligands (i.e., folic acid that targets the folate receptor (FR) and DUPA that targets prostate specific membrane antigen (PSMA)) to deliver near-infrared (NIR) fluorescent dyes specifically to FR and PSMA expressing cancers, thereby rendering only the malignant cells highly fluorescent. We report here that all FR- and PSMA-targeted NIR probes examined bind cultured cancer cells in the low nanomolar range. Moreover, upon intravenous injection into tumor-bearing mice with metastatic disease, these same ligand-NIR dye conjugates render receptor-expressing tumor tissues fluorescent, enabling their facile resection with minimal contamination from healthy tissues.

  15. Research and development on materials for the SPES target

    NASA Astrophysics Data System (ADS)

    Corradetti, Stefano; Andrighetto, Alberto; Manzolaro, Mattia; Scarpa, Daniele; Vasquez, Jesus; Rossignoli, Massimo; Monetti, Alberto; Calderolla, Michele; Prete, Gianfranco

    2014-03-01

    The SPES project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro) is focused on the production of radioactive ion beams. The core of the SPES facility is constituted by the target, which will be irradiated with a 40 MeV, 200 µA proton beam in order to produce radioactive species. In order to efficiently produce and release isotopes, the material constituting the target should be able to work under extreme conditions (high vacuum and temperatures up to 2000 °C). Both neutron-rich and proton-rich isotopes will be produced; in the first case, carbon dispersed uranium carbide (UCx) will be used as a target, whereas to produce p-rich isotopes, several types of targets will have to be irradiated. The synthesis and characterization of different types of material will be reported. Moreover, the results of irradiation and isotopes release tests on different uranium carbide target prototypes will be discussed.

  16. Monitoring System for the Gold Target by Radiation Detectors in Hadron Experimental Facility at J-PARC

    NASA Astrophysics Data System (ADS)

    Muto, Ryotaro; Agari, Keizo; Aoki, Kazuya; Bessho, Kotaro; Hagiwara, Masayuki; Hirose, Erina; Ieiri, Masaharu; Iwasaki, Ruri; Katoh, Yohji; Kitagawa, Jun-ichi; Minakawa, Michifumi; Morino, Yuhei; Saito, Kiwamu; Sato, Yoshinori; Sawada, Shin'ya; Shirakabe, Yoshihisa; Suzuki, Yoshihiro; Takahashi, Hitoshi; Tanaka, Kazuhiro; Toyoda, Akihisa; Watanabe, Hiroaki; Yamanoi, Yutaka

    2017-09-01

    At the Hadron Experimental Facility in J-PARC, we inject a 30-GeV proton beam into a gold target to produce secondary particle beams required for various particle and nuclear physics experiments. The gold target is placed in a hermetic chamber, and helium gas is circulated in the chamber to monitor the soundness of the target. The radioactivity in helium gas is continuously monitored by gamma-ray detectors such as a germanium detector and a NaI(Tl) detector. Beam operations with those target-monitoring systems were successfully performed from April to June and October to December 2015, and from May to June 2016. In this paper, the details of the helium gas circulation system and gamma-ray detectors and the analysis results of the obtained gamma-ray spectra are reported.

  17. Large Dog Relinquishment to Two Municipal Facilities in New York City and Washington, D.C.: Identifying Targets for Intervention

    PubMed Central

    Weiss, Emily; Slater, Margaret; Garrison, Laurie; Drain, Natasha; Dolan, Emily; Scarlett, Janet M.; Zawistowski, Stephen L.

    2014-01-01

    Simple Summary While the overall trend in euthanasia has been decreasing nationally, large dogs are at a higher risk of euthanasia than other-sized dogs in most animal shelters in the United States. We hypothesized that one way to increase the lives saved with regard to large dogs in shelters is to keep them home in the first place when possible. Our research is the first to collect data in New York City and Washington, D.C., identifying the process leading to the owner relinquishment of large dogs. We found that targets for interventions to decrease large dog relinquishment are likely different in each community. Abstract While the overall trend in euthanasia has been decreasing nationally, large dogs are at a higher risk of euthanasia than other sized dogs in most animal shelters in the United States. We hypothesized one way to increase the lives saved with respect to these large dogs is to keep them home when possible. In order to develop solutions to decrease relinquishment, a survey was developed to learn more about the reasons owners relinquish large dogs. The survey was administered to owners relinquishing their dogs at two large municipal facilities, one in New York City and one in Washington, D.C. There were 157 responses between the two facilities. We found both significant similarities and differences between respondents and their dogs from the two cities. We identified opportunities to potentially support future relinquishers and found that targets for interventions are likely different in each community. PMID:26480315

  18. Novel neutron sources at the Radiological Research Accelerator Facility

    PubMed Central

    Xu, Yanping; Garty, Guy; Marino, Stephen A.; Massey, Thomas N.; Randers-Pehrson, Gerhard; Johnson, Gary W.; Brenner, David J.

    2012-01-01

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will be based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10–20 micron in diameter. This facility is based on a Proton Microbeam, impinging on a thin lithium target near the threshold of the 7Li(p,n)7Be reaction. This novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components. PMID:22545061

  19. Novel neutron sources at the Radiological Research Accelerator Facility

    DOE PAGES

    Xu, Yanping; Garty, G.; Marino, S. A.; ...

    2012-03-16

    Since the 1960s, the Radiological Research Accelerator Facility (RARAF) has been providing researchers in biology, chemistry and physics with advanced irradiation techniques, using charged particles, photons and neutrons. We are currently developing a unique facility at RARAF, to simulate neutron spectra from an improvised nuclear device (IND), based on calculations of the neutron spectrum at 1.5 km from the epicenter of the Hiroshima atom bomb. This is significantly different from a standard fission spectrum, because the spectrum changes as the neutrons are transported through air, and is dominated by neutron energies between 0.05 and 8 MeV. This facility will bemore » based on a mixed proton/deuteron beam impinging on a thick beryllium target. A second, novel facility under development is our new neutron microbeam. The neutron microbeam will, for the first time, provide a kinematically collimated neutron beam, 10-20 micron in diameter. This facility is based on a proton microbeam, impinging on a thin lithium target near the threshold of the Li-7(p,n)Be-7 reaction. Lastly, this novel neutron microbeam will enable studies of neutron damage to small targets, such as single cells, individual organs within small animals or microelectronic components.« less

  20. Development of a Muon Rotating Target for J-PARC/MUSE

    NASA Astrophysics Data System (ADS)

    Makimura, Shunsuke; Kobayashi, Yasuo; Miyake, Yasuhiro; Kawamura, Naritoshi; Strasser, Patrick; Koda, Akihiro; Shimomura, Koichiro; Fujimori, Hiroshi; Nishiyama, Kusuo; Kato, Mineo; Kojima, Kenji; Higemoto, Wataru; Ito, Takashi; Shimizu, Ryou; Kadono, Ryosuke

    At the J-PARC muon science facility (J-PARC/MUSE), a graphite target with a thickness of 20 mm has been used in vacuum to obtain an intense pulsed muon beam from the RCS 3-GeV proton beam [1], [2]. In the current design, the target frame is constructed using copper with a stainless steel tube embedded for water cooling. The energy deposited by the proton beam at 1 MW is evaluated to be 3.3 kW on the graphite target and 600 W on the copper frame by a Monte-Carlo simulation code, PHITS [3]. Graphite materials are known to lose their crystal structure and can be shrunk under intense proton beam irradiation. Consequently, the lifetime of the muon target is essentially determined by the radiation damage in graphite, and is evaluated to be half a year [4]. Hence, we are planning to distribute the radiation damage by rotating a graphite wheel. Although the lifetime of graphite in this case will be more than 10 years, the design of the bearing must be carefully considered. Because the bearing in JPARC/MUSE is utilized in vacuum, under high radiation, and at high temperature, an inorganic and solid lubricant must be applied to the bearing. Simultaneously, the temperature of the bearing must also be decreased to extend the lifetime. In 2009, a mock-up of the Muon Rotating Target, which could heat up and rotate a graphite wheel, was fabricated. Then several tests were started to select the lubricant and to determine the structure of the Muon Rotating Target, the control system and so on. In this report, the present status of the Muon Rotating Target for J-PARC/MUSE, especially the development of a rotation system in vacuum, is described.

  1. Hospital to Post-Acute Care Facility Transfers: Identifying Targets for Information Exchange Quality Improvement.

    PubMed

    Jones, Christine D; Cumbler, Ethan; Honigman, Benjamin; Burke, Robert E; Boxer, Rebecca S; Levy, Cari; Coleman, Eric A; Wald, Heidi L

    2017-01-01

    Information exchange is critical to high-quality care transitions from hospitals to post-acute care (PAC) facilities. We conducted a survey to evaluate the completeness and timeliness of information transfer and communication between a tertiary-care academic hospital and its related PAC facilities. This was a cross-sectional Web-based 36-question survey of 110 PAC clinicians and staff representing 31 PAC facilities conducted between October and December 2013. We received responses from 71 of 110 individuals representing 29 of 31 facilities (65% and 94% response rates). We collapsed 4-point Likert responses into dichotomous variables to reflect completeness (sufficient vs insufficient) and timeliness (timely vs not timely) for information transfer and communication. Among respondents, 32% reported insufficient information about discharge medical conditions and management plan, and 83% reported at least occasionally encountering problems directly related to inadequate information from the hospital. Hospital clinician contact information was the most common insufficient domain. With respect to timeliness, 86% of respondents desired receipt of a discharge summary on or before the day of discharge, but only 58% reported receiving the summary within this time frame. Through free-text responses, several participants expressed the need for paper prescriptions for controlled pain medications to be sent with patients at the time of transfer. Staff and clinicians at PAC facilities perceive substantial deficits in content and timeliness of information exchange between the hospital and facilities. Such deficits are particularly relevant in the context of the increasing prevalence of bundled payments for care across settings as well as forthcoming readmissions penalties for PAC facilities. Targets identified for quality improvement include structuring discharge summary information to include information identified as deficient by respondents, completion of discharge summaries

  2. Apollo experience report: Real-time auxiliary computing facility development

    NASA Technical Reports Server (NTRS)

    Allday, C. E.

    1972-01-01

    The Apollo real time auxiliary computing function and facility were an extension of the facility used during the Gemini Program. The facility was expanded to include support of all areas of flight control, and computer programs were developed for mission and mission-simulation support. The scope of the function was expanded to include prime mission support functions in addition to engineering evaluations, and the facility became a mandatory mission support facility. The facility functioned as a full scale mission support activity until after the first manned lunar landing mission. After the Apollo 11 mission, the function and facility gradually reverted to a nonmandatory, offline, on-call operation because the real time program flexibility was increased and verified sufficiently to eliminate the need for redundant computations. The evaluation of the facility and function and recommendations for future programs are discussed in this report.

  3. Development of a single ion hit facility at the Pierre Sue Laboratory: a collimated microbeam to study radiological effects on targeted living cells.

    PubMed

    Daudin, L; Carrière, M; Gouget, B; Hoarau, J; Khodja, H

    2006-01-01

    A single ion hit facility is being developed at the Pierre Süe Laboratory (LPS) since 2004. This set-up will be dedicated to the study of ionising radiation effects on living cells, which will complete current research conducted on uranium chemical toxicity on renal and osteoblastic cells. The study of the response to an exposure to alpha particles will allow us to distinguish radiological and chemical toxicities of uranium, with a special emphasis on the bystander effect at low doses. Designed and installed on the LPS Nuclear microprobe, up to now dedicated to ion beam microanalysis, this set-up will enable us to deliver an exact number of light ions accelerated by a 3.75 MV electrostatic accelerator. An 'in air' vertical beam permits the irradiation of cells in conditions compatible with cell culture techniques. Furthermore, cellular monolayer will be kept in controlled conditions of temperature and atmosphere in order to diminish stress. The beam is collimated with a fused silica capillary tubing to target pre-selected cells. Motorisation of the collimator with piezo-electric actuators should enable fast irradiation without moving the sample, thus avoiding mechanical stress. An automated epifluorescence microscope, mounted on an antivibration table, allows pre- and post-irradiation cell observation. An ultra thin silicon surface barrier detector has been developed and tested to be able to shoot a cell with a single alpha particle.

  4. Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR Facility

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Weick, H.; Iwase, H.; Geissel, H.; Hoffmann, D. H. H.; Kindler, B.; Lommel, B.; Radon, T.; Münzenberg, G.; Shutov, A.; Sümmerer, K.; Winkler, M.

    2005-06-01

    A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion synchrotrons SIS100/300. By using an appropriate beam intensity and focal spot parameters, the target would survive after being irradiated once. However, the heat should be dissipated efficiently before the same target area is irradiated again. We have considered a wheel shaped solid carbon target that rotates around its axis so that different areas of the target are irradiated successively. This allows for cooling of the beam heated region by thermal conduction before the same part of the target is irradiated a second time. Another attractive option is to use a liquid jet target at the Super-FRS. First calculations of a possible liquid lithium target are also presented in this paper. One of the advantages of using lithium as a target is that it will survive even if one uses a smaller focal spot, which has half the area of that used for a solid carbon target. This will significantly improve the isotope resolution. A similar problem associated with these experiments will be safe deposition of the beam energy in a beamdump after its interaction with the production target. We also present calculations to study the suitability of a proposed beamdump.

  5. Thin and thick targets for radioactive ion beam production at SPIRAL1 facility

    NASA Astrophysics Data System (ADS)

    Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Kuchi, V.; Maunoury, L.

    2018-05-01

    The upgrade of the Système de Production d'Ions Radioactifs Accélérés en Ligne (SPIRAL1) facility will deliver its new Radioactive Ion Beams (RIB) by summer 2017. The goal of the upgrade is an improvement of the performances of the installation in terms of isotopes species and ion charge states [1]. Ion beams are produced using the Isotope Separator On Line Method, consisting in an association of a primary beam of stable ions, a hot target and an ion source. The primary beam impinges on the material of the target. Radioactive isotopes are produced by nuclear reactions and propagate up to the source, where they are ionized and accelerated to create a RIB. One advantage of SPIRAL1 driver is the variety of its available primary beams, from carbon to uranium with energies up to 95 MeV/A. Within the SPIRAL1 upgrade, they will be combined with targets made of a large choice of materials, extending in this way the number of possible nuclear reactions (fusion-evaporation, transfer, fragmentation) for producing a wider range of isotopes, up to regions of the nuclide chart still scarcely explored. Depending on the reaction process, on the collision energy and on the primary beam power, thin and thick targets are used. As their functions can be different, their design must cope with specific constraints which will be described. After a presentation of the goals of present and future SPIRAL1 Target Ion Source System, the main target features, studies and designs under progress are presented.

  6. Development of a Large Scale, High Speed Wheel Test Facility

    NASA Technical Reports Server (NTRS)

    Kondoleon, Anthony; Seltzer, Donald; Thornton, Richard; Thompson, Marc

    1996-01-01

    Draper Laboratory, with its internal research and development budget, has for the past two years been funding a joint effort with the Massachusetts Institute of Technology (MIT) for the development of a large scale, high speed wheel test facility. This facility was developed to perform experiments and carry out evaluations on levitation and propulsion designs for MagLev systems currently under consideration. The facility was developed to rotate a large (2 meter) wheel which could operate with peripheral speeds of greater than 100 meters/second. The rim of the wheel was constructed of a non-magnetic, non-conductive composite material to avoid the generation of errors from spurious forces. A sensor package containing a multi-axis force and torque sensor mounted to the base of the station, provides a signal of the lift and drag forces on the package being tested. Position tables mounted on the station allow for the introduction of errors in real time. A computer controlled data acquisition system was developed around a Macintosh IIfx to record the test data and control the speed of the wheel. This paper describes the development of this test facility. A detailed description of the major components is presented. Recently completed tests carried out on a novel Electrodynamic (EDS) suspension system, developed by MIT as part of this joint effort are described and presented. Adaptation of this facility for linear motor and other propulsion and levitation testing is described.

  7. Developing the Muon Facilities at ISIS

    NASA Astrophysics Data System (ADS)

    Hillier, A. D.; Aramini, M.; Baker, P. J.; Berlie, A.; Biswas, P. K.; Cottrell, S. P.; Ishida, K.; Loe, T.; Lord, J. S.; Pooley, D. E.; Pratt, F. L.; Rhodes, N. J.; da Silva Afonso, R. J.; Telling, M. T. F.; Yokoyama, K.

    For the last 30 years, muon experiments at ISIS have been making a significant contribution to a number of scientific fields. However, as a community of researchers, we are always aiming to improve and extend the instruments' capabilities. In this paper, we will review key developments at the ISIS muon facility, the primary beamline upgrade and recent technique developments, before taking a forward look to new projects, such as: the upgrade for MuSR, e-learning, detector development and sample environment.

  8. Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Macfarlane, Joseph; Golovkin, Igor; Sebald, James

    2017-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and LMJ. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to conveniently assess beam capture on target and beam clearance of diagnostic components, as well as plans for future developments.

  9. Target development for diversified irradiations at a medical cyclotron.

    PubMed

    Spellerberg, S; Scholten, B; Spahn, I; Bolten, W; Holzgreve, M; Coenen, H H; Qaim, S M

    2015-10-01

    The irradiation facility at an old medical cyclotron (Ep=17 MeV; Ed=10 MeV) was upgraded by extending the beam line and incorporation of solid state targetry. Tests performed to check the quality of the available beam are outlined. Results on nuclear data measurements and improvement of radiochemical separations are described. Using solid targets, with the proton beam falling at a slanting angle of 20°, a few radionuclides, e.g. (75)Se, (120)I, (124)I, etc. were produced with medium currents (up to 20 µA) in no-carrier-added form in quantities sufficient for local use. The extended irradiation facility has considerably enhanced the utility of the medical cyclotron. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Charter School Facilities: A Resource Guide on Development and Financing.

    ERIC Educational Resources Information Center

    Jakubowski, Lara

    This manual provides information to help charter schools navigate the facility development process, including worksheets that can be customized to suit a particular school's needs. Sections cover how facility planning fits into business planning for charter schools, review a process for assessing a school's facility needs, and summarize how to…

  11. Development and Use of a Virtual NMR Facility

    NASA Astrophysics Data System (ADS)

    Keating, Kelly A.; Myers, James D.; Pelton, Jeffrey G.; Bair, Raymond A.; Wemmer, David E.; Ellis, Paul D.

    2000-03-01

    We have developed a "virtual NMR facility" (VNMRF) to enhance access to the NMR spectrometers in Pacific Northwest National Laboratory's Environmental Molecular Sciences Laboratory (EMSL). We use the term virtual facility to describe a real NMR facility made accessible via the Internet. The VNMRF combines secure remote operation of the EMSL's NMR spectrometers over the Internet with real-time videoconferencing, remotely controlled laboratory cameras, real-time computer display sharing, a Web-based electronic laboratory notebook, and other capabilities. Remote VNMRF users can see and converse with EMSL researchers, directly and securely control the EMSL spectrometers, and collaboratively analyze results. A customized Electronic Laboratory Notebook allows interactive Web-based access to group notes, experimental parameters, proposed molecular structures, and other aspects of a research project. This paper describes our experience developing a VNMRF and details the specific capabilities available through the EMSL VNMRF. We show how the VNMRF has evolved during a test project and present an evaluation of its impact in the EMSL and its potential as a model for other scientific facilities. All Collaboratory software used in the VNMRF is freely available from http://www.emsl.pnl.gov:2080/docs/collab.

  12. Transuranic Waste Test Facility Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looper, M.G.

    1987-05-05

    This letter discusses the development and test program planned for the Transuranic Waste Test Facility (TWTF). The planned effort is based on previous work in the ADandD Pilot Facility and testing of TWTF equipment before installation. Input from Waste Management and AED Fairview is included. The program will focus on the following areas: Retrieval; Material Handling; Size Reduction; Operation and Maintenance. The program will take 1-1/2 to 2 years to complete and began in December 1986. Technical Data Summaries (TDS) and basic data reports will be issued periodically to document results and provide basic data for the Transuranic Waste Facilitymore » (TWF). 2 refs., 2 figs.« less

  13. Development of a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy.

    PubMed

    Kreiner, A J; Castell, W; Di Paolo, H; Baldo, M; Bergueiro, J; Burlon, A A; Cartelli, D; Vento, V Thatar; Kesque, J M; Erhardt, J; Ilardo, J C; Valda, A A; Debray, M E; Somacal, H R; Sandin, J C Suarez; Igarzabal, M; Huck, H; Estrada, L; Repetto, M; Obligado, M; Padulo, J; Minsky, D M; Herrera, M; Gonzalez, S J; Capoulat, M E

    2011-12-01

    We describe the present status of an ongoing project to develop a Tandem-ElectroStatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based (AB)-BNCT. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction. The machine currently being constructed is a folded TESQ with a high-voltage terminal at 0.6 MV. We report here on the progress achieved in a number of different areas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.

    2004-08-01

    During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.

  15. Target materials for exotic ISOL beams

    NASA Astrophysics Data System (ADS)

    Gottberg, A.

    2016-06-01

    The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices that can supply new beams of unprecedented intensity and beam current stability.

  16. Overview of the ISOL facility for the RISP

    NASA Astrophysics Data System (ADS)

    Woo, H. J.; Kang, B. H.; Tshoo, K.; Seo, C. S.; Hwang, W.; Park, Y.-H.; Yoon, J. W.; Yoo, S. H.; Kim, Y. K.; Jang, D. Y.

    2015-02-01

    The key feature of the Isotope Separation On-Line (ISOL) facility is its ability to provide high-intensity and high-quality beams of neutron-rich isotopes with masses in the range of 80-160 by means of a 70-MeV proton beam directly impinging on uranium-carbide thin-disc targets to perform forefront research in nuclear structure, nuclear astrophysics, reaction dynamics and interdisciplinary fields like medical, biological and material sciences. The technical design of the 10-kW and the 35-kW direct fission targets with in-target fission rates of up to 1014 fissions/s has been finished, and for the development of the ISOL fission-target chemistry an initial effort has been made to produce porous lanthanum-carbide (LaCx) discs as a benchmark for the final production of porous UCx discs. For the production of various beams, three classes of ion sources are under development at RISP (Rare Isotope Science Project), the surface ion source, the plasma ion source (FEBIAD), the laser ion source, and the engineering design of the FEBIAD is in progress for prototype fabrication. The engineering design of the ISOL target/ion source front-end system is also in progress, and a prototype will be used for an off-line test facility in front of the pre-separator. The technical designs of other basic elements at the ISOL facility, such as the RF-cooler, the high-resolution mass separator, and the A/q separator, have been finished, and the results, along with the future plans, are introduced.

  17. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allender, Jeffrey S.; Bridges, Nicholas J.; Loftin, Bradley M.

    2015-07-14

    Savannah River National Laboratory (SRNL) and Oak Ridge National Laboratory (ORNL) are developing plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in Savannah River Site (SRS) reactors in the 1970s under extremely high neutron-flux conditions and produced, virtually, the world's supply of plutonium-244, an isotope of key importance to high-precision actinide measurement and other scientific and nonproliferation uses; and curium highly enriched in heavy isotopes (e.g., curium-246 and curium-248). In 2015 and 2016, SRNL is pursuing tasks that would reduce program risk and budget requirements, including furthermore » characterization of unprocessed targets; engineering studies for the use of the SRNL Shielded Cells Facility (SCF) for recovery; and development of onsite and offsite shipping methods including a replacement for the heavy (70 ton) cask previously used for onsite transfer of irradiated items at SRS. A status update is provided for the characterization, including modeling using the Monte Carlo N-Particle Transport Code (MCNP); direct non-destructive assay measurements; and cask design.« less

  18. Capsule review of the DOE research and development and field facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less

  19. Estimation of marginal costs at existing waste treatment facilities.

    PubMed

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    This investigation aims at providing an improved basis for assessing economic consequences of alternative Solid Waste Management (SWM) strategies for existing waste facilities. A bottom-up methodology was developed to determine marginal costs in existing facilities due to changes in the SWM system, based on the determination of average costs in such waste facilities as function of key facility and waste compositional parameters. The applicability of the method was demonstrated through a case study including two existing Waste-to-Energy (WtE) facilities, one with co-generation of heat and power (CHP) and another with only power generation (Power), affected by diversion strategies of five waste fractions (fibres, plastic, metals, organics and glass), named "target fractions". The study assumed three possible responses to waste diversion in the WtE facilities: (i) biomass was added to maintain a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven times larger than average costs and dependent on the response in the WtE plant. Marginal cost of diversion were between 39 and 287 € Mg(-1) target fraction when biomass was added in a CHP (from 34 to 303 € Mg(-1) target fraction in the only Power case), between -2 and 300 € Mg(-1) target fraction when RDF was added in a CHP (from -2 to 294 € Mg(-1) target fraction in the only Power case) and between 40 and 303 € Mg(-1) target fraction when no reaction happened in a CHP (from 35 to 296 € Mg(-1) target fraction in the only Power case). Although average costs at WtE facilities were highly influenced by energy selling prices, marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically

  20. The Sheffield RNAi Screening Facility (SRSF): portfolio growth and technology development.

    PubMed

    Brown, Stephen

    2014-05-01

    The Sheffield RNAi Screening Facility (SRSF) (www.rnai.group.shef.ac.uk) was established in 2008 with Wellcome Trust and University of Sheffield funding, with the task to provide the first UK RNAi screening resource for academic groups interested in identifying genes required in a diverse range of biological processes using Drosophila cell culture. The SRSF has carried out a wide range of screens varying in sizes from bespoke small-scale libraries, targeting a few hundred genes, to high-throughput, genome-wide studies. The SRSF has grown and improved with a dedicated partnership of its academic customers based mainly in the UK. We are part of the UK Academics Functional Genomics Network, participating in organizing an annual meeting in London and are part of the University of Sheffield's D3N (www.d3n.org.uk), connecting academics, biotech and pharmaceutical companies with a multidisciplinary network in Drug Discovery and Development. Recently, the SRSF has been funded by the Yorkshire Cancer Research Fund to perform genome-wide RNAi screens using human cells as part of a core facility for regional Yorkshire Universities and screens are now underway. Overall the SRSF has carried out more than 40 screens from Drosophila and human cell culture experiments.

  1. Planning and Designing Facilities. Facility Design and Development--Part 1

    ERIC Educational Resources Information Center

    Hypes, Michael G.

    2006-01-01

    Before one begins the planning process for a new facility, it is important to determine if there is a need for a new facility. The demand for a new facility can be drawn from increases in the number of users, the type of users, and the type of events to be conducted in the facility. A feasibility study should be conducted to analyze the legal…

  2. The South African isotope facility project

    NASA Astrophysics Data System (ADS)

    Bark, R. A.; Barnard, A. H.; Conradie, J. L.; de Villiers, J. G.; van Schalkwyk, P. A.

    2018-05-01

    The South African Isotope Facility (SAIF) is a project in which iThemba LABS plans to build a radioactive-ion beam (RIB) facility. The project is divided into the Accelerator Centre of Exotic Isotopes (ACE Isotopes) and the Accelerator Centre for Exotic Beams (ACE Beams). For ACE Isotopes, a high-current, 70 MeV cyclotron will be acquired to take radionuclide production off the existing Separated Sector Cyclotron (SSC). A freed up SSC will then be available for an increased tempo of nuclear physics research and to serve as a driver accelerator for the ACE Beams project, in which protons will be used for the direct fission of Uranium, producing beams of fission fragments. The ACE Beams project has begun with "LeRIB" - a Low Energy RIB facility, now under construction. In a collaboration with INFN Legnaro, the target/ion-source "front-end" will be a copy of the front-end developed for the SPES project. A variety of targets may be inserted into the SPES front-end; a uranium-carbide target has been designed to produce up to 2 × 1013 fission/s using a 70 MeV proton beam of 150 µA intensity.

  3. Preliminary design for a maglev development facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coffey, H.T.; He, J.L.; Chang, S.L.

    1992-04-01

    A preliminary design was made of a national user facility for evaluating magnetic-levitation (maglev) technologies in sizes intermediate between laboratory experiments and full-scale systems. A technical advisory committee was established and a conference was held to obtain advice on the potential requirements of operational systems and how the facility might best be configured to test these requirements. The effort included studies of multiple concepts for levitating, guiding, and propelling maglev vehicles, as well as the controls, communications, and data-acquisition and -reduction equipment that would be required in operating the facility. Preliminary designs for versatile, dual 2-MVA power supplies capable ofmore » powering attractive or repulsive systems were developed. Facility site requirements were identified. Test vehicles would be about 7.4 m (25 ft) long, would weigh form 3 to 7 metric tons, and would operate at speeds up to 67 m/s (150 mph) on a 3.3-km (2.05-mi) elevated guideway. The facility would utilize modular vehicles and guideways, permitting the substitution of levitation, propulsion, and guideway components of different designs and materials for evaluation. The vehicle would provide a test cell in which individual suspension or propulsion components or subsystems could be tested under realistic conditions. The system would allow economical evaluation of integrated systems under varying weather conditions and in realistic geometries.« less

  4. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  5. 32 CFR 644.424 - Development of public port or industrial facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... industrial facilities upon the available land shall file a written application with the District Engineer... development of public port or industrial facilities, the District Engineer shall give notice of such... 32 National Defense 4 2011-07-01 2011-07-01 false Development of public port or industrial...

  6. 32 CFR 644.424 - Development of public port or industrial facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... industrial facilities upon the available land shall file a written application with the District Engineer... development of public port or industrial facilities, the District Engineer shall give notice of such... 32 National Defense 4 2010-07-01 2010-07-01 true Development of public port or industrial...

  7. Space facilities: Meeting future needs for research, development, and operations

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  8. Space facilities: Meeting future needs for research, development, and operations

    NASA Astrophysics Data System (ADS)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  9. Commercial-scale biotherapeutics manufacturing facility for plant-made pharmaceuticals.

    PubMed

    Holtz, Barry R; Berquist, Brian R; Bennett, Lindsay D; Kommineni, Vally J M; Munigunti, Ranjith K; White, Earl L; Wilkerson, Don C; Wong, Kah-Yat I; Ly, Lan H; Marcel, Sylvain

    2015-10-01

    Rapid, large-scale manufacture of medical countermeasures can be uniquely met by the plant-made-pharmaceutical platform technology. As a participant in the Defense Advanced Research Projects Agency (DARPA) Blue Angel project, the Caliber Biotherapeutics facility was designed, constructed, commissioned and released a therapeutic target (H1N1 influenza subunit vaccine) in <18 months from groundbreaking. As of 2015, this facility was one of the world's largest plant-based manufacturing facilities, with the capacity to process over 3500 kg of plant biomass per week in an automated multilevel growing environment using proprietary LED lighting. The facility can commission additional plant grow rooms that are already built to double this capacity. In addition to the commercial-scale manufacturing facility, a pilot production facility was designed based on the large-scale manufacturing specifications as a way to integrate product development and technology transfer. The primary research, development and manufacturing system employs vacuum-infiltrated Nicotiana benthamiana plants grown in a fully contained, hydroponic system for transient expression of recombinant proteins. This expression platform has been linked to a downstream process system, analytical characterization, and assessment of biological activity. This integrated approach has demonstrated rapid, high-quality production of therapeutic monoclonal antibody targets, including a panel of rituximab biosimilar/biobetter molecules and antiviral antibodies against influenza and dengue fever. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. Biotechnology Protein Expression and Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  11. Basic features of electromagnetic pulse generated in a laser-target chamber at 3-TW laser facility PALS

    NASA Astrophysics Data System (ADS)

    De Marco, M.; Pfeifer, M.; Krousky, E.; Krasa, J.; Cikhardt, J.; Klir, D.; Nassisi, V.

    2014-04-01

    We describe the radiofrequency emission taking place when 300 ps laser pulses irradiate various solid targets with an intensity of 1016 W/cm2. The emission of intense electromagnetic pulses was observed outside the laser target chamber by two loop antennas up to 1 GHz. Electromagnetic pulses can be 800 MHz transients, which decay from a peak electromagnetic field of E0 ≊ 7 kV/m and H0 ≊ 15 A/m. The occurrence of these electromagnetic pulses is associated with generation of hard x-rays with photon energies extending beyond 1 MeV. This contribution reports the first observation of this effect at the PALS facility.

  12. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    DOE PAGES

    May, M. J.; Fournier, K. B.; Colvin, J. D.; ...

    2015-06-01

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainlessmore » steel. The NIF laser deposited ~460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. In conclusion, time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range« less

  13. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Hohenberger, M.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K.; Regan, S. P.

    2015-06-01

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5-9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ˜460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  14. IRIS : A reaction spectroscopy facility with solid H2 /D2 target

    NASA Astrophysics Data System (ADS)

    Holl, Matthias; Kanungo, Ritu; Alcorta, Martin; Andreoiu, Corina; Bidaman, Harris; Burbadge, Christina; Burke, Devin; Chen, Alan; Davids, Barry; Diaz Varela, Alejandra; Garrett, Paul; Hackman, Greg; Ishimoto, Shigeru; Kaur, Satbir; Keefe, Matthew; Kruecken, Reiner; Mansour, Iymad; Randhawa, Jaspreet; Sanetullaev, Alisher; Shotter, Alan; Smith, Jenna; Tanaka, Junki; Tanihata, Isao; Turko, Joseph; Workman, Orry

    2016-09-01

    The charged particle reaction spectroscopy station IRIS at TRIUMF is designed to allow studies of inelastic scattering and transfer reactions for low intensity beams. To do so, a novel solid H2 /D2 target is used in combination with a low pressure ionization chamber for the identification of incoming beam particles. The light ejectiles are measured using a ΔE - E telescope consisting of an annular silicon detector followed by CsI(Tl) array. Another ΔE - E telescope, consisting of two segmented silicon detectors, is used to identify the heavy outgoing particles. An overview of the faciltity will be given and examples from recent experiments that illustrate that facility's capability for reaction studies of exotic nuclei will be shown. Support from Canada Foundation for Innovation, Nova Scotia Research and Innovation Trust and NSERC.

  15. Development of a Rotating Human Research Facility

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Caldwell, William F.; Tucker, John; Wade, Charles E. (Technical Monitor)

    1994-01-01

    A unique facility has been developed at the NASA Ames Research Center to provide scientists with unusual research opportunities at greater than Earth's gravity. In addition to its use for basic research, this facility will help provide answers to many of the questions posed by proponents of rotating human space vehicles. This paper describes the design and planned use of this facility, the Spaceflight Environmental Simulator. Using an existing 52-foot diameter cylindrical rotating platform design centrifuge, the revised facility design includes the provision of two human habitats for long duration studies of the effects of hypergravity. Up to four humans (per habitat) will be able to live at up to 2 G for as long as one month without stopping the centrifuge. Each habitat, constructed of lightweight honeycomb sandwich panels, is nominally 9 ft high x 11 ft wide x 25 1/2 ft long. A radial positioning system provides for positioning each habitat at a distance of 15 to 21 feet from the centrifuge's axis of rotation to the midpoint of the habitat's interior floor. As centrifugal acceleration changes with rotation rate, a habitat floor-mounted accelerometer signal provides automatic servo controlled adjustment of each habitat's angle of inclination to provide an environment for the habitat's crew and cargo in which the resultant gravity vector is normal to the habitat floor at all times. Design of the habitats and modifications to the centrifuge are complete, and are currently under construction. Design philosophy and operational rationale are presented along with complete descriptions of the facility and its systems.

  16. Research and test facilities for development of technologies and experiments with commercial applications

    NASA Technical Reports Server (NTRS)

    1989-01-01

    One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.

  17. The National Ignition Facility and Industry

    NASA Astrophysics Data System (ADS)

    Harri, J. G.; Paisner, J. A.; Lowdermilk, W. H.; Boyes, J. D.; Kumpan, S. A.; Sorem, M. S.

    1994-09-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. The National Ignition Facility construction project will require the best of our construction industries and its success will depend on the best products offered by hundreds of the nation's high technology companies. Three-fourths of the construction costs will be invested in industry. This article reviews the design, cost and schedule, and required industrial involvement associated with the construction project.

  18. Measuring governance at health facility level: developing and validation of simple governance tool in Zambia.

    PubMed

    Mutale, Wilbroad; Mwanamwenge, Margaret Tembo; Balabanova, Dina; Spicer, Neil; Ayles, Helen

    2013-08-09

    Governance has been cited as a key determinant of economic growth, social advancement and overall development. Achievement of millennium development goals is partly dependant on governance practices. In 2007, Health Systems 20/20 conducted an Internet-based survey on the practice of good governance. The survey posed a set of good practices related to health governance and asked respondents to indicate whether their experience confirmed or disconfirmed those practices. We applied the 17 governance statements in rural health facilities of Zambia. The aim was to establish whether the statements were reliable and valid for assessing governance practices at primary care level. Both quantitative and qualitative methods were used. We first applied the governance statements developed by the health system 20/20 and then conducted focus group discussion and In-depth interviews to explore some elements of governance including accountability and community participation. The target respondents were the health facility management team and community members. The sample size include 42 health facilities. Data was analyzed using SPSS version 17 and Nvivo version 9. The 95% one-sided confidence interval for Cronbach's alpha was between 0.69 and 0.74 for the 16 items.The mean score for most of the items was above 3. Factor analysis yielded five principle components: Transparency, community participation, Intelligence & vision, Accountability and Regulation & oversight. Most of the items (6) clustered around the transparency latent factor. Chongwe district performed poorly in overall mean governance score and across the five domains of governance. The overall scores in Chongwe ranged between 51 and 94% with the mean of 80%. Kafue and Luangwa districts had similar overall mean governance scores (88%). Community participation was generally low. Generally, it was noted that community members lacked capacity to hold health workers accountable for drugs and medical supplies. The study

  19. Developing tourism facilities based on geotourism in Silalahi Village, Geopark Toba Caldera

    NASA Astrophysics Data System (ADS)

    Ginting, Nurlisa; Sasmita, Anggun

    2018-03-01

    Toba Caldera is one of the biggest lakes in Indonesia with supervolcano geology phenomenon, and its result amazing natural resources. It makes Toba Lake become the number one tourism in North Sumatera. However, tourism in Toba Lake is still needed development. Geotourism is one of the concept that suitable for this case. It is because geotourism is a new development tourism concept that focuses on the natural and geological phenomenon. Silalahi Village is one of the areas in Toba Caldera that still needs development, especially in tourism facilities sector. This research aims to investigation the facilities concept based on geotourism in Silalahi Village that would be analyzed by three element of tourism facilities namely, accommodation, support facilities and tourism auxiliary facilities. The method used for this research is mixed methods by distributing 100 questionnaires, observations directly to the area and interviews with three informants related parties interested in tourism, such as local people, government, and academics. The data would be processed and analyzed with techniques of exploration. The result shows that the three elements of tourism facilities are still lacking and needs to improve to increase the economy and tourism in the area.

  20. Research on the Construction Management and Sustainable Development of Large-Scale Scientific Facilities in China

    NASA Astrophysics Data System (ADS)

    Guiquan, Xi; Lin, Cong; Xuehui, Jin

    2018-05-01

    As an important platform for scientific and technological development, large -scale scientific facilities are the cornerstone of technological innovation and a guarantee for economic and social development. Researching management of large-scale scientific facilities can play a key role in scientific research, sociology and key national strategy. This paper reviews the characteristics of large-scale scientific facilities, and summarizes development status of China's large-scale scientific facilities. At last, the construction, management, operation and evaluation of large-scale scientific facilities is analyzed from the perspective of sustainable development.

  1. Use of a spatial scan statistic to identify clusters of births occurring outside Ghanaian health facilities for targeted intervention.

    PubMed

    Bosomprah, Samuel; Dotse-Gborgbortsi, Winfred; Aboagye, Patrick; Matthews, Zoe

    2016-11-01

    To identify and evaluate clusters of births that occurred outside health facilities in Ghana for targeted intervention. A retrospective study was conducted using a convenience sample of live births registered in Ghanaian health facilities from January 1 to December 31, 2014. Data were extracted from the district health information system. A spatial scan statistic was used to investigate clusters of home births through a discrete Poisson probability model. Scanning with a circular spatial window was conducted only for clusters with high rates of such deliveries. The district was used as the geographic unit of analysis. The likelihood P value was estimated using Monte Carlo simulations. Ten statistically significant clusters with a high rate of home birth were identified. The relative risks ranged from 1.43 ("least likely" cluster; P=0.001) to 1.95 ("most likely" cluster; P=0.001). The relative risks of the top five "most likely" clusters ranged from 1.68 to 1.95; these clusters were located in Ashanti, Brong Ahafo, and the Western, Eastern, and Greater regions of Accra. Health facility records, geospatial techniques, and geographic information systems provided locally relevant information to assist policy makers in delivering targeted interventions to small geographic areas. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  2. 40 CFR 256.42 - Recommendations for assuring facility development.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... development. 256.42 Section 256.42 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR DEVELOPMENT AND IMPLEMENTATION OF STATE SOLID WASTE MANAGEMENT PLANS Facility... unrestricted movement of solid and hazardous waste across State and local boundaries. ...

  3. Water, sanitation and hygiene in Jordan's healthcare facilities.

    PubMed

    Khader, Yousef Saleh

    2017-08-14

    Purpose The purpose of this paper is to determine water availability, sanitation and hygiene (WSH) services, and healthcare waste management in Jordan healthcare facilities. Design/methodology/approach In total, 19 hospitals (15 public and four private) were selected. The WSH services were assessed in hospitals using the WSH in health facilities assessment tool developed for this purpose. Findings All hospitals (100 percent) had a safe water source and most (84.2 percent) had functional water sources to provide enough water for users' needs. All hospitals had appropriate and sufficient gender separated toilets in the wards and 84.2 percent had the same in outpatient settings. Overall, 84.2 percent had sufficient and functioning handwashing basins with soap and water, and 79.0 percent had sufficient showers. Healthcare waste management was appropriately practiced in all hospitals. Practical implications Jordan hospital managers achieved major achievements providing access to drinking water and improved sanitation. However, there are still areas that need improvements, such as providing toilets for patients with special needs, establishing handwashing basins with water and soap near toilets, toilet maintenance and providing sufficient trolleys for collecting hazardous waste. Efforts are needed to integrate WSH service policies with existing national policies on environmental health in health facilities, establish national standards and targets for the various healthcare facilities to increase access and improve services. Originality/value There are limited WSH data on healthcare facilities and targets for basic coverage in healthcare facilities are also lacking. A new assessment tool was developed to generate core WSH indicators and to assess WSH services in Jordan's healthcare facilities. This tool can be used by a non-WSH specialist to quickly assess healthcare facility-related WSH services and sanitary hazards in other countries. This tool identified some areas

  4. Development of experimental facilities for processing metallic crystals in orbit

    NASA Technical Reports Server (NTRS)

    Duncan, Bill J.

    1990-01-01

    This paper discusses the evolution, current status, and planning for facilities to exploit the microgravity environment of earth orbit in applied metallic materials science. Space-Shuttle based facilities and some precursor flight programs are reviewed. Current facility development programs and planned Space Station furnace capabilities are described. The reduced gravity levels available in earth orbit allow the processing of metallic materials without the disturbing influence of gravitationally induced thermal convection, stratification due to density differences in sample components, or the effects of hydrostatic pressure.

  5. Targeting bacterial central metabolism for drug development.

    PubMed

    Murima, Paul; McKinney, John D; Pethe, Kevin

    2014-11-20

    Current antibiotics, derived mainly from natural sources, inhibit a narrow spectrum of cellular processes, namely DNA replication, protein synthesis, and cell wall biosynthesis. With the worldwide explosion of drug resistance, there is renewed interest in the investigation of alternate essential cellular processes, including bacterial central metabolic pathways, as a drug target space for the next generation of antibiotics. However, the validation of targets in central metabolism is more complex, as essentiality of such targets can be conditional and/or contextual. Bearing in mind our enhanced understanding of prokaryotic central metabolism, a key question arises: can central metabolism be bacteria's Achilles' heel and a therapeutic target for the development of new classes of antibiotics? In this review, we draw lessons from oncology and attempt to address some of the open questions related to feasibility of targeting bacterial central metabolism as a strategy for developing new antibacterial drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Overview of the Neutron experimental facilities at LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal

    2016-06-30

    This presentation gives an overview of the neutron experimental facilities at LANSCE. The layout is mentioned in detail, with a map of the south-side experimental facilities, information on Target-4 and the Lujan Center. Then it goes into detail about neutron sources, specifically continuous versus pulsed. Target 4 is then discussed. In conclusion, we have introduced the south-side experimental facilities in operation at LANSCE. 1L target and Target 4 provide complementary neutron energy spectra. Two spallation neutron sources taken together cover more than 11 orders of magnitude in neutron energy.

  7. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.

    PubMed

    Kreiner, A J; Thatar Vento, V; Levinas, P; Bergueiro, J; Di Paolo, H; Burlon, A A; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Minsky, D M; Estrada, L; Hazarabedian, A; Johann, F; Suarez Sandin, J C; Castell, W; Davidson, J; Davidson, M; Giboudot, Y; Repetto, M; Obligado, M; Nery, J P; Huck, H; Igarzabal, M; Fernandez Salares, A

    2009-07-01

    In this work we describe the present status of an ongoing project to develop a tandem-electrostatic-quadrupole (TESQ) accelerator facility for accelerator-based (AB) BNCT at the Atomic Energy Commission of Argentina in Buenos Aires. The project final goal is a machine capable of delivering 30 mA of 2.4 MeV protons to be used in conjunction with a neutron production target based on the (7)Li(p,n)(7)Be reaction slightly beyond its resonance at 2.25 MeV. These are the specifications needed to produce sufficiently intense and clean epithermal neutron beams, based on the (7)Li(p,n)(7)Be reaction, to perform BNCT treatment for deep-seated tumors in less than an hour. An electrostatic machine is the technologically simplest and cheapest solution for optimized AB-BNCT. The machine being designed and constructed is a folded TESQ with a high-voltage terminal at 1.2 MV intended to work in air. Such a machine is conceptually shown to be capable of transporting and accelerating a 30 mA proton beam to 2.4 MeV. The general geometric layout, its associated electrostatic fields, and the acceleration tube are simulated using a 3D finite element procedure. The design and construction of the ESQ modules is discussed and their electrostatic fields are investigated. Beam transport calculations through the accelerator are briefly mentioned. Likewise, work related to neutron production targets, strippers, beam shaping assembly and patient treatment room is briefly described.

  8. Rating long-term care facilities on pressure ulcer development: importance of case-mix adjustment.

    PubMed

    Berlowitz, D R; Ash, A S; Brandeis, G H; Brand, H K; Halpern, J L; Moskowitz, M A

    1996-03-15

    To determine the importance of case-mix adjustment in interpreting differences in rates of pressure ulcer development in Department of Veterans Affairs long- term care facilities. A sample assembled from the Patient Assessment File, a Veterans Affairs administrative database, was used to derive predictors of pressure ulcer development; the resulting model was validated in a separate sample. Facility-level rates of pressure ulcer development, both unadjusted and adjusted for case mix using the predictive model, were compared. Department of Veterans Affairs long-term care facilities. The derivation sample consisted of 31 150 intermediate medicine and nursing home residents who were initially free of pressure ulcers and were institutionalized between October 1991 and April 1993. The validation sample consisted of 17 946 residents institutionalized from April 1993 to October 1993. Development of a stage 2 or greater pressure ulcer. 11 factors predicted pressure ulcer development. Validated performance properties of the resulting model were good. Model-predicted rates of pressure ulcer development at individual long-term care facilities varied from 1.9% to 6.3%, and observed rates ranged from 0% to 10.9%. Case-mix-adjusted rates and ranks of facilities differed considerably from unadjusted ratings. For example, among five facilities that were identified as high outliers on the basis of unadjusted rates, two remained as outliers after adjustment for case mix. Long-term care facilities differ in case mix. Adjustments for case mix result in different judgments about facility performance and should be used when facility incidence rates are compared.

  9. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M. J.; Fournier, K. B.; Colvin, J. D.

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ ofmore » 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.« less

  10. Development of a EUV Test Facility at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  11. Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility.

    PubMed

    Paik, Samuel Y; Epperson, Patrick M; Kasper, Kenneth M

    2017-06-01

    This article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measures in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2 , for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was not present

  12. Professional Development through Organizational Assessment: Using APPA's Facilities Management Evaluation Program

    ERIC Educational Resources Information Center

    Medlin, E. Lander; Judd, R. Holly

    2013-01-01

    APPA's Facilities Management Evaluation Program (FMEP) provides an integrated system to optimize organizational performance. The criteria for evaluation not only provide a tool for organizational continuous improvement, they serve as a compelling leadership development tool essential for today's facilities management professional. The senior…

  13. National Ignition Facility: Experimental plan

    NASA Astrophysics Data System (ADS)

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  14. MYRRHA: A multipurpose nuclear research facility

    NASA Astrophysics Data System (ADS)

    Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert

    2014-12-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.

  15. Challenges and Opportunities for Biological Mass Spectrometry Core Facilities in the Developing World.

    PubMed

    Bell, Liam; Calder, Bridget; Hiller, Reinhard; Klein, Ashwil; Soares, Nelson C; Stoychev, Stoyan H; Vorster, Barend C; Tabb, David L

    2018-04-01

    The developing world is seeing rapid growth in the availability of biological mass spectrometry (MS), particularly through core facilities. As proteomics and metabolomics becomes locally feasible for investigators in these nations, application areas associated with high burden in these nations, such as infectious disease, will see greatly increased research output. This article evaluates the rapid growth of MS in South Africa (currently approaching 20 laboratories) as a model for establishing MS core facilities in other nations of the developing world. Facilities should emphasize new services rather than new instruments. The reduction of the delays associated with reagent and other supply acquisition would benefit both facilities and the users who make use of their services. Instrument maintenance and repair, often mediated by an in-country business for an international vendor, is also likely to operate on a slower schedule than in the wealthiest nations. A key challenge to facilities in the developing world is educating potential facility users in how best to design experiments for proteomics and metabolomics, what reagents are most likely to introduce problematic artifacts, and how to interpret results from the facility. Here, we summarize the experience of 6 different institutions to raise the level of biological MS available to researchers in South Africa.

  16. PST 2009: XIII International Workshop on Polarized Sources Targets and Polarimetry

    NASA Astrophysics Data System (ADS)

    Lenisa, Paolo

    2011-05-01

    The workshops on polarized sources, targets, and polarimetry are held every two years. In 2009 the meeting took place in Ferrara, Italy, and was organized by the University of Ferrara and INFN. Sessions on Polarized Proton and Deuterium Sources, Polarized Electron Sources, Polarimetry, Polarized Solid Targets, and Polarized Internal Targets, highlighted topics, recent developments, and progress in the field. A session dedicated to Future Facilities provided an overview of a number of new activities in the spin-physics sector at facilities that are currently in the planning stage. Besides presenting a broad overview of polarized ion sources, electron sources, solid and gaseous targets, and their neighbouring fields, the workshop also addressed the application of polarized atoms in applied sciences and medicine that is becoming increasingly important.

  17. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  18. Facility Composer (Trademark) and PACES (Trademark) Integration: Development of an XML Interface Based on Industry Foundation Classes

    DTIC Science & Technology

    2007-11-01

    Engineer- ing Research Laboratory is currently developing a set of facility ‘architec- tural’ programming tools , called Facility ComposerTM (FC). FC...requirements in the early phases of project development. As the facility program, crite- ria, and requirements are chosen, these tools populate the IFC...developing a set of facility “ar- chitectural” programming tools , called Facility Composer (FC), to support the capture and tracking of facility criteria

  19. Winning market positioning strategies for long term care facilities.

    PubMed

    Higgins, L F; Weinstein, K; Arndt, K

    1997-01-01

    The decision to develop an aggressive marketing strategy for its long term care facility has become a priority for the management of a one-hundred bed facility in the Rocky Mountain West. Financial success and lasting competitiveness require that the facility in question (Deer Haven) establish itself as the preferred provider of long term care for its target market. By performing a marketing communications audit, Deer Haven evaluated its present market position and created a strategy for solidifying and dramatizing this position. After an overview of present conditions in the industry, we offer a seven step process that provides practical guidance for positioning a long term care facility. We conclude by providing an example application.

  20. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  1. The MIT HEDP Accelerator Facility for education and advanced diagnostics development for OMEGA, Z and the NIF

    NASA Astrophysics Data System (ADS)

    Petrasso, R.; Gatu Johnson, M.; Armstrong, E.; Han, H. W.; Kabadi, N.; Lahmann, B.; Orozco, D.; Rojas Herrera, J.; Sio, H.; Sutcliffe, G.; Frenje, J.; Li, C. K.; Séguin, F. H.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2015-11-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, a D-T neutron source and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The ion accelerator generates D-D and D-3He fusion products through acceleration of D ions onto a 3He-doped Erbium-Deuteride target. Fusion reaction rates around 106 s-1 are routinely achieved, and fluence and energy of the fusion products have been accurately characterized. The D-T neutron source generates up to 6 × 108 neutrons/s. The two x-ray generators produce spectra with peak energies of 35 keV and 225 keV and maximum dose rates of 0.5 Gy/min and 12 Gy/min, respectively. Diagnostics developed and calibrated at this facility include CR-39 based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a vital tool in the education of graduate and undergraduate students at MIT. This work was supported in part by SNL, DOE, LLE and LLNL.

  2. Development of Facility Type Information Packages for Design of Air Force Facilities.

    DTIC Science & Technology

    1983-03-01

    solution. For example, the optimum size and loca- 19 tion of windows for the incorporation of a passive solar *l . heating system varies with location, time...conditioning load estimate M. Energy impact statement N. Majcom review comments 0. Solar energy systems 61 4 Information which could help in the development...and Passive solar systems. All facilities should have Scme aspects of passive solar incor- por3ted into the iesign. Active sclar systems should ze con

  3. Investigation into the electromagnetic impulses from long-pulse laser illuminating solid targets inside a laser facility

    NASA Astrophysics Data System (ADS)

    Yi, Tao; Yang, Jinwen; Yang, Ming; Wang, Chuanke; Yang, Weiming; Li, Tingshuai; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Xiao, Shaoqiu

    2016-09-01

    Emission of the electromagnetic pulses (EMP) due to laser-target interaction in laser facility had been evaluated using a cone antenna in this work. The microwave in frequencies ranging from several hundreds of MHz to 2 GHz was recorded when long-pulse lasers with several thousands of joules illuminated the solid targets, meanwhile the voltage signals from 1 V to 4 V were captured as functions of laser energy and backlight laser, where the corresponding electric field strengths were obtained by simulating the cone antenna in combination with conducting a mathematical process (Tiknohov Regularization with L curve). All the typical coupled voltage oscillations displayed multiple peaks and had duration of up to 80 ns before decaying into noise and mechanisms of the EMP generation was schematically interpreted in basis of the practical measuring environments. The resultant data were expected to offer basic know-how to achieve inertial confinement fusion.

  4. Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility

    DOE PAGES

    Paik, Samuel Y.; Epperson, Patrick M.; Kasper, Kenneth M.

    2017-02-28

    Here, this article presents air and surface sampling data collected over the first two years since beryllium was introduced as a target material at the National Ignition Facility. Over this time, 101 experiments with beryllium-containing targets were executed. The data provides an assessment of current conditions in the facility and a baseline for future impacts as new, reduced regulatory limits for beryllium are being proposed by both the Occupational Safety and Health Administration and Department of Energy. This study also investigates how beryllium deposits onto exposed surfaces as a result of x-ray vaporization and the effectiveness of simple decontamination measuresmore » in reducing the amount of removable beryllium from a surface. Based on 1,961 surface wipe samples collected from entrant components (equipment directly exposed to target debris) and their surrounding work areas during routine reconfiguration activities, only one result was above the beryllium release limit of 0.2 µg/100 cm 2 and 27 results were above the analytical reporting limit of 0.01 µg/100 cm 2, for a beryllium detection rate of 1.4%. Surface wipe samples collected from the internal walls of the NIF target chamber, however, showed higher levels of beryllium, with beryllium detected on 73% and 87% of the samples during the first and second target chamber entries (performed annually), respectively, with 23% of the samples above the beryllium release limit during the second target chamber entry. The analysis of a target chamber wall panel exposed during the first 30 beryllium-containing experiments (cumulatively) indicated that 87% of the beryllium contamination remains fixed onto the surface after wet wiping the surface and 92% of the non-fixed contamination was removed by decontaminating the surface using a dry wipe followed by a wet wipe. Personal airborne exposures assessed during access to entrant components and during target chamber entry indicated that airborne beryllium was

  5. STS-32 MS Dunbar trains in JSC Manipulator Development Facility (MDF)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 Mission Specialist (MS) Bonnie J. Dunbar reviews checklist with training personnel in the Manipulator Development Facility (MDF) in JSC's Mockup and Integration Facility (MAIL) Bldg 9A. Dunbar (left) discusses procedures with trainer in front of the aft flight deck onorbit station controls. Overhead window W8 is visible above their heads.

  6. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  7. Evolution of Gas Cell Targets for Magnetized Liner Inertial Fusion Experiments at the Sandia National Laboratories PECOS Test Facility

    DOE PAGES

    Paguio, R. R.; Smith, G. E.; Taylor, J. L.; ...

    2017-12-04

    Z-Beamlet (ZBL) experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laserplasma instabilities LPI) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion (MagLIF) scheme being tested on the SNL Z-machine. The experiments aim to understand the tradeoffs between laser spot size, laser pulse shape, laser entrance hole (LEH) windowmore » thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are also described in this paper.« less

  8. Design of the LBNF Beamline Target Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tariq, S.; Ammigan, K.; Anderson, K.

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding inmore » a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.« less

  9. Critical need for MFE: the Alcator DX advanced divertor test facility

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Wolf, S.; Bonoli, P.; Fiore, C.; Granetz, R.; Greenwald, M.; Hutchinson, I.; Hubbard, A.; Hughes, J.; Lin, Y.; Lipschultz, B.; Parker, R.; Porkolab, M.; Reinke, M.; Rice, J.; Shiraiwa, S.; Terry, J.; Theiler, C.; Wallace, G.; White, A.; Whyte, D.; Wukitch, S.

    2013-10-01

    Three critical challenges must be met before a steady-state, power-producing fusion reactor can be realized: how to (1) safely handle extreme plasma exhaust power, (2) completely suppress material erosion at divertor targets and (3) do this while maintaining a burning plasma core. Advanced divertors such as ``Super X'' and ``X-point target'' may allow a fully detached, low temperature plasma to be produced in the divertor while maintaining a hot boundary layer around a clean plasma core - a potential game-changer for magnetic fusion. No facility currently exists to test these ideas at the required parallel heat flux densities. Alcator DX will be a national facility, employing the high magnetic field technology of Alcator combined with high-power ICRH and LHCD to test advanced divertor concepts at FNSF/DEMO power exhaust densities and plasma pressures. Its extended vacuum vessel contains divertor cassettes with poloidal field coils for conventional, snowflake, super-X and X-point target geometries. Divertor and core plasma performance will be explored in regimes inaccessible in conventional devices. Reactor relevant ICRF and LH drivers will be developed, utilizing high-field side launch platforms for low PMI. Alcator DX will inform the conceptual development and accelerate the readiness-for-deployment of next-step fusion facilities.

  10. Hardware development process for Human Research facility applications

    NASA Astrophysics Data System (ADS)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. .

  11. Human resource development in rural health care facilities.

    PubMed

    Johnson, L

    1991-01-01

    In this paper, human resource development problems facing rural health care facilities are identified and it is recognised that, particularly in the face of escalating demands for training arising from environmental pressures such as implementation of the structural efficiency principle, a coordinated approach to meet these problems is desirable. Such coordination is often sought via a regional staff development service. Accordingly, using the organisational life cycle as a conceptual framework, staff development services in five NSW health regions are examined. Ranging from a cafeteria style to a results-orientation, a diversity of strategic approaches to staff development is reflected.

  12. Summary of the XIII International Workshop on Polarized Sources, Targets and Polarimetry

    NASA Astrophysics Data System (ADS)

    Rathmann, F.

    2011-01-01

    The workshops on polarized sources, targets, and polarimetry are held every two years. The present meeting took place in Ferrara, Italy, and was organized by the University of Ferrara. Sessions on Polarized Proton and Deuterium Sources, Polarized Electron Sources, Polarimetry, Polarized Solid Targets, and Polarized Internal Targets, highlighted topics, recent developments, and progress in the field. A session decicated to Future Facilities provided an overview of a number of new activities in the spin-physics sector at facilities that are currently in the planning stage. Besides presenting a broad overview of polarized ion sources, electron sources, solid and gaseous targets, and their neighboring fields, the workshop also addressed the application of polarized atoms in applied sciences and medicine that is becoming increasingly important.

  13. Health facility delivery in sub-Saharan Africa: successes, challenges, and implications for the 2030 development agenda.

    PubMed

    Doctor, Henry V; Nkhana-Salimu, Sangwani; Abdulsalam-Anibilowo, Maryam

    2018-06-19

    Sub-Saharan Africa remains one of the regions with modest health outcomes; and evidenced by high maternal mortality ratios and under-5 mortality rates. There are complications that occur during and following pregnancy and childbirth that can contribute to maternal deaths; most of which are preventable or treatable. Evidence shows that early and regular attendance of antenatal care and delivery in a health facility under the supervision of trained personnel is associated with improved maternal health outcomes. The aim of this study is to assess changes in and determinants of health facility delivery using nationally representative surveys in sub-Saharan Africa. This study also seeks to present renewed evidence on the determinants of health facility delivery within the context of the Agenda for Sustainable Development to generate evidence-based decision making and enable deployment of targeted interventions to improve health facility delivery and maternal and child health outcomes. We used pooled data from 58 Demographic and Health Surveys (DHS) conducted between 1990 and 2015 in 29 sub-Saharan African countries. This yielded a total of 1.1 million births occurring in the 5 years preceding the surveys. Descriptive statistics were used to describe the counts and proportions of women who delivered by place of delivery and their background characteristics at the time of delivery. We used multilevel logistic regression model to estimate the magnitude of association in the form of odds ratios between place of delivery and the predictors. Results show that births among women in the richest wealth quintile were 68% more likely to occur in health facilities than births among women in the lowest wealth quintile. Women with at least primary education were twice more likely to give birth in facilities than women with no formal education. Births from more recent surveys conducted since 2010 were 85% more likely to occur in facilities than births reported in earliest (1990s

  14. Characterization studies of prototype ISOL targets for the RIA

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Burtseva, Tatiana; Neubauer, Janelle; Nolen, Jerry A.; Villari, Antonio C. C.; Gomes, Itacil C.

    2005-12-01

    Targets employing refractory compounds are being developed for the rare isotope accelerator (RIA) facility to produce ion species far from stability. With the 100 kW beams proposed for the production targets, dissipation of heat becomes a challenging issue. In our two-step target design, neutrons are generated in a refractory primary target, inducing fission in the surrounding uranium carbide. The interplay of density, grain size, thermal conductivity and diffusion properties of the UC2 needs to be well understood before fabrication. Thin samples of uranium carbide were prepared for thermal conductivity measurements using an electron beam to heat the sample and an optical pyrometer to observe the thermal radiation. Release efficiencies and independent thermal analysis on these samples are being undertaken at Oak Ridge National Laboratory (ORNL). An alternate target concept for RIA, the tilted slab approach promises to be simple with fast ion release and capable of withstanding high beam intensities while providing considerable yields via spallation. A proposed small business innovative research (SBIR) project will design a prototype tilted target, exploring the materials needed for fabrication and testing at an irradiation facility to address issues of heat transfer and stresses within the target.

  15. Excluded Facility Financial Status and Options for Payment System Modification

    PubMed Central

    Schneider, John E.; Cromwell, Jerry; McGuire, Thomas P.

    1993-01-01

    Psychiatric, rehabilitation, long-term care, and children's facilities have remained under the reimbursement system established under the Tax Equity and Fiscal Responsibility Act (TEFRA) of 1982 (Public Law 97-248). The number of TEFRA facilities and discharges has been increasing while their average profit rates have been steadily declining. Modifying TEFRA would require either rebasing the target amount or adjusting cost sharing for facilities exceeding their cost target. Based on our simulations of alternative payment systems, we recommend rebasing facilities' target amounts using a 50/50 blend of own costs and national average costs. Cost sharing above the target amount could be increased to include more government sharing of losses. PMID:10135345

  16. A space debris simulation facility for spacecraft materials evaluation

    NASA Technical Reports Server (NTRS)

    Taylor, Roy A.

    1987-01-01

    A facility to simulate the effects of space debris striking an orbiting spacecraft is described. This facility was purchased in 1965 to be used as a micrometeoroid simulation facility. Conversion to a Space Debris Simulation Facility began in July 1984 and it was placed in operation in February 1985. The facility consists of a light gas gun with a 12.7-mm launch tube capable of launching 2.5-12.7 mm projectiles with a mass of 4-300 mg and velocities of 2-8 km/sec, and three target tanks of 0.067 m, 0.53 a m and 28.5 a m. Projectile velocity measurements are accomplished via pulsed X-ray, laser diode detectors, and a Hall photographic station. This facility is being used to test development structural configurations and candidate materials for long duration orbital spacecraft. A summary of test results are also described.

  17. The Scottish Structural Proteomics Facility: targets, methods and outputs.

    PubMed

    Oke, Muse; Carter, Lester G; Johnson, Kenneth A; Liu, Huanting; McMahon, Stephen A; Yan, Xuan; Kerou, Melina; Weikart, Nadine D; Kadi, Nadia; Sheikh, Md Arif; Schmelz, Stefan; Dorward, Mark; Zawadzki, Michal; Cozens, Christopher; Falconer, Helen; Powers, Helen; Overton, Ian M; van Niekerk, C A Johannes; Peng, Xu; Patel, Prakash; Garrett, Roger A; Prangishvili, David; Botting, Catherine H; Coote, Peter J; Dryden, David T F; Barton, Geoffrey J; Schwarz-Linek, Ulrich; Challis, Gregory L; Taylor, Garry L; White, Malcolm F; Naismith, James H

    2010-06-01

    The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology.

  18. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, R.; Grenier, D.; Wollmann, D.

    2014-08-15

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like themore » Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.« less

  19. First experimental evidence of hydrodynamic tunneling of ultra-relativistic protons in extended solid copper target at the CERN HiRadMat facility

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2014-08-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  20. Development of risk-based decision methodology for facility design.

    DOT National Transportation Integrated Search

    2014-06-01

    This report develops a methodology for CDOT to use in the risk analysis of various types of facilities and provides : illustrative examples for the use of the proposed framework. An overview of the current practices and applications to : illustrate t...

  1. The development of the Canadian Mobile Servicing System Kinematic Simulation Facility

    NASA Technical Reports Server (NTRS)

    Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.

    1989-01-01

    Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.

  2. Above scaling short-pulse ion acceleration from flat foil and ``Pizza-top Cone'' targets at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk; Hegelich, B. Manuel; Cort Gautier, D.; Johnson, J. Randy; Kline, John L.; Shimada, Tsutomu; Fernández, Juan C.; Gaillard, Sandrine; Rassuchine, Jennifer; Le Galloudec, Nathalie; Cowan, Thomas E.; Malekos, Steve; Korgan, Grant

    2006-10-01

    Ion-driven Fast Ignition (IFI) has certain advantages over electron-driven FI due to a possible large reduction in the amount of energy required. Recent experiments at the Los Alamos National Laboratory's Trident facility have yielded ion energies and efficiencies many times in excess of recent published scaling laws, leading to even more potential advantages of IFI. Proton energies in excess of 35 MeV have been observed from targets produced by the University of Nevada, Reno - dubbed ``Pizza-top Cone'' targets - at intensities of only 1x10^19 W/cm^2 with 20 joules in 600 fs. Energies in excess of 24 MeV were observed from simple flat foil targets as well. The observed energies, above any published scaling laws, are attributed to target production, preparation, and shot to shot monitoring of many laser parameters, especially the laser ASE prepulse level and laser pulse duration. The laser parameters are monitored in real-time to keep the laser in optimal condition throughout the run providing high quality, reproducible shots.

  3. Recent Development of Anticancer Therapeutics Targeting Akt

    PubMed Central

    Morrow, John K.; Du-Cuny, Lei; Chen, Lu; Meuillet, Emmanuelle J.; Mash, Eugene A.; Powis, Garth; Zhang, Shuxing

    2013-01-01

    The serine/threonine kinase Akt has proven to be a significant signaling target, involved in various biological functions. Because of its cardinal role in numerous cellular responses, Akt has been implicated in many human diseases, particularly cancer. It has been established that Akt is a viable and feasible target for anticancer therapeutics. Analysis of all Akt kinases reveals conserved homology for an N-terminal regulatory domain, which contains a pleckstrin-homology (PH) domain for cellular translocation, a kinase domain with serine/threonine specificity, and a C-terminal extension domain. These well defined regions have been targeted, and various approaches, including in silico methods, have been implemented to develop Akt inhibitors. In spite of unique techniques and a prolific body of knowledge surrounding Akt, no targeted Akt therapeutics have reached the market yet. Here we will highlight successes and challenges to date on the development of anticancer agents modulating the Akt pathway in recent patents as well as discuss the methods employed for this task. Special attention will be given to patents with focus on those discoveries using computer-aided drug design approaches. PMID:21110830

  4. The Development of the Low Temperature Microgravity Physics Facility

    NASA Technical Reports Server (NTRS)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; hide

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide long duration (4.5 months) low temperature (1.4K) and microgravity conditions for scientists to perform breakthrough investigations on board the International Space Station.

  5. US Army Proposed Automatic Test Equipment Software Development and Support Facility.

    DTIC Science & Technology

    1982-10-29

    programs would be prepared as weapon and prime system operating software. The ATE Software Development and Support Facility will help prevent the TPS...ONE AS A STANDARD **Partially being Developed (2) UNDER DEVELOP- by Navy CSS Prgram MENT (3) NEEDS TAILOR- (5) NEEDS ING FOR ARMY DEVELOPMENT A- 2

  6. Development of an Industry Dynamometer/Spin Test Facility--Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-05-164

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDade, Mark

    2016-12-01

    The Department of Energy/National Renewable Energy Laboratory (DOE/NREL) owns and operates a megawatt-scale dynamometer used for testing wind turbine drive trains up to 1.5 megawatt (MW) in rated capacity. At this time, this unit is the only unit of its type in the United States, available for use by the American Wind Industry. Currently this dynamometer is heavily backlogged and unavailable to provide testing needed by various wind industry members. DOE/NREL is in possession of two critical pieces of equipment that may be used to develop an alternative Dynamometer facility, but does not have the funds or other resources necessarymore » to develop such a facility. The Participant possesses complimentary facilities and infrastructure that when combined with the NREL equipment can create such a test facility. The Participant is also committed to expending funds to develop and operate such a facility to the subsequent benefit of the Wind Industry and DOE Wind Energy program. In exchange for DOE/NREL providing the critical equipment, the Participant will grant DOE/NREL a minimum of 90 days of testing time per year in the new facility while incurring no facilities fees.« less

  7. Promising Targets in Anti-cancer Drug Development: Recent Updates.

    PubMed

    Kumar, Bhupinder; Singh, Sandeep; Skvortsova, Ira; Kumar, Vinod

    2017-01-01

    Cancer is a multifactorial disease and its genesis and progression are extremely complex. The biggest problem in the anticancer drug development is acquiring of multidrug resistance and relapse. Classical chemotherapeutics directly target the DNA of the cell, while the contemporary anticancer drugs involve molecular-targeted therapy such as targeting the proteins possessing abnormal expression inside the cancer cells. Conventional strategies for the complete eradication of the cancer cells proved ineffective. Targeted chemotherapy was successful in certain malignancies however, the effectiveness has often been limited by drug resistance and side effects on normal tissues and cells. Since last few years, many promising drug targets have been identified for the effective treatment of cancer. The current review article describes some of these promising anticancer targets that include kinases, tubulin, cancer stem cells, monoclonal antibodies and vascular targeting agents. In addition, promising drug candidates under various phases of clinical trials are also described. Multi-acting drugs that simultaneously target different cancer cell signaling pathways may facilitate the process of effective anti-cancer drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. [The development of novel tumor targeting delivery strategy].

    PubMed

    Gao, Hui-le; Jiang, Xin-guo

    2016-02-01

    Tumor is one of the most serious threats for human being. Although many anti-tumor drugs are approved for clinical use, the treatment outcome is still modest because of the poor tumor targeting efficiency and low accumulation in tumor. Therefore, it is important to deliver anti-tumor drug into tumor efficiently, elevate drug concentration in tumor tissues and reduce the drug distribution in normal tissues. And it has been one of the most attractive directions of pharmaceutical academy and industry. Many kinds of strategies, especially various nanoparticulated drug delivery systems, have been developed to address the critical points of complex tumor microenvironment, which are partially or mostly satisfied for tumor treatment. In this paper, we carefully reviewed the novel targeting delivery strategies developed in recent years. The most powerful method is passive targeting delivery based on the enhanced permeability and retention(EPR) effect, and most commercial nanomedicines are based on the EPR effect. However, the high permeability and retention require different particle sizes, thus several kinds of size-changeable nanoparticles are developed, such as size reducible particles and assemble particles, to satisfy the controversial requirement for particle size and enhance both tumor retention and penetration. Surface charge reversible nanoparticles also shows a high efficiency because the anionic charge in blood circulation and normal organs decrease the unintended internalization. The charge can change into positive in tumor microenvironment, facilitating drug uptake by tumor cells. Additionally, tumor microenvironment responsive drug release is important to decrease drug side effect, and many strategies are developed, such as p H sensitive release and enzyme sensitive release. Except the responsive nanoparticles, shaping tumor microenvironment could attenuate the barriers in drug delivery, for example, decreasing tumor collagen intensity and normalizing tumor

  9. Nike Facility Diagnostics and Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim

    2013-10-01

    The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.

  10. Development of novel entry inhibitors targeting emerging viruses

    PubMed Central

    Zhou, Yanchen; Simmons, Graham

    2013-01-01

    Emerging viral diseases pose a unique risk to public health, and thus there is a need to develop therapies. A current focus of funding agencies, and hence research, is the development of broad-spectrum antivirals, and in particular, those targeting common cellular pathways. The scope of this article is to review screening strategies and recent advances in this area, with a particular emphasis on antivirals targeting the step of viral entry for emerging lipid-enveloped viruses such as Ebola virus and SARS-coronavirus. PMID:23199399

  11. Laser-Plasma Interactions in Drive Campaign targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Callahan, D. A.; Moody, J. D.; Amendt, P. A.; Lasinski, B. F.; MacGowan, B. J.; Meeker, D.; Michel, P. A.; Ralph, J.; Rosen, M. D.; Ross, J. S.; Schneider, M. B.; Storm, E.; Strozzi, D. J.; Williams, E. A.

    2016-03-01

    The Drive campaign [D A Callahan et al., this conference] on the National Ignition Facility (NIF) laser [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)] has the focused goal of understanding and optimizing the hohlraum for ignition. Both the temperature and symmetry of the radiation drive depend on laser and hohlraum characteristics. The drive temperature depends on the coupling of laser energy to the hohlraum, and the symmetry of the drive depends on beam-to-beam interactions that result in energy transfer [P. A. Michel, S. H. Glenzer, L. Divol, et al, Phys. Plasmas 17, 056305 (2010).] within the hohlraum. To this end, hohlraums are being fielded where shape (rugby vs. cylindrical hohlraums), gas fill composition (neopentane at room temperature vs. cryogenic helium), and gas fill density (increase of ∼ 150%) are independently changed. Cylindrical hohlraums with higher gas fill density show improved inner beam propagation, as should rugby hohlraums, because of the larger radius over the capsule (7 mm vs. 5.75 mm in a cylindrical hohlraum). Energy coupling improves in room temperature neopentane targets, as well as in hohlraums at higher gas fill density. In addition cross-beam energy transfer is being addressed directly by using targets that mock up one end of a hohlraum, but allow observation of the laser beam uniformity after energy transfer. Ideas such as splitting quads into “doublets” by re-pointing the right and left half of quads are also being pursued. LPI results of the Drive campaign will be summarized, and analyses of future directions presented.

  12. Ca-48 targets - Home and abroad!

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Carpenter, Michael; Janssens, Robert V. F.

    2018-05-01

    Using the method of reduction/distillation, high-purity films of robust and ductile calcium metal were prepared for use as targets in nuclear physics experiments. These targets, however, are extremely air-sensitive and procedures must be developed for their handling and use without exposure to the air. In most instances, the thin 48Ca target is used on a carrier foil (backing) and a thin covering film of similar material is employed to further reduce re-oxidation. Un-backed metallic targets are rarely produced due to these concerns. In addition, the low natural abundance of the isotope 48Ca provided an increased incentive for the best efficiencies available in their preparation. Here, we describe the preparation of 48Ca targets employing a gold backing and thin gold cover for use at home, Argonne National Laboratory (ANL), as well as abroad, at Osaka University. For the overseas shipments, much care and preparation were necessary to ensure good targets and safe arrival to the experimental facilities.

  13. Development of Army Facility Functionality Assessment Criteria and Procedures

    DTIC Science & Technology

    2010-09-01

    critical facility types: the Tactical Equipment Main- tenance Facility (TEMF), the Company Operations Facility (COF), the Bat- talion Headquarters...Criteria for Company Operations Facilities (COF) ................ 56 Appendix G: Army Standard Design Criteria for Tactical Equipment Maintenance...1 mission-critical facility types: the Tactical Equipment Mainten- ance Facility (TEMF), the Company Operations Facility (COF), the Batta- lion

  14. Cryogenic target system for hydrogen layering

    DOE PAGES

    Parham, T.; Kozioziemski, B.; Atkinson, D.; ...

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less

  15. National Ignition Facility Project: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, W J; Moses, E; Warner, B

    2000-12-07

    The National Ignition Facility (NIF) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beampath infrastructure has been reconsidered and a new approach has been developed. This papermore » will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less

  16. Guidelines for Analysis of Health Facilities Planning in Developing Countries. Volume 5: Health Facilities Planning. International Health Planning Methods Series.

    ERIC Educational Resources Information Center

    Porter, Dennis R.; And Others

    Intended to assist Agency for International Development (AID) officers, advisors, and health officials in incorporating health planning into national plans for economic development, this fifth of ten manuals in the International Health Planning Methods Series deals with health facilities planning in developing countries. While several specific…

  17. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes were developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. The SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  18. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes have been developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  19. Development of an integrated set of research facilities for the support of research flight test

    NASA Technical Reports Server (NTRS)

    Moore, Archie L.; Harney, Constance D.

    1988-01-01

    The Ames-Dryden Flight Research Facility (DFRF) serves as the site for high-risk flight research on many one-of-a-kind test vehicles like the X-29A advanced technology demonstrator, F-16 advanced fighter technology integration (AFTI), AFTI F-111 mission adaptive wing, and F-18 high-alpha research vehicle (HARV). Ames-Dryden is on a section of the historic Muroc Range. The facility is oriented toward the testing of high-performance aircraft, as shown by its part in the development of the X-series aircraft. Given the cost of research flight tests and the complexity of today's systems-driven aircraft, an integrated set of ground support experimental facilities is a necessity. In support of the research flight test of highly advanced test beds, the DFRF is developing a network of facilities to expedite the acquisition and distribution of flight research data to the researcher. The network consists of an array of experimental ground-based facilities and systems as nodes and the necessary telecommunications paths to pass research data and information between these facilities. This paper presents the status of the current network, an overview of current developments, and a prospectus on future major enhancements.

  20. DETECTORS AND EXPERIMENTAL METHODS: Studies of a scintillator-bar detector for a neutron wall at an external target facility

    NASA Astrophysics Data System (ADS)

    Yu, Yu-Hong; Xu, Hua-Gen; Xu, Hu-Shan; Zhan, Wen-Long; Sun, Zhi-Yu; Guo, Zhong-Yan; Hu, Zheng-Guo; Wang, Jian-Song; Chen, Jun-Ling; Zheng, Chuan

    2009-07-01

    To achieve a better time resolution of a scintillator-bar detector for a neutron wall at the external target facility of HIRFL-CSR, we have carried out a detailed study of the photomultiplier, the wrapping material and the coupling media. The timing properties of a scintillator-bar detector have been studied in detail with cosmic rays using a high and low level signal coincidence. A time resolution of 80 ps has been achieved in the center of the scintillator-bar detector.

  1. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  2. Development of robotics facility docking test hardware

    NASA Technical Reports Server (NTRS)

    Loughead, T. E.; Winkler, R. V.

    1984-01-01

    Design and fabricate test hardware for NASA's George C. Marshall Space Flight Center (MSFC) are reported. A docking device conceptually developed was fabricated, and two docking targets which provide high and low mass docking loads were required and were represented by an aft 61.0 cm section of a Hubble space telescope (ST) mockup and an upgrading of an existing multimission modular spacecraft (MSS) mockup respectively. A test plan is developed for testing the hardware.

  3. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  4. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  5. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  6. 33 CFR 154.1045 - Response plan development and evaluation criteria for facilities that handle, store, or transport...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Response plan development and... (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Oil Facilities § 154.1045 Response plan development and evaluation criteria for facilities that handle, store, or...

  7. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  8. Neutron Source Facility Training Simulator Based on EPICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.

    A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less

  9. Value Engineering. Technical Manual. School Facilities Development Procedures Manual.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    Value Engineering (VE) is a cost-optimizing technique used to analyze design quality and cost-effectiveness. The application of VE procedures to the design and construction of school facilities has been adopted by the state of Washington. This technical manual provides guidance in developing the scope and applicability of VE to school projects; in…

  10. Multi-target drugs: the trend of drug research and development.

    PubMed

    Lu, Jin-Jian; Pan, Wei; Hu, Yuan-Jia; Wang, Yi-Tao

    2012-01-01

    Summarizing the status of drugs in the market and examining the trend of drug research and development is important in drug discovery. In this study, we compared the drug targets and the market sales of the new molecular entities approved by the U.S. Food and Drug Administration from January 2000 to December 2009. Two networks, namely, the target-target and drug-drug networks, have been set up using the network analysis tools. The multi-target drugs have much more potential, as shown by the network visualization and the market trends. We discussed the possible reasons and proposed the rational strategies for drug research and development in the future.

  11. Realistic Development and Testing of Fission System at a Non-Nuclear Testing Facility

    NASA Technical Reports Server (NTRS)

    Godfroy, Tom; VanDyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems.

  12. Realistic development and testing of fission systems at a non-nuclear testing facility

    NASA Astrophysics Data System (ADS)

    Godfroy, Tom; van Dyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems. .

  13. Advancing cancer drug discovery towards more agile development of targeted combination therapies.

    PubMed

    Carragher, Neil O; Unciti-Broceta, Asier; Cameron, David A

    2012-01-01

    Current drug-discovery strategies are typically 'target-centric' and are based upon high-throughput screening of large chemical libraries against nominated targets and a selection of lead compounds with optimized 'on-target' potency and selectivity profiles. However, high attrition of targeted agents in clinical development suggest that combinations of targeted agents will be most effective in treating solid tumors if the biological networks that permit cancer cells to subvert monotherapies are identified and retargeted. Conventional drug-discovery and development strategies are suboptimal for the rational design and development of novel drug combinations. In this article, we highlight a series of emerging technologies supporting a less reductionist, more agile, drug-discovery and development approach for the rational design, validation, prioritization and clinical development of novel drug combinations.

  14. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  15. The targeting of nutritionally at-risk children attending a primary health care facility in the Western Cape Province of South Africa.

    PubMed

    Schoeman, S E; Hendricks, M K; Hattingh, S P; Benadé, A J S; Laubscher, J A; Dhansay, M A

    2006-12-01

    The aim of this study was to determine the practices of primary health care (PHC) nurses in targeting nutritionally at-risk infants and children for intervention at a PHC facility in a peri-urban area of the Western Cape Province of South Africa. Nutritional risk status of infants and children <6 years of age was based on criteria specified in standardised nutrition case management guidelines developed for PHC facilities in the province. Children were identified as being nutritionally at-risk if their weight was below the 3rd centile, their birth weight was less than 2500 g, and their growth curve showed flattening or dropping off for at least two consecutive monthly visits. The study assessed the practices of nurses in identifying children who were nutritionally at-risk and the entry of these children into the food supplementation programme (formerly the Protein-Energy Malnutrition Scheme) of the health facility. Structured interviews were conducted with nurses to determine their knowledge of the case management guidelines; interviews were also conducted with caregivers to determine their sociodemographic status. One hundred and thirty-four children were enrolled in the study. The mean age of their caregivers was 29.5 (standard deviation 7.5) years and only 47 (38%) were married. Of the caregivers, 77% were unemployed, 46% had poor household food security and 40% were financially dependent on non-family members. Significantly more children were nutritionally at-risk if the caregiver was unemployed (54%) compared with employed (32%) (P=0.04) and when there was household food insecurity (63%) compared with household food security (37%) (P<0.004). Significantly more children were found not to be nutritionally at-risk if the caregiver was financially self-supporting or supported by their partners (61%) compared with those who were financially dependent on non-family members (35%) (P=0.003). The weight results of the nurses and the researcher differed significantly (P

  16. The Establishment of a New Friction Stir Welding Process Development Facility at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Carter, Robert W.

    2009-01-01

    Full-scale weld process development is being performed at MSFC to develop the tools, fixtures, and facilities necessary for Ares I production. Full scale development in-house at MSFC fosters technical acuity within the NASA engineering community, and allows engineers to identify and correct tooling and equipment shortcomings before they become problems on the production floor. Finally, while the new weld process development facility is currently being outfitted in support of Ares I development, it has been established to support all future Constellation Program needs. In particular, both the RWT and VWT were sized with the larger Ares V hardware in mind.

  17. The epididymis as a target for male contraceptive development.

    PubMed

    Hinton, B T; Cooper, T G

    2010-01-01

    The epididymis is an excellent target for the development of a male contraceptive. This is because the process of sperm maturation occurs in this organ; spermatozoa become motile and are able to recognise and fertilise an egg once they have traversed the epididymal duct. However, a number of attempts to interfere in sperm maturation and epididymal function or both have not been successful. The use of transgenic animals has proved useful in identifying a few epididymal targets but has yet to open the doors for drug development. Continuous focus on identifying additional epididymal targets and sperm-specific and epididymal-specific drugs is key to bringing a male contraceptive acting on the epididymis to the public.

  18. The National Carbon Capture Center at the Power Systems Development Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO 2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO 2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research atmore » the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO 2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO 2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for future power generation processes.« less

  19. The Scottish Structural Proteomics Facility: targets, methods and outputs

    PubMed Central

    Oke, Muse; Carter, Lester G.; Johnson, Kenneth A.; Liu, Huanting; McMahon, Stephen A.; Yan, Xuan; Kerou, Melina; Weikart, Nadine D.; Kadi, Nadia; Sheikh, Md. Arif; Schmelz, Stefan; Dorward, Mark; Zawadzki, Michal; Cozens, Christopher; Falconer, Helen; Powers, Helen; Overton, Ian M.; van Niekerk, C. A. Johannes; Peng, Xu; Patel, Prakash; Garrett, Roger A.; Prangishvili, David; Botting, Catherine H.; Coote, Peter J.; Dryden, David T. F.; Barton, Geoffrey J.; Schwarz-Linek, Ulrich; Challis, Gregory L.; Taylor, Garry L.; White, Malcolm F.

    2010-01-01

    The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology. Electronic supplementary material The online version of this article (doi:10.1007/s10969-010-9090-y) contains supplementary material, which is available to authorized users. PMID:20419351

  20. National facilities study. Volume 2: Task group on aeronautical research and development facilities report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Task Group on Aeronautics R&D Facilities examined the status and requirements for aeronautics facilities against the competitive need. Emphasis was placed on ground-based facilities for subsonic, supersonic and hypersonic aerodynamics, and propulsion. Subsonic and transonic wind tunnels were judged to be most critical and of highest priority. Results of the study are presented.

  1. PIE preparation of the MEGAPIE target

    NASA Astrophysics Data System (ADS)

    Wohlmuther, Michael; Wagner, Werner

    2012-12-01

    The MEGAPIE target, after successfully operating for 4 months at a beam power of 0.77 MW, is now being prepared for post irradiation examination PIE. The lead-bismuth eutectic (LBE) target was irradiated from August until December 2006, and in this period received a beam charge of 2.8 A h of 575 MeV protons. After that, the target was stored in the target storage facility of PSI, waiting for its post irradiation examination. In the meantime several campaigns of tests have been conducted by PSI and ZWILAG, the interim storage facility of Swiss nuclear power plants. In these tests the feasibility of the conditioning of the target and the extraction of sample material for the PIE has been proven. After transport to the hot cell facility at ZWILAG in June 2009, the dismantling of the MEGAPIE target started. It finally was cut into 21 pieces. Ten of these pieces will be shipped to the Hot Laboratory of PSI ('PSI hotlab') to extract samples from the structural materials as well as from the LBE. Currently it is foreseen that the sample extraction will start in the first half of 2011. The remaining parts of the MEGAPIE target were conditioned as radioactive waste. The present paper will mainly focus on the dismantling and first visual inspection of the MEGAPIE target. In addition an outlook on the PIE phase of MEGAPIE is given.

  2. Requirements Doc for Refurb of JASPER Facility in B131HB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knittel, Kenn M.

    The Joint Actinide Shock Physics Experimental Research (JASPER) Program target fabrication facility is currently located in building 131 (B131) of the Lawrence Livermore National Laboratory (LLNL). A portion of this current facility has been committed to another program as part of a larger effort to consolidate LLNL capabilities into newer facilities. This facility assembles precision targets for scientific studies at the Nevada National Security Site (NNSS). B131 is also going through a modernization project to upgrade the infrastructure and abate asbestos. These activities will interrupt the continuous target fabrication efforts for the JASPER Program. Several options are explored to meetmore » the above conflicting requirements, with the final recommendation to prepare a new facility for JASPER target fabrication operations before modernization efforts begin in the current facility assigned to JASPER. This recommendation fits within all schedule constraints and minimizes the disruption to the JASPER Program. This option is not without risk, as it requires moving an aged, precision coordinate measuring machine, which is essential to the JASPER Program’s success. The selected option balances the risk to the machine with continuity of operations.« less

  3. [The challenges of sustainable development in healthcare facilities].

    PubMed

    Mourgues, François; Muret, Jane; Pauchard, Jean-Claude

    2018-03-01

    Healthcare and medical-social facilities have a major responsibility within society, that of the quality of care, but also that of developing a system of sustainable and socially-responsible health. This system must meet the three pillars which constitute such an approach: economic, social and environmental sustainability. Innovation remains central to the sustainable evolution of practices and the first results are now visible. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Applying cognitive training to target executive functions during early development.

    PubMed

    Wass, Sam V

    2015-01-01

    Developmental psychopathology is increasingly recognizing the importance of distinguishing causal processes (i.e., the mechanisms that cause a disease) from developmental outcomes (i.e., the symptoms of the disorder as it is eventually diagnosed). Targeting causal processes early in disordered development may be more effective than waiting until outcomes are established and then trying to reverse the pathogenic process. In this review, I evaluate evidence suggesting that neural and behavioral plasticity may be greatest at very early stages of development. I also describe correlational evidence suggesting that, across a number of conditions, early emerging individual differences in attentional control and working memory may play a role in mediating later-developing differences in academic and other forms of learning. I review the currently small number of studies that applied direct and indirect cognitive training targeted at young individuals and discuss methodological challenges associated with targeting this age group. I also discuss a number of ways in which early, targeted cognitive training may be used to help us understand the developmental mechanisms subserving typical and atypical cognitive development.

  5. Applying cognitive training to target executive functions during early development

    PubMed Central

    Wass, Sam V.

    2015-01-01

    Developmental psychopathology is increasingly recognizing the importance of distinguishing causal processes (i.e., the mechanisms that cause a disease) from developmental outcomes (i.e., the symptoms of the disorder as it is eventually diagnosed). Targeting causal processes early in disordered development may be more effective than waiting until outcomes are established and then trying to reverse the pathogenic process. In this review, I evaluate evidence suggesting that neural and behavioral plasticity may be greatest at very early stages of development. I also describe correlational evidence suggesting that, across a number of conditions, early emerging individual differences in attentional control and working memory may play a role in mediating later-developing differences in academic and other forms of learning. I review the currently small number of studies that applied direct and indirect cognitive training targeted at young individuals and discuss methodological challenges associated with targeting this age group. I also discuss a number of ways in which early, targeted cognitive training may be used to help us understand the developmental mechanisms subserving typical and atypical cognitive development. PMID:24511910

  6. The Holistic Targeting (HOT) Methodology as the Means to Improve Information Operations (IO) Target Development and Prioritization

    DTIC Science & Technology

    2008-09-01

    software facilitate targeting problem understanding and the network analysis tool, Palantir , as an efficient and tailored semi-automated means to...the use of compendium software facilitate targeting problem understanding and the network analysis tool, Palantir , as an efficient and tailored semi...OBJECTIVES USING COMPENDIUM SOFTWARE .....63 E. HOT TARGET PRIORITIZATION AND DEVELOPMENT USING PALANTIR SOFTWARE .................................69 1

  7. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  8. Project definition study for the National Biomedical Tracer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roozen, K.

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendationsmore » for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.« less

  9. DEVELOPMENT OF THE METAL FINISHING FACILITY RISK SCREENING TOOL (MFFRST)

    EPA Science Inventory

    Recently the US EPA completed the development of the first version of the Metal Finishing Facility Risk Screening Tool (MFFRST) and has made this product available to the general public. MFFRST calculates the air emissions from a metal plating line and determines the risk to bot...

  10. Extracellular proteases as targets for drug development

    PubMed Central

    Cudic, Mare

    2015-01-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV), cysteine proteases (cathepsin B), and renin system are discussed herein. PMID:19689354

  11. SPES and the neutron facilities at Laboratori Nazionali di Legnaro

    NASA Astrophysics Data System (ADS)

    Silvestrin, L.; Bisello, D.; Esposito, J.; Mastinu, P.; Prete, G.; Wyss, J.

    2016-03-01

    The SPES Radioactive Ion Beam (RIB) facility, now in the construction phase at INFN-LNL, has the aim to provide high-intensity and high-quality beams of neutron-rich nuclei for nuclear physics research as well as to develop an interdisciplinary research center based on the cyclotron proton beam. The SPES system is based on a dual-exit high-current cyclotron, with tunable proton beam energy 35-70MeV and 0.20-0.75mA. The first exit is used as proton driver to supply an ISOL system with an UCx Direct Target able to sustain a power of 10kW. The expected fission rate in the target is of the order of 10^{13} fissions per second. The exotic isotopes will be re-accelerated by the ALPI superconducting LINAC at energies of 10 A MeV and higher, for masses around A=130 amu, with an expected beam intensity of 10^7 - 10^9 pps. The second exit will be used for applied physics: radioisotope production for medicine and neutrons for material studies. Fast neutron spectra will be produced by the proton beam interaction with a conversion target. A production rate in excess of 10^{14} n/s can be achieved: this opens up the prospect of a high-flux neutron irradiation facility (NEPIR) to produce both discrete and continuous energy neutrons. A direct proton beam line is also envisaged. NEPIR and the direct proton line would dramatically increase the wide range of irradiation facilities presently available at LNL. We also present LENOS, a proposed project dedicated to accurate neutron cross-sections measurements using intense, well-characterized, broad energy neutron beams. Other activities already in operation at LNL are briefly reviewed: the SIRAD facility for proton and heavy-ion irradiation at the TANDEM-ALPI accelerator and the BELINA test facility at CN van de Graaff accelerator.

  12. High volume fabrication of laser targets using MEMS techniques

    NASA Astrophysics Data System (ADS)

    Spindloe, C.; Arthur, G.; Hall, F.; Tomlinson, S.; Potter, R.; Kar, S.; Green, J.; Higginbotham, A.; Booth, N.; Tolley, M. K.

    2016-04-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed.

  13. Development of the advanced life support Systems Integration Research Facility at NASA's Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.; Thompson, Clifford D.

    1992-01-01

    Future NASA manned missions to the moon and Mars will require development of robust regenerative life support system technologies which offer high reliability and minimal resupply. To support the development of such systems, early ground-based test facilities will be required to demonstrate integrated, long-duration performance of candidate regenerative air revitalization, water recovery, and thermal management systems. The advanced life support Systems Integration Research Facility (SIRF) is one such test facility currently being developed at NASA's Johnson Space Center. The SIRF, when completed, will accommodate unmanned and subsequently manned integrated testing of advanced regenerative life support technologies at ambient and reduced atmospheric pressures. This paper provides an overview of the SIRF project, a top-level description of test facilities to support the project, conceptual illustrations of integrated test article configurations for each of the three SIRF systems, and a phased project schedule denoting projected activities and milestones through the next several years.

  14. The National Ignition Facility Project: An Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, W.J.; Moses, E.; Warner, B.

    2000-12-07

    The National Ignition Facility (NIT) consists of 192 forty-centimeter-square laser beams and a 10-m-diameter target chamber. Physical construction began in 1997. The Laser and Target Area Building and the Optics Assembly Building were the first major construction activities, and despite several unforeseen obstacles, the buildings are now 92% complete and have been done on time and within cost. Prototype component development and testing has proceeded in parallel. Optics vendors have installed full-scale production lines and have done prototype production runs. The assembly and integration of the beam path infrastructure has been reconsidered and a new approach has been developed. Thismore » paper will discuss the status of the NIF project and the plans for completion. It will also include summary information on Laser MegaJoule (LMJ) provided by M. Andre, LMJ Project Director.« less

  15. New approaches to ambulatory care facilities in the United Kingdom--an investor developer's perspective.

    PubMed

    Eminson, C; Dawson, D

    1999-01-01

    The purpose of this article is to describe the strategic context within which ambulatory care facilities are being developed, to consider a range of models of care facilities available, and, by drawing on the experience of the authors, to comment on some of the investment and development issues arising from two projects in progress--the community hospitals in Richmond, Yorkshire, in rural north England, and Thames Ditton on the borders of outer south London. In the final section, we consider the possible future of ambulatory care development in the light of government policy.

  16. Developing a concept for a national used fuel interim storage facility in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less

  17. Sustainable Facility Development: Perceived Benefits and Challenges

    ERIC Educational Resources Information Center

    Stinnett, Brad; Gibson, Fred

    2016-01-01

    Purpose: The purpose of this paper is to assess the perceived benefits and challenges of implementing sustainable initiatives in collegiate recreational sports facilities. Additionally, this paper intends to contribute to the evolving field of facility sustainability in higher education. Design/methodology/approach The design included qualitative…

  18. Land developer participation in providing for bus transit facilities and operations

    DOT National Transportation Integrated Search

    2002-03-01

    This report provides an overview of the various non-regulatory and regulatory approaches for engaging private sector land developer participation in contributing toward the provision of public bus transit capital facilities and the cost of operations...

  19. Design and Development of a New Facility for Teaching and Research in Clinical Anatomy

    ERIC Educational Resources Information Center

    Greene, John Richard T.

    2009-01-01

    This article discusses factors in the design, commissioning, project management, and intellectual property protection of developments within a new clinical anatomy facility in the United Kingdom. The project was aimed at creating cost-effective facilities that would address widespread concerns over anatomy teaching, and support other activities…

  20. TARGET: Rapid Capture of Process Knowledge

    NASA Technical Reports Server (NTRS)

    Ortiz, C. J.; Ly, H. V.; Saito, T.; Loftin, R. B.

    1993-01-01

    TARGET (Task Analysis/Rule Generation Tool) represents a new breed of tool that blends graphical process flow modeling capabilities with the function of a top-down reporting facility. Since NASA personnel frequently perform tasks that are primarily procedural in nature, TARGET models mission or task procedures and generates hierarchical reports as part of the process capture and analysis effort. Historically, capturing knowledge has proven to be one of the greatest barriers to the development of intelligent systems. Current practice generally requires lengthy interactions between the expert whose knowledge is to be captured and the knowledge engineer whose responsibility is to acquire and represent the expert's knowledge in a useful form. Although much research has been devoted to the development of methodologies and computer software to aid in the capture and representation of some types of knowledge, procedural knowledge has received relatively little attention. In essence, TARGET is one of the first tools of its kind, commercial or institutional, that is designed to support this type of knowledge capture undertaking. This paper will describe the design and development of TARGET for the acquisition and representation of procedural knowledge. The strategies employed by TARGET to support use by knowledge engineers, subject matter experts, programmers and managers will be discussed. This discussion includes the method by which the tool employs its graphical user interface to generate a task hierarchy report. Next, the approach to generate production rules for incorporation in and development of a CLIPS based expert system will be elaborated. TARGET also permits experts to visually describe procedural tasks as a common medium for knowledge refinement by the expert community and knowledge engineer making knowledge consensus possible. The paper briefly touches on the verification and validation issues facing the CLIPS rule generation aspects of TARGET. A description of

  1. Environmental Assessment for Developing Renewable Energy Enhanced Use Lease Facilities at Robins Air Force Base

    DTIC Science & Technology

    2013-12-15

    Blufftown is underlain by igneous and metamorphic rocks which are equivalent to those of the Georgia Piedmont. Potable and process waters are produced...Final Environmental Assessment for Developing Renewable Energy Enhanced Use Lease Facilities at Robins Air Force Base...TITLE AND SUBTITLE Final Environmental Assessment for Developing Renewable Energy Enhanced Use Lease Facilities at Robins Air Force Base 5a. CONTRACT

  2. Targeting nursing homes under the Quality Improvement Organization program's 9th statement of work.

    PubMed

    Stevenson, David G; Mor, Vincent

    2009-09-01

    In the Quality Improvement Organization (QIO) program's latest Statement of Work, the Centers for Medicare and Medicaid Services (CMS) is targeting its nursing home activities toward facilities that perform poorly on two quality measures-pressure ulcers and restraint use. The designation of target facilities is a shift in strategy for CMS and a direct response to criticism that QIO program resources were not being targeted effectively to facilities or clinical areas that most needed improvement. Using administrative data, this article analyzes implications of using narrowly defined criteria to identify facilities that need improvement, particularly in light of considerable evidence showing that nursing home quality is multidimensional and may change over time. The analyses show that one in four facilities is targeted for improvement nationally but that approximately half of some states' facilities are targeted while other states have almost none targeted. The analyses also convey deeper limitations to using threshold values on individual measures to identify poorly performing homes. Target facilities can be among the top performers on a range of other quality measures, and their performance on targeted measures themselves may change over time. The implication of these features is that a very different group of facilities would have been chosen had the QIO program targeted other measures or examined performance at a different point in time. Ultimately, CMS has chosen a blunt instrument to identify poorly performing nursing homes, and supplemental strategies-such as soliciting input from state survey agencies and more closely aligning quality improvement and quality assurance efforts-should be considered to address potential limitations.

  3. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy.

    PubMed

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Tomitani, Takehiro; Minohara, Shinichi; Noda, Koji; Kanai, Tatsuaki

    2007-03-01

    A project to construct a new treatment facility as an extension of the existing heavy-ion medical accelerator in chiba (HIMAC) facility has been initiated for further development of carbon-ion therapy. The greatest challenge of this project is to realize treatment of a moving target by scanning irradiation. For this purpose, we decided to combine the rescanning technique and the gated irradiation method. To determine how to avoid hot and/or cold spots by the relatively large number of rescannings within an acceptable irradiation time, we have studied the scanning strategy, scanning magnets and their control, and beam intensity dynamic control. We have designed a raster scanning system and carried out a simulation of irradiating moving targets. The result shows the possibility of practical realization of moving target irradiation with pencil beam scanning. We describe the present status of our design study of the raster scanning system for the HIMAC new treatment facility.

  4. Technical viability and development needs for waste forms and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegg, I.; Gould, T.

    1996-05-01

    The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It wasmore » not the intent of this session to recommend or advocate any one technology over another.« less

  5. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  6. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  7. Antimicrobial stewardship in long term care facilities: what is effective?

    PubMed

    Nicolle, Lindsay E

    2014-02-12

    Intense antimicrobial use in long term care facilities promotes the emergence and persistence of antimicrobial resistant organisms and leads to adverse effects such as C. difficile colitis. Guidelines recommend development of antimicrobial stewardship programs for these facilities to promote optimal antimicrobial use. However, the effectiveness of these programs or the contribution of any specific program component is not known. For this review, publications describing evaluation of antimicrobial stewardship programs for long term care facilities were identified through a systematic literature search. Interventions included education, guidelines development, feedback to practitioners, and infectious disease consultation. The studies reviewed varied in types of facilities, interventions used, implementation, and evaluation. Comprehensive programs addressing all infections were reported to have improved antimicrobial use for at least some outcomes. Targeted programs for treatment of pneumonia were minimally effective, and only for indicators of uncertain relevance for stewardship. Programs focusing on specific aspects of treatment of urinary infection - limiting treatment of asymptomatic bacteriuria or prophylaxis of urinary infection - were reported to be effective. There were no reports of cost-effectiveness, and the sustainability of most of the programs is unclear. There is a need for further evaluation to characterize effective antimicrobial stewardship for long term care facilities.

  8. Moderator Demonstration Facility Design and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.

    2017-02-01

    The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producingmore » target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world

  9. Preface: Twenty-First Target Fabrication Specialists Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikroo, Abbas; Czechowicz, Don

    The Twenty First Target Fabrication Meeting held in Las Vegas, Nevada, from June xx-yy 2015, was attended by more than 100 scientists, engineers, and technicians from the United States, the United Kingdom, France, and Japan, bringing together international experts on the design, development, and fabrication of inertial confinement fusion (ICF) and high-energy-density (HED) experimental targets fielded on laser and pulsed-power facilities around the world. We were delighted to have such exceptional international representation. The program included 4 invited papers, 53 contributed papers, and 55 posters. A selection of these is presented in this dedicated issue of Fusion Science and Technologymore » (FST).« less

  10. Preface: Twenty-First Target Fabrication Specialists Meeting

    DOE PAGES

    Nikroo, Abbas; Czechowicz, Don

    2017-04-21

    The Twenty First Target Fabrication Meeting held in Las Vegas, Nevada, from June xx-yy 2015, was attended by more than 100 scientists, engineers, and technicians from the United States, the United Kingdom, France, and Japan, bringing together international experts on the design, development, and fabrication of inertial confinement fusion (ICF) and high-energy-density (HED) experimental targets fielded on laser and pulsed-power facilities around the world. We were delighted to have such exceptional international representation. The program included 4 invited papers, 53 contributed papers, and 55 posters. A selection of these is presented in this dedicated issue of Fusion Science and Technologymore » (FST).« less

  11. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    NASA Technical Reports Server (NTRS)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact

  12. Parallel machine architecture and compiler design facilities

    NASA Technical Reports Server (NTRS)

    Kuck, David J.; Yew, Pen-Chung; Padua, David; Sameh, Ahmed; Veidenbaum, Alex

    1990-01-01

    The objective is to provide an integrated simulation environment for studying and evaluating various issues in designing parallel systems, including machine architectures, parallelizing compiler techniques, and parallel algorithms. The status of Delta project (which objective is to provide a facility to allow rapid prototyping of parallelized compilers that can target toward different machine architectures) is summarized. Included are the surveys of the program manipulation tools developed, the environmental software supporting Delta, and the compiler research projects in which Delta has played a role.

  13. Strategies that Target Leukocyte Traffic in IBD: Recent Developments

    PubMed Central

    Rivera-Nieves, Jesús

    2015-01-01

    Purpose of review We review the most recent developments regarding the targeting of molecules involved in the traffic of leukocytes for the treatment of IBD. Recent Findings We discuss the most important findings of one published phase II trial that targeted the β7 integrin (Etrolizumab), two phase II trials that targeted the α4β7 integrin ligand: Mucosal Addressin Cell Adhesion Molecule-1 (MAdCAM-1, PF-00547659), a phase II targeting the chemokine IP-10 (CXCL10) in Crohn’s and a phase II trial that targeted the sphingosine-1-phosphate receptor-1 (S1P1): ozanimod in patients with ulcerative colitis (UC). Summary Targeting molecules involved in leukocyte traffic has recently become an effective and safe strategy for the treatment of IBD. Novel approaches now not only target the integrins on the lymphocyte surface, but also its endothelial ligand: MAdCAM-1. As with vedolizumab, antibodies against MAdCAM-1 appear most effective in ulcerative colitis rather than in Crohn’s. Targeting chemokines or their receptors does not appear to have the same efficacy as those that target the most stable integrin:immunoglobulin superfamily interactions between the lymphocyte and endothelium. Preliminary results also suggest that the sphingosine-1-phosphate pathway might also be targeted therapeutically in IBD, no longer with parenterally administered antibodies but with orally administered small molecules. PMID:26398681

  14. Development of an analytical methodology for two-lane highway facility analysis.

    DOT National Transportation Integrated Search

    2012-11-01

    Florida is experiencing rapid growth and development. This applies not only to urban areas, but to rural areas as well. This growth is now resulting in congestion on facilities that previously did not have any. One area that is becoming a concern, pa...

  15. SSBRP User Operations Facility (UOF) Overview and Development Strategy

    NASA Technical Reports Server (NTRS)

    Picinich, Lou; Stone, Thom; Sun, Charles; Windrem, May; Givens, John J. (Technical Monitor)

    1995-01-01

    This paper will present the Space Station Biological Research Project (SSBRP) User Operations Facility (UOF) architecture and development strategy. A major element of the UOF at NASA Ames Research Center, the Communication and Data System (CDS) will be the primary focus of the discussions. CDS operational, telescience, security, and development objectives will be discussed along with CDS implementation strategy. The implementation strategy discussions will include: Object Oriented Analysis & Design, System & Software Prototyping, and Technology Utilization. A CDS design overview that includes: CDS Context Diagram, CDS Architecture, Object Models, Use Cases, and User Interfaces will also be presented. CDS development brings together "cutting edge" technologies and techniques such as: object oriented development, network security, multimedia networking, web-based data distribution, JAVA, and graphical user interfaces. Use of these "cutting edge" technologies and techniques translates directly to lower development and operations costs.

  16. Development and use of hydrogen-air torches in an altitude facility

    NASA Technical Reports Server (NTRS)

    Lottig, Roy A.; Huber, Gary T.

    1993-01-01

    A hydrogen-air ignition torch concept that had been used successfully in two rocket engine test facilities to consume excess hydrogen in their exhausters at atmospheric conditions was experimentally evaluated and developed in an altitude test facility at NASA Lewis Research Center. The idea was to use several of these torches in conjunction with hydrogen detectors and dilution air to prevent excess accumulation of unburned hydrogen or mixtures of hydrogen and air exceeding the sea-level lower flammability limit in the altitude facility exhaust system during hydrogen-fueled propulsion system tests. The torches were evaluated for a range of fuel-to-air ratios from 0.09 to 0.39 and for a range of exit diameters from 19/64 to 49/64 in. From the results of these tests a torch geometry and a fuel-to-air ratio were selected that produced a reasonably sized torch exhaust flame for consumption of unburned hydrogen at altitude pressures from sea level to 4 psia.

  17. Jonathan W. Amy and the Amy Facility for Instrumentation Development.

    PubMed

    Cooks, R Graham

    2017-05-16

    This Perspective describes the unique Jonathan Amy Facility for Chemical Instrumentation in the Department of Chemistry at Purdue University, tracing its history and mode of operation. It also describes aspects of the career of its namesake and some of his insights which have been central to analytical instrumentation development, improvement, and utilization, both at Purdue and nationally.

  18. The development of seasonal emission factors from a Canadian commercial laying hen facility

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Wood, David J.; Van Heyst, Bill J.

    2014-04-01

    Pollutants emitted from poultry housing facilities are a concern from a human health, bird welfare, and environmental perspective. Development of emission factors for these aerial pollutants is difficult due to variable climatic conditions, the number and type of poultry, and the wide range of management practices used. To address these concerns, a study was conducted to develop emission factors for ammonia and particulate matter over a period of one year from a commercial poultry laying hen facility in Wellington County, Ontario, Canada. Instruments housed inside an on-site mobile trailer were used to monitor in-house concentrations of ammonia and size fractionated particulate matter via a heated sample line. Along with a ventilation profile, emission factors were developed for the facility. Average emissions of 19.53 ± 19.97, 2.55 ± 2.10, and 1.10 ± 1.52 g day-1 AU-1 (where AU is defined as an animal unit equivalent to 500 kg live mass) for ammonia, PM10, PM2.5, respectively, were observed. All emissions peaked during the winter months, with the exception of PM2.5 which increased in the summer.

  19. Target weight achievement and ultrafiltration rate thresholds: potential patient implications.

    PubMed

    Flythe, Jennifer E; Assimon, Magdalene M; Overman, Robert A

    2017-06-02

    Higher ultrafiltration (UF) rates and extracellular hypo- and hypervolemia are associated with adverse outcomes among maintenance hemodialysis patients. The Centers for Medicare and Medicaid Services recently considered UF rate and target weight achievement measures for ESRD Quality Incentive Program inclusion. The dual measures were intended to promote balance between too aggressive and too conservative fluid removal. The National Quality Forum endorsed the UF rate measure but not the target weight measure. We examined the proposed target weight measure and quantified weight gains if UF rate thresholds were applied without treatment time (TT) extension or interdialytic weight gain (IDWG) reduction. Data were taken from the 2012 database of a large dialysis organization. Analyses considered 152,196 United States hemodialysis patients. We described monthly patient and dialysis facility target weight achievement patterns and examined differences in patient characteristics across target weight achievement status and differences in facilities across target weight measure scores. We computed the cumulative, theoretical 1-month fluid-related weight gain that would occur if UF rates were capped at 13 mL/h/kg without concurrent TT extension or IDWG reduction. Target weight achievement patterns were stable over the year. Patients who did not achieve target weight (post-dialysis weight ≥ 1 kg above or below target weight) tended to be younger, black and dialyze via catheter, and had shorter dialysis vintage, greater body weight, higher UF rate and more missed treatments compared with patients who achieved target weight. Facilities had, on average, 27.1 ± 9.7% of patients with average post-dialysis weight ≥ 1 kg above or below the prescribed target weight. In adjusted analyses, facilities located in the midwest and south and facilities with higher proportions of black and Hispanic patients and higher proportions of patients with shorter TTs were more likely to

  20. Examining Regionalization Efforts to Develop Lessons Learned and Consideration for Department of Defense Medical Facilities

    DTIC Science & Technology

    2017-03-23

    Consideration for Department of Defense Medical Facilities Erik B. Schuh Follow this and additional works at: https://scholar.afit.edu/etd Part of the...Citation Schuh, Erik B., "Examining Regionalization Efforts to Develop Lessons Learned and Consideration for Department of Defense Medical Facilities...Consideration for Department of Defense Medical Facilities THESIS Erik B. Schuh, 2Lt, USAF AFIT-ENS-MS-17-M-156 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR

  1. The national ignition facility: Path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2006-06-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  2. The national ignition facility: path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2007-08-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  3. High-efficiency-release targets for use at ISOL facilities: computational design

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.

    1999-12-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation are presented in this report.

  4. Recent developments in emerging therapeutic targets of osteoarthritis.

    PubMed

    Sun, Margaret Man-Ger; Beier, Frank; Pest, Michael A

    2017-01-01

    Despite the tremendous individual suffering and socioeconomic burden caused by osteoarthritis, there are currently no effective disease-modifying treatment options. This is in part because of our incomplete understanding of osteoarthritis disease mechanism. This review summarizes recent developments in therapeutic targets identified from surgical animal models of osteoarthritis that provide novel insight into osteoarthritis pathology and possess potential for progression into preclinical studies. Several candidate pathways and processes that have been identified include chondrocyte autophagy, growth factor signaling, inflammation, and nociceptive signaling. Major strategies that possess therapeutic potential at the cellular level include inhibiting autophagy suppression and decreasing reactive oxygen species (ROS) production. Cartilage anabolism and prevention of cartilage degradation has been shown to result from growth factor signaling modulation, such as TGF-β, TGF-α, and FGF; however, the results are context-dependent and require further investigation. Pain assessment studies in rodent surgical models have demonstrated potential in employing anti-NGF strategies for minimizing osteoarthritis-associated pain. Studies of potential therapeutic targets in osteoarthritis using animal surgical models are helping to elucidate osteoarthritis pathology and propel therapeutics development. Further studies should continue to elucidate pathological mechanisms and therapeutic targets in various joint tissues to improve overall joint health.

  5. Target diagnostics for commissioning the AWE HELEN Laser Facility 100 TW chirped pulse amplification beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eagleton, R. T.; Clark, E. L.; Davies, H. M.

    2006-10-15

    The capability of the HELEN laser at the Atomic Weapons Establishment Aldermaston has been enhanced by the addition of a short-pulse laser beam to augment the twin opposing nanosecond time scale beams. The short-pulse beam utilizes the chirped pulse amplification (CPA) technique and is capable of delivering up to 60 J on target in a 500 fs pulse, around 100 TW, at the fundamental laser wavelength of 1.054 {mu}m. During the commissioning phase a number of diagnostic systems have been fielded, these include: x-ray pinhole imaging of the laser heated spot, charged particle time of flight, thermoluminescent dosimeter array, calibratedmore » radiochromic film, and CR39 nuclear track detector. These diagnostic systems have been used to verify the performance of the CPA beam to achieve a focused intensity of around 10{sup 19} W cm{sup -2} and to underwrite the facility radiological safety system.« less

  6. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics.

    PubMed

    Knezevic, Nebojsa Nick; Yekkirala, Ajay; Yaksh, Tony L

    2017-11-01

    Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.

  7. Developing a Shared Research Facility.

    ERIC Educational Resources Information Center

    Goodman, Ira S.; Newcomb, Elizabeth W.

    1990-01-01

    Planning, creation, and current operation of the Transgenic Mouse Research Facility at the New York University Kaplan Cancer Center are discussed. The university considered need, space, funding, supervision, and marketing and followed a logical and structured management process embodying both scientific and administrative input. (Author/MSE)

  8. Risk-based targeting: A new approach in environmental protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, C.A.

    1995-12-31

    Risk-based targeting has recently emerged as an effective tool to help prioritize efforts to identify and manage geographic areas, chemicals, facilities, and agricultural activities that cause the most environmental degradation. This paper focuses on how the Environmental Protection Agency (EPA) has recently used risk-based targeting to identify and screen Federal, industrial, commercial and municipal facilities which contribute to probable human health (fish consumption advisories and contaminated fish tissue) and aquatic life (contaminated sediments) impacts. Preliminary results identified several hundred potential contributors of problem chemicals to probable impacts within the same river reach in 1991--93. Analysis by industry sector showed thatmore » the majority of the facilities identified were publicly owned treatment works (POTWs), in addition to industry organic and inorganic chemical manufacturers, petroleum refineries, and electric services, coatings, engravings, and allied services, among others. Both compliant and non-compliant potentially contributing facilities were identified to some extent in all EPA regions. Additional results identifying possible linkages of other pollutant sources to probable impacts, as well as estimation of potential exposure of these contaminants to minority and/or poverty populations are also presented. Out of these analyses, a number of short and long-term strategies are being developed that EPA may use to reduce loadings of problem contaminants to impacted waterbodies.« less

  9. Methodology for worker neutron exposure evaluation in the PDCF facility design.

    PubMed

    Scherpelz, R I; Traub, R J; Pryor, K H

    2004-01-01

    A project headed by Washington Group International is meant to design the Pit Disassembly and Conversion Facility (PDCF) to convert the plutonium pits from excessed nuclear weapons into plutonium oxide for ultimate disposition. Battelle staff are performing the shielding calculations that will determine appropriate shielding so that the facility workers will not exceed target exposure levels. The target exposure levels for workers in the facility are 5 mSv y(-1) for the whole body and 100 mSv y(-1) for the extremity, which presents a significant challenge to the designers of a facility that will process tons of radioactive material. The design effort depended on shielding calculations to determine appropriate thickness and composition for glove box walls, and concrete wall thicknesses for storage vaults. Pacific Northwest National Laboratory (PNNL) staff used ORIGEN-S and SOURCES to generate gamma and neutron source terms, and Monte Carlo (computer code for) neutron photon (transport) (MCNP-4C) to calculate the radiation transport in the facility. The shielding calculations were performed by a team of four scientists, so it was necessary to develop a consistent methodology. There was also a requirement for the study to be cost-effective, so efficient methods of evaluation were required. The calculations were subject to rigorous scrutiny by internal and external reviewers, so acceptability was a major feature of the methodology. Some of the issues addressed in the development of the methodology included selecting appropriate dose factors, developing a method for handling extremity doses, adopting an efficient method for evaluating effective dose equivalent in a non-uniform radiation field, modelling the reinforcing steel in concrete, and modularising the geometry descriptions for efficiency. The relative importance of the neutron dose equivalent compared with the gamma dose equivalent varied substantially depending on the specific shielding conditions and lessons

  10. Development Of Hard X-Ray Sources With High Radiative Power Output At The National Ignition Facility Utilizing Molybdenum and Silver Cavities

    NASA Astrophysics Data System (ADS)

    Widmann, Klaus; Benjamin, Russ; May, Mark; Thorn, Daniel; Colvin, Jeff; Barrios, Maria; Kemp, G. Elijah; Fournier, Kevin; Blue, Brent

    2016-10-01

    In our on-going x-ray source development campaign at the National Ignition Facility, we have recently extended the energy range of our laser-driven cavity sources to the 20 keV range by utilizing molybdenum-lined and silver-lined cavity targets. Using a variety of spectroscopic and power diagnostics we determined that almost 1% of the nearly 1 MJ total laser energy used for heating the cavity target was converted to Mo K-shell x rays using our standard cavity design. The same laser drive for silver-lined cavities yielded about 0.4% conversion efficiency for the Ag K-shell emission. Comparison with HYDRA simulations are used to further optimize the x-rays conversion efficiency. The simulations indicate that minor changes in the aspect ratio of the cavity and the layer thickness may double the radiative power of the K-shell emission. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  11. Neutral atoms facility for space sensors characterization and BepiColombo/ELENA development instrument's progresses.

    NASA Astrophysics Data System (ADS)

    de Angelis, E.; di Lellis, A. M.; Orsini, S.; Zanza, V.; Maggi, M.; Vertolli, N.; D'Amicis, R.; Tilia, B.; Sibio, A.

    2003-04-01

    An Energetic Neutral Atoms facility to test and calibrate Neutral Atoms Analyzers has been developed in the Scientific Technical Unit of Fusion at the ENEA Research Center in Frascati (Rome-Italy). In the last years a collaboration with IFSI (Interplanetary Space and Physics Institute, CNR-Rome-Italy) has allowed to use this facility for space sensors and for characterization of crucial instruments elements. The ENA beam is realized with an ion source and a neutralization cell, and allows to test any instrument in the energy range 300eV-110keV with the available masses of Hydrogen, Deuterium or Helium. At the moment, the critical elements of ELENA (Emitted Low Energy Neutral Atoms) instrument proposed for BepiColombo ESA cornerstone mission to Mercury is under development testing. The facility, its potentiality and the instrument characterization progresses are presented.

  12. In-situ formation of solidified hydrogen thin-membrane targets using a pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Astbury, S.; Bedacht, S.; Brummitt, P.; Carroll, D.; Clarke, R.; Crisp, S.; Hernandez-Gomez, C.; Holligan, P.; Hook, S.; Merchan, J. S.; Neely, D.; Ortner, A.; Rathbone, D.; Rice, P.; Schaumann, G.; Scott, G.; Spindloe, C.; Spurdle, S.; Tebartz, A.; Tomlinson, S.; Wagner, F.; Borghesi, M.; Roth, M.; Tolley, M. K.

    2016-04-01

    An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 ± 0.5 K to 7.2 ± 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.

  13. National Ignition Facility Control and Information System Operational Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, C D; Beeler, R G; Bowers, G A

    The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a {approx}2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint themore » size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.« less

  14. A step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy and minimization of gate fee.

    PubMed

    Kyriakis, Efstathios; Psomopoulos, Constantinos; Kokkotis, Panagiotis; Bourtsalas, Athanasios; Themelis, Nikolaos

    2017-06-23

    This study attempts the development of an algorithm in order to present a step by step selection method for the location and the size of a waste-to-energy facility targeting the maximum output energy, also considering the basic obstacle which is in many cases, the gate fee. Various parameters identified and evaluated in order to formulate the proposed decision making method in the form of an algorithm. The principle simulation input is the amount of municipal solid wastes (MSW) available for incineration and along with its net calorific value are the most important factors for the feasibility of the plant. Moreover, the research is focused both on the parameters that could increase the energy production and those that affect the R1 energy efficiency factor. Estimation of the final gate fee is achieved through the economic analysis of the entire project by investigating both expenses and revenues which are expected according to the selected site and outputs of the facility. In this point, a number of commonly revenue methods were included in the algorithm. The developed algorithm has been validated using three case studies in Greece-Athens, Thessaloniki, and Central Greece, where the cities of Larisa and Volos have been selected for the application of the proposed decision making tool. These case studies were selected based on a previous publication made by two of the authors, in which these areas where examined. Results reveal that the development of a «solid» methodological approach in selecting the site and the size of waste-to-energy (WtE) facility can be feasible. However, the maximization of the energy efficiency factor R1 requires high utilization factors while the minimization of the final gate fee requires high R1 and high metals recovery from the bottom ash as well as economic exploitation of recovered raw materials if any.

  15. Recent progress on the National Ignition Facility advanced radiographic capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegner, P.; Bowers, M.; Chen, H.

    2016-01-08

    The National Ignition Facility (NIF) is a megajoule (million-joule)-class laser and experimental facility built for Stockpile Stewardship and High Energy Density (HED) science research [1]. Up to several times a day, 192 laser pulses from NIF's 192 laser beamlines converge on a millimeter-scale target located at the center of the facility's 10-meter diameter target chamber. The carefully synchronized pulses, typically a few nanoseconds (billionths of a second) in duration and co-times to better than 20 picoseconds (trillionths of a second), a deliver a combined energy of up to 1.8 megajoules and a peak power of 500 terawatts (trillion watts). Furthermore,more » this drives temperatures inside the target to tens of millions of degrees and pressures to many billion times greater than Earth's atmosphere.« less

  16. The RIB production target for the SPES project

    NASA Astrophysics Data System (ADS)

    Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni

    2015-10-01

    Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.

  17. High power neutron production targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wender, S.

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  18. Hypervelocity Impact Test Facility: A gun for hire

    NASA Technical Reports Server (NTRS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  19. Emergency department access targets and the older patient: a retrospective cohort study of emergency department presentations by people living in residential aged care facilities.

    PubMed

    Street, Maryann; Marriott, Jonathon R; Livingston, Patricia M

    2012-11-01

    There is limited research on the effect of emergency access targets on health outcomes for older patients from Residential Aged Care Facilities. The aims were to: (1) identify length of stay for Residential Aged Care patients relative to access targets; and (2) examine hospital admission rates, readmission rates, inpatient costs and mortality. Retrospective cohort study of all emergency presentations for Residential Aged Care patients in 2009 at one Australian metropolitan health service. The 4637 emergency presentations by 3184 Residential Aged Care patients in 2009 represented 3.4% of all emergency presentations. Mean length of stay was 7.9 hours (SD=4.5 hours); 84% of Residential Aged Care patients remained in the Emergency Department longer than four hours. Admitted patients were 3.6 times more likely to spend more than eight hours in the Emergency Department compared with those not admitted (p<0.001). Patients in the urgent triage category were 9.5 times more likely to spend more than eight hours in the Emergency Department compared to patients triaged as non-urgent (p<0.001). Inpatient costs were associated with length of admission and median cost per day was $AUD 1175. Few Residential Aged Care patients were discharged within the four hours access target. This has implications for health care outcomes and costs associated with providing emergency care for patients living in Residential Aged Care Facilities. Copyright © 2012 College of Emergency Nursing Australasia Ltd. Published by Elsevier Ltd. All rights reserved.

  20. Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype

    NASA Astrophysics Data System (ADS)

    Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.

    2013-05-01

    The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.

  1. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Basile, Lisa R.; Kelly, Angelita C.

    1987-01-01

    The Spacelab Data Processing Facility (SLDPF) is an integral part of the Space Shuttle data network for missions that involve attached scientific payloads. Expert system prototypes were developed to aid in the performance of the quality assurance function of the Spacelab and/or Attached Shuttle Payloads processed telemetry data. The Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS), two expert systems, were developed to determine their feasibility and potential in the quality assurance of processed telemetry data. The capabilities and performance of these systems are discussed.

  2. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  3. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  4. Design and construction of a time-of-flight wall detector at External Target Facility of HIRFL-CSR

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Sun, Z. Y.; Yu, Y. H.; Yan, D.; Tang, S. W.; Sun, Y. Z.; Wang, S. T.; Zhang, X. H.; Yue, K.; Fang, F.; Chen, J. L.; Zhang, Y. J.; Hu, B. T.

    2018-06-01

    A Time-Of-Flight Wall (TOFW) detector has been designed and constructed at the External Target Facility (ETF) of HIRFL-CSR. The detector covers a sensitive area of 1.2 × 1.2 m2 and consists of 30 modules. Each module is composed of a long plastic scintillator bar with two photo-multiplier tubes coupled at both ends for readout. The design and manufacture details are described and the test results are reported. The performance of the TOFW detector has been tested and measured with cosmic rays and a 310 MeV/u 40Ar beam. The results show that the time resolutions of all the TOFW modules are better than 128 ps, satisfying the requirements of the experiments which will be carried out at the ETF.

  5. D 2 and DT Liquid-Layer Target Shots on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Curtis; Alger, Ethan; Bhandarkar, Suhas

    Experiments at the National Ignition Facility (NIF) using targets containing a Deuterium-Tritium (DT) fuel layer have, until recently, required that a high-quality layer of solid deuterium-tritium (herein referred to as an "ice-layer") be formed in the capsule. The development of a process to line the inner surface of a target capsule with a foam layer of a thickness that is typical of icelayers has resulted in the ability to field targets with liquid layers wetting the foam. Successful fielding of liquid-layer targets on NIF required not only a foam lined capsule, but also changes to the capsule filling process andmore » the manner with which the inventory is maintained in the capsule. Additionally, changes to target heater power and the temperature drops across target components were required in order to achieve the desired range of shot temperatures. These changes, and the target's performance during four target shots on NIF will be discussed.« less

  6. Developing Medications Targeting Glutamatergic Dysfunction in Autism: Progress to Date

    PubMed Central

    Fung, Lawrence K.; Hardan, Antonio Y.

    2015-01-01

    Pharmacologic treatments targeting specific molecular mechanisms relevant for autism spectrum disorder (ASD) are beginning to emerge in early drug development. This article reviews the evidence for the disruption of glutamatergic neurotransmission in animal models of social deficits and summarizes key pre-clinical and clinical efforts in developing pharmacologic interventions based on modulation of glutamatergic systems in individuals with ASD. Understanding the pathobiology of the glutamatergic system has led to the development of new investigational treatments for individuals with ASD. Specific examples of medications that modulate the glutamatergic system in preclinical and clinical studies are described. Finally, we will discuss the limitations of current strategies and future opportunities in developing medications targeting the glutamatergic system for treating individuals with ASD. PMID:26104862

  7. Bridging the gap: facilities and technologies for development of early stage therapeutic mAb candidates.

    PubMed

    Munro, Trent P; Mahler, Stephen M; Huang, Edwin P; Chin, David Y; Gray, Peter P

    2011-01-01

    Therapeutic monoclonal antibodies (mAbs) currently dominate the biologics marketplace. Development of a new therapeutic mAb candidate is a complex, multistep process and early stages of development typically begin in an academic research environment. Recently, a number of facilities and initiatives have been launched to aid researchers along this difficult path and facilitate progression of the next mAb blockbuster. Complementing this, there has been a renewed interest from the pharmaceutical industry to reconnect with academia in order to boost dwindling pipelines and encourage innovation. In this review, we examine the steps required to take a therapeutic mAb from discovery through early stage preclinical development and toward becoming a feasible clinical candidate. Discussion of the technologies used for mAb discovery, production in mammalian cells and innovations in single-use bioprocessing is included. We also examine regulatory requirements for product quality and characterization that should be considered at the earliest stages of mAb development. We provide details on the facilities available to help researchers and small-biotech build value into early stage product development, and include examples from within our own facility of how technologies are utilized and an analysis of our client base.

  8. Micro-channel-based high specific power lithium target

    NASA Astrophysics Data System (ADS)

    Mastinu, P.; Martın-Hernández, G.; Praena, J.; Gramegna, F.; Prete, G.; Agostini, P.; Aiello, A.; Phoenix, B.

    2016-11-01

    A micro-channel-based heat sink has been produced and tested. The device has been developed to be used as a Lithium target for the LENOS (Legnaro Neutron Source) facility and for the production of radioisotope. Nevertheless, applications of such device can span on many areas: cooling of electronic devices, diode laser array, automotive applications etc. The target has been tested using a proton beam of 2.8MeV energy and delivering total power shots from 100W to 1500W with beam spots varying from 5mm2 to 19mm2. Since the target has been designed to be used with a thin deposit of lithium and since lithium is a low-melting-point material, we have measured that, for such application, a specific power of about 3kW/cm2 can be delivered to the target, keeping the maximum surface temperature not exceeding 150° C.

  9. Development of a microcapillary column for detecting targeted messenger RNA molecules.

    PubMed

    Ohnishi, Michihiro

    2006-03-24

    A capillary column in a rapid-flow system has been developed for detecting targeted messenger RNA (mRNA) molecules. The column has a structure made of two beds-one bed of porous microbeads and one bed of microbeads with a polythymidine base sequence. The targeted eukaryotic mRNA molecules are detected by two-step hybridization (sandwich hybridization) composed of polyadenosine selection of mRNA molecules and formation of a probe-target (targeted mRNA) hybrid. The sandwich hybridization, which is accomplished within 1 h, was tested using synthetic polydeoxynucleotides. Ten picomoles of the targeted polydeoxynucleotide were detected.

  10. The Physics of Advanced High-Gain Targets for Inertial Fusion Energy

    NASA Astrophysics Data System (ADS)

    Perkins, L. John

    2010-11-01

    In ca. 2011-2012, the National Ignition Facility is poised to demonstrate fusion ignition and gain in the laboratory for the first time. This key milestone in the development of inertial confinement fusion (ICF) can be expected to engender interest in the development of inertial fusion energy (IFE) and expanded efforts on a number of advanced targets that may achieve high fusion energy gain at lower driver energies. In this tutorial talk, we will discuss the physics underlying ICF ignition and thermonuclear burn, examine the requirements for high gain, and outline candidate R&D programs that will be required to assess the performance of these target concepts under various driver systems including lasers, heavy-ions and pulsed power. Such target concepts include those operating by fast ignition, shock ignition, impact ignition, dual-density, magnetically-insulated, one- and two-sided drive, etc., some of which may have potential to burn advanced, non-DT fusion fuels. We will then delineate the role of such targets in their application to the production of high average fusion power. Here, systems studies of IFE economics suggest that we should strive for target fusion gains of around 100 at drive energies of 1MJ, together with corresponding rep-rates of up to 10Hz and driver electrical efficiencies around 15%. In future years, there may be exciting opportunities to study such ``innovative confinement concepts'' with prospects of fielding them on facilities such as NIF to obtain high fusion energy gains on a single shot basis.

  11. Pulsed-coil magnet systems for applying uniform 10-30 T fields to centimeter-scale targets on Sandia's Z facility

    NASA Astrophysics Data System (ADS)

    Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.; Owen, A. C.; McKenney, J.; Johnson, D. W.; Radovich, S.; Kaye, R. J.; McBride, R. D.; Alexander, C. S.; Awe, T. J.; Slutz, S. A.; Sefkow, A. B.; Haill, T. A.; Jones, P. A.; Argo, J. W.; Dalton, D. G.; Robertson, G. K.; Waisman, E. M.; Sinars, D. B.; Meissner, J.; Milhous, M.; Nguyen, D. N.; Mielke, C. H.

    2014-12-01

    Sandia has successfully integrated the capability to apply uniform, high magnetic fields (10-30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1-3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2-7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnostic lines of sight to the target. We describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.

  12. Pulsed-coil magnet systems for applying 10-30 Tesla Fields to cm-scale targets on Sandia's Z facility

    DOE PAGES

    Rovang, Dean C.; Lamppa, Derek C.; Cuneo, Michael Edward; ...

    2014-12-04

    We have successfully integrated the capability to apply uniform, high magnetic fields (10–30 T) to high energy density experiments on the Z facility. This system uses an 8-mF, 15-kV capacitor bank to drive large-bore (5 cm diameter), high-inductance (1–3 mH) multi-turn, multi-layer electromagnets that slowly magnetize the conductive targets used on Z over several milliseconds (time to peak field of 2–7 ms). This system was commissioned in February 2013 and has been used successfully to magnetize more than 30 experiments up to 10 T that have produced exciting and surprising physics results. These experiments used split-magnet topologies to maintain diagnosticmore » lines of sight to the target. We then describe the design, integration, and operation of the pulsed coil system into the challenging and harsh environment of the Z Machine. We also describe our plans and designs for achieving fields up to 20 T with a reduced-gap split-magnet configuration, and up to 30 T with a solid magnet configuration in pursuit of the Magnetized Liner Inertial Fusion concept.« less

  13. Apollo experience report: Development of guidance targeting techniques for the command module and launch vehicle

    NASA Technical Reports Server (NTRS)

    Yencharis, J. D.; Wiley, R. F.; Davis, R. S.; Holmes, Q. A.; Zeiler, K. T.

    1972-01-01

    The development of the guidance targeting techniques for the Apollo command module and launch vehicle is discussed for four types of maneuvers: (1) translunar injection, (2) translunar midcourse, (3) lunar orbit insertion, and (4) return to earth. The development of real-time targeting programs for these maneuvers and the targeting procedures represented are discussed. The material is intended to convey historically the development of the targeting techniques required to meet the defined target objectives and to illustrate the solutions to problems encountered during that development.

  14. The druggable genome and support for target identification and validation in drug development.

    PubMed

    Finan, Chris; Gaulton, Anna; Kruger, Felix A; Lumbers, R Thomas; Shah, Tina; Engmann, Jorgen; Galver, Luana; Kelley, Ryan; Karlsson, Anneli; Santos, Rita; Overington, John P; Hingorani, Aroon D; Casas, Juan P

    2017-03-29

    Target identification (determining the correct drug targets for a disease) and target validation (demonstrating an effect of target perturbation on disease biomarkers and disease end points) are important steps in drug development. Clinically relevant associations of variants in genes encoding drug targets model the effect of modifying the same targets pharmacologically. To delineate drug development (including repurposing) opportunities arising from this paradigm, we connected complex disease- and biomarker-associated loci from genome-wide association studies to an updated set of genes encoding druggable human proteins, to agents with bioactivity against these targets, and, where there were licensed drugs, to clinical indications. We used this set of genes to inform the design of a new genotyping array, which will enable association studies of druggable genes for drug target selection and validation in human disease. Copyright © 2017, American Association for the Advancement of Science.

  15. Savannah River Plant engineering and design history. Volume 4: 300/700 Areas & general services and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1957-01-01

    The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Wastemore » Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.« less

  16. Economic Development Projects and Jobs: Lessons from the Targeted Jobs Demonstration Program.

    ERIC Educational Resources Information Center

    Van Horn, Carl; And Others

    This guide, based on approaches for targeting jobs and business opportunities that were developed during the Targeted Jobs Demonstration Program (TJDP), contains strategies and techniques for ensuring that some of the benefits of economic development investments are directed to low-income individuals and small and minority businesses. Addressed in…

  17. Project Nuclotron-based Ion Collider fAcility at JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V. D.; Matveev, V. A.; Meshkov, I. N.; Sorin, A. S.; Trubnikov, G. V.

    2017-09-01

    The project of Nuclotron-based Ion Collider fAcility (NICA) that is under development at JINR (Dubna) is presented. The general goals of the project are experimental studies of both hot and dense baryonic matter and spin physics (in collisions of polarized protons and deuterons). The first program requires providing of heavy ion collisions in the energy range of √ {{s_{NN}}} = 4-11 Gev at average luminosity of L = 1 × 1027 cm-2 s-1 for 197Au79+ nuclei. The polarized beams mode is proposed to be used in energy range of √ {{s_{NN}}} = 12-27 Gev (protons at luminosity of L ≥ 1 × 1030 cm-2 s-1. The report contains description of the facility scheme and its characteristics in heavy ion operation mode. The Collider will be equipped with two detectors—MultiPurpose Detector (MPD), which is in an active stage of construction, and Spin Physics Detector (SPD) that is in the stage of conceptual design. Fixed target experiment "Baryonic matter at Nuclotron" (BM@N) will be performed in very beginning of the project. The wide program of applied researches at NICA facility is being developed as well.

  18. HIV-1 Gag as an Antiviral Target: Development of Assembly and Maturation Inhibitors.

    PubMed

    Spearman, Paul

    2016-01-01

    HIV-1 Gag is the master orchestrator of particle assembly. The central role of Gag at multiple stages of the HIV lifecycle has led to efforts to develop drugs that directly target Gag and prevent the formation and release of infectious particles. Until recently, however, only the catalytic site protease inhibitors have been available to inhibit late stages of HIV replication. This review summarizes the current state of development of antivirals that target Gag or disrupt late events in the retrovirus lifecycle such as maturation of the viral capsid. Maturation inhibitors represent an exciting new series of antiviral compounds, including those that specifically target CA-SP1 cleavage and the allosteric integrase inhibitors that inhibit maturation by a completely different mechanism. Numerous small molecules and peptides targeting CA have been studied in attempts to disrupt steps in assembly. Efforts to target CA have recently gained considerable momentum from the development of small molecules that bind CA and alter capsid stability at the post-entry stage of the lifecycle. Efforts to develop antivirals that inhibit incorporation of genomic RNA or to inhibit late budding events remain in preliminary stages of development. Overall, the development of novel antivirals targeting Gag and the late stages in HIV replication appears much closer to success than ever, with the new maturation inhibitors leading the way.

  19. Bacterial Transcription as a Target for Antibacterial Drug Development

    PubMed Central

    Ma, Cong; Yang, Xiao

    2016-01-01

    SUMMARY Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design. PMID:26764017

  20. Mortality among employees at a plastics and resins research and development facility.

    PubMed Central

    Cowles, S R; Tsai, S P; Gilstrap, E L; Ross, C E

    1994-01-01

    OBJECTIVES--The study was undertaken to update a previous study of employees from a resins and plastics research and development facility and to further examine the mortality of these employees with particular emphasis on deaths due to pancreatic cancer. METHODS--This retrospective cohort study examined mortality from 1962 to 1992 for 257 men who were employed for at least one year during a 14 year period from 1962 to 1975 at a plastics and resins research and development facility. During the operative period, the primary activities involved applications and process development for polypropylene, polystyrene, epoxy resins, and to a lesser extent high density polyethylene. RESULTS--The cohort was young and was followed up for an average of 26 years. Although mortality for all causes among employees who worked at least one year at this facility was low (standardised mortality ratio (SMR) 0.74), the death rate from cancer was moderately higher than that of the general population (14 observed and 9.4 expected deaths). There were four observed and 0.5 expected deaths from pancreatic cancer among men who worked at this facility for at least one year, which resulted in a statistically increased SMR of 8.88 (95% confidence interval 2.42-22.74). All cases of pancreatic cancer had "laboratory" jobs, and their ages at death were relatively young compared with deaths in the general population from pancreatic cancer. Lung cancer mortality was high but not significant with seven observed and 3.5 expected deaths. There were no deaths due to non-malignant respiratory disease (1.9 expected). CONCLUSIONS--The increased cancer mortality was entirely due to excess deaths from pancreatic and lung cancers. No causative agent or process for these cases of pancreatic cancer has been identified. This study shows no increased colorectal cancer mortality as was found among another group of workers involved in the manufacture of polypropylene. PMID:7849862

  1. The national ignition facility and atomic data

    NASA Astrophysics Data System (ADS)

    Crandall, David H.

    1998-07-01

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.

  2. Novel and viable acetylcholinesterase target site for developing effective and environmentally safe insecticides.

    PubMed

    Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert

    2012-04-01

    Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market.

  3. Using health-facility data to assess subnational coverage of maternal and child health indicators, Kenya.

    PubMed

    Maina, Isabella; Wanjala, Pepela; Soti, David; Kipruto, Hillary; Droti, Benson; Boerma, Ties

    2017-10-01

    To develop a systematic approach to obtain the best possible national and subnational statistics for maternal and child health coverage indicators from routine health-facility data. Our approach aimed to obtain improved numerators and denominators for calculating coverage at the subnational level from health-facility data. This involved assessing data quality and determining adjustment factors for incomplete reporting by facilities, then estimating local target populations based on interventions with near-universal coverage (first antenatal visit and first dose of pentavalent vaccine). We applied the method to Kenya at the county level, where routine electronic reporting by facilities is in place via the district health information software system. Reporting completeness for facility data were well above 80% in all 47 counties and the consistency of data over time was good. Coverage of the first dose of pentavalent vaccine, adjusted for facility reporting completeness, was used to obtain estimates of the county target populations for maternal and child health indicators. The country and national statistics for the four-year period 2012/13 to 2015/16 showed good consistency with results of the 2014 Kenya demographic and health survey. Our results indicated a stagnation of immunization coverage in almost all counties, a rapid increase of facility-based deliveries and caesarean sections and limited progress in antenatal care coverage. While surveys will continue to be necessary to provide population-based data, web-based information systems for health facility reporting provide an opportunity for more frequent, local monitoring of progress, in maternal and child health.

  4. The development of the MELiSSA Pilot Plant Facility

    NASA Astrophysics Data System (ADS)

    Godia, Francesc; Dussap, Claude-Gilles; Dixon, Mike; Peiro, Enrique; Fossen, Arnaud; Lamaze, Brigitte; Brunet, Jean; Demey, Dries; Mas-Albaigès, Joan L.

    MELiSSA (Micro-Ecological Life Support System Alternative) is a closed artificial ecosystem intended as a tool for the development of a bio-regenerative life support system for longterm manned missions. The MELiSSA loop is formed by five interconnected compartments, organized in three different loops (solid, liquid and gas). This compartments are microbial bioreactors and higher plant chambers. The MELiSSA Pilot Plant facility has been designed to achieve the preliminary terrestrial demonstration of the MELiSSA concept at pilot scale, using animals as a model for the crew compartent. The experience gained in the operation of such a facility will be highly relevant for planning future life support systems in Space. In this communication, the latests developments in the MELiSSA Pilot Plant will be reported. Particularly, the completion of the design phase and instalation of all the different compartments will be discussed in detail. Each of the compartments had to be designed and constructed according to very specific characteristics, associated to the biological systems to be cultured, as part of the complete MELiSSA loop (anerobic, oxygenic, thermophilic, heterotrophic, autotrophic, axenic, photosynthetic, etc.). Additionally, the sizing of each reactor (ranging from 8 to 100 Liters, depending of each particular compartment) should compile with the global integration scenario proposed, and with the final goal of connection of all compartments to provide a demonstration of the MELiSSA concept, and generate data for the design and operation of future biological life support systems.

  5. Zeitgeists and development trends in long-term care facility design.

    PubMed

    Wang, Chia-Hui; Kuo, Nai-Wen

    2006-06-01

    Through literature analysis, in-depth interviews, and the application of the Delphi survey, this study explored long-term care resident priorities with regard to long-term care facility design in terms of both physical and psychological needs. This study further clarified changing trends in long-term care concepts; illustrated the impact that such changes are having on long-term care facility design; and summarized zeitgeists related to the architectural design of long-term care facilities. Results of our Delphi survey indicated the following top five priorities in long-term care facility design: (1) creating a home-like feeling; (2) adhering to Universal Design concepts; (3) providing well-defined private sleeping areas; (4) providing adequate social space; and (5) decentralizing residents' rooms into clusters. The three major zeitgeists related to long-term care facility design include: (1) modern long-term care facilities should abandon their traditional "hospital" image and gradually reposition facilities into homelike settings; (2) institution-based care for the elderly should be de-institutionalized under the concept of aging-in-place; and (3) living clusters, rather than traditional hospital-like wards, should be designed into long-term care facilities.

  6. Developing a plan for primary health care facilities in Soweto, South Africa. Part II: Applying locational criteria.

    PubMed

    Doherty, J; Rispel, L; Webb, N

    1996-12-01

    This article is the second of a two-part series describing the development of a ten-year plan for primary health care facility development in Soweto. The first article concentrated on the political problems and general methodological approach of the project. This second article describes how the technical problem of planning in the context of scanty information was overcome. The reasoning behind the various assumptions and criteria which were used to assist the planning of the location of facilities is explained, as well as the process by which they were applied. The merits and limitations of this planning approach are discussed, and it is suggested that the approach may be useful to other facility planners, particularly in the developing world.

  7. Australian national networked tele-test facility for integrated systems

    NASA Astrophysics Data System (ADS)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  8. DEVELOPMENT OF THE U.S. EPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL

    EPA Science Inventory

    Metal finishing processes are a type of chemical processes and can be modeled using Computer Aided Process Engineering (CAPE). Currently, the U.S. EPA is developing the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), a pollution prevention software tool for the meta...

  9. Targeted therapies in development for non-small cell lung cancer

    PubMed Central

    Reungwetwattana, Thanyanan; Dy, Grace Kho

    2013-01-01

    The iterative discovery in various malignancies during the past decades that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by “druggable” protein kinases has led to a revolutionary change in drug development. In non-small cell lung cancer (NSCLC), the ErbB family of receptors (e.g., EGFR [epidermal growth factor receptor], HER2 [human epidermal growth factor receptor 2]), RAS (rat sarcoma gene), BRAF (v-raf murine sarcoma viral oncogene homolog B1), MAPK (mitogen-activated protein kinase) c-MET (c-mesenchymal-epithelial transition), FGFR (fibroblast growth factor receptor), DDR2 (discoidin domain receptor 2), PIK3CA (phosphatidylinositol-4,5-bisphosphate3-kinase, catalytic subunit alpha)), PTEN (phosphatase and tensin homolog), AKT (protein kinase B), ALK (anaplastic lym phoma kinase), RET (rearranged during transfection), ROS1 (reactive oxygen species 1) and EPH (erythropoietin-producing hepatoma) are key targets of various agents currently in clinical development. These oncogenic targets exert their selective growth advantage through various intercommunicating pathways, such as through RAS/RAF/MEK, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin and SRC-signal transduction and transcription signaling. The recent clinical studies, EGFR tyrosine kinase inhibitors and crizotinib were considered as strongly effective targeted therapies in metastatic NSCLC. Currently, five molecular targeted agents were approved for treatment of advanced NSCLC: Gefitinib, erlotinib and afatinib for positive EGFR mutation, crizotinib for positive echinoderm microtubule-associated protein-like 4 (EML4)-ALK translocation and bevacizumab. Moreover, oncogenic mutant proteins are subject to regulation by protein trafficking pathways, specifically through the heat shock protein 90 system. Drug combinations affecting various nodes in these signaling and intracellular processes are predicted and demonstrated to be synergistic and

  10. An Innovative Approach for Decreasing Fall Trauma Admissions from Geriatric Living Facilities: Preliminary Investigation.

    PubMed

    Evans, Tracy; Gross, Brian; Rittenhouse, Katelyn; Harnish, Carissa; Vellucci, Ashley; Bupp, Katherine; Horst, Michael; Miller, Jo Ann; Baier, Ron; Chandler, Roxanne; Rogers, Frederick B

    2015-12-01

    Geriatric living facilities have been associated with a high rate of falls. We sought to develop an innovative intervention approach targeting geriatric living facilities that would reduce geriatric fall admissions to our Level II trauma center. In 2011, a Trauma Prevention Taskforce visited 5 of 28 local geriatric living facilities to present a fall prevention protocol composed of three sections: fall education, risk factor identification, and fall prevention strategies. To determine the impact of the intervention, the trauma registry was queried for all geriatric fall admissions attributed to patients living at local geriatric living facilities. The fall admission rate (total fall admissions/total beds) of the pre-intervention period (2010-2011) was compared with that of the postintervention period (2012-2013) at the 5 intervention and 23 control facilities. A P value < 0.05 was considered statistically significant. From 2010 to 2013, there were 487 fall admissions attributed to local geriatric living facilities (intervention: 179 fall admissions; control: 308 fall admissions). The unadjusted fall rate decreased at intervention facilities from 8.9 fall admissions/bed pre-intervention to 8.1 fall admissions/bed postintervention, whereas fall admission rates increased at control sites from 5.9 to 7.7 fall admissions/bed during the same period [control/intervention odds ratio (OR), 95% confidence interval (CI) = 1.32, 1.05-1.67; period OR, 95%CI = 1.55, 1.18-2.04, P = 0.002; interaction of control/intervention group and period OR 95% CI = 0.68, 0.46-1.00, P = 0.047]. An aggressive intervention program targeting high-risk geriatric living facilities resulted in a statistically significant decrease in geriatric fall admissions to our Level II trauma center.

  11. Preliminary study for small animal preclinical hadrontherapy facility

    NASA Astrophysics Data System (ADS)

    Russo, G.; Pisciotta, P.; Cirrone, G. A. P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G. I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M. C.; Cuttone, G.

    2017-02-01

    Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and

  12. An electric propulsion long term test facility

    NASA Technical Reports Server (NTRS)

    Trump, G.; James, E.; Vetrone, R.; Bechtel, R.

    1979-01-01

    An existing test facility was modified to provide for extended testing of multiple electric propulsion thruster subsystems. A program to document thruster subsystem characteristics as a function of time is currently in progress. The facility is capable of simultaneously operating three 2.7-kW, 30-cm mercury ion thrusters and their power processing units. Each thruster is installed via a separate air lock so that it can be extended into the 7m x 10m main chamber without violating vacuum integrity. The thrusters exhaust into a 3m x 5m frozen mercury target. An array of cryopanels collect sputtered target material. Power processor units are tested in an adjacent 1.5m x 2m vacuum chamber or accompanying forced convection enclosure. The thruster subsystems and the test facility are designed for automatic unattended operation with thruster operation computer controlled. Test data are recorded by a central data collection system scanning 200 channels of data a second every two minutes. Results of the Systems Demonstration Test, a short shakedown test of 500 hours, and facility performance during the first year of testing are presented.

  13. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false May DOE transfer real property at defense nuclear... ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  14. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false May DOE transfer real property at defense nuclear... ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  15. Geoscience Workforce Development at UNAVCO: Leveraging the NSF GAGE Facility

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; Charlevoix, D. J.; Miller, M.

    2013-12-01

    Global economic development demands that the United States remain competitive in the STEM fields, and developing a forward-looking and well-trained geoscience workforce is imperative. According to the Bureau of Labor Statistics, the geosciences will experience a growth of 19% by 2016. Fifty percent of the current geoscience workforce is within 10-15 years of retirement, and as a result, the U.S. is facing a gap between the supply of prepared geoscientists and the demand for well-trained labor. Barring aggressive intervention, the imbalance in the geoscience workforce will continue to grow, leaving the increased demand unmet. UNAVCO, Inc. is well situated to prepare undergraduate students for placement in geoscience technical positions and advanced graduate study. UNAVCO is a university-governed consortium facilitating research and education in the geosciences and in addition UNAVCO manages the NSF Geodesy Advancing Geosciences and EarthScope (GAGE) facility. The GAGE facility supports many facets of geoscience research including instrumentation and infrastructure, data analysis, cyberinfrastructure, and broader impacts. UNAVCO supports the Research Experiences in the Solid Earth Sciences for Students (RESESS), an NSF-funded multiyear geoscience research internship, community support, and professional development program. The primary goal of the RESESS program is to increase the number of historically underrepresented students entering graduate school in the geosciences. RESESS has met with high success in the first 9 years of the program, as more than 75% of RESESS alumni are currently in Master's and PhD programs across the U.S. Building upon the successes of RESESS, UNAVCO is launching a comprehensive workforce development program that will network underrepresented groups in the geosciences to research and opportunities throughout the geosciences. This presentation will focus on the successes of the RESESS program and plans to expand on this success with broader

  16. Comparison and analysis of the results of direct-driven targets implosion

    NASA Astrophysics Data System (ADS)

    Demchenko, N. N.; Dolgoleva, G. V.; Gus'kov, S. Yu; Kuchugov, P. A.; Rozanov, V. B.; Stepanov, R. V.; Zmitrenko, N. V.; Yakhin, R. A.

    2017-10-01

    The article presents calculation results, which were received for the implosion of the typical cryogenic thermonuclear direct-drive targets that are intended for use at the OMEGA facility, NIF and Russian laser facility. The compression and burning characteristics, which were obtained using various numerical codes of different scientific groups, are compared. The data indicate good agreement between the numerical results. Various sources of target irradiation inhomogeneity and their influence on the implosion parameters are considered. The nominal scales of these disturbances for various facilities are close to each other. The main negative effect on the efficiency of compression and burning is due to the accidental offset of the target from the center of the chamber.

  17. Quantitative Properties of the Macro Supply and Demand Structure for Care Facilities for Elderly in Japan.

    PubMed

    Nishino, Tatsuya

    2017-12-01

    As the Asian country with the most aged population, Japan, has been modifying its social welfare system. In 2000, the Japanese social care vision turned towards meeting the elderly's care needs in their own homes with proper formal care services. This study aims to understand the quantitative properties of the macro supply and demand structure for facilities for the elderly who require support or long-term care throughout Japan and present them as index values. Additionally, this study compares the targets for establishing long-term care facilities set by Japan's Ministry of Health, Labor and Welfare for 2025. In 2014, approximately 90% of all the people who were certified as requiring support and long-term care and those receiving preventive long-term care or long-term care services, were 75 years or older. The target increases in the number of established facilities by 2025 (for the 75-years-or-older population) were calculated to be 3.3% for nursing homes; 2.71% for long-term-care health facilities; 1.7% for group living facilities; and, 1.84% for community-based multi-care facilities. It was revealed that the establishment targets for 2025 also increase over current projections with the expected increase of the absolute number of users of group living facilities and community-based multi-care facilities. On the other hand, the establishment target for nursing homes remains almost the same as the current projection, whereas that for long-term-care health facilities decreases. These changes of facility ratios reveal that the Japanese social care system is shifting to realize 'Ageing in Place'. When considering households' tendencies, the target ratios for established facilities are expected to be applied to the other countries in Asia.

  18. Quantitative Properties of the Macro Supply and Demand Structure for Care Facilities for Elderly in Japan

    PubMed Central

    Nishino, Tatsuya

    2017-01-01

    As the Asian country with the most aged population, Japan, has been modifying its social welfare system. In 2000, the Japanese social care vision turned towards meeting the elderly’s care needs in their own homes with proper formal care services. This study aims to understand the quantitative properties of the macro supply and demand structure for facilities for the elderly who require support or long-term care throughout Japan and present them as index values. Additionally, this study compares the targets for establishing long-term care facilities set by Japan’s Ministry of Health, Labor and Welfare for 2025. In 2014, approximately 90% of all the people who were certified as requiring support and long-term care and those receiving preventive long-term care or long-term care services, were 75 years or older. The target increases in the number of established facilities by 2025 (for the 75-years-or-older population) were calculated to be 3.3% for nursing homes; 2.71% for long-term-care health facilities; 1.7% for group living facilities; and, 1.84% for community-based multi-care facilities. It was revealed that the establishment targets for 2025 also increase over current projections with the expected increase of the absolute number of users of group living facilities and community-based multi-care facilities. On the other hand, the establishment target for nursing homes remains almost the same as the current projection, whereas that for long-term-care health facilities decreases. These changes of facility ratios reveal that the Japanese social care system is shifting to realize ‘Ageing in Place’. When considering households’ tendencies, the target ratios for established facilities are expected to be applied to the other countries in Asia. PMID:29194405

  19. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false May DOE transfer real property at defense nuclear facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE...

  20. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false May DOE transfer real property at defense nuclear facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE...

  1. Computational design of high efficiency release targets for use at ISOL facilities

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Alton, G. D.; Middleton, J. W.

    1999-06-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated vitreous carbon fiber (RVCF) or carbon-bonded-carbon-fiber (CBCF) to form highly permeable composite target matrices. Computational studies which simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation will be presented in this report.

  2. Comprehensive facilities plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitatemore » existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.« less

  3. Novel and Viable Acetylcholinesterase Target Site for Developing Effective and Environmentally Safe Insecticides

    PubMed Central

    Pang, Yuan-Ping; Brimijoin, Stephen; Ragsdale, David W; Zhu, Kun Yan; Suranyi, Robert

    2012-01-01

    Insect pests are responsible for human suffering and financial losses worldwide. New and environmentally safe insecticides are urgently needed to cope with these serious problems. Resistance to current insecticides has resulted in a resurgence of insect pests, and growing concerns about insecticide toxicity to humans discourage the use of insecticides for pest control. The small market for insecticides has hampered insecticide development; however, advances in genomics and structural genomics offer new opportunities to develop insecticides that are less dependent on the insecticide market. This review summarizes the literature data that support the hypothesis that an insect-specific cysteine residue located at the opening of the acetylcholinesterase active site is a promising target site for developing new insecticides with reduced off-target toxicity and low propensity for insect resistance. These data are used to discuss the differences between targeting the insect-specific cysteine residue and targeting the ubiquitous catalytic serine residue of acetylcholinesterase from the perspective of reducing off-target toxicity and insect resistance. Also discussed is the prospect of developing cysteine-targeting anticholinesterases as effective and environmentally safe insecticides for control of disease vectors, crop damage, and residential insect pests within the financial confines of the present insecticide market. PMID:22280344

  4. Monitoring Water Targets in the Post-2015 Development Goals

    NASA Astrophysics Data System (ADS)

    Lawford, R. G.

    2015-12-01

    The Water Sustainable Development Goal (SDG) provides a comprehensive approach to developing water services in a way that ensures social equity, health, well-being and sustainability for all. In particular, the water goal includes targets related to sanitation, wastewater, water quality, water efficiency, integrated water management and ecosystems (details to be finalized in September 2015). As part of its implementation, methods to monitor target indicators must be developed. National governments will be responsible for reporting on progress toward these targets using national data sets and possibly information from global data sets that applies to their countries. Oversight of this process through the use of global data sets is desirable for encouraging the use of standardized information for comparison purposes. Disparities in monitoring due to very sparse data networks in some countries can be addressed by using geospatially consistent data products from space-based remote sensing. However, to fully exploit these data, capabilities will be needed to downscale information, to interpolate and assimilate data both in time and space, and to integrate these data with socio-economic data sets, model outputs and survey data in a geographical information system framework. Citizen data and other non-standard data types may also supplement national data systems. A comprehensive and integrated analysis and dissemination system is needed to enable the important contributions that satellites could make to achieving Water SDG targets. This presentation will outline the progress made in assessing the needs for information to track progress on the Water SDG, options for meeting these needs using existing data infrastructure, and pathways for expanding the role of Earth observations in SDG monitoring. It will also discuss the potential roles of Future Earth's Sustainable Water Futures Programme (SWFP) and the Group on Earth Observations (GEO) in coordinating these efforts.

  5. Scoping the parameter space for demo and the engineering test facility (ETF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Wayne R.

    1999-01-19

    In our IFE development plan, we have set a goal of building an Engineering Test Facility (ETF) for a total cost of $2B and a Demo for $3B. In Mike Campbell' s presentation at Madison, we included a viewgraph with an example Demo that had 80 to 250 MWe of net power and showed a plausible argument that it could cost less than $3B. In this memo, I examine the design space for the Demo and then briefly for the ETF. Instead of attempting to estimate the costs of the drivers, I pose the question in a way to definemore » R&D goals: As a function of key design and performance parameters, how much can the driver cost if the total facility cost is limited to the specified goal? The design parameters examined for the Demo included target gain, driver energy, driver efficiency, and net power output. For the ETF; the design parameters are target gain, driver energy, and target yield. The resulting graphs of allowable driver cost determine the goals that the driver R&D programs must seek to meet.« less

  6. Fusion energy with lasers, direct drive targets, and dry wall chambers

    NASA Astrophysics Data System (ADS)

    Sethian, J. D.; Friedman, M.; Lehmberg, R. H.; Myers, M.; Obenschain, S. P.; Giuliani, J.; Kepple, P.; Schmitt, A. J.; Colombant, D.; Gardner, J.; Hegeler, F.; Wolford, M.; Swanekamp, S. B.; Weidenheimer, D.; Welch, D.; Rose, D.; Payne, S.; Bibeau, C.; Baraymian, A.; Beach, R.; Schaffers, K.; Freitas, B.; Skulina, K.; Meier, W.; Latkowski, J.; Perkins, L. J.; Goodin, D.; Petzoldt, R.; Stephens, E.; Najmabadi, F.; Tillack, M.; Raffray, R.; Dragojlovic, Z.; Haynes, D.; Peterson, R.; Kulcinski, G.; Hoffer, J.; Geller, D.; Schroen, D.; Streit, J.; Olson, C.; Tanaka, T.; Renk, T.; Rochau, G.; Snead, L.; Ghoneim, N.; Lucas, G.

    2003-12-01

    A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy. The key components are developed in concert with one another and the science and engineering issues are addressed concurrently. Recent advances include: target designs have been evaluated that show it could be possible to achieve the high gains (>100) needed for a practical fusion system.These designs feature a low-density CH foam that is wicked with solid DT and over-coated with a thin high-Z layer. These results have been verified with three independent one-dimensional codes, and are now being evaluated with two- and three-dimensional codes. Two types of lasers are under development: Krypton Fluoride (KrF) gas lasers and Diode Pumped Solid State Lasers (DPSSL). Both have recently achieved repetitive 'first light', and both have made progress in meeting the fusion energy requirements for durability, efficiency, and cost. This paper also presents the advances in development of chamber operating windows (target survival plus no wall erosion), final optics (aluminium at grazing incidence has high reflectivity and exceeds the required laser damage threshold), target fabrication (demonstration of smooth DT ice layers grown over foams, batch production of foam shells, and appropriate high-Z overcoats), and target injection (new facility for target injection and tracking studies).

  7. Standards Development Activities at White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Baker, D. L.; Beeson, H. D.; Saulsberry, R. L.; Julien, H. L.; Woods, S. S.

    2003-01-01

    The development of standards and standard activities at the JSC White Sands Test Facility (WSTF) has been expanded to include the transfer of technology and standards to voluntary consensus organizations in five technical areas of importance to NASA. This effort is in direct response to the National Technology Transfer Act designed to accelerate transfer of technology to industry and promote government-industry partnerships. Technology transfer is especially important for WSTF, whose longterm mission has been to develop and provide vital propellant safety and hazards information to aerospace designers, operations personnel, and safety personnel. Meeting this mission is being accomplished through the preparation of consensus guidelines and standards, propellant hazards analysis protocols, and safety courses for the propellant use of hydrogen, oxygen, and hypergols, as well as the design and inspection of spacecraft pressure vessels and the use of pyrovalves in spacecraft propulsion systems. The overall WSTF technology transfer program is described and the current status of technology transfer activities are summarized.

  8. Design study of 10 kW direct fission target for RISP project

    NASA Astrophysics Data System (ADS)

    Tshoo, K.; Jang, D. Y.; Woo, H. J.; Kang, B. H.; Kim, G. D.; Hwang, W.; Kim, Y. K.

    2014-03-01

    We are developing Isotope Separation On-Line (ISOL) target system, which consists of 1.3 mm-thick uranium-carbide multi-disks and cylindrical tantalum heater, to be installed in new facility for Rare Isotope Science Project in Korea. The intense neutron-rich nuclei are produced via the fission process using the uranium carbide targets with a 70 MeV proton beam. The fission rate was estimated to be ˜1.5 × 1013/sec for 10 kW proton beam. The target system has been designed to be operated at a temperature of ˜2000 °C so as to improve the release effciency.

  9. Engineering Support of Microgravity Life Science Research: Development of an Avian Development Facility

    NASA Technical Reports Server (NTRS)

    Vellinger, J.; Deuser, M.; Hullinger, R.

    1995-01-01

    The Avian Development Facility (ADF) is designed to provide a 'window' for the study of embryogenesis in space. It allows researchers to determine and then to mitigate or nullify the forces of altered gravity upon embryos when leaving and re-entering the Earth's gravity. The ADF design will allow investigations to begin their incubation after their experiments have achieved orbit, and shut down the experiment and fix specimens before leaving orbit. In effect, the ADF makes every attempt to minimize launch and re-entry effects in order to isolate and preserve the effects of the experimental variable(s) of the space environment.

  10. Environmental Assessment for Developing Renewable Energy Enhanced Use Lease Facilities at Robins Air Force Base

    DTIC Science & Technology

    2013-12-15

    underlain by igneous and metamorphic rocks which are equivalent to those of the Georgia Piedmont. Potable and process waters are produced from the...Final Environmental Assessment for Developing Renewable Energy Enhanced Use Lease Facilities at Robins Air Force Base...RENEWABLE ENERGY ENHANCED USE LEASE FACILITIES AT ROBINS AIR FORCE BASE In accordance with the National Environmental Policy Act (NEPA) of 1969 (42 U.S

  11. Development of ion beam sputtering techniques for actinide target preparation

    NASA Astrophysics Data System (ADS)

    Aaron, W. S.; Zevenbergen, L. A.; Adair, H. L.

    1985-06-01

    Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of a minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity actinides in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed.

  12. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  13. 26 CFR 17.1 - Industrial development bonds used to provide solid waste disposal facilities; temporary rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...

  14. 26 CFR 17.1 - Industrial development bonds used to provide solid waste disposal facilities; temporary rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...

  15. The Progress of Research Project for Magnetized Target Fusion in China

    NASA Astrophysics Data System (ADS)

    Yang, Xian-Jun

    2015-11-01

    The fusion of magnetized plasma called Magnetized Target Fusion (MTF) is a hot research area recently. It may significantly reduce the cost and size. Great progress has been achieved in past decades around the world. Five years ago, China initiated the MTF project and has gotten some progress as follows: 1. Verifying the feasibility of ignition of MTF by means of first principle and MHD simulation; 2. Generating the magnetic field over 1400 Tesla, which can be suppress the heat conduction from charged particles, deposit the energy of alpha particle to promote the ignition process, and produce the stable magnetized plasma for the target of ignition; 3. The imploding facility of FP-1 can put several Mega Joule energy to the solid liner of about ten gram in the range of microsecond risen time, while the simulating tool has been developed for design and analysis of the process; 4. The target of FRC can be generated by ``YG 1 facility'' while some simulating tools have be developed. Next five years, the above theoretical work and the experiments of MTF may be integrated to step up as the National project, which may make my term play an important lead role and be supposed to achieve farther progress in China. Supported by the National Natural Science Foundation of China under Grant No 11175028.

  16. Development of position measurement unit for flying inertial fusion energy target

    NASA Astrophysics Data System (ADS)

    Tsuji, R.; Endo, T.; Yoshida, H.; Norimatsu, T.

    2016-03-01

    We have reported the present status in the development of a position measurement unit (PMU) for a flying inertial fusion energy (IFE) target. The PMU, which uses Arago spot phenomena, is designed to have a measurement accuracy smaller than 1 μm. By employing divergent, pulsed orthogonal laser beam illumination, we can measure the time and the target position at the pulsed illumination. The two-dimensional Arago spot image is compressed into one-dimensional image by a cylindrical lens for real-time processing. The PMU are set along the injection path of the flying target. The local positions of the target in each PMU are transferred to the controller and analysed to calculate the target trajectory. Two methods are presented to calculate the arrival time and the arrival position of the target at the reactor centre.

  17. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozanov, V. B., E-mail: rozanov@sci.lebedev.ru; Vergunova, G. A., E-mail: verg@sci.lebedev.ru

    2015-11-15

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile (“low-foot” and “high-foot” regimes) have been analyzed. The parameters of the compression of targets with a high-densitymore » carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.« less

  18. ALCOHOLIC HEPATITIS: TRANSLATIONAL APPROACHES TO DEVELOP TARGETED THERAPIES

    PubMed Central

    Mandrekar, Pranoti; Bataller, Ramon; Tsukamoto, Hidekazu; Gao, Bin

    2016-01-01

    Alcoholic liver disease (ALD) is a leading cause of liver related mortality worldwide. In contrast to recent advances in therapeutic strategies for patients with viral hepatitis, there is a significant lack of novel therapeutic options for patients with ALD. In particular, there is an urgent need to focus our efforts on effective therapeutic interventions for alcoholic hepatitis (AH), the most severe form of ALD. AH is characterized by an abrupt development of jaundice and complications related to liver insufficiency and portal hypertension in patients with heavy alcohol intake. The mortality of patients with AH is very high (20–50% at 3 months). Available therapies are not effective in many patients and targeted approaches are imminently needed. The development of such therapies requires translational studies in human samples and suitable animal models that reproduce clinical and histological features of AH. In recent years, new animal models that simulate some of the features of human AH have been developed, and translational studies using human samples have identified potential pathogenic factors and histological parameters that predict survival. This review article summarizes the unmet needs for translational studies on the pathogenesis of AH, pre-clinical translational tools, and emerging drug targets to benefit the AH patient. PMID:26940353

  19. Simulation Facilities and Test Beds for Galileo

    NASA Astrophysics Data System (ADS)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  20. The National Direct-Drive Program: OMEGA to the National Ignition Facility

    DOE PAGES

    Regan, S. P.; Goncharov, V. N.; Sangster, T. C.; ...

    2017-12-28

    The goal of the National Direct-Drive Program is to demonstrate and understand the physics of laser direct drive (LDD). Efforts are underway on OMEGA for the 100-Gbar Campaign to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the 1-MJ scale, and at the National Ignition Facility to develop an understanding of the direct-drive physics at long scale lengths for the MJ Direct-Drive Campaign. For this paper the strategy of the National Direct-Drive Program is described; the requirements for the DT cryogenic fill-tube target being developed for OMEGA are presented; and preliminary LDD implosion measurementsmore » of hydrodynamic mixing seeded by laser imprint, the target-mounting stalk, and microscopic surface debris are reported.« less

  1. The National Direct-Drive Program: OMEGA to the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S. P.; Goncharov, V. N.; Sangster, T. C.

    The goal of the National Direct-Drive Program is to demonstrate and understand the physics of laser direct drive (LDD). Efforts are underway on OMEGA for the 100-Gbar Campaign to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the 1-MJ scale, and at the National Ignition Facility to develop an understanding of the direct-drive physics at long scale lengths for the MJ Direct-Drive Campaign. For this paper the strategy of the National Direct-Drive Program is described; the requirements for the DT cryogenic fill-tube target being developed for OMEGA are presented; and preliminary LDD implosion measurementsmore » of hydrodynamic mixing seeded by laser imprint, the target-mounting stalk, and microscopic surface debris are reported.« less

  2. The development of a multi-target compiler-writing system for flight software development

    NASA Technical Reports Server (NTRS)

    Feyock, S.; Donegan, M. K.

    1977-01-01

    A wide variety of systems designed to assist the user in the task of writing compilers has been developed. A survey of these systems reveals that none is entirely appropriate to the purposes of the MUST project, which involves the compilation of one or at most a small set of higher-order languages to a wide variety of target machines offering little or no software support. This requirement dictates that any compiler writing system employed must provide maximal support in the areas of semantics specification and code generation, the areas in which existing compiler writing systems as well as theoretical underpinnings are weakest. This paper describes an ongoing research and development effort to create a compiler writing system which will overcome these difficulties, thus providing a software system which makes possible the fast, trouble-free creation of reliable compilers for a wide variety of target computers.

  3. [Segment analysis of the target market of physiotherapeutic services].

    PubMed

    Babaskin, D V

    2010-01-01

    The objective of the present study was to demonstrate the possibilities to analyse selected segments of the target market of physiotherapeutic services provided by medical and preventive-facilities of two major types. The main features of a target segment, such as provision of therapeutic massage, are illustrated in terms of two characteristics, namely attractiveness to the users and the ability of a given medical facility to satisfy their requirements. Based on the analysis of portfolio of the available target segments the most promising ones (winner segments) were selected for further marketing studies. This choice does not exclude the possibility of involvement of other segments of medical services in marketing activities.

  4. An Experimental Study of Upward Burning Over Long Solid Fuels: Facility Development and Comparison

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Yuan, Zeng-Guang

    2011-01-01

    As NASA's mission evolves, new spacecraft and habitat environments necessitate expanded study of materials flammability. Most of the upward burning tests to date, including the NASA standard material screening method NASA-STD-6001, have been conducted in small chambers where the flame often terminates before a steady state flame is established. In real environments, the same limitations may not be present. The use of long fuel samples would allow the flames to proceed in an unhindered manner. In order to explore sample size and chamber size effects, two large chambers were developed at NASA GRC under the Flame Prevention, Detection and Suppression (FPDS) project. The first was an existing vacuum facility, VF-13, located at NASA John Glenn Research Center. This 6350 liter chamber could accommodate fuels sample lengths up to 2 m. However, operational costs and restricted accessibility limited the test program, so a second laboratory scale facility was developed in parallel. By stacking additional two chambers on top of an existing combustion chamber facility, this 81 liter Stacked-chamber facility could accommodate a 1.5 m sample length. The larger volume, more ideal environment of VF-13 was used to obtain baseline data for comparison with the stacked chamber facility. In this way, the stacked chamber facility was intended for long term testing, with VF-13 as the proving ground. Four different solid fuels (adding machine paper, poster paper, PMMA plates, and Nomex fabric) were tested with fuel sample lengths up to 2 m. For thin samples (papers) with widths up to 5 cm, the flame reached a steady state length, which demonstrates that flame length may be stabilized even when the edge effects are reduced. For the thick PMMA plates, flames reached lengths up to 70 cm but were highly energetic and restricted by oxygen depletion. Tests with the Nomex fabric confirmed that the cyclic flame phenomena, observed in small facility tests, continued over longer sample. New

  5. [The development of the system of medical rehabilitation based at the Russian health resort facilities: investment prospects].

    PubMed

    Povazhnaya, E L; Gusakova, E V; Moiseenko, S V

    2018-05-21

    The present work is devoted to the prospects for attracting investments for the maintenance and development of the medical rehabilitation practices based at the Russian health resort facilities. The article describes the prerequisites for the enhancement of the investment attractiveness of the development of the system of medical rehabilitation in the said institutions including the formulation and strengthening of the legal and regulatory framework, the capacity for the organization of the second and third stages of medical rehabilitation in the existing spa and health resort facilities, the attraction of the funds of compulsory medical insurance as an additional source of the financial support. The main legal documents regulating the organization and provision of medical rehabilitation based at the spa and health resort facilities are presented. The results of the implementation of the investment concept of the development of medical rehabilitation in the framework of the system of health resort treatment as exemplified by the experience of JSC «The group of companies «Medsi» are discussed. It is shown that the development of medical rehabilitation based at the spa and health resort facilities greatly contributes to the significant expansion of the potential customer base and promotes the further growth of business scale.

  6. Critical questions in development of targeted nanoparticle therapeutics.

    PubMed

    Korsmeyer, Richard

    2016-06-01

    One of the fourteen Grand Challenges for Engineering articulated by the US National Academy of Engineering is 'Engineer Better Medicines'. Although there are many ways that better medicines could be engineered, one of the most promising ideas is to improve our ability to deliver the therapeutic molecule more precisely to the desired target. Most conventional drug delivery methods (oral absorption, intravenous infusion etc.) result in systemic exposure to the therapeutic molecule, which places severe constraints on the types of molecules that can be used. A molecule administered by systemic delivery must be effective at low concentrations in the target tissue, yet safe everywhere else in the body. If drug carriers could be developed to deliver therapeutic molecules selectively to the desired target, it should be possible to greatly improve safety and efficacy of therapy. Nanoparticles (and related nanostructures, such as liposomes, nanoemulsions, micelles and dendrimers) are an attractive drug carrier concept because they can be made from a variety of materials engineered to have properties that allow loading and precise delivery of bound therapeutic molecules. The field of targeted nanoparticles has been extraordinarily active in the academic realm, with thousands of articles published over the last few years. Many of these publications seem to demonstrate very promising results in in vitro studies and even in animal models. In addition, a handful of human clinical trials are in progress. Yet, the biopharmaceutical industry has been relatively slow to make major investments in targeted nanoparticle development programs, despite a clear desire to introduce innovative new therapies to the market. What is the reason for such caution? Some degree of caution is no doubt due to the use of novel materials and the unproven nature of targeted nanoparticle technology, but many other unproven technologies have generated intense interest at various times. We believe that the

  7. Production Facility Prototype Blower Installation Report with 1000 Hr Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Olivas, Eric Richard; Dale, Gregory E.

    2016-09-23

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced.« less

  8. Molecular targets of alcohol action: translational research for pharmacotherapy development and screening

    PubMed Central

    Gorini, Giorgio; Bell, Richard L.; Mayfield, R. Dayne

    2016-01-01

    Summary Alcohol abuse and dependence are multifaceted disorders with neurobiological, psychological, and environmental components. Research on other complex neuropsychiatric diseases suggests that genetically influenced intermediate characteristics affect the risk for heavy alcohol consumption and its consequences. Diverse therapeutic interventions can be developed through identification of reliable biomarkers for this disorder and new pharmacological targets for its treatment. Advances in the fields of genomics and proteomics offer a number of possible targets for the development of new therapeutic approaches. This brain-focused review highlights studies identifying neurobiological systems associated with these targets and possible pharmacotherapies, summarizing evidence from clinically relevant animal and human studies, as well as sketching improvements and challenges facing the fields of proteomics and genomics. Concluding thoughts on using results from these profiling technologies for medication development are also presented. PMID:21199775

  9. X-ray penumbral imaging diagnostic developments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, B.; Abu-Shawareb, H.; Alexander, N.; Ayers, J.; Bailey, C. G.; Bell, P.; Benedetti, L. R.; Bradley, D.; Collins, G.; Divol, L.; Döppner, T.; Felker, S.; Field, J.; Forsman, A.; Galbraith, J. D.; Hardy, C. M.; Hilsabeck, T.; Izumi, N.; Jarrot, C.; Kilkenny, J.; Kramer, S.; Landen, O. L.; Ma, T.; MacPhee, A.; Masters, N.; Nagel, S. R.; Pak, A.; Patel, P.; Pickworth, L. A.; Ralph, J. E.; Reed, C.; Rygg, J. R.; Thorn, D. B.

    2017-08-01

    X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material mix in ICF implosions.

  10. 75 FR 54627 - Best Management Practices for Unused Pharmaceuticals at Health Care Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... at Health Care Facilities AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: EPA... Unused Pharmaceuticals at Health Care Facilities. The guidance is targeted at hospitals, medical clinics... drafted a guidance document for health care facilities, which describes: Techniques for reducing or...

  11. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  12. Barriers to the Preclinical Development of Therapeutics that Target Aging Mechanisms

    PubMed Central

    Burd, Christin E.; Gill, Matthew S.; Niedernhofer, Laura J.; Robbins, Paul D.; Austad, Steven N.; Barzilai, Nir

    2016-01-01

    Through the progress of basic science research, fundamental mechanisms that contribute to age-related decline are being described with increasing depth and detail. Although these efforts have identified new drug targets and compounds that extend life span in model organisms, clinical trials of therapeutics that target aging processes remain scarce. Progress in aging research is hindered by barriers associated with the translation of basic science discoveries into the clinic. This report summarizes discussions held at a 2014 Geroscience Network retreat focused on identifying hurdles that currently impede the preclinical development of drugs targeting fundamental aging processes. From these discussions, it was evident that aging researchers have varied perceptions of the ideal preclinical pipeline. To forge a clear and cohesive path forward, several areas of controversy must first be resolved and new tools developed. Here, we focus on five key issues in preclinical drug development (drug discovery, lead compound development, translational preclinical biomarkers, funding, and integration between researchers and clinicians), expanding upon discussions held at the Geroscience Retreat and suggesting areas for further research. By bringing these findings to the attention of the aging research community, we hope to lay the foundation for a concerted preclinical drug development pipeline. PMID:27535964

  13. Barriers to the Preclinical Development of Therapeutics that Target Aging Mechanisms.

    PubMed

    Burd, Christin E; Gill, Matthew S; Niedernhofer, Laura J; Robbins, Paul D; Austad, Steven N; Barzilai, Nir; Kirkland, James L

    2016-11-01

    Through the progress of basic science research, fundamental mechanisms that contribute to age-related decline are being described with increasing depth and detail. Although these efforts have identified new drug targets and compounds that extend life span in model organisms, clinical trials of therapeutics that target aging processes remain scarce. Progress in aging research is hindered by barriers associated with the translation of basic science discoveries into the clinic. This report summarizes discussions held at a 2014 Geroscience Network retreat focused on identifying hurdles that currently impede the preclinical development of drugs targeting fundamental aging processes. From these discussions, it was evident that aging researchers have varied perceptions of the ideal preclinical pipeline. To forge a clear and cohesive path forward, several areas of controversy must first be resolved and new tools developed. Here, we focus on five key issues in preclinical drug development (drug discovery, lead compound development, translational preclinical biomarkers, funding, and integration between researchers and clinicians), expanding upon discussions held at the Geroscience Retreat and suggesting areas for further research. By bringing these findings to the attention of the aging research community, we hope to lay the foundation for a concerted preclinical drug development pipeline. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America.

  14. Development of a Model for Planning an Educational Facility. [A] Practicum Report.

    ERIC Educational Resources Information Center

    Boughner, Wesley; And Others

    This publication is composed of two separate entities: a relatively brief manuscript entitled "Development of a Model for Planning an Educational Facility" and a much more lengthy Midi-Practicum Report that describes the implementation of the plans outlined in the first manuscript. Each of the three authors wrote one section of the first…

  15. Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex): NASA's Next Human-Rated Testing Facility

    NASA Technical Reports Server (NTRS)

    Tri, Terry O.

    1999-01-01

    As a key component in its ground test bed capability, NASA's Advanced Life Support Program has been developing a large-scale advanced life support test facility capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. This facility-targeted for evaluation of hypogravity compatible life support systems to be developed for use on planetary surfaces such as Mars or the Moon-is called the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) and is currently under development at the Johnson Space Center. This test bed is comprised of a set of interconnected chambers with a sealed internal environment which are outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support functions. This presentation provides a description of the proposed test "missions" to be supported by the BIO-Plex and the planned development strategy for the facility.

  16. Cryogenic hydrogen fuel for controlled inertial confinement fusion (formation of reactor-scale cryogenic targets)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrova, I. V.; Koresheva, E. R., E-mail: elena.koresheva@gmail.com; Krokhin, O. N.

    2016-12-15

    In inertial fusion energy research, considerable attention has recently been focused on low-cost fabrication of a large number of targets by developing a specialized layering module of repeatable operation. The targets must be free-standing, or unmounted. Therefore, the development of a target factory for inertial confinement fusion (ICF) is based on methods that can ensure a cost-effective target production with high repeatability. Minimization of the amount of tritium (i.e., minimization of time and space at all production stages) is a necessary condition as well. Additionally, the cryogenic hydrogen fuel inside the targets must have a structure (ultrafine layers—the grain sizemore » should be scaled back to the nanometer range) that supports the fuel layer survivability under target injection and transport through the reactor chamber. To meet the above requirements, significant progress has been made at the Lebedev Physical Institute (LPI) in the technology developed on the basis of rapid fuel layering inside moving free-standing targets (FST), also referred to as the FST layering method. Owing to the research carried out at LPI, unique experience has been gained in the development of the FST-layering module for target fabrication with an ultrafine fuel layer, including a reactor- scale target design. This experience can be used for the development of the next-generation FST-layering module for construction of a prototype of a target factory for power laser facilities and inertial fusion power plants.« less

  17. Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting.more » The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.« less

  18. Design and engineering of a target for x-ray Thomson scattering measurements on matter at extreme densities and gigabar pressures

    DOE PAGES

    Boehm, K. -J.; Hash, N.; Barker, D.; ...

    2016-06-24

    Reconciling the experimental and system requirements during the development of a new target system is one of the most challenging tasks in the design and engineering of targets used in the National Ignition Facility. Targets for the GigaBar 3 campaign were meant to allow the detection of extremely weak Thomson scattering from matter at extreme densities in the face of very bright backlighter and laser entry hole plasma emissions. The problem was to shield the detector sufficiently while maintaining beamline and view clearances, and observing target mass restrictions. A new construction process, based on a rapid prototype frame structure, wasmore » used to develop this target. As a result, details of the design process for these targets are described, and lessons from this development for production and target assembly teams are discussed.« less

  19. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the

  20. Upgrade of the BATMAN test facility for H- source development

    NASA Astrophysics Data System (ADS)

    Heinemann, B.; Fröschle, M.; Falter, H.-D.; Fantz, U.; Franzen, P.; Kraus, W.; Nocentini, R.; Riedl, R.; Ruf, B.

    2015-04-01

    The development of a radio frequency (RF) driven source for negative hydrogen ions for the neutral beam heating devices of fusion experiments has been successfully carried out at IPP since 1996 on the test facility BATMAN. The required ITER parameters have been achieved with the prototype source consisting of a cylindrical driver on the back side of a racetrack like expansion chamber. The extraction system, called "Large Area Grid" (LAG) was derived from a positive ion accelerator from ASDEX Upgrade (AUG) using its aperture size (ø 8 mm) and pattern but replacing the first two electrodes and masking down the extraction area to 70 cm2. BATMAN is a well diagnosed and highly flexible test facility which will be kept operational in parallel to the half size ITER source test facility ELISE for further developments to improve the RF efficiency and the beam properties. It is therefore planned to upgrade BATMAN with a new ITER-like grid system (ILG) representing almost one ITER beamlet group, namely 5 × 14 apertures (ø 14 mm). Additionally to the standard three grid extraction system a repeller electrode upstream of the grounded grid can optionally be installed which is positively charged against it by 2 kV. This is designated to affect the onset of the space charge compensation downstream of the grounded grid and to reduce the backstreaming of positive ions from the drift space backwards into the ion source. For magnetic filter field studies a plasma grid current up to 3 kA will be available as well as permanent magnets embedded into a diagnostic flange or in an external magnet frame. Furthermore different source vessels and source configurations are under discussion for BATMAN, e.g. using the AUG type racetrack RF source as driver instead of the circular one or modifying the expansion chamber for a more flexible position of the external magnet frame.

  1. 25 CFR 170.807 - What must BIA include when it develops an IRR Transportation Facilities Maintenance Management...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Transportation Facilities Maintenance Management System? 170.807 Section 170.807 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM BIA Road Maintenance § 170.807 What must BIA include when it develops an IRR Transportation Facilities Maintenance Management System...

  2. HIV-1 Proteins, Tat and gp120, Target the Developing Dopamine System

    PubMed Central

    Fitting, Sylvia; Booze, Rosemarie M.; Mactutus, Charles F.

    2015-01-01

    In 2014, 3.2 million children (< 15 years of age) were estimated to be living with HIV and AIDS worldwide, with the 240,000 newly infected children in the past year, i.e., another child infected approximately every two minutes [1]. The primary mode of HIV infection is through mother-to-child transmission (MTCT), occurring either in utero, intrapartum, or during breastfeeding. The effects of HIV-1 on the central nervous system (CNS) are putatively accepted to be mediated, in part, via viral proteins, such as Tat and gp120. The current review focuses on the targets of HIV-1 proteins during the development of the dopamine (DA) system, which appears to be specifically susceptible in HIV-1-infected children. Collectively, the data suggest that the DA system is a clinically relevant target in chronic HIV-1 infection, is one of the major targets in pediatric HIV-1 CNS infection, and may be specifically susceptible during development. The present review discusses the development of the DA system, follows the possible targets of the HIV-1 proteins during the development of the DA system, and suggests potential therapeutic approaches. By coupling our growing understanding of the development of the CNS with the pronounced age-related differences in disease progression, new light may be shed on the neurological and neurocognitive deficits that follow HIV-1 infection. PMID:25613135

  3. USGS aerial resolution targets.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1982-01-01

    It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author

  4. National facilities study. Volume 4: Space operations facilities task group

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The principal objectives of the National Facilities Study (NFS) were to: (1) determine where U.S. facilities do not meet national aerospace needs; (2) define new facilities required to make U.S. capabilities 'world class' where such improvements are in the national interest; (3) define where consolidation and phase-out of existing facilities is appropriate; and (4) develop a long-term national plan for world-class facility acquisition and shared usage. The Space Operations Facilities Task Group defined discrete tasks to accomplish the above objectives within the scope of the study. An assessment of national space operations facilities was conducted to determine the nation's capability to meet the requirements of space operations during the next 30 years. The mission model used in the study to define facility requirements is described in Volume 3. Based on this model, the major focus of the Task Group was to identify any substantive overlap or underutilization of space operations facilities and to identify any facility shortfalls that would necessitate facility upgrades or new facilities. The focus of this initial study was directed toward facility recommendations related to consolidations, closures, enhancements, and upgrades considered necessary to efficiently and effectively support the baseline requirements model. Activities related to identifying facility needs or recommendations for enhancing U.S. international competitiveness and achieving world-class capability, where appropriate, were deferred to a subsequent study phase.

  5. Development of Safety Assessment Code for Decommissioning of Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Shimada, Taro; Ohshima, Soichiro; Sukegawa, Takenori

    A safety assessment code, DecDose, for decommissioning of nuclear facilities has been developed, based on the experiences of the decommissioning project of Japan Power Demonstration Reactor (JPDR) at Japan Atomic Energy Research Institute (currently JAEA). DecDose evaluates the annual exposure dose of the public and workers according to the progress of decommissioning, and also evaluates the public dose at accidental situations including fire and explosion. As for the public, both the internal and the external doses are calculated by considering inhalation, ingestion, direct radiation from radioactive aerosols and radioactive depositions, and skyshine radiation from waste containers. For external dose for workers, the dose rate from contaminated components and structures to be dismantled is calculated. Internal dose for workers is calculated by considering dismantling conditions, e.g. cutting speed, cutting length of the components and exhaust velocity. Estimation models for dose rate and staying time were verified by comparison with the actual external dose of workers which were acquired during JPDR decommissioning project. DecDose code is expected to contribute the safety assessment for decommissioning of nuclear facilities.

  6. Development of CCD Cameras for Soft X-ray Imaging at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teruya, A. T.; Palmer, N. E.; Schneider, M. B.

    2013-09-01

    The Static X-Ray Imager (SXI) is a National Ignition Facility (NIF) diagnostic that uses a CCD camera to record time-integrated X-ray images of target features such as the laser entrance hole of hohlraums. SXI has two dedicated positioners on the NIF target chamber for viewing the target from above and below, and the X-ray energies of interest are 870 eV for the “soft” channel and 3 – 5 keV for the “hard” channels. The original cameras utilize a large format back-illuminated 2048 x 2048 CCD sensor with 24 micron pixels. Since the original sensor is no longer available, an effortmore » was recently undertaken to build replacement cameras with suitable new sensors. Three of the new cameras use a commercially available front-illuminated CCD of similar size to the original, which has adequate sensitivity for the hard X-ray channels but not for the soft. For sensitivity below 1 keV, Lawrence Livermore National Laboratory (LLNL) had additional CCDs back-thinned and converted to back-illumination for use in the other two new cameras. In this paper we describe the characteristics of the new cameras and present performance data (quantum efficiency, flat field, and dynamic range) for the front- and back-illuminated cameras, with comparisons to the original cameras.« less

  7. Automatic target alignment of the Helios laser system

    NASA Astrophysics Data System (ADS)

    Liberman, I.; Viswanathan, V. K.; Klein, M.; Seery, B. D.

    1980-05-01

    An automatic target-alignment technique for the Helios laser facility is reported and verified experimentally. The desired alignment condition is completely described by an autocollimation test. A computer program examines the autocollimated return pattern from the surrogate target and correctly describes any changes required in mirror orientation to yield optimum target alignment with either aberrated or misaligned beams. Automated on-line target alignment is thus shown to be feasible.

  8. Design and development of a new facility for teaching and research in clinical anatomy.

    PubMed

    Greene, John Richard T

    2009-01-01

    This article discusses factors in the design, commissioning, project management, and intellectual property protection of developments within a new clinical anatomy facility in the United Kingdom. The project was aimed at creating cost-effective facilities that would address widespread concerns over anatomy teaching, and support other activities central to the university mission-namely research and community interaction. The new facilities comprise an engaging learning environment and were designed to support a range of pedagogies appropriate to the needs of healthcare professionals at different stages of their careers. Specific innovations include integrated workstations each comprising of a dissection table, with removable top sections, an overhead operating light, and ceiling-mounted camera. The tables incorporate waterproof touch-screen monitors to display images from the camera, an endoscope or a database of images, videos, and tutorials. The screens work independently so that instructors can run different teaching sessions simultaneously and students can progress at different speeds to suit themselves. Further, database access is provided from within an integrated anatomy and pathology museum and display units dedicated to the correlation of cross-sectional anatomy with medical imaging. A new functional neuroanatomy modeling system, called the BrainTower, has been developed to aid integration of anatomy with physiology and clinical neurology. Many aspects of the new facility are reproduced within a Mobile Teaching Unit, which can be driven to hospitals, colleges, and schools to provide appropriate work-based education and community interaction. (c) 2009 American Association of Anatomists

  9. Facile construction of mitochondria-targeting nanoparticles for enhanced phototherapeutic effects.

    PubMed

    Liu, Yi; Li, Heping; Xie, Jin; Zhou, Mengxue; Huang, Hui; Lu, Huiru; Chai, Zhifang; Chen, Jun; Hu, Yi

    2017-05-02

    Phototherapy, as a noninvasive therapeutic procedure, has been applied to treat tumors. However, the application of phototherapy is often compromised by its low efficiency. Herein, we developed a novel nanoplatform based on cationic amphiphilic polymer-wrapped carbon nanotubes (rPAA@SWCNTs) with a photosensitizer, indocyanine green (ICG), for phototherapy. The as-prepared nanoparticles exhibited excellent mitochondria targeting due to the synergistic properties of highly positive charges from the polycations on the corona and the high hydrophobicity from the carbon nanotubes in the core. Moreover, the high buffer capacity of the polycations facilitated the endosomal escape of nanoparticles via a proton-sponge effect. When irradiated with an 808 nm NIR laser, ICG/rPAA@SWCNTs could precisely damage mitochondria with high efficiency and produce reactive oxygen species (ROS) and hyperthermia, which further induced the ROS burst from damaged mitochondria. The overproduced ROS accumulated in mitochondria ultimately resulted in mitochondrial damage and cell death. Therefore ICG/rPAA@SWCNTs may be able to achieve an amplifying phototherapeutic effect.

  10. The national ignition facility high-energy ultraviolet laser system

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2004-09-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10 8 K and 10 11 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  11. Beyond cysteine: recent developments in the area of targeted covalent inhibition.

    PubMed

    Mukherjee, Herschel; Grimster, Neil P

    2018-05-29

    Over the past decade targeted covalent inhibitors have undergone a renaissance due to the clinical validation and regulatory approval of several small molecule therapeutics that are designed to irreversibly modify their target protein. Invariably, these compounds rely on the serendipitous placement of a cysteine residue proximal to the small molecule binding site; while this strategy has afforded numerous successes, it necessarily limits the number of proteins that can be targeted by this approach. This drawback has led several research groups to develop novel methodologies that target non-cysteine residues for covalent modification. Herein, we survey the current literature of warheads that covalently modify non-cysteine amino acids in proteins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    PubMed Central

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2013-01-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development

  13. Development and use of interactive displays in real-time ground support research facilities

    NASA Technical Reports Server (NTRS)

    Rhea, Donald C.; Hammons, Kvin R.; Malone, Jacqueline C.; Nesel, Michael C.

    1989-01-01

    The NASA Western Aeronautical Test Range (WATR) is one of the world's most advanced aeronautical research flight test support facilities. A variety of advanced and often unique real-time interactive displays has been developed for use in the mission control centers (MCC) to support research flight and ground testing. These dispalys consist of applications operating on systems described as real-time interactive graphics super workstations and real-time interactive PC/AT compatible workstations. This paper reviews these two types of workstations and the specific applications operating on each display system. The applications provide examples that demonstrate overall system capability applicable for use in other ground-based real-time research/test facilities.

  14. Development of high temperature liquid metal test facilities for qualification of materials and investigations of thermoelectrical modules

    NASA Astrophysics Data System (ADS)

    Onea, A.; Hering, W.; Reiser, J.; Weisenburger, A.; Diez de los Rios Ramos, N.; Lux, M.; Ziegler, R.; Baumgärtner, S.; Stieglitz, R.

    2017-07-01

    Three classes of experimental liquid metal facilities have been completed during the LIMTECH project aiming the qualification of materials, investigation of thermoelectrical modules, investigation of sodium transitional regimes and fundamental thermo-dynamical flows in concentrating solar power (CSP) relevant geometries. ATEFA facility is dedicated to basic science investigation focussed on the alkali metal thermal-to-electric converter (AMTEC) technology. Three SOLTEC facilities are aimed to be used in different laboratories for long term material investigation sodium environment up to a 1000 K temperature and for long term tests of AMTEC modules. The medium scale integral facility KASOLA is planned as the backbone for CSP development and demonstration.

  15. Performance of the first Japanese large-scale facility for radon inhalation experiments with small animals.

    PubMed

    Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori; Tanaka, Hiroshi; Kataoka, Takahiro; Sakoda, Akihiro

    2011-07-01

    A radon test facility for small animals was developed in order to increase the statistical validity of differences of the biological response in various radon environments. This paper illustrates the performances of that facility, the first large-scale facility of its kind in Japan. The facility has a capability to conduct approximately 150 mouse-scale tests at the same time. The apparatus for exposing small animals to radon has six animal chamber groups with five independent cages each. Different radon concentrations in each animal chamber group are available. Because the first target of this study is to examine the in vivo behaviour of radon and its effects, the major functions to control radon and to eliminate thoron were examined experimentally. Additionally, radon progeny concentrations and their particle size distributions in the cages were also examined experimentally to be considered in future projects.

  16. Requirements and Capabilities for Fielding Cryogenic DT-Containing Fill-Tube Targets for Direct-Drive Experiments on OMEGA

    DOE PAGES

    Harding, D. R.; Ulreich, J.; Wittman, M. D.; ...

    2017-12-06

    Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less

  17. Requirements and Capabilities for Fielding Cryogenic DT-Containing Fill-Tube Targets for Direct-Drive Experiments on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, D. R.; Ulreich, J.; Wittman, M. D.

    Improving the performance of direct-drive cryogenic targets at the Omega Laser Facility requires the development of a new cryogenic system to (i) field non permeable targets with a fill tube, and (ii) provide a clean environment around the target. This capability is to demonstrate that imploding a scaled-down version of the direct-drive–ignition target for the National Ignition Facility (NIF) on the OMEGA laser will generate the hot-spot pressure that is needed for ignition; this will justify future cryogenic direct-drive experiments on the NIF. The paper describes the target, the cryogenic equipment that is being constructed to achieve this goal, andmore » the proposed target delivery process. Thermal calculations, fill-tube–based target designs, and structural/vibrational analyses are provided to demonstrate the credibility of the design. This new design will include capabilities not available (or possible) with the existing OMEGA cryogenic system, with the emphasis being to preserve a pristinely clean environment around the target, and to provide upgraded diagnostics to characterize both the ice layer and the target’s surface. The conceptual design is complete and testing of prototypes and subcomponents is underway. The rationale and capabilities of the new design are discussed.« less

  18. Improving medication information transfer between hospitals, skilled-nursing facilities, and long-term-care pharmacies for hospital discharge transitions of care: A targeted needs assessment using the Intervention Mapping framework.

    PubMed

    Kerstenetzky, Luiza; Birschbach, Matthew J; Beach, Katherine F; Hager, David R; Kennelty, Korey A

    2018-02-01

    Patients transitioning from the hospital to a skilled nursing home (SNF) are susceptible to medication-related errors resulting from fragmented communication between facilities. Through continuous process improvement efforts at the hospital, a targeted needs assessment was performed to understand the extent of medication-related issues when patients transition from the hospital into a SNF, and the gaps between the hospital's discharge process, and the needs of the SNF and long-term care (LTC) pharmacy. We report on the development of a logic model that will be used to explore methods for minimizing patient care medication delays and errors while further improving handoff communication to SNF and LTC pharmacy staff. Applying the Intervention Mapping (IM) framework, a targeted needs assessment was performed using quantitative and qualitative methods. Using the hospital discharge medication list as reference, medication discrepancies in the SNF and LTC pharmacy lists were identified. SNF and LTC pharmacy staffs were also interviewed regarding the continuity of medication information post-discharge from the hospital. At least one medication discrepancy was discovered in 77.6% (n = 45/58) of SNF and 76.0% (n = 19/25) of LTC pharmacy medication lists. A total of 191 medication discrepancies were identified across all SNF and LTC pharmacy records. Of the 69 SNF staff interviewed, 20.3% (n = 14) reported patient care delays due to omitted documents during the hospital-to-SNF transition. During interviews, communication between the SNF/LTC pharmacy and the discharging hospital was described by facility staff as unidirectional with little opportunity for feedback on patient care concerns. The targeted needs assessment guided by the IM framework has lent to several planned process improvements initiatives to help reduce medication discrepancies during the hospital-to-SNF transition as well as improve communication between healthcare entities. Opening lines of

  19. Alcoholic hepatitis: Translational approaches to develop targeted therapies.

    PubMed

    Mandrekar, Pranoti; Bataller, Ramon; Tsukamoto, Hidekazu; Gao, Bin

    2016-10-01

    Alcoholic liver disease is a leading cause of liver-related mortality worldwide. In contrast to recent advances in therapeutic strategies for patients with viral hepatitis, there is a significant lack of novel therapeutic options for patients with alcoholic liver disease. In particular, there is an urgent need to focus our efforts on effective therapeutic interventions for alcoholic hepatitis (AH), the most severe form of alcoholic liver disease. AH is characterized by an abrupt development of jaundice and complications related to liver insufficiency and portal hypertension in patients with heavy alcohol intake. The mortality of patients with AH is very high (20%-50% at 3 months). Available therapies are not effective in many patients, and targeted approaches are imminently needed. The development of such therapies requires translational studies in human samples and suitable animal models that reproduce the clinical and histological features of AH. In recent years, new animal models that simulate some of the features of human AH have been developed, and translational studies using human samples have identified potential pathogenic factors and histological parameters that predict survival. This review summarizes the unmet needs for translational studies on the pathogenesis of AH, preclinical translational tools, and emerging drug targets to benefit the AH patient. (Hepatology 2016;64:1343-1355). © 2016 by the American Association for the Study of Liver Diseases.

  20. Strategies that target leukocyte traffic in inflammatory bowel diseases: recent developments.

    PubMed

    Rivera-Nieves, Jesús

    2015-11-01

    We review the most recent developments regarding the targeting of molecules involved in the traffic of leukocytes for the treatment of inflammatory bowel diseases (IBD). We discuss the most important findings of one published phase II trial that targeted the β7 integrin (etrolizumab), two phase II trials that targeted the α4β7 integrin ligand: mucosal addressin cell adhesion molecule 1 (MAdCAM-1, PF-00547659), a phase II trial targeting the chemokine IP-10 (CXCL10) in Crohn's, and a phase II trial that targeted the sphingosine-1-phosphate receptor-1: ozanimod in patients with ulcerative colitis. Targeting molecules involved in leukocyte traffic has recently become an effective and well tolerated strategy for the treatment of IBD. Novel approaches now not only target the integrins on the lymphocyte surface, but also its endothelial ligand: MAdCAM-1. As with vedolizumab, antibodies against MAdCAM-1 appear most effective in ulcerative colitis rather than in Crohn's. Targeting chemokines or their receptors does not appear to have the same efficacy as those that target the most stable integrin: immunoglobulin superfamily interactions between the lymphocyte and endothelium. Preliminary results also suggest that the sphingosine-1-phosphate pathway might also be targeted therapeutically in IBD, no longer with parenterally administered antibodies but with orally administered small molecules.

  1. Development, application, and validation of a survey for infectious disease control practices at equine boarding facilities.

    PubMed

    Kirby, Alanna T; Traub-Dargatz, Josie L; Hill, Ashley E; Kogan, Lori R; Morley, Paul S; Heird, James C

    2010-11-15

    To develop a questionnaire for self-assessment of biosecurity practices at equine boarding facilities and to evaluate infectious disease control practices in these facilities in Colorado. Cross-sectional study. 64 equine boarding facilities in Colorado. Survey questions were rated according to importance for prevention and containment of equine infectious diseases. Point values (range, 0 to 20) were assigned for possible responses, with greater values given for optimal infection control methods. Questionnaires were mailed to equine boarding facilities in Colorado advertised on the World Wide Web. Survey responses were compared with assessments made by a member of the research team during visits to 30 randomly selected facilities. Agreement among results was analyzed via a kappa test and rated as poor, fair, moderate, substantial, or nearly perfect. Survey responses were received for 64 of 163 (39%) equine boarding facilities. Scores ranged from 106 to 402 points (maximum possible score, 418). Most facilities received better scores for movement and housing of equids than for other sections of the survey. Respondents at 24 of 48 (50%) facilities that routinely received new equids reported isolation of new arrivals. Agreement between self-assessment by survey respondents and evaluation by a member of the research team was determined to be fair to substantial. Most equine boarding facilities have opportunities to improve measures for prevention or containment of contagious diseases (eg, isolation of newly arrived equids and use of written health management protocols). Most self-assessments of infection control practices were accurate.

  2. A method for studying the development pattern of urban commercial service facilities based on customer reviews from social media

    NASA Astrophysics Data System (ADS)

    Wang, Y. D.; Jiang, B. T.; Ye, X. Y.

    2016-06-01

    Urbanization is one of the most important human social activities in the 21st century (Chaolin et al., 2012). With an increasing number of people visiting cities, the provision of adequate urban service facilities, including public and commercial service facilities, in locations where people live has become an important guarantee of the success of urbanization. Exploring the commercial service facilities in a specific area of a city can help us understand the progress and trends of urban renewal in the area, provide a quantitative basis for evaluating the rationality of planning implementation, and facilitate an analysis of the effects of different factors on the regional development of a city (Schor et al. 2003). In this paper, we proposed a data processing and analysis method for studying the distribution and development pattern of urban commercial facilities based on customer reviews. In addition, based on road network constraints, we explored the patterns contained in customer reviews data, including patterns for the spatial distribution and spatial-temporal evolution of facilities as well as the number of facilities and degree of satisfaction.

  3. Development of a collinear laser spectrometer facility at VECC: First test result

    NASA Astrophysics Data System (ADS)

    Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok

    2018-04-01

    We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.

  4. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  5. NASA in-house Commercially Developed Space Facility (CDSF) study report. Volume 1: Concept configuration definition

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.; Chiger, H. D.; Deryder, D. D.; Detweiler, K. N.; Dupree, R. L.; Gillespie, V. P.; Hall, J. B.; Heck, M. L.; Herrick, D. C.; Katzberg, S. J.

    1989-01-01

    The results of a NASA in-house team effort to develop a concept definition for a Commercially Developed Space Facility (CDSF) are presented. Science mission utilization definition scenarios are documented, the conceptual configuration definition system performance parameters qualified, benchmark operational scenarios developed, space shuttle interface descriptions provided, and development schedule activity was assessed with respect to the establishment of a proposed launch date.

  6. An inexpensive and fast method for infiltration coating of complex geometry matrices for ISOL production target applications

    NASA Astrophysics Data System (ADS)

    Kawai, Y.; Alton, G. D.; Bilheux, J.-C.

    2005-12-01

    An inexpensive, fast, and close to universal infiltration coating technique has been developed for fabricating fast diffusion-release ISOL targets. Targets are fabricated by deposition of finely divided (∼1 μm) compound materials in a paint-slurry onto highly permeable, complex structure reticulated-vitreous-carbon-foam (RVCF) matrices, followed by thermal heat treatment. In this article, we describe the coating method and present information on the physical integrity, uniformity of deposition, and matrix adherence of SiC, HfC and UC2 targets, destined for on-line use as targets at the Holifield Radioactive Ion Beam Facility (HRIBF).

  7. Indoor tanning facility density in eighty U.S. cities.

    PubMed

    Palmer, Richard C; Mayer, Joni A; Woodruff, Susan I; Eckhardt, Laura; Sallis, James F

    2002-06-01

    The purpose of this study was to examine the number of tanning facilities in select U.S. cities. The twenty most populated cities from each of 4 U.S. regions were selected for the sample. For each city, data on the number of tanning facilities, climate, and general demographic profile were collected. Data for state tanning facility legislation also were collected. A tanning facility density variable was created by dividing the city's number of facilities by its population size. The 80 cities had an average of 50 facilities each. Results of linear regression analysis indicated that higher density was significantly associated with colder climate, lower median income, and higher proportion of Whites. These data indicate that indoor tanning facilities are prevalent in the environments of U.S. urban-dwellers. Cities having the higher density profile may be logical targets for interventions promoting less or safer use of these facilities.

  8. A physics-based solver to optimize the illumination of cylindrical targets in spherically distributed high power laser systems.

    PubMed

    Gourdain, P-A

    2017-05-01

    In recent years, our understanding of high energy density plasmas has played an important role in improving inertial fusion confinement and in emerging new fields of physics, such as laboratory astrophysics. Every new idea required developing innovative experimental platforms at high power laser facilities, such as OMEGA or NIF. These facilities, designed to focus all their beams onto spherical targets or hohlraum windows, are now required to shine them on more complex targets. While the pointing on planar geometries is relatively straightforward, it becomes problematic for cylindrical targets or target with more complex geometries. This publication describes how the distribution of laser beams on a cylindrical target can be done simply by using a set of physical laws as a pointing procedure. The advantage of the method is threefold. First, it is straightforward, requiring no mathematical enterprise besides solving ordinary differential equations. Second, it will converge if a local optimum exists. Finally, it is computationally inexpensive. Experimental results show that this approach produces a geometrical beam distribution that yields cylindrically symmetric implosions.

  9. A physics-based solver to optimize the illumination of cylindrical targets in spherically distributed high power laser systems

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.

    2017-05-01

    In recent years, our understanding of high energy density plasmas has played an important role in improving inertial fusion confinement and in emerging new fields of physics, such as laboratory astrophysics. Every new idea required developing innovative experimental platforms at high power laser facilities, such as OMEGA or NIF. These facilities, designed to focus all their beams onto spherical targets or hohlraum windows, are now required to shine them on more complex targets. While the pointing on planar geometries is relatively straightforward, it becomes problematic for cylindrical targets or target with more complex geometries. This publication describes how the distribution of laser beams on a cylindrical target can be done simply by using a set of physical laws as a pointing procedure. The advantage of the method is threefold. First, it is straightforward, requiring no mathematical enterprise besides solving ordinary differential equations. Second, it will converge if a local optimum exists. Finally, it is computationally inexpensive. Experimental results show that this approach produces a geometrical beam distribution that yields cylindrically symmetric implosions.

  10. 75 FR 51808 - Lead-Based Paint Renovation, Repair and Painting Activities in Target Housing and Child Occupied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... Renovation, Repair and Painting Activities in Target Housing and Child Occupied Facilities; State of Rhode.... These rules already cover all lead-based paint activities that are conducted in target housing and child... in target housing and child-occupied facilities. These rules: 1. Establish the discipline of lead...

  11. Integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1986-01-01

    The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.

  12. Development and validation of the crew-station system-integration research facility

    NASA Technical Reports Server (NTRS)

    Nedell, B.; Hardy, G.; Lichtenstein, T.; Leong, G.; Thompson, D.

    1986-01-01

    The various issues associated with the use of integrated flight management systems in aircraft were discussed. To address these issues a fixed base integrated flight research (IFR) simulation of a helicopter was developed to support experiments that contribute to the understanding of design criteria for rotorcraft cockpits incorporating advanced integrated flight management systems. A validation experiment was conducted that demonstrates the main features of the facility and the capability to conduct crew/system integration research.

  13. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Paul

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  14. NASA Chief Technologist Douglas Terrier Tours Jacobs' Engineering Development Facility

    NASA Image and Video Library

    2017-08-10

    NASA Chief Technologist Douglas Terrier joins Jacobs General Manager Lon Miller during a tour of the company's Engineering Development Facility in Houston. Jacobs provides advanced technologies used aboard the International Space Station and for deep space exploration. From left: NASA’s Johnson Space Center Chief Technologist Chris Culbert, Chief Technologist Douglas Terrier, Jacobs Clear Lake Group Deputy General Manager Joy Kelly and Jacobs Clear Lake Group General Manager Lon Miller. Date: 08-10-2017 Location: B1 & Jacobs Engineering Subject: NASA Acting Chief Technology Officer Douglas Terrier Tours JSC and Jacobs Photographer: David DeHoyos

  15. Facilities for animal research in space

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

    1991-01-01

    The animal facilities used aboard or designed for various spacecraft research missions are described. Consideration is given to the configurations used in Cosmos-1514 (1983) and Cosmos-1887 (1987) missions; the reusable Biosatellite capsule flown three times by NASA between 1966 and 1969; the NASA's Lifesat spacecraft that is being currently designed; the Animal Enclosure Module flown on Shuttle missions in 1983 and 1984; the Research Animal Holding Facility developed for Shuttle-Spacelab missions; the Rhesus Research Facility developed for a Spacelab mission; and the Japanese Animal Holding Facility for the Space Station Freedom. Special attention is given to the designs of NASA's animal facilities developed for Space Station Freedom and the details of various subsystems of these facilities. The main characteristics of the rodent and the primate habitats provided by these various facilities are discussed.

  16. LLNL Scientist is Passionate About Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butlin, Becky

    With a lifelong passion for problem-solving and a love of production, Becky Butlin has helped lead the National Ignition Facility Target Fabrication Team through obstacles and challenges for the past six years.

  17. [Targeted therapies in hepatocellular carcinomas: recent results and future development].

    PubMed

    Marijon, H; Faivre, S; Raymond, E

    2009-05-01

    Hepatocellular carcinoma (HCC) is one of the 5th most common cancers around the world with a limited number of systemic therapeutic options. Cytotoxic agents, hormonotherapy and immunotherapy have failed to demonstrate benefit compared to best supportive care in patients with advanced HCC. The recent development of targeted therapies provided hope for the treatment of advanced HCC. We reviewed phases II-III trials presented in 2007 and 2008. Results are promising with a clinical benefit reported with molecular therapies targeting EGF/EGFR and VEGF/VEGFR pathways.

  18. Development of a Plutonium Ceramic Target for the MASHA Separator

    NASA Astrophysics Data System (ADS)

    Shaughnessy, D. A.; Moody, K. J.; Kenneally, J. M.; Wild, J. F.; Stoyer, M. A.; Lougheed, R. W.; Yeremin, A. V.; Oganessian, Yu. Ts.

    2004-04-01

    We are participating in the development of the target for the MASHA (Mass Analyzer of Super Heavy Atoms) on-line mass separator in Dubna. Along with recent upgrades of the U400 cyclotron, MASHA will provide for at least a ten-fold increase in the production- and-detection rate for element 114 atoms, and will allow us to measure their atomic masses precisely. The MASHA separator will employ a thick Pu ceramic target capa- ble of tolerating temperatures in the vicinity of 2000 C without vaporizing the actinide compound. Reaction products will diffuse out of the target and will drift to an ECR ion source after which they will be transported through the separator and will impinge on a position-sensitive focal-plane detector array. Furthermore, operation of the MASHA hot target/ion source combination will provide chemical volatility information that will support our assignment of an atomic number of 114 to these nuclei. Taken together, these experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments in which the chemical properties of the heaviest elements are studied.

  19. Pulsed Magnetic Field System for Magnetized Target Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rhodes, M. A.; Solberg, J. M.; Logan, B. G.; Perkins, L. J.

    2014-10-01

    High-magnitude magnetic fields applied to inertially confined targets may improve fusion yield and enable basic science applications. We discuss the development of a pulsed magnetic field system for NIF with the goal of applying 10--70 T to various NIF targets. While the driver may be little more than a spark-gap switched capacitor, numerous complex challenges exist in fielding such a system on NIF. The coil surrounding the metallic hohlraum drives induced current in the hohlraum wall. Both the coil and hohlraum wall must survive ohmic heating and J × B forces for several microseconds. Pulsed power must couple to the coil in the NIF environment. The system must not cause late-time optics damage due to debris. There is very limited volume for the driver in a NIF Diagnostic Instrument Manipulator (DIM). We are modeling the coil and hohlraum MHD effects with the LLNL code, ALE3D. However, the simulations lack complete and accurate data for all the required thermo-physical material properties over the expected range of temperatures (below vaporization) and pressures. Therefore, substantial experimental development is planned in the coming year. We present coil and hohlraum simulations results, overall system design, and progress towards an operational prototype test-stand. LLNL is operated by LLNS, LLC, for the U.S. D.O.E., NNSA under Contract DE-AC52-07NA27344. This work was supported by LLNL LDRD 14-ER-028.

  20. Overview of laser systems for the Orion facility at the AWE.

    PubMed

    Hopps, Nicholas; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hillier, David; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-05-20

    The commissioning of the Orion laser facility at the Atomic Weapons Establishment (AWE) in the UK has recently been completed. The facility is a twelve beam Nd:glass-based system for studying high energy density physics. It consists of ten frequency-tripled beam-lines operating with nanosecond pulses, synchronized with two beam-lines with subpicosecond pulses, each capable of delivering 500 J to target. One of the short pulse beams has the option of frequency doubling, at reduced aperture, to yield up to 100 J at 527 nm in a subpicosecond pulse with high temporal contrast. An extensive array of target diagnostics is provided. This article describes the laser design and commissioning and presents key performance data of the facility's laser systems.

  1. Facility Search Criteria Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides powerful search capabilities offering more than 100 search criteria to target your results. Use the ECHO to search compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide.

  2. Shielding analyses of an AB-BNCT facility using Monte Carlo simulations and simplified methods

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Lun; Sheu, Rong-Jiun

    2017-09-01

    Accurate Monte Carlo simulations and simplified methods were used to investigate the shielding requirements of a hypothetical accelerator-based boron neutron capture therapy (AB-BNCT) facility that included an accelerator room and a patient treatment room. The epithermal neutron beam for BNCT purpose was generated by coupling a neutron production target with a specially designed beam shaping assembly (BSA), which was embedded in the partition wall between the two rooms. Neutrons were produced from a beryllium target bombarded by 1-mA 30-MeV protons. The MCNP6-generated surface sources around all the exterior surfaces of the BSA were established to facilitate repeated Monte Carlo shielding calculations. In addition, three simplified models based on a point-source line-of-sight approximation were developed and their predictions were compared with the reference Monte Carlo results. The comparison determined which model resulted in better dose estimation, forming the basis of future design activities for the first ABBNCT facility in Taiwan.

  3. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Romero, Frank Patrick

    2016-04-01

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.« less

  4. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during themore » development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.« less

  5. Development of a Test Facility for Air Revitalization Technology Evaluation

    NASA Technical Reports Server (NTRS)

    Lu, Sao-Dung; Lin, Amy; Campbell, Melissa; Smith, Frederick; Curley, Su

    2007-01-01

    Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat of up to eight persons. A multitude of gas analyzers and dew point sensors are used to monitor the chamber atmosphere upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space. A reliable data acquisition and control system is required to connect all the subsystems together. This paper presents the capabilities of the integrated test facility and some of the issues encountered during the integration.

  6. Development and Validation of an Index to Measure the Quality of Facility-Based Labor and Delivery Care Processes in Sub-Saharan Africa

    PubMed Central

    Tripathi, Vandana; Stanton, Cynthia; Strobino, Donna; Bartlett, Linda

    2015-01-01

    Background High quality care is crucial in ensuring that women and newborns receive interventions that may prevent and treat birth-related complications. As facility deliveries increase in developing countries, there are concerns about service quality. Observation is the gold standard for clinical quality assessment, but existing observation-based measures of obstetric quality of care are lengthy and difficult to administer. There is a lack of consensus on quality indicators for routine intrapartum and immediate postpartum care, including essential newborn care. This study identified key dimensions of the quality of the process of intrapartum and immediate postpartum care (QoPIIPC) in facility deliveries and developed a quality assessment measure representing these dimensions. Methods and Findings Global maternal and neonatal care experts identified key dimensions of QoPIIPC through a modified Delphi process. Experts also rated indicators of these dimensions from a comprehensive delivery observation checklist used in quality surveys in sub-Saharan African countries. Potential QoPIIPC indices were developed from combinations of highly-rated indicators. Face, content, and criterion validation of these indices was conducted using data from observations of 1,145 deliveries in Kenya, Madagascar, and Tanzania (including Zanzibar). A best-performing index was selected, composed of 20 indicators of intrapartum/immediate postpartum care, including essential newborn care. This index represented most dimensions of QoPIIPC and effectively discriminated between poorly and well-performed deliveries. Conclusions As facility deliveries increase and the global community pays greater attention to the role of care quality in achieving further maternal and newborn mortality reduction, the QoPIIPC index may be a valuable measure. This index complements and addresses gaps in currently used quality assessment tools. Further evaluation of index usability and reliability is needed. The

  7. FACILITIES FOR PHYSICAL FITNESS.

    ERIC Educational Resources Information Center

    MUSIAL, STAN

    THIS ARTICLE CITES THE LOW PRIORITY THAT PHYSICAL EDUCATION GENERALLY HAS IN CURRICULUM AND SCHOOL FACILITY PLANNING. IT ALSO CITES THE REASONS FOR DEVELOPING MORE ADEQUATE PHYSICAL EDUCATION FACILITIES--(1) OUR WAY OF LIFE NO LONGER PROVIDES VIGOROUS PHYSICAL ACTIVITY NECESSARY FOR HEALTHY DEVELOPMENT, (2) A DIRECT RELATIONSHIP EXISTS BETWEEN…

  8. Development of Targeted, Enzyme-Activated Nano-Conjugates for Hepatic Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Kuruvilla, Sibu Philip

    Hepatocellular carcinoma (HCC) is the 5th most commonly-occurring cancer worldwide and the 2nd highest cause for cancer-related deaths globally. The current treatment strategy is the direct injection of a chemotherapeutic agent (e.g. doxorubicin; DOX) into the hepatic artery, through a process called hepatic arterial infusion (HAI). Unfortunately, HAI is severely hindered by limited therapeutic efficacy against the tumor and high systemic toxicity to surrounding organs (e.g. cardiotoxicity). This thesis focuses on the development of a targeted, nanoparticle-based drug delivery system aimed to improve the clinical treatment of HCC. In particular, we employ generation 5 (G5) poly(amido amine) (PAMAM) dendrimers targeted to hepatic cancer cells via N-acetylgalactosamine (NAcGal) ligands attached to the surface through a poly(ethylene glycol) (PEG) brush. DOX is attached to the G5 surface through two different enzyme-sensitive linkages, L3 or L4, to achieve controllable release of the drug inside hepatic cancer cells. The combination of NAcGal-PEG targeting branches with either L3- or L4-DOX linkages led to the development of P1 and P2 particles, respectively. In Part 1, we discuss the development of these particles and measure their ability to target and kill hepatic cancer cells in vitro. In Part 2, we investigate the antitumor activity of P1 and P2 particles in tumor-bearing mice in comparison to the free drug, and we measure the cardiac function of mice undergoing treatment to assess differences in DOX-induced cardiotoxicity. Finally, in Part 3, we explore multi-valent targeting of G5 dendrimers in pursuit of further improving their specificity to hepatic cancer cells. Ultimately, this thesis provides insight into the utility of nanoparticle-based drug delivery systems that can potentially be translated to the clinic to improve cancer therapy.

  9. Therapeutic targets and new directions for antibodies developed for ovarian cancer

    PubMed Central

    Bax, Heather J.; Josephs, Debra H.; Pellizzari, Giulia; Spicer, James F.; Montes, Ana; Karagiannis, Sophia N.

    2016-01-01

    ABSTRACT Antibody therapeutics against different target antigens are widely used in the treatment of different malignancies including ovarian carcinomas, but this disease still requires more effective agents. Improved understanding of the biological features, signaling pathways, and immunological escape mechanisms involved in ovarian cancer has emerged in the past few years. These advances, including an appreciation of the cross-talk between cancer cells and the patient's immune system, have led to the identification of new targets. In turn, potential antibody treatments with various mechanisms of action, including immune activation or toxin-delivery, that are directed at these targets have been developed. Here, we identify established as well as novel targets for antibodies in ovarian cancer, and discuss how they may provide fresh opportunities to identify interventions with enhanced therapeutic potential. PMID:27494775

  10. Assessment and Mitigation of Radiation, EMP, Debris & Shrapnel Impacts at Megajoule-Class Laser Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, D C; Anderson, R W; Bailey, D S

    2009-10-05

    The generation of neutron/gamma radiation, electromagnetic pulses (EMP), debris and shrapnel at mega-Joule class laser facilities (NIF and LMJ) impacts experiments conducted at these facilities. The complex 3D numerical codes used to assess these impacts range from an established code that required minor modifications (MCNP - calculates neutron and gamma radiation levels in complex geometries), through a code that required significant modifications to treat new phenomena (EMSolve - calculates EMP from electrons escaping from laser targets), to a new code, ALE-AMR, that is being developed through a joint collaboration between LLNL, CEA, and UC (UCSD, UCLA, and LBL) for debrismore » and shrapnel modelling.« less

  11. Lean coding machine. Facilities target productivity and job satisfaction with coding automation.

    PubMed

    Rollins, Genna

    2010-07-01

    Facilities are turning to coding automation to help manage the volume of electronic documentation, streamlining workflow, boosting productivity, and increasing job satisfaction. As EHR adoption increases, computer-assisted coding may become a necessity, not an option.

  12. Medical Isotope Production Analyses In KIPT Neutron Source Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamo, Alberto; Gohar, Yousry

    Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is drivenmore » by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.« less

  13. Cell-targeted platinum nanoparticles and nanoparticle clusters.

    PubMed

    Papst, Stefanie; Brimble, Margaret A; Evans, Clive W; Verdon, Daniel J; Feisst, Vaughan; Dunbar, P Rod; Tilley, Richard D; Williams, David E

    2015-06-21

    Herein, we report the facile preparation of cell-targeted platinum nanoparticles (PtNPs), through the design of peptides that, as a single molecule added in small concentration during the synthesis, control the size of PtNP clusters during their growth, stabilise the PtNPs in aqueous suspension and enable the functionalisation of the PtNPs with a versatile range of cell-targeting ligands. Water-soluble PtNPs targeted respectively at blood group antigens and at integrin receptors are demonstrated.

  14. Development of a facility using robotics for testing automation of inertial instruments

    NASA Technical Reports Server (NTRS)

    Greig, Joy Y.; Lamont, Gary B.; Biezad, Daniel J.; Lewantowicz, Zdsislaw H.; Greig, Joy Y.

    1987-01-01

    The Integrated Robotics System Simulation (ROBSIM) was used to evaluate the performance of the PUMA 560 arm as applied to testing of inertial sensors. Results of this effort were used in the design and development of a feasibility test environment using a PUMA 560 arm. The implemented facility demonstrated the ability to perform conventional static inertial instrument tests (rotation and tumble). The facility included an efficient data acquisitions capability along with a precision test servomechanism function resulting in various data presentations which are included in the paper. Analysis of inertial instrument testing accuracy, repeatability and noise characteristics are provided for the PUMA 560 as well as for other possible commercial arm configurations. Another integral aspect of the effort was an in-depth economic analysis and comparison of robot arm testing versus use of contemporary precision test equipment.

  15. Development and In Vitro Characterization of a Gemcitabine-loaded MUC4-targeted Immunoliposome Against Pancreatic Ductal Adenocarcinoma.

    PubMed

    Urey, Carlos; Hilmersson, Katarzyma Said; Andersson, Bodil; Ansari, Daniel; Andersson, Roland

    2017-11-01

    Pancreatic Ductal adeno-carcinoma (PDAC) is a devastating disease. Gemcitabine is the standard chemotherapeutic agent against PDAC but has only limited effectiveness. The aim of the study was to develop and study the targeting affinity and in vitro antiproliferative effect of a MUC4-targeted gemcitabine-loaded immuno-liposome for treatment of PDAC. Gemcitabine-loaded immunoliposomes were developed by grafting anti-MUC4 antibodies to the liposomal surface. Targeting affinity was compared in vitro between immunoliposomes and non-targeted liposomes and anti-proliferative effect was compared in vitro between free drug, non-targeted liposomal gemcitabine and MUC4-targeted immunoliposomal gemcitabine on a MUC4-positive pancreatic cancer cell line, Capan-1. Development of a MUC4-targeted immunoliposome was confirmed and characterized by immunoblots and size characterization. The MUC4-targeted immunoliposome showed a significantly higher targeting affinity compared to the non-targeted liposomes and also showed an improved antiproliferative effect compared to free and non-targeted liposomal drug. Successful development and characterization of a MUC4-targeted immunoliposome shows promising results for a targeted treatment and improved retention of gemcitabine for treatment of PDAC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Development of Water Target for Radioisotope Production

    NASA Astrophysics Data System (ADS)

    Tripp, Nathan

    2011-10-01

    Ongoing studies of plant physiology at TUNL require a supply of nitrogen-13 for use as a radiotracer. Production of nitrogen-13 using a water target and a proton beam follows the nuclear reaction 16-O(p,a)13-N. Unfortunately the irradiation of trace amounts of oxygen-18 within a natural water target produces fluorine-18 by the reaction 18-O(p, n)18-F. The presence of this second radioisotope reduces the efficacy of nitrogen-13 as a radiotracer. Designing a natural water target for nitrogen-13 production at TUNL required the design of several new systems to address the problems inherent in nitrogen-13 production. A heat exchanger cools the target water after irradiation within the target cell. The resulting improved thermal regulation of the target water prevents the system from overheating and minimizes the effect of the cavitations occurring within the target. Alumina pellets within a scrubbing unit remove the fluorine-18 contamination from the irradiated water. The modular design of the water target apparatus makes the system highly adaptable, allowing for easy reuse and adaptation of the different components into future projects. The newly designed and constructed water target should meet the current and future needs of TUNL researchers in the production of nitrogen-13. This TUNL REU project was funded in part by a grant from the National Science Foundation (NSF) NSF-PHY-08-51813.

  17. The spectral imaging facility: Setup characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratorymore » in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.« less

  18. Development of a standardized transfusion ratio as a metric for evaluating dialysis facility anemia management practices.

    PubMed

    Liu, Jiannong; Li, Suying; Gilbertson, David T; Monda, Keri L; Bradbury, Brian D; Collins, Allan J

    2014-10-01

    Because transfusion avoidance has been the cornerstone of anemia treatment for patients with kidney disease, direct measurement of red blood cell transfusion use to assess dialysis facility anemia management performance is reasonable. We aimed to explore methods for estimating facility-level standardized transfusion ratios (STfRs) to assess provider anemia treatment practices. Retrospective cohort study. Point prevalent US hemodialysis patients on January 1, 2009, with Medicare as primary payer and dialysis duration of 90 days or longer were included (n = 223,901). All dialysis facilities with eligible patients were included (n = 5,345). Dialysis facility assignment. Receiving a red blood cell transfusion in the inpatient or outpatient setting. We evaluated 3 approaches for estimating STfR: ratio of observed to expected numbers of transfusions (STfR(obs)), a Bayesian approach (STfR(Bayes)), and a modified version of the Bayesian approach (STfR(modBayes)). The overall national transfusion rate in 2009 was 23.2 per 100 patient-years. Our model for predicting the expected number of transfusions performed well. For large facilities, all 3 STfRs worked well. However, for small facilities, while the STfR(modBayes) worked well, STfR(obs) values demonstrated instability and the STfR(Bayes) may produce more bias. Administration of transfusions to dialysis patients reflects medical practice both within and outside the dialysis unit. Some transfusions may be deemed unavoidable and transfusion practices are subject to considerable regional variation. Development of an STfR metric is feasible and reasonable for assessing anemia treatment at dialysis facilities. The STfR(obs) is simple to calculate and works well for larger dialysis facilities. The STfR(modBayes) is more analytically complex, but facilitates comparisons across all dialysis facilities, including small facilities. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. SINGLE EVENT EFFECTS TEST FACILITY AT OAK RIDGE NATIONAL LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X; Dominik, Laura J

    2015-01-01

    Increasing use of microelectronics of ever diminishing feature size in avionics systems has led to a growing Single Event Effects (SEE) susceptibility arising from the highly ionizing interactions of cosmic rays and solar particles. Single event effects caused by atmospheric radiation have been recognized in recent years as a design issue for avionics equipment and systems. To ensure a system meets all its safety and reliability requirements, SEE induced upsets and potential system failures need to be considered, including testing of the components and systems in a neutron beam. Testing of ICs and systems for use in radiation environments requiresmore » the utilization of highly advanced laboratory facilities that can run evaluations on microcircuits for the effects of radiation. This paper provides a background of the atmospheric radiation phenomenon and the resulting single event effects, including single event upset (SEU) and latch up conditions. A study investigating requirements for future single event effect irradiation test facilities and developing options at the Spallation Neutron Source (SNS) is summarized. The relatively new SNS with its 1.0 GeV proton beam, typical operation of 5000 h per year, expertise in spallation neutron sources, user program infrastructure, and decades of useful life ahead is well suited for hosting a world-class SEE test facility in North America. Emphasis was put on testing of large avionics systems while still providing tunable high flux irradiation conditions for component tests. Makers of ground-based systems would also be served well by these facilities. Three options are described; the most capable, flexible, and highest-test-capacity option is a new stand-alone target station using about one kW of proton beam power on a gas-cooled tungsten target, with dual test enclosures. Less expensive options are also described.« less

  20. GRC Ground Support Facilities

    NASA Technical Reports Server (NTRS)

    SaintOnge, Thomas H.

    2010-01-01

    The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.

  1. PREFACE: 1st Tensor Polarized Solid Target Workshop

    NASA Astrophysics Data System (ADS)

    2014-10-01

    These are the proceedings of the first Tensor Spin Observables Workshop that was held in March 2014 at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. The conference was convened to study the physics that can be done with the recently approved E12-13-011 polarized target. A tensor polarized target holds the potential of initiating a new generation of tensor spin physics at Jefferson Lab. Experiments which utilize tensor polarized targets can help clarify how nuclear properties arise from partonic degrees of freedom, provide unique insight into short-range correlations and quark angular momentum, and also help pin down the polarization of the quark sea with a future Electron Ion Collider. This three day workshop was focused on tensor spin observables and the associated tensor target development. The workshop goals were to stimulate progress in the theoretical treatment of polarized spin-1 systems, foster the development of new proposals, and to reach a consensus on the optimal polarized target configuration for the tensor spin program. The workshop was sponsored by the University of New Hampshire, the Jefferson Science Associates, Florida International University, and Jefferson Lab. It was organized by Karl Slifer (chair), Patricia Solvignon, and Elena Long of the University of New Hampshire, Douglas Higinbotham and Christopher Keith of Jefferson Lab, and Misak Sargsian of the Florida International University. These proceedings represent the effort put forth by the community to begin exploring the possibilities that a high-luminosity, high-tensor polarized solid target can offer.

  2. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE PAGES

    Gauthier, M.; Kim, J. B.; Curry, C. B.; ...

    2016-08-24

    Here, we report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetitionmore » rate capability, this target is promising for future applications.« less

  3. High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, M., E-mail: maxence.gauthier@stanford.edu; Kim, J. B.; Curry, C. B.

    2016-11-15

    We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition ratemore » capability, this target is promising for future applications.« less

  4. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.

    PubMed

    Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E

    2017-12-11

    Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.

  5. Development of the Los Alamos National Laboratory Cryogenic Pressure Loader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebey, Peter S.; Dole, James M.; Hoffer, James K.

    2003-05-15

    Targets for inertial fusion research and ignition at OMEGA, the National Ignition Facility, LMJ, and future facilities rely on beta-radiation-driven layering of spherical cryogenic DT ice layers contained within plastic or metal shells. Plastic shells will be permeation filled at room temperature then cooled to cryogenic temperatures before removal of the overpressure. The cryogenic pressure loader (CPL) was recently developed at Los Alamos National Laboratory as a testbed for studying the filling and layering of plastic target shells with DT. A technical description of the CPL is provided. The CPL consists of a cryostat, which contains a high-pressure permeation cell,more » and has optical access for investigating beta layering. The cryostat is housed within a tritium glovebox that contains manifolds for supplying high-pressure DT. The CPL shares some design elements with the cryogenic target handling system at the OMEGA facility to allow testing of tritium issues related to that system. The CPL has the capability to fill plastic targets by permeation to pressures up to 100 MPa and to cool them to 15 K. The CPL will accommodate a range of targets and may be modified for future experiments.« less

  6. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  7. An ion source module for the Beijing Radioactive Ion-beam Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.

    2014-02-15

    An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.

  8. Recent advances in developing small molecules targeting RNA.

    PubMed

    Guan, Lirui; Disney, Matthew D

    2012-01-20

    RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.

  9. An update on anticancer drug development and delivery targeting carbonic anhydrase IX

    PubMed Central

    Parkkila, Seppo

    2017-01-01

    The expression of carbonic anhydrase (CA) IX is up-regulated in many types of solid tumors in humans under hypoxic and acidic microenvironment. Inhibition of CA IX enzymatic activity with selective inhibitors, antibodies or labeled probes has been shown to reverse the acidic environment of solid tumors and reduce the tumor growth establishing the significant role of CA IX in tumorigenesis. Thus, the development of potent antitumor drugs targeting CA IX with minimal toxic effects is important for the target-specific tumor therapy. Recently, several promising antitumor agents against CA IX have been developed to treat certain types of cancers in combination with radiation and chemotherapy. Here we review the inhibition of CA IX by small molecule compounds and monoclonal antibodies. The methods of enzymatic assays, biophysical methods, animal models including zebrafish and Xenopus oocytes, and techniques of diagnostic imaging to detect hypoxic tumors using CA IX-targeted conjugates are discussed with the aim to overview the recent progress related to novel therapeutic agents that target CA IX in hypoxic tumors. PMID:29181278

  10. Towards a Drug Development Path that Targets Metastatic Progression in Osteosarcoma

    PubMed Central

    Khanna, Chand; Fan, Timothy M.; Gorlick, Richard; Helman, Lee J; Kleinerman, Eugenie S.; Adamson, Peter C.; Houghton, Peter J.; Tap, William D.; Welch, Danny R.; Steeg, Patricia S.; Merlino, Glenn; Sorensen, Poul HB; Kirsch, David G.; Janeway, Katherine A.; Weigel, Brenda; Randall, R. Lor; Meltzer, Paul; Withrow, Stephen J; Paoloni, Melissa; Kaplan, Rosandra N.; Teicher, Beverly A.; Seibel, Nita L.; Üren, Aykut; Patel, Shreyaskumar R.; Trent, Jeffrey; Savage, Sharon A.; Mirabello, Lisa; Reinke, Denise; Barkauskas, Donald A.; Krailo, Mark; Smith, Malcolm A.; Bernstein, Mark

    2014-01-01

    Despite successful primary tumor treatment, the development of pulmonary metastasis continues to be the most common cause of mortality in osteosarcoma patients. A conventional drug development path requiring drugs to induce regression of established lesions has not led to improvements for osteosarcoma patients in over 30 years. Based on our growing understanding of metastasis biology, it is now reasonable and essential that we focus on developing therapeutics that target metastatic progression. To advance this agenda a meeting of key opinion leaders and experts in the metastasis and osteosarcoma communities was convened in Bethesda Maryland. The goal of this meeting was to provide a “Perspective” that would establish a preclinical translational path that could support the early evaluation of potential therapeutic agents that uniquely target the metastatic phenotype. Although focused on osteosarcoma the need for this perspective is shared among many cancer types. The consensus achieved from the meeting included the following: That the biology of metastatic progression is associated with metastasis-specific targets/processes that may not influence grossly detectable lesions; targeting of metastasis-specific processes is feasible; rigorous preclinical data is needed to support translation of metastasis-specific agents into human trials where regression of measurable disease is not an expected outcome; preclinical data should include an understanding of mechanism of action, validation of pharmacodynamic markers of effective exposure and response, the use of several murine models of effectiveness, and where feasible the inclusion of the dog with naturally occurring osteosarcoma to define the activity of new drugs in the micro-metastatic disease setting. PMID:24803583

  11. Space Transportation and Destination Facilities

    NASA Technical Reports Server (NTRS)

    Smitherman, David; McClure, Wallace

    1999-01-01

    The Space Transportation and Destination Facilities section focused on space transportation vehicles-from use of existing vehicles to development of specialized transports-and on space stations, space business parks, space hotels, and other facilities in space of the kind that eventually would provide services for general public space travel (PST) and tourism. For both transportation and destination facilities, the emphasis was on the identification of various strategies to enable a realistic incremental progression in the development and acquisition of such facilities, and the identification of issues that need resolution to enable formation of viable businesses. The approach was to determine the best: (1) Strategies for general PST and tourism development through the description and analysis of a wide range of possible future scenarios. With these scenarios in mind the section then identified. (2) Key issues to be explored. (3) opportunities to eliminate barriers. (4) Recommendations for future actions. (5) Top-level requirements and characteristics for general PST and tourism systems and services that would guide the development of transportation and destination facilities.

  12. Development of a gas-pressurized high-pressure μSR setup at the RIKEN-RAL Muon Facility

    NASA Astrophysics Data System (ADS)

    Watanabe, I.; Ishii, Y.; Kawamata, T.; Suzuki, T.; Pratt, F. L.; Done, R.; Chowdhury, M.; Goodway, C.; Dreyer, J.; Smith, C.; Southern, M.

    2009-04-01

    The development and testing of a gas-pressurized μSR setup for the RIKEN-RAL Muon Facility is reported. In collaboration with the high-pressure group of the ISIS Facility at the Rutherford Appleton Laboratory, a gas-pressurized setup for a pulsed muon beam at the RIKEN-RAL Muon Facility has been constructed in 2008. The sample is pressurized by helium gas and the designed maximum pressure is 6.4 kbar. The high-pressure cell can be cooled down to 2 K using an existing cryostat. Tests were made injecting the double-pulsed muon beam into a high-purity sample of Sn powder, which confirmed that the maximum pressure achieved at 2 K was close to the designed pressure.

  13. Development and oviposition preference of house flies and stable flies (Diptera: Muscidae) in six substrates from Florida equine facilities

    USDA-ARS?s Scientific Manuscript database

    House flies, Musca domestica L., and stable flies, Stomoxys calcitrans (L.), (Diptera: Muscidae), common pests on equine facilities, were studied in the laboratory to determine their oviposition preferences and larval development on six substrates commonly found on equine facilities. The substrates...

  14. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    NASA Astrophysics Data System (ADS)

    Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.

    2006-01-01

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  15. Development of a Photo-Cross-Linkable Diaminoquinazoline Inhibitor for Target Identification in Plasmodium falciparum.

    PubMed

    Lubin, Alexandra S; Rueda-Zubiaurre, Ainoa; Matthews, Holly; Baumann, Hella; Fisher, Fabio R; Morales-Sanfrutos, Julia; Hadavizadeh, Kate S; Nardella, Flore; Tate, Edward W; Baum, Jake; Scherf, Artur; Fuchter, Matthew J

    2018-04-13

    Diaminoquinazolines represent a privileged scaffold for antimalarial discovery, including use as putative Plasmodium histone lysine methyltransferase inhibitors. Despite this, robust evidence for their molecular targets is lacking. Here we report the design and development of a small-molecule photo-cross-linkable probe to investigate the targets of our diaminoquinazoline series. We demonstrate the effectiveness of our designed probe for photoaffinity labeling of Plasmodium lysates and identify similarities between the target profiles of the probe and the representative diaminoquinazoline BIX-01294. Initial pull-down proteomics experiments identified 104 proteins from different classes, many of which are essential, highlighting the suitability of the developed probe as a valuable tool for target identification in Plasmodium falciparum.

  16. Development and use of a master health facility list: Haiti's experience during the 2010 earthquake response.

    PubMed

    Rose-Wood, Alyson; Heard, Nathan; Thermidor, Roody; Chan, Jessica; Joseph, Fanor; Lerebours, Gerald; Zugaldia, Antonio; Konkel, Kimberly; Edwards, Michael; Lang, Bill; Torres, Carmen-Rosa

    2014-08-01

    Master health facility lists (MHFLs) are gaining attention as a standards-based means to uniquely identify health facilities and to link facility-level data. The ability to reliably communicate information about specific health facilities can support an array of health system functions, such as routine reporting and emergency response operations. MHFLs support the alignment of donor-supported health information systems with county-owned systems. Recent World Health Organization draft guidance promotes the utility of MHFLs and outlines a process for list development and governance. Although the potential benefits of MHFLs are numerous and may seem obvious, there are few documented cases of MHFL construction and use. The international response to the 2010 Haiti earthquake provides an example of how governments, nongovernmental organizations, and others can collaborate within a framework of standards to build a more complete and accurate list of health facilities. Prior to the earthquake, the Haitian Ministry of Health (Ministère de la Santé Publique et de la Population [MSPP]) maintained a list of public-sector health facilities but lacked information on privately managed facilities. Following the earthquake, the MSPP worked with a multinational group to expand the completeness and accuracy of the list of health facilities, including information on post-quake operational status. This list later proved useful in the response to the cholera epidemic and is now incorporated into the MSPP's routine health information system. Haiti's experience demonstrates the utility of MHFL formation and use in crisis as well as in the routine function of the health information system.

  17. Development and use of a master health facility list: Haiti's experience during the 2010 earthquake response

    PubMed Central

    Rose-Wood, Alyson; Heard, Nathan; Thermidor, Roody; Chan, Jessica; Joseph, Fanor; Lerebours, Gerald; Zugaldia, Antonio; Konkel, Kimberly; Edwards, Michael; Lang, Bill; Torres, Carmen-Rosa

    2014-01-01

    ABSTRACT Master health facility lists (MHFLs) are gaining attention as a standards-based means to uniquely identify health facilities and to link facility-level data. The ability to reliably communicate information about specific health facilities can support an array of health system functions, such as routine reporting and emergency response operations. MHFLs support the alignment of donor-supported health information systems with county-owned systems. Recent World Health Organization draft guidance promotes the utility of MHFLs and outlines a process for list development and governance. Although the potential benefits of MHFLs are numerous and may seem obvious, there are few documented cases of MHFL construction and use. The international response to the 2010 Haiti earthquake provides an example of how governments, nongovernmental organizations, and others can collaborate within a framework of standards to build a more complete and accurate list of health facilities. Prior to the earthquake, the Haitian Ministry of Health (Ministère de la Santé Publique et de la Population [MSPP]) maintained a list of public-sector health facilities but lacked information on privately managed facilities. Following the earthquake, the MSPP worked with a multinational group to expand the completeness and accuracy of the list of health facilities, including information on post-quake operational status. This list later proved useful in the response to the cholera epidemic and is now incorporated into the MSPP's routine health information system. Haiti's experience demonstrates the utility of MHFL formation and use in crisis as well as in the routine function of the health information system. PMID:25276595

  18. Description of European Space Agency (ESA) Concept Development for a Mars Sample Receiving Facility (MSRF)

    NASA Astrophysics Data System (ADS)

    Vrublevskis, J.; Berthoud, L.; Guest, M.; Smith, C.; Bennett, A.; Gaubert, F.; Schroeven-Deceuninck, H.; Duvet, L.; van Winnendael, M.

    2018-04-01

    This presentation gives an overview of the several studies conducted for the European Space Agency (ESA) since 2007, which progressively developed layouts for a potential implementation of a Mars Sample Receiving Facility (MSRF).

  19. Healthy firms: constraints to growth among private health sector facilities in Ghana and Kenya.

    PubMed

    Burger, Nicholas E; Kopf, Daniel; Spreng, Connor P; Yoong, Joanne; Sood, Neeraj

    2012-01-01

    Health outcomes in developing countries continue to lag the developed world, and many countries are not on target to meet the Millennium Development Goals. The private health sector provides much of the care in many developing countries (e.g., approximately 50 percent in Sub-Saharan Africa), but private providers are often poorly integrated into the health system. Efforts to improve health systems performance will need to include the private sector and increase its contributions to national health goals. However, the literature on constraints private health care providers face is limited. We analyze data from a survey of private health facilities in Kenya and Ghana to evaluate growth constraints facing private providers. A significant portion of facilities (Ghana: 62 percent; Kenya: 40 percent) report limited access to finance as the most significant barrier they face; only a small minority of facilities report using formal credit institutions to finance day to day operations (Ghana: 6 percent; Kenya: 11 percent). Other important barriers include corruption, crime, limited demand for goods and services, and poor public infrastructure. Most facilities have paper-based rather than electronic systems for patient records (Ghana: 30 percent; Kenya: 22 percent), accounting (Ghana: 45 percent; Kenya: 27 percent), and inventory control (Ghana: 41 percent; Kenya: 24 percent). A majority of clinics in both countries report undertaking activities to improve provider skills and to monitor the level and quality of care they provide. However, only a minority of pharmacies report undertaking such activities. The results suggest that improved access to finance and improving business processes especially among pharmacies would support improved contributions by private health facilities. These strategies might be complementary if providers are more able to take advantage of increased access to finance when they have the business processes in place for operating a successful business

  20. Healthy Firms: Constraints to Growth among Private Health Sector Facilities in Ghana and Kenya

    PubMed Central

    Burger, Nicholas E.; Kopf, Daniel; Spreng, Connor P.; Yoong, Joanne; Sood, Neeraj

    2012-01-01

    Background Health outcomes in developing countries continue to lag the developed world, and many countries are not on target to meet the Millennium Development Goals. The private health sector provides much of the care in many developing countries (e.g., approximately 50 percent in Sub-Saharan Africa), but private providers are often poorly integrated into the health system. Efforts to improve health systems performance will need to include the private sector and increase its contributions to national health goals. However, the literature on constraints private health care providers face is limited. Methodology/Principal Findings We analyze data from a survey of private health facilities in Kenya and Ghana to evaluate growth constraints facing private providers. A significant portion of facilities (Ghana: 62 percent; Kenya: 40 percent) report limited access to finance as the most significant barrier they face; only a small minority of facilities report using formal credit institutions to finance day to day operations (Ghana: 6 percent; Kenya: 11 percent). Other important barriers include corruption, crime, limited demand for goods and services, and poor public infrastructure. Most facilities have paper-based rather than electronic systems for patient records (Ghana: 30 percent; Kenya: 22 percent), accounting (Ghana: 45 percent; Kenya: 27 percent), and inventory control (Ghana: 41 percent; Kenya: 24 percent). A majority of clinics in both countries report undertaking activities to improve provider skills and to monitor the level and quality of care they provide. However, only a minority of pharmacies report undertaking such activities. Conclusions/Significance The results suggest that improved access to finance and improving business processes especially among pharmacies would support improved contributions by private health facilities. These strategies might be complementary if providers are more able to take advantage of increased access to finance when they have

  1. Implementation of the next-generation Gas Cherenkov Detector at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Carrera, J. A.; Herrmann, H. W.; Khater, H. Y.; Carpenter, A. C.; Beeman, B. V.; Hernandez, J. E.; Sitaraman, S.; Lopez, F. E.; Zylstra, A. B.; Griego, J. R.; Kim, Y. H.; Gales, S. A.; Horsfield, C. J.; Milnes, J. S.; Hares, J. D.

    2017-08-01

    The newest Gas Cherenkov Detector (GCD-3) diagnostic has completed its Phase I commissioning/milestone at the National Ignition Facility (NIF). GCD-3 was fielded for several years at the Omega Laser Facility in its initial configuration, before being moved to the NIF. Installation at the NIF involved optimization of GCD-3 for the higher background environment and designing a new insertion carrier assembly. GCD-3 serves as the initial phase towards the implementation of the "Super GCD" (SGCD) at the NIF. During this phase of development GCD-3 took measurements from a re-entrant well, 3.9 meters from target chamber center (TCC). Plans to insert GCD-3 within 20 cm of TCC with a Target and Diagnostic Manipulator (TANDM) will be discussed. Data was collected using a Photomultiplier Tube (PMT) in combination with a Mach-Zehnder based recording system. These measurements were used to aid in shielding analysis, validate MCNP models, and fuel design efforts for the SGCD. Findings from the initial data will be covered extensively, including an in-depth look into sources of background and possible mitigation strategies. Ongoing development of phase two, the addition of an ultra-high bandwidth Pulse Dilatation Photomultiplier Tube (PD-PMT), will also be presented.

  2. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities - A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Hughes, Mark S.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Marshall, PeggL.; Duncan, Michael E.; Morris, Jon A.; Franzl, Richard W.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition system (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis' development and deployment.

  3. Targeting mitochondrially mediated plasticity to develop improved therapeutics for bipolar disorder.

    PubMed

    de Sousa, Rafael T; Machado-Vieira, Rodrigo; Zarate, Carlos A; Manji, Husseini K

    2014-10-01

    Bipolar disorder (BPD) is a severe illness with few treatments available. Understanding BPD pathophysiology and identifying potential relevant targets could prove useful for developing new treatments. Remarkably, subtle impairments of mitochondrial function may play an important role in BPD pathophysiology. This article focuses on human studies and reviews evidence of mitochondrial dysfunction in BPD as a promising target for the development of new, improved treatments. Mitochondria are crucial for energy production, generated mainly through the electron transport chain (ETC) and play an important role in regulating apoptosis and calcium (Ca²⁺) signaling as well as synaptic plasticity. Mitochondria move throughout the neurons to provide energy for intracellular signaling. Studies showed polymorphisms of mitochondria-related genes as risk factors for BPD. Postmortem studies in BPD also show decreased ETC activity/expression and increased nitrosative and oxidative stress (OxS) in patient brains. BPD has been also associated with increased OxS, Ca²⁺ dysregulation and increased proapoptotic signaling in peripheral blood. Neuroimaging studies consistently show decreased energy levels and pH in brains of BPD patients. Targeting mitochondrial function, and their role in energy metabolism, synaptic plasticity and cell survival, may be an important avenue for development of new mood-stabilizing agents.

  4. Targeting mitochondrially mediated plasticity to develop improved therapeutics for bipolar disorder

    PubMed Central

    de Sousa, Rafael T; Machado-Vieira, Rodrigo; Zarate, Carlos A

    2014-01-01

    Introduction Bipolar disorder (BPD) is a severe illness with few treatments available. Understanding BPD pathophysiology and identifying potential relevant targets could prove useful for developing new treatments. Remarkably, subtle impairments of mitochondrial function may play an important role in BPD pathophysiology. Areas covered This article focuses on human studies and reviews evidence of mitochondrial dysfunction in BPD as a promising target for the development of new, improved treatments. Mitochondria are crucial for energy production, generated mainly through the electron transport chain (ETC) and play an important role in regulating apoptosis and calcium (Ca2+) signaling as well as synaptic plasticity. Mitochondria move throughout the neurons to provide energy for intracellular signaling. Studies showed polymorphisms of mitochondria-related genes as risk factors for BPD. Postmortem studies in BPD also show decreased ETC activity/expression and increased nitrosative and oxidative stress (OxS) in patient brains. BPD has been also associated with increased OxS, Ca2+ dysregulation and increased proapoptotic signaling in peripheral blood. Neuroimaging studies consistently show decreased energy levels and pH in brains of BPD patients. Expert opinion Targeting mitochondrial function, and their role in energy metabolism, synaptic plasticity and cell survival, may be an important avenue for development of new mood-stabilizing agents. PMID:25056514

  5. Molecular Tagging Velocimetry Development for In-situ Measurement in High-Temperature Test Facility

    NASA Technical Reports Server (NTRS)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2015-01-01

    The High Temperature Test Facility, HTTF, at Oregon State University (OSU) is an integral-effect test facility designed to model the behavior of a Very High Temperature Gas Reactor (VHTR) during a Depressurized Conduction Cooldown (DCC) event. It also has the ability to conduct limited investigations into the progression of a Pressurized Conduction Cooldown (PCC) event in addition to phenomena occurring during normal operations. Both of these phenomena will be studied with in-situ velocity field measurements. Experimental measurements of velocity are critical to provide proper boundary conditions to validate CFD codes, as well as developing correlations for system level codes, such as RELAP5 (http://www4vip.inl.gov/relap5/). Such data will be the first acquired in the HTTF and will introduce a diagnostic with numerous other applications to the field of nuclear thermal hydraulics. A laser-based optical diagnostic under development at The George Washington University (GWU) is presented; the technique is demonstrated with velocity data obtained in ambient temperature air, and adaptation to high-pressure, high-temperature flow is discussed.

  6. Facility Design Considerations.

    ERIC Educational Resources Information Center

    Chase, William W.

    1967-01-01

    Increasing need for vocational education under the impetus of federal aid is generating a demand for vocational teaching facilities. Factors to be considered in planning these facilities inclued--(1) site development, (2) program needs, (3) administrative considerations, (4) environmental controls. (5) mechanical systems, and (6) area and space…

  7. Accelerator Facilities for Radiation Research

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1999-01-01

    HSRP Goals in Accelerator Use and Development are: 1.Need for ground-based heavy ion and proton facility to understand space radiation effects discussed most recently by NAS/NRC Report (1996). 2. Strategic Program Goals in facility usage and development: -(1) operation of AGS for approximately 600 beam hours/year; (2) operation of Loma Linda University (LLU) proton facility for approximately 400 beam hours/year; (3) construction of BAF facility; and (4) collaborative research at HIMAC in Japan and with other existing or potential international facilities. 3. MOA with LLU has been established to provide proton beams with energies of 40-250 important for trapped protons and solar proton events. 4. Limited number of beam hours available at Brookhaven National Laboratory's (BNL) Alternating Gradient Synchrotron (AGS).

  8. Developing clinical leadership capability.

    PubMed

    Pintar, Kristi A; Capuano, Terry A; Rosser, Gwendolyn D

    2007-01-01

    Nursing facilities must be committed to ongoing leadership development and to developing and retaining their staff in the increasingly competitive healthcare market. In this article, the authors share the processes involved in creating a focused small group approach to developing clinical leaders. Programmatic approaches to development, clarity of needs of those targeted for development, individual development plans, external expertise partnerships, and small group session dynamics are discussed. Applications of the process and lessons learned from the program will benefit others in their efforts to enhance organization succession planning, leadership development, group learning, and program administration.

  9. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  10. Improving Robotic Assembly of Planar High Energy Density Targets

    NASA Astrophysics Data System (ADS)

    Dudt, D.; Carlson, L.; Alexander, N.; Boehm, K.

    2016-10-01

    Increased quantities of planar assemblies for high energy density targets are needed with higher shot rates being implemented at facilities such as the National Ignition Facility and the Matter in Extreme Conditions station of the Linac Coherent Light Source. To meet this growing demand, robotics are used to reduce assembly time. This project studies how machine vision and force feedback systems can be used to improve the quantity and quality of planar target assemblies. Vision-guided robotics can identify and locate parts, reducing laborious manual loading of parts into precision pallets and associated teaching of locations. On-board automated inspection can measure part pickup offsets to correct part drop-off placement into target assemblies. Force feedback systems can detect pickup locations and apply consistent force to produce more uniform glue bond thickness, thus improving the performance of the targets. System designs and performance evaluations will be presented. Work supported in part by the US DOE under the Science Undergraduate Laboratory Internships Program (SULI) and ICF Target Fabrication DE-NA0001808.

  11. Development of Targeted Nanobubbles for Ultrasound Imaging and Ablation of Metastatic Prostate Cancer Lesions

    DTIC Science & Technology

    2013-08-01

    AD_________________ Award Number: W81XWH-12-1-0284 TITLE: Development of Targeted Nanobubbles for...REPORT TYPE Annual 3. DATES COVERED 15 July 2012 - 14 July 2013 4. TITLE AND SUBTITLE Development of Targeted Nanobubbles for Ultrasound...be able to formulate nanodroplets contrast agents with tunable size, PFP content, and shell flexibility to obtain stable and echogenic nanobubbles

  12. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs.

    PubMed

    Marks, Paul A

    2010-09-01

    Histone deacetylase (HDAC) inhibitors are being developed as a new, targeted class of anticancer drugs. This review focuses on the mechanisms of action of the HDAC inhibitors, which selectively induce cancer cell death. There are 11 zinc-dependent HDACs in humans and the biological roles of these lysine deacetylases are not completely understood. It is clear that these different HDACs are not redundant in their activity. This review focuses on the mechanisms by which HDAC inhibitors can induce transformed cell growth arrest and cell death, inhibit cell mobility and have antiangiogenesis activity. There are more than a dozen HDAC inhibitors, including hydroxamates, cyclic peptides, benzamides and fatty acids, in various stages of clinical trials and many more compounds in preclinical development. The chemically different HDAC inhibitors may target different HDACs. There are extensive preclinical studies with transformed cells in culture and tumor-bearing animal models, as well as limited clinical studies reported to date, which indicate that HDAC inhibitors will be most useful when used in combination with cytotoxic or other targeted anticancer agents.

  13. ORION laser target diagnostics.

    PubMed

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  14. Environmental Management Guide for Educational Facilities

    ERIC Educational Resources Information Center

    APPA: Association of Higher Education Facilities Officers, 2017

    2017-01-01

    Since 1996, APPA and CSHEMA, the Campus Safety Health and Environmental Management Association, have collaborated to produce guidance documents to help educational facilities get ahead of the moving target that is environmental compliance. This new 2017 edition will help you identify which regulations pertain to your institution, and assist in…

  15. Designing Targeted Educational Voucher Schemes for the Poor in Developing Countries

    ERIC Educational Resources Information Center

    Shafiq, M. Najeeb

    2010-01-01

    A targeted educational voucher scheme (TEVS) is often proposed for the poor in developing countries. Essentially, TEVS involves issuing vouchers to poor households, thus enabling them to pay tuition and fees for their children's schooling at participating non-public schools. However, little is known about TEVS' design in developing countries. This…

  16. DrugPath: a database for academic investigators to match oncology molecular targets with drugs in development.

    PubMed

    Shah, Eric D; Fisch, Brandon M A; Arceci, Robert J; Buckley, Jonathan D; Reaman, Gregory H; Sorensen, Poul H; Triche, Timothy J; Reynolds, C Patrick

    2014-05-01

    Academic laboratories are developing increasingly large amounts of data that describe the genomic landscape and gene expression patterns of various types of cancers. Such data can potentially identify novel oncology molecular targets in cancer types that may not be the primary focus of a drug sponsor's initial research for an investigational new drug. Obtaining preclinical data that point toward the potential for a given molecularly targeted agent, or a novel combination of agents requires knowledge of drugs currently in development in both the academic and commercial sectors. We have developed the DrugPath database ( http://www.drugpath.org ) as a comprehensive, free-of-charge resource for academic investigators to identify agents being developed in academics or industry that may act against molecular targets of interest. DrugPath data on molecular targets overlay the Michigan Molecular Interactions ( http://mimi.ncibi.org ) gene-gene interaction map to facilitate identification of related agents in the same pathway. The database catalogs 2,081 drug development programs representing 751 drug sponsors and 722 molecular and genetic targets. DrugPath should assist investigators in identifying and obtaining drugs acting on specific molecular targets for biological and preclinical therapeutic studies.

  17. Marshall Space Flight Center's Impact Testing Facility Capabilities

    NASA Technical Reports Server (NTRS)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  18. Nuclear targets within the project of solving CHAllenges in Nuclear DAta

    NASA Astrophysics Data System (ADS)

    Sibbens, Goedele; Moens, André; Vanleeuw, David; Lewis, David; Aregbe, Yetunde

    2017-09-01

    In the frame of the European Commission funded integrated project CHANDA (solving CHAllenges in Nuclear DAta) the importance of nuclear target preparation for the accurateness and reliability of experimental nuclear data is set in a dedicated work package (WP3). The global aim of WP3 is the development of a network for nuclear target preparation and characterization, enabling to coordinate the target production corresponding to the experimental requirements. Therefore, a set of tasks within the work package needs to be followed. Primarily, an inventory of target related facilities and radioisotope providers was created. In the next step a priority list of target requests was made in agreement with the target user considering the technical specification, the scheduled experiments and the availability of the target laboratories. A set of target requests has been assigned to the Target Preparation laboratory of the European Commission - Joint Research Centre - Directorate G (EC-JRC.G.2) in Geel, Belgium. This contribution gives an overview of the nuclear targets that are produced within the CHANDA project. The equipment and techniques available for the preparation and characterization of uranium, plutonium and neptunium layers with an areal density ranging from 60 to 205 μg cm-2 will be emphasized.

  19. Development of an Uncertainty Model for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Walter, Joel A.; Lawrence, William R.; Elder, David W.; Treece, Michael D.

    2010-01-01

    This paper introduces an uncertainty model being developed for the National Transonic Facility (NTF). The model uses a Monte Carlo technique to propagate standard uncertainties of measured values through the NTF data reduction equations to calculate the combined uncertainties of the key aerodynamic force and moment coefficients and freestream properties. The uncertainty propagation approach to assessing data variability is compared with ongoing data quality assessment activities at the NTF, notably check standard testing using statistical process control (SPC) techniques. It is shown that the two approaches are complementary and both are necessary tools for data quality assessment and improvement activities. The SPC approach is the final arbiter of variability in a facility. Its result encompasses variation due to people, processes, test equipment, and test article. The uncertainty propagation approach is limited mainly to the data reduction process. However, it is useful because it helps to assess the causes of variability seen in the data and consequently provides a basis for improvement. For example, it is shown that Mach number random uncertainty is dominated by static pressure variation over most of the dynamic pressure range tested. However, the random uncertainty in the drag coefficient is generally dominated by axial and normal force uncertainty with much less contribution from freestream conditions.

  20. The development of a Space Shuttle Research Animal Holding Facility

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1980-01-01

    The ability to maintain the well being of experiment animals is of primary importance to the successful attainment of life sciences flight experiment goals. To assist scientists in the conduct of life sciences flight experiments, a highly versatile Research Animal Holding Facility (RAHF) is being developed for use on Space Shuttle/Spacelab missions. This paper describes the design of the RAHF system, which in addition to providing general housing for various animal species, approximating the environment found in ground based facilities, is designed to minimize disturbances of the specimens by vehicle and mission operations. Life-sustaining capabilities such as metabolic support and environmental control are provided. RAHF is reusable and is a modular concept to accommodate animals of different sizes. The basic RAHF system will accommodate a combination of 24 500-g rats or 144 mice or a mixed number of rats and mice. An alternative design accommodates four squirrel monkeys. The entire RAHF system is housed in a single ESA rack. The animal cages are in drawers which are removable for easy access to the animals. Each cage contains a waste management system, a feeding system and a watering system all of which will operate in zero or one gravity.

  1. Recent developments in the MuCAT microtomography facility

    NASA Astrophysics Data System (ADS)

    Davis, Graham R.; Evershed, Anthony N. Z.; Mills, David

    2012-10-01

    The goal of the MuCAT scanner development at Queen Mary University of London is to provide highly accurate maps of a specimen's X-ray linear attenuation coefficient; speed of data acquisition and spatial resolution having a lower priority. The reason for this approach is that the primary application is to accurately map the mineral concentration in teeth. Synchrotron tomography would generally be considered more appropriate for such a task, but many of the dental applications involve repeated scans with long intervening periods (from hours to weeks) and the management of synchrotron facilities does not readily allow such research. Development work is concentrated in two areas: beam hardening correction algorithms and novel scanning methodology. Beam hardening correction is combined with calibration, such that the raw X-ray projection data is corrected for beam hardening prior to reconstruction. Recent developments include the design of a multi-element calibration carousel. This has nine calibration pieces, five aluminium, three titanium and one copper. Development of the modelling algorithm is also yielding improved accuracy. A time-delay integration CCD camera is used to avoid ring artefacts. The original prototype averaged out inhomogeneities in both the detector array and the X-ray field; later designs used only software correction for the latter. However, at lower X-ray energies, the effect of deposits on the X-ray window (for example) becomes more conspicuous and so a new scanning methodology has been designed whereby the specimen moves in an arc about the source and equiangular data is acquired, thus overcoming this problem.

  2. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms.

    PubMed

    Jaffe, Jacob D; Feeney, Caitlin M; Patel, Jinal; Lu, Xiaodong; Mani, D R

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques. Graphical Abstract ᅟ.

  3. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Jaffe, Jacob D.; Feeney, Caitlin M.; Patel, Jinal; Lu, Xiaodong; Mani, D. R.

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques.

  4. Capacity planning for electronic waste management facilities under uncertainty: multi-objective multi-time-step model development.

    PubMed

    Poonam Khanijo Ahluwalia; Nema, Arvind K

    2011-07-01

    Selection of optimum locations for locating new facilities and decision regarding capacities at the proposed facilities is a major concern for municipal authorities/managers. The decision as to whether a single facility is preferred over multiple facilities of smaller capacities would vary with varying priorities to cost and associated risks such as environmental or health risk or risk perceived by the society. Currently management of waste streams such as that of computer waste is being done using rudimentary practices and is flourishing as an unorganized sector, mainly as backyard workshops in many cities of developing nations such as India. Uncertainty in the quantification of computer waste generation is another major concern due to the informal setup of present computer waste management scenario. Hence, there is a need to simultaneously address uncertainty in waste generation quantities while analyzing the tradeoffs between cost and associated risks. The present study aimed to address the above-mentioned issues in a multi-time-step, multi-objective decision-support model, which can address multiple objectives of cost, environmental risk, socially perceived risk and health risk, while selecting the optimum configuration of existing and proposed facilities (location and capacities).

  5. UTEX: integrated ultraviolet and x-ray astronomy facility on spacelab, phase a study. Volume 4: development. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-07-01

    A development and cost plan is proposed for the UTEX (Ultraviolet Telescope Experiment X-ray) telescope. Under certain assumptions, the UTEX facility can be developed in about 4 years. An overall development cost is given.

  6. Aerosol-Assisted Solid Debris Collection for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, S L; Shaughnessy, D A; Moody, K J

    2010-05-21

    The National Ignition Facility (NIF) has been completed and has made its first shots on-target. While upcoming experiments will be focused on achieving ignition, a variety of subsequent experiments are planned for the facility, including measurement of cross sections, astrophysical measurements, and investigation of hydrodynamic instability in the target capsule. In order to successfully execute several of these planned experiments, the ability to collect solid debris following a NIF capsule shot will be required. The ability to collect and analyze solid debris generated in a shot at the National Ignition Facility (NIF) will greatly expand the number of nuclear reactionsmore » studied for diagnostic purposes. Currently, reactions are limited to only those producing noble gases for cryogenic collection and counting with the Radchem Apparatus for Gas Sampling (RAGS). The radchem solid collection diagnostic has already been identified by NIF to be valuable for the determination and understanding of mix generated in the target capsule's ablation. LLNL is currently developing this solid debris collection capability at NIF, and is in the stage of testing credible designs. Some of these designs explore the use of x-ray generated aerosols to assist in collection of solid debris. However, the variety of harsh experimental conditions this solid collection device will encounter in NIF are challenging to replicate. Experiments performed by Gary Grim et al. at Sandia National Laboratory's RHEPP1 facility have shown that ablation causes a cloud of material removed from an exposed surface to move normal to and away from the surface. This ablation is certain to be a concern in the NIF target chamber from the prompt x-rays, gamma rays, etc. generated in the shot. The cloud of ablated material could interfere with the collection of the desired reaction debris by slowing down the debris so that the kinetic energy is too low to allow implantation, or by stopping the debris from

  7. Shock-induced perturbation evolution in planar laser targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2013-10-01

    Experimental studies of hydrodynamic perturbation evolution triggered by a laser-driven shock wave in a planar target done on the KrF Nike laser facility are reported. The targets were made of solid plastic and/or plastic foam with single mode sinusoidal perturbation on the front or back surface or plastic/foam interface. Two specific cases are discussed. When a planar solid plastic target rippled at the front side is irradiated with a 350 ps long laser pulse, ablative Richtmyer-Meshkov (RM) oscillation of its areal mass modulation amplitude is detected while the laser is on, followed by observed strong oscillations of the areal mass in the unsupported shock flow after the laser pulse ends. When the target is rippled at the rear side, the nature of the perturbation evolution after the shock breakout is determined by the strength of the laser-driven shock wave. At pressure below 1 Mbar shock interaction with rear-surface ripples produces planar collimated jets manifesting the development of a classical RM instability in a weakly compressible shocked fluid. At shock pressure ~ 8 Mbar sufficient for vaporizing the shocked target material we observed instead the strong areal mass oscillations characteristic of a rippled centered rarefaction wave. Work supported by US DOE, Defense Programs.

  8. Recent Developments at the NASA Langley Research Center National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Paryz, Roman W.

    2011-01-01

    Several upgrade projects have been completed or are just getting started at the NASA Langley Research Center National Transonic Facility. These projects include a new high capacity semi-span balance, model dynamics damping system, semi-span model check load stand, data acquisition system upgrade, facility automation system upgrade and a facility reliability assessment. This presentation will give a brief synopsis of each of these efforts.

  9. Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, C G; Ayers, M J; Felker, B

    2012-04-20

    Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effectsmore » of diagnostic-generated EMI on NIF diagnostics.« less

  10. Engineering directorate technical facilities catalog

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.

    1993-01-01

    The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).

  11. Anatomy Education in Namibia: Balancing Facility Design and Curriculum Development

    ERIC Educational Resources Information Center

    Wessels, Quenton; Vorster, Willie; Jacobson, Christian

    2012-01-01

    The anatomy curriculum at Namibia's first, and currently only, medical school is clinically oriented, outcome-based, and includes all of the components of modern anatomical sciences i.e., histology, embryology, neuroanatomy, gross, and clinical anatomy. The design of the facilities and the equipment incorporated into these facilities were directed…

  12. Uranium carbide fission target R&D for RIA - an update

    NASA Astrophysics Data System (ADS)

    Greene, J. P.; Levand, A.; Nolen, J.; Burtseva, T.

    2004-12-01

    For the Rare Isotope Accelerator (RIA) facility, ISOL targets employing refractory compounds of uranium are being developed to produce radioactive ions for post-acceleration. The availability of refractory uranium compounds in forms that have good thermal conductivity, relatively high density, and adequate release properties for short-lived isotopes remains an important issue. Investigations using commercially obtained uranium carbide material and prepared into targets involving various binder materials have been carried out at ANL. Thin sample pellets have been produced for measurements of thermal conductivity using a new method based on electron bombardment with the thermal radiation observed using a two-color optical pyrometer and performed on samples as a function of grain size, pressing pressure and sintering temperature. Manufacture of uranium carbide powder has now been achieved at ANL. Simulations have been carried out on the thermal behavior of the secondary target assembly incorporating various heat shield configurations.

  13. Control and Information Systems for the National Ignition Facility

    DOE PAGES

    Brunton, Gordon; Casey, Allan; Christensen, Marvin; ...

    2017-03-23

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  14. Control and Information Systems for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunton, Gordon; Casey, Allan; Christensen, Marvin

    Orchestration of every National Ignition Facility (NIF) shot cycle is managed by the Integrated Computer Control System (ICCS), which uses a scalable software architecture running code on more than 1950 front-end processors, embedded controllers, and supervisory servers. The ICCS operates laser and industrial control hardware containing 66 000 control and monitor points to ensure that all of NIF’s laser beams arrive at the target within 30 ps of each other and are aligned to a pointing accuracy of less than 50 μm root-mean-square, while ensuring that a host of diagnostic instruments record data in a few billionths of a second.more » NIF’s automated control subsystems are built from a common object-oriented software framework that distributes the software across the computer network and achieves interoperation between different software languages and target architectures. A large suite of business and scientific software tools supports experimental planning, experimental setup, facility configuration, and post-shot analysis. Standard business services using open-source software, commercial workflow tools, and database and messaging technologies have been developed. An information technology infrastructure consisting of servers, network devices, and storage provides the foundation for these systems. Thus, this work is an overview of the control and information systems used to support a wide variety of experiments during the National Ignition Campaign.« less

  15. Manufacturing of calcium, lithium and molybdenum targets for use in nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Kheswa, N. Y.; Papka, P.; Buthelezi, E. Z.; Lieder, R. M.; Neveling, R.; Newman, R. T.

    2010-02-01

    This paper describes methods used in the manufacturing of chemically reactive targets such as calcium ( natCa), lithium-6 ( 6Li) and molybdenum-97 ( 97Mo) for nuclear physics experiments at the iThemba LABS cyclotron facility (Faure, South Africa). Due to the chemical properties of these materials a suitable and controlled environment was established in order to minimize oxygen contamination of targets. Calcium was prepared by means of vacuum evaporation while lithium was cold rolled to a desired thickness. In the case of molybdenum, the metallic powder was melted under vacuum using an e-gun followed by cold rolling of the metal bead to a desired thickness. In addition, latest developments toward the establishment of a dedicated nuclear physics target laboratory are discussed.

  16. Drive-train dynamics technology - State-of-the-art and design of a test facility for advanced development

    NASA Technical Reports Server (NTRS)

    Badgley, R. H.; Fleming, D. P.; Smalley, A. J.

    1975-01-01

    A program for the development and verification of drive-train dynamic technology is described along with its basis and the results expected from it. A central feature of this program is a drive-train test facility designed for the testing and development of advanced drive-train components, including shaft systems, dampers, and couplings. Previous efforts in designing flexible dynamic drive-train systems are reviewed, and the present state of the art is briefly summarized. The design of the test facility is discussed with major attention given to the formulation of the test-rig concept, dynamic scaling of model shafts, and the specification of design parameters. Specific efforts envisioned for the test facility are briefly noted, including evaluations of supercritical test shafts, stability thresholds for various sources and types of instabilities that can exist in shaft systems, effects of structural flexibility on the dynamic performance of dampers, and methods for vibration control in two-level and three-level flexible shaft systems.

  17. The challenge of logistics facilities development

    NASA Technical Reports Server (NTRS)

    Davis, James R.

    1987-01-01

    The paper discusses the experiences of a group of engineers and logisticians at John F. Kennedy Space center in the design, construction and activation of a consolidated logistics facility for support of Space Transportation System ground operations and maintenance. The planning, methodology and processes are covered, with emphasis placed on unique aspects and lessons learned. The project utilized a progressive design, baseline and build concept for each phase of construction, with the Government exercising funding and configuration oversight.

  18. Shock effects in particle beam fusion targets

    NASA Astrophysics Data System (ADS)

    Sweeney, M. A.; Perry, F. C.; Asay, J. R.; Widner, M. M.

    1982-04-01

    At Sandia National Laboratorics we are assessing the response of fusion target materials to shock loading with the particle beam accelerators HYDRA and PROTO I and the gas gun facility. Nonlinear shock-accelerated unstable growth of fabriction irregularities has been demonstrated, and jetting is found to occur in imploding targets because of asymmetric beam deposition. Cylindrical ion targets display an instability due either to beam or target nonuniformity. However, the data suggest targets with aspect ratios of 30 may implode stably. The first time- and space-resolved measurements of shock-induced vaporization have been made. A homogeneous mixed phase EOS model cannot adequately explain the results because of the kinetic effects of vapor formation and expansion.

  19. Development of a superconductor magnetic suspension and balance prototype facility for studying the feasibility of applying this technique to large scale aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Zapata, R. N.; Humphris, R. R.; Henderson, K. C.

    1975-01-01

    The basic research and development work towards proving the feasibility of operating an all-superconductor magnetic suspension and balance device for aerodynamic testing is presented. The feasibility of applying a quasi-six-degree-of freedom free support technique to dynamic stability research was studied along with the design concepts and parameters for applying magnetic suspension techniques to large-scale aerodynamic facilities. A prototype aerodynamic test facility was implemented. Relevant aspects of the development of the prototype facility are described in three sections: (1) design characteristics; (2) operational characteristics; and (3) scaling to larger facilities.

  20. Regulatory facility guide for Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.S.; Bock, R.E.; Francis, M.W.

    1994-02-28

    The Regulatory Facility Guide (RFG) has been developed for the DOE and contractor facilities located in the state of Ohio. It provides detailed compilations of international, federal, and state transportation-related regulations applicable to shipments originating at destined to Ohio facilities. This RFG was developed as an additional resource tool for use both by traffic managers who must ensure that transportation operations are in full compliance with all applicable regulatory requirements and by oversight personnel who must verify compliance activities.

  1. Power Systems Development Facility Gasification Test Campaing TC18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifiermore » train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.« less

  2. The large area high resolution gamma ray astrophysics facility - HR-GRAF

    NASA Astrophysics Data System (ADS)

    Fenyves, E. J.; Chaney, R. C.; Hoffman, J. H.; Cline, D. B.; Atac, M.; Park, J.; White, S. R.; Zych, A. D.; Tumer, Q. T.; Hughes, E. B.

    1990-03-01

    The long-term program is described in terms of its equipment, scientific objectives, and long-range scientific studies. A prototype of a space-based large-area high-resolution gamma-ray facility (HR-GRAF) is being developed to examine pointlike and diffuse gamma-ray sources in the range 1 MeV-100 GeV. The instrument for the facility is proposed to have high angular and energy resolution and very high sensitivity to permit the study of the proposed objects. The primary research targets include the mapping of galactic gamma radiation, observing the angular variations of diffuse gamma rays, and studying the Galactic center with particular emphasis on the hypothetical black hole. Also included in the research plans are obtaining data on gamma-ray bursters, investigating the transmission of gamma rays from cold dark matter, and studying nuclear gamma-ray lines.

  3. Development of Targeted Near-Infrared Imaging Agents for Prostate Cancer

    PubMed Central

    Wang, Xinning; Huang, Steve S.; Heston, Warren D.W.; Guo, Hong; Wang, Bing-Cheng; Basilion, James P.

    2015-01-01

    Prostate cancer is the most common noncutaneous malignancy affecting men in North America. Radical prostatectomy remains a definitive treatment for prostate cancer. However, prostate surgeries are still performed “blindly” with the extent of tumor infiltration past the margins of the surgery only being determined postoperatively. An imaging modality that can be used during surgery is needed to help define the tumor margins. With its abundant expression in prostate cancer, prostate-specific membrane antigen (PSMA) is an ideal target for detection of prostate cancer. The purpose of this study was to develop PSMA-targeted near-infrared (NIR) optical imaging probes for intraoperative visualization of prostate cancer. We synthesized a high-affinity PSMA ligand (PSMA-1) with low molecular weight and further labeled it with commercially available NIR dyes IRDy800 and Cy5.5. PSMA-1 and PSMA-1–NIR conjugates had binding affinities better than the parent ligand Cys-CO-Glu. Selective binding was measured for each of the probes in both in vitro and in vivo studies using competitive binding and uptake studies. Interestingly, the results indicated that the pharmacokinetics of the probes was dependent of the fluorophore conjugated to the PSMA-1 ligand and varied widely. These data suggest that PSMA-targeted probes have the potential to be further developed as contrast agents for clinical intraoperative fluorescence-guided surgery. PMID:25239933

  4. HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiangdong; Bass, Christopher; D'Angelo, Annalisa

    2012-12-01

    Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4{pi} detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first applicationmore » of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.« less

  5. Definition of Capabilities Needed for a Single Event Effects Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; Gallmeier, Franz X.

    The Federal Aviation Administration (FAA) is contemplating new regulations mandating testing of the vulnerability of flight-critical avionics to single event effects (SEE). A limited number of high-energy neutron test facilities currently serve the SEE industrial and institutional research community. The FAA recognizes that existing facilities have insufficient test capacity to meet new demand from such mandates; it desires more flexible irradiation capabilities to test complete, large systems and would like capabilities to address greater concerns for thermal neutrons. For this reason, the FAA funded this study by Spallation Neutron Source (SNS) staff with the ultimate aim of developing options formore » SEE test facilities using high-energy neutrons at the SNS complex. After an investigation of current SEE test practices and assessment of future testing requirements, three concepts were identified covering a range of test functionality, neutron flux levels, and fidelity to the atmospheric neutron spectrum. The costs and times required to complete each facility were also estimated. SEE testing is generally performed by accelerating the event rate to a point where the effects are still dominated by single events and double event causes of failures are negligible. In practice, acceleration factors of as high as 10 6 are applicable for component testing, whereas for systems testing acceleration factors of 10 4 seem to be the upper limit. It is strongly desirable that the irradiation facility be tunable over a large range of high-energy neutron fluxes of 10 2 - 10 4 n/cm²/s for systems testing and from 10 4 - 10 7 n/cm²/s for components testing. The most capable, most flexible, and highest-test-capacity option is a new stand-alone target station named the High-Energy neutron Test Station (HETS). It is also the most expensive option, with a cost to complete of approximately $100 million. Dual test enclosures would allow for simultaneous testing activity effectively

  6. Effects-based strategy development through center of gravity and target system analysis

    NASA Astrophysics Data System (ADS)

    White, Christopher M.; Prendergast, Michael; Pioch, Nicholas; Jones, Eric K.; Graham, Stephen

    2003-09-01

    This paper describes an approach to effects-based planning in which a strategic-theater-level mission is refined into operational-level and ultimately tactical-level tasks and desired effects, informed by models of the expected enemy response at each level of abstraction. We describe a strategy development system that implements this approach and supports human-in-the-loop development of an effects-based plan. This system consists of plan authoring tools tightly integrated with a suite of center of gravity (COG) and target system analysis tools. A human planner employs the plan authoring tools to develop a hierarchy of tasks and desired effects. Upon invocation, the target system analysis tools use reduced-order models of enemy centers of gravity to select appropriate target set options for the achievement of desired effects, together with associated indicators for each option. The COG analysis tools also provide explicit models of the causal mechanisms linking tasks and desired effects to one another, and suggest appropriate observable indicators to guide ISR planning, execution monitoring, and campaign assessment. We are currently implementing the system described here as part of the AFRL-sponsored Effects Based Operations program.

  7. Development and operation of a mobile test facility for education

    NASA Astrophysics Data System (ADS)

    Davis, Christopher T.

    The automotive industry saw a large shift towards vehicle electrification after the turn of the century. It became necessary to ensure that new and existing engineers were qualified to design and calibrate these new systems. To ensure this training, Michigan Tech received a grant to develop a curriculum based around vehicle electrification. As part of this agenda, the Michigan Tech Mobile Laboratory was developed to provide hands-on training for professional engineers and technicians in hybrid electric vehicles and vehicle electrification. The Mobile Lab has since then increased the scope of the delivered curriculum to include other automotive areas and even customizable course content to meet specific needs. This thesis outlines the development of the Mobile Laboratory and its powertrain test facilities. The focus of this thesis is to discuss the different hardware and software systems within the lab and test cells. Detailed instructions on the operation and maintenance of each of the systems are discussed. In addition, this thesis outlines the setup and operation of the necessary equipment for several of the experiments for the on and off campus courses and seminars.

  8. 109(b) State Training Center Facility Assessment, Program Evaluation, and Guide Development. Final Report.

    ERIC Educational Resources Information Center

    Miklas, Michael P., Jr.

    Section 109(b) of the 1972 Federal Water Pollution Control Act Amendments authorized funding for the construction of statewide water treatment training facilities. Described in this report is work conducted by Southwest Research Institute (SwRI) to: (1) aid in developing updated 109(b) Guidance Documents; (2) characterize and evaluate existing…

  9. Development of a Simplified Sustainable Facilities Guide

    DTIC Science & Technology

    2003-04-18

    Government Through Efficient Energy Management , June 3, 1999 EO 13148 Greening the Government Through Leadership in Environmental Management ...architects, engineers, and project managers . - The United States Green Building Council (USGBC) has created the " Leadership in Energy and...SIMPLIFIED SUSTAINABLE FACILITIES GUIDE THESIS Presented to the Faculty Department of Systems and Engineering Management

  10. Developing, implementing, and evaluating a condom promotion program targeting sexually active adolescents.

    PubMed

    Alstead, M; Campsmith, M; Halley, C S; Hartfield, K; Goldbaum, G; Wood, R W

    1999-12-01

    This article describes the development, implementation, and evaluation of the Condom Campaign, a 1995 HIV prevention program promoting condom use among sexually active adolescents in three King County, Washington, urban communities. This program employed three main strategies: (a) mobilizing all levels of the target communities to support and guide program development and implementation; (b) creating and implementing a mass media campaign targeting sexually active teenagers that promoted correct condom use and favorable attitudes toward condoms; and (c) recruiting public agencies, community organizations, and businesses to distribute condoms from bins and vending machines. We evaluated the program through a series of cross-sectional interviews conducted in the three communities chosen for their elevated levels of adolescent sexual risk behavior. Overall, 73% of target youth reported exposure to the Condom Campaign; exposure did not differ by age, gender, race, or level of sexual experience. Levels of sexual activity remained stable throughout the media campaign.

  11. Strategic benefits of master facility plans.

    PubMed

    Shannon, K

    1996-02-01

    In recent years, many healthcare executives have stopped developing master facility plans due to some basic misconceptions about them, namely that master facility plans are too rigid or require major capital commitment. By getting past these misconceptions, healthcare executives can help their organizations develop and implement master facility plans that serve as flexible, reliable blueprints in guiding the organizations toward achieving their strategic, operational, and financial goals.

  12. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    develop management information in order to statistically identify and analyze variances from those plans. It will also add credibility to the NASA facilities maintenance budgeting process. The key to a successful maintenance program is the understanding and support of the senior Center managers.

  13. Strategic facility planning improves capital decision making.

    PubMed

    Reeve, J R

    2001-03-01

    A large, Midwestern IDS undertook a strategic facility-planning process to evaluate its facility portfolio and determine how best to allocate future investments in facility development. The IDS assembled a facility-planning team, which initiated the planning process with a market analysis to determine future market demands and identify service areas that warranted facility expansion. The team then analyzed each of the IDS's facilities from the perspective of uniform capacity measurements, highest and best use compared with needs, building condition and investment-worthiness, and facility growth and site development opportunities. Based on results of the analysis, the strategy adopted entailed, in part, shifting some space from inpatient care to ambulatory care services and demolishing and replacing the 11 percent of facilities deemed to be in the worst condition.

  14. Implementing Target Value Design.

    PubMed

    Alves, Thais da C L; Lichtig, Will; Rybkowski, Zofia K

    2017-04-01

    An alternative to the traditional way of designing projects is the process of target value design (TVD), which takes different departure points to start the design process. The TVD process starts with the client defining an allowable cost that needs to be met by the design and construction teams. An expected cost in the TVD process is defined through multiple interactions between multiple stakeholders who define wishes and others who define ways of achieving these wishes. Finally, a target cost is defined based on the expected profit the design and construction teams are expecting to make. TVD follows a series of continuous improvement efforts aimed at reaching the desired goals for the project and its associated target value cost. The process takes advantage of rapid cycles of suggestions, analyses, and implementation that starts with the definition of value for the client. In the traditional design process, the goal is to identify user preferences and find solutions that meet the needs of the client's expressed preferences. In the lean design process, the goal is to educate users about their values and advocate for a better facility over the long run; this way owners can help contractors and designers to identify better solutions. This article aims to inform the healthcare community about tools and techniques commonly used during the TVD process and how they can be used to educate and support project participants in developing better solutions to meet their needs now as well as in the future.

  15. Space Infrared Telescope Facility (SIRTF) - Operations concept. [decreasing development and operations cost

    NASA Technical Reports Server (NTRS)

    Miller, Richard B.

    1992-01-01

    The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.

  16. 75 FR 13127 - Lead-Based Paint Renovation, Repair and Painting Activities in Target Housing and Child Occupied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-R07-OPPT-2010-0155; FRL-9128-4] Lead-Based Paint Renovation, Repair and Painting Activities in Target Housing and Child Occupied Facilities; State of Iowa. Notice of... target housing and child-occupied facilities: 1. Establish the discipline of lead-safe renovator. 2...

  17. FACILITY POLLUTION PREVENTION GUIDE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) has developed the Facility Pollution Prevention Guide for those who are interested in and responsible for pollution prevention in industrial or service facilities. t summarizes the benefits of a company-wide pollution prevention...

  18. Targeted Assessment for Prevention of Healthcare-Associated Infections: A New Prioritization Metric.

    PubMed

    Soe, Minn M; Gould, Carolyn V; Pollock, Daniel; Edwards, Jonathan

    2015-12-01

    To develop a method for calculating the number of healthcare-associated infections (HAIs) that must be prevented to reach a HAI reduction goal and identifying and prioritizing healthcare facilities where the largest reductions can be achieved. Acute care hospitals that report HAI data to the Centers for Disease Control and Prevention's National Healthcare Safety Network. METHODS :The cumulative attributable difference (CAD) is calculated by subtracting a numerical prevention target from an observed number of HAIs. The prevention target is the product of the predicted number of HAIs and a standardized infection ratio goal, which represents a HAI reduction goal. The CAD is a numeric value that if positive is the number of infections to prevent to reach the HAI reduction goal. We calculated the CAD for catheter-associated urinary tract infections for each of the 3,639 hospitals that reported such data to National Healthcare Safety Network in 2013 and ranked the hospitals by their CAD values in descending order. Of 1,578 hospitals with positive CAD values, preventing 10,040 catheter-associated urinary tract infections at 293 hospitals (19%) with the highest CAD would enable achievement of the national 25% catheter-associated urinary tract infection reduction goal. The CAD is a new metric that facilitates ranking of facilities, and locations within facilities, to prioritize HAI prevention efforts where the greatest impact can be achieved toward a HAI reduction goal.

  19. Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry

    PubMed Central

    Zlitni, Aimen; Yin, Melissa; Janzen, Nancy; Chatterjee, Samit; Lisok, Ala; Gabrielson, Kathleen L.; Nimmagadda, Sridhar; Pomper, Martin G.; Foster, F. Stuart

    2017-01-01

    Prostate specific membrane antigen (PSMA) targeted microbubbles (MBs) were developed using bioorthogonal chemistry. Streptavidin-labeled MBs were treated with a biotinylated tetrazine (MBTz) and targeted to PSMA expressing cells using trans-cyclooctene (TCO)-functionalized anti-PSMA antibodies (TCO-anti-PSMA). The extent of MB binding to PSMA positive cells for two different targeting strategies was determined using an in vitro flow chamber. The initial approach involved pretargeting, where TCO-anti-PSMA was first incubated with PSMA expressing cells and followed by MBTz, which subsequently showed a 2.8 fold increase in the number of bound MBs compared to experiments performed in the absence of TCO-anti-PSMA. Using direct targeting, where TCO-anti-PSMA was linked to MBTz prior to initiation of the assay, a 5-fold increase in binding compared to controls was observed. The direct targeting approach was subsequently evaluated in vivo using a human xenograft tumor model and two different PSMA-targeting antibodies. The US signal enhancements observed were 1.6- and 5.9-fold greater than that for non-targeted MBs. The lead construct was also evaluated in a head-to-head study using mice bearing both PSMA positive or negative tumors in separate limbs. The human PSMA expressing tumors exhibited a 2-fold higher US signal compared to those tumors deficient in human PSMA. The results demonstrate both the feasibility of preparing PSMA-targeted MBs and the benefits of using bioorthogonal chemistry to create targeted US probes. PMID:28472168

  20. Environmental practices for biomedical research facilities.

    PubMed Central

    Medlin, E L; Grupenhoff, J T

    2000-01-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12. PMID:11121360

  1. Ion Source Development at the SNS

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Murray, S. N.; Carr, J.; Carmichael, J.; Goulding, R. H.; Baity, F. W.

    2007-08-01

    The US Spallation Neutron Source (SNS) has recently begun producing neutrons and is currently on track to becoming a world-leading facility for material science based on neutron scattering. The facility is comprised of an H- ion source, a linear accelerator, an accumulator ring, a liquid-Hg target and a suite of neutron scattering instruments. Over the next several years the average H- current from the ion source will be increased in order to meet the baseline facility requirement of providing 1.4 MW of beam-power to the target and the SNS power upgrade power requirement of 2+ MW on target. Meeting the latter goal will require H- currents of 70-100 mA with an RMS emittance of 0.20-0.35 π mm mrad and a ˜7% duty-factor. To date, the RF-driven-multicusp SNS ion source has only been able to demonstrate sustained operation at 33 mA of beam current at a ˜7% duty-factor. This report details our efforts to develop variations of the current ion source which can meet these requirements. Designs and experimental results are presented for helicon plasma drivers, high-power external antennas, glow-discharge plasma guns and advanced Cs systems.

  2. State Law Approaches to Facility Regulation of Abortion and Other Office Interventions

    PubMed Central

    Daniel, Sara; Cloud, Lindsay K.

    2018-01-01

    Objectives. To compare the prevalence and characteristics of facility laws governing abortion provision specifically (targeted regulation of abortion providers [TRAP] laws); office-based surgeries, procedures, sedation or anesthesia (office interventions) generally (OBS laws); and other procedures specifically. Methods. We conducted cross-sectional legal assessments of state facility laws for office interventions in effect as of August 1, 2016. We coded characteristics for each law and compared characteristics across categories of laws. Results. TRAP laws (n = 55; in 34 states) were more prevalent than OBS laws (n = 25; in 25 states) or laws targeting other procedures (n = 1; in 1 state). TRAP laws often regulated facilities that would not be regulated under OBS laws (e.g., all TRAP laws, but only 2 OBS laws, applied regardless of sedation or anesthesia used). TRAP laws imposed more numerous and more stringent requirements than OBS laws. Conclusions. Many states regulate abortion-providing facilities differently, and more stringently, than facilities providing other office interventions. The Supreme Court’s 2016 decision in Whole Woman’s Health v Hellerstedt casts doubt on the legitimacy of that differential treatment. PMID:29470114

  3. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  4. Targeting the androgen receptor in prostate and breast cancer – several new agents in development

    PubMed Central

    Proverbs-Singh, Tracy; Feldman, Jarett L.; Morris, Michael J.; Autio, Karen A.; Traina, Tiffany A.

    2016-01-01

    Prostate cancer and breast cancer share similarities as hormone-sensitive cancers with a wide heterogeneity of both phenotype and biology. The androgen receptor (AR) is a hormone receptor involved in both benign and malignant processes. Targeting androgen synthesis and the AR pathway has been and remains central to prostate cancer therapy. Recently, there is increased interest in the role of the AR in breast cancer development and growth, with data suggesting AR co-expression with estrogen, progesterone and human epidermal growth factor receptors, across all intrinsic subtypes of breast cancer. Targeting the AR axis is an evolving field with novel therapies in development which may ultimately be applicable for both tumor types. In this review, we offer an overview of available agents which target the AR axis in both prostate and breast cancer and provide insight into the novel drugs in development for targeting this signaling pathway. PMID:25722318

  5. Orphan Nuclear Receptors as Targets for Drug Development

    PubMed Central

    Mukherjee, Subhajit

    2012-01-01

    Orphan nuclear receptors regulate diverse biological processes. These important molecules are ligand-activated transcription factors that act as natural sensors for a wide range of steroid hormones and xenobiotic ligands. Because of their importance in regulating various novel signaling pathways, recent research has focused on identifying xenobiotics targeting these receptors for the treatment of multiple human diseases. In this review, we will highlight these receptors in several physiologic and pathophysiologic actions and demonstrate how their functions can be exploited for the successful development of newer drugs. PMID:20372994

  6. Development of NIRS pencil beam scanning system for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Furukawa, T.; Hara, Y.; Mizushima, K.; Saotome, N.; Tansho, R.; Saraya, Y.; Inaniwa, T.; Mori, S.; Iwata, Y.; Shirai, T.; Noda, K.

    2017-09-01

    At Heavy Ion Medical Accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences (NIRS), more than 9000 patients have been successfully treated by carbon ion beams since 1994. The successful results of treatments have led us to construct a new treatment facility equipped with a three-dimensional pencil beam scanning irradiation system, which is one of sophisticated techniques for cancer therapy with high energetic ion beam. This new facility comprises two treatment rooms having fixed beam lines and one treatment room having rotating gantry line. The challenge of this project is to realize treatment of a moving target by scanning irradiation. Thus, to realize this, the development of the fast scanning system is one of the most important issues in this project. After intense commissioning and quality assurance tests, the treatment with scanned ion beam was started in May 2011. After treatment of static target starts, we have developed related technologies. As a result, we can start treatment of moving target and treatment without range shifter plates since 2015. In this paper, the developments of the scanning irradiation system are described.

  7. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  8. Light ion production for a future radiobiological facility at CERN: preliminary studies.

    PubMed

    Stafford-Haworth, Joshua; Bellodi, Giulia; Küchler, Detlef; Lombardi, Alessandra; Röhrich, Jörg; Scrivens, Richard

    2014-02-01

    Recent medical applications of ions such as carbon and helium have proved extremely effective for the treatment of human patients. However, before now a comprehensive study of the effects of different light ions on organic targets has not been completed. There is a strong desire for a dedicated facility which can produce ions in the range of protons to neon in order to perform this study. This paper will present the proposal and preliminary investigations into the production of light ions, and the development of a radiobiological research facility at CERN. The aims of this project will be presented along with the modifications required to the existing linear accelerator (Linac3), and the foreseen facility, including the requirements for an ion source in terms of some of the specification parameters and the flexibility of operation for different ion types. Preliminary results from beam transport simulations will be presented, in addition to some planned tests required to produce some of the required light ions (lithium, boron) to be conducted in collaboration with the Helmholtz-Zentrum für Materialien und Energie, Berlin.

  9. New Concepts and Fermilab Facilities for Antimatter Research

    NASA Astrophysics Data System (ADS)

    Jackson, Gerald

    2008-04-01

    There has long been significant interest in continuing antimatter research at the Fermi National Accelerator Laboratory. Beam kinetic energies ranging from 10 GeV all the way down to the eV scale and below are of interest. There are three physics missions currently being developed: the continuation of charmonium physics utilizing an internal target; atomic physics with in-flight generated antihydrogen atoms; and deceleration to thermal energies and paasage of antiprotons through a grating system to determine their gravitation acceleration. Non-physics missions include the study of medical applications, tests of deep-space propulsion concepts, low-risk testing of nuclear fuel elements, and active interrogation for smuggled nuclear materials in support of homeland security. This paper reviews recent beam physics and accelerator technology innovations in the development of methods and new Fermilab facilities for the above missions.

  10. Update On The Development, Testing, And Manufacture Of High Density LEU-Foil Targets For The Production Of Mo-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creasy, John T

    2015-05-12

    This project has the objective to reduce and/or eliminate the use of HEU in commerce. Steps in the process include developing a target testing methodology that is bounding for all Mo-99 target irradiators, establishing a maximum target LEU-foil mass, developing a LEU-foil target qualification document, developing a bounding target failure analysis methodology (failure in reactor containment), optimizing safety vs. economics (goal is to manufacture a safe, but relatively inexpensive target to offset the inherent economic disadvantage of using LEU in place of HEU), and developing target material specifications and manufacturing QC test criteria. The slide presentation is organized under themore » following topics: Objective, Process Overview, Background, Team Structure, Key Achievements, Experiment and Activity Descriptions, and Conclusions. The High Density Target project has demonstrated: approx. 50 targets irradiated through domestic and international partners; proof of concept for two front end processing methods; fabrication of uranium foils for target manufacture; quality control procedures and steps for manufacture; multiple target assembly techniques; multiple target disassembly devices; welding of targets; thermal, hydraulic, and mechanical modeling; robust target assembly parametric studies; and target qualification analysis for insertion into very high flux environment. The High Density Target project has tested and proven several technologies that will benefit current and future Mo-99 producers.« less

  11. Laser-Plasma Interactions on NIKE and the Fusion Test Facility

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Weaver, James

    2008-11-01

    Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.

  12. Development and content validation of a questionnaire to assess moral distress among social workers in long-term care facilities.

    PubMed

    Lev, Sagit; Ayalon, Liat

    2018-03-01

    Despite the significance of ethical issues faced by social workers, research on moral distress among social workers has been extremely limited. The aim of the current study is to describe the development and content validation of a unique questionnaire to measure moral distress among social workers in long-term care facilities for older adults in Israel. The construction of the questionnaire was based on a secondary analysis of a qualitative study that addressed the moral dilemma of social workers in nursing homes in Israel. A content validation included review and evaluation by two experts, a cognitive interview with a nursing home social worker, and three focus groups of experts and the target population. The initial questionnaire consisted of 25 items. After the content validation process the questionnaire in its final version, consisted of 17 items and included two scales, measuring the frequency of morally loaded events and the intensity of distress that followed them. We believe that the questionnaire can contribute by broadening and deepening ethics discourse and research, with regard to social workers' obligation dilemmas and conflicts.

  13. Real Time Target Tracking Using Dedicated Vision Hardware

    NASA Astrophysics Data System (ADS)

    Kambies, Keith; Walsh, Peter

    1988-03-01

    This paper describes a real-time vision target tracking system developed by Adaptive Automation, Inc. and delivered to NASA's Launch Equipment Test Facility, Kennedy Space Center, Florida. The target tracking system is part of the Robotic Application Development Laboratory (RADL) which was designed to provide NASA with a general purpose robotic research and development test bed for the integration of robot and sensor systems. One of the first RADL system applications is the closing of a position control loop around a six-axis articulated arm industrial robot using a camera and dedicated vision processor as the input sensor so that the robot can locate and track a moving target. The vision system is inside of the loop closure of the robot tracking system, therefore, tight throughput and latency constraints are imposed on the vision system that can only be met with specialized hardware and a concurrent approach to the processing algorithms. State of the art VME based vision boards capable of processing the image at frame rates were used with a real-time, multi-tasking operating system to achieve the performance required. This paper describes the high speed vision based tracking task, the system throughput requirements, the use of dedicated vision hardware architecture, and the implementation design details. Important to the overall philosophy of the complete system was the hierarchical and modular approach applied to all aspects of the system, hardware and software alike, so there is special emphasis placed on this topic in the paper.

  14. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    2000-04-25

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  15. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  16. A polar-drive-ignition design for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, T. J. B.; Marozas, J. A.; Anderson, K. S.

    2012-05-15

    Polar drive [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] will enable direct-drive experiments to be conducted on the National Ignition Facility (NIF) [Miller et al., Opt. Eng. 43, 2841 (2004)], while the facility is configured for x-ray drive. A polar-drive ignition design for the NIF has been developed that achieves a gain of 32 in two-dimensional (2-D) simulations, which include single- and multiple-beam nonuniformities and ice and outer-surface roughness. This design requires both single-beam UV polarization smoothing and one-dimensional (1-D) multi-frequency modulator (MFM) single-beam smoothing to achieve the required laser uniformity. The multi-FM smoothing is employed only during themore » low-intensity portion of the laser pulse, allowing for the use of sufficient smoothing-by-spectral-dispersion bandwidth while maintaining safe laser operations during the high-intensity part of the pulse. This target is robust to all expected sources of perturbations.« less

  17. Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.

    PubMed

    Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B

    2010-09-01

    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.

  18. Flyer Target Acceleration and Energy Transfer at its Collision with Massive Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodziuk, S.; Kasperczuk, A.; Pisarczyk, T.

    2006-01-15

    Numerical modelling was aimed at simulation of successive events resulting from interaction of laser beam-single and double targets. It was performed by means of the 2D Lagrangian hydrodynamics code ATLANT-HE. This code is based on one-fluid and two-temperature model of plasma with electron and ion heat conductivity considerations. The code has an advanced treatment of laser light propagation and absorption. This numerical modelling corresponds to the experiment, which was carried out with the use of the PALS facility. Two types of planar solid targets, i.e. single massive Al slabs and double targets consisting of 6 {mu}m thick Al foil andmore » Al slab were applied. The targets were irradiated by the iodine laser pulses of two wavelengths: 1.315 and 0.438 {mu}m. A pulse duration of 0.4 ns and a focal spot diameter of 250 {mu}m at a laser energy of 130 J were used. The numerical modelling allowed us to obtain a more detailed description of shock wave propagation and crater formation.« less

  19. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells.

    PubMed

    Yu, Jiashing; Hsu, Che-Hao; Huang, Chih-Chia; Chang, Po-Yang

    2015-01-14

    Photodynamic therapy (PDT) involves the cellular uptake of a photosensitizer (PS) combined with oxygen molecules and light at a specific wavelength to be able to trigger cancer cell death via the apoptosis pathway, which is less harmful and has less inflammatory side effect than necrosis. However, the traditional PDT treatment has two main deficiencies: the dark toxicity of the PS and the poor selectivity of the cellular uptake of PS between the target cells and normal tissues. In this work, methylene blue (MB), a known effective PS, combined with Au nanoparticles (NPs) was prepared using an intermolecular interaction between a polystyrene-alt-maleic acid (PSMA) layer on the Au NPs and MB. The Au@polymer/MB NPs produced a high quantum yield of singlet oxygen molecules, over 50% as much as that of free MB, when they were excited by a dark red light source at 660 nm, but without significant dark toxicity. Furthermore, transferrin (Tf) was conjugated on the Au@polymer/MB NPs via an EDC/NHS reaction to enhance the selectivity to HeLa cells compared to 3T3 fibroblasts. With a hand-held single laser treatment (32 mW/cm) for 4 min, the new Au@polymer/MB-Tf NPs showed a 2-fold enhancement of PDT efficiency toward HeLa cells over the use of free MB at 4 times dosage. Cellular staining examinations showed that the HeLa cells reacted with Au@polymer/MB-Tf NPs and the 660 nm light excitation triggered PDT, which caused the cells to undergo apoptosis ("programmed" cell death). We propose that applying this therapeutic Au@polymer/MB-Tf nanoagent is facile and safe for delivery and cancer cell targeting to simultaneously minimize side effects and accomplish a significant enhancement in photodynamic therapeutic efficiency toward next-generation nanomedicine development.

  20. Simulations for the future converter of the e-linac for the TRIUMF ARIEL facility

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Bricault, P.

    2011-09-01

    In the next years, TRIUMF activity will be focused on building a new facility to produce very intense neutron rich radioactive ion beams. Unlike others ISOL facilities, the e-linac primary beam, that will induce the fission, is an intense electron beam (50 MeV energy and 10 mA intensity). This challenging choice, which make this installation unique, despite the ALTO facility, makes an average fission rate of 1013-14fissions/s in the target.This beam is sent on an uranium carbide target (UCx), but due to its power, it is essential to insert a "converter" on the beam path to avoid a target overheating. The purpose of this converter is to convert electrons into Bremsstralhung radiation. The γ rays produce excite the dipole resonance of 23892U (15 MeV) inducing fission. Energy deposition, fission rate and thermal behavior were simulated using Monte Carlo techniques are presented in this paper