Sample records for target fabrication activities

  1. Fabrication of light water reactor tritium targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilger, J.P.

    1991-11-01

    The mission of the Fabrication Development Task of the Tritium Target Development Project is: to produce a documented technology basis, including specifications and procedures for target rod fabrication; to demonstrate that light water tritium targets can be manufactured at a rate consistent with tritium production requirements; and to develop quality control methods to evaluate target rod components and assemblies, and establish correlations between evaluated characteristics and target rod performance. Many of the target rod components: cladding tubes, end caps, plenum springs, etc., have similar counterparts in LWR fuel rods. High production rate manufacture and inspection of these components has beenmore » adequately demonstrated by nuclear fuel rod manufacturers. This summary describes the more non-conventional manufacturing processes and inspection techniques developed to fabricate target rod components whose manufacturability at required production rates had not been previously demonstrated.« less

  2. Double-shell target fabrication workshop-2016 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. Morris; Oertel, John; Farrell, Michael

    On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activitiesmore » at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.« less

  3. Proceedings of the twelfth target fabrication specialists` meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-04-01

    Research in fabrication for inertial confinement fusion (ICF) comprises at least three broad categories: targets for high energy density physics on existing drivers, ignition capsule fabrication, and cryogenic fuel layer formation. The latter two are being pursued primarily for the National Ignition Facility (NIF). Scientists from over 14 laboratories, universities, and businesses contributed over 100 papers on all aspects of ICF target fabrication. The NIF is well along in construction and photos of poured concrete and exposed steel added to the technical excitement. It was clear from the meeting that there has been significant progress toward the fabrication of anmore » ignition target for NIF and that new techniques are resulting in higher quality targets for high energy density research.« less

  4. Laser target fabrication, structure and method for its fabrication

    DOEpatents

    Farnum, Eugene H.; Fries, R. Jay

    1985-01-01

    The disclosure is directed to a laser target structure and its method of fabrication. The target structure comprises a target plate containing an orifice across which a pair of crosshairs are affixed. A microsphere is affixed to the crosshairs and enclosed by at least one hollow shell comprising two hemispheres attached together and to the crosshairs so that the microsphere is juxtapositioned at the center of the shell.

  5. High volume fabrication of laser targets using MEMS techniques

    NASA Astrophysics Data System (ADS)

    Spindloe, C.; Arthur, G.; Hall, F.; Tomlinson, S.; Potter, R.; Kar, S.; Green, J.; Higginbotham, A.; Booth, N.; Tolley, M. K.

    2016-04-01

    The latest techniques for the fabrication of high power laser targets, using processes developed for the manufacture of Micro-Electro-Mechanical System (MEMS) devices are discussed. These laser targets are designed to meet the needs of the increased shot numbers that are available in the latest design of laser facilities. Traditionally laser targets have been fabricated using conventional machining or coarse etching processes and have been produced in quantities of 10s to low 100s. Such targets can be used for high complexity experiments such as Inertial Fusion Energy (IFE) studies and can have many complex components that need assembling and characterisation with high precision. Using the techniques that are common to MEMS devices and integrating these with an existing target fabrication capability we are able to manufacture and deliver targets to these systems. It also enables us to manufacture novel targets that have not been possible using other techniques. In addition, developments in the positioning systems that are required to deliver these targets to the laser focus are also required and a system to deliver the target to a focus of an F2 beam at 0.1Hz is discussed.

  6. Characterization and fabrication of target materials for RIB generation

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Janney, M. A.; Mueller, P. E.; Ortman, W. K.; Rauniyar, R.; Stracener, D. W.; Williams, C. L.

    2001-07-01

    This report discusses two techniques developed at the Oak Ridge National Laboratory (ORNL) that are employed for the fabrication and characterization of targets used in the production of Radioactive Ion Beams (RIBs). First, our method of in-house fabrication of uranium carbide targets is discussed. We have found that remarkably uniform coatings of UC2 can be formed on the microstructure of porous C matrices. The technique has been used to form UC2 layers on highly thermally conductive graphitic foams. Targets fabricated in this fashion have been tested under low-intensity proton bombardment and yields of selected radioactive species are reported. This report also describes an off-line test stand for the investigation of effusive and diffusive transport in RIB target/ion sources. Permeation rates of gases and vapors passing through a high temperature membrane or through an effusive channel constructed from the material under investigation are recorded. Diffusion coefficients and adsorption enthalpies, which characterize the interaction of RIB species with materials of the target/ion source, are extracted from the time profile of the recorded data. Examples of diffusion, effusion, and conductance measurements are provided.

  7. Preface: Twenty-First Target Fabrication Specialists Meeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikroo, Abbas; Czechowicz, Don

    The Twenty First Target Fabrication Meeting held in Las Vegas, Nevada, from June xx-yy 2015, was attended by more than 100 scientists, engineers, and technicians from the United States, the United Kingdom, France, and Japan, bringing together international experts on the design, development, and fabrication of inertial confinement fusion (ICF) and high-energy-density (HED) experimental targets fielded on laser and pulsed-power facilities around the world. We were delighted to have such exceptional international representation. The program included 4 invited papers, 53 contributed papers, and 55 posters. A selection of these is presented in this dedicated issue of Fusion Science and Technologymore » (FST).« less

  8. Preface: Twenty-First Target Fabrication Specialists Meeting

    DOE PAGES

    Nikroo, Abbas; Czechowicz, Don

    2017-04-21

    The Twenty First Target Fabrication Meeting held in Las Vegas, Nevada, from June xx-yy 2015, was attended by more than 100 scientists, engineers, and technicians from the United States, the United Kingdom, France, and Japan, bringing together international experts on the design, development, and fabrication of inertial confinement fusion (ICF) and high-energy-density (HED) experimental targets fielded on laser and pulsed-power facilities around the world. We were delighted to have such exceptional international representation. The program included 4 invited papers, 53 contributed papers, and 55 posters. A selection of these is presented in this dedicated issue of Fusion Science and Technologymore » (FST).« less

  9. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  10. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1995-02-28

    A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.

  11. LBNF 1.2 MW Target: Conceptual Design & Fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, C.; Ammigan, K.; Anderson, K.

    2015-06-01

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield.more » Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.« less

  12. LBNF 1.2 MW TARGET: CONCEPTUAL DESIGN & FABRICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, Cory F.; Ammigan, K.; Anderson, K.

    2015-06-29

    Fermilab’s Long-Baseline Neutrino Facility (LBNF) will utilize a modified design based on the NuMI low energy target that is reconfigured to accommodate beam operation at 1.2 MW. Achieving this power with a graphite target material and ancillary systems originally rated for 400 kW requires several design changes and R&D efforts related to material bonding and electrical isolation. Target cooling, structural design, and fabrication techniques must address higher stresses and heat loads that will be present during 1.2 MW operation, as the assembly will be subject to cyclic loads and thermal expansion. Mitigations must be balanced against compromises in neutrino yield.more » Beam monitoring and subsystem instrumentation will be updated and added to ensure confidence in target positioning and monitoring. Remote connection to the target hall support structure must provide for the eventual upgrade to a 2.4 MW target design, without producing excessive radioactive waste or unreasonable exposure to technicians during reconfiguration. Current designs and assembly layouts will be presented, in addition to current findings on processes and possibilities for prototype and final assembly fabrication.« less

  13. Target Fabrication Technology and New Functional Materials for Laser Fusion and Laser-Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Norimatsu, Takayoshi; Izawa, Yasukazu

    Target fabrication technique is a key issue of laser fusion. We present a comprehensive, up-to-data compilation of laser fusion target fabrication and relating new materials. To achieve highly efficient laser implosion, organic and inorganic highly spherical millimeter-sized capsules and cryogenic hydrogen layers inside should be uniform in diameter and thickness within sub-micrometer ˜ nanometer error. Porous structured targets and molecular cluster targets are required for laser-plasma experiments and applications. Various technologies and new materials concerning above purposes are summarized including fast-ignition targets, equation-of-state measurement targets, high energy ion generation targets, etc.

  14. Investigation of the cortical activation by touching fabric actively using fingers.

    PubMed

    Wang, Q; Yu, W; He, N; Chen, K

    2015-11-01

    Human subjects can tactually estimate the perception of touching fabric. Although many psychophysical and neurophysiological experiments have elucidated the peripheral neural mechanisms that underlie fabric hand estimation, the associated cortical mechanisms are not well understood. To identify the brain regions responsible for the tactile stimulation of fabric against human skin, we used the technology of functional magnetic resonance imaging (fMRI), to observe brain activation when the subjects touched silk fabric actively using fingers. Consistent with previous research about brain cognition on sensory stimulation, large activation in the primary somatosensory cortex (SI), the secondary somatosensory cortex (SII) and moto cortex, and little activation in the posterior insula cortex and Broca's Area were observed when the subjects touched silk fabric. The technology of fMRI is a promising tool to observe and characterize the brain cognition on the tactile stimulation of fabric quantitatively. The intensity and extent of activation in the brain regions, especially the primary somatosensory cortex (SI) and the secondary somatosensory cortex (SII), can represent the perception of stimulation of fabric quantitatively. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage,more » and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.« less

  16. Fabrication of a tantalum-clad tungsten target for LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  17. Ultra-hard AlMgB14 coatings fabricated by RF magnetron sputtering from a stoichiometric target

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Khartsev, S. I.; Böhlmark, J.; Ahlgren, M.

    2015-01-01

    For the first time hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric ceramic AlMgB14 target. Optimized processing conditions (substrate temperature, target sputtering power and target-to-substrate distance) enable fabrication of stoichiometric in-depth compositionally homogeneous films with the peak values of nanohardness 88 GPa and Young's modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 and 275 GPa at 200 nm depth in 2 μm thick film.

  18. Fabrication, characterization, and modeling of comixed films for NXS calibration targets [Fabrication and metrology of the NXS calibration targets

    DOE PAGES

    Jaquez, Javier; Farrell, Mike; Huang, Haibo; ...

    2016-08-01

    In 2014/2015 at the Omega laser facility, several experiments took place to calibrate the National Ignition Facility (NIF) X-ray spectrometer (NXS), which is used for high-resolution time-resolved spectroscopic experiments at NIF. The spectrometer allows experimentalists to measure the X-ray energy emitted from high-energy targets, which is used to understand key data such as mixing of materials in highly compressed fuel. The purpose of the experiments at Omega was to obtain information on the instrument performance and to deliver an absolute photometric calibration of the NXS before it was deployed at NIF. The X-ray emission sources fabricated for instrument calibration weremore » 1-mm fused silica spheres with precisely known alloy composition coatings of Si/Ag/Mo, Ti/Cr/Ag, Cr/Ni/Zn, and Zn/Zr, which have emission in the 2- to 18-keV range. Critical to the spectrometer calibration is a known atomic composition of elements with low uncertainty for each calibration sphere. This study discusses the setup, fabrication, and precision metrology of these spheres as well as some interesting findings on the ternary magnetron-sputtered alloy structure.« less

  19. Fabrication, characterization, and modeling of comixed films for NXS calibration targets [Fabrication and metrology of the NXS calibration targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaquez, Javier; Farrell, Mike; Huang, Haibo

    In 2014/2015 at the Omega laser facility, several experiments took place to calibrate the National Ignition Facility (NIF) X-ray spectrometer (NXS), which is used for high-resolution time-resolved spectroscopic experiments at NIF. The spectrometer allows experimentalists to measure the X-ray energy emitted from high-energy targets, which is used to understand key data such as mixing of materials in highly compressed fuel. The purpose of the experiments at Omega was to obtain information on the instrument performance and to deliver an absolute photometric calibration of the NXS before it was deployed at NIF. The X-ray emission sources fabricated for instrument calibration weremore » 1-mm fused silica spheres with precisely known alloy composition coatings of Si/Ag/Mo, Ti/Cr/Ag, Cr/Ni/Zn, and Zn/Zr, which have emission in the 2- to 18-keV range. Critical to the spectrometer calibration is a known atomic composition of elements with low uncertainty for each calibration sphere. This study discusses the setup, fabrication, and precision metrology of these spheres as well as some interesting findings on the ternary magnetron-sputtered alloy structure.« less

  20. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  1. Novel target fabrication using 3D printing developed at University of Michigan

    DOE PAGES

    Klein, Sallee R.; Deininger, Michael; Gillespie, Robb S.; ...

    2016-05-24

    The University of Michigan has been fabricating targets for high-energy-density experiments for the past decade. We utilize the technique of machined acrylic bodies and mating components acting as constraints to build repeatable targets. Combining 3D printing with traditional machining, we are able to take advantage of the very best part of both aspects of manufacturing. Furthermore, we present several recent campaigns to act as showcase and introduction of our techniques and our experience with 3D printing, effecting how we utilize 3D printing in our target builds.

  2. Novel target fabrication using 3D printing developed at University of Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Sallee R.; Deininger, Michael; Gillespie, Robb S.

    The University of Michigan has been fabricating targets for high-energy-density experiments for the past decade. We utilize the technique of machined acrylic bodies and mating components acting as constraints to build repeatable targets. Combining 3D printing with traditional machining, we are able to take advantage of the very best part of both aspects of manufacturing. Furthermore, we present several recent campaigns to act as showcase and introduction of our techniques and our experience with 3D printing, effecting how we utilize 3D printing in our target builds.

  3. Fabrication of CFRP/Al Active Laminates

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Ohira, Junichiro; Takemoto, Kyosuke; Imori, Masataka

    This paper describes fabrication and evaluation of the active laminate. It was made by hot-pressing of an aluminum plate as a high CTE material, a unidirectional CFRP prepreg as a low CTE material and an electric resistance heater, a KFRP prepreg as a low CTE material and an insulator between them, and copper foils as electrodes. In this study, fabricating conditions and performances such as curvature change and output force were examined. Under optimized fabricating conditions, it became clear that 1) the curvature of the active laminate linearly changes as a function of temperature, between room temperature and its hot pressing temperature without hysteresis by electric resistance heating of carbon fiber in the CFRP layer and cooling, and 2) the output force against a fixed punch almost linearly increases with increasing temperature during heating from 313K up to around the glass transition temperature of the epoxy matrix.

  4. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

    1995-07-04

    An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

  5. Fabrication and characterization of carbon-backed thin 208Pb targets.

    PubMed

    Thakur, Meenu; Dubey, R; Abhilash, S R; Behera, B R; Mohanty, B P; Kabiraj, D; Ojha, Sunil; Duggal, Heena

    2016-01-01

    Thin carbon-backed isotopically enriched 208 Pb targets were required for our experiment aimed to study the reaction dynamics for 48 Ti +  208 Pb system, populating the near super-heavy nucleus 256 Rf, through mass-energy correlation of the fission fragments. Purity and thickness of the targets are of utmost importance in such studies as these factors have strong influence on the measurement accuracy of mass and energy distribution of fission fragments. 208 Pb targets with thickness ranging from 60 μg/cm 2 to 250 μg/cm 2 have been fabricated in high vacuum environment using physical vapor deposition method. Important points in the method are as follows: • 208 Pb was deposited using resistive heating method, whereas carbon (backing foil) deposition was performed by using the electron beam bombardment technique.•Different characterization techniques such as Particle Induced X-ray Emission (PIXE), Energy Dispersive X-Ray Fluorescence (EDXRF) and Rutherford Backscattering Spectrometry (RBS) were used to assert the purity and thickness of the targets.•These targets have successfully been used to accomplish our experimental objectives.

  6. Method for fabricating .sup.99 Mo production targets using low enriched uranium, .sup.99 Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, Thomas C.; Matos, James E.; Hofman, Gerard L.

    1997-01-01

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.

  7. Method for fabricating {sup 99}Mo production targets using low enriched uranium, {sup 99}Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, T.C.; Matos, J.E.; Hofman, G.L.

    1997-03-25

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate. 3 figs.

  8. Method for fabricating .sup.99 Mo production targets using low enriched uranium, .sup.99 Mo production targets comprising low enriched uranium

    DOEpatents

    Wiencek, Thomas C [Orland Park, IL; Matos, James E [Oak Park, IL; Hofman, Gerard L [Downers Grove, IL

    2000-12-12

    A radioisotope production target and a method for fabricating a radioisotope production target is provided, wherein the target comprises an inner cylinder, a foil of fissionable material circumferentially contacting the outer surface of the inner cylinder, and an outer hollow cylinder adapted to receive the substantially foil-covered inner cylinder and compress tightly against the foil to provide good mechanical contact therewith. The method for fabricating a primary target for the production of fission products comprises preparing a first substrate to receive a foil of fissionable material so as to allow for later removal of the foil from the first substrate, preparing a second substrate to receive the foil so as to allow for later removal of the foil from the second substrate; attaching the first substrate to the second substrate such that the foil is sandwiched between the first substrate and second substrate to prevent foil exposure to ambient atmosphere, and compressing the exposed surfaces of the first and second substrate to assure snug mechanical contact between the foil, the first substrate and the second substrate.

  9. Surface activation of dyed fabric for cellulase treatment.

    PubMed

    Schimper, Christian B; Ibanescu, Constanta; Bechtold, Thomas

    2011-10-01

    Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Active chainmail fabrics for soft robotic applications

    NASA Astrophysics Data System (ADS)

    Ransley, Mark; Smitham, Peter; Miodownik, Mark

    2017-08-01

    This paper introduces a novel type of smart textile with electronically responsive flexibility. The chainmail inspired fabric is modelled parametrically and simulated via a rigid body physics framework with an embedded model of temperature controlled actuation. Our model assumes that individual fabric linkages are rigid and deform only through their own actuation, thereby decoupling flexibility from stiffness. A physical prototype of the active fabric is constructed and it is shown that flexibility can be significantly controlled through actuator strains of ≤10%. Applications of these materials to soft-robotics such as dynamically reconfigurable orthoses and splints are discussed.

  11. Fabrication and characterization of active nanostructures

    NASA Astrophysics Data System (ADS)

    Opondo, Noah F.

    Three different nanostructure active devices have been designed, fabricated and characterized. Junctionless transistors based on highly-doped silicon nanowires fabricated using a bottom-up fabrication approach are first discussed. The fabrication avoids the ion implantation step since silicon nanowires are doped in-situ during growth. Germanium junctionless transistors fabricated with a top down approach starting from a germanium on insulator substrate and using a gate stack of high-k dielectrics and GeO2 are also presented. The levels and origin of low-frequency noise in junctionless transistor devices fabricated from silicon nanowires and also from GeOI devices are reported. Low-frequency noise is an indicator of the quality of the material, hence its characterization can reveal the quality and perhaps reliability of fabricated transistors. A novel method based on low-frequency noise measurement to envisage trap density in the semiconductor bandgap near the semiconductor/oxide interface of nanoscale silicon junctionless transistors (JLTs) is presented. Low-frequency noise characterization of JLTs biased in saturation is conducted at different gate biases. The noise spectrum indicates either a Lorentzian or 1/f. A simple analysis of the low-frequency noise data leads to the density of traps and their energy within the semiconductor bandgap. The level of noise in silicon JLT devices is lower than reported values on transistors fabricated using a top-down approach. This noise level can be significantly improved by improving the quality of dielectric and the channel interface. A micro-vacuum electron device based on silicon field emitters for cold cathode emission is also presented. The presented work utilizes vertical Si nanowires fabricated by means of self-assembly, standard lithography and etching techniques as field emitters in this dissertation. To obtain a high nanowire density, hence a high current density, a simple and inexpensive Langmuir Blodgett technique

  12. Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles.

    PubMed

    Huang, Haitao; Yue, Tao; Xu, Ke; Golzarian, Jafar; Yu, Jiahui; Huang, Jin

    2015-07-01

    Gd(III) chelate is currently used as positive magnetic resonance imaging (MRI) contrast agent in clinical diagnosis, but generally induces the risk of nephrogenic systemic fibrosis (NSF) due to the dissociated Gd(3+) from Gd(III) chelates. To develop a novel positive MRI contrast agent with low toxicity and high sensitivity, ultrasmall MnO nanoparticles were PEGylated via catechol-Mn chelation and conjugated with cRGD as active targeting function to tumor. Particularly, the MnO nanoparticles with a size of ca. 5nm were modified by α,β-poly(aspartic acid)-based graft polymer containing PEG and DOPA moieties and, meanwhile, conjugated with cRGD to produce the contrast agent with a size of ca. 100nm and a longitudinal relaxivity (r1) of 10.2mM(-1)S(-1). Such nanoscaled contrast agent integrated passive- and active-targeting function to tumor, and its efficient accumulation behavior in tumor was verified by in vivo distribution study. At the same time, the PEG moiety played a role of hydrophilic coating to improve the biocompatibility and stability under storing and physiological conditions, and especially might guarantee enough circulation time in blood. Moreover, in vivo MRI revealed a good and long-term effect of enhancing MRI signal for as-fabricated contrast agent while cell viability assay proved its acceptable cytotoxicity for MRI application. On the whole, the as-fabricated PEGylated and cRGD-functionalized contrast agent based on ultrasmall MnO nanoparticles showed a great potential to the T1-weighted MRI diagnosis of tumor. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  13. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE PAGES

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.; ...

    2017-12-22

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  14. Design and Fabrication of Opacity Targets for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Tana; Schmidt, Derek William; Dodd, Evan S.

    Accurate models for opacity of partially ionized atoms are important for modeling and understanding stellar interiors and other high-energy-density phenomena such as inertial confinement fusion. Lawrence Livermore National Laboratory is leading a multilaboratory effort to conduct experiments on the National Ignition Facility (NIF) to try to reproduce recent opacity tests at the Sandia National Laboratory Z-facility. Since 2015, the NIF effort has evolved several hohlraum designs that consist of multiple pieces joined together. The target also has three components attached to the main stalk over a long distance with high tolerances that have resulted in several design iterations. The targetmore » has made use of rapid prototyped features to attach a capsule and collimator under the hohlraum while avoiding interference with the beams. Furthermore, this paper discusses the evolution of the hohlraum and overall target design and the challenges involved with fabricating and assembling these targets.« less

  15. In vitro photodynamic effects of scavenger receptor targeted-photoactivatable nanoagents on activated macrophages.

    PubMed

    Yi, Bong Gu; Park, Ok Kyu; Jeong, Myeong Seon; Kwon, Seung Hae; Jung, Jae In; Lee, Seongsoo; Ryoo, Sungwoo; Kim, Sung Eun; Kim, Jin Won; Moon, Won-Jin; Park, Kyeongsoon

    2017-04-01

    Scavenger receptors (SRs) expressed on the activated macrophages in inflammation sites have been considered as the most interesting and important target biomarker for targeted drug delivery, imaging and therapy. In the present study, we fabricated the scavenger receptor-A (SR-A) targeted-photoactivatable nanoagents (termed as Ce6/DS-DOCA) by entrapping chlorin e6 (Ce6) into the amphiphilic dextran sulfate-deoxycholic acid (DS-DOCA) conjugates via physically hydrophobic interactions. Insoluble Ce6 was easily encapsulated into DS-DOCA nanoparticles by a dialysis method and the loading efficiency was approximately 51.7%. The Ce6/DS-DOCA formed nano-sized self-assembled aggregates (28.8±5.6nm in diameter), confirmed by transmission electron microscope, UV/Vis and fluorescence spectrophotometer. The Ce6/DS-DOCA nanoagents could generate highly reactive singlet oxygen under laser irradiation. Also, in vitro studies showed that they were more specifically taken up by lipopolysaccharide (LPS)-induced activated macrophages (RAW 264.7) via a SR-A-mediated endocytosis, relative to by non-activated macrophages, and notably induced cell death of activated macrophages under laser irradiation. Therefore, SR-A targetable and photoactivatable Ce6/DS-DOCA nanoagents with more selective targeting to the activated macrophages will have great potential for treatment of inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Behavioral Responses of the Bed Bug to Permethrin-Impregnated ActiveGuard™ Fabric.

    PubMed

    Jones, Susan C; Bryant, Joshua L; Harrison, Scott A

    2013-06-07

    ActiveGuard™ Mattress Liners have been used to control house dust mites, and they also are commercially available as an integrated pest management tool for use against bed bugs (Cimex lectularius). The aim of our study was to evaluate responses of numerous populations of the bed bug to the permethrin-impregnated fabric, with particular regard to contact toxicity, repellency, and feeding inhibition. Continuous exposure to ActiveGuard fabric resulted in rapid intoxication for three of four populations, with 87 to 100% of moderately pyrethroid-resistant and susceptible bed bugs succumbing by 1 d. In comparison, a highly resistant population reached 22% mortality at 10 d. Video data revealed that bed bugs readily traversed ActiveGuard fabric and spent a considerable amount of time moving about and resting on it during a 12-h period. ActiveGuard fabric was non-repellent to bed bugs from five tested populations. Furthermore, significantly fewer bed bugs successfully fed to repletion through ActiveGuard fabric than through blank fabric for the five populations. With just 30 min of feeding exposure, mortality ranged from 4% to 83%, depending upon the bed bug strain. These laboratory studies indicate that ActiveGuard liners adversely affected bed bugs from diverse populations.

  17. Behavioral Responses of the Bed Bug to Permethrin-Impregnated ActiveGuard™ Fabric

    PubMed Central

    Jones, Susan C.; Bryant, Joshua L.; Harrison, Scott A.

    2013-01-01

    ActiveGuard™ Mattress Liners have been used to control house dust mites, and they also are commercially available as an integrated pest management tool for use against bed bugs (Cimex lectularius). The aim of our study was to evaluate responses of numerous populations of the bed bug to the permethrin-impregnated fabric, with particular regard to contact toxicity, repellency, and feeding inhibition. Continuous exposure to ActiveGuard fabric resulted in rapid intoxication for three of four populations, with 87 to 100% of moderately pyrethroid-resistant and susceptible bed bugs succumbing by 1 d. In comparison, a highly resistant population reached 22% mortality at 10 d. Video data revealed that bed bugs readily traversed ActiveGuard fabric and spent a considerable amount of time moving about and resting on it during a 12-h period. ActiveGuard fabric was non-repellent to bed bugs from five tested populations. Furthermore, significantly fewer bed bugs successfully fed to repletion through ActiveGuard fabric than through blank fabric for the five populations. With just 30 min of feeding exposure, mortality ranged from 4% to 83%, depending upon the bed bug strain. These laboratory studies indicate that ActiveGuard liners adversely affected bed bugs from diverse populations. PMID:26464388

  18. Fabric-based active electrode design and fabrication for health monitoring clothing.

    PubMed

    Merritt, Carey R; Nagle, H Troy; Grant, Edward

    2009-03-01

    In this paper, two versions of fabric-based active electrodes are presented to provide a wearable solution for ECG monitoring clothing. The first version of active electrode involved direct attachment of surface-mountable components to a textile screen-printed circuit using polymer thick film techniques. The second version involved attaching a much smaller, thinner, and less obtrusive interposer containing the active electrode circuitry to a simplified textile circuit. These designs explored techniques for electronic textile interconnection, chip attachment to textiles, and packaging of circuits on textiles for durability. The results from ECG tests indicate that the performance of each active electrode is comparable to commercial Ag/AgCl electrodes. The interposer-based active electrodes survived a five-cycle washing test while maintaining good signal integrity.

  19. Fabrication of Low-Density Foam Liners in Hohlraums for NIF Targets

    DOE PAGES

    Bhandarkar, Suhas; Baumann, Ted; Alfonso, Noel; ...

    2018-01-15

    Low-density foam liners are seen as a means to mitigate hohlraum wall motion that can interfere with the inner set of beams that are pointed toward the middle section of the hohlraum. These liners need to meet several requirements, most notably the material choice and the maximum allowable solid fraction and thickness, which necessitate development of new processing capabilities. In this paper, we discuss our strategy and work on fabrication of a tantalum oxide foam liner and its assembly into targets for the National Ignition Facility (NIF). Finally, in particular, we discuss our approach to finding solutions to the uniquemore » challenges that come up in working with such low-density materials so as to be able establish a viable platform for production of cryogenic targets for NIF with foam-lined hohlraums.« less

  20. Fabrication of Low-Density Foam Liners in Hohlraums for NIF Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandarkar, Suhas; Baumann, Ted; Alfonso, Noel

    Low-density foam liners are seen as a means to mitigate hohlraum wall motion that can interfere with the inner set of beams that are pointed toward the middle section of the hohlraum. These liners need to meet several requirements, most notably the material choice and the maximum allowable solid fraction and thickness, which necessitate development of new processing capabilities. In this paper, we discuss our strategy and work on fabrication of a tantalum oxide foam liner and its assembly into targets for the National Ignition Facility (NIF). Finally, in particular, we discuss our approach to finding solutions to the uniquemore » challenges that come up in working with such low-density materials so as to be able establish a viable platform for production of cryogenic targets for NIF with foam-lined hohlraums.« less

  1. Continuous and scalable polymer capsule processing for inertial fusion energy target shell fabrication using droplet microfluidics.

    PubMed

    Li, Jin; Lindley-Start, Jack; Porch, Adrian; Barrow, David

    2017-07-24

    High specification, polymer capsules, to produce inertial fusion energy targets, were continuously fabricated using surfactant-free, inertial centralisation, and ultrafast polymerisation, in a scalable flow reactor. Laser-driven, inertial confinement fusion depends upon the interaction of high-energy lasers and hydrogen isotopes, contained within small, spherical and concentric target shells, causing a nuclear fusion reaction at ~150 M°C. Potentially, targets will be consumed at ~1 M per day per reactor, demanding a 5000x unit cost reduction to ~$0.20, and is a critical, key challenge. Experimentally, double emulsions were used as templates for capsule-shells, and were formed at 20 Hz, on a fluidic chip. Droplets were centralised in a dynamic flow, and their shapes both evaluated, and mathematically modeled, before subsequent shell solidification. The shells were photo-cured individually, on-the-fly, with precisely-actuated, millisecond-length (70 ms), uniform-intensity UV pulses, delivered through eight, radially orchestrated light-pipes. The near 100% yield rate of uniform shells had a minimum 99.0% concentricity and sphericity, and the solidification processing period was significantly reduced, over conventional batch methods. The data suggest the new possibility of a continuous, on-the-fly, IFE target fabrication process, employing sequential processing operations within a continuous enclosed duct system, which may include cryogenic fuel-filling, and shell curing, to produce ready-to-use IFE targets.

  2. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.

    PubMed

    Li, Zheng; Huang, Tieqi; Gao, Weiwei; Xu, Zhen; Chang, Dan; Zhang, Chunxiao; Gao, Chao

    2017-11-28

    Carbon textiles are promising electrode materials for wearable energy storage devices owing to their conductive, flexible, and lightweight features. However, there still lacks a perfect choice for high-performance carbon textile electrodes with sufficient electrochemical activity. Graphene fiber fabrics (GFFs) are newly discovered carbon textiles, exhibiting various attractive properties, especially a large variability on the microstructure. Here we report the fabrication of hierarchical GFFs with significantly enlarged specific surface area using a hydrothermal activation strategy. By carefully optimize the activation process, the hydrothermally activated graphene fiber fabrics (HAGFFs) could achieve an areal capacitance of 1060 mF cm -2 in a very thin thickness (150 μm) and the capacitance is easily magnified by overlaying several layers of HAGFFs, even up to a record value of 7398 mF cm -2 . Meanwhile, a good rate capability and a long cycle life are also attained. As compared with other carbon textiles, including the commercial carbon fiber cloths, our HAGFFs present much better capacitive performance. Therefore, the mechanically stable, flexible, conductive, and highly active HAGFFs have provided an option for high-performance textile electrodes.

  3. Fabrication of 94Zr thin target for recoil distance doppler shift method of lifetime measurement

    NASA Astrophysics Data System (ADS)

    Gupta, C. K.; Rohilla, Aman; Abhilash, S. R.; Kabiraj, D.; Singh, R. P.; Mehta, D.; Chamoli, S. K.

    2014-11-01

    A thin isotopic 94Zr target of thickness 520 μg /cm2 has been prepared for recoil distance Doppler shift method (RDM) lifetime measurement by using an electron beam deposition method on tantalum backing of 3.5 mg/cm2 thickness at Inter University Accelerator Center (IUAC), New Delhi. To meet the special requirement of smoothness of surface for RDM lifetime measurement and also to protect the outer layer of 94Zr from peeling off, a very thin layer of gold has been evaporated on a 94Zr target on a specially designed substrate holder. In all, 143 mg of 99.6% enriched 94Zr target material was utilized for the fabrication of 94Zr targets. The target has been successfully used in a recent RDM lifetime measurement experiment at IUAC.

  4. Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn

    NASA Astrophysics Data System (ADS)

    Özkan, İ.; Duru Baykal, P.

    2017-10-01

    In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.

  5. Optimizing the Colour and Fabric of Targets for the Control of the Tsetse Fly Glossina fuscipes fuscipes

    PubMed Central

    Lindh, Jenny M.; Goswami, Parikshit; Blackburn, Richard S.; Arnold, Sarah E. J.; Vale, Glyn A.; Lehane, Mike J.; Torr, Steve J.

    2012-01-01

    Background Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour. Methodology/Principal Findings On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3× more tsetse than the high UV-reflecting blue. Conclusions/Significance Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region. PMID:22666511

  6. Brain discriminative cognition on the perception of touching different fabric using fingers actively.

    PubMed

    Wang, Q; Yu, W; Chen, K; Zhang, Z

    2016-02-01

    Using touching movement of fingers, human subjects can discriminate various tactile perception of fabric. As a continuation of the previous study, we aim to further investigate the discriminative mechanisms of the brain cognition to tactile stimulation of different fabric. We used functional magnetic resonance imaging to observe the brain responses when the subjects touched linen fabric, as well as revisited the data from the previous silk fabric. And all the subjects were asked to compare the perception of touching the two fabric. Combining the results of brain responses and perception comparison, we found that activation in the primary somatosensory cortex (SI) and the secondary somatosensory cortex (SII), especially parietal operculum 1 (OP1) in this region, could discriminate this two kinds of fabric distinctly. It is suggested that the functional regions involved in the macrogeometric properties of fabric (such as pliability) is in SI, and the perception of microgeometry of fabric surface (such as roughness and glutinousness) in SII, especially in the sub-region OP1 of the OP. Besides, activation in motor cortex can be a reference for the characterization of the brain cognition on the tactile stimulation of fabric. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests.

    PubMed

    Peters, Christian; Hoop, Marcus; Pané, Salvador; Nelson, Bradley J; Hierold, Christofer

    2016-01-20

    Superparamagnetic nanoparticles and a functional, degradable polymer matrix based on poly(ethylene glycol) are combined to enable fully degradable magnetic microdevices for minimally invasive biomedical applications. A bioinspired helical microrobot platform mimicking Escherichia coli bacteria is fabricated and actuated using weak rotating magnetic fields. Locomotion based on corkscrew propulsion, targeted drug delivery, and low-degradation-product cytotoxicity are demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) Project

    NASA Astrophysics Data System (ADS)

    Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.

    2009-09-01

    The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.

  9. Targets and processes for fabricating same

    DOEpatents

    Cowan, Thomas [Dresden, DE; Malekos, Steven [Reno, NV; Korgan, Grant [Reno, NV; Adams, Jesse [Reno, NV; Sentoku, Yasuhiko [Reno, NV; Le Galloudec, Nathalie [Reno, NV; Fuchs, Julien [Paris, FR

    2012-07-24

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  10. Targets and processes for fabricating same

    DOEpatents

    Adams, Jesse D; Malekos, Steven; Le Galloudec, Nathalie; Korgan, Grant; Cowan, Thomas; Sentoku, Yasuhiko

    2016-05-17

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  11. Targets and processes for fabricating same

    DOEpatents

    Cowna, Thomas; Malekos, Steven; Korgan, Grant; Adams, Jesse; Sentoku, Yasuhiko; LeGalloudec, Nathalie

    2014-06-10

    In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.

  12. Camera calibration: active versus passive targets

    NASA Astrophysics Data System (ADS)

    Schmalz, Christoph; Forster, Frank; Angelopoulou, Elli

    2011-11-01

    Traditionally, most camera calibrations rely on a planar target with well-known marks. However, the localization error of the marks in the image is a source of inaccuracy. We propose the use of high-resolution digital displays as active calibration targets to obtain more accurate calibration results for all types of cameras. The display shows a series of coded patterns to generate correspondences between world points and image points. This has several advantages. No special calibration hardware is necessary because suitable displays are practically ubiquitious. The method is fully automatic, and no identification of marks is necessary. For a coding scheme based on phase shifting, the localization accuracy is approximately independent of the camera's focus settings. Most importantly, higher accuracy can be achieved compared to passive targets, such as printed checkerboards. A rigorous evaluation is performed to substantiate this claim. Our active target method is compared to standard calibrations using a checkerboard target. We perform camera, calibrations with different combinations of displays, cameras, and lenses, as well as with simulated images and find markedly lower reprojection errors when using active targets. For example, in a stereo reconstruction task, the accuracy of a system calibrated with an active target is five times better.

  13. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biased Target Ion Beam Deposition and Nanoskiving for Fabricating NiTi Alloy Nanowires

    NASA Astrophysics Data System (ADS)

    Hou, Huilong; Horn, Mark W.; Hamilton, Reginald F.

    2016-12-01

    Nanoskiving is a novel nanofabrication technique to produce shape memory alloy nanowires. Our previous work was the first to successfully fabricate NiTi alloy nanowires using the top-down approach, which leverages thin film technology and ultramicrotomy for ultra-thin sectioning. For this work, we utilized biased target ion beam deposition technology to fabricate nanoscale (i.e., sub-micrometer) NiTi alloy thin films. In contrast to our previous work, rapid thermal annealing was employed for heat treatment, and the B2 austenite to R-phase martensitic transformation was confirmed using stress-temperature and diffraction measurements. The ultramicrotome was programmable and facilitated sectioning the films to produce nanowires with thickness-to-width ratios ranging from 4:1 to 16:1. Energy dispersive X-ray spectroscopy analysis confirmed the elemental Ni and Ti make-up of the wires. The findings exposed the nanowires exhibited a natural ribbon-like curvature, which depended on the thickness-to-width ratio. The results demonstrate nanoskiving is a potential nanofabrication technique for producing NiTi alloy nanowires that are continuous with an unprecedented length on the order of hundreds of micrometers.

  15. Formation of continuous activated carbon fibers for barrier fabrics

    NASA Astrophysics Data System (ADS)

    Liang, Ying

    1997-08-01

    Commercial protective suits made of active carbon granules or nonwoven fabrics are heavy, have low moisture vapor transport rate, and are uncomfortable. Inherent problems due to construction of barrier fabrics lead to severe heat stress when worn for even short time in warm environments. One proposed method to eliminate these problems is to facilitate the construction of a fabric made of continuous activated carbon fibers (CACF). This study is directed toward investigating the possibility of developing CAFC from two precursors: aramid and fibrillated PAN fiber. It was shown in this study that Kevlar-29 fibers could be quickly carbonized and activated to CACF with high adsorptivity and relatively low weight loss. CACF with high surface area (>500 msp2/g) and reasonable tenacity (≈1g/denier) were successfully prepared from Kevlar fibers through a three-step process: pretreatment, carbonization, and activation. X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), and thermal analysis were conducted to understand the evolution of physical and chemical properties during pretreatment. The influence of temperature, heating rate, and pyrolysis environment on the thermal behavior was determined by DSC and TGA/DTA and used as an indicator for optimizing the pyrolysis conditions. Surface analysis by nitrogen isotherms indicated that the resultant fibers had micropores and mesopores on the surface of CACF. This was also inferred by studies on the surface morphology through Scanning Electron Microscopy (SEM) and Scanning Tunneling Microscopy (STM). An investigation of the surface chemical structure by X-ray photoelectron spectroscopy (XPS) before and after activation and elemental analysis confirmed that adsorption of Kevlar based CACF mainly arises due to the physisorption instead of chemisorption. A multistep stabilization along with carbonization and activation was used to prepare active carbon fiber from fibrillated PAN fiber. The resultant fiber retained

  16. Amorphous silicon thin film transistor active-matrix organic light-emitting diode displays fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan A.

    Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.

  17. Striatal activity is modulated by target probability.

    PubMed

    Hon, Nicholas

    2017-06-14

    Target probability has well-known neural effects. In the brain, target probability is known to affect frontal activity, with lower probability targets producing more prefrontal activation than those that occur with higher probability. Although the effect of target probability on cortical activity is well specified, its effect on subcortical structures such as the striatum is less well understood. Here, I examined this issue and found that the striatum was highly responsive to target probability. This is consistent with its hypothesized role in the gating of salient information into higher-order task representations. The current data are interpreted in light of that fact that different components of the striatum are sensitive to different types of task-relevant information.

  18. Electrospinning Fabrication of SrTiO3 Nanofibers and Their Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zhao, Yiping; Wang, Wei; Liu, Hao; Wang, Rui

    2018-06-01

    SrTiO3 nanofibers were fabricated by an electrospinning process. The phase, microstructure and photocatalytic activity of the obtained SrTiO3 nanofibers were investigated. The XRD patterns and the SEM images suggest that SrTiO3 nanofibers with perovskite phase and rough surface have been fabricated in the current work. The SrTiO3 nanofibers show a high efficiency decomposition of RhB under ultraviolet light irradiation. The high photocatalytic activity of SrTiO3 nanofibers results from the large specific surface area. The large specific surface area provides more surface active sits and makes an easier charge carrier transport. On the basis of the photocatalytic performance of SrTiO3 nanofibers, the possible photocatalysis mechanism was proposed.

  19. Active Targets For Capacitive Proximity Sensors

    NASA Technical Reports Server (NTRS)

    Jenstrom, Del T.; Mcconnell, Robert L.

    1994-01-01

    Lightweight, low-power active targets devised for use with improved capacitive proximity sensors described in "Capacitive Proximity Sensor Has Longer Range" (GSC-13377), and "Capacitive Proximity Sensors With Additional Driven Shields" (GSC-13475). Active targets are short-distance electrostatic beacons; they generate known alternating electro-static fields used for alignment and/or to measure distances.

  20. 40 CFR 60.2680 - What if I do not use a wet scrubber, fabric filter, activated carbon injection, selective...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., fabric filter, activated carbon injection, selective noncatalytic reduction, an electrostatic... use a wet scrubber, fabric filter, activated carbon injection, selective noncatalytic reduction, an... reduction, fabric filter, an electrostatic precipitator, or a dry scrubber or limit emissions in some other...

  1. 40 CFR 60.2680 - What if I do not use a wet scrubber, fabric filter, activated carbon injection, selective...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., fabric filter, activated carbon injection, selective noncatalytic reduction, an electrostatic... use a wet scrubber, fabric filter, activated carbon injection, selective noncatalytic reduction, an... reduction, fabric filter, an electrostatic precipitator, or a dry scrubber or limit emissions in some other...

  2. Video Guidance Sensors Using Remotely Activated Targets

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    2004-01-01

    Four updated video guidance sensor (VGS) systems have been proposed. As described in a previous NASA Tech Briefs article, a VGS system is an optoelectronic system that provides guidance for automated docking of two vehicles. The VGS provides relative position and attitude (6-DOF) information between the VGS and its target. In the original intended application, the two vehicles would be spacecraft, but the basic principles of design and operation of the system are applicable to aircraft, robots, objects maneuvered by cranes, or other objects that may be required to be aligned and brought together automatically or under remote control. In the first two of the four VGS systems as now proposed, the tracked vehicle would include active targets that would light up on command from the tracking vehicle, and a video camera on the tracking vehicle would be synchronized with, and would acquire images of, the active targets. The video camera would also acquire background images during the periods between target illuminations. The images would be digitized and the background images would be subtracted from the illuminated-target images. Then the position and orientation of the tracked vehicle relative to the tracking vehicle would be computed from the known geometric relationships among the positions of the targets in the image, the positions of the targets relative to each other and to the rest of the tracked vehicle, and the position and orientation of the video camera relative to the rest of the tracking vehicle. The major difference between the first two proposed systems and prior active-target VGS systems lies in the techniques for synchronizing the flashing of the active targets with the digitization and processing of image data. In the prior active-target VGS systems, synchronization was effected, variously, by use of either a wire connection or the Global Positioning System (GPS). In three of the proposed VGS systems, the synchronizing signal would be generated on, and

  3. 40 CFR 60.2115 - What if I do not use a wet scrubber, fabric filter, activated carbon injection, selective...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., fabric filter, activated carbon injection, selective noncatalytic reduction, or an electrostatic... Limitations and Operating Limits § 60.2115 What if I do not use a wet scrubber, fabric filter, activated... carbon injection, selective noncatalytic reduction, fabric filter, or an electrostatic precipitator or...

  4. Fabrication of high-k dielectric Calcium Copper Titanate (CCTO) target by solid state route

    NASA Astrophysics Data System (ADS)

    Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.

    2016-02-01

    CaCu3Ti4O12 (CCTO) ceramic pellet of 10mm diameter has been synthesized by adopting solid state route. The structural and morphological characterization of the ceramics sample was carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. XRD pattern revealed the CCTO phase formation, where as SEM micrograph shows the sample consisting of well defined grain and grain boundaries. The room temperature dielectric constant of the sample was found to be ∼ 5000 at 1kHz. After successful preparation of CCTO pellet, a 2 inch diameter CCTO sputtering target is also fabricated in order to deposit CCTO thin films for microelectronic applications.

  5. Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance

    NASA Astrophysics Data System (ADS)

    Wang, Long; Loh, Kenneth J.

    2017-05-01

    A target application of wearable sensors is to detect human motion and to monitor physical activity for improving athletic performance and for delivering better physical therapy. In addition, measuring human vital signals (e.g., respiration rate and body temperature) provides rich information that can be used to assess a subject’s physiological or psychological condition. This study aims to design a multifunctional, wearable, fabric-based sensing system. First, carbon nanotube (CNT)-based thin films were fabricated by spraying. Second, the thin films were integrated with stretchable fabrics to form the fabric sensors. Third, the strain and temperature sensing properties of sensors fabricated using different CNT concentrations were characterized. Furthermore, the sensors were demonstrated to detect human finger bending motions, so as to validate their practical strain sensing performance. Finally, to monitor human respiration, the fabric sensors were integrated with a chest band, which was directly worn by a human subject. Quantification of respiration rates were successfully achieved. Overall, the fabric sensors were characterized by advantages such as flexibility, ease of fabrication, lightweight, low-cost, noninvasiveness, and user comfort.

  6. Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport

    PubMed Central

    Gao, Xuechuan; Hai, Xiao; Baigude, Huricha; Guan, Weihua; Liu, Zhiliang

    2016-01-01

    An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release. PMID:27876876

  7. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2002-12-03

    A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  8. Production Of High Specific Activity Copper-67

    DOEpatents

    Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.

    2003-10-28

    A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.

  9. 40 CFR 60.2115 - What if I do not use a wet scrubber, fabric filter, activated carbon injection, selective...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., fabric filter, activated carbon injection, selective noncatalytic reduction, an electrostatic... filter, activated carbon injection, selective noncatalytic reduction, an electrostatic precipitator, or a... than a wet scrubber, activated carbon injection, selective noncatalytic reduction, fabric filter, an...

  10. Injectable 3-D Fabrication of Medical Electronics at the Target Biological Tissues

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Zhang, Jie; Li, Xiaokang; Yang, Xueyao; Li, Jingjing; Liu, Jing

    2013-12-01

    Conventional transplantable biomedical devices generally request sophisticated surgery which however often causes big trauma and serious pain to the patients. Here, we show an alternative way of directly making three-dimensional (3-D) medical electronics inside the biological body through sequential injections of biocompatible packaging material and liquid metal ink. As the most typical electronics, a variety of medical electrodes with different embedded structures were demonstrated to be easily formed at the target tissues. Conceptual in vitro experiments provide strong evidences for the excellent performances of the injectable electrodes. Further in vivo animal experiments disclosed that the formed electrode could serve as both highly efficient ECG (Electrocardiograph) electrode and stimulator electrode. These findings clarified the unique features and practicability of the liquid metal based injectable 3-D fabrication of medical electronics. The present strategy opens the way for directly manufacturing electrophysiological sensors or therapeutic devices in situ via a truly minimally invasive approach.

  11. Fabrication of novel plasmonics-active substrates

    NASA Astrophysics Data System (ADS)

    Dhawan, Anuj; Gerhold, Michael; Du, Yan; Misra, Veena; Vo-Dinh, Tuan

    2009-02-01

    This paper describes methodologies for fabricating of highly efficient plasmonics-active SERS substrates - having metallic nanowire structures with pointed geometries and sub-5 nm gap between the metallic nanowires enabling concentration of high EM fields in these regions - on a wafer-scale by a reproducible process that is compatible with large-scale development of these substrates. Excitation of surface plasmons in these nanowire structures leads to substantial enhancement in the Raman scattering signal obtained from molecules lying in the vicinity of the nanostructure surface. The methodologies employed included metallic coating of silicon nanowires fabricated by employing deep UV lithography as well as controlled growth of silicon germanium on silicon nanostructures to form diamond-shaped nanowire structures followed by metallic coating. These SERS substrates were employed for detecting chemical and biological molecules of interest. In order to characterize the SERS substrates developed in this work, we obtained SERS signals from molecules such as p-mercaptobenzoic acid (pMBA) and cresyl fast violet (CFV) attached to or adsorbed on the metal-coated SERS substrates. It was observed that both gold-coated triangular shaped nanowire substrates as well as gold-coated diamond shaped nanowire substrates provided very high SERS signals for the nanowires having sub-15 nm gaps and that the SERS signal depends on the closest spacing between the metal-coated silicon and silicon germanium nanowires. SERS substrates developed by the different processes were also employed for detection of biological molecules such as DPA (Dipicolinic Acid), an excellent marker for spores of bacteria such as Anthrax.

  12. Dynamics, Control, and Fabrication of Micro Embedded Heaters and Sensors for Micro SMA Active Endoscopes

    NASA Astrophysics Data System (ADS)

    Aphanuphong, Sutha

    This research investigates design and control of an active catheter for minimally invasive medical procedures. Microfabrication techniques are developed and several prototypes were constructed. The understanding and analysis results from each design iteration are utilized to improve the overall design and the performance of each revision. An innovative co-fabrication method is explored to simplify the fabrication process and also improve the quality, repeatability, and reliability of the active catheter. This co-fabrication method enables a unique compact integrated heater and sensor film to be directly constructed on a shape memory alloy (SMA) sheet and to be utilized as an outline mask to pattern a micro SMA actuator. There are two functions integrated in the sensor film: heat sources to actuate the micro SMA actuator and sensors to provide temperature and strain of the active catheter to closed-loop control algorithms. Three main aspects are explored in this dissertation: thermal dynamics in the MicroFlex (muF) film and its effect on the sensor capabilities; non-minimum phase behavior and its effect on control performance, and film micro fabrication design and its effect on thermal dynamics. The sensor film developed from this understanding is able to deliver excellent heating and sensing performance with a simple design.

  13. Aptamers: Active Targeting Ligands for Cancer Diagnosis and Therapy

    PubMed Central

    Wu, Xu; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2015-01-01

    Aptamers, including DNA, RNA and peptide aptamers, are a group of promising recognition units that can specifically bind to target molecules and cells. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required. They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we summarized recent applications of DNA and RNA aptamers in cancer theranostics. The specific binding ability of aptamers to cancer-related markers and cancer cells ensured their high performance for early diagnosis of cancer. Meanwhile, the efficient targeting ability of aptamers to cancer cells and tissues provided a promising way to deliver imaging agents and drugs for cancer imaging and therapy. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for different types of cancers, which might be a powerful tool for cancer treatment. PMID:25699094

  14. Fabrication of lactobionic-loaded chitosan microcapsules as potential drug carriers targeting the liver.

    PubMed

    Zhang, Jing; Li, Cao; Xue, Zhi-Yuan; Cheng, Hai-Wei; Huang, Fu-Wei; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2011-04-01

    This paper demonstrates a general approach for fabrication of lactobionic chitosan microcapsules using layer-by-layer assembly via click chemistry. Chitosan was selectively modified with either azide (CHI-Az) or alkyne (CHI-Alk) groups. The growth of the CHI-Az/CHI-Alk click multilayer was studied experimentally by multilayer assembly on planar supports. Linear buildup of the film was observed. The chitosan click capsules were also analyzed with confocal laser scanning microscopy and transmission electron microscopy. Capsules were found to have regular spherical shapes. In addition, (CHI-Az/CHI-Alk)-coated particles were modified with fluorescein isothiocyanate to ensure that the particles can be easily post-functionalized. Finally, lactobionic acid was conjugated onto the (CHI-Az/CHI-Alk)-coated particles and the lactobionic particles exhibited hepatoma cell (HepG2) targeting behavior. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. National Ignition Facility Target Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The twomore » isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  16. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    PubMed

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and fabrication of porous activated carbon/nano ZnO composite electrode for supercapacitor

    NASA Astrophysics Data System (ADS)

    P, Shabeeba; Thayyil, Mohammed Shahin; Pillai, M. P.

    2017-05-01

    Supercapacitors, also called as ultracapacitors, are electrochemical energy-storage devices that exploit the electrostatic interaction between high-surface-area nanoporous electrodes and electrolyte ions that combine properties of conventional batteries and conventional capacitors. A symmetrical ZnO-Activated Carbon (ZAC) electrode supercapacitor have been fabricated in a simple and inexpensive manner. The electrochemical characteristics of fabricated supercapacitor was analyzed using Cyclic Voltammetry (CV), galvanostatic charge discharge technique, and impedance spectroscopy methods. Capacitance of fabricated ZAC electrode were showed capacitance in the range of 60-70 F/g respectively. It has been found that the cells have excellent electro chemical reversibility, capacitive characteristics in electrolyte and stable in cyclings, which is promising for energy storage applications.

  18. Indium oxide co-doped with tin and zinc: A simple route to highly conducting high density targets for TCO thin-film fabrication

    NASA Astrophysics Data System (ADS)

    Saadeddin, I.; Hilal, H. S.; Decourt, R.; Campet, G.; Pecquenard, B.

    2012-07-01

    Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (˜ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10-3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.

  19. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  20. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Du, Zoufei; Cheng, Cheng; Tan, Lin; Lan, Jianwu; Jiang, Shouxiang; Zhao, Ludan; Guo, Ronghui

    2018-03-01

    In this study, a visible-light-driven photocatalyst Bi2WO6/TiO2 composite was reported using one-step hydrothermal method and then coated on the polyester fabric. The samples were systematically characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy (PL). The photocatalytic activity of Bi2WO6/TiO2 coated polyester fabric was evaluated by degradation of Rhodamine B (RhB) and Methylene blue (MB) under visible light irradiation. The self-cleaning property of the fabrics was assessed through removing red wine stain. The results reveal that the Bi2WO6/TiO2 composites with irregular shape are coated on the polyester fabric successfully. The UV-vis absorption spectra show a broad absorption band in the visible region, which extends the scope of absorption spectrum and helps to improve the photocatalytic degradation efficiency. Photocatalytic activities of the Bi2WO6/TiO2 composite polyester fabric are associated with the content of TiO2. Bi2WO6/15%TiO2 coated polyester fabric exhibits the degradation efficiency for RhB and MB up to 98% and 95.1%, respectively, which is much higher than that of pure Bi2WO6 and TiO2 coated polyester fabric. Moreover, Bi2WO6/15%TiO2 coated polyester fabric shows good cycle stability toward continuous three cycles of photocatalytic experiment for dyes degradation. In addition, the Bi2WO6/TiO2 coated polyester fabric shows good self-cleaning property. This work could be extended to design of other composite photocatalyst coating on the fabric for enhancing activity by coupling suitable wide and narrow band-gap semiconductors.

  1. Laser targets compensate for limitations in inertial confinement fusion drivers

    NASA Astrophysics Data System (ADS)

    Kilkenny, J. D.; Alexander, N. B.; Nikroo, A.; Steinman, D. A.; Nobile, A.; Bernat, T.; Cook, R.; Letts, S.; Takagi, M.; Harding, D.

    2005-10-01

    Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.

  2. Brain-Targeted Delivery of Trans-Activating Transcriptor-Conjugated Magnetic PLGA/Lipid Nanoparticles

    PubMed Central

    Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian

    2014-01-01

    Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain. PMID:25187980

  3. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles.

    PubMed

    Wen, Xiangru; Wang, Kai; Zhao, Ziming; Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian

    2014-01-01

    Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.

  4. Nano-photo active cellulosic fabric through in situ phytosynthesis of star-like Ag/ZnO nanocomposites: Investigation and optimization of attributes associated with photocatalytic activity.

    PubMed

    Aladpoosh, Razieh; Montazer, Majid

    2016-05-05

    In this study, nano-photo active cellulosic fabric was prepared through in situ phytosynthesis of star-like Ag/ZnO nanocomposites using the ashes of Seidlitzia rosmarinus plants so-called Keliab. This is provided alkali media as a vital condition for synthesis of nanocomposites, further increasing the reduce-ability of cellulosic chains by activation of hydroxyl groups. The intermolecular dehydrolysis of intermediates ions under thermal and alkaline conditions leads to formation of Ag/ZnO heterostructure. Various analytical techniques were employed to confirm Ag/ZnO nanocomposites on the cotton fabric. The surface morphology, crystal phase and chemical structure of the treated fabrics were characterized by field emission and scanning electron microscopy (FE-SEM and SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX). Moreover, influence of precursors: silver nitrate, zinc acetate and Keliab solution on attributes associated with photocatalytic activities including self-cleaning, whiteness and wettability was investigated via central composite design (CCD). The treated cotton samples exhibited self-cleaning activities through methylene blue degradation under day-light exposure along with improved wettability and whiteness. The prepared sample in optimized conditions showed good antibacterial activities against Staphylococcus aureus and Escherichia coli with enhanced fabric tensile strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Osteogenic activity of porous calcium phosphate ceramics fabricated by rapid prototyping].

    PubMed

    He, Chenguang; Zhao, Li; Lin, Liulan; Gu, Huijie; Zhou, Heng; Cui, Lei

    2010-07-01

    Calcium phosphate bioceramics has a broad application prospect because of good biocompatibility, but porous scaffolds with complex shape can not be prepared by the traditional methods. To fabricate porous calcium phosphate ceramics by rapid prototyping and to investigate the in vitro osteogenic activities. The porous calcium phosphate ceramics was fabricated by rapid prototyping. The bone marrow mesenchymal stem cells (BMSCs) were isolated from bone marrow of Beagle canine, and the 3rd passage BMSCs were seeded onto the porous ceramics. The cell/ceramics composite cultured in osteogenic medium were taken as the experimental group (group A) and the cell/ceramics composite cultured in growth medium were taken as the control group (group B). Meanwhile, the cells seeded on the culture plate were cultured in osteogenic medium or growth medium respectively as positive control (group C) or negative control (group D). After 1, 3, and 7 days of culture, the cell proliferation and osteogenic differentiation on the porous ceramics were evaluated by DNA quantitative analysis, histochemical staining and alkaline phosphatase (ALP) activity. After DiO fluorescent dye, the cell adhesion, growth, and proliferation on the porous ceramics were also observed by confocal laser scanning microscope (CLSM). DNA quantitative analysis results showed that the number of BMSCs in all groups increased continuously with time. Plateau phase was not obvious in groups A and B, but it was clearly observed in groups C and D. The CLSM observation indicated that the activity of BMSCs was good and the cells spread extensively, showing good adhesion and proliferation on the porous calcium phosphate ceramics prepared by rapid prototyping. ALP quantitative analysis results showed that the stain of cells on the ceramics became deeper and deeper with time in groups A and B, the staining degree in group A were stronger than that in group B. There was no significant difference in the change of the ALP activity

  6. Fabrication of high specificity hollow mesoporous silica nanoparticles assisted by Eudragit for targeted drug delivery.

    PubMed

    She, Xiaodong; Chen, Lijue; Velleman, Leonora; Li, Chengpeng; Zhu, Haijin; He, Canzhong; Wang, Tao; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-05-01

    Hollow mesoporous silica nanoparticles (HMSNs) are one of the most promising carriers for effective drug delivery due to their large surface area, high volume for drug loading and excellent biocompatibility. However, the non-ionic surfactant templated HMSNs often have a broad size distribution and a defective mesoporous structure because of the difficulties involved in controlling the formation and organization of micelles for the growth of silica framework. In this paper, a novel "Eudragit assisted" strategy has been developed to fabricate HMSNs by utilising the Eudragit nanoparticles as cores and to assist in the self-assembly of micelle organisation. Highly dispersed mesoporous silica spheres with intact hollow interiors and through pores on the shell were fabricated. The HMSNs have a high surface area (670 m(2)/g), small diameter (120 nm) and uniform pore size (2.5 nm) that facilitated the effective encapsulation of 5-fluorouracil within HMSNs, achieving a high loading capacity of 194.5 mg(5-FU)/g(HMSNs). The HMSNs were non-cytotoxic to colorectal cancer cells SW480 and can be bioconjugated with Epidermal Growth Factor (EGF) for efficient and specific cell internalization. The high specificity and excellent targeting performance of EGF grafted HMSNs have demonstrated that they can become potential intracellular drug delivery vehicles for colorectal cancers via EGF-EGFR interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Activity of Nanobins Targeted to the Urokinase Plasminogen Activator System

    NASA Astrophysics Data System (ADS)

    Hankins, Patrick Leon

    While innovations in nanotechnology have resulted in numerous medical advancements for the treatment of cancer, there remains an urgent unmet need for safe and efficient molecular platforms that facilitate the delivery of potent therapeutics to solid tumors. Nanoscale formulations help to overcome the poor bioavailability and systemic organ toxicity associated with many small molecule drugs. Of these nanoparticle drug delivery systems, the greatest clinical successes to date have employed simple nanoscale lipid bilayer assemblies which encase large payloads of chemotherapeutic. While the nanobin platform we have developed has seen initial success through the passive accumulation into tumors, actively targeting nanobins to tumor specific antigens has the potential to increase the therapeutic index of these nanoparticle drugs. We have identified the urokinase plasminogen activator (uPA) and its cell surface bound receptor (uPAR) as ideal targets for drug delivery due to their selective overexpression in metastatic cancers and their important role in tumor progression. From a panel of monoclonal antibodies targeted to uPA and uPAR, we have selected ATN291 and ATN658 as lead candidates for nanobin targeting based on their tumor cell binding and ability to be internalized by cells. A novel method of conjugating antibodies to liposomes was developed for our nanobin platform that preserves the high binding affinity and specificity of these antibodies. We evaluated these uPA- and uPAR-targeted nanobins in several xenograft tumor models and found that they were well-tolerated over a wide range of doses and demonstrated significantly increased antitumor efficacy over untargeted nanobins in multiple tumor types. Preliminary studies suggest that uPA-targeted nanobins are readily internalized by tumor cells, and we believe this is the mechanism for their increased antitumor effect. A method for radiolabeling nanobins with gallium-67 was developed, and preliminary SPECT

  8. In-situ sonosynthesis of nano N-doped ZnO on wool producing fabric with photo and bio activities, cell viability and enhanced mechanical properties.

    PubMed

    Behzadnia, Amir; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2015-08-01

    Here, a simple processing route is introduced for preparation of N-doped nano structure ZnO at 75-80°C using in-situ sonosynthesis method through hydrolysis of zinc acetate at pH≈9-10 adjusting with ammonia. Synthesis and fabrication of nano N-doped ZnO were carried out on the wool fabric through impregnation of the fabric in ultrasound bath using different concentrations of zinc acetate followed by curing. The antibacterial and antifungal activities of the treated fabrics were assessed against two common pathogenic bacteria including Escherichia coli, Staphylococcus aureus and the diploid fungus namely Candida albicans. The photo-catalytic activity of nano N-doped ZnO particles on the wool fabric was determined by degradation of Methylene Blue under daylight irradiation. Increasing zinc acetate and prolonged sonication time led to higher photo-catalytic activity as more dye stain degraded from the stained treated fabric under daylight. Higher photo-catalytic activity was observed on the nano N-doped ZnO sonotreated wool fabric having more hydrophilicity. Finally, the treatment indicated no negative effect on the fabric safety while reduced alkaline solubility and yellowness even enhanced the fabric tensile strength. The response surface methodology was also utilized to optimize the wool fabric treatment conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Identification of gunshot residues in fabric targets using sector field inductively coupled plasma mass spectrometry technique and ternary graphs.

    PubMed

    Freitas, João Carlos D; Sarkis, Jorge E Souza; Negrini Neto, Osvaldo; Viebig, Sônia Bocamino

    2012-03-01

    During criminal investigations involving firearms, the detection of gunshot residues (GSRs) is one of the most important evidences. In the present study, a new method to identify trace evidences of GSRs, deposited around the bullet entrance hole, in different types of fabrics used as targets, is described. The experiments were carried out using a 0.38-inch caliber revolver, and 9-mm and 0.40-inch caliber pistols. Testimonies of 2.25 cm(2) of the fabrics were cut around the bullet entrance and digested with 10% nitric acid. Antimony, barium, and lead were analyzed in the remaining solution using a sector field inductively coupled plasma mass spectrometer. The concentrations of the elements were detected at levels up to few microgram per square centimeter. The use of ternary graphics allowed us to identify specific patterns of distribution for blank samples and the clear distinction between the revolver and pistols used. © 2011 American Academy of Forensic Sciences.

  10. Target Fishing for Chemical Compounds using Target-Ligand Activity data and Ranking based Methods

    PubMed Central

    Wale, Nikil; Karypis, George

    2009-01-01

    In recent years the development of computational techniques that identify all the likely targets for a given chemical compound, also termed as the problem of Target Fishing, has been an active area of research. Identification of likely targets of a chemical compound helps to understand problems such as toxicity, lack of efficacy in humans, and poor physical properties associated with that compound in the early stages of drug discovery. In this paper we present a set of techniques whose goal is to rank or prioritize targets in the context of a given chemical compound such that most targets that this compound may show activity against appear higher in the ranked list. These methods are based on our extensions to the SVM and Ranking Perceptron algorithms for this problem. Our extensive experimental study shows that the methods developed in this work outperform previous approaches by 2% to 60% under different evaluation criterions. PMID:19764745

  11. A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours.

    PubMed

    Li, Juan; Wang, Fengshan; Sun, Deqing; Wang, Rongmei

    2016-08-01

    It has been 30 years since the discovery of the anti-tumour property of paclitaxel (PTX), which has been successfully applied in clinic for the treatment of carcinomas of the lungs, breast and ovarian. However, PTX is poorly soluble in water and has no targeting and selectivity to tumour tissue. Recent advances in active tumour targeting of PTX delivery vehicles have addressed some of the issues related to lack of solubility in water and non-specific toxicities associated with PTX. These PTX delivery vehicles are designed for active targeting to specific cancer cells by the addition of ligands for recognition by specific receptors/antigens on cancer cells. This article will focus on various ligands and related targeting strategies serving as potential tools for active targeting of PTX to tumour tissues, illustrating their use in different tumour models. This review also highlights the need of further studies on the discovery of receptors in different cells of specific organ and ligands with binding efficiency to these specific receptors.

  12. Commissioning of the Active-Target Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bradt, J.; Bazin, D.; Abu-Nimeh, F.; Ahn, T.; Ayyad, Y.; Beceiro Novo, S.; Carpenter, L.; Cortesi, M.; Kuchera, M. P.; Lynch, W. G.; Mittig, W.; Rost, S.; Watwood, N.; Yurkon, J.

    2017-12-01

    The Active-Target Time Projection Chamber (AT-TPC) was recently built and commissioned at the National Superconducting Cyclotron Laboratory at Michigan State University. This gas-filled detector uses an active-target design where the gas acts as both the tracking medium and the reaction target. Operating inside a 2T solenoidal magnetic field, the AT-TPC records charged particle tracks that can be reconstructed to very good energy and angular resolutions. The near- 4 π solid angle coverage and thick target of the detector are well-suited to experiments with low secondary beam intensities. In this paper, the design and instrumentation of theAT-TPC are described along with the methods used to analyze the data it produces. A simulation of the detector's performance and some results from its commissioning with a radioactive 46Ar beam are also presented.

  13. Multimodality PET/MRI agents targeted to activated macrophages.

    PubMed

    Tu, Chuqiao; Ng, Thomas S C; Jacobs, Russell E; Louie, Angelique Y

    2014-02-01

    The recent emergence of multimodality imaging, particularly the combination of PET and MRI, has led to excitement over the prospect of improving detection of disease. Iron oxide nanoparticles have become a popular platform for the fabrication of PET/MRI probes owing to their advantages of high MRI detection sensitivity, biocompatibility, and biodegradability. In this article, we report the synthesis of dextran-coated iron oxide nanoparticles (DIO) labeled with the positron emitter (64)Cu to generate a PET/MRI probe, and modified with maleic anhydride to increase the negative surface charge. The modified nanoparticulate PET/MRI probe (MDIO-(64)Cu-DOTA) bears repetitive anionic charges on the surface that facilitate recognition by scavenger receptor type A (SR-A), a ligand receptor found on activated macrophages but not on normal vessel walls. MDIO-(64)Cu-DOTA has an average iron oxide core size of 7-8 nm, an average hydrodynamic diameter of 62.7 nm, an r1 relaxivity of 16.8 mM(-1) s(-1), and an r 2 relaxivity of 83.9 mM(-1) s(-1) (37 °C, 1.4 T). Cell studies confirmed that the probe was nontoxic and was specifically taken up by macrophages via SR-A. In comparison with the nonmodified analog, the accumulation of MDIO in macrophages was substantially improved. These characteristics demonstrate the promise of MDIO-(64)Cu-DOTA for identification of vulnerable atherosclerotic plaques via the targeting of macrophages.

  14. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs

    PubMed Central

    Shu, Yi; Haque, Farzin; Shu, Dan; Li, Wei; Zhu, Zhenqi; Kotb, Malak; Lyubchenko, Yuri; Guo, Peixuan

    2013-01-01

    Due to structural flexibility, RNase sensitivity, and serum instability, RNA nanoparticles with concrete shapes for in vivo application remain challenging to construct. Here we report the construction of 14 RNA nanoparticles with solid shapes for targeting cancers specifically. These RNA nanoparticles were resistant to RNase degradation, stable in serum for >36 h, and stable in vivo after systemic injection. By applying RNA nanotechnology and exemplifying with these 14 RNA nanoparticles, we have established the technology and developed “toolkits” utilizing a variety of principles to construct RNA architectures with diverse shapes and angles. The structure elements of phi29 motor pRNA were utilized for fabrication of dimers, twins, trimers, triplets, tetramers, quadruplets, pentamers, hexamers, heptamers, and other higher-order oligomers, as well as branched diverse architectures via hand-in-hand, foot-to-foot, and arm-on-arm interactions. These novel RNA nanostructures harbor resourceful functionalities for numerous applications in nanotechnology and medicine. It was found that all incorporated functional modules, such as siRNA, ribozymes, aptamers, and other functionalities, folded correctly and functioned independently within the nanoparticles. The incorporation of all functionalities was achieved prior, but not subsequent, to the assembly of the RNA nanoparticles, thus ensuring the production of homogeneous therapeutic nanoparticles. More importantly, upon systemic injection, these RNA nanoparticles targeted cancer exclusively in vivo without accumulation in normal organs and tissues. These findings open a new territory for cancer targeting and treatment. The versatility and diversity in structure and function derived from one biological RNA molecule implies immense potential concealed within the RNA nanotechnology field. PMID:23604636

  15. The simulation study on optical target laser active detection performance

    NASA Astrophysics Data System (ADS)

    Li, Ying-chun; Hou, Zhao-fei; Fan, Youchen

    2014-12-01

    According to the working principle of laser active detection system, the paper establishes the optical target laser active detection simulation system, carry out the simulation study on the detection process and detection performance of the system. For instance, the performance model such as the laser emitting, the laser propagation in the atmosphere, the reflection of optical target, the receiver detection system, the signal processing and recognition. We focus on the analysis and modeling the relationship between the laser emitting angle and defocus amount and "cat eye" effect echo laser in the reflection of optical target. Further, in the paper some performance index such as operating range, SNR and the probability of the system have been simulated. The parameters including laser emitting parameters, the reflection of the optical target and the laser propagation in the atmosphere which make a great influence on the performance of the optical target laser active detection system. Finally, using the object-oriented software design methods, the laser active detection system with the opening type, complete function and operating platform, realizes the process simulation that the detection system detect and recognize the optical target, complete the performance simulation of each subsystem, and generate the data report and the graph. It can make the laser active detection system performance models more intuitive because of the visible simulation process. The simulation data obtained from the system provide a reference to adjust the structure of the system parameters. And it provides theoretical and technical support for the top level design of the optical target laser active detection system and performance index optimization.

  16. Overview on the target fabrication facilities at ELI-NP and ongoing strategies

    NASA Astrophysics Data System (ADS)

    Gheorghiu, C. C.; Leca, V.; Popa, D.; Cernaianu, M. O.; Stutman, D.

    2016-10-01

    Along with the development of petawatt class laser systems, the interaction between high power lasers and matter flourished an extensive research, with high-interest applications like: laser nuclear physics, proton radiography or cancer therapy. The new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) petawatt laser facility, with 10PW and ~ 1023W/cm2 beam intensity, is one of the innovative projects that will provide novel research of fundamental processes during light-matter interaction. As part of the ELI-NP facility, Targets Laboratory will provide the means for in-house manufacturing and characterization of the required targets (mainly solid ones) for the experiments, in addition to the research activity carried out in order to develop novel target designs with improved performances. A description of the Targets Laboratory with the main pieces of equipment and their specifications are presented. Moreover, in view of the latest progress in the target design, one of the proposed strategies for the forthcoming experiments at ELI-NP is also described, namely: ultra-thin patterned foil of diamond-like carbon (DLC) coated with a carbon-based ultra-low density layer. The carbon foam which behaves as a near-critical density plasma, will allow the controlled-shaping of the laser pulse before the main interaction with the solid foil. Particular emphasis will be directed towards the target's design optimization, by simulation tests and tuning the key-properties (thickness/length, spacing, density foam, depth, periodicity etc.) which are expected to have a crucial effect on the laser-matter interaction process.

  17. An active target for the accelerator-based transmutation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebyonkin, K.F.

    1995-10-01

    Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket-the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the protonmore » beam and, hence considerably improve economic characteristics of the electronuclear reactor.« less

  18. Design and Fabrication of Multifunctional Sericin Nanoparticles for Tumor Targeting and pH-Responsive Subcellular Delivery of Cancer Chemotherapy Drugs.

    PubMed

    Huang, Lei; Tao, Kaixiong; Liu, Jia; Qi, Chao; Xu, Luming; Chang, Panpan; Gao, Jinbo; Shuai, Xiaoming; Wang, Guobin; Wang, Zheng; Wang, Lin

    2016-03-01

    The severe cytotoxicity of cancer chemotherapy drugs limits their clinical applications. Various protein-based nanoparticles with good biocompatibility have been developed for chemotherapy drug delivery in hope of reducing drugs' side effects. Sericin, a natural protein from silk, has no immunogenicity and possesses diverse bioactivities that have prompted sericin's application studies. However, the potential of sericin as a multifunctional nanoscale vehicle for cancer therapy have not been fully explored. Here we report the successful fabrication and characterization of folate-conjugated sericin nanoparticles with cancer-targeting capability for pH-responsive release of doxorubicin (these nanoparticles are termed "FA-SND"). DOX is covalently linked to sericin through pH-sensitive hydrazone bonds that render a pH-triggered release property. The hydrophobicity of DOX and the hydrophilicity of sericin promote the self-assembly of sericin-DOX (SND) nanoconjugates. Folate (FA) is then covalently grafted to SND nanoconjugates as a binding unit for actively targeting cancer cells that overexpress folate receptors. Our characterization study shows that FA-SND nanoparticles exhibit negative surface charges that would reduce nonspecific clearance by circulation. These nanoparticles possess good cytotoxicity and hemocompatibiliy. Acidic environment (pH 5.0) triggers effective DOX release from FA-SND, 5-fold higher than does a neutral condition (pH 7.4). Further, FA-SND nanoparticles specifically target folate-receptor-rich KB cells, and endocytosed into lysosomes, an acidic organelle. The acidic microenvironment of lysosomes promotes a rapid release of DOX to nuclei, producing cancer specific chemo-cytotoxicity. Thus, FA-mediated cancer targeting and lysosomal-acidity promoting DOX release, two sequentially-occurring cellular events triggered by the designed components of FA-SND, form the basis for FA-SND to achieve its localized and intracellular chemo

  19. Active Multimodal Sensor System for Target Recognition and Tracking

    PubMed Central

    Zhang, Guirong; Zou, Zhaofan; Liu, Ziyue; Mao, Jiansen

    2017-01-01

    High accuracy target recognition and tracking systems using a single sensor or a passive multisensor set are susceptible to external interferences and exhibit environmental dependencies. These difficulties stem mainly from limitations to the available imaging frequency bands, and a general lack of coherent diversity of the available target-related data. This paper proposes an active multimodal sensor system for target recognition and tracking, consisting of a visible, an infrared, and a hyperspectral sensor. The system makes full use of its multisensor information collection abilities; furthermore, it can actively control different sensors to collect additional data, according to the needs of the real-time target recognition and tracking processes. This level of integration between hardware collection control and data processing is experimentally shown to effectively improve the accuracy and robustness of the target recognition and tracking system. PMID:28657609

  20. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric

    NASA Astrophysics Data System (ADS)

    Vaideki, K.; Jayakumar, S.; Rajendran, R.; Thilagavathi, G.

    2008-02-01

    A thorough investigation on the antimicrobial activity of RF air plasma and azadirachtin (neem leaf extract) treated cotton fabric has been dealt with in this paper. The cotton fabric was given a RF air plasma treatment to improve its hydrophilicity. The process parameters such as electrode gap, time of exposure and RF power have been varied to study their effect in improving the hydrophilicity of the cotton fabric and they were optimized based on the static immersion test results. The neem leaf extract (azadirachtin) was applied on fabric samples to impart antimicrobial activity. The antimicrobial efficacy of the samples have been analysed and compared with the efficacy of the cotton fabric treated with the antimicrobial finish alone. The investigation reveals that the RF air plasma has modified the surface of the fabric, which in turn increased the antimicrobial activity of the fabric when treated with azadirachtin. The surface modification due to RF air plasma treatment has been analysed by comparing the FTIR spectra of the untreated and plasma treated samples. The molecular interaction between the fabric, azadirachtin and citric acid which was used as a cross linking agent to increase the durability of the antimicrobial finish has also been analysed using FTIR spectra.

  1. Cancer active targeting by nanoparticles: a comprehensive review of literature

    PubMed Central

    Bazak, Remon; Houri, Mohamad; Achy, Samar El; Kamel, Serag

    2016-01-01

    Purpose Cancer is one of the leading causes of death, and thus, the scientific community has but great efforts to improve cancer management. Among the major challenges in cancer management is development of agents that can be used for early diagnosis and effective therapy. Conventional cancer management frequently lacks accurate tools for detection of early tumors and has an associated risk of serious side effects of chemotherapeutics. The need to optimize therapeutic ratio as the difference with which a treatment affects cancer cells versus healthy tissues lead to idea that it is needful to have a treatment that could act a the “magic bullet”—recognize cancer cells only. Nanoparticle platforms offer a variety of potentially efficient solutions for development of targeted agents that can be exploited for cancer diagnosis and treatment. There are two ways by which targeting of nanoparticles can be achieved, namely passive and active targeting. Passive targeting allows for the efficient localization of nanoparticles within the tumor microenvironment. Active targeting facilitates the active uptake of nanoparticles by the tumor cells themselves. Methods Relevant English electronic databases and scientifically published original articles and reviews were systematically searched for the purpose of this review. Results In this report, we present a comprehensive review of literatures focusing on the active targeting of nanoparticles to cancer cells, including antibody and antibody fragment-based targeting, antigen-based targeting, aptamer-based targeting, as well as ligand-based targeting. Conclusion To date, the optimum targeting strategy has not yet been announced, each has its own advantages and disadvantages even though a number of them have found their way for clinical application. Perhaps, a combination of strategies can be employed to improve the precision of drug delivery, paving the way for a more effective personalized therapy. PMID:25005786

  2. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    PubMed

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-05

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles.

    PubMed

    Rezaie, Ali Bashiri; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2017-11-01

    In this paper, a facile environmentally friendly method is introduced for in-situ synthesis and fabrication of cauliflower-like CuO nanoparticles on the polyester fabric to produce photo and biocatalytic activities with UV protection properties on polyester fabric. The ash of burnt leaves and stems of Seidlitzia rosmarinus plant called Keliab was used as a natural and nontoxic alkaline source for simultaneous synthesis of CuO nanoparticles and surface modification of polyester without using any other compounds. The images of field-emission scanning electron microscopy, patterns of energy-dispersive spectroscopy, UV-visible spectrum and X-ray diffraction confirmed successful synthesis and loading of CuO nanoparticles on the polyester fabric. The treated fabrics showed very good antibacterial activities toward two pathogen bacteria including Staphylococcus aureus as a Gram-positive and Escherichia coli as a Gram-negative bacteria with no adverse effects on human dermal fibroblasts based on MTT test. The treated fabrics confirmed significant photocatalytic activity for degradation of methylene blue under sunlight, self-cleaning properties under UV light and also UV protection properties. Further a colorant effect along with an improvement in the wettability and mechanical properties of the treated fabrics were indicated. Overall, this method can be applied as a clean route for producing photo and bio active textiles protecting against UV irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In situ fabrication of cleavable peptide arrays on polydimethylsiloxane and applications for kinase activity assays.

    PubMed

    Chen, Huang-Han; Hsiao, Yu-Chieh; Li, Jie-Ren; Chen, Shu-Hui

    2015-03-20

    Polydimethylsiloxane (PDMS) is widely used for microfabrication and bioanalysis; however, its surface functionalization is limited due to the lack of active functional groups and incompatibility with many solvents. We presented a novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS) viatert-butyloxycarbonyl (t-Boc)/trifluoroacetic acid (TFA) chemistry using gold nanoparticles (AuNPs) as the anchor and a disulfide/amine terminated hetero-polyethylene glycol as the cleavable linker. The method was fine tuned to use reagents compatible with the PDMS. Using 5-mer pentapeptide, Trp5, as a model, step-by-step covalent coupling during the reaction cycles was monitored by Attenuated total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), or atomic force microscopy (AFM), and further confirmed by mass spectrometry (MS) detection of the cleaved peptides. Using such a method, heptapeptides of the PKA substrate, LRRASLG (Kemptide), and its point mutated analogs were fabricated in an array format for comparative studies of cAMP-dependent protein kinase (PKA) activity. Based on on-chip detection, Kemptide sequence exhibited the highest phosphorylation activity, which was detected to a 1.5-time lesser extent for the point mutated sequence (LRRGSLG) containing the recognition motif (RRXS), and was nearly undetectable for another point mutated sequence (LRLASLG) that lacked the recognition motif. These results indicate that the reported fabrication method is able to yield highly specific peptide sequences on PDMS, leading to a highly motif-sensitive enzyme activity assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Be Active or Not: the Relative Contribution of Active and Passive Tumor Targeting of Nanomaterials

    PubMed Central

    Li, Rui; Zheng, Ke; Yuan, Cai; Chen, Zhuo; Huang, Mingdong

    2017-01-01

    Malignant tumor (cancer) remains as one of the deadliest diseases throughout the world, despite its overall mortality drops. Nanomaterials (NMs) have been widely studied as diagnostic and/or therapeutic agents for tumors. A feature of NMs, compared to small molecules, is that NMs can be concentrated passively in tumors through enhanced permeability and retention (EPR) effect. In the meantime, NMs can be engineered to target toward tumor specific markers in an active manner, e.g., receptor-mediated targeting. The relative contribution of the EPR effect and the receptor-mediated targeting to NM accumulation in tumor tissues has not been clearly defined yet. Here, we tackle this fundamental issue by reviewing previous studies. First, we summarize the current knowledge on these two tumor targeting strategies of NMs, and on how NMs arrive to tumors from blood circulation. We then demonstrate that contribution of the active and passive effects to total accumulation of NMs in tumors varies with time. Over time, the receptor-mediated targeting contributes more than the EPR effect with a ratio of 3 in the case of urokinase-type plasminogen activator receptor (uPAR)-mediated targeting and human serum albumin (HSA)-mediated EPR effect. Therefore, this review highlights the dynamics of active and passive targeting of NMs on their accumulation at tumor sites, and is valuable for future design of NMs in cancer diagnosis and treatment. PMID:29071198

  6. Deuteron irradiation of W and WO 3 for production of high specific activity 186Re: Challenges associated with thick target preparation

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.; ...

    2016-06-28

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less

  7. Deuteron irradiation of W and WO3 for production of high specific activity (186)Re: Challenges associated with thick target preparation.

    PubMed

    Balkin, Ethan R; Gagnon, Katherine; Strong, Kevin T; Smith, Bennett E; Dorman, Eric F; Emery, Robert C; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S; Wilbur, D Scott

    2016-09-01

    This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Fabrication and Calibration of FORTIS

    NASA Technical Reports Server (NTRS)

    Fleming, Brian T.; McCandliss, Stephan R.; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Rapchun, David A.; Lyness, Eric; Moseley, S. H.; hide

    2011-01-01

    The Johns Hopkins University sounding rocket group is entering the final fabrication phase of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of-view. Using "on-the-fly" target acquisition and spectral multiplexing enabled by a GSFC microshutter array, FORTIS will be capable of observing the brightest regions in the far-UV of nearby low redshift (z approximately 0.002 - 0.02) star forming galaxies to search for Lyman alpha escape, and to measure the local gas-to-dust ratio. A large area (approximately 45 mm x 170 mm) microchannel plate detector built by Sensor Sciences provides an imaging channel for targeting flanked by two redundant spectral outrigger channels. The grating is ruled directly onto the secondary mirror to increase efficiency. In this paper, we discuss the recent progress made in the development and fabrication of FORTIS, as well as the results of early calibration and characterization of our hardware, including mirror/grating measurements, detector performance, and early operational tests of the micro shutter arrays.

  9. Fabrication and calibration of FORTIS

    NASA Astrophysics Data System (ADS)

    Fleming, Brian T.; McCandliss, Stephan R.; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Rapchun, David A.; Lyness, Eric; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2011-09-01

    The Johns Hopkins University sounding rocket group is entering the final fabrication phase of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of- view. Using "on-the-fly" target acquisition and spectral multiplexing enabled by a GSFC microshutter array, FORTIS will be capable of observing the brightest regions in the far-UV of nearby low redshift (z ~ 0.002 - 0.02) star forming galaxies to search for Lyman alpha escape, and to measure the local gas-to-dust ratio. A large area (~ 45 mm x 170 mm) microchannel plate detector built by Sensor Sciences provides an imaging channel for targeting flanked by two redundant spectral outrigger channels. The grating is ruled directly onto the secondary mirror to increase efficiency. In this paper, we discuss the recent progress made in the development and fabrication of FORTIS, as well as the results of early calibration and characterization of our hardware, including mirror/grating measurements, detector performance, and early operational tests of the microshutter arrays.

  10. Fabrication and bioconjugation of BIII and CrIII co-doped ZnGa2O4 persistent luminescent nanoparticles for dual-targeted cancer bioimaging.

    PubMed

    Zhao, Huai-Xin; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-12-07

    Persistent luminescent nanoparticles (PLNPs) show great potential in realizing precision imaging due to the absence of in situ excitation and no background interference. However, the current PLNP-based tumour imaging is usually achieved by single targeting or passive targeting strategies, and thus it lacks high specificity and affinity for efficient persistent luminescence imaging in vivo. Herein we report the bioconjugation of multiple targeting ligands on the surface of PLNPs for dual-targeted bioimaging to improve the specificity and affinity of the PLNP nanoprobe for in vitro and in vivo bioimaging. The PLNPs were prepared by co-doping Cr III and B III into ZnGa 2 O 4 via a hydrothermal-calcination method. While Cr III doped ZnGa 2 O 4 PLNPs possess excellent near-infrared luminescence along with long afterglow and red light renewable near-infrared luminescence, doping of B III into the PLNPs further improves the persistent luminescence. Conjugation of two targeting ligands, hyaluronic acid and folic acid, which have specificity toward the cluster determinant 44 receptor and folic acid receptor in tumour cells, respectively, provides synergistic targeting effects to enhance the specificity and affinity toward tumour cells. This work provides a dual-targeting strategy for fabricating PLNP-based nanoprobes to realize precision tumour-targeted bioimaging.

  11. A targeted IL-15 fusion protein with potent anti-tumor activity

    PubMed Central

    Chen, Siqi; Huang, Qiang; Liu, Jiayu; Xing, Jieyu; Zhang, Ning; Liu, Yawei; Wang, Zhong; Li, Qing

    2015-01-01

    IL-15 has been actively investigated for its potential in tumor immunotherapy. To enhance the anti-tumor activity of IL-15, the novel PFC-1 construct was designed, which comprises the following 3 parts: (1) IL-15Rα fused with IL-15 to enhance IL-15 activity, (2) an Fc fragment to increase protein half-life, and (3) an integrin-targeting RGD peptide to enhance tumor targeting. PFC-1 showed tumor cell targeting without compromising IL-15 activity. PFC-1 also had potent anti-tumor activities in xenograft models, suggesting the potential application of this multi-functional fusion protein in tumor therapy. PMID:26176990

  12. Graphene oxide nanostructures modified multifunctional cotton fabrics

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Karthikeyan; Navaneethaiyer, Umasuthan; Mohan, Rajneesh; Lee, Jehee; Kim, Sang-Jae

    2012-06-01

    Surface modification of cotton fabrics using graphene oxide (GO) nanostructures was reported. Scanning electron microscopic (SEM) investigations revealed that the GO nanostructure was coated onto the cotton fabric. The molecular level interaction between the graphene oxide and the cotton fabric is studied in detail using the Fourier transform infra-red (FTIR) spectra. Thermogravimetric analysis (TGA) showed that GO loaded cotton fabrics have enhanced thermal stability compared to the bare cotton fabrics. The photocatalytic activity of the GO-coated cotton fabrics was investigated by measuring the photoreduction of resazurin (RZ) into resorufin (RF) under UV light irradiation. The antibacterial activity was evaluated against both Gram-negative and Gram-positive bacteria and the results indicated that the GO-coated cotton fabrics are more toxic towards the Gram-positive ones. Our results provide a way to develop graphene oxide-based devices for the biomedical applications for improving health care.

  13. Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN.

    PubMed

    Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun

    2015-01-01

    We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.

  14. Targeted drug delivery nanosystems based on copolymer poly(lactide)-tocopheryl polyethylene glycol succinate for cancer treatment

    NASA Astrophysics Data System (ADS)

    Thu Ha, Phuong; Nguyen, Hoai Nam; Doan Do, Hai; Thong Phan, Quoc; Nguyet Tran Thi, Minh; Phuc Nguyen, Xuan; Nhung Hoang Thi, My; Huong Le, Mai; Nguyen, Linh Toan; Quang Bui, Thuc; Hieu Phan, Van

    2016-03-01

    Along with the development of nanotechnology, drug delivery nanosystems (DDNSs) have attracted a great deal of concern among scientists over the world, especially in cancer treatment. DDNSs not only improve water solubility of anticancer drugs but also increase therapeutic efficacy and minimize the side effects of treatment methods through targeting mechanisms including passive and active targeting. Passive targeting is based on the nano-size of drug delivery systems while active targeting is based on the specific bindings between targeting ligands attached on the drug delivery systems and the unique receptors on the cancer cell surface. In this article we present some of our results in the synthesis and testing of DDNSs prepared from copolymer poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS), which carry anticancer drugs including curcumin, paclitaxel and doxorubicin. In order to increase the targeting effect to cancer cells, active targeting ligand folate was attached to the DDNSs. The results showed copolymer PLA-TPGS to be an excellent carrier for loading hydrophobic drugs (curcumin and paclitaxel). The fabricated DDNSs had a very small size (50-100 nm) and enhanced the cellular uptake and cytotoxicity of drugs. Most notably, folate-decorated paclitaxel-loaded copolymer PLA-TPGS nanoparticles (Fol/PTX/PLA-TPGS NPs) were tested on tumor-bearing nude mice. During the treatment time, Fol/PTX/PLA-TPGS NPs always exhibited the best tumor growth inhibition compared to free paclitaxel and paclitaxel-loaded copolymer PLA-TPGS nanoparticles. All results evidenced the promising potential of copolymer PLA-TPGS in fabricating targeted DDNSs for cancer treatment.

  15. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy.

    PubMed

    Chiu, Sheng-Hui; Gedda, Gangaraju; Girma, Wubshet Mekonnen; Chen, Jem-Kun; Ling, Yong-Chien; Ghule, Anil V; Ou, Keng-Liang; Chang, Jia-Yaw

    2016-12-01

    Herein, we synthesized an S, N, and Gd tri-element doped magnetofluorescent carbon quantum dots (GdNS@CQDs) within 10min by using a one-pot microwave method. Our results showed that these magnetofluorescent GdNS@CQDs have excellent fluorescent and magnetic properties. Moreover, GdNS@CQDs exhibited high stability at physiological conditions and ionic strength. These magnetofluorescent GdNS@CQDs were conjugated with a folic acid, denoted as FA-GdNS@CQDs, for targeting dual modal fluorescence/magnetic resonance (MR) imaging. The in vitro and in vivo studies confirmed the high biocompatibility and low toxicity of FA-GdNS@CQDs. FA-GdNS@CQDs enhanced the MR response as compared to that for commercial Gd-DTPA. The targeting capabilities of FA-GdNS@CQDs were confirmed in HeLa and HepG2 cells using in vitro fluorescence and MR dual modality imaging. Additionally, an anticancer drug, doxorubicin, was incorporated into the FA-GdNS@CQDs forming FA-GdNS@CQDs-DOX, which enables targeted drug delivery. Importantly, the prepared FA-GdNS@CQDs-DOX showed a high quantity of doxorubicin loading capacity (about 80%) and pH-sensitive drug release. The uptake into cancer cells and the intracellular location of the FA-GdNS@CQDs were observed by confocal laser scanning microscopy. We also successfully demonstrated in vivo fluorescence bio imaging of the FA-GdNS@CQDs, using zebrafish as an animal model. In this manuscript, we reported a facial, rapid, and environmental friendly method to fabricate hetero atoms including gadolinium, nitrogen, and sulfur doped multi-functional magnetofluorescent carbon quantum dots (GdNS@CQDs) nanocomposite. These multifunctional GdNS@CQDs were conjugated with a folic acid for targeting dual modal fluorescence/magnetic resonance imaging. Additionally, an anticancer drug, doxorubicin, was incorporated into the nanocomposite forming FA-GdNS@CQDs-DOX, which enables targeted drug delivery. We have developed GdNS@CQDs with integrated functions for simultaneous in

  16. Gold nanoparticles mediated coloring of fabrics and leather for antibacterial activity.

    PubMed

    Velmurugan, Palanivel; Shim, Jaehong; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-07-01

    Metal gold nanoparticles (AuNPs) were synthesized in situ onto leather, silk and cotton fabrics by three different modules, including green, chemical, and a composite of green and chemical synthesis. Green synthesis was employed using Ginkgo biloba Linn leaf powder extract and HAuCl4 with the fabrics, and chemical synthesis was done with KBH4 and HAuCl4. For composite synthesis, G. biloba extract and KBH4 were used to color and embed AuNPs in the fabrics. The colored fabrics were tested for color coordination and fastness properties. To validate the green synthesis of AuNPs, various instrumental techniques were used including UV-Vis spectrophotometry, HR-TEM, FTIR, and XRD. The chemical and composite methods reduce Au(+) onto leather, silk and cotton fabrics upon heating, and alkaline conditions are required for bonding to fibers; these conditions are not used in the green synthesis protocol. FE-SEM image revealed the binding nature of the AuNPs to the fabrics. The AuNPs that were synthesized in situ on the fabrics were tested against a skin pathogen, Brevibacterium linens using LIVE/DEAD BacLight Bacterial Viability testing. This study represents an initial route for coloring and bio-functionalization of various fabrics with green technologies, and, accordingly, should open new avenues for innovation in the textile and garment sectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Artificial Chemical Reporter Targeting Strategy Using Bioorthogonal Click Reaction for Improving Active-Targeting Efficiency of Tumor.

    PubMed

    Yoon, Hong Yeol; Shin, Min Lee; Shim, Man Kyu; Lee, Sangmin; Na, Jin Hee; Koo, Heebeom; Lee, Hyukjin; Kim, Jong-Ho; Lee, Kuen Yong; Kim, Kwangmeyung; Kwon, Ick Chan

    2017-05-01

    Biological ligands such as aptamer, antibody, glucose, and peptide have been widely used to bind specific surface molecules or receptors in tumor cells or subcellular structures to improve tumor-targeting efficiency of nanoparticles. However, this active-targeting strategy has limitations for tumor targeting due to inter- and intraheterogeneity of tumors. In this study, we demonstrated an alternative active-targeting strategy using metabolic engineering and bioorthogonal click reaction to improve tumor-targeting efficiency of nanoparticles. We observed that azide-containing chemical reporters were successfully generated onto surface glycans of various tumor cells such as lung cancer (A549), brain cancer (U87), and breast cancer (BT-474, MDA-MB231, MCF-7) via metabolic engineering in vitro. In addition, we compared tumor targeting of artificial azide reporter with bicyclononyne (BCN)-conjugated glycol chitosan nanoparticles (BCN-CNPs) and integrin α v β 3 with cyclic RGD-conjugated CNPs (cRGD-CNPs) in vitro and in vivo. Fluorescence intensity of azide-reporter-targeted BCN-CNPs in tumor tissues was 1.6-fold higher and with a more uniform distribution compared to that of cRGD-CNPs. Moreover, even in the isolated heterogeneous U87 cells, BCN-CNPs could bind artificial azide reporters on tumor cells more uniformly (∼92.9%) compared to cRGD-CNPs. Therefore, the artificial azide-reporter-targeting strategy can be utilized for targeting heterogeneous tumor cells via bioorthogonal click reaction and may provide an alternative method of tumor targeting for further investigation in cancer therapy.

  18. Target and Tissue Selectivity Prediction by Integrated Mechanistic Pharmacokinetic-Target Binding and Quantitative Structure Activity Modeling.

    PubMed

    Vlot, Anna H C; de Witte, Wilhelmus E A; Danhof, Meindert; van der Graaf, Piet H; van Westen, Gerard J P; de Lange, Elizabeth C M

    2017-12-04

    Selectivity is an important attribute of effective and safe drugs, and prediction of in vivo target and tissue selectivity would likely improve drug development success rates. However, a lack of understanding of the underlying (pharmacological) mechanisms and availability of directly applicable predictive methods complicates the prediction of selectivity. We explore the value of combining physiologically based pharmacokinetic (PBPK) modeling with quantitative structure-activity relationship (QSAR) modeling to predict the influence of the target dissociation constant (K D ) and the target dissociation rate constant on target and tissue selectivity. The K D values of CB1 ligands in the ChEMBL database are predicted by QSAR random forest (RF) modeling for the CB1 receptor and known off-targets (TRPV1, mGlu5, 5-HT1a). Of these CB1 ligands, rimonabant, CP-55940, and Δ 8 -tetrahydrocanabinol, one of the active ingredients of cannabis, were selected for simulations of target occupancy for CB1, TRPV1, mGlu5, and 5-HT1a in three brain regions, to illustrate the principles of the combined PBPK-QSAR modeling. Our combined PBPK and target binding modeling demonstrated that the optimal values of the K D and k off for target and tissue selectivity were dependent on target concentration and tissue distribution kinetics. Interestingly, if the target concentration is high and the perfusion of the target site is low, the optimal K D value is often not the lowest K D value, suggesting that optimization towards high drug-target affinity can decrease the benefit-risk ratio. The presented integrative structure-pharmacokinetic-pharmacodynamic modeling provides an improved understanding of tissue and target selectivity.

  19. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth.

    PubMed

    Mohan, Dinesh; Singh, Kunwar P; Singh, Vinod K

    2006-07-31

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 degrees C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 degrees C: ATFAC--10.97 mg/g, ACF--36.05 mg/g; 40 degrees C: ATFAC--16.10 mg/g, ACF--40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater.

  20. Transferrin-Conjugated Nanocarriers as Active-Targeted Drug Delivery Platforms for Cancer Therapy.

    PubMed

    Nogueira-Librelotto, Daniele R; Codevilla, Cristiane F; Farooqi, Ammad; Rolim, Clarice M B

    2017-01-01

    A lot of effort has been devoted to achieving active targeting for cancer therapy in order to reach the right cells. Hence, increasingly it is being realized that active-targeted nanocarriers notably reduce off-target effects, mainly because of targeted localization in tumors and active cellular uptake. In this context, by taking advantage of the overexpression of transferrin receptors on the surface of tumor cells, transferrin-conjugated nanodevices have been designed, in hope that the biomarker grafting would help to maximize the therapeutic benefit and to minimize the side effects. Notably, active targeting nanoparticles have shown improved therapeutic performances in different tumor models as compared to their passive targeting counterparts. In this review, current development of nano-based devices conjugated with transferrin for active tumor-targeting drug delivery are highlighted and discussed. The main objective of this review is to provide a summary of the vast types of nanomaterials that have been used to deliver different chemotherapeutics into tumor cells, and to ultimately evaluate the progression on the strategies for cancer therapy in view of the future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Swift fabrication of Ag nanostructures using a colloidal solution of Holostemma ada-kodien (Apocynaceae) - Antibiofilm potential, insecticidal activity against mosquitoes and non-target impact on water bugs.

    PubMed

    Alyahya, Sami A; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Mothana, Ramzi A; Al-Anbr, Mohammed N; Vaseeharan, Baskaralingam; Ishwarya, Ramachandran; Yazhiniprabha, Mariappan; Benelli, Giovanni

    2018-04-01

    Recent research in entomology and parasitology focused on the efficacy of green fabricated nanomaterials as novel insecticides. In this study, we synthesized poly-dispersed and stable silver nanoparticles (AgNPs) using the leaf extract of Holostemma ada-kodien. The nanostructures were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, and X-ray diffraction analysis. The efficacy of H. ada-kodien leaf extract and AgNPs in vector control was evaluated against the mosquitoes Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus, which act as major vectors of important parasitic and arboviral diseases. AgNPs showed higher toxicity if compared to the H. ada-kodien leaf aqueous extract, LC 50 towards larvae of A. stephensi, A. aegypti, and C. quinquefasciatus were 12.18, 13.30, and 14.70 μg/mL, respectively. When the AgNPs were tested on non-target water bugs, Diplonychus indicus, the LC 50 value was 623.48 μg/mL. Furthermore, 100 μl/mL of AgNPs achieved significant antimicrobial activity against Bacillus pumilus, Enterococcus faecalis, Pseudomonas aeruginosa, Proteus vulgaris, and Candida albicans. Light and confocal laser scanning microscopy highlighted a major impact of the H. ada-kodien-synthesized AgNPs on the external topography and architecture of microbial biofilms, both on Gram-positive and Gram-negative bacteria. Overall, this study sheds light on the insecticidal and antibiofilm potential of H. ada-kodien-synthesized AgNPs, a potential green resource for the rapid synthesis of polydispersed and highly stable AgNPs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Designing an Active Target Test Projection Chamber

    NASA Astrophysics Data System (ADS)

    Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration

    2015-10-01

    The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.

  3. Overview of Target Fabrication in Support of Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Schroen, Diana; Breden, Eric; Florio, Joseph; Grine-Jones, Suzi; Holt, Randy; Krych, Wojtek; Metzler, James; Russell, Chris; Stolp, Justin; Streit, Jonathan; Youngblood, Kelly

    2004-11-01

    Sandia National Laboratories has succeeded in making its pulsed power driver, the Z machine, a valuable testbed for a great variety of experiments. These experiments include ICF, weapon physics, Equation of State and astrophysics. There are four main target types: Dynamic Hohlraum, Double Pinch, Fast Igniter and EOS. The target sizes are comparable to projected NIF sizes. For example, capsules up to 5 mm have been fielded. This talk will focus on the assembly challenges and the use of foams to create these targets. For many targets, diagnostics and capsules are embedded in the foams, and foam dopants have been added. It is the 14 mg/cc foam target with an embedded capsule (containing deuterium) that has reproducibly produced thermonuclear neutrons. For all target types, the characterization and documentation has had to develop to ensure understanding of target performance. To achieve the required resolution we are using a Nikon automated microscope and a custom OMEGA/NIF target assembly system. Our drive for quality has lead us develop a management system that been registered to ISO 9001.

  4. Identifying transcription factor functions and targets by phenotypic activation

    PubMed Central

    Chua, Gordon; Morris, Quaid D.; Sopko, Richelle; Robinson, Mark D.; Ryan, Owen; Chan, Esther T.; Frey, Brendan J.; Andrews, Brenda J.; Boone, Charles; Hughes, Timothy R.

    2006-01-01

    Mapping transcriptional regulatory networks is difficult because many transcription factors (TFs) are activated only under specific conditions. We describe a generic strategy for identifying genes and pathways induced by individual TFs that does not require knowledge of their normal activation cues. Microarray analysis of 55 yeast TFs that caused a growth phenotype when overexpressed showed that the majority caused increased transcript levels of genes in specific physiological categories, suggesting a mechanism for growth inhibition. Induced genes typically included established targets and genes with consensus promoter motifs, if known, indicating that these data are useful for identifying potential new target genes and binding sites. We identified the sequence 5′-TCACGCAA as a binding sequence for Hms1p, a TF that positively regulates pseudohyphal growth and previously had no known motif. The general strategy outlined here presents a straightforward approach to discovery of TF activities and mapping targets that could be adapted to any organism with transgenic technology. PMID:16880382

  5. Target-similarity search using Plasmodium falciparum proteome identifies approved drugs with anti-malarial activity and their possible targets

    PubMed Central

    Akala, Hoseah M.; Macharia, Rosaline W.; Juma, Dennis W.; Cheruiyot, Agnes C.; Andagalu, Ben; Brown, Mathew L.; El-Shemy, Hany A.; Nyanjom, Steven G.

    2017-01-01

    Malaria causes about half a million deaths annually, with Plasmodium falciparum being responsible for 90% of all the cases. Recent reports on artemisinin resistance in Southeast Asia warrant urgent discovery of novel drugs for the treatment of malaria. However, most bioactive compounds fail to progress to treatments due to safety concerns. Drug repositioning offers an alternative strategy where drugs that have already been approved as safe for other diseases could be used to treat malaria. This study screened approved drugs for antimalarial activity using an in silico chemogenomics approach prior to in vitro verification. All the P. falciparum proteins sequences available in NCBI RefSeq were mined and used to perform a similarity search against DrugBank, TTD and STITCH databases to identify similar putative drug targets. Druggability indices of the potential P. falciparum drug targets were obtained from TDR targets database. Functional amino acid residues of the drug targets were determined using ConSurf server which was used to fine tune the similarity search. This study predicted 133 approved drugs that could target 34 P. falciparum proteins. A literature search done at PubMed and Google Scholar showed 105 out of the 133 drugs to have been previously tested against malaria, with most showing activity. For further validation, drug susceptibility assays using SYBR Green I method were done on a representative group of 10 predicted drugs, eight of which did show activity against P. falciparum 3D7 clone. Seven had IC50 values ranging from 1 μM to 50 μM. This study also suggests drug-target association and hence possible mechanisms of action of drugs that did show antiplasmodial activity. The study results validate the use of proteome-wide target similarity approach in identifying approved drugs with activity against P. falciparum and could be adapted for other pathogens. PMID:29088219

  6. Peroxisome Proliferator-Activated Receptor Subtype- and Cell-Type-Specific Activation of Genomic Target Genes upon Adenoviral Transgene Delivery

    PubMed Central

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G.; Mandrup, Susanne

    2006-01-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARγ2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARγ2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (α, γ, and β/δ), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci. PMID:16847324

  7. Comparative study of electroless Co-Ni-P plating on Tencel fabric by Co0-based and Ni0-based activation for electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Bi, Siyi; Zhao, Hang; Hou, Lei; Lu, Yinxiang

    2017-10-01

    The primary objective of this research work was to develop high-performance conductive fabrics with desired electromagnetic interference (EMI) shielding effectiveness (SE), excellent durability and improved corrosion resistance. Such conductive fabrics were fabricated by combining an ultra-low-cost electroless plating method with an alkoxy silane self-assembly technology, which involved successive steps of modification, activation, Co-Ni-P coating deposition and 3-aminopropyltrimethoxysilane (APTMS) thin coatings assembling. Malic acid (MA) was selected to modify the pristine Tencel (TS) substrates, and the probably interaction mechanism was investigated by FT-IR measurement. Co0 and Ni0 nanoparticles (NPs) were used as the activators to initiate electroless plating, respectively, and thereby two categories of Co-Ni-P coatings with different Co/Ni atomic ratio were obtained. Both of them presented compact morphologies and preferential (1 1 1) crystal orientation, which were validated by FE-SEM and XRD measurements. Owing to the lower square resistance and higher magnetic properties, the Co-Ni-P coated fabric activated by Co0 activator showed a higher EMI SE (18.2-40.1 dB) at frequency of 30-1000 MHz. APTMS thin coatings were then assembled on the top of alloy coated fabrics to act as anti-corrosion barriers. Electrochemical polarization measurement in 3.5 wt.% NaCl solution showed that top-APTMS coated conductive fabric exhibited a higher corrosion resistance than the one in absence of APTMS assembly. Overall, the whole process of fabrication could be performed in several hours (or less) without any specialized equipment, which shows a great potential as EMI shielding fabrics in mass-production.

  8. Removal of target odorous molecules on to activated carbon cloths.

    PubMed

    Le Leuch, L M; Subrenat, A; Le Cloirec, P

    2004-01-01

    Activated carbon materials are adsorbents whose physico-chemical properties are interesting for the treatment of odorous compounds like hydrogen sulfide. Indeed, their structural parameters (pore structure) and surface chemistry (presence of heteroatoms such as oxygen, hydrogen, nitrogen, sulfur, phosphorus) play an important role in H2S removal. The cloth texture of these adsorbents (activated carbon cloths) is particularly adapted for dealing with high flows, often found in the treatment of odor emissions. Thus, this paper first presents the influence of these parameters through adsorption isothermal curves performed on several materials. Secondly, tests in a dynamic system are described. They highlight the low critical thickness of the fabric compared to granular activated carbon.

  9. Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon

    2008-08-01

    In this study, an ionic networking membrane (INM) of poly(styrene-alt-maleimide) (PSMI)-incorporated poly(vinylidene fluoride) (PVDF) was applied to fabricate electro-active polymer. Based on the same original membrane of PSMI-incorporated PVDF, various samples of INM actuator were prepared for different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performances were compared to those of the widely used traditional Nafion actuator. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic responses were observed for the newly developed INM actuators, they were found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after the optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage. The PSMI-incorporated PVDF actuator can become a promising smart material to be used in the fields of biomimetic robots, biomedical devices, sensors and actuator, haptic interfaces, energy harvesting and so on.

  10. Entrapment of Bacteriocin 105B onto Fabric with Titania

    DTIC Science & Technology

    2017-02-09

    to fabricate a multifunctional textile exhibiting an alternative range of antimicrobial activity from that of nisin, by titania encapsulation of...105b onto fabric. The results of these initial studies suggest that both pure preparations and semi-pure preparations of 105b are active when...encapsulated in titania in solution. However, when the pure preparation of 105b is titania encapsulated on fabric, antimicrobial activity is not observed

  11. Active Targeted Drug Delivery for Microbes Using Nano-Carriers

    PubMed Central

    Lin, Yung-Sheng; Lee, Ming-Yuan; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nano-carriers utilized targeting ligands on their surface called ‘active target’ provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced. PMID:25877093

  12. Fabrication of magnetic bubble memory overlay

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Self-contained magnetic bubble memory overlay is fabricated by process that employs epitaxial deposition to form multi-layered complex of magnetically active components on single chip. Overlay fabrication comprises three metal deposition steps followed by subtractive etch.

  13. HER2 activating mutations are targets for colorectal cancer treatment.

    PubMed

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  14. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    PubMed

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  15. Activation Levels, Handling, and Storage of Activated Components in the Target Hall at FRIB

    NASA Astrophysics Data System (ADS)

    Georgobiani, D.; Bennett, R.; Bollen, G.; Kostin, M.; Ronningen, R.

    2018-06-01

    The Facility for Rare Isotope Beams (FRIB) is a major new scientific user facility under construction in the United States for nuclear science research with beams of rare isotopes. 400 kW beam operations with heavy ions ranging from oxygen to uranium will create a high radiation environment for many components, particularly for the beam line components located in the target hall, where approximately 100 kW of beam power are dissipated in the target and another 300 kW are dissipated in the beam dump. Detailed studies of the component activation, their remote handling, storage, and transport, have been performed to ensure safe operation levels in this environment. Levels of activation are calculated for the beam line components within the FRIB target hall.

  16. Cylindrical fabric-confined soil structures

    NASA Astrophysics Data System (ADS)

    Harrison, Richard A.

    A cylindrical fabric-soil structural concept for implementation on the moon and Mars which provides many advantages is proposed. The most efficient use of fabric is to fashion it into cylindrical tubes, creating cylindrical fabric-confined soil structures. The length, diameter, and curvature of the tubes will depend on the intended application. The cylindrical hoop forces provide radial confinement while end caps provide axial confinement. One of the ends is designed to allow passage of the soil into the fabric tube before sealing. Transportation requirements are reduced due to the low mass and volume of the fabric. Construction requirements are reduced due to the self-erection capability via the pneumatic exoskeleton. Maintenance requirements are reduced due to the passive nature of the concept. The structure's natural ductility is well suited for any seismic activity.

  17. Comparison of Quantitative Antifungal Testing Methods for Textile Fabrics.

    PubMed

    Imoto, Yasuo; Seino, Satoshi; Nakagawa, Takashi; Yamamoto, Takao A

    2017-01-01

     Quantitative antifungal testing methods for textile fabrics under growth-supportive conditions were studied. Fungal growth activities on unfinished textile fabrics and textile fabrics modified with Ag nanoparticles were investigated using the colony counting method and the luminescence method. Morphological changes of the fungi during incubation were investigated by microscopic observation. Comparison of the results indicated that the fungal growth activity values obtained with the colony counting method depended on the morphological state of the fungi on textile fabrics, whereas those obtained with the luminescence method did not. Our findings indicated that unique characteristics of each testing method must be taken into account for the proper evaluation of antifungal activity.

  18. Bactericidal activities of woven cotton and nonwoven polypropylene fabrics coated with hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite “Earth-plus”

    PubMed Central

    Kasuga, Eriko; Kawakami, Yoshiyuki; Matsumoto, Takehisa; Hidaka, Eiko; Oana, Kozue; Ogiwara, Naoko; Yamaki, Dai; Sakurada, Tsukasa; Honda, Takayuki

    2011-01-01

    Background Bacteria from the hospital environment, including linens and curtains, are often responsible for hospital-associated infections. The aim of the present study was to evaluate the bactericidal effects of fabrics coated with the hydroxyapatite-binding silver/titanium dioxide ceramic nanocomposite “Earth-plus”. Methods Bactericidal activities of woven and nonwoven fabrics coated with Earth-plus were investigated by the time-kill curve method using nine bacterial strains, including three Staphylococcus aureus, three Escherichia coli, and three Pseudomonas aeruginosa strains. Results The numbers of viable S. aureus and E. coli cells on both fabrics coated with Earth-plus decreased to below 2 log10 colony-forming units/mL in six hours and reached the detection limit in 18 hours. Viable cell counts of P. aeruginosa on both fabrics coated with Earth-plus could not be detected after 3–6 hours. Viable cells on woven fabrics showed a more rapid decline than those on nonwoven fabrics. Bacterial cell counts of the nine strains on fabrics without Earth-plus failed to decrease even after 18 hours. Conclusion Woven cotton and nonwoven polypropylene fabrics were shown to have excellent antibacterial potential. The woven fabric was more bactericidal than the nonwoven fabric. PMID:21931489

  19. Targeting tumor highly-expressed LAT1 transporter with amino acid-modified nanoparticles: Toward a novel active targeting strategy in breast cancer therapy.

    PubMed

    Li, Lin; Di, Xingsheng; Wu, Mingrui; Sun, Zhisu; Zhong, Lu; Wang, Yongjun; Fu, Qiang; Kan, Qiming; Sun, Jin; He, Zhonggui

    2017-04-01

    Designing active targeting nanocarriers with increased cellular accumulation of chemotherapeutic agents is a promising strategy in cancer therapy. Herein, we report a novel active targeting strategy based on the large amino acid transporter 1 (LAT1) overexpressed in a variety of cancers. Glutamate was conjugated to polyoxyethylene stearate as a targeting ligand to achieve LAT1-targeting PLGA nanoparticles. The targeting efficiency of nanoparticles was investigated in HeLa and MCF-7 cells. Significant increase in cellular uptake and cytotoxicity was observed in LAT1-targeting nanoparticles compared to the unmodified ones. More interestingly, the internalized LAT1 together with targeting nanoparticles could recycle back to the cell membrane within 3 h, guaranteeing sufficient transporters on cell membrane for continuous cellular uptake. The LAT1 targeting nanoparticles exhibited better tumor accumulation and antitumor effects. These results suggested that the overexpressed LAT1 on cancer cells holds a great potential to be a high-efficiency target for the rational design of active-targeting nanosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  1. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy.

    PubMed

    Hamson, Elizabeth J; Keane, Fiona M; Tholen, Stefan; Schilling, Oliver; Gorrell, Mark D

    2014-06-01

    Fibroblast activation protein (FAP) is best known for its heightened expression in tumour stroma. This atypical serine protease has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. FAP expression is difficult to detect in non-diseased adult organs, but is greatly upregulated in sites of tissue remodelling, which include liver fibrosis, lung fibrosis, atherosclerosis, arthritis, tumours and embryonic tissues. Due to its restricted expression pattern and dual enzymatic activities, FAP is emerging as a unique therapeutic target. However, methods to exploit and target this protease are advancing more rapidly than knowledge of the fundamental biology of FAP. This review highlights this imbalance, emphasising the need to better define the substrate repertoire and expression patterns of FAP to elucidate its role in biological and pathological processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dissecting patterns of preparatory activity in the frontal eye fields during pursuit target selection.

    PubMed

    Raghavan, Ramanujan T; Joshua, Mati

    2017-10-01

    We investigated the composition of preparatory activity of frontal eye field (FEF) neurons in monkeys performing a pursuit target selection task. In response to the orthogonal motion of a large and a small reward target, monkeys initiated pursuit biased toward the direction of large reward target motion. FEF neurons exhibited robust preparatory activity preceding movement initiation in this task. Preparatory activity consisted of two components, ramping activity that was constant across target selection conditions, and a flat offset in firing rates that signaled the target selection condition. Ramping activity accounted for 50% of the variance in the preparatory activity and was linked most strongly, on a trial-by-trial basis, to pursuit eye movement latency rather than to its direction or gain. The offset in firing rates that discriminated target selection conditions accounted for 25% of the variance in the preparatory activity and was commensurate with a winner-take-all representation, signaling the direction of large reward target motion rather than a representation that matched the parameters of the upcoming movement. These offer new insights into the role that the frontal eye fields play in target selection and pursuit control. They show that preparatory activity in the FEF signals more strongly when to move rather than where or how to move and suggest that structures outside the FEF augment its contributions to the target selection process. NEW & NOTEWORTHY We used the smooth eye movement pursuit system to link between patterns of preparatory activity in the frontal eye fields and movement during a target selection task. The dominant pattern was a ramping signal that did not discriminate between selection conditions and was linked, on trial-by-trial basis, to movement latency. A weaker pattern was composed of a constant signal that discriminated between selection conditions but was only weakly linked to the movement parameters. Copyright © 2017 the American

  3. Nuclear Fabrication Consortium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levesque, Stephen

    2013-04-05

    This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectivelymore » engage with each other and rebuild the capacity of this supply chain by : Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. Supporting industry in helping to create a larger qualified nuclear supplier network. Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication

  4. Fabrication of photocatalytically active vanadium oxide nanostructures via plasma route

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Yoshida, Tomoko; Ohno, Noriyasu; Ichino, Yusuke; Yoshida, Naoaki

    2018-05-01

    Plasma irradiation was used to create nanostructured vanadium oxide with potential commercial and industrial applications. Morphology changes were induced at the nano- and micro-meter scale, accompanied by the growth of helium nanobubbles. Micrometer-sized pillars, cube-shaped nanostructures, and fuzzy fiberform nanostructures were grown on the surface; the necessary conditions in terms of the incident ion energy and the surface temperature for those morphology changes were revealed. Hydrogen production experiments using a photocatalytic reaction with aqueous methanol solution were conducted on the fabricated samples. Enhanced H2 production was confirmed with the plasma irradiated nanostructured sample that had been oxidized in air atmosphere. Photocatalytically inactive vanadium oxide exhibited a high photocatalytic activity after nanostructurization of the surface by helium plasma irradiation.

  5. Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide.

    PubMed

    Biscaglia, Francesca; Rajendran, Senthilkumar; Conflitti, Paolo; Benna, Clara; Sommaggio, Roberta; Litti, Lucio; Mocellin, Simone; Bocchinfuso, Gianfranco; Rosato, Antonio; Palleschi, Antonio; Nitti, Donato; Gobbo, Marina; Meneghetti, Moreno

    2017-12-01

    Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  7. Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver.

    PubMed

    Velmurugan, Palanivel; Cho, Min; Lee, Sang-Myeong; Park, Jung-Hee; Bae, Sunyoung; Oh, Byung-Taek

    2014-06-15

    This study aims to investigate the green synthesis of silver nanoparticles (AgNPs) by Erigeron annuus (L.) pers flower extract as reducing and capping agent, and evaluation of their antibacterial activities for the first time. The obtained product was confirmed by UV-Vis spectrum, high resolution-transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. The optimum AgNPs production was achieved at pH 7, metal silver (Ag(+) ion) concentration of 2.0mM, flower extract concentration 4%, and time 335 min. In addition, the antibacterial activity of cotton fabrics and tanned leather loaded with AgNPs, commercial AgNPs, flower extract, Ag(+) ion and blend of flower extract with AgNPs were evaluated against Gram-positive odor causing bacteria Brevibacterium linens and Staphylococcus epidermidis. The results showed maximum zone of inhibition (ZOI) by the cotton fabrics embedded with blend of flower extract and AgNPs against B. linens. The structure and morphology of cotton fabric and leather samples embedded with AgNPs, Ag(+) ion and blend of flower extract with AgNPs were examined under field emission scanning electron microscope. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Identification of multi-targeted anti-migraine potential of nystatin and development of its brain targeted chitosan nanoformulation.

    PubMed

    Girotra, Priti; Thakur, Aman; Kumar, Ajay; Singh, Shailendra Kumar

    2017-03-01

    The complex pathophysiology involved in migraine necessitates the drug treatment to act on several receptors simultaneously. The present investigation was an attempt to discover the unidentified anti-migraine activity of the already marketed drugs. Shared featured pharmacophore modeling was employed for this purpose on six target receptors (β 2 adrenoceptor, Dopamine D 3 , 5HT 1B , TRPV1, iGluR5 kainate and CGRP), resulting in the generation of five shared featured pharmacophores, which were further subjected to virtual screening of the ligands obtained from Drugbank database. Molecular docking, performed on the obtained hit compounds from virtual screening, indicated nystatin to be the only active lead against the receptors iGluR5 kainate receptor (1VSO), CGRP (3N7R), β 2 adrenoceptor (3NYA) and Dopamine D 3 (3PBL) with a high binding energy of -11.1, -10.9, -10.2 and -12kcal/mole respectively. The anti-migraine activity of nystatin was then adjudged by fabricating its brain targeted chitosan nanoparticles. Its brain targeting efficacy, analyzed qualitatively by confocal laser scanning microscopy, demonstrated a significant amount of drug reaching the brain. The pharmacodynamic models on Swiss male albino mice revealed significant anti-migraine activity of the nanoformulation. The present study reports for the first time the therapeutic potential of nystatin in migraine management, hence opening avenues for its future exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. 27 CFR 478.35 - Skeet, trap, target, and similar shooting activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Skeet, trap, target, and... FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.35 Skeet, trap, target, and... records, for skeet, trap, target, and similar organized activities shall be determined by the Director of...

  10. 27 CFR 478.35 - Skeet, trap, target, and similar shooting activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Skeet, trap, target, and... FIREARMS AND AMMUNITION Administrative and Miscellaneous Provisions § 478.35 Skeet, trap, target, and... records, for skeet, trap, target, and similar organized activities shall be determined by the Director of...

  11. [Anti-tumor target prediction and activity verification of Ganoderma lucidum triterpenoids].

    PubMed

    Du, Guo-Hua; Wang, Hong-Xu; Yan, Zheng; Liu, Li-Ying; Chen, Ruo-Yun

    2017-02-01

    It has reported that Ganoderma lucidum triterpenoids had anti-tumor activity. However, the anti-tumor target is still unclear. The present study was designed to investigate the anti-tumor activity of G. lucidum triterpenoids on different tumor cells, and predict their potential targets by virtual screening. In this experiment, molecular docking was used to simulate the interactions of 26 triterpenoids isolated from G. lucidum and 11 target proteins by LibDock module of Discovery Studio2016 software, then the anti-tumor targets of triterpenoids were predicted. In addition, the in vitro anti-tumor effects of triterpenoids were evaluated by MTT assay by determining the inhibition of proliferation in 5 tumor cell lines. The docking results showed that the poses were greater than five, and Libdock Scores higher than 100, which can be used to determine whether compounds were activity. Eight triterpenoids might have anti-tumor activity as a result of good docking, five of which had multiple targets. MTT experiments demonstrated that the ganoderic acid Y had a certain inhibitory activity on lung cancer cell H460, with IC₅₀ of 22.4 μmol•L ⁻¹, followed by 7-oxo-ganoderic acid Z2, with IC₅₀ of 43.1 μmol•L ⁻¹. However, the other triterpenoids had no anti-tumor activity in the detected tumor cell lines. Taking together, molecular docking approach established here can be used for preliminary screening of anti-tumor activity of G.lucidum ingredients. Through this screening method, combined with the MTT assay, we can conclude that ganoderic acid Y had antitumor activity, especially anti-lung cancer, and 7-oxo-ganoderic acid Z2 as well as ganoderon B, to a certain extent, had anti-tumor activity. These findings can provide basis for the development of anti-tumor drugs. However, the anti-tumor mechanisms need to be further studied. Copyright© by the Chinese Pharmaceutical Association.

  12. Active targeted delivery of immune therapeutics to lymph nodes.

    PubMed

    Bahmani, Baharak; Vohra, Ishaan; Kamaly, Nazila; Abdi, Reza

    2018-02-01

    Organ transplantation is a life-saving procedure and the only option for patients with end-organ failure. Immune therapeutics have been key to the success of organ transplantation. However, immune therapeutics are still unable to eliminate graft rejection and their toxicity has been implicated in poorer long-term transplant outcomes. Targeted nanodelivery has the potential to enhance not only the therapeutic index but also the bioavailability of the immune therapeutics. One of the key sites of immune therapeutics delivery is lymph node where the priming of immune cells occur. The focus of this review is on nanomedicine research to develop the targeted delivery of immune therapeutics to lymph nodes for controlling immune activation. As nanomedicine creates its niche in clinical care, it provides novel immunotherapy platforms for transplant recipients. Draining lymph nodes are the primary loci of immune activation and represent a formidable site for delivery of wide variety of immune therapeutics. There have been relentless efforts to improve the properties of nanomedicines, to have in-depth knowledge of antigen and drug loading, and, finally, to explore various routes of passive and active targeted delivery to lymph nodes. The application of nanotechnology principles in the delivery of immune therapeutics to the lymph node has created enormous excitement as a paradigm shifting approach that enables targeted delivery of a gamut of molecules to achieve a desired immune response. Therefore, innovative strategies that improve their efficacy while reducing their toxicity are among the highest unmet needs in transplantation.

  13. The effect of intermediate clothing targets on shotgun ballistics.

    PubMed

    Cail, Kenneth; Klatt, Edward

    2013-12-01

    The ballistic properties of shotgun shells are complex because of multiple projectiles fired simultaneously that interact and spread out to affect their energy relayed to a human target. Intermediate targets such as clothing can affect penetration into tissues. We studied the effect of common clothing fabrics as intermediate targets on penetration of shotgun shell pellets, using ordnance gelatin to simulate soft tissue and thin cowhide to simulate skin. A standard 12-gauge shotgun with modified choke was used with no. 8 shot ammunition. We found that protection afforded by fabrics to reduce penetration of shotgun pellets into tissues was greater at increasing distance from the muzzle beyond 40 yd (36.6 m). The thicker denim and cotton fabrics provided slightly greater protection than polyester. This study demonstrates that clothing modifies the potential wound patterns to victims of shotgun injuries.

  14. Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning

    NASA Astrophysics Data System (ADS)

    Ramos, Pierre G.; Flores, Edson; Sánchez, Luis A.; Candal, Roberto J.; Hojamberdiev, Mirabbos; Estrada, Walter; Rodriguez, Juan

    2017-12-01

    In this work, ZnO/TiO2 nanostructures were fabricated by an electrostatically modified electrospinning technique using zinc acetate and commercially available TiO2-P25, polyvinyl alcohol, and a solvent. The ZnO/TiO2 nanostructures were fabricated on fluorine-doped tin oxide (FTO) glass substrate by electrospinning of aqueous solution containing different amounts of zinc acetate. The TiO2-P25 nanoparticles were immobilized within zinc acetate/PVA nanofibers. The precursor nanofibers obtained were converted into polycrystalline ZnO and ZnO/TiO2 by calcination at 600 °C. The structure and morphology of the obtained nanostructures were characterized by X-ray diffraction and field emission scanning electron microscopy, respectively. It was found that the TiO2-P25 nanoparticles were attached to the ZnO nanostructures, and the mean diameter of the nanoparticles forming the nanostructures ranged from 31 to 52 nm with increasing the amount of zinc acetate. The incident photon-to-current efficiency (IPCE) spectra of the fabricated nanostructures were measured in a three-electrode cell. The photocatalytic activities of ZnO and ZnO/TiO2 nanostructures were evaluated toward the decomposition of methyl orange. The obtained results evidenced that the coupling of TiO2 with ZnO enhanced the IPCE and improved the photocatalytic activity of ZnO. Particularly, the ZnO/TiO2 nanostructures fabricated with a zinc acetate-to-PVA ratio of 2:3 exhibited the highest IPCE and photocatalytic activity.

  15. Space-confined fabrication of silver nanodendrites and their enhanced SERS activity

    NASA Astrophysics Data System (ADS)

    Wang, Shuqi; Xu, Li-Ping; Wen, Yongqiang; Du, Hongwu; Wang, Shutao; Zhang, Xueji

    2013-05-01

    Here we report a controllable method based on electrodeposition to fabricate Ag nanodendrites (NDs) on a microwell patterned electrode. The microwell patterns on the ITO electrode are fabricated via the microcontact printing technique. By varying the microwell size and electrodeposition time, the morphology of metal deposits on the microwell patterned ITO electrode can be tuned from boulders to dendrites. At the edge of the microwells, the current density was strengthened, which incurs rapid nucleation. The nucleus develops into dendrites because of Mullins-Sekerka instability. However, only boulders were observed at the center of microwells. By reducing the size of the microwells, only NDs were fabricated due to the edge effect. On the basis of understanding the underlying mechanism for dendritic growth in a confined space, our method is used for fabricating other noble metal (Au, Pt) nanodendrites. The controllable synthesis of Au and Pt NDs indicates the universality of this method. Compared with Ag film obtained from electron beam evaporation, the as-prepared Ag NDs exhibit highly enhanced surface-enhanced Raman scattering (SERS) sensitivity when they are used to detect rhodamine 6G (R6G). This approach provides a very controllable, reliable and general way for space-confined fabricating the noble metal nanodendrite arrays which show great promise in catalysis, sensing, biomedicine, electronic and magnetic devices.Here we report a controllable method based on electrodeposition to fabricate Ag nanodendrites (NDs) on a microwell patterned electrode. The microwell patterns on the ITO electrode are fabricated via the microcontact printing technique. By varying the microwell size and electrodeposition time, the morphology of metal deposits on the microwell patterned ITO electrode can be tuned from boulders to dendrites. At the edge of the microwells, the current density was strengthened, which incurs rapid nucleation. The nucleus develops into dendrites because of

  16. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  17. Influence of Layer-by-Layer Polyelectrolyte Deposition and EDC/NHS Activated Heparin Immobilization onto Silk Fibroin Fabric

    PubMed Central

    Elahi, M. Fazley; Guan, Guoping; Wang, Lu; King, Martin W.

    2014-01-01

    To enhance the hemocompatibility of silk fibroin fabric as biomedical material, polyelectrolytes architectures have been assembled through the layer-by-layer (LbL) technique on silk fibroin fabric (SFF). In particular, 1.5 and 2.5 bilayer of oppositely charged polyelectrolytes were assembled onto SFF using poly(allylamine hydrochloride) (PAH) as polycationic polymer and poly(acrylic acid) (PAA) as polyanionic polymer with PAH topmost. Low molecular weight heparin (LMWH) activated with 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) was then immobilized on its surface. Alcian Blue staining, toluidine blue assay and X-ray photoelectron spectroscopy (XPS) confirmed the presence of heparin on modified SFF surfaces. The surface morphology of the modified silk fibroin fabric surfaces was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and obtained increased roughness. Negligible hemolytic effect and a higher concentration of free hemoglobin by a kinetic clotting time test ensured the improved biological performance of the modified fibroin fabric. Overall, the deposition of 2.5 bilayer was found effective in terms of biological and surface properties of the modified fibroin fabric compared to 1.5 bilayer self-assembly technique. Therefore, this novel approach to surface modification may demonstrate long term patency in future in vivo animal trials of small diameter silk fibroin vascular grafts. PMID:28788601

  18. A diamond active target for the PADME experiment

    NASA Astrophysics Data System (ADS)

    Chiodini, G.

    2017-02-01

    The PADME (Positron Annihilation into Dark Mediator Experiment) collaboration searches for dark photons produced in the annihilation e++e-→γ+A' of accelerated positrons with atomic electrons of a fixed target at the Beam Test Facility of Laboratori Nazionali di Frascati. The apparatus can detect dark photons decaying into visible A'→e+e- and invisible A'→χχ channels, where χ's are particles of a secluded sector weakly interacting and therefore undetected. In order to improve the missing mass resolution and to measure the beam flux, PADME has an active target able to reconstruct the beam spot position and the bunch multiplicity. In this work the active target is described, which is made of a detector grade polycrystalline synthetic diamond with strip electrodes on both surfaces. The electrodes segmentation allows to measure the beam profile along X and Y and evaluate the average beam position bunch per bunch. The results of beam tests for the first two diamond detector prototypes are shown. One of them holds innovative graphitic electrodes built with a custom process developed in the laboratory, and the other one with commercially available traditional Cr-Au electrodes. The front-end electronics used in the test beam is discussed and the performance observed is presented. Finally, the final design of the target to be realized at the beginning of 2017 to be ready for data taking in 2018 is illustrated.

  19. Robust, active tumor-targeting and fast bioresponsive anticancer nanotherapeutics based on natural endogenous materials.

    PubMed

    Sun, Bingfeng; Deng, Chao; Meng, Fenghua; Zhang, Jian; Zhong, Zhiyuan

    2016-11-01

    The clinical success of cancer nanomedicines critically depends on availability of simple, safe and highly efficient nanocarriers. Here, we report that robust and multifunctional nanoparticles self-assembled from hyaluronic acid-g-poly(γ-benzyl-l-glutamate)-lipoic acid conjugates achieve a remarkably high loading (up to 25.8wt.%) and active targeted delivery of doxorubicin (DOX) to human breast tumor xenograft in vivo. DOX-loaded nanoparticles following auto-crosslinking (DOX-CLNPs) are highly stable with little drug leakage under physiological conditions while quickly release ca. 92% DOX in 30h under a cytoplasmic-mimicking reductive environment. The in vitro assays reveal that DOX-CLNPs possess a superior selectivity and antitumor activity to clinically used pegylated liposomal doxorubicin hydrochloride (DOX-LPs) in CD44 receptor overexpressing MCF-7 human breast cancer cells. Strikingly, DOX-CLNPs exhibit a superb tolerated dose of over 100mg DOX equiv./kg, which is more than 5 times higher than DOX-LPs, and an extraordinary breast tumor accumulation of 8.6%ID/g in mice. The in vivo therapeutic studies in MCF-7 human breast tumor-bearing nude mice show that DOX-CLNPs effectively inhibit tumor growth, improve survival rate, and significantly decrease adverse effects as compared to DOX-LPs. DOX-CLNPs based on natural endogenous materials with high drug loading, great stability and CD44-targetability are highly promising for precision cancer chemotherapy. We demonstrate that with rational design, simple and multifunctional anticancer nanotherapeutics can be developed to achieve highly efficient and targeted cancer chemotherapy. Doxorubicin-loaded multifunctional nanoparticles based on hyaluronic acid-g-poly(γ-benzyl-l-glutamate)-lipoic acid conjugates exhibit a high drug loading, superior stability, fast bioresponsivity, high tolerability, and obvious selectivity toward CD44-overexpressing tumors in vivo. These nanotherapeutics achieve effective tumor suppression

  20. Fabricated Elastin.

    PubMed

    Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S

    2015-11-18

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fabricated elastin

    PubMed Central

    Yeo, Giselle C.; Weiss, Anthony S.

    2015-01-01

    The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows for precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone and dental replacement. PMID:25771993

  2. Novel fabrication method for 3D microstructures using surface-activated bonding and its application to micro-mechanical parts

    NASA Astrophysics Data System (ADS)

    Yamada, Takayuki; Takahashi, Mutsuya; Ozawa, Takashi; Tawara, Satoshi; Goto, Takayuki

    2002-11-01

    The purpose of this work is to demonstrate that a novel fabrication method for 3-D microstructures (FORMULA) is applicable to fabrication of micro mechanical parts with a large flexibility. This method is a kind of layer manufacturing method of thin films for metallic or dielectric microstructures using surface-activated bonding (SAB). The bonding interfaces of thin films are investigated by transmission electron microscope (TEM). Voids were observed at the interfaces of both pure aluminum films and Al-Cu alloy films. The ratio of void on the Al-Cu/Al-Cu interface is much larger than that of Al/Al interface, although the films have the same surface roughness of 3nm in Ra (average roughness). And approximately 10nm-thick amorphous intermediate layers were found at the interfaces. Furthermore, we have fabricated a micro gear of 900μm in diameter and 200μm in height, which is about ten times as large as our previous test pieces. Overhung structures such as a bridge structure and a cantilever were also fabricated without supporting layers beneath them.

  3. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.

    PubMed

    Jeong, Jae Young; Hong, Eun-Hye; Lee, Song Yi; Lee, Jae-Young; Song, Jae-Hyoung; Ko, Seung-Hak; Shim, Jae-Seong; Choe, Sunghwa; Kim, Dae-Duk; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2017-04-15

    (3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface

  4. Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.

    PubMed

    Safavi-Sohi, Reihaneh; Maghari, Shokoofeh; Raoufi, Mohammad; Jalali, Seyed Amir; Hajipour, Mohammad J; Ghassempour, Alireza; Mahmoudi, Morteza

    2016-09-07

    Surface functionalization strategies for targeting nanoparticles (NP) to specific organs, cells, or organelles, is the foundation for new applications of nanomedicine to drug delivery and biomedical imaging. Interaction of NPs with biological media leads to the formation of a biomolecular layer at the surface of NPs so-called as "protein corona". This corona layer can shield active molecules at the surface of NPs and cause mistargeting or unintended scavenging by the liver, kidney, or spleen. To overcome this corona issue, we have designed biotin-cysteine conjugated silica NPs (biotin was employed as a targeting molecule and cysteine was used as a zwitterionic ligand) to inhibit corona-induced mistargeting and thus significantly enhance the active targeting capability of NPs in complex biological media. To probe the targeting yield of our engineered NPs, we employed both modified silicon wafer substrates with streptavidin (i.e., biotin receptor) to simulate a target and a cell-based model platform using tumor cell lines that overexpress biotin receptors. In both cases, after incubation with human plasma (thus forming a protein corona), cellular uptake/substrate attachment of the targeted NPs with zwitterionic coatings were significantly higher than the same NPs without zwitterionic coating. Our results demonstrated that NPs with a zwitterionic surface can considerably facilitate targeting yield of NPs and provide a promising new type of nanocarriers in biological applications.

  5. Space-confined fabrication of silver nanodendrites and their enhanced SERS activity.

    PubMed

    Wang, Shuqi; Xu, Li-Ping; Wen, Yongqiang; Du, Hongwu; Wang, Shutao; Zhang, Xueji

    2013-05-21

    Here we report a controllable method based on electrodeposition to fabricate Ag nanodendrites (NDs) on a microwell patterned electrode. The microwell patterns on the ITO electrode are fabricated via the microcontact printing technique. By varying the microwell size and electrodeposition time, the morphology of metal deposits on the microwell patterned ITO electrode can be tuned from boulders to dendrites. At the edge of the microwells, the current density was strengthened, which incurs rapid nucleation. The nucleus develops into dendrites because of Mullins-Sekerka instability. However, only boulders were observed at the center of microwells. By reducing the size of the microwells, only NDs were fabricated due to the edge effect. On the basis of understanding the underlying mechanism for dendritic growth in a confined space, our method is used for fabricating other noble metal (Au, Pt) nanodendrites. The controllable synthesis of Au and Pt NDs indicates the universality of this method. Compared with Ag film obtained from electron beam evaporation, the as-prepared Ag NDs exhibit highly enhanced surface-enhanced Raman scattering (SERS) sensitivity when they are used to detect rhodamine 6G (R6G). This approach provides a very controllable, reliable and general way for space-confined fabricating the noble metal nanodendrite arrays which show great promise in catalysis, sensing, biomedicine, electronic and magnetic devices.

  6. Fabrication and Characterization of a Composite Fibrous Construct with Photocatalytic Activity and Physical Adsorption Capabilities for Water Treatment Applications

    NASA Astrophysics Data System (ADS)

    Everett, Dominique Tresten

    Environmental pollution has exponentially increased since the industrial revolution due to many advancements in technology which has led to the use of innovative materials. In the manufacturing and fabrication processes of modern technology, society has become victim to the contamination via production byproducts. This issue needs to be addressed with greater efforts to solve this worldwide issue to ultimately minimize these potential detrimental public health effects and improve environmental preservation. This research study focuses on contributing to efforts with minimizing wastewater pollution by the fabrication and characterization of complex porosity gradient fibrous membrane that purifies via particle size exclusion, photocatalysis and also physical adsorption. The membrane consists of a nano/mico-fibrous composite network fabricated by side-by-side electrospinning for the initial aim of this study. The experimental setup resulted in a novel morphological structure that yields exceptional catalytic responsiveness in visible light compared to conventional materials that are currently used. Subsequently, there is a thermal bonded discontinuous polymeric microfibrous mat with activated carbon granule incorporation to serve as a superior mechanical stability agent with high physical adsorption capability. The second aim was to investigate fiber length dependence on mechano-morphological properties while achieving adequate activated carbon during processing when subjected to post-fabrication thermal bonding of resulting mat. Furthermore, the third aim was to fabricate the complex construct by combining methods from the first and second aim to assemble a system that filters through two water purification mechanisms (photocatalysis and physical adsorption) simultaneously. This study was investigated for characterization and verification for various aspects such as morphological analyses, crystallographic assessments, mechanical testing, while defining construct

  7. Open porous BiVO{sub 4} nanomaterials: Electronspinning fabrication and enhanced visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mengyan; Xi, Xin; Gong, Cairong, E-mail: gcr@tju.edu.cn

    2016-02-15

    Highlights: • BiVO{sub 4} nanofibers were successfully fabricated by electrospinning method. • PVP was used to adjust the viscosity and increase spinnability of the electrospinning sol. • BiVO{sub 4} nanofibers were used for the degradation of MB. • Compared to the submicron sized BiVO4, BiVO{sub 4} nanofibers show superior photocatalytic activity. - Abstract: Witnessed by X-ray powder diffraction (XRD), Raman, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies, BiVO{sub 4} nanofibers and porous nanostructures were successfully fabricated by electrospinning method using NH{sub 4}VO{sub 3} and Bi(NO{sub 3}){sub 3} as starting materials. Polyvinylpyrrolidinone (PVP) was used to tune themore » viscosity and spinnability of the electrospinning sol. The slow decomposition and combustion of PVP matrix prevented rapid crystal growth of BiVO{sub 4} nanostructures leading to considerably small crystallite size (approximately 19.1–28.3 nm) with less surface defects after two hours calcination at varying temperatures. This paid great tributes to the superior visible light photocatalytic activity when compared to the submicron sized BiVO{sub 4} prepared in the absence of PVP.« less

  8. Antibacterial properties of modified biodegradable PHB non-woven fabric.

    PubMed

    Slepička, P; Malá, Z; Rimpelová, S; Švorčík, V

    2016-08-01

    The antibacterial properties of poly(hydroxybutyrate) (PHB) non-woven fabric were explored in this study. The PHB was activated by plasma modification and subsequently processed with either immersion into a solution of nanoparticles or direct metallization. The wettability and surface chemistry of the PHB surface was determined. The thickness of the sputtered nanolayer on PHB fabric was characterized. It was found that plasma modification led to a formation of strongly hydrophilic surface, while the subsequent metallization by silver or gold resulted in a significantly increased water contact angle. Further, it was found that antibacterial activity may be controlled by the type of a metal and deposition method used. The immersion of plasma modified fabric into Ag nanoparticle solution led to enhanced antibacterial efficiency of PHB against Escherichia coli (E. coli). Direct silver sputtering on PHB fabric was proved to be a simple method for construction of a surface with strong antibacterial potency against both Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis). We demonstrated the antibacterial activity of PHB fabric modified by plasma activation and consecutive selection of a treatment method for an effective antibacterial surface construction. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evolution of Magnetized Liner Inertial Fusion (MagLIF) Targets

    DOE PAGES

    Fooks, J. A.; Carlson, L. C.; Fitzsimmons, P.; ...

    2017-12-19

    Here, the magnetized liner inertial fusion (MagLIF) experimental campaign conducted at the University of Rochester’s Laboratory for Laser Energetics (LLE) has evolved significantly since its start in 2014. Scientific requirements and OMEGA EP system technology both have progressed, resulting in necessary and available updates to the target design. These include, but are not limited to: optimizing target dimensions and aspect ratios to maximize survival at desired pressures; coating target components to enhance physics diagnosis; precision-machining diagnostic windows along the axis of the target; improving fiducial placement reproducibility and reducing subsequent assembly time by 50%; and implementing gas-pressure transducers on themore » targets. In addition, target fabrication techniques have changed and improved, allowing for simpler target reproducibility and decreased assembly time. To date, eleven variations of targets have been fabricated, with successful target fielding ranging from 1 to 20atm internal pressure and a maximum survivability of 33atm.« less

  10. Evolution of Magnetized Liner Inertial Fusion (MagLIF) Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fooks, J. A.; Carlson, L. C.; Fitzsimmons, P.

    Here, the magnetized liner inertial fusion (MagLIF) experimental campaign conducted at the University of Rochester’s Laboratory for Laser Energetics (LLE) has evolved significantly since its start in 2014. Scientific requirements and OMEGA EP system technology both have progressed, resulting in necessary and available updates to the target design. These include, but are not limited to: optimizing target dimensions and aspect ratios to maximize survival at desired pressures; coating target components to enhance physics diagnosis; precision-machining diagnostic windows along the axis of the target; improving fiducial placement reproducibility and reducing subsequent assembly time by 50%; and implementing gas-pressure transducers on themore » targets. In addition, target fabrication techniques have changed and improved, allowing for simpler target reproducibility and decreased assembly time. To date, eleven variations of targets have been fabricated, with successful target fielding ranging from 1 to 20atm internal pressure and a maximum survivability of 33atm.« less

  11. Magnetic activity of surface plasmon resonance using dielectric magnetic materials fabricated on quartz glass substrate

    NASA Astrophysics Data System (ADS)

    Narushima, Kazuki; Ashizawa, Yoshito; Brachwitz, Kerstin; Hochmuth, Holger; Lorenz, Michael; Grundmann, Marius; Nakagawa, Katsuji

    2016-07-01

    The magnetic activity of surface plasmons in Au/MFe2O4 (M = Ni, Co, and Zn) polycrystalline bilayer films fabricated on a quartz glass substrate was studied for future magnetic sensor applications using surface plasmon resonance. The excitation of surface plasmons and their magnetic activity were observed in all investigated Au/MFe2O4 films. The magnetic activity of surface plasmons of the polycrystalline Au/NiFe2O4 film was larger than those of the other polycrystalline Au/MFe2O4 films, the epitaxial NiFe2O4 film, and metallic films. The large magnetic activity of surface plasmons of the polycrystalline film is controlled by manipulating surface plasmon excitation conditions and magnetic properties.

  12. Improved Phenoxyalkylbenzimidazoles with Activity against Mycobacterium tuberculosis Appear to Target QcrB

    PubMed Central

    2017-01-01

    The phenoxy alkyl benzimidazoles (PABs) have good antitubercular activity. We expanded our structure–activity relationship studies to determine the core components of PABs required for activity. The most potent compounds had minimum inhibitory concentrations against Mycobacterium tuberculosis in the low nanomolar range with very little cytotoxicity against eukaryotic cells as well as activity against intracellular bacteria. We isolated resistant mutants against PAB compounds, which had mutations in either Rv1339, of unknown function, or qcrB, a component of the cytochrome bc1 oxidase of the electron transport chain. QcrB mutant strains were resistant to all PAB compounds, whereas Rv1339 mutant strains were only resistant to a subset, suggesting that QcrB is the target. The discovery of the target for PAB compounds will allow for the improved design of novel compounds to target intracellular M. tuberculosis. PMID:29035551

  13. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications

    PubMed Central

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-01-01

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future. PMID:26861380

  14. Laser ``M'egajoule'' cryogenic target program: from target fabrication to conformation of the deuterium-tritium ice layer

    NASA Astrophysics Data System (ADS)

    Collier, Rémy; Durut, Frédéric; Reneaume, Benoît; Chicane, Cédric; Théobald, Marc; Breton, Olivier; Martin, Michel; Fleury, Emmanuel; Vincent-Viry, Olivier; Bachelet, Franck; Jeannot, Laurent; Geoffray, Isabelle; Botrel, Ronan; Dauteuil, Christophe; Hermerel, Cyril; Choux, Alexandre; Bednarczyk, Sophie; Legaie, Olivier

    2008-11-01

    For the French inertial confinement fusion (ICF) experiments, cryogenic target assemblies (CTAs) for the LMJ program are manufactured and filled at CEA Valduc (Dijon) in the cryogenic targets filling station (IRCC). They will be moved at about 20 K into a transport cryostat for cryogenic targets and will be driven from CEA/Valduc to CEA/CESTA (Bordeaux). Cryogenic targets will then be transferred by several cryogenic grippers on the cryogenic target positioner before shots. The CTA has to meet severe specifications and involves a lot of challenging tasks for its manufacture. To fill CTAs by permeation with deuterium-tritium (DT), the IRCC need to meet strict thermal, mechanical and dimensional specifications. To obtain a good combustion yield, a very homogenous DT ice layer and very smooth roughness at 1.5 K below the DT triple point are also required. This paper deals with the up to date main issues in the different fields of the LMJ cryogenic target program.

  15. Fabrication High Resolution Metrology Target By Step And Repeat Method

    NASA Astrophysics Data System (ADS)

    Dusa, Mircea

    1983-10-01

    Based on the photolithography process generally used to generate high resolution masks for semiconductor I.C.S, we found a very useful industrial application of laser technology.First, we have generated high resolution metrology targets which are used in industrial measurement laser interferometers as difra.ction gratings. Secondi we have generated these targets using step and repeat machine, with He-Ne laser interferometer controlled state, as a pattern generator, due to suitable computer programming.Actually, high resolution metrology target, means two chromium plates, one of which is called the" rule" the other one the "vernier". In Fig.1 we have the configuration of the rule and the vernier. The rule has a succesion of 3 μM lines generated as a difraction grating on a 4 x 4 inch chromium blank. The vernier has several exposed fields( areas) having 3 - 15 μm lines, fields placed on very precise position on the chromium blank surface. High degree of uniformity, tight CD tolerances, low defect density required by the targets, creates specialised problems during processing. Details of the processing, together with experimental results will be presented. Before we start to enter into process details, we have to point out that the dimensional requirements of the reticle target, are quite similar or perhaps more strict than LSI master casks. These requirements presented in Fig.2.

  16. Lattice-mismatched GaInP LED devices and methods of fabricating same

    DOEpatents

    Mascarenhas, Angelo; Steiner, Myles A; Bhusal, Lekhnath; Zhang, Yong

    2014-10-21

    A method (100) of fabricating an LED or the active regions of an LED and an LED (200). The method includes growing, depositing or otherwise providing a bottom cladding layer (208) of a selected semiconductor alloy with an adjusted bandgap provided by intentionally disordering the structure of the cladding layer (208). A first active layer (202) may be grown above the bottom cladding layer (208) wherein the first active layer (202) is fabricated of the same semiconductor alloy, with however, a partially ordered structure. The first active layer (202) will also be fabricated to include a selected n or p type doping. The method further includes growing a second active layer (204) above the first active layer (202) where the second active layer (204) Is fabricated from the same semiconductor alloy.

  17. Intrinsic microstructure of Si/GaAs heterointerfaces fabricated by surface-activated bonding at room temperature

    NASA Astrophysics Data System (ADS)

    Ohno, Yutaka; Yoshida, Hideto; Takeda, Seiji; Liang, Jianbo; Shigekawa, Naoteru

    2018-02-01

    The intrinsic microstructure of Si/GaAs heterointerfaces fabricated by surface-activated bonding at room temperature is examined by plane-view transmission electron microscopy (TEM) and cross-sectional scanning TEM using damage-free TEM specimens prepared only by mechanochemical etching. The bonded heterointerfaces include an As-deficient crystalline GaAs layer with a thickness of less than 1 nm and an amorphous Si layer with a thickness of approximately 3 nm, introduced by the irradiation of an Ar atom beam for surface activation before bonding. It is speculated that the interface resistance mainly originates from the As-deficient defects in the former layer.

  18. Brain activation underlying threat detection to targets of different races.

    PubMed

    Senholzi, Keith B; Depue, Brendan E; Correll, Joshua; Banich, Marie T; Ito, Tiffany A

    2015-01-01

    The current study examined blood oxygen level-dependent signal underlying racial differences in threat detection. During functional magnetic resonance imaging, participants determined whether pictures of Black or White individuals held weapons. They were instructed to make shoot responses when the picture showed armed individuals but don't shoot responses to unarmed individuals, with the cost of not shooting armed individuals being greater than that of shooting unarmed individuals. Participants were faster to shoot armed Blacks than Whites, but faster in making don't shoot responses to unarmed Whites than Blacks. Brain activity differed to armed versus unarmed targets depending on target race, suggesting different mechanisms underlying threat versus safety decisions. Anterior cingulate cortex was preferentially engaged for unarmed Whites than Blacks. Parietal and visual cortical regions exhibited greater activity for armed Blacks than Whites. Seed-based functional connectivity of the amygdala revealed greater coherence with parietal and visual cortices for armed Blacks than Whites. Furthermore, greater implicit Black-danger associations were associated with increased amygdala activation to armed Blacks, compared to armed Whites. Our results suggest that different neural mechanisms may underlie racial differences in responses to armed versus unarmed targets.

  19. Active sensing of target location encoded by cortical microstimulation.

    PubMed

    Venkatraman, Subramaniam; Carmena, Jose M

    2011-06-01

    Cortical microstimulation has been proposed as a method to deliver sensory percepts to circumvent damaged sensory receptors or pathways. However, much of perception involves the active movement of sensory organs and the integration of information across sensory and motor modalities. The efficacy of cortical microstimulation in such an active sensing paradigm has not been demonstrated. We report a novel behavioral paradigm which delivers microstimulation in real-time based on a rat's movements and show that rats can perform sensorimotor integration with electrically delivered stimuli. Using a real-time whisker tracking system, we delivered microstimulation in barrel cortex of actively whisking rats when their whisker crossed a particular spatial location which defined the target. Rats learned to integrate microstimulation cues with their knowledge of whisker position to infer target location along the rostro-caudal axis in less than 200 ms. In a separate experiment, we found that rats trained to respond to cortical microstimulation responded similarly to whisker deflections while ignoring auditory distracters, suggesting that barrel cortex stimulation may be perceptually similar to somatosensory stimuli. This ability to deliver sensory percepts using cortical microstimulation in an active sensing system might have significant implications for the development of sensorimotor neuroprostheses.

  20. Effects of Epstein's TARGET on adolescents' intentions to be physically active and leisure-time physical activity.

    PubMed

    Cecchini, Jose A; Fernandez-Rio, Javier; Mendez-Gimenez, Antonio

    2014-06-01

    The aim of this study was to examine the effects of Epstein's TARGET strategies on adolescents' intentions to be physically active and leisure-time physical activity (LTPA) levels. A total of 447 secondary education students (193 females and 254 males), range age 12-17 years, were divided in two groups: control (N = 224) and experimental (N = 223). Epstein's TARGET strategies were applied by especially trained teachers only to the experimental group in their physical education (PE) classes during 12 consecutive weeks. Participants' intentions to be physically active and their LTPA levels were assessed prior to the intervention (pre), at the end of it (post-1) and 3 months after the intervention (post-2). Significant increases were observed only in the experimental group in post-1 and post-2 on both variables. PE interventions based on TARGET strategies seem to be effective increasing adolescents' intentions to be physically active, as well as time spent in LTPA. As most adolescents participate in PE, these interventions could lead to substantial public health benefits. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Design and fabrication of a stringer stiffened discrete-tube actively cooled panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Anthony, F. M.; Halenbrook, R. G.

    1981-01-01

    A 0.61 x 1.22 m (2 x 4 ft) test panel was fabricated and delivered to the Langley Research Center for assessment of the thermal and structural features of the optimized panel design. The panel concept incorporated an aluminum alloy surface panel actively cooled by a network of discrete, parallel, redundant, counterflow passage interconnected with appropriate manifolding, and assembled by adhesive bonding. The cooled skin was stiffened with a mechanically fastened conventional substructure of stringers and frames. A 40 water/60 glycol solution was the coolant. Low pressure leak testing, radiography, holography and infrared scanning were applied at various stages of fabrication to assess integrity and uniformity. By nondestructively inspecting selected specimens which were subsequently tested to destruction, it was possible to refine inspection standards as applied to this cooled panel design.

  2. Identifying relationships between unrelated pharmaceutical target proteins on the basis of shared active compounds.

    PubMed

    Miljković, Filip; Kunimoto, Ryo; Bajorath, Jürgen

    2017-08-01

    Computational exploration of small-molecule-based relationships between target proteins from different families. Target annotations of drugs and other bioactive compounds were systematically analyzed on the basis of high-confidence activity data. A total of 286 novel chemical links were established between distantly related or unrelated target proteins. These relationships involved a total of 1859 bioactive compounds including 147 drugs and 141 targets. Computational analysis of large amounts of compounds and activity data has revealed unexpected relationships between diverse target proteins on the basis of compounds they share. These relationships are relevant for drug discovery efforts. Target pairs that we have identified and associated compound information are made freely available.

  3. Layered Metals Fabrication Technology Development for Support of Lunar Exploration at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth G.; Good, James E.; Gilley, Scott D.

    2007-01-01

    NASA's human exploration initiative poses great opportunity and risk for missions to the Moon and beyond. In support of these missions, engineers and scientists at the Marshall Space Flight Center are developing technologies for ground-based and in-situ fabrication capabilities utilizing provisioned and locally-refined materials. Development efforts are pushing state-of-the art fabrication technologies to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, launch vehicle components and crew exercise equipment. This paper addresses current fabrication technologies relative to meeting targeted capabilities, near term advancement goals, and process certification of fabrication methods.

  4. The Variation of Work Productivity and Muscle Activities at Different Levels of Production Target

    NASA Astrophysics Data System (ADS)

    Nur, Nurhayati Mohd; Dawal, Siti Zawiah Md; Dahari, Mahidzal; Zuhairah Mahmud Zuhudi, Nurul

    2017-10-01

    This paper aims to investigate the variation of work productivity and muscle activities among workers performing industrial repetitive tasks at four different levels of production target. The work productivity and muscle activities data were recorded from twenty workers at four levels of production target corresponding to “participative (PS1)”, “normal (PS2)”, “high (PS3)” and “very high (PS4)”. The results showed that worker productivity was found to increase at higher production target and there was a significant change (p < 0.005) in work productivity across the four different production targets. The muscle activities were found to increase at higher production target and correspond to more discomfort and a higher rate of muscle fatigue. The results indicated that working with a higher production target results in higher worker productivity, but could lead to higher risk of WMSDs.

  5. Target Abundance-Based Fitness Screening (TAFiS) Facilitates Rapid Identification of Target-Specific and Physiologically Active Chemical Probes

    PubMed Central

    Butts, Arielle; DeJarnette, Christian; Peters, Tracy L.; Parker, Josie E.; Kerns, Morgan E.; Eberle, Karen E.; Kelly, Steve L.

    2017-01-01

    ABSTRACT Traditional approaches to drug discovery are frustratingly inefficient and have several key limitations that severely constrain our capacity to rapidly identify and develop novel experimental therapeutics. To address this, we have devised a second-generation target-based whole-cell screening assay based on the principles of competitive fitness, which can rapidly identify target-specific and physiologically active compounds. Briefly, strains expressing high, intermediate, and low levels of a preselected target protein are constructed, tagged with spectrally distinct fluorescent proteins (FPs), and pooled. The pooled strains are then grown in the presence of various small molecules, and the relative growth of each strain within the mixed culture is compared by measuring the intensity of the corresponding FP tags. Chemical-induced population shifts indicate that the bioactivity of a small molecule is dependent upon the target protein’s abundance and thus establish a specific functional interaction. Here, we describe the molecular tools required to apply this technique in the prevalent human fungal pathogen Candida albicans and validate the approach using two well-characterized drug targets—lanosterol demethylase and dihydrofolate reductase. However, our approach, which we have termed target abundance-based fitness screening (TAFiS), should be applicable to a wide array of molecular targets and in essentially any genetically tractable microbe. IMPORTANCE Conventional drug screening typically employs either target-based or cell-based approaches. The first group relies on biochemical assays to detect modulators of a purified target. However, hits frequently lack drug-like characteristics such as membrane permeability and target specificity. Cell-based screens identify compounds that induce a desired phenotype, but the target is unknown, which severely restricts further development and optimization. To address these issues, we have developed a second

  6. Engineering of Iron-Based Magnetic Activated Carbon Fabrics for Environmental Remediation

    PubMed Central

    Haham, Hai; Grinblat, Judith; Sougrati, Moulay-Tahar; Stievano, Lorenzo; Margel, Shlomo

    2015-01-01

    Magnetic Fe3O4, Fe and Fe/Pd nanoparticles embedded within the pores of activated carbon fabrics (ACF) were prepared by impregnation of the ACF in iron acetylacetanoate (Fe(acac)3) ethanol solution, followed by thermal decomposition of the embedded iron precursor at 200, 400 and 600 °C in an inert atmosphere. The effect of the annealing temperature on the chemical composition, shape, crystallinity, surface area, pore volume, and magnetic properties of the various functionalized ACF was elucidated. The Fe nanoparticles within the ACF were also doped with tinier Pd nanoparticles, by impregnation of the Fe/ACF in palladium acetate ethanol solution. The potential use of the functionalized ACF for removal of a model azo-dye, orange II, was demonstrated. This study illustrated the enhanced removal of the dye from an aqueous solution according to the following order: Fe/Pd/ACF > Fe/ACF > ACF. In addition, the enhanced activity of Fe3O4/ACF in the presence of increasing concentrations of H2O2 (Fenton catalysts) was also illustrated. PMID:28793459

  7. Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent

    PubMed Central

    Baer, Géraldine M; Small, Ward; Wilson, Thomas S; Benett, William J; Matthews, Dennis L; Hartman, Jonathan; Maitland, Duncan J

    2007-01-01

    Background Vascular stents are small tubular scaffolds used in the treatment of arterial stenosis (narrowing of the vessel). Most vascular stents are metallic and are deployed either by balloon expansion or by self-expansion. A shape memory polymer (SMP) stent may enhance flexibility, compliance, and drug elution compared to its current metallic counterparts. The purpose of this study was to describe the fabrication of a laser-activated SMP stent and demonstrate photothermal expansion of the stent in an in vitro artery model. Methods A novel SMP stent was fabricated from thermoplastic polyurethane. A solid SMP tube formed by dip coating a stainless steel pin was laser-etched to create the mesh pattern of the finished stent. The stent was crimped over a fiber-optic cylindrical light diffuser coupled to an infrared diode laser. Photothermal actuation of the stent was performed in a water-filled mock artery. Results At a physiological flow rate, the stent did not fully expand at the maximum laser power (8.6 W) due to convective cooling. However, under zero flow, simulating the technique of endovascular flow occlusion, complete laser actuation was achieved in the mock artery at a laser power of ~8 W. Conclusion We have shown the design and fabrication of an SMP stent and a means of light delivery for photothermal actuation. Though further studies are required to optimize the device and assess thermal tissue damage, photothermal actuation of the SMP stent was demonstrated. PMID:18042294

  8. Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol

    NASA Astrophysics Data System (ADS)

    Svetlichnyi, V. A.; Lapin, I. N.

    2013-10-01

    Size characteristics, structure, and spectral and luminescent properties of nanoparticles fabricated by laser ablation of zinc metal targets in water and ethanol are experimentally investigated upon excitation by Nd:YAG-laser radiation (1064 nm, 7 ns, and 15 Hz). It is demonstrated that zinc oxide nanoparticles with average sizes of 10 nm (in water) and 16 nm (in ethanol) are formed in the initial stage as a result of ablation. The kinetics of the absorption and luminescence spectra, transmission electron microscopy, and x-ray structural analysis demonstrate that during long storage of water dispersions and their drying, nanoparticles efficiently interact with carbon dioxide gas of air that leads to the formation of water-soluble Zn(CO3)2(OH)6. In ethanol, Zn oxidation leads to the formation of stable dispersions of ZnO nanoparticles with 99% of the wurtzite phase; in this case, the fluorescence spectra of ZnO nanoparticles change with time, shifting toward longer wavelength region from 550 to 620 nm, which is caused by the changed nature of defects.

  9. The research of multi-frame target recognition based on laser active imaging

    NASA Astrophysics Data System (ADS)

    Wang, Can-jin; Sun, Tao; Wang, Tin-feng; Chen, Juan

    2013-09-01

    Laser active imaging is fit to conditions such as no difference in temperature between target and background, pitch-black night, bad visibility. Also it can be used to detect a faint target in long range or small target in deep space, which has advantage of high definition and good contrast. In one word, it is immune to environment. However, due to the affect of long distance, limited laser energy and atmospheric backscatter, it is impossible to illuminate the whole scene at the same time. It means that the target in every single frame is unevenly or partly illuminated, which make the recognition more difficult. At the same time the speckle noise which is common in laser active imaging blurs the images . In this paper we do some research on laser active imaging and propose a new target recognition method based on multi-frame images . Firstly, multi pulses of laser is used to obtain sub-images for different parts of scene. A denoising method combined homomorphic filter with wavelet domain SURE is used to suppress speckle noise. And blind deconvolution is introduced to obtain low-noise and clear sub-images. Then these sub-images are registered and stitched to combine a completely and uniformly illuminated scene image. After that, a new target recognition method based on contour moments is proposed. Firstly, canny operator is used to obtain contours. For each contour, seven invariant Hu moments are calculated to generate the feature vectors. At last the feature vectors are input into double hidden layers BP neural network for classification . Experiments results indicate that the proposed algorithm could achieve a high recognition rate and satisfactory real-time performance for laser active imaging.

  10. Surface-enhanced Raman scattering active gold nanoparticle/nanohole arrays fabricated through electron beam lithography

    NASA Astrophysics Data System (ADS)

    Wu, Tsunghsueh; Lin, Yang-Wei

    2018-03-01

    Effective surface-enhanced Raman scattering (SERS)-active substrates from gold nanoparticle and gold nanohole arrays were successfully fabricated through electron beam lithography with precise computer-aided control of the unit size and intergap distance. Their SERS performance was evaluated using 4-mercaptobenzoic acid (4-MBA). These gold arrays yielded strong SERS signals under 785 nm laser excitation. The enhancement factors for 4-MBA molecules on the prepared gold nanoparticle and nanohole arrays maxed at 1.08 × 107 and 8.61 × 106, respectively. The observed increase in SERS enhancement was attributed to the localized surface plasmon resonance (LSPR) wavelength shifting toward the near-infrared regime when the gold nanohole diameter increased, in agreement with the theoretical prediction in this study. The contribution of LSPR to the Raman enhancement from nanohole arrays deposited on fluorine-doped tin oxide glass was elucidated by comparing SERS and transmission spectra. This simple fabrication procedure, which entails employing electron beam lithography and the controllability of the intergap distance, suggests highly promising uses of nanohole arrays as functional components in sensing and photonic devices.

  11. Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

    PubMed Central

    Tu, Fan; Drost, Martin; Szenti, Imre; Kiss, Janos; Kónya, Zoltan

    2017-01-01

    We report on the fabrication of carbon nanotubes (CNTs) at predefined positions and controlled morphology, for example, as individual nanotubes or as CNT forests. Electron beam induced deposition (EBID) with subsequent autocatalytic growth (AG) was applied to lithographically produce catalytically active seeds for the localized growth of CNTs via chemical vapor deposition (CVD). With the precursor Fe(CO)5 we were able to fabricate clean iron deposits via EBID and AG. After the proof-of-principle that these Fe deposits indeed act as seeds for the growth of CNTs, the influence of significant EBID/AG parameters on the deposit shape and finally the yield and morphology of the grown CNTs was investigated in detail. Based on these results, the parameters could be optimized such that EBID point matrixes (6 × 6) were fabricated on a silica surface whereby at each predefined site only one CNT was produced. Furthermore, the localized fabrication of CNT forests was targeted and successfully achieved on an Al2O3 layer on a silicon sample. A peculiar lift-up of the Fe seed structures as “flakes” was observed and the mechanism was discussed. Finally, a proof-of-principle was presented showing that EBID deposits from the precursor Co(CO)3NO are also very effective catalysts for the CNT growth. Even though the metal content (Co) of the latter is reduced in comparison to the Fe deposits, effective CNT growth was observed for the Co-containing deposits at lower CVD temperatures than for the corresponding Fe deposits. PMID:29259874

  12. Electrical properties of Al foil/n-4H-SiC Schottky junctions fabricated by surface-activated bonding

    NASA Astrophysics Data System (ADS)

    Morita, Sho; Liang, Jianbo; Matsubara, Moeko; Dhamrin, Marwan; Nishio, Yoshitaka; Shigekawa, Naoteru

    2018-02-01

    We fabricate 17-µm-thick Al foil/n-4H-SiC Schottky junctions by surface-activated bonding. Their current-voltage and capacitance-voltage characteristics are compared with those of Schottky junctions fabricated by evaporating Al layers on n-4H-SiC epilayers. We find that the ideality factor of Al foil/SiC junctions is larger than that of conventional junctions, which is due to the irradiation of the fast atom beam (FAB) of Ar. The ideality factor of Al foil/SiC junctions is improved by annealing at 400 °C. We also find that the Schottky barrier height is increased by FAB irradiation, which is likely to be due to the negative charges formed at SiC surfaces.

  13. LLNL Scientist is Passionate About Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butlin, Becky

    With a lifelong passion for problem-solving and a love of production, Becky Butlin has helped lead the National Ignition Facility Target Fabrication Team through obstacles and challenges for the past six years.

  14. Activation of corn cellulose with alcohols to improve its dissolvability in fabricating ultrafine fibers via electrospinning.

    PubMed

    Chen, Haizhen; Ni, Jinping; Chen, Jing; Xue, Wenwen; Wang, Jinggang; Na, Haining; Zhu, Jin

    2015-06-05

    Water and four small molecular alcohols are respectively used to activate corn cellulose (CN cellulose) with the aim to improve the dissolvability in DMAc/LiCl. Among all these activated agents, monohydric alcohols are found to produce the optimal effect of activation in the whole process including of activating, dissolving, and electrospinning of CN cellulose. Meanwhile, well distributed fibers with the diameter of 500nm-2μm are fabricated in electrospinning. Understanding the activation effect of monohydric alcohols with water and polyhydric alcohols, the most effective activated agent is ascertained with the characteristics of small molecular size, low viscosity, and single functionality. This work is definitely initiated to understand the critical principle of CN cellulose in dissolving. Accordingly, a feasible methodology is also established to prepare ultrafine cellulose fibers with good morphology in electrospinning. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Longitudinal gas-density profilometry for plasma-wakefield acceleration targets

    NASA Astrophysics Data System (ADS)

    Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens

    2014-03-01

    Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.

  16. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    PubMed Central

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  17. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers.

    PubMed

    Inaba, Shusei; Vohra, Varun

    2017-05-09

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED-EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows.

  18. Supercapacitors based on carbon nanotube fuzzy fabric structural composites

    NASA Astrophysics Data System (ADS)

    Alresheedi, Bakheet Awad

    Supercapacitors used in conjunction with batteries offer a solution to energy storage and delivery problems in systems where high power output is required, such as in fully electric cars. This project aimed to enhance current supercapacitor technology by fabricating activated carbon on a substrate consisting of carbon nanotubes (CNTs) grown on a carbon fiber fabric (fuzzy fabric). The fuzzy surface of CNTs lowers electrical resistance and increases porosity, resulting in a flexible fabric with high specific capacitance. Experimental results confirm that the capacitance of activated carbon fabricated on the fuzzy fiber composite is significantly higher than when activated carbon is formed simply on a bare carbon fiber substrate, indicating the usefulness of CNTs in supercapacitor technology. The fabrication of the fuzzy fiber based carbon electrode was fairly complex. The processing steps included composite curing, stabilization, carbonization and activation. Ratios of the three basic ingredients for the supercapacitor (fiber, CNT and polymer matrix) were investigated through experimentation and Grey relational analysis. The aim of Grey relational analysis was to examine factors that affect the overall performance of the supercapacitor. It is based on finding relationships in both independent and interrelated data series (parameters). Using this approach, it was determined that the amount of CNTs on the fiber surface plays a major role in the capacitor properties. An increased amount of CNTs increases the surface area and electrical conductivity of the substrate, while also reducing the required time of activation. Technical advances in the field of Materials and Structures are usually focused on attaining superior performance while reducing weight and cost. To achieve such combinations, multi-functionality has become essential; namely, to reduce weight by imparting additional functions simultaneously to a single material. In this study, a structural composite with

  19. Copper deposition on fabrics by rf plasma sputtering for medical applications

    NASA Astrophysics Data System (ADS)

    Segura, G.; Guzmán, P.; Zuñiga, P.; Chaves, S.; Barrantes, Y.; Navarro, G.; Asenjo, J.; Guadamuz Vargas, S., VI; Chaves, J.

    2015-03-01

    The present work is about preparation and characterization of RF sputtered Cu films on cotton by the usage of a Magnetron Sputter Source and 99.995% purity Cu target at room temperature. Cotton fabric samples of 1, 2 and 4 min of sputtering time at discharge pressure of 1×10-2 Torr and distance between target and sample of 8 cm were used. The main goal was to qualitatively test the antimicrobial action of copper on fabrics. For that purpose, a reference strain of Escherichia Coli ATCC 35218 that were grown in TSA plates was implemented. Results indicated a decrease in the growth of bacteria by contact with Cu; for fabric samples with longer sputtering presented lower development of E. coli colonies. The scope of this research focused on using these new textiles in health field, for example socks can be made with this textile for the treatment of athlete's foot and the use in pajamas, sheets, pillow covers and robes in hospital setting for reducing the spread of microorganisms.

  20. 77 FR 73415 - Authorization of Export Production Activity, Foreign-Trade Subzone 12A, TST NA Trim, LLC (Fabric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-62-2012] Authorization of Export Production Activity, Foreign-Trade Subzone 12A, TST NA Trim, LLC (Fabric/Leather Lamination and Cutting), Hidalgo, TX On July 25, 2012, the McAllen Foreign Trade Zone, Inc., grantee of FTZ 12, submitted a notification...

  1. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Swati; Yadav, Anuradha; Academy of Scientific and Innovative Research

    Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and they serve to be a promising therapeutic target for several neurodegenerative disorders, which includes Parkinson disease, Alzheimer's disease, Huntington disease and Amyotrophic Lateral Sclerosis. PPARs play an important role in the downregulation of mitochondrial dysfunction, proteasomal dysfunction, oxidative stress, and neuroinflammation, which are the major causes of the pathogenesis of neurodegenerative disorders. In this review, we discuss about the role of PPARs as therapeutic targets in neurodegenerative disorders. Several experimental approaches suggest potential application of PPAR agonist as well as antagonist in the treatment of neurodegenerative disorders. Several epidemiological studies found thatmore » the regular usage of PPAR activating non-steroidal anti-inflammatory drugs is effective in decreasing the progression of neurodegenerative diseases including PD and AD. We also reviewed the neuroprotective effects of PPAR agonists and associated mechanism of action in several neurodegenerative disorders both in vitro as well as in vivo animal models. - Highlights: • Peroxisome -activated receptors (PPARs) serve to be a promising therapeutic target for several neurodegenerative disorders. • PPAR agonist as well as provides neuroprotection in vitro as well as in vivo animal models of neurodegenerative disorders. • PPAR activating anti-inflammatory drugs use is effective in decreasing progression of neurodegenerative diseases.« less

  2. Optical Fabrication and Measurement AXAF and CIRS

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell

    1997-01-01

    This paper presents a final report on Optical Fabrication and Measurement AXAF (Advanced X-Ray Astrophysics Facility) and CIRS (Composite Infrared Spectrometer) from July 12, 1994 to August 16, 1996.. This paper includes specific tasks to be performed. The tasks are as follows: 1) Preparation and Characterization of Zerodur Glass Samples; 2) Develop and Fabricate AXAF and CIRS Metrology Tooling; 3) Update AXAF Technical Data Base; and 4) Perform Fabrication Related Metrology Tasks for CIRS. This paper also includes final activities from the July, 1996 report to August 1996.

  3. HER2 activating mutations are targets for colorectal cancer treatment

    PubMed Central

    Kavuri, Shyam M.; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M.; Migliardi, Giorgia; Searleman, Adam C.; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A.; Bertotti, Andrea; Bose, Ron

    2015-01-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of colorectal cancer patients. Introduction of the HER2 mutations, S310F, L755S, V777L, V842I, and L866M, into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutations are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors, neratinib and afatinib. HER2 gene sequencing of 48 cetuximab resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) WT colorectal cancer patient-derived xenografts (PDX’s) identified 4 PDX’s with HER2 mutations. HER2 targeted therapies were tested on two PDX’s. Treatment with a single HER2 targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2 targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2 mutated PDX’s. PMID:26243863

  4. D.E.--Fashion Merchandising. Fiber and Fabric Identification. Kit No. 46. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Vaughan, Ellen C.

    An instructor's manual and student activity guide on fiber and fabric identification are provided in this set of prevocational education materials which focuses on the vocational area of distributive education (fashion merchandising). (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven…

  5. Building Model NASA Satellites: Elementary Students Studying Science Using a NASA-Themed Transmedia Book Featuring Digital Fabrication Activities

    ERIC Educational Resources Information Center

    Tillman, Daniel; An, Song; Boren, Rachel; Slykhuis, David

    2014-01-01

    This study assessed the impact of nine lessons incorporating a NASA-themed transmedia book featuring digital fabrication activities on 5th-grade students (n = 29) recognized as advanced in mathematics based on their academic record. Data collected included a pretest and posttest of science content questions taken from released Virginia Standards…

  6. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting.

    PubMed

    Chen, Fuqiang; Ding, Xiao; Feng, Yongmei; Seebeck, Timothy; Jiang, Yanfang; Davis, Gregory D

    2017-04-07

    Bacterial CRISPR-Cas systems comprise diverse effector endonucleases with different targeting ranges, specificities and enzymatic properties, but many of them are inactive in mammalian cells and are thus precluded from genome-editing applications. Here we show that the type II-B FnCas9 from Francisella novicida possesses novel properties, but its nuclease function is frequently inhibited at many genomic loci in living human cells. Moreover, we develop a proximal CRISPR (termed proxy-CRISPR) targeting method that restores FnCas9 nuclease activity in a target-specific manner. We further demonstrate that this proxy-CRISPR strategy is applicable to diverse CRISPR-Cas systems, including type II-C Cas9 and type V Cpf1 systems, and can facilitate precise gene editing even between identical genomic sites within the same genome. Our findings provide a novel strategy to enable use of diverse otherwise inactive CRISPR-Cas systems for genome-editing applications and a potential path to modulate the impact of chromatin microenvironments on genome modification.

  7. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting

    PubMed Central

    Chen, Fuqiang; Ding, Xiao; Feng, Yongmei; Seebeck, Timothy; Jiang, Yanfang; Davis, Gregory D.

    2017-01-01

    Bacterial CRISPR–Cas systems comprise diverse effector endonucleases with different targeting ranges, specificities and enzymatic properties, but many of them are inactive in mammalian cells and are thus precluded from genome-editing applications. Here we show that the type II-B FnCas9 from Francisella novicida possesses novel properties, but its nuclease function is frequently inhibited at many genomic loci in living human cells. Moreover, we develop a proximal CRISPR (termed proxy-CRISPR) targeting method that restores FnCas9 nuclease activity in a target-specific manner. We further demonstrate that this proxy-CRISPR strategy is applicable to diverse CRISPR–Cas systems, including type II-C Cas9 and type V Cpf1 systems, and can facilitate precise gene editing even between identical genomic sites within the same genome. Our findings provide a novel strategy to enable use of diverse otherwise inactive CRISPR–Cas systems for genome-editing applications and a potential path to modulate the impact of chromatin microenvironments on genome modification. PMID:28387220

  8. Production of Engineered Fabrics Using Artificial Neural Network-Genetic Algorithm Hybrid Model

    NASA Astrophysics Data System (ADS)

    Mitra, Ashis; Majumdar, Prabal Kumar; Banerjee, Debamalya

    2015-10-01

    The process of fabric engineering which is generally practised in most of the textile mills is very complicated, repetitive, tedious and time consuming. To eliminate this trial and error approach, a new approach of fabric engineering has been attempted in this work. Data sets of construction parameters [comprising of ends per inch, picks per inch, warp count and weft count] and three fabric properties (namely drape coefficient, air permeability and thermal resistance) of 25 handloom cotton fabrics have been used. The weights and biases of three artificial neural network (ANN) models developed for the prediction of drape coefficient, air permeability and thermal resistance were used to formulate the fitness or objective function and constraints of the optimization problem. The optimization problem was solved using genetic algorithm (GA). In both the fabrics which were attempted for engineering, the target and simulated fabric properties were very close. The GA was able to search the optimum set of fabric construction parameters with reasonably good accuracy except in case of EPI. However, the overall result is encouraging and can be improved further by using larger data sets of handloom fabrics by hybrid ANN-GA model.

  9. Characterization studies of prototype ISOL targets for the RIA

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Burtseva, Tatiana; Neubauer, Janelle; Nolen, Jerry A.; Villari, Antonio C. C.; Gomes, Itacil C.

    2005-12-01

    Targets employing refractory compounds are being developed for the rare isotope accelerator (RIA) facility to produce ion species far from stability. With the 100 kW beams proposed for the production targets, dissipation of heat becomes a challenging issue. In our two-step target design, neutrons are generated in a refractory primary target, inducing fission in the surrounding uranium carbide. The interplay of density, grain size, thermal conductivity and diffusion properties of the UC2 needs to be well understood before fabrication. Thin samples of uranium carbide were prepared for thermal conductivity measurements using an electron beam to heat the sample and an optical pyrometer to observe the thermal radiation. Release efficiencies and independent thermal analysis on these samples are being undertaken at Oak Ridge National Laboratory (ORNL). An alternate target concept for RIA, the tilted slab approach promises to be simple with fast ion release and capable of withstanding high beam intensities while providing considerable yields via spallation. A proposed small business innovative research (SBIR) project will design a prototype tilted target, exploring the materials needed for fabrication and testing at an irradiation facility to address issues of heat transfer and stresses within the target.

  10. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback.

    PubMed

    Jesse, Stephen; Hudak, Bethany M; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C; Lupini, Andrew R; Borisevich, Albina Y; Kalinin, Sergei V

    2018-06-22

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  11. Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback

    NASA Astrophysics Data System (ADS)

    Jesse, Stephen; Hudak, Bethany M.; Zarkadoula, Eva; Song, Jiaming; Maksov, Artem; Fuentes-Cabrera, Miguel; Ganesh, Panchapakesan; Kravchenko, Ivan; Snijders, Panchapakesan C.; Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.

    2018-06-01

    Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore’s law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

  12. Developing, implementing, and evaluating a condom promotion program targeting sexually active adolescents.

    PubMed

    Alstead, M; Campsmith, M; Halley, C S; Hartfield, K; Goldbaum, G; Wood, R W

    1999-12-01

    This article describes the development, implementation, and evaluation of the Condom Campaign, a 1995 HIV prevention program promoting condom use among sexually active adolescents in three King County, Washington, urban communities. This program employed three main strategies: (a) mobilizing all levels of the target communities to support and guide program development and implementation; (b) creating and implementing a mass media campaign targeting sexually active teenagers that promoted correct condom use and favorable attitudes toward condoms; and (c) recruiting public agencies, community organizations, and businesses to distribute condoms from bins and vending machines. We evaluated the program through a series of cross-sectional interviews conducted in the three communities chosen for their elevated levels of adolescent sexual risk behavior. Overall, 73% of target youth reported exposure to the Condom Campaign; exposure did not differ by age, gender, race, or level of sexual experience. Levels of sexual activity remained stable throughout the media campaign.

  13. Panel fabrication utilizing GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.

    1984-01-01

    The development of the GaAs solar cells for space applications is described. The activities in the fabrication of GaAs solar panels are outlined. Panels were fabricated while introducing improved quality control, soldering laydown and testing procedures. These panels include LIPS II, San Marco Satellite, and a low concentration panel for Rockwells' evaluation. The panels and their present status are discussed.

  14. Antimicrobial activity of biopolymer-antibiotic thin films fabricated by advanced pulsed laser methods

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Popescu, C.; Dorcioman, G.; Miroiu, F. M.; Socol, G.; Mihailescu, I. N.; Gittard, S. D.; Miller, P. R.; Narayan, R. J.; Enculescu, M.; Chrisey, D. B.

    2013-08-01

    We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer-drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA-gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer-drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.

  15. A numerically optimized active shield for improved TMS targeting

    PubMed Central

    Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric

    2010-01-01

    Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region (“sharpness”), while simultaneously increase the induced electric field deep in the target region relative to the surface (“penetration”). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1 % and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9 %) PMID:20965451

  16. Towards multifunctional cellulosic fabric: UV photo-reduction and in-situ synthesis of silver nanoparticles into cellulose fabrics.

    PubMed

    Rehan, Mohamed; Barhoum, Ahmed; Van Assche, Guy; Dufresne, Alain; Gätjen, Linda; Wilken, Ralph

    2017-05-01

    Herein, the highly multifunctional cotton fabric surfaces were designed with excellent coloration, UV-protection function, and antimicrobial activity. These multifunctional functions were developed by in-situ synthesis of silver nanoparticles (Ag NPs) into the cotton fabric surface using a simple green one-pot "UV-reduction" method. Cotton fabrics were pretreated with non-anionic detergent, immersed into alcoholic silver nitrate solution (concentration ranging from 100 to 500ppm), squeezed to remove excess solution and then exposed to UV-irradiation (range 320-400nm) for 1h. The influence UV-irradiation on the thermal, chemical, optical and biological properties of the cotton fabric surface was discussed in details. The UV-irradiation promotes reducing of Ag + ions and the cotton fabrics act as seed medium for Ag NPs formation by "heterogeneous nucleation". Increasing Ag + concentration (from 100 to 500ppm) results in Ag NPs of particle size (distribution) of 50-100nm. Interestingly, the Ag NPs exhibited different localized surface Plasmon resonance properties causing a coloration of the cotton fabrics with different color shades ranging from bright to dark brown with excellent color fastness properties. The treated cotton fabrics also show high protecting functions against UV-transmission (reduction of 65%) and Escherichia coli growth (99%). The side-effects of the UV-reduction process are further investigated. Published by Elsevier B.V.

  17. Impact of an Australian mass media campaign targeting physical activity in 1998.

    PubMed

    Bauman, A E; Bellew, B; Owen, N; Vita, P

    2001-07-01

    Physical activity is now a public health priority, but there is only limited evidence on the effectiveness of mass-reach campaigns. Paid and unpaid television and print-media advertising, physician mail-outs, and community-level support programs and strategies. A mass-media statewide campaign to promote regular moderate-intensity activity was conducted during February 1998. The target group was adults aged 25 to 60 who were motivated but insufficiently active. Cohort and independent-sample, cross-sectional representative population surveys, before and after the campaign. The intervention was conducted in the state of New South Wales, with the other states of Australia as the comparison region. Telephone survey items on physical activity, media message awareness, physical activity knowledge, self-efficacy, and intentions. Unprompted recall of the activity messages in the campaign state increased substantially from 2.1% to 20.9% (p<0.01), with small changes elsewhere in Australia (1.2% to 2.6%). There were large changes in prompted awareness from 12.9% to 50.7% (p<0.0001), much larger than changes elsewhere (14.1% to 16%, p=0.06). Knowledge of appropriate moderate-intensity activity and physical activity self-efficacy increased significantly and only in the campaign state. Compared to all others, those in the target group who recalled the media message were 2.08 times more likely to increase their activity by at least an hour per week (95% confidence interval = 1.51-2.86). This integrated campaign positively influenced short-term physical activity message recall, knowledge, and behavior of the target population, compared to the population in the region who were not exposed.

  18. Effect of Orientation on Tensile Properties of Inconel 718 Block Fabricated with Electron Beam Freeform Fabrication (EBF3)

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Atherton, Todd S.

    2010-01-01

    Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate an Inconel 718 bulk block deposit. Room temperature tensile properties were measured as a function of orientation and location within the block build. This study is a follow-on activity to previous work on Inconel 718 EBF3 deposits that were too narrow to allow properties to be measured in more than one orientation

  19. Targeting and tailoring physical activity information using print and information technologies.

    PubMed

    Napolitano, Melissa A; Marcus, Bess H

    2002-07-01

    With the large numbers of physically inactive individuals, it is important that interventions reach a broad spectrum of the population. This paper focuses on targeting and tailoring physical activity information, and the use of mediated interventions, specifically those using print, and other information technologies for promoting physical activity.

  20. Active Debris Removal of Multiple Priority Targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Flegel, Sven Kevin; Vörsmann, Peter; Wiedemann, Carsten; Gelhaus, Johannes; Moeckel, Marek; Kebschull, Christopher

    2012-07-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 kilometers with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome. Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any future launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target. In this paper several systems, e.g. chemical and electrical engines are analysed with the main focus on removing multiple targets within one single mission. The service satellite has to undock from the previously de-orbited target in order to start the rendezvous and docking phase for a subsequent target. The targets are chosen from a previously defined priority list in order to enhance the mission

  1. Design and evaluation of acrylate polymeric carriers for fabrication of pH-sensitive microparticles.

    PubMed

    Arya, Amit; Majumdar, Dipak K; Pathak, Dharam Pal; Sharma, Anil K; Ray, Alok R

    2017-02-01

    Colon-targeted microparticles loaded with a model anti-inflammatory drug were fabricated using especially designed acrylic acid-butyl methacrylate copolymers. Microparticles were prepared by oil-in-oil solvent evaporation method using Span 80 as emulsifier. Microparticles were found to be spherical in shape, hemocompatible and anionic with zeta potential of -27.4 and -29.0 mV. Entrapment of drug in the microparticles was confirmed by Fourier transform infrared (FTIR) spectroscopy. However, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) revealed amorphous nature of microparticles due to the dilution effect of amorphous polymer. The microparticles released less than 5% drug at pH 1.2, while more than 90% of the drug load was released at pH 7.4. This suggested the colon targeting nature of the formulations. In experimentally developed colitis in Wistar rats, the microparticle formulation showed significant reduction (p < .05) in the disease activity score (disease symptoms), the colon-to-body weight ratio (tissue edema) and the myeloperoxidase, tumor necrosis factor (TNF)-α and interleukin (IL)-1β activities.

  2. Field precision machining technology of target chamber in ICF lasers

    NASA Astrophysics Data System (ADS)

    Xu, Yuanli; Wu, Wenkai; Shi, Sucun; Duan, Lin; Chen, Gang; Wang, Baoxu; Song, Yugang; Liu, Huilin; Zhu, Mingzhi

    2016-10-01

    In ICF lasers, many independent laser beams are required to be positioned on target with a very high degree of accuracy during a shot. The target chamber provides a precision platform and datum reference for final optics assembly and target collimation and location system. The target chamber consists of shell with welded flanges, reinforced concrete pedestal, and lateral support structure. The field precision machining technology of target chamber in ICF lasers have been developed based on ShenGuangIII (SGIII). The same center of the target chamber is adopted in the process of design, fabrication, and alignment. The technologies of beam collimation and datum reference transformation are developed for the fabrication, positioning and adjustment of target chamber. A supporting and rotating mechanism and a special drilling machine are developed to bore the holes of ports. An adjustment mechanism is designed to accurately position the target chamber. In order to ensure the collimation requirements of the beam leading and focusing and the target positioning, custom-machined spacers are used to accurately correct the alignment error of the ports. Finally, this paper describes the chamber center, orientation, and centering alignment error measurements of SGIII. The measurements show the field precision machining of SGIII target chamber meet its design requirement. These information can be used on similar systems.

  3. A strategy for actualization of active targeting nanomedicine practically functioning in a living body.

    PubMed

    Lee, Kyoung Jin; Shin, Seol Hwa; Lee, Jae Hee; Ju, Eun Jin; Park, Yun-Yong; Hwang, Jung Jin; Suh, Young-Ah; Hong, Seung-Mo; Jang, Se Jin; Lee, Jung Shin; Song, Si Yeol; Jeong, Seong-Yun; Choi, Eun Kyung

    2017-10-01

    Designing nanocarriers with active targeting has been increasingly emphasized as for an ideal delivery mechanism of anti-cancer therapeutic agents, but the actualization has been constrained by lack of reliable strategy ultimately applicable. Here, we designed and verified a strategy to achieve active targeting nanomedicine that works in a living body, utilizing animal models bearing a patient's tumor tissue and subjected to the same treatments that would be used in the clinic. The concept for this strategy was that a novel peptide probe and its counterpart protein, which responded to a therapy, were identified, and then the inherent ability of the peptide to target the designated tumor protein was used for active targeting in vivo. An initial dose of ionizing radiation was locally delivered to the gastric cancer (GC) tumor of a patient-derived xenograft mouse model, and phage-displayed peptide library was intravenously injected. The peptides tightly bound to the tumor were recovered, and the counterpart protein was subsequently identified. Peptide-conjugated liposomal drug showed dramatically improved therapeutic efficacy and possibility of diagnostic imaging with radiation. These results strongly suggested the potential of our strategy to achieve in vivo functional active targeting and to be applied clinically for human cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cost estimation for the active debris removal of multiple priority targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Wiedemann, Carsten; Schulz, Eugen

    The increasing number of space debris objects, especially in distinct low Earth orbit (LEO) altitudes between 600 and 1000 km, leads to an increase in the potential collision risk between the objects and threatens active satellites in that region. Several recent studies show that active debris removal (ADR) has to be performed in order to prevent a collisional cascading effect, also known as the Kessler syndrome. In order to stabilize the population growth in the critical LEO region, a removal of five prioritized objects per year has been recognized as a significant figure. Various proposals are addressing the technical issues for ADR missions, including the de-orbiting of objects by means of a service satellite using a chemical or an electric propulsion system. The servicer would rendezvous with a preselected target, perform a docking maneuver and then provide a de-orbit burn to transfer the target on a trajectory where it re-enters the Earth’s atmosphere within a given time frame. In this paper the technical aspects are complemented by a cost estimation model, focusing on multi target missions, which are based on a service satellite capable of de-orbiting more than one target within a single mission. The cost model for ADR includes initial development cost, production cost, launch cost and operation cost as well as the modelling of the propulsion system of the servicer. Therefore, different scenarios are defined for chemical and electric propulsion systems as applied to multi target missions, based on a literature review of concepts currently being under discussion. The costs of multi target missions are compared to a scenario where only one target is removed. Also, the results allow to determine an optimum number of objects to be removed per mission and provide numbers which can be used in future studies, e.g. those related to ADR cost and benefit analyses.

  5. The Active Target Time Projection Chamber at NSCL

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Bradt, J.; Ayyad, Y.; Mittig, W.; Ahn, T.; Beceiro-Novo, S.; Carpenter, L.; Cortesi, M.; Fritsch, A.; Kolata, J. J.; Lynch, W.; Watwood, N.

    2017-11-01

    Reactions in inverse kinematics close to the Coulomb barrier offer unique opportunities to study exotic nuclei, but they are plagued by the difficulty to efficiently and precisely measure the characteristics of the emerging particles. The Active Target Time Projection Chamber (AT-TPC) offers an elegant solution to this dilemma. In this device, the detector gas of the time projection chamber is at the same time the target in which nuclear reactions take place. The use of this new paradigm offers several advantages over conventional inert target methods, the most significant being the ability to increase the luminosity of experiments without loss of resolution. The AT-TPC and some results obtained on resonant α scattering to explore the clustering properties of neutron-rich nuclei are presented, as well as fusion cross section results using a 10Be radioactive beam. In addition, the first re-accelerated radioactive beam experiment using the fully commissioned ReA3 linac was conducted recently at the NSCL with the AT-TPC, where proton resonant scattering of a 4.6 MeV/u 46Ar beam was used to measure the neutron single-particle strength in 47Ar.

  6. 3D printing of graphene-doped target for "matrix-free" laser desorption/ionization mass spectrometry.

    PubMed

    Wang, Dingyi; Huang, Xiu; Li, Jie; He, Bin; Liu, Qian; Hu, Ligang; Jiang, Guibin

    2018-03-13

    We report a graphene-doped resin target fabricated via a 3D printing technique for laser desorption/ionization mass spectrometry analysis. The graphene doped in the target acts as an inherent laser absorber and ionization promoter, thus permitting the direct analysis of samples without adding matrix. This work reveals a new strategy for easy designing and fabrication of functional mass spectrometry devices.

  7. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    NASA Astrophysics Data System (ADS)

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-04-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound.

  8. Drug target identification using network analysis: Taking active components in Sini decoction as an example

    PubMed Central

    Chen, Si; Jiang, Hailong; Cao, Yan; Wang, Yun; Hu, Ziheng; Zhu, Zhenyu; Chai, Yifeng

    2016-01-01

    Identifying the molecular targets for the beneficial effects of active small-molecule compounds simultaneously is an important and currently unmet challenge. In this study, we firstly proposed network analysis by integrating data from network pharmacology and metabolomics to identify targets of active components in sini decoction (SND) simultaneously against heart failure. To begin with, 48 potential active components in SND against heart failure were predicted by serum pharmacochemistry, text mining and similarity match. Then, we employed network pharmacology including text mining and molecular docking to identify the potential targets of these components. The key enriched processes, pathways and related diseases of these target proteins were analyzed by STRING database. At last, network analysis was conducted to identify most possible targets of components in SND. Among the 25 targets predicted by network analysis, tumor necrosis factor α (TNF-α) was firstly experimentally validated in molecular and cellular level. Results indicated that hypaconitine, mesaconitine, higenamine and quercetin in SND can directly bind to TNF-α, reduce the TNF-α-mediated cytotoxicity on L929 cells and exert anti-myocardial cell apoptosis effects. We envisage that network analysis will also be useful in target identification of a bioactive compound. PMID:27095146

  9. Landing response of Aedes (Stegomyia) polynesiensis mosquitoes to coloured targets.

    PubMed

    Chambers, E W; Bossin, H C; Ritchie, S A; Russell, R C; Dobson, S L

    2013-09-01

    Aedes polynesiensis Marks (Diptera: Culicidae) is the primary vector of lymphatic filariasis (LF) in the island countries and territories of the South Pacific. In the development of a novel control tool, the response of Ae. polynesiensis to six different colours (three solid fabrics, two patterned fabrics and a plastic tarp) was measured using a digital photographic system. Adult mosquitoes were placed into an environmental chamber and allowed to choose between a white target and one of six experimental targets. Mosquito landing frequency and landing duration were calculated. Adult female Ae. polynesiensis preferred all of the experimental targets to the white control target. Mosquito landing frequency was highest for the solid targets (black, navy blue and red) followed in turn by the two colour pattern targets and the polyethylene target. Mosquito landing duration was greater for experimental targets when compared with white control targets. Mosquito landing frequencies did not change over time during the course of the assay. The response of male Ae. polynesiensis was also measured when exposed to a 100% cotton black target. Male mosquitoes preferred the black target to the white control target, although at levels lower than that observed in female mosquitoes. The results suggest that future investigations evaluating the visual responses of Ae. polynesiensis mosquitoes are warranted, with a special emphasis on semi-field and field-based experiments. © 2013 The Royal Entomological Society.

  10. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  11. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.

    PubMed

    Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-03-22

    Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by

  12. A Network-Based Multi-Target Computational Estimation Scheme for Anticoagulant Activities of Compounds

    PubMed Central

    Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-01-01

    Background Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. Methodology We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. Conclusions This article proposes a network-based multi-target computational estimation method for

  13. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  14. 78 FR 35612 - Agency Information Collection Activities; Comment Request; Targeted Teacher Shortage Areas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... address the targeted teacher deferment provision of the Higher Education Act of 1965, as amended. The... DEPARTMENT OF EDUCATION [Docket No. ED-2013-ICCD-0076] Agency Information Collection Activities; Comment Request; Targeted Teacher Shortage Areas Nationwide Listing AGENCY: Office of Postsecondary...

  15. Phishing for suitable targets in the Netherlands: routine activity theory and phishing victimization.

    PubMed

    Leukfeldt, E Rutger

    2014-08-01

    This article investigates phishing victims, especially the increased or decreased risk of victimization, using data from a cybercrime victim survey in the Netherlands (n=10,316). Routine activity theory provides the theoretical perspective. According to routine activity theory, several factors influence the risk of victimization. A multivariate analysis was conducted to assess which factors actually lead to increased risk of victimization. The model included background and financial data of victims, their Internet activities, and the degree to which they were "digitally accessible" to an offender. The analysis showed that personal background and financial characteristics play no role in phishing victimization. Among eight Internet activities, only "targeted browsing" led to increased risk. As for accessibility, using popular operating systems and web browsers does not lead to greater risk, while having up-to-date antivirus software as a technically capable guardian has no effect. The analysis showed no one, clearly defined group has an increased chance of becoming a victim. Target hardening may help, but opportunities for prevention campaigns aimed at a specific target group or dangerous online activities are limited. Therefore, situational crime prevention will have to come from a different angle. Banks could play the role of capable guardian.

  16. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system

    PubMed Central

    Elmore, Joshua R.; Sheppard, Nolan F.; Ramia, Nancy; Deighan, Trace; Li, Hong; Terns, Rebecca M.; Terns, Michael P.

    2016-01-01

    CRISPR–Cas systems eliminate nucleic acid invaders in bacteria and archaea. The effector complex of the Type III-B Cmr system cleaves invader RNAs recognized by the CRISPR RNA (crRNA ) of the complex. Here we show that invader RNAs also activate the Cmr complex to cleave DNA. As has been observed for other Type III systems, Cmr eliminates plasmid invaders in Pyrococcus furiosus by a mechanism that depends on transcription of the crRNA target sequence within the plasmid. Notably, we found that the target RNA per se induces DNA cleavage by the Cmr complex in vitro. DNA cleavage activity does not depend on cleavage of the target RNA but notably does require the presence of a short sequence adjacent to the target sequence within the activating target RNA (rPAM [RNA protospacer-adjacent motif]). The activated complex does not require a target sequence (or a PAM) in the DNA substrate. Plasmid elimination by the P. furiosus Cmr system also does not require the Csx1 (CRISPR-associated Rossman fold [CARF] superfamily) protein. Plasmid silencing depends on the HD nuclease and Palm domains of the Cmr2 (Cas10 superfamily) protein. The results establish the Cmr complex as a novel DNA nuclease activated by invader RNAs containing a crRNA target sequence and a rPAM. PMID:26848045

  17. Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia.

    PubMed

    Cho, Jay Y; Guo, Changsheng; Torello, Monica; Lunstrum, Gregory P; Iwata, Tomoko; Deng, Chuxia; Horton, William A

    2004-01-13

    Mutations of fibroblast growth factor receptor 3 (FGFR3) are responsible for achondroplasia (ACH) and related dwarfing conditions in humans. The pathogenesis involves constitutive activation of FGFR3, which inhibits proliferation and differentiation of growth plate chondrocytes. Here we report that activating mutations in FGFR3 increase the stability of the receptor. Our results suggest that the mutations disrupt c-Cbl-mediated ubiquitination that serves as a targeting signal for lysosomal degradation and termination of receptor signaling. The defect allows diversion of actively signaling receptors from lysosomes to a recycling pathway where their survival is prolonged, and, as a result, their signaling capacity is increased. The lysosomal targeting defect is additive to other mechanisms proposed to explain the pathogenesis of ACH.

  18. Ultra-facile fabrication of phosphorus doped egg-like hierarchic porous carbon with superior supercapacitance performance by microwave irradiation combining with self-activation strategy

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Han, Mei; Li, Yubing; He, Jingjing; Wang, Bing; Wang, Kunjie; Feng, Huixia

    2017-12-01

    Herein, we report an ultra-facile fabrication method for a phosphorus doped egg-like hierarchic porous carbon by microwave irradiation combining with self-activation strategy under air atmosphere. Comparing with the traditional pyrolytic carbonization method, the reported method exhibits incomparable merits, such as high energy efficiency, ultra-fast and inert atmosphere protection absent fabrication process. Similar morphology and graphitization degree with the sample fabricated by the traditional pyrolytic carbonization method under inert atmosphere protection for 2 h can be easily achieved by the reported microwave irradiation method just for 3 min under ambient atmosphere. The samples fabricated by the reported method display a unique phosphorus doped egg-like hierarchic porous structure, high specific surface area (1642 m2 g-1) and large pore volume (2.04 cm3 g-1). Specific capacitance of the samples fabricated by the reported method reaches up to 209 F g-1, and over 96.2% of initial capacitance remains as current density increasing from 0.5 to 20 A g-1, indicating the superior capacitance performance of the fabricated samples. The hierarchic porous structure, opened microporosity, additional pseudocapacitance, high electrolyte-accessible surface area and good conductivity make essential contribution to its superior capacitance performance.

  19. Universal surface-enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes.

    PubMed

    Zheng, Jing; Hu, Yaping; Bai, Junhui; Ma, Cheng; Li, Jishan; Li, Yinhui; Shi, Muling; Tan, Weihong; Yang, Ronghua

    2014-02-18

    Up to now, the successful fabrication of efficient hot-spot substrates for surface-enhanced Raman scattering (SERS) remains an unsolved problem. To address this issue, we describe herein a universal aptamer-based SERS biodetection approach that uses a single-stranded DNA as a universal trigger (UT) to induce SERS-active hot-spot formation, allowing, in turn, detection of a broad range of targets. More specifically, interaction between the aptamer probe and its target perturbs a triple-helix aptamer/UT structure in a manner that activates a hybridization chain reaction (HCR) among three short DNA building blocks that self-assemble into a long DNA polymer. The SERS-active hot-spots are formed by conjugating 4-aminobenzenethiol (4-ABT)-encoded gold nanoparticles with the DNA polymer through a specific Au-S bond. As proof-of-principle, we used this approach to quantify multiple target analytes, including thrombin, adenosine, and CEM cancer cells, achieving lowest limit of detection values of 18 pM, 1.5 nM, and 10 cells/mL, respectively. As a universal SERS detector, this prototype can be applied to many other target analytes through the use of suitable DNA-functional partners, thus inspiring new designs and applications of SERS for bioanalysis.

  20. Target mimicry provides a new mechanism for regulation of microRNA activity.

    PubMed

    Franco-Zorrilla, José Manuel; Valli, Adrián; Todesco, Marco; Mateos, Isabel; Puga, María Isabel; Rubio-Somoza, Ignacio; Leyva, Antonio; Weigel, Detlef; García, Juan Antonio; Paz-Ares, Javier

    2007-08-01

    MicroRNAs (miRNA) regulate key aspects of development and physiology in animals and plants. These regulatory RNAs act as guides of effector complexes to recognize specific mRNA sequences based on sequence complementarity, resulting in translational repression or site-specific cleavage. In plants, most miRNA targets are cleaved and show almost perfect complementarity with the miRNAs around the cleavage site. Here, we examined the non-protein coding gene IPS1 (INDUCED BY PHOSPHATE STARVATION 1) from Arabidopsis thaliana. IPS1 contains a motif with sequence complementarity to the phosphate (Pi) starvation-induced miRNA miR-399, but the pairing is interrupted by a mismatched loop at the expected miRNA cleavage site. We show that IPS1 RNA is not cleaved but instead sequesters miR-399. Thus, IPS1 overexpression results in increased accumulation of the miR-399 target PHO2 mRNA and, concomitantly, in reduced shoot Pi content. Engineering of IPS1 to be cleavable abolishes its inhibitory activity on miR-399. We coin the term 'target mimicry' to define this mechanism of inhibition of miRNA activity. Target mimicry can be generalized beyond the control of Pi homeostasis, as demonstrated using artificial target mimics.

  1. Modeling the target acquisition performance of active imaging systems

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Jacobs, Eddie L.; Halford, Carl E.; Vollmerhausen, Richard; Tofsted, David H.

    2007-04-01

    Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.

  2. Modeling the target acquisition performance of active imaging systems.

    PubMed

    Espinola, Richard L; Jacobs, Eddie L; Halford, Carl E; Vollmerhausen, Richard; Tofsted, David H

    2007-04-02

    Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.

  3. Orally active-targeted drug delivery systems for proteins and peptides.

    PubMed

    Li, Xiuying; Yu, Miaorong; Fan, Weiwei; Gan, Yong; Hovgaard, Lars; Yang, Mingshi

    2014-09-01

    In the past decade, extensive efforts have been devoted to designing 'active targeted' drug delivery systems (ATDDS) to improve oral absorption of proteins and peptides. Such ATDDS enhance cellular internalization and permeability of proteins and peptides via molecular recognition processes such as ligand-receptor or antigen-antibody interaction, and thus enhance drug absorption. This review focuses on recent advances with orally ATDDS, including ligand-protein conjugates, recombinant ligand-protein fusion proteins and ligand-modified carriers. In addition to traditional intestinal active transport systems of substrates and their corresponding receptors, transporters and carriers, new targets such as intercellular adhesion molecule-1 and β-integrin are also discussed. ATDDS can improve oral absorption of proteins and peptides. However, currently, no clinical studies on ATDDS for proteins and peptides are underway, perhaps due to the complexity and limited knowledge of transport mechanisms. Therefore, more research is warranted to optimize ATDDS efficiency.

  4. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper

    PubMed Central

    2011-01-01

    The study discussed the synthesis of silica sol using the sol-gel method, doped with two different amounts of Cu nanoparticles. Cotton fabric samples were impregnated by the prepared sols and then dried and cured. To block hydroxyl groups, some samples were also treated with hexadecyltrimethoxysilane. The average particle size of colloidal silica nanoparticles were measured by the particle size analyzer. The morphology, roughness, and hydrophobic properties of the surface fabricated on cotton samples were analyzed and compared via the scanning electron microscopy, the transmission electron microscopy, the scanning probe microscopy, with static water contact angle (SWC), and water shedding angle measurements. Furthermore, the antibacterial efficiency of samples was quantitatively evaluated using AATCC 100 method. The addition of 0.5% (wt/wt) Cu into silica sol caused the silica nanoparticles to agglomerate in more grape-like clusters on cotton fabrics. Such fabricated surface revealed the highest value of SWC (155° for a 10-μl droplet) due to air trapping capability of its inclined structure. However, the presence of higher amounts of Cu nanoparticles (2% wt/wt) in silica sol resulted in the most slippery smooth surface on cotton fabrics. All fabricated surfaces containing Cu nanoparticles showed the perfect antibacterial activity against both of gram-negative and gram-positive bacteria. PMID:22085594

  5. FABRICATION AND PHOTOCATALYTIC PROPERTIES OF TiO2 NANOFILMS CO-DOPED WITH Fe3+ AND Bi3+ IONS

    NASA Astrophysics Data System (ADS)

    Gao, Qiongzhi; Liu, Xin; Liu, Wei; Liu, Fang; Fang, Yueping; Zhang, Shiying; Zhou, Wuyi

    2016-12-01

    In this work, the titanium dioxide (TiO2) nanofilms co-doped with Fe3+ and Bi3+ ions were successfully fabricated by the sol-gel method with dip-coating process. Methylene blue was used as the target degradation chemical to study the photocatalytic properties affected by different doping contents of Fe3+ and Bi3+ ions. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and infrared (IR) spectroscopy. The results indicated that both pure TiO2 nanofilms and single-doped samples possessed the photocatalytic activity in degradation of methylene blue. However, when the nanofilms co-doped with Fe3+ and Bi3+ ions were fabricated at the molar ratio of 3:1 (Fe3+:Bi3+), they exhibited the best photocatalytic activity after the heat treatment at 500∘C for 2h. The wettability property test indicated that the TiO2 nanofilms co-doped with Fe3+ and Bi3+ ions in the molar ratio 3:1 owned an excellent hydrophilic property.

  6. 75 FR 51808 - Lead-Based Paint Renovation, Repair and Painting Activities in Target Housing and Child Occupied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... Renovation, Repair and Painting Activities in Target Housing and Child Occupied Facilities; State of Rhode.... These rules already cover all lead-based paint activities that are conducted in target housing and child... in target housing and child-occupied facilities. These rules: 1. Establish the discipline of lead...

  7. Comprehensive target populations for current active safety systems using national crash databases.

    PubMed

    Kusano, Kristofer D; Gabler, Hampton C

    2014-01-01

    The objective of active safety systems is to prevent or mitigate collisions. A critical component in the design of active safety systems is the identification of the target population for a proposed system. The target population for an active safety system is that set of crashes that a proposed system could prevent or mitigate. Target crashes have scenarios in which the sensors and algorithms would likely activate. For example, the rear-end crash scenario, where the front of one vehicle contacts another vehicle traveling in the same direction and in the same lane as the striking vehicle, is one scenario for which forward collision warning (FCW) would be most effective in mitigating or preventing. This article presents a novel set of precrash scenarios based on coded variables from NHTSA's nationally representative crash databases in the United States. Using 4 databases (National Automotive Sampling System-General Estimates System [NASS-GES], NASS Crashworthiness Data System [NASS-CDS], Fatality Analysis Reporting System [FARS], and National Motor Vehicle Crash Causation Survey [NMVCCS]) the scenarios developed in this study can be used to quantify the number of police-reported crashes, seriously injured occupants, and fatalities that are applicable to proposed active safety systems. In this article, we use the precrash scenarios to identify the target populations for FCW, pedestrian crash avoidance systems (PCAS), lane departure warning (LDW), and vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) systems. Crash scenarios were derived using precrash variables (critical event, accident type, precrash movement) present in all 4 data sources. This study found that these active safety systems could potentially mitigate approximately 1 in 5 of all severity and serious injury crashes in the United States and 26 percent of fatal crashes. Annually, this corresponds to 1.2 million all severity, 14,353 serious injury (MAIS 3+), and 7412 fatal crashes. In addition

  8. Design and fabrication of a magnetically actuated non-invasive reusable drug delivery device.

    PubMed

    Dsa, Joyline; Goswami, Manish; Singh, B R; Bhatt, Nidhi; Sharma, Pankaj; Chauhan, Meenakshi K

    2018-07-01

    We present a novel approach of designing and fabricating a noninvasive drug delivery device which is capable of delivering the drug to the target site in a controlled manner. The device utilizes a reservoir which can be reused once the drug has completely diffused from it. This micro-reservoir based fabricated device has been successfully tested using niosomes of insulin drug filled in, which was then sealed with a magnetic membrane of 20 µm thick and was actuated by applying magnetic field. The deflection of the membrane on application of magnetic field results in the drug release from the reservoir. The discharge of the drug solution and the release rates was controlled by external magnetic field. The simulation of the membrane deflection using COMSOL software was carried out to optimize the concentration of the ferrous nanopowder in PDMS matrix. The characterization of the devices was implemented in-vitro on water and in-vivo on Wistar rats. It was also validated using high-performance liquid chromatography (HPLC) by observing characteristic peak of insulin. The blood samples showed the retention time of 2.79 min at λ max of 280 nm which further authenticated the effectiveness of the proposed work. This noninvasive fabricated device provides reusability, precise control and can enable the patient or a physician to actively administrate the drug when required.

  9. Decoding Target Distance and Saccade Amplitude from Population Activity in the Macaque Lateral Intraparietal Area (LIP)

    PubMed Central

    Bremmer, Frank; Kaminiarz, Andre; Klingenhoefer, Steffen; Churan, Jan

    2016-01-01

    Primates perform saccadic eye movements in order to bring the image of an interesting target onto the fovea. Compared to stationary targets, saccades toward moving targets are computationally more demanding since the oculomotor system must use speed and direction information about the target as well as knowledge about its own processing latency to program an adequate, predictive saccade vector. In monkeys, different brain regions have been implicated in the control of voluntary saccades, among them the lateral intraparietal area (LIP). Here we asked, if activity in area LIP reflects the distance between fovea and saccade target, or the amplitude of an upcoming saccade, or both. We recorded single unit activity in area LIP of two macaque monkeys. First, we determined for each neuron its preferred saccade direction. Then, monkeys performed visually guided saccades along the preferred direction toward either stationary or moving targets in pseudo-randomized order. LIP population activity allowed to decode both, the distance between fovea and saccade target as well as the size of an upcoming saccade. Previous work has shown comparable results for saccade direction (Graf and Andersen, 2014a,b). Hence, LIP population activity allows to predict any two-dimensional saccade vector. Functional equivalents of macaque area LIP have been identified in humans. Accordingly, our results provide further support for the concept of activity from area LIP as neural basis for the control of an oculomotor brain-machine interface. PMID:27630547

  10. Targeting Carcinoma-Associated Fibroblasts Within the Tumor Stroma With a Fibroblast Activation Protein-Activated Prodrug

    PubMed Central

    2012-01-01

    Background Fibroblasts undergo a morphological transformation to a reactive phenotype in the tumor microenvironment characterized by the expression of proteins such as fibroblast activation protein (FAP), a post-prolyl endopeptidase with expression largely restricted to carcinoma-associated fibroblasts. Thapsigargin (TG) is a highly toxic natural plant product that triggers a rise in intracellular calcium levels and apoptosis. FAP is therefore a provocative target for the activation of prodrugs consisting of a FAP-specific peptide coupled to a potent cytotoxic analog of TG. Methods The efficacy of FAP-activated peptidyl-TG prodrugs was tested in vitro in cell proliferation assays and effects on intracellular calcium in human cancer cell lines. The effects of FAP-activated prodrugs on tumor growth and host toxicity were tested in Balb-C nude MCF-7 and LNCaP xenograft mice (n = 9–11 per group). P values were calculated using permutation tests based on 50 000 permutations. Mixed effects models were used to account for correlations among replicate measures. All statistical tests were two-sided. Results FAP-activated prodrugs killed human cancer cells at low nanomolar concentrations (MCF-7 cells: IC50 = 3.5nM). Amino acid-12ADT analogs from FAP-cleaved prodrugs, but not uncleaved prodrugs, produced a rapid rise in intracellular calcium within minutes of exposure. Immunohistochemical analysis of xenografts exposed to FAP-prodrugs documented stromal-selective cell death of fibroblasts, pericytes, and endothelial cells of sufficient magnitude to inhibit growth of MCF-7 and LNCaP xenografts with minimal systemic toxicity, whereas non-FAP cleavable prodrugs were inactive. MCF-7 and LNCaP xenografts treated with a FAP-activated prodrug had maximal treated-to-control tumor volume ratios of 0.36 (treated: mean = 0.206mm3, 95% CI = 0.068 to 0.344mm3; control: mean = 0.580mm3, 95% CI = 0.267 to 0.893mm3) and 0.24 (treated: mean = 0.131mm3, 95% CI = 0.09 to 0.180mm3; control

  11. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments

    NASA Astrophysics Data System (ADS)

    Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei

    2018-06-01

    Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.

  12. High-performance wearable supercapacitors fabricated with surface activated continuous filament graphite fibers

    NASA Astrophysics Data System (ADS)

    Jia, Dedong; Yu, Xin; Chen, Tinghan; Wang, Shu; Tan, Hua; Liu, Hong; Wang, Zhong Lin; Li, Linlin

    2017-08-01

    Generally, carbon or graphite fibers (GFs) are used as the supporting materials for the preparation of flexible supercapacitors (SCs) by assembling various electrochemically active nanomaterials on them. A facile and rapid electrochemical oxidation method with a voltage of 3 V in a mixed H2SO4-HNO3 solution for 2-15 min is proposed to active continuous filament GFs. Detailed structural characterization, SEM, TEM, XRD, Raman and XPS demonstrate that the GFs-8 (oxidized for 8 min) possessing high specific surface area which provided numerous electrochemical sites and a large number of oxygen-containing functional groups producing pseudocapacitance. Cyclic voltammetric (CV), galvanostatic charge-discharge measurements and electrochemical impedance spectroscopy (EIS) are conducted to test the capacitive of GFs and activated GFs. The capacitance of GFs-8 reaches as high as 570 mF cm-1 at the current density of 1 mA cm-1 in LiCl electrolyte, a 1965-fold enhancement with respect to the pristine GFs (0.29 mF cm-1). The fabricated fiber solid-state supercapacitors (SSCs) provide high energy density of 0.68 mWh cm-3 at the power density 3.3 W cm-3 and have excellent durability with 90% capacitance retention after 10000 cycles. In addition, such fiber SSCs features flexibility and mechanical stability, which may have wide applications in wearable electronic devices.

  13. Fabrication and Measurement of High-Temperature Superconductor YBa2Cu3O7-δ: Activity Report of Science Club

    NASA Astrophysics Data System (ADS)

    Shigeta, Iduru; Nishisako, Yuya; Urakawa, Shinpei; Murayama, Osamu; Ito, Masakazu; Hiroi, Masahiko

    We report our activities of the science club for the intensive education in science and mathematics at the Faculty of Science in Kagoshima University. The science club has been organized for undergraduate students in the first and second years as an extracurricular activities. For the science club in our research group, attending undergraduate students have tried to fabricate and measure polycrystals of high-temperature superconductors. They have studied features of superconductivity though the activities of advanced research experiences in the science club. We conclude that the science club was useful for the increase of scientific interest and understanding of undergraduate students.

  14. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles

    NASA Astrophysics Data System (ADS)

    Eremenko, A. M.; Petrik, I. S.; Smirnova, N. P.; Rudenko, A. V.; Marikvas, Y. S.

    2016-01-01

    Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06-0.25 weight percent (wt%) for Ag and 0.015-0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes . Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.

  15. Anticipatory UPR Activation: A Protective Pathway and Target in Cancer

    PubMed Central

    Shapiro, David J.; Livezey, Mara; Yu, Liqun; Zheng, Xiaobin; Andruska, Neal

    2016-01-01

    The endoplasmic reticulum (EnR) stress sensor, the unfolded protein response (UPR), plays a key role in regulating intracellular protein homeostasis. The extensively studied reactive mode of UPR activation is characterized by unfolded protein, or other EnR stress, triggering UPR activation. Here we focus on the emerging anticipatory mode of UPR activation in which mitogenic steroid and peptide hormones and other effectors pre-activate the UPR and anticipate a future need for increased protein folding capacity. Mild UPR activation in breast cancer can be protective and contributes to antiestrogen resistance. Hyperactivation of the anticipatory UPR pathway in cancer cells with a small molecule converts it from cytoprotective to cytotoxic, highlighting its potential as a therapeutic target in estrogen receptor positive breast cancer. PMID:27354311

  16. Hydrophobic Surface Modification of Silk Fabric Using Plasma-Polymerized Hmdso

    NASA Astrophysics Data System (ADS)

    Rani, K. Vinisha; Chandwani, Nisha; Kikani, Purvi; Nema, S. K.; Sarma, Arun Kumar; Sarma, Bornali

    In this work, we study the hydrophobic properties of silk fabrics by deposition of plasma-polymerized (pp) hexamethyldisiloxane (HMDSO) using low-pressure plasma-enhanced chemical vapor deposition. Recently, hydrophobic properties are under active research in textile industry. The effects of coating time and power on the HMDSO-coated silk fabrics are investigated. Water contact angle of pp-HMDSO-coated silk fabric surface is measured as a function of power and coating time. Fabric surface shows an enhancement in hydrophobicity after coating. Attenuated total reflectance-Fourier transform infrared spectroscopy reveals the surface chemistry, and scanning electron microscopy shows the surface morphology of the uncoated and HMDSO-coated fabrics, respectively. In the case of uncoated fabric, water droplet absorbs swiftly, whereas in the case of HMDSO-coated fabric, water droplet remains on the fabric surface with a maximum contact angle of 140∘. The HMDSO-deposited silk surface is found to be durable after detergent washing. Common stains such as ink, tea, milk, turmeric and orange juice are tested on the surface of both fabrics. In HMDSO-coated fabrics, all the stains are bedded like ball droplet. In order to study the self-cleaning property, the fabric is tilted to 45∘ angle; stain droplets easily roll off from the fabric.

  17. Gel Fabrication of Molybdenum “Beads”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowden, Richard Andrew; Armstrong, Beth L.; Cooley, Kevin M.

    2016-11-01

    Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however,more » the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.« less

  18. 10.3%-efficient submicron-thick Cu(In,Ga)Se2 solar cells with absorber fabricated by sputtering In2Se3, CuGaSe2 and Cu2Se targets

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Zhao, Ming; Zhuang, Daming; Sun, Rujun; Zhang, Leng; Wei, Yaowei; Lv, Xunyan; Wu, Yixuan; Ren, Guoan

    2018-06-01

    We reported a new method to fabricate submicron-thick CIGS with smooth surface by sputtering In2Se3, CuGaSe2 and Cu2Se targets with post-selenization. The influence of gallium content on the properties of CIGS thin film was evaluated by the crystallinity and the cells performance. The most suitable value of Ga content in our submicron-thick CIGS is 0.32 and cells based on it demonstrated the highest efficiency of 10.3%.

  19. Nitric Oxide Is an Activity-Dependent Regulator of Target Neuron Intrinsic Excitability

    PubMed Central

    Steinert, Joern R.; Robinson, Susan W.; Tong, Huaxia; Haustein, Martin D.; Kopp-Scheinpflug, Cornelia; Forsythe, Ian D.

    2011-01-01

    Summary Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours. PMID:21791288

  20. Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature.

    PubMed

    Muzykantov, V R; Barnathan, E S; Atochina, E N; Kuo, A; Danilov, S M; Fisher, A B

    1996-11-01

    Thrombolytic therapy has not been widely used for pulmonary embolism due to less than optimal results with conventional plasminogen activators. We propose a new approach to deliver plasminogen activators to the luminal surface of the pulmonary vasculature to potentially improve dissolution of pulmonary thromboemboli. Our previous studies have documented that a monoclonal antibody (mAb) to angiotensin-converting enzyme (anti-angiotensin-converting enzyme mAb 9B9) accumulates in the lungs of various animal species after systemic administration. We coupled 125I-labeled biotinylated plasminogen activators (single-chain urokinase plasminogen activator, tissue-type plasminogen activator and streptokinase) to biotinylated mAb 9B9, using streptavidin as a cross-linker. The fibrinolytic activity of plasminogen activators was not changed significantly by either biotinylation or by coupling to streptavidin. Antibody-conjugated plasminogen activators bind to the antigen immobilized in plastic wells and provide lysis of fibrin clots formed in these wells. Therefore, antibody-conjugated plasminogen activators bound to their target antigen retain their capacity to activate plasminogen. One hour after i.v. injection of mAb 9B9-conjugated radiolabeled biotinylated single-chain urokinase plasminogen activator, biotinylated tissue-type plasminogen activator or biotinylated-streptokinase in rats, the level of radiolabel was 7.4 +/- 0.8, 5.9 +/- 0.4 and 3.6 +/- 0.4% of injected dose/g (ID/g) of lung tissue vs. 0.5 +/- 0.01, 0.3 +/- 0.01 and 0.6 +/- 0.3% ID/g after injection of the same activators conjugated with control mouse IgG (P < .01 in all cases). Injection of mAb 9B9-conjugated radiolabeled plasminogen activator led to its rapid pulmonary uptake with a peak value 6.2 +/- 1.2% ID/g attained 3 hr after injection. One day later, 2.2 +/- 0.5% of the injected radioactivity was found per gram of lung tissue, although the blood level was 0.13 +/- 0.03% ID/g (lung/blood ratio 16.7 +/- 0

  1. Developing Fabrication Technologies to Provide On Demand Manufacturing for Exploration of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Hammond, Monica S.; Good, James E.; Gilley, Scott D.; Howard, Richard W.

    2006-01-01

    NASA's human exploration initiative poses great opportunity and risk for manned and robotic missions to the Moon, Mars, and beyond. Engineers and scientists at the Marshall Space Flight Center (MSFC) are developing technologies for in situ fabrication capabilities during lunar and Martian surface operations utilizing provisioned and locally refined materials. Current fabrication technologies must be advanced to support the special demands and applications of the space exploration initiative such as power, weight and volume constraints. In Situ Fabrication and Repair (ISFR) will advance state-of-the-art technologies in support of habitat structure development, tools, and mechanical part fabrication. The repair and replacement of space mission components, such as life support items or crew exercise equipment, fall within the ISFR scope. This paper will address current fabrication technologies relative to meeting ISFR targeted capabilities, near-term advancement goals, and systematic evaluation of various fabrication methods.

  2. Top-down Fabrication and Enhanced Active Area Electronic Characteristics of Amorphous Oxide Nanoribbons for Flexible Electronics.

    PubMed

    Jang, Hyun-June; Joong Lee, Ki; Jo, Kwang-Won; Katz, Howard E; Cho, Won-Ju; Shin, Yong-Beom

    2017-07-18

    Inorganic amorphous oxide semiconductor (AOS) materials such as amorphous InGaZnO (a-IGZO) possess mechanical flexibility and outstanding electrical properties, and have generated great interest for use in flexible and transparent electronic devices. In the past, however, AOS devices required higher activation energies, and hence higher processing temperatures, than organic ones to neutralize defects. It is well known that one-dimensional nanowires tend to have better carrier mobility and mechanical strength along with fewer defects than the corresponding two-dimensional films, but until now it has been difficult, costly, and impractical to fabricate such nanowires in proper alignments by either "bottom-up" growth techniques or by "top-down" e-beam lithography. Here we show a top-down, cost-effective, and scalable approach for the fabrication of parallel, laterally oriented AOS nanoribbons based on lift-off and nano-imprinting. High mobility (132 cm 2 /Vs), electrical stability, and transparency are obtained in a-IGZO nanoribbons, compared to the planar films of the same a-IGZO semiconductor.

  3. Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces.

    PubMed

    Son, JoonGon; Kim, GeunHyung

    2009-01-01

    Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for fabricating surface-modified scaffolds. The effects of the physically-modified surface on the mechanical and hydrophilic properties were investigated, and the results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high-quality 3-D polymeric scaffolds.

  4. Fabrication and characterization of UV-emitting nanoparticles as novel radiation sensitizers targeting hypoxic tumor cells

    NASA Astrophysics Data System (ADS)

    Squillante, Michael R.; Jüstel, Thomas; Anderson, R. Rox; Brecher, Charles; Chartier, Daniel; Christian, James F.; Cicchetti, Nicholas; Espinoza, Sara; McAdams, Daniel R.; Müller, Matthias; Tornifoglio, Brooke; Wang, Yimin; Purschke, Martin

    2018-06-01

    Radiation therapy is one of the primary therapeutic techniques for treating cancer, administered to nearly two-thirds of all cancer patients. Although largely effective in killing cancer cells, radiation therapy, like other forms of cancer treatment, has difficulty dealing with hypoxic regions within solid tumors. The incomplete killing of cancer cells can lead to recurrence and relapse. The research presented here is investigating the enhancement of the efficacy of radiation therapy by using scintillating nanoparticles that emit UV photons. UV photons, with wavelengths between 230 nm and 280 nm, are able to inactivate cells due to their direct interaction with DNA, causing a variety of forms of damage. UV-emitting nanoparticles will enhance the treatment in two ways: first by generating UV photons in the immediate vicinity of cancer cells, leading to direct and oxygen-independent DNA damage, and second by down-converting the applied higher energy X-rays into softer X-rays and particles that are more efficiently absorbed in the targeted tumor region. The end result will be nanoparticles with a higher efficacy in the treatment of hypoxic cells in the tumor, filling an important, unmet clinical need. Our preliminary experiments show an increase in cell death using scintillating LuPO4:Pr nanoparticles over that achieved by the primary radiation alone. This work describes the fabrication of the nanoparticles, their physical characterization, and the spectroscopic characterization of the UV emission. The work also presents in vitro results that demonstrate an enhanced efficacy of cell killing with x-rays and a low unspecific toxicity of the nanoparticles.

  5. Active debris removal of multiple priority targets

    NASA Astrophysics Data System (ADS)

    Braun, Vitali; Lüpken, A.; Flegel, S.; Gelhaus, J.; Möckel, M.; Kebschull, C.; Wiedemann, C.; Vörsmann, P.

    2013-05-01

    Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any further launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target.In this paper, chemical and electric propulsion systems were analysed with the main focus on removing multiple targets within one single mission. The targets were chosen from a previously defined priority list in order to enhance the mission efficiency. Total mission time, ΔV and system mass were identified as key parameters to allow for an evaluation of the different concepts. It was shown that it

  6. Unravelling ``off-target'' effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Beretta, Giovanni L.; Folini, Marco; Cavalieri, Francesca; Yan, Yan; Fresch, Enrico; Kaliappan, Subramanian; Hasenöhrl, Christoph; Richardson, Joseph J.; Tinelli, Stella; Fery, Andreas; Caruso, Frank; Zaffaroni, Nadia

    2015-03-01

    Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell lines. This suggests that the simultaneous action of carboxyl and disulfide groups in PMASH polymer or capsules may play a role in mediating the intracellular off-target effects. Our work provides evidence that the rational design of redox-active carriers for therapeutic-related application should be guided by a careful investigation on potential disturbance of the cellular machineries related to the carrier association.Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell

  7. Plasma Chamber Design and Fabrication Activities

    NASA Astrophysics Data System (ADS)

    Parodi, B.; Bianchi, A.; Cucchiaro, A.; Coletti, A.; Frosi, P.; Mazzone, G.; Pizzuto, A.; Ramogida, G.; Coppi, B.

    2006-10-01

    A fabrication procedure for a typical Plasma Chamber (PC) sector has been developed to cover all the manufacturing phases, from the raw materials specification (including metallurgical processes) to the machining operations, acceptance procedures and vacuum tests. Basically, the sector is made of shaped elements (forged or rolled) welded together using special fixtures and then machined to achieve the final dimensional accuracy. An upgraded design of the plasma chamber's vertical support that can withstand the estimated electromagnetic loads (Eddy and Halo current plus horizontal net force resulting from the worst plasma disruption scenario VDE, Vertical Displacement Event) has been completed. The maintenance of the radial support can take place hands-on with a direct access from outside the cryostat. With the present design, vacuum tightness is achieved by welding conducted with automatic welding heads. On the outer surface of the PC a dedicated duct system, filled by helium gas, is included to cool down the PC to room temperature when needed.

  8. Eliciting Production of L2 Target Structures through Priming Activities

    ERIC Educational Resources Information Center

    McDonough, Kim; Trofimovich, Pavel; Neumann, Heike

    2015-01-01

    This study focuses on the pedagogical applications of structural priming research in an English for academic purposes (EAP) context, investigating whether priming activities are an effective tool for eliciting production of target grammatical structures. University students across four EAP classes carried out a total of 6 information-exchange…

  9. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results:more » IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.« less

  10. Epigenetic drugs that do not target enzyme activity.

    PubMed

    Owen, Dafydd R; Trzupek, John D

    2014-06-01

    While the installation and removal of epigenetic post-translational modifications or ‘marks’ on both DNA and histone proteins are the tangible outcome of enzymatically catalyzed processes, the role of the epigenetic reader proteins looks, at first, less obvious. As they do not catalyze a chemical transformation or process as such, their role is not enzymatic. However, this does not preclude them from being potential targets for drug discovery as their function is clearly correlated to transcriptional activity and as a class of proteins, they appear to have binding sites of sufficient definition and size to be inhibited by small molecules. This suggests that this third class of epigenetic proteins that are involved in the interpretation of post-translational marks (as opposed to the creation or deletion of marks) may represent attractive targets for drug discovery efforts. This review mainly summarizes selected publications, patent literature and company disclosures on these non-enzymatic epigenetic reader proteins from 2009 to the present. © 2014 Elsevier Ltd . All rights reserved.

  11. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation.

    PubMed

    Sharma, Rishi; Kim, Soo-Young; Sharma, Anjali; Zhang, Zhi; Kambhampati, Siva Pramodh; Kannan, Sujatha; Kannan, Rangaramanujam M

    2017-11-15

    Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal

  12. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  13. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-04-29

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  14. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2002-01-01

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  15. Fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing

    DOEpatents

    Bates, John B.

    2003-05-13

    Systems and methods are described for fabrication of highly textured lithium cobalt oxide films by rapid thermal annealing. A method of forming a lithium cobalt oxide film includes depositing a film of lithium cobalt oxide on a substrate; rapidly heating the film of lithium cobalt oxide to a target temperature; and maintaining the film of lithium cobalt oxide at the target temperature for a target annealing time of at most, approximately 60 minutes. The systems and methods provide advantages because they require less time to implement and are, therefore less costly than previous techniques.

  16. Untethered magnetic millirobot for targeted drug delivery.

    PubMed

    Iacovacci, Veronica; Lucarini, Gioia; Ricotti, Leonardo; Dario, Paolo; Dupont, Pierre E; Menciassi, Arianna

    2015-01-01

    This paper reports the design and development of a novel millimeter-sized robotic system for targeted therapy. The proposed medical robot is conceived to perform therapy in relatively small diameter body canals (spine, urinary system, ovary, etc.), and to release several kinds of therapeutics, depending on the pathology to be treated. The robot is a nearly-buoyant bi-component system consisting of a carrier, in which the therapeutic agent is embedded, and a piston. The piston, by exploiting magnetic effects, docks with the carrier and compresses a drug-loaded hydrogel, thus activating the release mechanism. External magnetic fields are exploited to propel the robot towards the target region, while intermagnetic forces are exploited to trigger drug release. After designing and fabricating the robot, the system has been tested in vitro with an anticancer drug (doxorubicin) embedded in the carrier. The efficiency of the drug release mechanism has been demonstrated by both quantifying the amount of drug released and by assessing the efficacy of this therapeutic procedure on human bladder cancer cells.

  17. Stimuli-responsive Smart Liposomes in Cancer Targeting.

    PubMed

    Jain, Ankit; Jain, Sanjay K

    2018-02-08

    Liposomes are vesicular carriers which possess aqueous core entrapped within the lipid bilayer. These are carriers of choice because of biocompatible and biodegradable features in addition to flexibility of surface modifications at surface and lipid compositions of lipid bilayers. Liposomes have been reported well for cancer treatment using both passive and active targeting approaches however tumor microenvironment is still the biggest hurdle for safe and effective delivery of anticancer agents. To overcome this problem, stimuli-responsive smart liposomes have emerged as promising cargoes pioneered to anomalous tumor milieu in response to pH, temperature, and enzymes etc. as internal triggers, and magnetic field, ultrasound, and redox potential as external guides for enhancement of drug delivery to tumors. This review focuses on all such stimuli-responsive approaches using fabrication potentiality of liposomes in combination to various ligands, linkers, and PEGylation etc. Scientists engaged in cancer targeting approaches can get benefited greatly with this knowledgeable assemblage of advances in liposomal nanovectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database

    PubMed Central

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P. S.; Agarwal, Subhash M.

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC50/ED50/EC50/GI50), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients’ Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI50 data. PMID:23203877

  19. Micro/nano-fabrication technologies for cell biology.

    PubMed

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  20. Micro/nano-fabrication technologies for cell biology

    PubMed Central

    Qian, Tongcheng

    2012-01-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities. PMID:20490938

  1. Chemical speciation and enzymatic impact of silver in antimicrobial fabric buried in soil.

    PubMed

    Takeuchi, Satoshi; Hashimoto, Yohey; Yamaguchi, Noriko; Toyota, Koki

    2016-11-05

    This study investigated the impact of Ag in antibacterial fabric on soil enzymes in relation to solubility and speciation of Ag. Sections of Ag-containing sock fabric (1.0-1.5cm(2)) were incubated in soils with aerobic and anaerobic conditions and periodically determined activity of arylsulfatase, dehydrogenase and urease. Microscale distribution and speciation of Ag at the interface between socks and soil particles were investigated using micro-focused X-ray fluorescence (μ-XRF), and Ag speciation was determined using micro-focused X-ray absorption near edge structure (μ-XANES) spectroscopy. Results showed that the sock fabric consisted of elemental Ag and Ag2S. After 60-day exposure to soil, majority (50-90%) of Ag in sock did not undergo phase transformation and present as elemental Ag and Ag2S in aerobic and anaerobic conditions. A part of Ag in sock fabric was bound with soil colloids (<15%), depending on the distance from the edge of sock fabric. Soil enzyme activities were overall unaffected by Ag in sock textile after 60days of incubation, although a significant decrease in arylsulfatase activity was found only in the initial stage of soil incubation. Silver in the sock fabric is relatively stable and has little detrimental impacts on enzyme activity in ordinary soil conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Preparation of Biocomposite Microfibers Ready for Processing into Biologically Active Textile Fabrics for Bioremediation.

    PubMed

    Kaiser, Patrick; Reich, Steffen; Greiner, Andreas; Freitag, Ruth

    2018-06-12

    Biocomposites, i.e., materials consisting of metabolically active microorganisms embedded in a synthetic extracellular matrix, may find applications as highly specific catalysts in bioproduction and bioremediation. 3D constructs based on fibrous biocomposites, so-called "artificial biofilms," are of particular interest in this context. The inability to produce biocomposite fibers of sufficient mechanical strength for processing into bioactive fabrics has so far hindered progress in the area. Herein a method is proposed for the direct wet spinning of microfibers suitable for weaving and knitting. Metabolically active bacteria (either Shewanella oneidensis or Nitrobacter winogradskyi (N. winogradskyi)) are embedded in these fibers, using poly(vinyl alcohol) as matrix. The produced microfibers have a partially crystalline structure and are stable in water without further treatment, such as coating. In a first application, their potential for nitrite removal (N. winogradskyi) is demonstrated, a typical challenge in potable water treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fabricating solid carbon porous electrodes from powders

    DOEpatents

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  4. Fabricating solid carbon porous electrodes from powders

    DOEpatents

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  5. An inexpensive and fast method for infiltration coating of complex geometry matrices for ISOL production target applications

    NASA Astrophysics Data System (ADS)

    Kawai, Y.; Alton, G. D.; Bilheux, J.-C.

    2005-12-01

    An inexpensive, fast, and close to universal infiltration coating technique has been developed for fabricating fast diffusion-release ISOL targets. Targets are fabricated by deposition of finely divided (∼1 μm) compound materials in a paint-slurry onto highly permeable, complex structure reticulated-vitreous-carbon-foam (RVCF) matrices, followed by thermal heat treatment. In this article, we describe the coating method and present information on the physical integrity, uniformity of deposition, and matrix adherence of SiC, HfC and UC2 targets, destined for on-line use as targets at the Holifield Radioactive Ion Beam Facility (HRIBF).

  6. Spent coffee grounds-based activated carbon preparation for sequestering of malachite green

    NASA Astrophysics Data System (ADS)

    Lim, Jun-Wei; Lam, Keat-Ying; Bashir, Mohammed J. K.; Yeong, Yin-Fong; Lam, Man-Kee; Ho, Yeek-Chia

    2016-11-01

    The key of reported work was to optimize the fabricating factors of spent coffee grounds-based activated carbon (SCG-bAC) used to sequester Malachite Green (MG) form aqueous solution via adsorption process. The fabricating factors of impregnation ratio with ortho-phosphoric acid, activation temperature and activation time were simultaneously optimized by central composite design (CCD) of response surface methodology (RSM) targeting on maximum removal of MG. At the optimum condition, 96.3% of MG was successfully removed by SCG-bAC at the impregnation ratio with ortho-phosphoric acid of 0.50, activation temperature of 554°C and activation time of 31.4 min. Statistical model that could predict the MG removal percentage was also derived and had been statistically confirmed to be significant. Subsequently, the MG adsorption equilibrium data was found well-fitted to Langmuir isotherm model, indicating the predominance of monolayer adsorption of MG on SCG-bAC surface. To conclude, the findings from the this study unveil the potential of spent coffee grounds as an alternative precursor in fabricating low-cost AC for the treatment of wastewater loaded with MG pollutant.

  7. Development of the activated diffusion brazing process for fabrication of finned shell to strut turbine blades

    NASA Technical Reports Server (NTRS)

    Wilbers, L. G.; Berry, T. F.; Kutchera, R. E.; Edmonson, R. E.

    1971-01-01

    The activated diffusion brazing process was developed for attaching TD-NiCr and U700 finned airfoil shells to matching Rene 80 struts obstructing the finned cooling passageways. Creep forming the finned shells to struts in combination with precise preplacement of brazing alloy resulted in consistently sound joints, free of cooling passageway clogging. Extensive tensile and stress rupture testing of several joint orientation at several temperatures provided a critical assessment of joint integrity of both material combinations. Trial blades of each material combination were fabricated followed by destructive metallographic examination which verified high joint integrity.

  8. ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs

    NASA Astrophysics Data System (ADS)

    Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar

    2016-10-01

    Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.

  9. Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication.

    PubMed

    Rawlings, Colin D; Zientek, Michal; Spieser, Martin; Urbonas, Darius; Stöferle, Thilo; Mahrt, Rainer F; Lisunova, Yuliya; Brugger, Juergen; Duerig, Urs; Knoll, Armin W

    2017-11-28

    Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching. We demonstrate the fabrication of 3D profiles in silicon and silicon oxide with nanometer scale accuracy of absolute depth levels. An accuracy of less than 1nm standard deviation in t-SPL is achieved by providing an accurate physical model of the writing process to a model-based implementation of a closed-loop lithography process. For transfering the pattern to a target substrate we optimized the etch process and demonstrate linear amplification of grayscale patterns into silicon and silicon oxide with amplification ratios of ∼6 and ∼1, respectively. The performance of the entire process is demonstrated by manufacturing photonic molecules of desired interaction strength. Excellent agreement of fabricated and simulated structures has been achieved.

  10. Fabrication, characterization and applications of iron selenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com; Badshah, Amin; Lal, Bhajan

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed.more » • Superconducting, catalytic and fuel cell application of FeSe have been presented.« less

  11. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOEpatents

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  12. Off-axis targets maximize bearing Fisher Information in broadband active sonar.

    PubMed

    Kloepper, Laura N; Buck, John R; Liu, Yang; Nachtigall, Paul E

    2018-01-01

    Broadband active sonar systems estimate range from time delay and velocity from Doppler shift. Relatively little attention has been paid to how the received echo spectrum encodes information about the bearing of an object. This letter derives the bearing Fisher Information encoded in the frequency dependent transmitter beampattern. This leads to a counter-intuitive result: directing the sonar beam so that a target of interest is slightly off-axis maximizes the bearing information about the target. Beam aim data from a dolphin biosonar experiment agree closely with the angle predicted to maximize bearing information.

  13. Nanoimprint methods for the fabrication of macroscopic plasmonically active metal nanostructures

    NASA Astrophysics Data System (ADS)

    Nagel, Robin D.; Filser, Simon; Zhang, Tianyue; Manzi, Aurora; Schönleber, Konrad; Lindsly, James; Zimmermann, Josef; Maier, Thomas L.; Scarpa, Giuseppe; Krischer, Katharina; Lugli, Paolo

    2017-02-01

    In this article, we present a refined nanostructuring method, lift-off nanoimprint lithography (LO-NIL), which allows the deposition of high-quality metal nanostructures due to a bilayer resist process and compare it to nano-transfer printing (nTP), a purely additive metal printing technique. LO-NIL and nTP are used as accurate methods for the fabrication of ordered plasmonic metal nanostructure arrays on semiconducting substrates over large areas using the example of gold nanodisks on silicon. The possibility of feature size adjustment in LO-NIL during the fabrication process is especially useful for tuning plasmonic resonance peaks between the visible and the mid-infrared range as well as fine-tuning of these resonances. In UV-VIS-NIR spectroscopic measurements, a significant blueshift in the plasmonic resonance was found for nTP samples compared to the ones fabricated with the lift-off technique. It was concluded that this shift originates from a metal/substrate interface roughness resulting in a change in the dielectric properties of this layer. This finding was verified with finite difference time-domain simulations where a similar trend was found for a model with an assumed thin air gap in this interface. In cyclic voltammetry measurements under illumination, a reduced overpotential by almost 400 mV for CO2 reduction and hydrogen evolution was found for LO-NIL samples.

  14. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9

    PubMed Central

    Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo

    2015-01-01

    Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations. PMID:25985872

  15. Metal Fabricating Specialist (AFSC 55252).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This seven-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for metal fabricating specialists. Covered in the individual volumes are general subjects (career progression, management of activities and resources, shop mathematics, and characteristics of metals); sheet metal tools and equipment…

  16. In-growth metal organic framework/synthetic hybrids as antimicrobial fabrics and its toxicity.

    PubMed

    Emam, Hossam E; Darwesh, Osama M; Abdelhameed, Reda M

    2018-05-01

    Bio-active synthetic fabrics based on polyester (PET) and Nylon were manufactured by in-situ formation of Cu-BTC metal organic framework (MOF). In-growth of Cu-BTC within fabrics was accomplished in one pot simple process. The scanning microscope, X-ray diffraction and infrared spectra were all confirmed the formation of Cu-BTC within fabrics structure and reflected the role of fabrics' building unit in the Cu-BTC preparation. The estimated contents of materials onto fabrics were ranged in 97.14-127.33 mg MOF/g fabric and 30.59-40.10 mg Cu/g fabric. After embracing with Cu-BTC, color of fabrics was transformed to greenish-blue. The so-produced Cu-BTC/fabric hybrids were exhibited good biological activities against three different microbial pathogens (E. coli, S. aureus and C. albicans). The minimal inhibitory concentrations from the residual Cu-BTC powder were 65-70, 60-64 and 62-67 mg/mL, for S. aureus, E. coli and C. albicans pathogens, respectively, which were similar to that reported for commercial Cu-BTC. Moreover, no toxicity was observably detected for the released Cu-BTC from fabrics against brine shrimp at 10 mg/mL. These results revealed that, the in-growth of Cu-BTC resulted in production of biocidal synthetic fabrics without any ecotoxic effects at the as-used Cu-BTC content. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse.

    PubMed

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-18

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10 -9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  18. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    NASA Astrophysics Data System (ADS)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  19. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    NASA Astrophysics Data System (ADS)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  20. Fabrication of Gold Nanoparticles for targeted therapy in pancreatic cancer**

    PubMed Central

    Patra, Chitta Ranjan; Bhattacharya, Resham; Mukhopadhyay, Debabrata; Mukherjee, Priyabrata

    2009-01-01

    The targeted delivery of a drug should result in enhanced therapeutic efficacy with low to minimal side effects. This is a widely accepted concept, but limited in application due to lack of available technologies and process of validation. Biomedical nanotechnology can play an important role in this respect. Biomedical nanotechnology is a burgeoning field with myriads of opportunities and possibilities for advancing medical science and disease treatment. Cancer nanotechnology (1–100 nm size range) is expected to change the very foundations of cancer treatment, diagnosis and detection. Nanomaterials, especially gold nanoparticles (AuNPs) have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high surface reactivity, presence of surface plasmon resonance (SPR) bands, biocompatibility and ease of surface functionalization. In this review, we will discuss how the unique physico-chemical properties of gold nanoparticles may be utilized for targeted drug delivery in pancreatic cancer leading to increased efficacy of traditional chemotherapeutics. PMID:19914317

  1. Targeting PIM kinase enhances the activity of sunitinib in renal cell carcinoma.

    PubMed

    Mahalingam, D; Espitia, C M; Medina, E C; Esquivel, J A; Kelly, K R; Bearss, D; Choy, G; Taverna, P; Carew, J S; Giles, F J; Nawrocki, S T

    2011-11-08

    Upregulation of PIM kinase expression has been reported in many malignancies, suggesting that inhibition of PIM kinase activity may be an attractive therapeutic strategy. We hypothesised that inhibition of PIM kinase activity with SGI-1776, a novel small molecule inhibitor of PIM kinase activity, would reduce the viability of renal cell carcinoma (RCC) cells and enhance the activity of sunitinib. Immunoblotting, qRT-PCR, and gene expression arrays were carried out to identify genes modulated by SGI-1776 treatment. The anticancer activity of SGI-1776 and sunitinib was determined by viability and apoptosis assays and in tumour xenografts in vivo. Treatment with SGI-1776 led to a decrease in phosphorylated and total c-Myc levels, which resulted in the modulation of c-Myc target genes. SGI-1776 in combination with sunitinib induced a further reduction in c-Myc levels, which was associated with enhanced anticancer activity. siRNA-mediated knockdown of c-Myc demonstrated that its expression has a key role in regulating the sensitivity to the combination of SGI-1776 and sunitinib. Importantly, the combination significantly reduced tumour burden in two RCC xenograft models compared with single-agent therapy and was very well tolerated. These data indicate that targeting PIM kinase signalling is a promising treatment strategy for RCC. 2011 Cancer Research UK

  2. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Maráková, Nela; Humpolíček, Petr; Kašpárková, Věra; Capáková, Zdenka; Martinková, Lenka; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-02-01

    Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers. Raman and FTIR spectra proved the complete coating of substrates. Polypyrrole content was 19.3 wt.% and that of polyaniline 6.0 wt.%. Silver nanoparticles were deposited from silver nitrate solutions of various concentrations by exploiting the reduction ability of conducting polymers. The content of silver was up to 11 wt.% on polypyrrole and 4 wt.% on polyaniline. The sheet resistivity of fabrics was determined. The conductivity was reduced after deposition of silver. The chemical cleaning reduced the conductivity by less than one order of magnitude for polypyrrole coating, while for polyaniline the decrease was more pronounced. The good antibacterial activity against S. aureus and E. coli and low cytotoxicity of polypyrrole-coated cotton, both with and without deposited silver nanoparticles

  3. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    PubMed

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Conformationally constrained peptides target the allosteric kinase dimer interface and inhibit EGFR activation.

    PubMed

    Fulton, Melody D; Hanold, Laura E; Ruan, Zheng; Patel, Sneha; Beedle, Aaron M; Kannan, Natarajan; Kennedy, Eileen J

    2018-03-15

    Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide "stapling" to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon.

    PubMed

    Ma, Jianqing; Yang, Qunfeng; Xu, Dongmei; Zeng, Xiaomei; Wen, Yuezhong; Liu, Weiping

    2017-02-01

    Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe 3 O 4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe 3 O 4 /PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe 3 O 4 /PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.

  6. Imaging Caspase-3 Activation as a Marker of Apoptosis-Targeted Treatment Response in Cancer

    PubMed Central

    Chen, Delphine L.; Engle, Jacquelyn T.; Griffin, Elizabeth A.; Miller, J. Philip; Chu, Wenhua; Zhou, Dong; Mach, Robert H.

    2016-01-01

    Purpose We tested whether positron emission tomography (PET) with the caspase-3 targeted isatin analog [18F]WC-4-116 could image caspase-3 activation in response to an apoptosis-inducing anticancer therapy. Procedures [18F]WC-4-116 uptake was determined in etoposide-treated EL4 cells. Biodistribution studies with [18F]WC-4-116 and [18F]ICMT-18, a non-caspase-3-targeted tracer, as well as [18F]WC-4-116 microPET imaging assessed responses in Colo205 tumor bearing mice treated with death receptor 5 (DR5) targeted agonist antibodies. Immunohistochemical staining and enzyme assays confirmed caspase-3 activation. Two-way analysis of variance or Student’s t-test assessed for treatment-related changes in tracer uptake. Results [18F]WC-4-116 increased 8 ± 2-fold in etoposide-treated cells. The [18F]WC-4-116 %ID/g also increased significantly in tumors with high caspase-3 enzyme activity (p < 0.05). [18F]ICMT-18 tumor uptake did not differ in tumors with high or low caspase-3 enzyme activity. Conclusions [18F]WC-4-116 uptake in vivo reflects increased caspase-3 activation and may be useful for detecting caspase-3 mediated apoptosis treatment responses in cancer. PMID:25344147

  7. Wearable sensor glove based on conducting fabric using electrodermal activity and pulse-wave sensors for e-health application.

    PubMed

    Lee, Youngbum; Lee, Byungwoo; Lee, Myoungho

    2010-03-01

    Improvement of the quality and efficiency of health in medicine, both at home and the hospital, calls for improved sensors that might be included in a common carrier such as a wearable sensor device to measure various biosignals and provide healthcare services that use e-health technology. Designed to be user-friendly, smart clothes and gloves respond well to the end users for health monitoring. This study describes a wearable sensor glove that is equipped with an electrodermal activity (EDA) sensor, pulse-wave sensor, conducting fabric, and an embedded system. The EDA sensor utilizes the relationship between drowsiness and the EDA signal. The EDA sensors were made using a conducting fabric instead of silver chloride electrodes, as a more practical and practically wearable device. The pulse-wave sensor measurement system, which is widely applied in oriental medicinal practices, is also a strong element in e-health monitoring systems. The EDA and pulse-wave signal acquisition module was constructed by connecting the sensor to the glove via a conductive fabric. The signal acquisition module is then connected to a personal computer that displays the results of the EDA and pulse-wave signal processing analysis and gives accurate feedback to the user. This system is designed for a number of applications for the e-health services, including drowsiness detection and oriental medicine.

  8. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745...

  9. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745...

  10. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Lead-Based Paint Activities § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing... engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745...

  11. A flexible organic active matrix circuit fabricated using novel organic thin film transistors and organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Heredia, G.; González, L. A.; Alshareef, H. N.; Gnade, B. E.; Quevedo-López, M.

    2010-11-01

    We present an active matrix circuit fabricated on plastic (polyethylene naphthalene, PEN) and glass substrates using organic thin film transistors and organic capacitors to control organic light-emitting diodes (OLEDs). The basic circuit is fabricated using two pentacene-based transistors and a capacitor using a novel aluminum oxide/parylene stack (Al2O3/parylene) as the dielectric for both the transistor and the capacitor. We report that our circuit can deliver up to 15 µA to each OLED pixel. To achieve 200 cd m-2 of brightness a 10 µA current is needed; therefore, our approach can initially deliver 1.5× the required current to drive a single pixel. In contrast to parylene-only devices, the Al2O3/parylene stack does not fail after stressing at a field of 1.7 MV cm-1 for >10 000 s, whereas 'parylene only' devices show breakdown at approximately 1000 s. Details of the integration scheme are presented.

  12. A cMUT probe for ultrasound-guided focused ultrasound targeted therapy.

    PubMed

    Gross, Dominique; Coutier, Caroline; Legros, Mathieu; Bouakaz, Ayache; Certon, Dominique

    2015-06-01

    Ultrasound-mediated targeted therapy represents a promising strategy in the arsenal of modern therapy. Capacitive micromachined ultrasonic transducer (cMUT) technology could overcome some difficulties encountered by traditional piezoelectric transducers. In this study, we report on the design, fabrication, and characterization of an ultrasound-guided focused ultrasound (USgFUS) cMUT probe dedicated to preclinical evaluation of targeted therapy (hyperthermia, thermosensitive liposomes activation, and sonoporation) at low frequency (1 MHz) with simultaneous ultrasonic imaging and guidance (15 to 20 MHz). The probe embeds two types of cMUT arrays to perform the modalities of targeted therapy and imaging respectively. The wafer-bonding process flow employed for the manufacturing of the cMUTs is reported. One of its main features is the possibility of implementing two different gap heights on the same wafer. All the design and characterization steps of the devices are described and discussed, starting from the array design up to the first in vitro measurements: optical (microscopy) and electrical (impedance) measurements, arrays' electroacoustic responses, focused pressure field mapping (maximum peak-to-peak pressure = 2.5 MPa), and the first B-scan image of a wire-target phantom.

  13. Fabric circuits and method of manufacturing fabric circuits

    NASA Technical Reports Server (NTRS)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  14. Enhanced Optical Breakdown in KB Cells Labeled with Folate-Targeted Silver/Dendrimer Composite Nanodevices

    PubMed Central

    Tse, Christine; Zohdy, Marwa J.; Ye, Jing Yong; O'Donnell, Matthew; Lesniak, Wojciech; Balogh, Lajos

    2010-01-01

    Enhanced optical breakdown of KB cells (a human oral epidermoid cancer cell known to overexpress folate receptors) targeted with silver/dendrimer composite nanodevices (CNDs) is described. CNDs {(Ag0}25-PAMAM_E5.(NH2)42(NGly)74(NFA)2.7} were fabricated by reactive encapsulation, using a biocompatible template of dendrimer-folic acid (FA) conjugates. Preferential uptake of the folate-targeted CNDs (of various treatment concentrations and surface functionality) by KB cells was visualized with confocal microscopy and transmission electron microscopy (TEM). Intracellular laser-induced optical breakdown (LIOB) threshold and dynamics were detected and characterized by high-frequency ultrasonic monitoring of resulting transient bubble events. When irradiated with a near-infrared (NIR), femtosecond laser, the CND-targeted KB cells acted as well-confined activators of laser energy, enhancing nonlinear energy absorption, exhibiting a significant reduction in breakdown threshold, and thus selectively promoting intracellular LIOB. PMID:20883823

  15. Smart fabrics and interactive textile enabling wearable personal applications: R&D state of the art and future challenges.

    PubMed

    Lymberis, A; Paradiso, R

    2008-01-01

    Smart fabrics and interactive textiles (SFIT) are fibrous structures that are capable of sensing, actuating, generating/storing power and/or communicating. Research and development towards wearable textile-based personal systems allowing e.g. health monitoring, protection & safety, and healthy lifestyle gained strong interest during the last 10 years. Under the Information and Communication Programme of the European Commission, a cluster of R&D projects dealing with smart fabrics and interactive textile wearable systems regroup activities along two different and complementary approaches i.e. 'application pull' and 'technology push'. This includes projects aiming at personal health management through integration, validation, and use of smart clothing and other networked mobile devices as well as projects targeting the full integration of sensors/actuators, energy sources, processing and communication within the clothes to enable personal applications such as protection/safety, emergency and healthcare. The integration part of the technologies into a real SFIT product is at present stage on the threshold of prototyping and testing. Several issues, technical as well user-centred, societal and business, remain to be solved. The paper presents on going major R&D activities, identifies gaps and discuss key challenges for the future.

  16. A Deterministic Approach to Active Debris Removal Target Selection

    NASA Astrophysics Data System (ADS)

    Lidtke, A.; Lewis, H.; Armellin, R.

    2014-09-01

    Many decisions, with widespread economic, political and legal consequences, are being considered based on space debris simulations that show that Active Debris Removal (ADR) may be necessary as the concerns about the sustainability of spaceflight are increasing. The debris environment predictions are based on low-accuracy ephemerides and propagators. This raises doubts about the accuracy of those prognoses themselves but also the potential ADR target-lists that are produced. Target selection is considered highly important as removal of many objects will increase the overall mission cost. Selecting the most-likely candidates as soon as possible would be desirable as it would enable accurate mission design and allow thorough evaluation of in-orbit validations, which are likely to occur in the near-future, before any large investments are made and implementations realized. One of the primary factors that should be used in ADR target selection is the accumulated collision probability of every object. A conjunction detection algorithm, based on the smart sieve method, has been developed. Another algorithm is then applied to the found conjunctions to compute the maximum and true probabilities of collisions taking place. The entire framework has been verified against the Conjunction Analysis Tools in AGIs Systems Toolkit and relative probability error smaller than 1.5% has been achieved in the final maximum collision probability. Two target-lists are produced based on the ranking of the objects according to the probability they will take part in any collision over the simulated time window. These probabilities are computed using the maximum probability approach, that is time-invariant, and estimates of the true collision probability that were computed with covariance information. The top-priority targets are compared, and the impacts of the data accuracy and its decay are highlighted. General conclusions regarding the importance of Space Surveillance and Tracking for the

  17. "Disadvantaged Learners": Who Are We Targeting? Understanding the Targeting of Widening Participation Activity in the United Kingdom Using Geo-Demographic Data from Southwest England

    ERIC Educational Resources Information Center

    Harrison, Neil; Hatt, Sue

    2010-01-01

    This paper analyses the definition of the appropriate target group for widening participation activities advanced by the Higher Education Funding Council for England in their "Targeting Disadvantaged Learners" advice to Aimhigher and higher education providers. This definition includes components of area deprivation and higher education…

  18. Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Hanh, Truong Thi; Thu, Nguyen Thi; Hien, Nguyen Quoc; An, Pham Ngoc; Loan, Truong Thi Kieu; Hoa, Phan Thi

    2016-04-01

    The silver nanoparticles (AgNPs)/peco fabrics were prepared by immobilization of AgNPs on fabrics in which AgNPs were synthesized by γ-irradiation of the 10 mM AgNO3 chitosan solution at the dose of 17.6 kGy. The AgNPs size has been estimated to be about 11 nm from TEM image. The AgNPs content onto peco fabrics was of 143±6 mg/kg at the initial AgNPs concentration of 100 ppm. The AgNPs colloidal solution was characterized by UV-vis spectroscopy and TEM image. The antibacterial activity of AgNPs/peco fabrics after 60 washings against Staphylococcus aureus and Klebsiella pneumoniae was found to be over 99%. Effects of AgNPs fabics on multidrug-resistant pathogens from the clinical specimens were also tested.

  19. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE PAGES

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric; ...

    2017-08-18

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the

  20. Scale-up of high specific activity 186gRe production using graphite-encased thick 186W targets and demonstration of an efficient target recycling process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric

    Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the

  1. Two-step activation of paper batteries for high power generation: design and fabrication of biofluid- and water-activated paper batteries

    NASA Astrophysics Data System (ADS)

    Lee, Ki Bang

    2006-11-01

    Two-step activation of paper batteries has been successfully demonstrated to provide quick activation and to supply high power to credit card-sized biosystems on a plastic chip. A stack of a magnesium layer (an anode), a fluid guide (absorbent paper), a highly doped filter paper with copper chloride (a cathode) and a copper layer as a current collector is laminated between two transparent plastic films into a high power biofluid- and water-activated battery. The battery is activated by two-step activation: (1) after placing a drop of biofluid/water-based solution on the fluid inlet, the surface tension first drives the fluid to soak the fluid guide; (2) the fluid in the fluid guide then penetrates into the heavily doped filter paper with copper chloride to start the battery reaction. The fabricated half credit card-sized battery was activated by saliva, urine and tap water and delivered a maximum voltage of 1.56 V within 10 s after activation and a maximum power of 15.6 mW. When 10 kΩ and 1 KΩ loads are used, the service time with water, urine and saliva is measured as more than 2 h. An in-series battery of 3 V has been successfully tested to power two LEDs (light emitting diodes) and an electric driving circuit. As such, this high power paper battery could be integrated with on-demand credit card-sized biosystems such as healthcare test kits, biochips, lab-on-a-chip, DNA chips, protein chips or even test chips for water quality checking or chemical checking.

  2. Factor XI and Contact Activation as Targets for Antithrombotic Therapy

    PubMed Central

    Gailani, David; Bane, Charles E.; Gruber, Andras

    2015-01-01

    Summary The most commonly used anticoagulants produce therapeutic antithrombotic effects either by inhibiting thrombin or factor Xa, or by lowering the plasma levels of the precursors of these key enzymes, prothrombin and factor X. These drugs do not distinguish between thrombin generation contributing to thrombosis from thrombin generation required for hemostasis. Thus, anticoagulants increase bleeding risk, and many patients who would benefit from therapy go untreated because of comorbidities that place them at unacceptable risk for hemorrhage. Studies in animals demonstrate that components of the plasma contact activation system contribute to experimentally-induced thrombosis, despite playing little or no role in hemostasis. Attention has focused on factor XII, the zymogen of a protease (factor XIIa) that initiates contact activation when blood is exposed to foreign surfaces; and factor XI, the zymogen of the protease factor XIa, which links contact activation to the thrombin generation mechanism. In the case of factor XI, epidemiologic data indicate this protein contributes to stroke and venous thromboembolism, and perhaps myocardial infarction, in humans. A phase 2 trial showing that reduction of factor XI may be more effective than low-molecular-weight heparin at preventing venous thrombosis during knee replacement surgery provides proof of concept for the premise that an antithrombotic effect can be uncoupled from an anticoagulant effect in humans by targeting components of contact activation. Here we review data on the role of factor XI and factor XII in thrombosis, and results of pre-clinical and human trials for therapies targeting these proteins. PMID:25976012

  3. Targeting and destroying tumor vasculature with a near-infrared laser-activated "nanobomb" for efficient tumor ablation.

    PubMed

    Gao, Wen; Li, Shuangshuang; Liu, Zhenhua; Sun, Yuhui; Cao, Wenhua; Tong, Lili; Cui, Guanwei; Tang, Bo

    2017-09-01

    Attacking the supportive vasculature network of a tumor offers an important new avenue for cancer therapy. Herein, a near-infrared (NIR) laser-activated "nanobomb" was developed as a noninvasive and targeted physical therapeutic strategy to effectively disrupt tumor neovasculature in an accurate and expeditious manner. This "nanobomb" was rationally fabricated via the encapsulation of vinyl azide (VA) into c(RGDfE) peptide-functionalized, hollow copper sulfide (HCuS) nanoparticles. The resulting RGD@HCuS(VA) was selectively internalized into integrin α v β 3 -expressing tumor vasculature endothelial cells and dramatically increased the photoacoustic signals from the tumor neovasculature, achieving a maximum signal-to-noise ratio at 4 h post-injection. Upon NIR irradiation, the local temperature increase triggered VA to release N 2 bubbles rapidly. Subsequently, these N 2 bubbles could instantly explode to destroy the neovasculature and further induce necrosis of the surrounding tumor cells. A single-dose injection of RGD@HCuS(VA) led to complete tumor regression after laser irradiation, with no tumor regrowth for 30 days. More importantly, high-resolution photoacoustic angiography, combined with excellent biodegradability, facilitated the precise destruction of tumor neovasculature by RGD@HCuS(VA) without damaging normal tissues. These results demonstrate the great potential of this "nanobomb" for clinical translation to treat cancer patients with NIR laser-accessible orthotopic tumors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Targeting receptor-activator of nuclear kappaB ligand in aneurysmal bone cysts: verification of target and therapeutic response.

    PubMed

    Pelle, Dominic W; Ringler, Jonathan W; Peacock, Jacqueline D; Kampfschulte, Kevin; Scholten, Donald J; Davis, Mary M; Mitchell, Deanna S; Steensma, Matthew R

    2014-08-01

    Aneurysmal bone cyst (ABC) is a benign tumor of bone presenting as a cystic, expansile lesion in both the axial and appendicular skeleton. Axial lesions demand special consideration, because treatment-related morbidity can be devastating. In similar lesions, such as giant cell tumor of bone (GCTB), the receptor-activator of nuclear kappaB ligand (RANKL)-receptor-activator of nuclear kappaB (RANK) signaling axis is essential to tumor progression. Although ABC and GCTB are distinct entities, they both contain abundant multinucleated giant cells and are osteolytic characteristically. We hypothesize that ABCs express both RANKL and RANK similarly in a cell-type specific manner, and that targeted RANKL therapy will mitigate ABC tumor progression. Cellular expression of RANKL and RANK was determined in freshly harvested ABC samples using laser confocal microscopy. A consistent cell-type-specific pattern was observed: fibroblastlike stromal cells expressed RANKL strongly whereas monocyte/macrophage precursor and multinucleated giant cells expressed RANK. Relative RANKL expression was determined by quantitative real-time polymerase chain reaction in ABC and GCTB tissue samples; no difference in relative expression was observed (P > 0.05). In addition, we review the case of a 5-year-old boy with a large, aggressive sacral ABC. After 3 months of targeted RANKL inhibition with denosumab, magnetic resonance imaging demonstrated tumor shrinkage, bone reconstitution, and healing of a pathologic fracture. Ambulation, and bowel and bladder function were restored at 6 months. Denosumab treatment was well tolerated. Post hoc analysis demonstrated strong RANKL expression in the pretreatment tumor sample. These findings demonstrate that RANKL-RANK signal activation is essential to ABC tumor progression. RANKL-targeted therapy may be an effective alternative to surgery in select ABC presentations. Copyright © 2014 Mosby, Inc. All rights reserved.

  5. Blunt Trauma Performance of Fabric Systems Utilizing Natural Rubber Coated High Strength Fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, M. R.; Ahmad, W. Y. W.; Samsuri, A.

    2010-03-11

    The blunt trauma performance of fabric systems against 9 mm bullets is reported. Three shots were fired at each fabric system with impact velocity of 367+-9 m/s and the depth of indentation on the modeling clay backing was measured. The results showed that 18-layer and 21-layer all-neat fabric systems failed the blunt trauma test. However, fabric systems with natural rubber (NR) latex coated fabric layers gave lower blunt trauma of between 25-32 mm indentation depths. Deformations on the neat fabrics upon impact were identified as broken yarns, yarn stretching and yarn pull-out. Deflections of the neat fabrics were more localised.more » For the NR latex coated fabric layers, no significant deformation can be observed except for peeled-off regions of the NR latex film at the back surface of the last layer. From the study, it can be said that the NR latex coated fabric layers were effective in reducing the blunt trauma of fabric systems.« less

  6. Fabrication and evaluation of SDF-1 loaded galactosylated chitosan nanoparticles for liver targeting

    NASA Astrophysics Data System (ADS)

    Xue-Hui, Chu; Zhang-Qi, Feng; Qian, Xu; Jiang-Qiang, Xiao; Xian-Wen, Yuan; Xi-Tai, Sun

    2017-03-01

    Objective. SDF-1 loaded galactosylated chitosan (GC) nanoparticles for liver targeting were synthesized by electrospraying technique, and its biocompatibility and liver targeting effect were evaluated. Method. The SDF-1 loaded GC nanoparticles were constructed and its morphology was observed by the scanning electron microscopy (SEM). Hepatocytes were harvested and cocultured with the nanoparticles, and the albumin secretion and urea synthesis were detected by enzyme-linked immunosorbent assay assay, the concentration of lactate dehydrogenase (LDH) and tumor necrosis factor-α (TNF-α) was also measured. Finally, the nanoparticles were injected intravenously through the caudal vein of rat, and its liver targeting effect was evaluated. Result. SEM showed the nanoparticles distributed uniformly, with an average diameter of 100 nm and a regular spherical shape. There was no significant difference in urea synthesis, albumin secretion, concentration of LDH and TNF-α between two groups (p > 0.05). The nanoparticles were significantly accumulated in the liver tissue after its injection, but seldom fluorescence signals were observed in the lung, spleen, heart and kidney. Conclusion. The SDF-1 loaded GC nanoparticles showed uniform distribution, good biocompatibility and liver targeting effect, and suggested its potential application as a liver targeting delivery system.

  7. The application of the fibroblast activation protein α-targeted immunotherapy strategy

    PubMed Central

    Du, Jun; Zhang, Kun-Shui; Zhang, Qiu-Gui; Wang, Xiao-Wei; Liu, Zhi-Gang; Liu, Shuang-Quan; Xie, Wan-Ying; Liu, Hui-Fang; Liu, Jing-Shi; Wu, Bai-Ping

    2016-01-01

    Cancer immunotherapy has primarily been focused on attacking tumor cells. However, given the close interaction between tumor cells and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies could also contribute to an integrated cancer immunotherapy. Fibroblast activation protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs and is the predominant component of the stroma in most types of cancer. FAP α has both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting FAP α is an adaptive tumor-associated antigen. This review highlights the role of FAP α in tumor development, explores the relationship between FAP α and immune suppression in the TME, and discusses FAP α as a potential immunotherapeutic target. PMID:26985769

  8. Active imaging system performance model for target acquisition

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Teaney, Brian; Nguyen, Quang; Jacobs, Eddie L.; Halford, Carl E.; Tofsted, David H.

    2007-04-01

    The U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate has developed a laser-range-gated imaging system performance model for the detection, recognition, and identification of vehicle targets. The model is based on the established US Army RDECOM CERDEC NVESD sensor performance models of the human system response through an imaging system. The Java-based model, called NVLRG, accounts for the effect of active illumination, atmospheric attenuation, and turbulence effects relevant to LRG imagers, such as speckle and scintillation, and for the critical sensor and display components. This model can be used to assess the performance of recently proposed active SWIR systems through various trade studies. This paper will describe the NVLRG model in detail, discuss the validation of recent model components, present initial trade study results, and outline plans to validate and calibrate the end-to-end model with field data through human perception testing.

  9. Targeting PIM kinase enhances the activity of sunitinib in renal cell carcinoma

    PubMed Central

    Mahalingam, D; Espitia, C M; Medina, E C; Esquivel, J A; Kelly, K R; Bearss, D; Choy, G; Taverna, P; Carew, J S; Giles, F J; Nawrocki, S T

    2011-01-01

    Background: Upregulation of PIM kinase expression has been reported in many malignancies, suggesting that inhibition of PIM kinase activity may be an attractive therapeutic strategy. We hypothesised that inhibition of PIM kinase activity with SGI-1776, a novel small molecule inhibitor of PIM kinase activity, would reduce the viability of renal cell carcinoma (RCC) cells and enhance the activity of sunitinib. Methods: Immunoblotting, qRT–PCR, and gene expression arrays were carried out to identify genes modulated by SGI-1776 treatment. The anticancer activity of SGI-1776 and sunitinib was determined by viability and apoptosis assays and in tumour xenografts in vivo. Results: Treatment with SGI-1776 led to a decrease in phosphorylated and total c-Myc levels, which resulted in the modulation of c-Myc target genes. SGI-1776 in combination with sunitinib induced a further reduction in c-Myc levels, which was associated with enhanced anticancer activity. siRNA-mediated knockdown of c-Myc demonstrated that its expression has a key role in regulating the sensitivity to the combination of SGI-1776 and sunitinib. Importantly, the combination significantly reduced tumour burden in two RCC xenograft models compared with single-agent therapy and was very well tolerated. Conclusion: These data indicate that targeting PIM kinase signalling is a promising treatment strategy for RCC. PMID:22015557

  10. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  11. A numerically optimized active shield for improved transcranial magnetic stimulation targeting.

    PubMed

    Hernandez-Garcia, Luis; Hall, Timothy; Gomez, Luis; Michielssen, Eric

    2010-10-01

    Transcranial magnetic stimulation (TMS) devices suffer of poor targeting and penetration depth. A new approach to designing TMS coils is introduced in order to improve the focus of the stimulation region through the use of actively shielded probes. Iterative optimization techniques were used to design different active shielding coils for TMS probes. The new approach aims to increase the amount of energy deposited in a thin cylindrical region below the probe relative to the energy deposited elsewhere in the region ("sharpness"), whereas, simultaneously increase the induced electric field deep in the target region relative to the surface ("penetration"). After convergence, the resulting designs showed that there is a clear tradeoff between sharpness and penetration that can be controlled by the choice of a tuning parameter. The resulting designs were tested on a realistic human head conductivity model, taking the contribution from surface charges into account. The design of choice reduced penetration depths by 16.7%. The activated surface area was reduced by 24.1% and the volume of the activation was reduced from 42.6% by the shield. Restoring the lost penetration could be achieved by increasing the total power to the coil by 16.3%, but in that case, the stimulated volume reduction was only 13.1% and there was a slight increase in the stimulated surface area (2.9%). Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Energy release, beam attenuation radiation damage, gas production and accumulation of long-lived activity in Pb, Pb-Bi and Hg targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shubin, Yu.N.

    1996-06-01

    The calculation and analysis of the nuclei concentrations and long-lived residual radioactivity accumulated in Pb, Pb-Bi and Hg targets irradiated by 800 MeV, 30 mA proton beam have been performed. The dominating components to the total radioactivity of radionuclides resulting from fission and spallation reactions and radiative capture by both target nuclei and accumulated radioactive nuclei for various irradiation and cooling times were analyzed. The estimations of spectral component contributions of neutron and proton fluxes to the accumulated activity were carried out. The contributions of fission products to the targets activity and partial activities of main long-lived fission products tomore » the targets activity and partial activities of main long-lived fission products were evaluated. The accumulation of Po isotopes due to reactions induced by secondary alpha-particles were found to be important for the Pb target as compared with two-step radiative capture. The production of Tritium in the targets and its contribution to the total targets activity was considered in detail. It is found that total activities of both targets are close to one another.« less

  13. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling

    2017-05-01

    Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.

  14. Health Activism Targeting Corporations: A Critical Health Communication Perspective.

    PubMed

    Zoller, Heather M

    2017-02-01

    Health activists and health social movements have transformed medical treatment, promoted public health policies, and extended civil rights for people with illness and disability. This essay explores health activism that targets corporate-generated illness and risk in order to understand the unique communicative challenges involved in this area of contention. Arguing for greater critical engagement with policy, the article integrates policy research with social movements, subpolitics, and issue management literature. Drawing from activist discourse and multidisciplinary research, the article describes how a wide array of groups groups build visibility for corporate health effects, create the potential for networking and collaboration, and politicize health by attributing illness to corporate behaviors. The discussion articulates the implications of this activism for health communication theory, research, and practice.

  15. 40 CFR 60.5175 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...

  16. 40 CFR 60.5175 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...

  17. 40 CFR 60.5175 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...

  18. 40 CFR 60.5175 - How do I establish operating limits if I do not use a wet scrubber, fabric filter, electrostatic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I do not use a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection..., fabric filter, electrostatic precipitator, activated carbon injection, or afterburner, or if I limit... device other than a wet scrubber, fabric filter, electrostatic precipitator, activated carbon injection...

  19. Fractal active contour model for segmenting the boundary of man-made target in nature scenes

    NASA Astrophysics Data System (ADS)

    Li, Min; Tang, Yandong; Wang, Lidi; Shi, Zelin

    2006-02-01

    In this paper, a novel geometric active contour model based on the fractal dimension feature to extract the boundary of man-made target in nature scenes is presented. In order to suppress the nature clutters, an adaptive weighting function is defined using the fractal dimension feature. Then the weighting function is introduced into the geodesic active contour model to detect the boundary of man-made target. Curve driven by our proposed model can evolve gradually from the initial position to the boundary of man-made target without being disturbed by nature clutters, even if the initial curve is far away from the true boundary. Experimental results validate the effectiveness and feasibility of our model.

  20. Probing microbubble targeting with atomic force microscopy.

    PubMed

    Sboros, V; Glynos, E; Ross, J A; Moran, C M; Pye, S D; Butler, M; McDicken, W N; Brown, S B; Koutsos, V

    2010-10-01

    Microbubble science is expanding beyond ultrasound imaging applications to biological targeting and drug/gene delivery. The characteristics of molecular targeting should be tested by a measurement system that can assess targeting efficacy and strength. Atomic force microscopy (AFM) is capable of piconewton force resolution, and is reported to measure the strength of single hydrogen bonds. An in-house targeted microbubble modified using the biotin-avidin chemistry and the CD31 antibody was used to probe cultures of Sk-Hep1 hepatic endothelial cells. We report that the targeted microbubbles provide a single distribution of adhesion forces with a median of 93pN. This interaction is assigned to the CD31 antibody-antigen unbinding event. Information on the distances between the interaction forces was obtained and could be important for future microbubble fabrication. In conclusion, the capability of single microbubbles to target cell lines was shown to be feasible with AFM.

  1. Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W. F.; Institute of Materials Research and Engineering, Agency for Science, Technology and Research; Liu, Z. G.

    2013-03-18

    Al-doped ZnO (AZO) films with high transmittance and low resistivity were achieved on low temperature substrates by radio frequency magnetron sputtering using a high temperature target. By investigating the effect of target temperature (T{sub G}) on electrical and optical properties, the origin of electrical conduction is verified as the effect of the high T{sub G}, which enhances crystal quality that provides higher mobility of electrons as well as more effective activation for the Al dopants. The optical bandgap increases from 3.30 eV for insulating ZnO to 3.77 eV for conducting AZO grown at high T{sub G}, and is associated withmore » conduction-band filling up to 1.13 eV due to the Burstein-Moss effect.« less

  2. Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine.

    PubMed

    Karim, Md N; Anderson, Samuel R; Singh, Sanjay; Ramanathan, Rajesh; Bansal, Vipul

    2018-07-01

    Enzyme-mimicking catalytic nanoparticles, more commonly known as NanoZymes, have been at the forefront for the development of new sensing platforms for the detection of a range of molecules. Although solution-based NanoZymes have shown promise in glucose detection, the ability to immobilize NanoZymes on highly absorbent surfaces, particularly on free-standing substrates that can be feasibly exposed and removed from the reaction medium, can offer significant benefits for a range of biosensing and catalysis applications. This work, for the first time, shows the ability of Ag nanoparticles embedded within the 3D matrix of a cotton fabric to act as a free-standing peroxidase-mimic NanoZyme for the rapid detection of glucose in complex biological fluids such as urine. The use of cotton fabric as a template not only allows high number of catalytically active sites to participate in the enzyme-mimic catalytic reaction, the absorbent property of the cotton fibres also helps in rapid absorption of biological molecules such as glucose during the sensing event. This, in turn, brings the target molecule of interest in close proximity of the NanoZyme catalyst enabling accurate detection of glucose in urine. Additionally, the ability to extract the free-standing cotton fabric-supported NanoZyme following the reaction overcomes the issue of potential interference from colloidal nanoparticles during the assay. Based on these unique characteristics, nanostructured silver fabrics offer remarkable promise for the detection of glucose and other biomolecules in complex biological and environmental fluids. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Development of flame retardant cotton fabric based on ionic liquids via sol-gel technique.

    NASA Astrophysics Data System (ADS)

    Bentis, A.; Boukhriss, A.; Boyer, D.; Gmouh, S.

    2017-10-01

    In this study, flame retardant cotton fabrics were developed by the sol-gel method, in order to enhance their flame retardant proprieties. For this aim, seven sols were prepared using tetraethylorthosilicate (TEOS) and different ionic liquids (ILs) consist on pyridinium and Methylimidazolium cations with different anions such as: PF6-, CH3COO-, and Br-. Those sols were applied separately to the cotton fabrics by a pad-dry-cure process. The flame retardant properties of functionalized cotton fabrics before and after washing were determined by the vertical flame tests according to ISO6940:2004(F) standard. The effects of anions have been thoroughly investigated, aiming at the optimization of the targeted properties. Thermogravimetric and mechanical according to NF EN ISO 13934-1:2013standard, analyses have been also investigated. The results showed that flame retardancy, thermal stability and mechanical properties of treated fabrics were enhanced by using ionic liquids.

  4. Controllable fabrication of ultrathin free-standing graphene films

    PubMed Central

    Chen, Jianyi; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Geng, Dechao; Liu, Hongtao; Wu, Bin; Yu, Gui; Hu, Wenping; Liu, Yunqi; Zhu, Daoben

    2014-01-01

    Graphene free-standing film-like or paper-like materials have attracted great attention due to their intriguing electronic, optical and mechanical properties and potential application in chemical filters, molecular storage and supercapacitors. Although significant progress has been made in fabricating graphene films or paper, there is still no effective method targeting ultrathin free-standing graphene films (UFGFs). Here, we present a modified filtration assembly method to prepare these ultrathin films. With this approach, we have fabricated a series of ultrathin free-standing graphene oxide films and UFGFs, up to 40 mm in diameter, with controllable thickness from micrometre to nanoscale (approx. 40 nm) dimensions. This method can be easily scaled up and the films display excellent optical, electrical and electrochemical properties. The ability to produce UFGFs from graphene oxide with a scalable, low-cost approach should take us a step closer to real-world applications of graphene. PMID:24615152

  5. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum.

    PubMed

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C Y; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S W; Lin, Qingsong

    2015-12-22

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing.

  6. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum

    PubMed Central

    Wang, Jigang; Zhang, Chong-Jing; Chia, Wan Ni; Loh, Cheryl C. Y.; Li, Zhengjun; Lee, Yew Mun; He, Yingke; Yuan, Li-Xia; Lim, Teck Kwang; Liu, Min; Liew, Chin Xia; Lee, Yan Quan; Zhang, Jianbin; Lu, Nianci; Lim, Chwee Teck; Hua, Zi-Chun; Liu, Bin; Shen, Han-Ming; Tan, Kevin S. W.; Lin, Qingsong

    2015-01-01

    The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing. PMID:26694030

  7. Active colloids as mobile microelectrodes for unified label-free selective cargo transport.

    PubMed

    Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad

    2018-02-22

    Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.

  8. Negotiating targets with patients: choice of target in relation to occupational state.

    PubMed

    Robinson, Sandra M; Walker, David J

    2012-02-01

    Following the recent National Institute for Health and Clinical Excellence guidance on the management of RA, we were interested to see if we could negotiate targets for treatment with patients in routine clinics, how they would express this and whether staying at work would be a target. One hundred RA patients were recruited. They were consecutive within clinics, but not all clinics were used. They were asked their understanding of the DAS score and a target for treatment negotiated. Any impact of the RA on their paid employment was then explored. Four participants were unable to specify a target for their RA. Negotiated targets were expressed as restricted activities and either as maintaining an activity (70) if the disease was stable, or regaining an activity (26) if the treatment was being increased. Targets were walking a distance for 50% of patients; leisure activities for 18%; domestic activities for 17%; work for 14% and personal care for 2%. For the 21 participants currently working, maintaining work was the target for 12, with 1 wishing to regain lost hours. No patient currently not working expressed returning to work as a target. There were some differences in targets between men and women. Patients are able to negotiate a target for their treatment, expressed as maintaining or regaining a physical activity. Work ceases to be a target once it is lost. Therefore, preventing loss of occupation is likely to be more effective than trying to regain it.

  9. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy.

    PubMed

    Rwibasira Rudinga, Gamariel; Khan, Ghulam Jilany; Kong, Yi

    2018-02-14

    Cardiovascular diseases (CVDs) are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs), including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR). Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.

  10. Acute myeloid leukemia-targeted toxin activates both apoptotic and necroptotic death mechanisms.

    PubMed

    Horita, Henrick; Frankel, Arthur E; Thorburn, Andrew

    2008-01-01

    Acute myelogenous leukemia (AML) is the second most common leukemia with approximately 13,410 new cases and 8,990 deaths annually in the United States. A novel fusion toxin treatment, diphtheria toxin GM-CSF (DT-GMCSF) has been shown to selectively eliminate leukemic repopulating cells that are critical for the formation of AML. We previously showed that DT-GMCSF treatment of U937 cells, an AML cell line, causes activation of caspases and the induction of apoptosis. In this study we further investigate the mechanisms of cell death induced by DT-GMCSF and show that, in addition to the activation of caspase-dependent apoptosis, DT-GMCSF also kills AML cells by simultaneously activating caspase-independent necroptosis. These mechanisms depend on the ability of the targeted toxin to inhibit protein synthesis, and are not affected by the receptor that is targeted or the mechanism through which protein synthesis is blocked. We conclude that fusion toxin proteins may be effective for treating AML cells whether or not they are defective in apoptosis.

  11. Retrotransposon Tf1 is targeted to pol II promoters by transcription activators

    PubMed Central

    Leem, Young-Eun; Ripmaster, Tracy; Kelly, Felice; Ebina, Hirotaka; Heincelman, Marc; Zhang, Ke; Grewal, Shiv I. S.; Hoffman, Charles S.; Levin, Henry L.

    2008-01-01

    SUMMARY The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of pol II transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly we found Tf1 contained sequences that activated transcription and these substituted for elements of the ade6 promoter disrupted by integration. PMID:18406330

  12. Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators.

    PubMed

    Leem, Young-Eun; Ripmaster, Tracy L; Kelly, Felice D; Ebina, Hirotaka; Heincelman, Marc E; Zhang, Ke; Grewal, Shiv I S; Hoffman, Charles S; Levin, Henry L

    2008-04-11

    The LTR-retrotransposon Tf1 preserves the coding capacity of its host Schizosaccharomyces pombe by integrating upstream of open reading frames (ORFs). To determine which features of the target sites were recognized by the transposon, we introduced plasmids containing candidate insertion sites into S. pombe and mapped the positions of integration. We found that Tf1 was targeted specifically to the promoters of Pol II-transcribed genes. A detailed analysis of integration in plasmids that contained either ade6 or fbp1 revealed insertions occurred in the promoters at positions where transcription factors bound. Further experiments revealed that the activator Atf1p and its binding site were required for directing integration to the promoter of fbp1. An interaction between Tf1 integrase and Atf1p was observed, indicating that integration at fbp1 was mediated by the activator bound to its promoter. Surprisingly, we found Tf1 contained sequences that activated transcription, and these substituted for elements of the ade6 promoter disrupted by integration.

  13. Modulation of Regulatory T Cell Activity by TNF Receptor Type II-Targeting Pharmacological Agents

    PubMed Central

    Zou, Huimin; Li, Ruixin; Hu, Hao; Hu, Yuanjia; Chen, Xin

    2018-01-01

    There is now compelling evidence that tumor necrosis factor (TNF)–TNF receptor type II (TNFR2) interaction plays a decisive role in the activation, expansion, and phenotypical stability of suppressive CD4+Foxp3+ regulatory T cells (Tregs). In an effort to translate this basic research finding into a therapeutic benefit, a number of agonistic or antagonistic TNFR2-targeting biological agents with the capacity to activate or inhibit Treg activity have been developed and studied. Recent studies also show that thalidomide analogs, cyclophosphamide, and other small molecules are able to act on TNFR2, resulting in the elimination of TNFR2-expressing Tregs. In contrast, pharmacological agents, such as vitamin D3 and adalimumab, were reported to induce the expansion of Tregs by promoting the interaction of transmembrane TNF (tmTNF) with TNFR2. These studies clearly show that TNFR2-targeting pharmacological agents represent an effective approach to modulating the function of Tregs and thus may be useful in the treatment of major human diseases such as autoimmune disorders, graft-versus-host disease (GVHD), and cancer. In this review, we will summarize and discuss the latest progress in the study of TNFR2-targeting pharmacological agents and their therapeutic potential based on upregulation or downregulation of Treg activity. PMID:29632537

  14. Enhanced simultaneous PEC eradication of bacteria and antibiotics by facilely fabricated high-activity {001} facets TiO2 mounted onto TiO2 nanotubular photoanode.

    PubMed

    Li, Guiying; Nie, Xin; Chen, Jiangyao; Wong, Po Keung; An, Taicheng; Yamashita, Hiromi; Zhao, Huijun

    2016-09-15

    Biohazards and coexisted antibiotics are two groups of emerging contaminants presented in various aquatic environments. They can pose serious threat to the ecosystem and human health. As a result, inactivation of biohazards, degradation of antibiotics, and simultaneous removal of them are highly desired. In this work, a novel photoanode with a hierarchical structured {001} facets exposed nano-size single crystals (NSC) TiO2 top layer and a perpendicularly aligned TiO2 nanotube array (NTA) bottom layer (NSC/NTA) was successfully fabricated. The morphology and facets of anatase TiO2 nanoparticles covered on the top of NTA layer could be controlled by adjusting precalcination temperature and heating rate as the pure NTA was clamped with glasses. Appropriate recalcination can timely remove surface F from {001} facets, and the photocatalytic activity of the resultant photoanode was subsequently activated. NSC/NTA photoanode fabricated under 500 °C precalcination with 20 °C min(-1) followed by 550 °C recalcination possessed highest photoelectrocatalytic efficiency to simultaneously remove bacteria and antibiotics. Results suggest that two-step calcination is necessary for fabrication of high photocatalytic activity NSC/NTA photoanode. The capability of simultaneous eradication of bacteria and antibiotics shows great potential for development of a versatile approach to effectively purify various wastewaters contaminated with complex pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A study on the antimicrobial efficacy of RF oxygen plasma and neem extract treated cotton fabrics

    NASA Astrophysics Data System (ADS)

    Vaideki, K.; Jayakumar, S.; Thilagavathi, G.; Rajendran, R.

    2007-06-01

    The paper deals with a thorough investigation on the antimicrobial activity of RF oxygen plasma and Azadirachtin (neem extract) treated cotton fabric. The hydrophilicity of cotton fabric was found to improve when treated with RF oxygen plasma. The process parameters such as electrode gap, time of exposure and oxygen pressure have been varied to study their effect on improving the hydrophilicity of the cotton fabric. The static immersion test has been carried out to assess the hydrophilicity of the oxygen plasma treated samples and the process parameters were optimized based on these test results. The formation of carbonyl group during surface modification in the plasma treated sample was analysed using FTIR studies. The surface morphology has been studied using SEM micrographs. The antimicrobial activity was imparted to the RF oxygen plasma treated samples using methanolic extract of neem leaves containing Azadirachtin. The antimicrobial activity of these samples has been analysed and compared with the activity of the cotton fabric treated with neem extract alone. The investigation reveals that the surface modification due to RF oxygen plasma was found to increase the hydrophilicity and hence the antimicrobial activity of the cotton fabric when treated with Azadirachtin.

  16. Enhanced Anti-Tumoral Activity of Methotrexate-Human Serum Albumin Conjugated Nanoparticles by Targeting with Luteinizing Hormone-Releasing Hormone (LHRH) Peptide

    PubMed Central

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120–138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX. PMID:21845098

  17. Enhanced anti-tumoral activity of methotrexate-human serum albumin conjugated nanoparticles by targeting with Luteinizing Hormone-Releasing Hormone (LHRH) peptide.

    PubMed

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120-138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX.

  18. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.

    PubMed

    Dmochowski, Jacek P; Koessler, Laurent; Norcia, Anthony M; Bikson, Marom; Parra, Lucas C

    2017-08-15

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation

    PubMed Central

    Dmochowski, Jacek P.; Koessler, Laurent; Norcia, Anthony M.; Bikson, Marom; Parra, Lucas C.

    2018-01-01

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4–7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. PMID:28578130

  20. Progress on LMJ targets for ignition

    NASA Astrophysics Data System (ADS)

    Cherfils-Clérouin, C.; Boniface, C.; Bonnefille, M.; Dattolo, E.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Masson-Laborde, P. E.; Monteil, M. C.; Poggi, F.; Seytor, P.; Wagon, F.; Willien, J. L.

    2009-12-01

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  1. Fabrication of 121Sb isotopic targets for the study of nuclear high spin features

    NASA Astrophysics Data System (ADS)

    Devi, K. Rojeeta; Kumar, Suresh; Kumar, Neeraj; Abhilash, S. R.; Kabiraj, D.

    2018-06-01

    Isotopic 121Sb targets with 197Au backing have been prepared by Physical Vapor Deposition (PVD) method using the diffusion pump based coating unit at target laboratory, Inter University Accelerator Centre (IUAC), New Delhi, India. The target thickness was measured by stylus profilo-meter and the purity of the targets was investigated by Energy Dispersive X-ray Analysis (EDXA). One of these targets has been used in an experiment which was performed at IUAC for nuclear structure study through fusion evaporation reaction. The excitation function of the 121Sb(12C, yxnγ) reaction has been performed for energies 58 to 70 MeV in steps of 4 MeV. The experimental results were compared with the calculations of statistical models : PACE4 and CASCADE. The methods adopted to achieve best quality foils and good deposition efficiency are reported in this paper.

  2. Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation

    PubMed Central

    Zhang, Haoran; Yang, Fengyou; Dong, Jianjie; Du, Lena; Wang, Chuang; Zhang, Jianming; Guo, Chuan Fei; Liu, Qian

    2016-01-01

    Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns. A complex quasi-3D structure, coaxially nested convex–concave microlens array, as an example, demonstrates our capability of design and fabrication of surface elements with this method. Moreover, by using only one relief mask with the convex–concave microlens structure, we have gotten hundreds of target patterns at different imaging planes, offering a cost-effective solution for mass production in lithography and imprinting, and portending a paradigm in quasi-3D manufacturing. PMID:27910852

  3. Fabrication of high-quality single-crystal Cu thin films using radio-frequency sputtering.

    PubMed

    Lee, Seunghun; Kim, Ji Young; Lee, Tae-Woo; Kim, Won-Kyung; Kim, Bum-Su; Park, Ji Hun; Bae, Jong-Seong; Cho, Yong Chan; Kim, Jungdae; Oh, Min-Wook; Hwang, Cheol Seong; Jeong, Se-Young

    2014-08-29

    Copper (Cu) thin films have been widely used as electrodes and interconnection wires in integrated electronic circuits, and more recently as substrates for the synthesis of graphene. However, the ultra-high vacuum processes required for high-quality Cu film fabrication, such as molecular beam epitaxy (MBE), restricts mass production with low cost. In this work, we demonstrated high-quality Cu thin films using a single-crystal Cu target and radio-frequency (RF) sputtering technique; the resulting film quality was comparable to that produced using MBE, even under unfavorable conditions for pure Cu film growth. The Cu thin film was epitaxially grown on an Al2O3 (sapphire) (0001) substrate, and had high crystalline orientation along the (111) direction. Despite the 10(-3) Pa vacuum conditions, the resulting thin film was oxygen free due to the high chemical stability of the sputtered specimen from a single-crystal target; moreover, the deposited film had >5× higher adhesion force than that produced using a polycrystalline target. This fabrication method enabled Cu films to be obtained using a simple, manufacturing-friendly process on a large-area substrate, making our findings relevant for industrial applications.

  4. Sensing human physiological response using wearable carbon nanotube-based fabrics

    NASA Astrophysics Data System (ADS)

    Wang, Long; Loh, Kenneth J.; Koo, Helen S.

    2016-04-01

    Flexible and wearable sensors for human monitoring have received increased attention. Besides detecting motion and physical activity, measuring human vital signals (e.g., respiration rate and body temperature) provide rich data for assessing subjects' physiological or psychological condition. Instead of using conventional, bulky, sensing transducers, the objective of this study was to design and test a wearable, fabric-like sensing system. In particular, multi-walled carbon nanotube (MWCNT)-latex thin films of different MWCNT concentrations were first fabricated using spray coating. Freestanding MWCNT-latex films were then sandwiched between two layers of flexible fabric using iron-on adhesive to form the wearable sensor. Second, to characterize its strain sensing properties, the fabric sensors were subjected to uniaxial and cyclic tensile load tests, and they exhibited relatively stable electromechanical responses. Finally, the wearable sensors were placed on a human subject for monitoring simple motions and for validating their practical strain sensing performance. Overall, the wearable fabric sensor design exhibited advances such as flexibility, ease of fabrication, light weight, low cost, noninvasiveness, and user comfort.

  5. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery.

    PubMed

    Farzan, Shohreh F; Palermo, Laura M; Yokoyama, Christine C; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-11-04

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.

  6. Report of material and equipment section`s activities at New York Shipbuilding Corporation during fabrication of AXC 167 1/2 starting May 18, 1951. Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J.R.

    1954-05-26

    This report provides Part III through VI of the Material and Equipment Section`s activities at New York Shipbuilding Corporation. Fabrication, inspection, and testing of reactor components are detailed.

  7. Dispersion of Projectile and Target Debris Upon Penetration of Thin Targets

    NASA Astrophysics Data System (ADS)

    Gwynn, D.; Bernhard, R. P.; See, T. H.; Horz, F.

    1996-03-01

    We continue to conduct penetration experiments of thin foils to support the development of cosmic-dust flight instruments that utilize thin films for the measurement of particle trajectories, or for the potential soft capture of hypervelocity impactors for subsequent compositional analysis upon retrieval to Earth. Each experiment is equipped with a witness plate, mounted to the rear of the target and fabricated from soft Aluminum-1100, ~30 x 30 cm in size and ranging from 2 to 5 mm thick; these witness plates essentially simulate the rear wall of a capture cell onto which the projectile material will plate out, including material that is being dislodged from the penetrated foil itself. Using compositionally contrasting projectile and foil materials in the laboratory, such as soda-lime glass impactors and aluminum targets, one produces two distinct populations of craters on the witness plates.

  8. Ion traps fabricated in a CMOS foundry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, K. K.; Ram, R. J.; Eltony, A. M.

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size.more » This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.« less

  9. p21 Activated Kinase 5 Activates Raf-1 and Targets it to Mitochondria

    PubMed Central

    Wu, Xiaochong; Carr, Heather S.; Dan, Ippeita; Ruvolo, Peter P.; Frost, Jeffrey A.

    2008-01-01

    Raf-1 is an important effector of Ras mediated signaling and is a critical regulator of the ERK/MAPK pathway. Raf-1 activation is controlled in part by phosphorylation on multiple residues, including an obligate phosphorylation site at serine 338. Previously PAK1 and casein kinase II have been implicated as serine 338 kinases. To identify novel kinases that phosphorylate this site, we tested the ability of group II PAKs (PAKs 4-6) to control serine 338 phosphorylation. We observed that all group II PAKs were efficient serine 338 kinases, although only PAK1 and PAK5 significantly stimulated Raf-1 kinase activity. We also showed that PAK5 forms a tight complex with Raf-1 in the cell, but not A-Raf or B-Raf. Importantly, we also demonstrated that the association of Raf-1 with PAK5 targets a subpopulation of Raf-1 to mitochondria. These data indicate that PAK5 is a potent regulator of Raf-1 activity and may control Raf-1 dependent signaling at the mitochondria. PMID:18465753

  10. Exploring Wind Power: Improving Mathematical Thinking through Digital Fabrication

    ERIC Educational Resources Information Center

    Tillman, Daniel A.; An, Song A.; Cohen, Jonathan D.; Kjellstrom, William; Boren, Rachel L.

    2014-01-01

    This mixed methods study examined the impacts of digital fabrication activities that were integrated into contextualized mathematics education. The study investigated the students' mathematics content knowledge and attitudes. Data analysis yielded two key findings regarding our intervention combined with the other mathematics activities resulted…

  11. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity.

    PubMed

    Yu, Jiaguo; Qi, Lifang

    2009-09-30

    Hierarchically flower-like tungsten trioxide assemblies were fabricated on a large scale by a simple hydrothermal treatment of sodium tungstate in aqueous solution of nitric acid. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and N(2) adsorption-desorption measurements. The photocatalytic activity was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. It was found that the three-dimensional tungsten trioxide assemblies were constructed from two-dimensional layers, which were further composed of a large number of interconnected lathy nanoplates with different sizes. Such flower-like assemblies exhibited hierarchically porous structure and higher visible-light photocatalytic activity than the samples without such hierarchical structures due to their specific hierarchical pores that served as the transport paths for light and reactants. After five recycles for the photodegradation of RhB, the catalyst did not exhibit any great loss in activity, confirming hierarchically flower-like tungsten trioxide was stability and not photocorroded. This study may provide new insight into environmentally benign preparation and design of novel photocatalytic materials and enhancement of photocatalytic activity.

  12. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  13. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma.

    PubMed

    Venkatesh, Humsa S; Tam, Lydia T; Woo, Pamelyn J; Lennon, James; Nagaraja, Surya; Gillespie, Shawn M; Ni, Jing; Duveau, Damien Y; Morris, Patrick J; Zhao, Jean J; Thomas, Craig J; Monje, Michelle

    2017-09-28

    High-grade gliomas (HGG) are a devastating group of cancers, and represent the leading cause of brain tumour-related death in both children and adults. Therapies aimed at mechanisms intrinsic to glioma cells have translated to only limited success; effective therapeutic strategies will need also to target elements of the tumour microenvironment that promote glioma progression. Neuronal activity promotes the growth of a range of molecularly and clinically distinct HGG types, including adult and paediatric glioblastoma (GBM), anaplastic oligodendroglioma, and diffuse intrinsic pontine glioma (DIPG). An important mechanism that mediates this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic adhesion molecule neuroligin-3 (NLGN3), which promotes glioma proliferation through the PI3K-mTOR pathway. However, the necessity of NLGN3 for glioma growth, the proteolytic mechanism of NLGN3 secretion, and the further molecular consequences of NLGN3 secretion in glioma cells remain unknown. Here we show that HGG growth depends on microenvironmental NLGN3, identify signalling cascades downstream of NLGN3 binding in glioma, and determine a therapeutically targetable mechanism of secretion. Patient-derived orthotopic xenografts of paediatric GBM, DIPG and adult GBM fail to grow in Nlgn3 knockout mice. NLGN3 stimulates several oncogenic pathways, such as early focal adhesion kinase activation upstream of PI3K-mTOR, and induces transcriptional changes that include upregulation of several synapse-related genes in glioma cells. NLGN3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. ADAM10 inhibitors prevent the release of NLGN3 into the tumour microenvironment and robustly block HGG xenograft growth. This work defines a promising strategy for targeting NLGN3 secretion, which could prove transformative for HGG therapy.

  14. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma

    PubMed Central

    Venkatesh, Humsa S.; Tam, Lydia T.; Woo, Pamelyn J.; Lennon, James; Nagaraja, Surya; Gillespie, Shawn M.; Ni, Jing; Duveau, Damien Y.; Morris, Patrick J.; Zhao, Jean J.; Thomas, Craig J.; Monje, Michelle

    2017-01-01

    Summary High-grade gliomas (HGG) are a devastating group of cancers, representing the leading cause of brain tumor-related death in both children and adults. Therapies aimed at mechanisms intrinsic to the glioma cell have translated to only limited success; effective therapeutic strategies will need to also target elements of the tumor microenvironment that promote glioma progression. We recently demonstrated that neuronal activity robustly promotes the growth of a range of molecularly and clinically distinct HGG types, including adult glioblastoma (GBM), anaplastic oligodendroglioma, pediatric GBM, and diffuse intrinsic pontine glioma (DIPG)1. An important mechanism mediating this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic molecule neuroligin-3 (NLGN3), which promotes glioma proliferation through the PI3K-mTOR pathway1. However, neuroligin-3 necessity to glioma growth, proteolytic mechanism of secretion and further molecular consequences in glioma remain to be clarified. Here, we demonstrate a striking dependence of HGG growth on microenvironmental neuroligin-3, elucidate signaling cascades downstream of neuroligin-3 binding in glioma and determine a therapeutically targetable mechanism of secretion. Patient-derived orthotopic xenografts of pediatric GBM, DIPG and adult GBM fail to grow in Nlgn3 knockout mice. Neuroligin-3 stimulates numerous oncogenic pathways, including early focal adhesion kinase activation upstream of PI3K-mTOR, and induces transcriptional changes including upregulation of numerous synapse-related genes in glioma cells. Neuroligin-3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. ADAM10 inhibitors prevent release of neuroligin-3 into the tumor microenvironment and robustly block HGG xenograft growth. This work defines a promising strategy for targeting neuroligin-3 secretion, which could prove transformative for HGG therapy. PMID:28959975

  15. Effects of Epstein's TARGET on Adolescents' Intentions to Be Physically Active and Leisure-Time Physical Activity

    ERIC Educational Resources Information Center

    Cecchini, Jose A.; Fernandez-Rio, Javier; Mendez-Gimenez, Antonio

    2014-01-01

    The aim of this study was to examine the effects of Epstein's TARGET strategies on adolescents' intentions to be physically active and leisure-time physical activity (LTPA) levels. A total of 447 secondary education students (193 females and 254 males), range age 12-17 years, were divided in two groups: control (N = 224) and experimental…

  16. The response of fabric variations to simple shear and migration recrystallization

    DOE PAGES

    Kennedy, Joseph H.; Pettit, Erin C.

    2015-06-01

    The observable microstructures in ice are the result of many dynamic and competing processes. These processes are influenced by climate variables in the firn. Layers deposited in different climate regimes may show variations in fabric which can persist deep into the ice sheet; fabric may 'remember' these past climate regimes. In this paper, we model the evolution of fabric variations below the firn–ice transition and show that the addition of shear to compressive-stress regimes preserves the modeled fabric variations longer than compression-only regimes, because shear drives a positive feedback between crystal rotation and deformation. Even without shear, the modeled icemore » retains memory of the fabric variation for ~200 ka in typical polar ice-sheet conditions. Our model shows that temperature affects how long the fabric variation is preserved, but only affects the strain-integrated fabric evolution profile when comparing results straddling the thermal-activation-energy threshold (~–10°C). Even at high temperatures, migration recrystallization does not eliminate the modeled fabric's memory under most conditions. High levels of nearest-neighbor interactions will, however, eliminate the modeled fabric's memory more quickly than low levels of nearest-neighbor interactions. Finally, our model predicts that fabrics will retain memory of past climatic variations when subject to a wide variety of conditions found in polar ice sheets.« less

  17. SuperCDMS Underground Detector Fabrication Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less

  18. Review article: Fabrication of nanofluidic devices

    PubMed Central

    Duan, Chuanhua; Wang, Wei; Xie, Quan

    2013-01-01

    Thanks to its unique features at the nanoscale, nanofluidics, the study and application of fluid flow in nanochannels/nanopores with at least one characteristic size smaller than 100 nm, has enabled the occurrence of many interesting transport phenomena and has shown great potential in both bio- and energy-related fields. The unprecedented growth of this research field is apparently attributed to the rapid development of micro/nanofabrication techniques. In this review, we summarize recent activities and achievements of nanofabrication for nanofluidic devices, especially those reported in the past four years. Three major nanofabrication strategies, including nanolithography, microelectromechanical system based techniques, and methods using various nanomaterials, are introduced with specific fabrication approaches. Other unconventional fabrication attempts which utilize special polymer properties, various microfabrication failure mechanisms, and macro/microscale machining techniques are also presented. Based on these fabrication techniques, an inclusive guideline for materials and processes selection in the preparation of nanofluidic devices is provided. Finally, technical challenges along with possible opportunities in the present nanofabrication for nanofluidic study are discussed. PMID:23573176

  19. Reprogrammed streptokinases develop fibrin-targeting and dissolve blood clots with more potency than tissue plasminogen activator.

    PubMed

    Sazonova, I Y; McNamee, R A; Houng, A K; King, S M; Hedstrom, L; Reed, G L

    2009-08-01

    Given the worldwide epidemic of cardiovascular diseases, a more effective means of dissolving thrombi that cause heart attacks, could markedly reduce death, disability and healthcare costs. Plasminogen activators (PAs) such as streptokinase (SK) and tissue plasminogen activator (TPA) are currently used to dissolve fibrin thrombi. SK is cheaper and more widely available, but it appears less effective because it lacks TPA's fibrin-targeted properties that focus plasminogen activation on the fibrin surface. We examined whether re-programming SK's mechanism of action would create PAs with greater fibrin-targeting and potency than TPA. When fibrinogen consumption was measured in human plasma, reprogrammed molecules SKDelta1 and SKDelta59 were 5-fold and > 119-fold more fibrin-dependent than SK (P < 0.0001), and 2-fold and > 50-fold more fibrin-dependent than TPA (P < 0.001). The marked fibrin-targeting of SKDelta59 was due to the fact that: (i) it did not generate plasmin in plasma, (ii) it was rapidly inhibited by alpha2-antiplasmin, and (iii) it only processed fibrin-bound plasminogen. To assess the fibrin-targeting and therapeutic potential of these PAs in vivo, a novel 'humanized' fibrinolysis model was created by reconstituting plasminogen-deficient mice with human plasminogen. When compared with TPA, SKDelta1 and SKDelta59 were 4-fold (P < 0.0001) and 2-fold (P < 0.003) more potent at dissolving blood clots in vivo, respectively, on a mass-dose basis and 2-3 logs more potent than TPA (P < 0.0001) when doses were calibrated by standard activity assays. These experiments suggest that reprogramming SK's mechanism of action markedly enhances fibrin-targeting and creates, in comparison with TPA, activators with greater fibrinolytic potency.

  20. [Optimization of expression conditions and activity identification of hepatocyte-targeting peptide-human endostatin].

    PubMed

    Ma, Yan; Li, Wei; Li, Xiaobo; Bao, Dongmei; Lu, Jianpei

    2016-12-25

    To obtain sufficient purified and active fusion protein-hepatocyte-targeting peptide-human endostatin (HTP-rES), we studied the growth curve and the optimal induction timing of BL21/pET21b-HTP-rES. Different conditions of pH value, induction time, induction concentration and induction temperature were optimized by univariate analysis. After washing, refolding and purifying, the activity of fusion protein was identified by flow cytometry and 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT). Results show that the logarithmic growth phase of BL21/pET21b-HTP-rES was from 1.5 h to 3.5 h, the optimum expression conditions were pH 8.0, 0.06 mmol/L IPTG, at 42 ℃ for 5 h. The purity of inclusion bodies was up to 60% after washing. The purity of target protein was more than 95% after refolding and purification. Our findings provide the foundation for further biological activity and drug development.

  1. Comparing sixteen scoring functions for predicting biological activities of ligands for protein targets.

    PubMed

    Xu, Weijun; Lucke, Andrew J; Fairlie, David P

    2015-04-01

    Accurately predicting relative binding affinities and biological potencies for ligands that interact with proteins remains a significant challenge for computational chemists. Most evaluations of docking and scoring algorithms have focused on enhancing ligand affinity for a protein by optimizing docking poses and enrichment factors during virtual screening. However, there is still relatively limited information on the accuracy of commercially available docking and scoring software programs for correctly predicting binding affinities and biological activities of structurally related inhibitors of different enzyme classes. Presented here is a comparative evaluation of eight molecular docking programs (Autodock Vina, Fitted, FlexX, Fred, Glide, GOLD, LibDock, MolDock) using sixteen docking and scoring functions to predict the rank-order activity of different ligand series for six pharmacologically important protein and enzyme targets (Factor Xa, Cdk2 kinase, Aurora A kinase, COX-2, pla2g2a, β Estrogen receptor). Use of Fitted gave an excellent correlation (Pearson 0.86, Spearman 0.91) between predicted and experimental binding only for Cdk2 kinase inhibitors. FlexX and GOLDScore produced good correlations (Pearson>0.6) for hydrophilic targets such as Factor Xa, Cdk2 kinase and Aurora A kinase. By contrast, pla2g2a and COX-2 emerged as difficult targets for scoring functions to predict ligand activities. Although possessing a high hydrophobicity in its binding site, β Estrogen receptor produced reasonable correlations using LibDock (Pearson 0.75, Spearman 0.68). These findings can assist medicinal chemists to better match scoring functions with ligand-target systems for hit-to-lead optimization using computer-aided drug design approaches. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Target-classification approach applied to active UXO sites

    NASA Astrophysics Data System (ADS)

    Shubitidze, F.; Fernández, J. P.; Shamatava, Irma; Barrowes, B. E.; O'Neill, K.

    2013-06-01

    This study is designed to illustrate the discrimination performance at two UXO active sites (Oklahoma's Fort Sill and the Massachusetts Military Reservation) of a set of advanced electromagnetic induction (EMI) inversion/discrimination models which include the orthonormalized volume magnetic source (ONVMS), joint diagonalization (JD), and differential evolution (DE) approaches and whose power and flexibility greatly exceed those of the simple dipole model. The Fort Sill site is highly contaminated by a mix of the following types of munitions: 37-mm target practice tracers, 60-mm illumination mortars, 75-mm and 4.5'' projectiles, 3.5'', 2.36'', and LAAW rockets, antitank mine fuzes with and without hex nuts, practice MK2 and M67 grenades, 2.5'' ballistic windshields, M2A1-mines with/without bases, M19-14 time fuzes, and 40-mm practice grenades with/without cartridges. The site at the MMR site contains targets of yet different sizes. In this work we apply our models to EMI data collected using the MetalMapper (MM) and 2 × 2 TEMTADS sensors. The data for each anomaly are inverted to extract estimates of the extrinsic and intrinsic parameters associated with each buried target. (The latter include the total volume magnetic source or NVMS, which relates to size, shape, and material properties; the former includes location, depth, and orientation). The estimated intrinsic parameters are then used for classification performed via library matching and the use of statistical classification algorithms; this process yielded prioritized dig-lists that were submitted to the Institute for Defense Analyses (IDA) for independent scoring. The models' classification performance is illustrated and assessed based on these independent evaluations.

  3. Activity-based proteome profiling of potential cellular targets of Orlistat--an FDA-approved drug with anti-tumor activities.

    PubMed

    Yang, Peng-Yu; Liu, Kai; Ngai, Mun Hong; Lear, Martin J; Wenk, Markus R; Yao, Shao Q

    2010-01-20

    Orlistat, or tetrahydrolipstatin (THL), is an FDA-approved antiobesity drug with potential antitumor activities. Cellular off-targets and potential side effects of Orlistat in cancer therapies, however, have not been extensively explored thus far. In this study, we report the total of synthesis of THL-like protein-reactive probes, in which extremely conservative modifications (i.e., an alkyne handle) were introduced in the parental THL structure to maintain the native biological properties of Orlistat, while providing the necessary functionality for target identification via the bio-orthogonal click chemistry. With these natural productlike, cell-permeable probes, we were able to demonstrate, for the first time, this chemical proteomic approach is suitable for the identification of previously unknown cellular targets of Orlistat. In addition to the expected fatty acid synthase (FAS), we identified a total of eight new targets, some of which were further validated by experiments including Western blotting, recombinant protein expression, and site-directed mutagenesis. Our findings have important implications in the consideration of Orlistat as a potential anticancer drug at its early stages of development for cancer therapy. Our strategy should be broadly useful for off-target identification against quite a number of existing drugs and/or candidates, which are also covalent modifiers of their biological targets.

  4. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer

    PubMed Central

    Balasundaram, Ghayathri; Ho, Chris Jun Hui; Li, Kai; Driessen, Wouter; Dinish, US; Wong, Chi Lok; Ntziachristos, Vasilis; Liu, Bin; Olivo, Malini

    2015-01-01

    Conjugated polymers (CPs) are upcoming optical contrast agents in view of their unique optical properties and versatile synthetic chemistry. Biofunctionalization of these polymer-based nanoparticles enables molecular imaging of biological processes. In this work, we propose the concept of using a biofunctionalized CP for noninvasive photoacoustic (PA) molecular imaging of breast cancer. In particular, after verifying the PA activity of a CP nanoparticle (CP dots) in phantoms and the targeting efficacy of a folate-functionalized version of the same (folate-CP dots) in vitro, we systemically administered the probe into a folate receptor-positive (FR+ve) MCF-7 breast cancer xenograft model to demonstrate the possible application of folate-CP dots for imaging FR+ve breast cancers in comparison to CP dots with no folate moieties. We observed a strong PA signal at the tumor site of folate-CP dots-administered mice as early as 1 hour after administration as a result of the active targeting of the folate-CP dots to the FR+ve tumor cells but a weak PA signal at the tumor site of CP-dots-administered mice as a result of the passive accumulation of the probe by enhanced permeability and retention effect. We also observed that folate-CP dots produced ~4-fold enhancement in the PA signal in the tumor, when compared to CP dots. These observations demonstrate the great potential of this active-targeting CP to be used as a contrast agent for molecular PA diagnostic imaging in various biomedical applications. PMID:25609951

  5. Sequential cancer immunotherapy: targeted activity of dimeric TNF and IL-8

    PubMed Central

    Adrian, Nicole; Siebenborn, Uta; Fadle, Natalie; Plesko, Margarita; Fischer, Eliane; Wüest, Thomas; Stenner, Frank; Mertens, Joachim C.; Knuth, Alexander; Ritter, Gerd; Old, Lloyd J.; Renner, Christoph

    2009-01-01

    Polymorphonuclear neutrophils (PMNs) are potent effectors of inflammation and their attempts to respond to cancer are suggested by their systemic, regional and intratumoral activation. We previously reported on the recruitment of CD11b+ leukocytes due to tumor site-specific enrichment of TNF activity after intravenous administration of a dimeric TNF immunokine with specificity for fibroblast activation protein (FAP). However, TNF-induced chemo-attraction and extravasation of PMNs from blood into the tumor is a multistep process essentially mediated by interleukin 8. With the aim to amplify the TNF-induced and IL-8-mediated chemotactic response, we generated immunocytokines by N-terminal fusion of a human anti-FAP scFv fragment with human IL-8 (IL-872) and its N-terminally truncated form IL-83-72. Due to the dramatic difference in chemotaxis induction in vitro, we favored the mature chemokine fused to the anti-FAP scFv for further investigation in vivo. BALB/c nu/nu mice were simultaneously xenografted with FAP-positive or -negative tumors and extended chemo-attraction of PMNs was only detectable in FAP-expressing tissue after intravenous administration of the anti-FAP scFv-IL-872 construct. As TNF-activated PMNs are likewise producers and primary targets for IL-8, we investigated the therapeutic efficacy of co-administration of both effectors: Sequential application of scFv-IL-872 and dimeric IgG1-TNF fusion proteins significantly enhanced anti-tumor activity when compared either to a single effector treatment regimen or sequential application of non-targeted cytokines, indicating that the tumor-restricted sequential application of IL-872 and TNF is a promising approach for cancer therapy. PMID:19267427

  6. Cellulase finishing of woven, cotton fabrics in jet and winch machines.

    PubMed

    Cortez, J M; Ellis, J; Bishop, D P

    2001-08-23

    Some authors have reported that as the applied agitation rate increases, the apparent activity of the endoglucanases from Trichoderma reesei towards cotton cellulose increases more markedly than does the apparent activity of the cellobiohydrolases. This suggests that the quality of cellulase finishing effects on cellulosic textiles may be machine-type dependent. The present work using total crude, endoglucanase-rich and cellobiohydrolase-rich cellulases from T. reesei confirmed that the final properties of woven, cotton fabrics treated under realistic processing conditions in a jet machine, were measurably and perceivably different from those of the same fabrics, treated using the same processing conditions of temperature, time, pH, enzyme concentration and fabric to liquor ratio, but in a winch machine. The results are interpreted in terms of the effects of agitation rate on the adsorption-desorption behaviour of the T. reesei endoglucanases and cellobiohydrolases.

  7. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Certification of individuals and firms engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745... § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing...

  8. 40 CFR 745.226 - Certification of individuals and firms engaged in lead-based paint activities: target housing and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Certification of individuals and firms engaged in lead-based paint activities: target housing and child-occupied facilities. 745.226 Section 745... § 745.226 Certification of individuals and firms engaged in lead-based paint activities: target housing...

  9. Fabrication of nanostructures and nanostructure based interfaces for biosensor application

    NASA Astrophysics Data System (ADS)

    Srivastava, Devesh

    Nanoparticles have applications from electronics, composites, drug-delivery, imaging and sensors etc. Fabricating and controlling shape and size of nanoparticles and also controlling the positioning of these particles in 1, 2 or 3-d structures is of most interest. The underlying theme of this study is to develop simple and efficient techniques to fabricate nanoparticles from polymers, and also achieve control in shape, size and functionalization of nanoparticles, while applying them in biosensor applications. First part of the dissertation studies the fabrication of nanostructures using anodized alumina membrane as template. It discusses the fabrication design for injecting polystyrene nanoparticles inside the pores of anodized alumina membranes and heating the membrane to coalesce the particles into tapered nanoparticles. Various parameters like temperature and amount of injected particles can vary the size and shape of fabricated nanoparticles. Later it focuses on the fabrication of metallic nanostructures using the alumina membranes without the aid of the injection system. It utilizes the difference in the functionality of the pore edges of cleaved alumina membrane with respect to the pore walls to first deposit charged polymers using layer-by-layer deposition followed by deposition of nickel. Second part of this study involves immobilization of enzymes for biosensor applications. It describes a biosensor interface developed by immobilization of tyrosinase using layer-by-layer (LBL) deposition process. The interface was modified with functional nanoparticles and their influence on the response of biosensor was studied. Tyrosinase sensor was further extended to develop a novel biosensor which was used to study real time inhibition of NEST, a subunit of the medically relevant membrane protein, neuropathy target esterase. The biosensor was developed to give real time monitoring of dose dependent decrease in activity of NEST. Final part of this study emphasizes on

  10. HGG-22. TARGETING NEURONAL ACTIVITY-REGULATED NEUROLIGIN-3 DEPENDENCY FOR HIGH-GRADE GLIOMA THERAPY

    PubMed Central

    Venkatesh, Humsa S; Tam, Lydia T; Woo, Pamelyn J; Monje, Michelle

    2017-01-01

    Abstract Neuronal activity promotes high-grade glioma (HGG) growth. An important mechanism mediating this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic molecule and glioma mitogen neuroligin-3 (Nlgn3), but the therapeutic potential of targeting Nlgn3 in glioma remains to be defined. Here, we demonstrate a striking dependence of HGG growth on microenvironmental Nlgn3 and determine a targetable mechanism of secretion. Patient-derived orthotopic xenografts of pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG) fail to grow in Nlgn3 knockout mice. Using genetic mouse models, we illustrate that Nlgn3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. Administration of an ADAM10 inhibitor robustly blocks pGBM and DIPG xenograft growth via modulation of the tumor microenvironment. This work defines the therapeutic potential of and a promising strategy for targeting Nlgn3 secretion in the glioma microenvironment, which could prove transformative for treatment of HGG.

  11. Mars 2020 Rover SHERLOC Calibration Target

    NASA Technical Reports Server (NTRS)

    Graff, Trevor; Fries, Marc; Burton, Aaron; Ross, Amy; Larson, Kristine; Garrison, Dan; Calaway, Mike; Tran, Vinh; Bhartia, Roh; Beegle, Luther

    2016-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman Fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples. The SHERLOC instrument requires a calibration target which is being designed and fabricated at JSC as part of our continued science participation in Mars robotic missions. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate and Human Exploration and Operations Mission Directorate.

  12. New prospects in pretreatment of cotton fabrics using microwave heating.

    PubMed

    Hashem, M; Taleb, M Abou; El-Shall, F N; Haggag, K

    2014-03-15

    As microwaves are known to give fast and rapid volume heating, the present study is undertaken to investigate the use of microwave heating for pretreatment cotton fabrics to reduce the pretreatment time, chemicals and water. The onset of the microwave heating technique on the physicochemical and performance properties of desized, scoured and bleached cotton fabric is elucidated and compared with those obtained on using conventional thermal heating. Combined one-step process for desizing, scouring and bleaching of cotton fabric under microwave heating was also investigated. The dual effect of adding urea, (as microwave absorber and hydrogen peroxide activator) has been exploiting to accelerate the pretreatment reaction of cotton fabric. DSC, FT-IR and SEM have been used to investigate the onset of microwave on the morphological and chemical change of cotton cellulose after pretreatment and bleaching under microwave heating. Results obtained show that, a complete fabric preparation was obtained in just 5 min on using microwave in pretreatments process and the fabric properties were comparable to those obtained in traditional pretreatment process which requires 2.5-3h for completion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development

    PubMed Central

    Guan, Yingjie; Yang, Xu; Yang, Wentian; Charbonneau, Cherie; Chen, Qian

    2014-01-01

    Mechanical stress regulates development by modulating cell signaling and gene expression. However, the cytoplasmic components mediating mechanotransduction remain unclear. In this study, elimination of muscle contraction during chicken embryonic development resulted in a reduction in the activity of mammalian target of rapamycin (mTOR) in the cartilaginous growth plate. Inhibition of mTOR activity led to significant inhibition of chondrocyte proliferation, cartilage tissue growth, and expression of chondrogenic genes, including Indian hedgehog (Ihh), a critical mediator of mechanotransduction. Conversely, cyclic loading (1 Hz, 5% matrix deformation) of embryonic chicken growth plate chondrocytes in 3-dimensional (3D) collagen scaffolding induced sustained activation of mTOR. Mechanical activation of mTOR occurred in serum-free medium, indicating that it is independent of growth factor or nutrients. Treatment of chondrocytes with Rapa abolished mechanical activation of cell proliferation and Ihh gene expression. Cyclic loading of chondroprogenitor cells deficient in SH2-containing protein tyrosine phosphatase 2 (Shp2) further enhanced mechanical activation of mTOR, cell proliferation, and chondrogenic gene expression. This result suggests that Shp2 is an antagonist of mechanotransduction through inhibition of mTOR activity. Our data demonstrate that mechanical activation of mTOR is necessary for cell proliferation, chondrogenesis, and cartilage growth during bone development, and that mTOR is an essential mechanotransduction component modulated by Shp2 in the cytoplasm.—Guan, Y., Yang, X., Yang, W., Charbonneau, C., Chen, Q. Mechanical activation of mammalian target of rapamycin pathway is required for cartilage development. PMID:25002119

  14. An anthrax toxin variant with an improved activity in tumor targeting

    PubMed Central

    Wein, Alexander N.; Peters, Diane E.; Valivullah, Zaheer; Hoover, Benjamin J.; Tatineni, Aparna; Ma, Qian; Fattah, Rasem; Bugge, Thomas H.; Leppla, Stephen H.; Liu, Shihui

    2015-01-01

    Anthrax lethal toxin (LT) is an A-B type toxin secreted by Bacillus anthracis, consisting of the cellular binding moiety, protective antigen (PA), and the catalytic moiety, lethal factor (LF). To target cells, PA binds to cell-surface receptors and is then proteolytically processed forming a LF-binding competent PA oligomer where each LF binding site is comprised of three subsites on two adjacent PA monomers. We previously generated PA-U2-R200A, a urokinase-activated PA variant with LF-binding subsite II residue Arg200 mutated to Ala, and PA-L1-I210A, a matrix metalloproteinase-activated PA variant with subsite III residue Ile210 mutated to Ala. PA-U2-R200A and PA-L1-I210A displayed reduced cytotoxicity when used singly. However, when combined, they formed LF-binding competent heterogeneous oligomers by intermolecular complementation, and achieved high specificity in tumor targeting. Nevertheless, each of these proteins, in particular PA-L1-I210A, retained residual LF-binding ability. In this work, we screened a library containing all possible amino acid substitutions for LF-binding site to find variants with activity strictly dependent upon intermolecular complementation. PA-I207R was identified as an excellent replacement for the original clockwise-side variant, PA-I210A. Consequently, the new combination of PA-L1-I207R and PA-U2-R200A showed potent anti-tumor activity and low toxicity, exceeding the performance of the original combination, and warranting further investigation. PMID:26584669

  15. Targeting Inhibition of Fibroblast Activation Protein-α and Prolyl Oligopeptidase Activities on Cells Common to Metastatic Tumor Microenvironments1

    PubMed Central

    Christiansen, Victoria J; Jackson, Kenneth W; Lee, Kyung N; Downs, Tamyra D; McKee, Patrick A

    2013-01-01

    Fibroblast activation protein (FAP), a membrane prolyl-specific proteinase with both dipeptidase and endopeptidase activities, is overexpressed by reactive stromal fibroblasts during epithelial-derived cancer growth. FAP digests extracellular matrix as tissue is remodeled during cancer expansion and may also promote an immunotolerant tumor microenvironment. Recent studies suggest that nonspecific FAP inhibitors suppress human cancer xenografts in mouse models. Prolyl oligopeptidase (POP), another prolyl-specific serine proteinase, is also elevated in many cancers and may have a regulatory role in angiogenesis promotion. FAP and POP cell-associated activities may be targets for diagnosis and treatment of various cancers, but their accessibilities to highly effective specific inhibitors have not been shown for cells important to cancer growth. Despite their frequent simultaneous expression in many cancers and their overlapping activities toward commonly used substrates, precise, separate measurement of FAP or POP activity has largely been ignored. To distinguish each of the two activities, we synthesized highly specific substrates and inhibitors for FAP or POP based on amino acid sequences surrounding the scissile bonds of their respective putative substrates. We found varying amounts of FAP and POP protein and activities on activated fibroblasts, mesenchymal cells, normal breast cells, and one breast cancer cell line, with some cells exhibiting more POP than FAP activity. Replicating endothelial cells (ECs) expressed POP but not FAP until tubulogenesis began. Targeting FAP-positive cells, especially mesenchymal stem cells and cancer-associated fibroblasts for inactivation or destruction, and inhibiting POP-producing EC may abrogate stromal invasion and angiogenesis simultaneously and thereby diminish cancer growth. PMID:23555181

  16. Reprogrammed streptokinases develop fibrin-targeting and dissolve blood clots with more potency than tissue plasminogen activator

    PubMed Central

    SAZONOVA, I. Y.; MCNAMEE, R. A.; HOUNG, A. K.; KING, S. M.; HEDSTROM, L.; REED, G. L.

    2013-01-01

    Summary Background: Given the worldwide epidemic of cardiovascular diseases, a more effective means of dissolving thrombi that cause heart attacks, could markedly reduce death, disability and healthcare costs. Plasminogen activators (PAs) such as streptokinase (SK) and tissue plasminogen activator (TPA) are currently used to dissolve fibrin thrombi. SK is cheaper and more widely available, but it appears less effective because it lacks TPA’s fibrin-targeted properties that focus plasminogen activation on the fibrin surface. Objective: We examined whether re-programming SK’s mechanism of action would create PAs with greater fibrin-targeting and potency than TPA. Methods and Results: When fibrinogen consumption was measured in human plasma, reprogrammed molecules SKΔ1 and SKΔ59 were 5-fold and > 119-fold more fibrin-dependent than SK (P < 0.0001), and 2-fold and > 50-fold more fibrin-dependent than TPA (P < 0.001). The marked fibrin-targeting of SKΔ59 was due to the fact that: (i) it did not generate plasmin in plasma, (ii) it was rapidly inhibited by α2-antiplasmin, and (iii) it only processed fibrin-bound plasminogen. To assess the fibrin-targeting and therapeutic potential of these PAs in vivo, a novel ‘humanized’ fibrinolysis model was created by reconstituting plasminogen-deficient mice with human plasminogen. When compared with TPA, SKΔ1 and SKΔ59 were 4-fold (P < 0.0001) and 2-fold (P < 0.003) more potent at dissolving blood clots in vivo, respectively, on a mass-dose basis and 2–3 logs more potent than TPA (P < 0.0001) when doses were calibrated by standard activity assays. Conclusion: These experiments suggest that reprogramming SK’s mechanism of action markedly enhances fibrin-targeting and creates, in comparison with TPA, activators with greater fibrinolytic potency. PMID:19566545

  17. Fabrication and Modification of Nanoporous Silicon Particles

    NASA Technical Reports Server (NTRS)

    Ferrari, Mauro; Liu, Xuewu

    2010-01-01

    Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion

  18. Cryogenci DT and D2 Targets for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangster, T.C.; Betti, R.; Craxton, R.S.

    Ignition target designs for inertial confinement fusion on the National Ignition Facility (NIF) are based on a spherical ablator containing a solid, cryogenic-fuel layer of deuterium and tritium. The need for solid-fuel layers was recognized more than 30 years ago and considerable effort has resulted in the production of cryogenic targets that meet most of the critical fabrication tolerances for ignition on the NIf. Significant progress with the formation and characterization of cryogenic targets for both direct and x-ray drive will be described. Results from recent cryogenic implosions will also be presented.

  19. MicroRNA-212 activates hepatic stellate cells and promotes liver fibrosis via targeting SMAD7.

    PubMed

    Zhu, Jie; Zhang, Ziqiang; Zhang, Yitong; Li, Wenshuai; Zheng, Wanwei; Yu, Jianghong; Wang, Bangting; Chen, Lirong; Zhuo, Qin; Chen, Lin; Zhang, Jun; Liu, Jie

    2018-01-29

    There has been an increasing number of researches about microRNAs (miRNAs) in the progression of liver fibrosis from the point of their comprehensive functions in regulating the activation of hepatic stellate cells (HSCs). Among them, it has been reported that miR-212 is up-regulated in activated rat primary HSCs. However, its mechanism has not been determined yet. Here, we confirmed that the level of miR-212-3p was up-regulated in livers of carbon tetrachloride (CCl 4 )-treated mice compared with the normal control, which is a classical model of chronically damaged fibrotic liver. In vitro, we demonstrated that TGF-β, a master fibrogenic cytokine, could induce the level of miR-212. In turn, overexpression of miR-212 could induce the activation marker of HSC including α-smooth muscle actin (α-SMA) and collagens by activating TGF-β signaling pathway. Furthermore, SMAD7, a dominant suppressor of TGF-β pathway, was identified as a direct target of miR-212-3p. Our results indicate that miR-212-3p facilitates the activation of HSCs and TGF-β pathway by targeting SMAD7, highlighting that it can be served as a novel biomarker or therapeutic target for liver fibrosis. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A probabilistic model for the persistence of early planar fabrics in polydeformed pelitic schists

    USGS Publications Warehouse

    Ferguson, C.C.

    1984-01-01

    Although early planar fabrics are commonly preserved within microlithons in low-grade pelites, in higher-grade (amphibolite facies) pelitic schists fabric regeneration often appears complete. Evidence for early fabrics may be preserved within porphyroblasts but, within the matrix, later deformation often appears to totally obliterate or reorient earlier fabrics. However, examination of several hundred Dalradian pelites from Connemara, western Ireland, reveals that preservation of early fabrics is by no means uncommon; relict matrix domains, although volumetrically insignificant, are remarkably persistent even when inferred later strains are very large and fabric regeneration appears, at first sight, complete. Deterministic plasticity theories are ill-suited to the analysis of such an inhomogeneous material response, and a probabilistic model is proposed instead. It assumes that ductile polycrystal deformation is controlled by elementary flow units which can be activated once their associated stress barrier is overcome. Bulk flow propensity is related to the proportion of simultaneous activations, and a measure of this is derived from the probabilistic interaction between a stress-barrier spectrum and an internal stress spectrum (the latter determined by the external loading and the details of internal stress transfer). The spectra are modelled as Gaussian distributions although the treatment is very general and could be adapted for other distributions. Using the time rate of change of activation probability it is predicted that, initially, fabric development will be rapid but will then slow down dramatically even though stress increases at a constant rate. This highly non-linear response suggests that early fabrics persist because they comprise unfavourable distributions of stress-barriers which remain unregenerated at the time bulk stress is stabilized by steady-state flow. Relict domains will, however, bear the highest stress and are potential upper

  1. Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy.

    PubMed

    Song, Xuejiao; Liang, Chao; Feng, Liangzhu; Yang, Kai; Liu, Zhuang

    2017-08-22

    Combining different therapeutic functions within single tumor-targeted nanoscale delivery systems is promising to overcome the limitations of conventional cancer therapies. Herein, transferrin that recognizes transferrin receptors up-regulated on tumor cells is pre-labeled with iodine-131 ( 131 I) and then utilized as the stabilizer in the fabrication of polypyrrole (PPy) nanoparticles. The obtained transferrin-capped PPy@Tf- 131 I nanoparticles could be used for tumor-targeted radioisotope therapy (RIT) and photothermal therapy (PTT), by employing beta-emission from 131 I and the intrinsic high near-infrared (NIR) absorbance of PPy, respectively. Owing to the transferrin-mediated tumor targeting, PPy@Tf- 131 I nanoparticles exhibit obviously enhanced in vitro cancer cell binding and in vivo tumor uptake compared to its non-targeting counterpart. The combined RIT and PTT based on PPy@Tf- 131 I nanoparticles is then conducted, achieving a remarkable synergistic therapeutic effect. This work thus demonstrates a rather simple one-step approach to fabricate tumor-targeting nanoparticles based on protein-capped conjugated polymers, promising for combination cancer therapy with great efficacy and high safety.

  2. Partial DNA-guided Cas9 enables genome editing with reduced off-target activity

    PubMed Central

    Yin, Hao; Song, Chun-Qing; Suresh, Sneha; Kwan, Suet-Yan; Wu, Qiongqiong; Walsh, Stephen; Ding, Junmei; Bogorad, Roman L; Zhu, Lihua Julie; Wolfe, Scot A; Koteliansky, Victor; Xue, Wen; Langer, Robert; Anderson, Daniel G

    2018-01-01

    CRISPR–Cas9 is a versatile RNA-guided genome editing tool. Here we demonstrate that partial replacement of RNA nucleotides with DNA nucleotides in CRISPR RNA (crRNA) enables efficient gene editing in human cells. This strategy of partial DNA replacement retains on-target activity when used with both crRNA and sgRNA, as well as with multiple guide sequences. Partial DNA replacement also works for crRNA of Cpf1, another CRISPR system. We find that partial DNA replacement in the guide sequence significantly reduces off-target genome editing through focused analysis of off-target cleavage, measurement of mismatch tolerance and genome-wide profiling of off-target sites. Using the structure of the Cas9–sgRNA complex as a guide, the majority of the 3′ end of crRNA can be replaced with DNA nucleotide, and the 5 - and 3′-DNA-replaced crRNA enables efficient genome editing. Cas9 guided by a DNA–RNA chimera may provide a generalized strategy to reduce both the cost and the off-target genome editing in human cells. PMID:29377001

  3. Evaluation of a 12-week targeted vitamin D supplementation regimen in patients with active inflammatory bowel disease.

    PubMed

    Garg, Mayur; Rosella, Ourania; Rosella, Gennaro; Wu, Yunqiu; Lubel, John S; Gibson, Peter R

    2017-06-15

    Vitamin D at serum 25(OH)D concentrations above 100 nmol/L is associated with disease remission in patients with IBD, suggesting targeted dosing might be anti-inflammatory. This study aimed to assess the effectiveness, safety and predictors of a 12-week regimen of vitamin D supplementation to achieve such a target in patients with active disease. In a pilot study, patients with active colitis and a serum 25(OH)D concentration <75 nmol/L were prescribed oral liquid vitamin D supplementation over 12 weeks using a specific protocol with dose adjusted 4-weekly to aim for a target level of 100-125 nmol/L. Five patients each with Crohn's colitis or ulcerative colitis (UC) had mean 25(OH)D concentration 52 (range 27-73 nmol/L). Five reached the targeted level and four 89-95 nmol/L. One withdrew after 4 weeks (88 nmol/L). Target dose was met only in those with BMI <30 kg/m 2 and total dose inversely correlated with initial serum 25(OH)D. One patient had developed a high level at 8 weeks (146 nmol/L) and another new hypercalciuria. There were no serious adverse events attributable to the therapy. Clinical disease activity consistently declined, but faecal calprotectin and circulating markers of inflammation did not. A specified oral vitamin D regimen successfully and safely achieved target or near-target levels, improved symptom-based activity scores, but did not alter objective measures of intestinal or systemic inflammation. A modified version of this dose-escalating regimen would be suitable for a randomised placebo-controlled trial, but does require regular safety monitoring. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Flexible Al-doped ZnO films grown on PET substrates using linear facing target sputtering for flexible OLEDs

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-A.; Shin, Hyun-Su; Choi, Kwang-Hyuk; Kim, Han-Ki

    2010-11-01

    We report the characteristics of flexible Al-doped zinc oxide (AZO) films prepared by a plasma damage-free linear facing target sputtering (LFTS) system on PET substrates for use as a flexible transparent conducting electrode in flexible organic light-emitting diodes (OLEDs). The electrical, optical and structural properties of LFTS-grown flexible AZO electrodes were investigated as a function of dc power. We obtained a flexible AZO film with a sheet resistance of 39 Ω/squ and an average transmittance of 84.86% in the visible range although it was sputtered at room temperature without activation of the Al dopant. Due to the effective confinement of the high-density plasma between the facing AZO targets, the AZO film was deposited on the PET substrate without plasma damage and substrate heating caused by bombardment of energy particles. Moreover, the flexible OLED fabricated on the AZO/PET substrate showed performance similar to the OLED fabricated on a ITO/PET substrate in spite of a lower work function. This indicates that LFTS is a promising plasma damage-free and low-temperature sputtering technique for deposition of flexible and indium-free AZO electrodes for use in cost-efficient flexible OLEDs.

  5. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  6. Fabrication

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-08-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  7. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria.

    PubMed

    Velmurugan, Palanivel; Lee, Sang-Myeong; Cho, Min; Park, Jung-Hee; Seo, Sang-Ki; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2014-10-01

    We present a simple, eco-friendly synthesis of silver and gold nanoparticles using a natural polymer pine gum solution as the reducing and capping agent. The pine gum solution was combined with silver nitrate (AgNO3) or a chloroauric acid (HAuCl4) solution to produce silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), respectively. The reaction process was simple; formation of the nanoparticles was achieved by autoclaving the silver and gold ions with the pine gum. UV-Vis spectra showed surface plasmon resonance (SPR) for silver and gold nanoparticles at 432 and 539 nm, respectively. The elemental forms of AgNPs and AuNPs were confirmed by energy-dispersive X-ray spectroscopy (EDX). Fourier transform infrared spectroscopy (FTIR) showed the biomolecules present in the pine gum, AgNPs, and AuNPs. Transmission electron microscopy (TEM) images showed the shape and size of AgNPs and AuNPs. The crystalline nature of synthesized AgNPs and AuNPs was confirmed by X-ray crystallography [X-ray diffraction (XRD)]. Application of synthesized AgNPs onto cotton fabrics and leather, in order to evaluate their antibacterial properties against odor- or skin infection-causing bacteria, is also discussed. Among the four tested bacteria, AgNP-coated cotton fabric and leather samples displayed excellent antibacterial activity against Brevibacterium linens.

  8. Design and Fabrication of DebriSat - A Representative LEO Satellite for Improvements to Standard Satellite Breakup Models

    NASA Technical Reports Server (NTRS)

    Clark, S.; Dietrich, A.; Fitz-Coy, N.; Weremeyer, M.; Liou, J.-C.

    2012-01-01

    This paper discusses the design and fabrication of DebriSat, a 50 kg satellite developed to be representative of a modern low Earth orbit satellite in terms of its components, materials used, and fabrication procedures. DebriSat will be the target of a future hypervelocity impact experiment to determine the physical characteristics of debris generated after an on-orbit collision of a modern LEO satellite. The major ground-based satellite impact experiment used by DoD and NASA in their development of satellite breakup models was SOCIT, conducted in 1992. The target used for that experiment was a Navy transit satellite (40 cm, 35 kg) fabricated in the 1960's. Modern satellites are very different in materials and construction techniques than those built 40 years ago. Therefore, there is a need to conduct a similar experiment using a modern target satellite to improve the fidelity of the satellite breakup models. To ensure that DebriSat is truly representative of typical LEO missions, a comprehensive study of historical LEO satellite designs and missions within the past 15 years for satellites ranging from 1 kg to 5000 kg was conducted. This study identified modern trends in hardware, material, and construction practices utilized in recent LEO missions. Although DebriSat is an engineering model, specific attention is placed on the quality, type, and quantity of the materials used in its fabrication to ensure the integrity of the outcome. With the exception of software, all other aspects of the satellite s design, fabrication, and assembly integration and testing will be as rigorous as that of an actual flight vehicle. For example, to simulate survivability of launch loads, DebriSat will be subjected to a vibration test. As well, the satellite will undergo thermal vacuum tests to verify that the components and overall systems meet typical environmental standards. Proper assembly and integration techniques will involve comprehensive joint analysis, including the precise

  9. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    NASA Astrophysics Data System (ADS)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  10. Androgen receptor activation: a prospective therapeutic target for bladder cancer?

    PubMed

    Mizushima, Taichi; Tirador, Kathleen A; Miyamoto, Hiroshi

    2017-03-01

    Patients with non-muscle-invasive or muscle-invasive bladder cancer undergoing surgery and currently available conventional therapy remain having a high risk of tumor recurrence or progression, respectively. Novel targeted molecular therapy is therefore expected to improve patient outcomes. Meanwhile, substantially higher incidence of bladder cancer in men has prompted research on androgen-mediated androgen receptor (AR) signaling in this malignancy. Indeed, preclinical evidence has suggested that AR signaling plays an important role in urothelial carcinogenesis and tumor outgrowth as well as resistance to some of the currently available conventional non-surgical therapies. Areas covered: We summarize and discuss available data suggesting the involvement of AR and its potential downstream targets in the development and progression of bladder cancer. Associations between AR signaling and sensitivity to cisplatin/doxorubicin or bacillus Calmette-Guérin treatment are also reviewed. Expert opinion: AR activation is likely to correlate with the promotion of urothelial carcinogenesis and cancer outgrowth as well as resistance to conventional therapies. Molecular therapy targeting the AR may thus provide effective chemopreventive and therapeutic approaches for urothelial cancer. Accordingly, bladder cancer can now be considered as an endocrine-related neoplasm. Clinical application of various anti-AR therapies available for AR-dependent prostate cancer to bladder cancer patients is anticipated.

  11. Shallow Slip Localization Along Megathrusts: Investigating the Role of Scaly Fabric

    NASA Astrophysics Data System (ADS)

    Vannucchi, P.

    2015-12-01

    Scaly fabric is classically interpreted as a low strain-rate structure, resulting from progressive shearing with episodic formation and destruction of oriented and flattened clay layers and aggregates. Scientific Ocean drilling of the Japan Trench in response to the 2011 Tohoku-Oki EQ sampled the active plate-boundary décollement zone in a place of known, large, and very recent displacement. The visual inspection of core material from the plate boundary décollement reveals a clay layer with scaly fabric, cut by a sharp discontinuity that may be the record of co-seismic slip (Chester et al., 2013). This result brought to the need to re-evaluate the role and the characteristics of scaly fabric. Scaly fabric is the typical meso/microstructure marking the location of slip concentration in all the active décollements cored near the trench (i.e. Barbados, Nankai, Costa Rica, Japan Trench) and in analogue fossil examples cropping out onland. Scaly fabric tends to form self-similar patterns, and usually areas with smaller phacoids are interpreted as more deformed. We know that scaliness develops in the early stages of deformation, that the slip surfaces defining the phacoids are sharp and they do not occur randomly, that they grow and coalesce forming a progressively finer anastomosing network, and that eventually the anastomoising slip surfaces are "enhanced" or "cut" by straight slip surfaces. Advances in identifying detailed evolutionary history of slip localization from scaly fabric to discrete surfaces have been paralleled by laboratory experiments. Here we try to summarize direct and indirect information on physical properties of clay layers deformed at shallow depth and, possibly, their links to the seismic cycle. These challenges include future work on the role of scaly fabric on earthquake deformation along faults.

  12. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device.

    PubMed

    Hamid, Q; Snyder, J; Wang, C; Timmer, M; Hammer, J; Guceri, S; Sun, W

    2011-09-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 °C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 °C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  13. Apratoxin A Shows Novel Pancreas-Targeting Activity through the Binding of Sec 61.

    PubMed

    Huang, Kuan-Chun; Chen, Zhihong; Jiang, Yimin; Akare, Sandeep; Kolber-Simonds, Donna; Condon, Krista; Agoulnik, Sergei; Tendyke, Karen; Shen, Yongchun; Wu, Kuo-Ming; Mathieu, Steven; Choi, Hyeong-Wook; Zhu, Xiaojie; Shimizu, Hajime; Kotake, Yoshihiko; Gerwick, William H; Uenaka, Toshimitsu; Woodall-Jappe, Mary; Nomoto, Kenichi

    2016-06-01

    Apratoxin A is a natural product with potent antiproliferative activity against many human cancer cell lines. However, we and other investigators observed that it has a narrow therapeutic window in vivo Previous mechanistic studies have suggested its involvement in the secretory pathway as well as the process of chaperone-mediated autophagy. Still the link between the biologic activities of apratoxin A and its in vivo toxicity has remained largely unknown. A better understanding of this relationship is critically important for any further development of apratoxin A as an anticancer drug. Here, we describe a detailed pathologic analysis that revealed a specific pancreas-targeting activity of apratoxin A, such that severe pancreatic atrophy was observed in apratoxin A-treated animals. Follow-up tissue distribution studies further uncovered a unique drug distribution profile for apratoxin A, showing high drug exposure in pancreas and salivary gland. It has been shown previously that apratoxin A inhibits the protein secretory pathway by preventing cotranslational translocation. However, the molecule targeted by apratoxin A in this pathway has not been well defined. By using a (3)H-labeled apratoxin A probe and specific Sec 61α/β antibodies, we identified that the Sec 61 complex is the molecular target of apratoxin A. We conclude that apratoxin A in vivo toxicity is likely caused by pancreas atrophy due to high apratoxin A exposure. Mol Cancer Ther; 15(6); 1208-16. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Yang, Cheng-Xiong; Chen, Li-Gong; Yan, Xiu-Ping

    2017-05-01

    The integrated functions of diagnostics and therapeutics make theranostics great potential for personalized medicine. Stimulus-responsive therapy allows spatial control of therapeutic effect only in the site of interest, and offers promising opportunities for imaging-guided precision therapy. However, the imaging strategies in previous stimulus-responsive therapies are `always on' or irreversible `turn on' modality, resulting in poor signal-to-noise ratios or even `false positive' results. Here we show the design of dual-stimuli-responsive and reversibly activatable nanoprobe for precision tumour-targeting and fluorescence-guided photothermal therapy. We fabricate the nanoprobe from asymmetric cyanine and glycosyl-functionalized gold nanorods (AuNRs) with matrix metalloproteinases (MMPs)-specific peptide as a linker to achieve MMPs/pH synergistic and pH reversible activation. The unique activation and glycosyl targetibility makes the nanoprobe bright only in tumour sites with negligible background, while AuNRs and asymmetric cyanine give synergistic photothermal effect. This work paves the way to designing efficient nanoprobes for precision theranostics.

  15. Contingent attentional capture occurs by activated target congruence.

    PubMed

    Ariga, Atsunori; Yokosawa, Kazuhiko

    2008-05-01

    Contingent attentional capture occurs when a stimulus property captures an observer's attention, usually related to the observer's top-down attentional set for target-defining properties. In this study, we examined whether contingent attentional capture occurs for a distractor that does not share the target-defining property at a physical level, but does share that property at an abstract level of representation. In a rapid serial visual presentation stream, we defined the target by color (e.g., a green-colored Japanese kanji character). Before the target onset, we presented a distractor that referred to the target-defining color (e.g., a white-colored character meaning "green"). We observed contingent attentional capture by the distractor, which was reflected by a deficit in identifying the subsequent target. This result suggests that because of the attentional set, stimuli were scanned on the basis of the target-defining property at an abstract semantic level of representation.

  16. Anti-complementary constituents of Houttuynia cordata and their targets in complement activation cascade.

    PubMed

    Jiang, Yun; Lu, Yan; Zhang, Yun-Yi; Chen, Dao-Feng

    2014-01-01

    Activity-guided fractionation for complement inhibitors led to the isolation of 23 known compounds from Houttuynia cordata Thunb. Seven flavonoids, two alkaloids, one coumarin and two phenols showed anti-complementary activity. Preliminary inhibitory mechanism of four flavonoids, including quercitrin, afzelin, isoquercitrin and quercetin in the complement activation cascade were examined for the first time. The results indicated that the target components of flavonols are different from those of flavonosides, and the glycoside moieties may be necessary to block C3 and C4 components.

  17. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications.

    PubMed

    Allison, Linden; Hoxie, Steven; Andrew, Trisha L

    2017-06-29

    Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene). A variety of textile electronic devices are built from the conductive fibers and fabrics thus obtained, including: physiochemical sensors, thermoelectric fibers/fabrics, heated garments, artificial muscles and textile supercapacitors. In all these cases, electrical performance and device ruggedness is determined by the morphology of the conducting polymer active layer on the fiber or fabric substrate. Tremendous variation in active layer morphology can be observed with different coating or dyeing conditions. Here, we summarize various methods used to create fiber- and fabric-based devices and highlight the influence of the coating method on active layer morphology and device stability.

  18. Neutronics performance and activation calculation of dense tungsten granular target for China-ADS

    NASA Astrophysics Data System (ADS)

    Zhang, Yaling; Li, Jianyang; Zhang, Xunchao; Cai, Hanjie; Yan, Xuesong; Yu, Lin; Fu, Fen; Lin, Ping; Gao, Xiaofei; Zhang, Zhilei; Zhang, Yanshi; Yang, Lei

    2017-11-01

    Spallation target, which constitutes the physical and functional interface between the high power accelerator and the subcritical core, is one of the most important components in Accelerator Driven Subcritical System (ADS). In this paper, we investigated the neutronics performance, the radiation damage and the activation of dense tungsten granular flow spallation target by using the Monte Carlo programs GMT and FLUKA at the proton energy of 250 MeV with a beam current of 10 mA . First, the leaking neutron yield, leaking neutron energy spectrum and laterally leaking neutron distribution at several time nodes and with different target parameters are explored. After that, the displacement per atom (DPA) and the helium/hydrogen production for tungsten grains and structural materials with stainless steel 316L are estimated. Finally, the radioactivity, residual dose rate and afterheat of granular target are presented. Results indicate that granule diameter below 1 cm and the beam profile diameter have negligible impact on neutronics performance, while the target diameter and volume fraction of grain have notable influence. The maximum DPA for target vessel (beam tube) is about 1.0 (1.6) DPA/year in bare target, and increased to 2.6 (2.8) DPA/year in fission environment. Average DPA for tungsten grains is relatively low. The decline rate of radioactivity and afterheat with cooling time grows with the decrease of the irradiation time.

  19. Manipulation of Pre-Target Activity on the Right Frontal Eye Field Enhances Conscious Visual Perception in Humans

    PubMed Central

    Chanes, Lorena; Chica, Ana B.; Quentin, Romain; Valero-Cabré, Antoni

    2012-01-01

    The right Frontal Eye Field (FEF) is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site’s ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network. PMID:22615759

  20. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.

    PubMed

    Li, Hui; Zhang, Jinyong; Zhang, Nannan; Kershaw, Joe; Wang, Lei

    2016-12-01

    It is important to fabricate biocompatible and chemical-resistant microstructures that can be powered and controlled without a tether in fluid environment for applications when contamination must be avoided, like cell manipulation, and applications where connecting the power source to the actuator would be cumbersome, like targeted delivery of chemicals. In this work, a novel fabrication method was described to encapsulate magnetic composite into pure SU-8 structures, enabling the truly microscale ferromagnetic microrobots biocompatible and chemical resistant. The microrobots were developed using the simple multilayer photolithography that allows us to mass produce and were actuated contact-free by external magnetic field to complete micromanipulations of micro-objects. The microrobots were actuated moving along a preplanned path to transport a glass microsphere object at an approximately average speed of 1.1 mm/sec and can be operated to rotate, aim at targets and collect objects.

  1. Targeting active cancer cells with smart bullets.

    PubMed

    Martel, Sylvain

    2017-03-01

    Paul Ehrlich's 'magic bullet' concept has stimulated research for therapeutic agents with the capability to go straight to their intended targets. The 'magic bullet' concept is still considered the ultimate approach to maximize the therapeutic effects of a given therapeutic agent without affecting nontargeted tissues. But so far, there has never been a therapeutic agent or a delivery system that goes straight to the target in the body, and no approach has provided anything better than just a few percents of the total administered dose reaching the intended target sites. But engineering principles can transform systematically circulating vectors that so far were based primarily on physical characteristics and biochemical principles alone, as smart therapeutic agents with the required propulsion-navigation-homing capabilities to enable them to go straight to their intended targets.

  2. Fabrication technology

    NASA Astrophysics Data System (ADS)

    1988-05-01

    Many laboratory programs continue to need optical components of ever-increasing size and accuracy. Unfortunately, optical surfaces produced by the conventional sequence of grinding, lapping, and polishing can become prohibitively expensive. Research in the Fabrication Technology area focuses on methods of fabricating components with heretofore unrealized levels of precision. In FY87, researchers worked to determine the fundamental mechanical limits of material removal, experimented with unique material removal and deposition processes, developed servo systems for controlling the geometric position of ultraprecise machine tools, and advanced the ability to precisely measure contoured workpieces. Continued work in these areas will lead to more cost-effective processes to fabricate even higher quality optical components for advanced lasers and for visible, ultraviolet, and X-ray diagnostic systems.

  3. Thin-Film Ceramic Thermocouples Fabricated and Tested

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Gregory, Otto J.; Blaha, Charles A.

    2004-01-01

    The Sensors and Electronics Technology Branch of the NASA Glenn Research Center is developing thin-film-based sensors for surface measurement in propulsion system research. Thin-film sensors do not require special machining of the components on which they are mounted, and they are considerably thinner than wire- or foil-based sensors. One type of sensor being advanced is the thin-film thermocouple, specifically for applications in high-temperature combustion environments. Ceramics are being demonstrated as having the potential to meet the demands of thin-film thermocouples in advanced aerospace environments. The maximum-use temperature of noble metal thin-film thermocouples, 1500 C (2700 F), may not be adequate for components used in the increasingly harsh conditions of advanced aircraft and next-generation launch vehicles. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically in the form of bulky rods or probes. As part of ASTP, Glenn's Sensors and Electronics Technology Branch is leading an in-house effort to apply ceramics as thin-film thermocouples for extremely high-temperature applications as part of ASTP. Since the purity of the ceramics is crucial for the stability of the thermocouples, Glenn's Ceramics Branch and Case Western Reserve University are developing high-purity ceramic sputtering targets for fabricating high-temperature sensors. Glenn's Microsystems Fabrication Laboratory, supported by the Akima Corporation, is using these targets to fabricate thermocouple samples for testing. The first of the materials used were chromium silicide (CrSi) and tantalum carbide (TaC). These refractory materials are expected to survive temperatures in excess of 1500 C. Preliminary results indicate that the thermoelectric voltage output of a thin-film CrSi versus TaC thermocouple is 15 times that of the standard type R (platinum-rhodium versus platinum) thermocouple, producing 20 mV with a 200

  4. Facile Fabrication of Microparticles with pH-responsive Macropores for Small Intestine Targeted Drug Formulation.

    PubMed

    Homayun, Bahman; Sun, Chengmeng; Kumar, Ankit; Montemagno, Carlo; Choi, Hyo-Jick

    2018-05-10

    Oral drugs present the most convenient, economical, and painless route for self-administration. Despite commercialization of multiple technologies relying on micro- and nanocrystalline drugs, research on microparticles (MPs) based oral biopharmaceuticals delivery systems has still not culminated well enough in commercial products. This is largely due to the drugs being exposed to the destabilizing environment during MP synthesis process, and partly because of complicated process conditions. Hence, we developed a solvent swelling-evaporation method of producing pH-responsive MPs with micron-sized macropores using poly(methacrylic acid-co-ethyl acrylate) in 1:1 ratio (commercial name: Eudragit ® L100-55 polymer). We investigated the effects of temperature and evaporation time on pore formation, freeze-drying induced pore closure, and the release profile of model drugs (fluorescent beads, lactase, and pravastatin sodium) encapsulated MPs in simulated gastrointestinal tract conditions. Encapsulated lactase/pravastatin maintained > 60% of their activity due to the preservation of pore closure, which proved the potential of this proof-of-concept microencapsulation system. Importantly, the presence of macropores on MPs can be beneficial for easy drug loading, and solve the problem of bioactivity loss during the conventional MP fabrication-drug encapsulation steps. Therefore, pH-sensing MPs with macropores can contribute to the development of oral drug formulations for a wide variety of drugs and bio-macromolecules, having a various size ranging from genes to micron-sized ingredients with high therapeutic efficacy. Copyright © 2018. Published by Elsevier B.V.

  5. A flexible piezoelectric force sensor based on PVDF fabrics

    NASA Astrophysics Data System (ADS)

    Wang, Y. R.; Zheng, J. M.; Ren, G. Y.; Zhang, P. H.; Xu, C.

    2011-04-01

    Polyvinylidene fluoride (PVDF) film has been widely investigated as a sensor and transducer material due to its high piezo-, pyro- and ferroelectric properties. To activate these properties, PVDF films require a mechanical treatment, stretching or poling. In this paper, we report on a force sensor based on PVDF fabrics with excellent flexibility and breathability, to be used as a specific human-related sensor. PVDF nanofibrous fabrics were prepared by using an electrospinning unit and characterized by means of scanning electron microscopy (SEM), FTIR spectroscopy and x-ray diffraction. Preliminary force sensors have been fabricated and demonstrated excellent sensitivity and response to external mechanical forces. This implies that promising applications can be made for sensing garment pressure, blood pressure, heartbeat rate, respiration rate and accidental impact on the human body.

  6. Readiness Review of BWXT for Fabrication of AGR 5/6/7 Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas William; Sharp, Michelle Tracy

    In support of preparations for fabricating compacts for the Advanced Gas Reactor (AGR) fuel qualification irradiation experiments (AGR-5/6/7), Idaho National Laboratory (INL) conducted a readiness review of the BWX Technology (BWXT) procedures, processes, and equipment associated with compact fabrication activities at the BWXT Nuclear Operations Group (BWXT-NOG) facility outside Lynchburg, VirginiaVA. The readiness review used quality assurance requirements taken from the American Society of Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008/1a-2009) as a basis to assess readiness to start compact fabrication.

  7. Activities of mixtures of soil-applied herbicides with different molecular targets.

    PubMed

    Kaushik, Shalini; Streibig, Jens Carl; Cedergreen, Nina

    2006-11-01

    The joint action of soil-applied herbicide mixtures with similar or different modes of action has been assessed by using the additive dose model (ADM). The herbicides chlorsulfuron, metsulfuron-methyl, pendimethalin and pretilachlor, applied either singly or in binary mixtures, were used on rice (Oryza sativa L.). The growth (shoot) response curves were described by a logistic dose-response model. The ED50 values and their corresponding standard errors obtained from the response curves were used to test statistically if the shape of the isoboles differed from the reference model (ADM). Results showed that mixtures of herbicides with similar molecular targets, i.e. chlorsulfuron and metsulfuron (acetolactate synthase (ALS) inhibitors), and with different molecular targets, i.e. pendimethalin (microtubule assembly inhibitor) and pretilachlor (very long chain fatty acids (VLCFAs) inhibitor), followed the ADM. Mixing herbicides with different molecular targets gave different results depending on whether pretilachlor or pendimethalin was involved. In general, mixtures of pretilachlor and sulfonylureas showed synergistic interactions, whereas mixtures of pendimethalin and sulfonylureas exhibited either antagonistic or additive activities. Hence, there is a large potential for both increasing the specificity of herbicides by using mixtures and lowering the total dose for weed control, while at the same time delaying the development of herbicide resistance by using mixtures with different molecular targets. Copyright (c) 2006 Society of Chemical Industry.

  8. 13 CFR 124.509 - What are non-8(a) business activity targets?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... business plan. It must attempt to use the 8(a) BD program as a resource to strengthen the firm for economic viability when program benefits are no longer available. (b) Required non-8(a) business activity targets... contract would cause severe economic hardship on the Participant so that the Participant's survival may be...

  9. 13 CFR 124.509 - What are non-8(a) business activity targets?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... business plan. It must attempt to use the 8(a) BD program as a resource to strengthen the firm for economic viability when program benefits are no longer available. (b) Required non-8(a) business activity targets... contract would cause severe economic hardship on the Participant so that the Participant's survival may be...

  10. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy

    NASA Astrophysics Data System (ADS)

    Xiao, Bo; Han, Moon Kwon; Viennois, Emilie; Wang, Lixin; Zhang, Mingzhen; Si, Xiaoying; Merlin, Didier

    2015-10-01

    Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments demonstrated that the introduction of HA to the NP surface endowed NPs with colon cancer-targeting capability and markedly increased cellular uptake efficiency compared with chitosan-coated NPs. Importantly, the combined delivery of CPT and CUR in one HA-functionalized NP exerted strong synergistic effects. HA-CPT/CUR-NP (1 : 1) showed the highest antitumor activity among the three HA-CPT/CUR-NPs, resulting in an extremely low combination index. Collectively, our findings indicate that this HA-CPT/CUR-NP can be exploited as an efficient formulation for colon cancer-targeted combination chemotherapy.Nanoparticle (NP)-based combination chemotherapy has been proposed as an effective strategy for achieving synergistic effects and targeted drug delivery for colon cancer therapy. Here, we fabricated a series of hyaluronic acid (HA)-functionalized camptothecin (CPT)/curcumin (CUR)-loaded polymeric NPs (HA-CPT/CUR-NPs) with various weight ratios of CPT to CUR (1 : 1, 2 : 1 and 4 : 1). The resultant spherical HA-CPT/CUR-NPs had a desirable particle size (around 289 nm), relative narrow size distribution, and slightly negative zeta potential. These NPs exhibited a simultaneous sustained release profile for both drugs throughout the time frame examined. Subsequent cellular uptake experiments

  11. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy.

    PubMed

    Schleich, Nathalie; Po, Chrystelle; Jacobs, Damien; Ucakar, Bernard; Gallez, Bernard; Danhier, Fabienne; Préat, Véronique

    2014-11-28

    Multifunctional nanoparticles combining therapy and imaging have the potential to improve cancer treatment by allowing personalized therapy. Herein, we aimed to compare in vivo different strategies in terms of targeting capabilities: (1) passive targeting via the EPR effect, (2) active targeting of αvβ3 integrin via RGD grafting, (3) magnetic targeting via a magnet placed on the tumor and (4) the combination of magnetic targeting and active targeting of αvβ3 integrin. For a translational approach, PLGA-based nanoparticles loaded with paclitaxel and superparamagnetic iron oxides were used. Electron Spin Resonance spectroscopy and Magnetic Resonance Imaging (MRI) were used to both quantify and visualize the accumulation of multifunctional nanoparticles into the tumors. We demonstrate that compared to untargeted or single targeted nanoparticles, the combination of both active strategy and magnetic targeting drastically enhanced (i) nanoparticle accumulation into the tumor tissue with an 8-fold increase compared to passive targeting (1.12% and 0.135% of the injected dose, respectively), (ii) contrast in MRI (imaging purpose) and (iii) anti-cancer efficacy with a median survival time of 22 days compared to 13 for the passive targeting (therapeutic purpose). Double targeting of nanoparticles to tumors by different mechanisms could be a promising translational approach for the management of therapeutic treatment and personalized therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  13. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  14. Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes.

    PubMed

    Supek, Fran; Lehner, Ben

    2017-07-27

    Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A wearable fabric-based speech-generating device: system design and case demonstration.

    PubMed

    Fleury, Amanda; Wu, Gloria; Chau, Tom

    2018-05-26

    Existing speech generating devices (SGD) often require caregiver intervention for setup and positioning, and thus limit opportunities for spontaneous social interaction. The advent of conductive fabrics presents an opportunity to render SGDs wearable, thus persistently available. Our goal was to design and test a wearable SGD incorporating resistive textile-based switches for a nonverbal pediatric participant with vision impairment. Quad-key fabric keypads were designed using two conductive fabrics in combination with felt and mesh insulators. The keypad with the most repeatable low force activations and the least cross-talk among keys was chosen for implementation in a wrist-worn, four-message textile SGD. The fabric-based SGD was used by a nonverbal pediatric participant for two one-week analysis periods, alternating with the user's current device for usage reference. Data were derived from usage logs, parent questionnaires and an end-of-study participant interview. The best performing keypad consisted of two layers of woven conductive fabrics and one layer of insulating felt with 10 mm apertures. Communicative interactions were higher with the fabric-based SGD, particularly at school. Unprompted initiation of communication was observed only with the fabric-based SGD. The persistent availability of the textile solution, along with esthetic appeal likely contributed to its utilization. While the participant preferred the fabric-based SGD, the parent opted for the iPod alternative, citing enhanced message intelligibility. Fabric-based SGDs are a new alternative to conventional SGD designs using rigid electronics. As such, tactile differentiability of keys, device wearability and esthetic personalization may be promising advantages for pediatric users. Implications for rehabilitation Fabric-based switches may be a promising alternative to conventional electro-mechanical switches for the control of speech-generating devices, offering functional (e.g., comfort and

  16. Bispecific single-chain diabody-immunoliposomes targeting endoglin (CD105) and fibroblast activation protein (FAP) simultaneously.

    PubMed

    Rabenhold, Markus; Steiniger, Frank; Fahr, Alfred; Kontermann, Roland E; Rüger, Ronny

    2015-03-10

    Liposomes are well-established drug delivery systems with cancer chemotherapy as main focus. To increase the cellular drug delivery, liposomes can be endowed with ligands, e.g. recombinant antibody fragments, which ensure specific cell interaction. Multispecific immunoliposomes can be prepared to improve the liposome to cell interaction by targeting multiple different targets at the same time, for instance by coupling two or more different ligands to the liposomal surface, resulting in a synergistic or additive increase in binding. An alternative approach is the use of bispecific ligands to address at least two different targets. For this purpose we cloned a single-chain diabody fragment (scDb`), a bispecific molecule targeting two antigens, endoglin (CD105) and fibroblast activation protein (FAP), expressed on cells of the tumor microenvironment. As model cell system, a human fibrosarcoma cell line was used expressing endoglin and FAP simultaneously. Monospecific immunoliposomes directed either against endoglin or FAP were compared in vitro for cell binding and cytotoxic activity with bispecific dual-targeted scFv`-IL (bispecific scFv`FAP/CD105-IL) and bispecific single-chain diabody`-IL (scDb`CD105/FAP-IL) targeting endoglin and FAP simultaneously. In the underlying study, bispecific scFv`FAP/CD105-IL interacted stronger with cells expressing FAP and endoglin (both targets simultaneously) compared to the monospecific immunoliposomes. Furthermore, bispecific scDb`-immunoliposomes increased the cell interaction massively and showed enhanced cytotoxicity against target cells using doxorubicin-loaded immunoliposomes. The use of recombinant bispecific ligands as scDb`-molecules facilitates the generation of bispecific immunoliposomes by using the established post-insertion technique, enabling an extension of the ligand specificity spectrum via genetic modification. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A cryostat to hold frozen-spin polarized HD targets in CLAS. HDice-II

    DOE PAGES

    Lowry, Michael M.; Bass, Christopher D.; D'Angelo, Annalisa; ...

    2016-01-07

    The design, fabrication, operation, and performance of a helium-3/4 dilution refrigerator and superconducting magnet system for holding a frozen-spin polarized hydrogen deuteride target in the Jefferson Laboratory CLAS detector during photon beam running is reported. The device operates both vertically (for target loading) and horizontally (for target bombardment). Moreover, the device proves capable of maintaining a base temperature of 50 mK and a holding field of 1 Tesla for extended periods.

  18. Direct-write fabrication of 4D active shape-changing behavior based on a shape memory polymer and its nanocomposite (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wei, Hongqiu; Zhang, Qiwei; Yao, Yongtao; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs), a typical class of smart materials, have been witnessed significant advances in the past decades. Based on the unique performance to recover the initial shape after going through a shape deformation, the applications of SMPs have aroused growing interests. However, most of the researches are hindered by traditional processing technologies which limit the design space of SMPs-based structures. Three-dimension (3D) printing as an emerging technology endows design freedom to manufacture materials with complex structures. In present article, we show that by employing direct-write printing method; one can realize the printing of SMPs to achieve 4D active shape-changing structures. We first fabricated a kind of 3D printable polylactide (PLA)-based SMPs and characterized the overall properties of such materials. Results demonstrated the prepared PLA-based SMPs presenting excellent shape memory effect. In what follows, the rheological properties of such PLA-based SMP ink during printing process were discussed in detail. Finally, we designed and printed several 3D configurations for investigation. By combining 3D printing with shape memory behavior, these printed structures achieve 4D active shape-changing performance under heat stimuli. This research presents a high flexible method to realize the fabrication of SMP-based 4D active shape-changing structures, which opens the way for further developments and improvements of high-tech fields like 4D printing, soft robotics, micro-systems and biomedical devices.

  19. Target-depth estimation in active sonar: Cramer-Rao bounds for a bilinear sound-speed profile.

    PubMed

    Mours, Alexis; Ioana, Cornel; Mars, Jérôme I; Josso, Nicolas F; Doisy, Yves

    2016-09-01

    This paper develops a localization method to estimate the depth of a target in the context of active sonar, at long ranges. The target depth is tactical information for both strategy and classification purposes. The Cramer-Rao lower bounds for the target position as range and depth are derived for a bilinear profile. The influence of sonar parameters on the standard deviations of the target range and depth are studied. A localization method based on ray back-propagation with a probabilistic approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally validated on data in an experimental tank.

  20. Update On The Development, Testing, And Manufacture Of High Density LEU-Foil Targets For The Production Of Mo-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creasy, John T

    2015-05-12

    This project has the objective to reduce and/or eliminate the use of HEU in commerce. Steps in the process include developing a target testing methodology that is bounding for all Mo-99 target irradiators, establishing a maximum target LEU-foil mass, developing a LEU-foil target qualification document, developing a bounding target failure analysis methodology (failure in reactor containment), optimizing safety vs. economics (goal is to manufacture a safe, but relatively inexpensive target to offset the inherent economic disadvantage of using LEU in place of HEU), and developing target material specifications and manufacturing QC test criteria. The slide presentation is organized under themore » following topics: Objective, Process Overview, Background, Team Structure, Key Achievements, Experiment and Activity Descriptions, and Conclusions. The High Density Target project has demonstrated: approx. 50 targets irradiated through domestic and international partners; proof of concept for two front end processing methods; fabrication of uranium foils for target manufacture; quality control procedures and steps for manufacture; multiple target assembly techniques; multiple target disassembly devices; welding of targets; thermal, hydraulic, and mechanical modeling; robust target assembly parametric studies; and target qualification analysis for insertion into very high flux environment. The High Density Target project has tested and proven several technologies that will benefit current and future Mo-99 producers.« less

  1. Drip bloodstain appearance on inclined apparel fabrics: Effect of prior-laundering, fibre content and fabric structure.

    PubMed

    de Castro, Therese C; Carr, Debra J; Taylor, Michael C; Kieser, Jules A; Duncan, Warwick

    2016-09-01

    The interaction of blood and fabrics is currently a 'hot topic', since the understanding and interpretation of these stains is still in its infancy. A recent simplified perpendicular impact experimental programme considering bloodstains generated on fabrics laid the foundations for understanding more complex scenarios. Blood rarely impacts apparel fabrics perpendicular; therefore a systematic study was conducted to characterise the appearance of drip stains on inclined fabrics. The final drip stain appearance for 45° and 15° impact angles on torso apparel fabrics (100% cotton plain woven, 100% polyester plain woven, a blend of polyester and cotton plain woven and 100% cotton single jersey knit) that had been laundered for six, 26 and 52 cycles prior to testing was investigated. The relationship between drop parameters (height and volume), angle and the stain characteristics (parent stain area, axis 1 and 2 and number of satellite stains) for each fabric was examined using analysis of variance. The appearance of the drip stains on these fabrics was distorted, in comparison to drip stains on hard-smooth surface. Examining the parent stain allowed for classification of stains occurring at an angle, however the same could not be said for the satellite stains produced. All of the dried stains visible on the surface of the fabric were larger than just after the impacting event, indicating within fabric spreading of blood due to capillary force (wicking). The cotton-containing fabrics spread the blood within the fabrics in all directions along the stain's circumference, while spreading within the polyester plain woven fabric occurred in only the weft (width of the fabric) and warp (length) directions. Laundering affected the formation of bloodstain on the blend plain woven fabric at both impact angles, although not all characteristics were significantly affected for the three impact conditions considered. The bloodstain characteristics varied due to the fibre content

  2. Digital fabrication as an instructional technology for supporting upper elementary and middle school science and mathematics education

    NASA Astrophysics Data System (ADS)

    Tillman, Daniel

    The purpose of this three-paper manuscript dissertation was to study digital fabrication as an instructional technology for supporting elementary and middle school science and mathematics education. Article one analyzed the effects of digital fabrication activities that were designed to contextualize mathematics education at a summer mathematics enrichment program for upper elementary and middle school students. The primary dependent variables studied were the participants' knowledge of mathematics and science content, attitudes towards STEM (science, technology, engineering, and mathematics) and STEM-related careers. Based upon the data collected, three results were presented as having justifiable supporting empirical evidence: (1) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in non-significant overall gains in students' mathematics test scores and attitudes towards STEM. (2) The digital fabrication activities, combined with the other mathematics activities at the enrichment program, resulted in noteworthy gains on the "Probability & Statistics" questions. (3) Some students who did poorly on the scored paper test on mathematics and science content were nonetheless nominated by their teachers as demonstrating meritorious distinction during the digital fabrication activities (termed "Great Thinkers" by the 5th-grade teachers). Article two focused on how an instructional technology course featuring digital fabrication activities impacted (1) preservice elementary teachers' efficacy beliefs about teaching science, and (2) their attitudes and understanding of how to include instructional technology and digital fabrication activities into teaching science. The research design compared two sections of a teaching with technology course featuring digital fabrication activities to another section of the same course that utilized a media cycle framework (Bull & Bell, 2005) that did not feature digital

  3. Cryogenic hydrogen fuel for controlled inertial confinement fusion (formation of reactor-scale cryogenic targets)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrova, I. V.; Koresheva, E. R., E-mail: elena.koresheva@gmail.com; Krokhin, O. N.

    2016-12-15

    In inertial fusion energy research, considerable attention has recently been focused on low-cost fabrication of a large number of targets by developing a specialized layering module of repeatable operation. The targets must be free-standing, or unmounted. Therefore, the development of a target factory for inertial confinement fusion (ICF) is based on methods that can ensure a cost-effective target production with high repeatability. Minimization of the amount of tritium (i.e., minimization of time and space at all production stages) is a necessary condition as well. Additionally, the cryogenic hydrogen fuel inside the targets must have a structure (ultrafine layers—the grain sizemore » should be scaled back to the nanometer range) that supports the fuel layer survivability under target injection and transport through the reactor chamber. To meet the above requirements, significant progress has been made at the Lebedev Physical Institute (LPI) in the technology developed on the basis of rapid fuel layering inside moving free-standing targets (FST), also referred to as the FST layering method. Owing to the research carried out at LPI, unique experience has been gained in the development of the FST-layering module for target fabrication with an ultrafine fuel layer, including a reactor- scale target design. This experience can be used for the development of the next-generation FST-layering module for construction of a prototype of a target factory for power laser facilities and inertial fusion power plants.« less

  4. Control of fault shearing on the fabric of a syn-tectonic granite : magnetic fabric and crystallographic preferred orientation (CPO) of quartz input

    NASA Astrophysics Data System (ADS)

    Walter, Bastien; Géraud, Yves; Diraison, Marc; Oliot, Emilien

    2013-04-01

    similar orientation to them. Our data show that these ductile structures impose a local new tectonic fabric overprinting the pre-existing one. The common re-orientation of the magnetic minerals, of the recrystallized quartz and of the brittle structures suggest a strain localization and a continuous strain process localized along stain bands from late-magmatic flowing, highlighted by biotite orientation, then during shear bands activation, at temperature around 350-400° C. Finally, these structures would have remained active through the ductile-brittle transition, leading to the localized intense fracturation of the Barbarossa outcrop.

  5. Circulating Magnetic Microbubbles for Localized Real-Time Control of Drug Delivery by Ultrasonography-Guided Magnetic Targeting and Ultrasound

    PubMed Central

    Chertok, Beata; Langer, Robert

    2018-01-01

    Image-guided and target-selective modulation of drug delivery by external physical triggers at the site of pathology has the potential to enable tailored control of drug targeting. Magnetic microbubbles that are responsive to magnetic and acoustic modulation and visible to ultrasonography have been proposed as a means to realize this drug targeting strategy. To comply with this strategy in vivo, magnetic microbubbles must circulate systemically and evade deposition in pulmonary capillaries, while also preserving magnetic and acoustic activities in circulation over time. Unfortunately, challenges in fabricating magnetic microbubbles with such characteristics have limited progress in this field. In this report, we develop magnetic microbubbles (MagMB) that display strong magnetic and acoustic activities, while also preserving the ability to circulate systemically and evade pulmonary entrapment. Methods: We systematically evaluated the characteristics of MagMB including their pharmacokinetics, biodistribution, visibility to ultrasonography and amenability to magneto-acoustic modulation in tumor-bearing mice. We further assessed the applicability of MagMB for ultrasonography-guided control of drug targeting. Results: Following intravenous injection, MagMB exhibited a 17- to 90-fold lower pulmonary entrapment compared to previously reported magnetic microbubbles and mimicked circulation persistence of the clinically utilized Definity microbubbles (>10 min). In addition, MagMB could be accumulated in tumor vasculature by magnetic targeting, monitored by ultrasonography and collapsed by focused ultrasound on demand to activate drug deposition at the target. Furthermore, drug delivery to target tumors could be enhanced by adjusting the magneto-acoustic modulation based on ultrasonographic monitoring of MagMB in real-time. Conclusions: Circulating MagMB in conjunction with ultrasonography-guided magneto-acoustic modulation may provide a strategy for tailored minimally

  6. 3D Bioprinting for Tissue and Organ Fabrication

    PubMed Central

    Zhang, Yu Shrike; Yang, Jingzhou; Jia, Weitao; Dell’Erba, Valeria; Assawes, Pribpandao; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Oklu, Rahmi; Khademhosseini, Ali

    2016-01-01

    The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development. PMID:27126775

  7. 3D Bioprinting for Tissue and Organ Fabrication.

    PubMed

    Zhang, Yu Shrike; Yue, Kan; Aleman, Julio; Moghaddam, Kamyar Mollazadeh; Bakht, Syeda Mahwish; Yang, Jingzhou; Jia, Weitao; Dell'Erba, Valeria; Assawes, Pribpandao; Shin, Su Ryon; Dokmeci, Mehmet Remzi; Oklu, Rahmi; Khademhosseini, Ali

    2017-01-01

    The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.

  8. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  9. Engineering fabrics in transportation construction

    NASA Astrophysics Data System (ADS)

    Herman, S. C.

    1983-11-01

    The following areas are discussed: treatments for reduction of reflective cracking of asphalt overlays on jointed-concrete pavements in Georgia; laboratory testing of fabric interlayers for asphalt concrete paving: interim report; reflection cracking models: review and laboratory evaluation of engineering fabrics; optimum-depth method for design of fabric-reinforced unsurfaced roads; dynamic test to predict field behavior of filter fabrics used in pavement subdrains; mechanism of geotextile performance in soil-fabric systems for drainage and erosion control; permeability tests of selected filter fabrics for use with a loess-derived alluvium; geotextile filter criteria; use of fabrics for improving the placement of till on peat foundation; geotextile earth-reinforced retaining wall tests: Glenwood Canyon, Colorado; New York State Department of Transportation's experience and guidelines for use of geotextiles; evaluation of two geotextile installations in excess of a decade old; and, long-term in situ properties of geotextiles.

  10. Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity

    NASA Astrophysics Data System (ADS)

    Atabaev, Timur Sh.; Lee, Dae Hun; Hong, Nguyen Hoa

    A bilayered TiO2/CuO photoelectrode was fabricated on a fluorine-doped tin oxide FTO substrate by spin-coating and pulsed laser deposition methods. The prepared bilayered system was assessed as a photoelectrode for solar water splitting. The fabricated TiO2/CuO photoelectrode exhibited a higher photocurrent density (0.022mA/cm2 at 1.23V vs. RHE) compared to bare TiO2 photoelectrode (0.013mA/cm2 at 1.23V vs. RHE). This photocurrent density enhancement was attributed to the improved charge separation combined with the improved sunlight harvesting efficiency of a bilayered structure.

  11. A comparison of the use of vacuum metal deposition versus cyanoacrylate fuming for visualisation of fingermarks and grab impressions on fabrics.

    PubMed

    Fraser, Joanna; Deacon, Paul; Bleay, Stephen; Bremner, David H

    2014-03-01

    Both vacuum metal deposition (VMD) and cyanoacrylate fuming (CAF) are techniques used to visualise latent fingermarks on smooth non-porous surfaces such as plastic and glass. VMD was initially investigated in the 1970s as to its effectiveness for visualising prints on fabrics, but was abandoned when radioactive sulphur dioxide was found to be more effective. However, interest in VMD was resurrected in the 1990s when CAF was also used routinely. We now report on studies to determine whether VMD or CAF is the more effective technique for the detection of marks on fabrics. Four different fabrics, nylon, polyester, polycotton and cotton, were utilised during this study, along with 15 donors who ranged in their age and ability to leave fingermarks, from good to medium to poor, thus reflecting the general population. Once samples were collected they were kept for a determined time (1, 2, 3, 4, 5, 6, 7, 14, 21 or 28 days) and then treated using either the gold and zinc metal VMD process or standard cyanoacrylate fuming. The smoother fabrics, such as nylon, consistently produced greater ridge detail whereas duller fabrics, like cotton tended only to show empty prints and impressions of where the fabric had been touched, rather than any ridge details. The majority of fabrics did however allow the development of touch marks that could be targeted for DNA taping which potentially could lead to a DNA profile. Of the two techniques VMD was around 5 times more effective than CAF, producing a greater amount of ridge detail, palmar flexion creases and target areas on more samples and fabrics. Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  13. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  14. Natural material-decorated mesoporous silica nanoparticle container for multifunctional membrane-controlled targeted drug delivery

    PubMed Central

    Hu, Yan; Ke, Lei; Chen, Hao; Zhuo, Ma; Yang, Xinzhou; Zhao, Dan; Zeng, Suying; Xiao, Xincai

    2017-01-01

    To avoid the side effects caused by nonspecific targeting, premature release, weak selectivity, and poor therapeutic efficacy of current nanoparticle-based systems used for drug delivery, we fabricated natural material-decorated nanoparticles as a multifunctional, membrane-controlled targeted drug delivery system. The nanocomposite material coated with a membrane was biocompatible and integrated both specific tumor targeting and responsiveness to stimulation, which improved transmission efficacy and controlled drug release. Mesoporous silica nanoparticles (MSNs), which are known for their biocompatibility and high drug-loading capacity, were selected as a model drug container and carrier. The membrane was established by the polyelectrolyte composite method from chitosan (CS) which was sensitive to the acidic tumor microenvironment, folic acid-modified CS which recognizes the folate receptor expressed on the tumor cell surface, and a CD44 receptor-targeted polysaccharide hyaluronic acid. We characterized the structure of the nanocomposite as well as the drug release behavior under the control of the pH-sensitive membrane switch and evaluated the antitumor efficacy of the system in vitro. Our results provide a basis for the design and fabrication of novel membrane-controlled nanoparticles with improved tumor-targeting therapy. PMID:29200852

  15. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy

    PubMed Central

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-01-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6, heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy. PMID:26177264

  16. p53 activated by AND gate genetic circuit under radiation and hypoxia for targeted cancer gene therapy.

    PubMed

    Ding, Miao; Li, Rong; He, Rong; Wang, Xingyong; Yi, Qijian; Wang, Weidong

    2015-09-01

    Radio-activated gene therapy has been developed as a novel therapeutic strategy against cancer; however, expression of therapeutic gene in peritumoral tissues will result in unacceptable toxicity to normal cells. To restrict gene expression in targeted tumor mass, we used hypoxia and radiation tolerance features of tumor cells to develop a synthetic AND gate genetic circuit through connecting radiation sensitivity promoter cArG6 , heat shock response elements SNF1, HSF1 and HSE4 with retroviral vector plxsn. Their construction and dynamic activity process were identified through downstream enhanced green fluorescent protein and wtp53 expression in non-small cell lung cancer A549 cells and in a nude mice model. The result showed that AND gate genetic circuit could be activated by lower required radiation dose (6 Gy) and after activated, AND gate could induce significant apoptosis effects and growth inhibition of cancer cells in vitro and in vivo. The radiation- and hypoxia-activated AND gate genetic circuit, which could lead to more powerful target tumoricidal activity represented a promising strategy for both targeted and effective gene therapy of human lung adenocarcinoma and low dose activation character of the AND gate genetic circuit implied that this model could be further exploited to decrease side-effects of clinical radiation therapy. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  17. Pulse laser ablation of Au, Ag, and Cu metal targets in liquid for nanoparticle production

    NASA Astrophysics Data System (ADS)

    Herbani, Y.; Irmaniar; Nasution, R. S.; Mujtahid, F.; Masse, S.

    2018-03-01

    We have fabricated metal and oxide nanoparticles using pulse laser ablation of Au, Ag, and Cu metal targets immersed in water. While laser ablation of Au and Ag targets in water produced metal nanoparticles which were stable for a month even without any dispersant, we found CuO nanoparticles for Cu target due to rapid oxidation of Cu in water resulted in its poor stability. Au, Ag, and CuO nanoparticles production were barely identified by naked eyes for their distinctive colour of red, yellow, and dark green colloidal suspensions, respectively. It was also verified using UV-Vis spectrometer that Au, Ag, and CuO colloidal nanoparticles have their respective surface plasmon resonance at 520, 400, and 620 nm. TEM observation showed that particle sizes for all the fabricated nanoparticles were in the range of 20 – 40 nm with crystalline structures.

  18. Hydroxylapatite nanoparticles: fabrication methods and medical applications

    NASA Astrophysics Data System (ADS)

    Okada, Masahiro; Furuzono, Tsutomu

    2012-12-01

    Hydroxylapatite (or hydroxyapatite, HAp) exhibits excellent biocompatibility with various kinds of cells and tissues, making it an ideal candidate for tissue engineering, orthopedic and dental applications. Nanosized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. This review summarizes existing knowledge and recent progress in fabrication methods of nanosized (or nanostructured) HAp particles, as well as their recent applications in medical and dental fields. In section 1, we provide a brief overview of HAp and nanoparticles. In section 2, fabrication methods of HAp nanoparticles are described based on the particle formation mechanisms. Recent applications of HAp nanoparticles are summarized in section 3. The future perspectives in this active research area are given in section 4.

  19. SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting

    PubMed Central

    Siu, Fai Y.; Spanggord, Richard J.; Doudna, Jennifer A.

    2007-01-01

    The signal recognition particle (SRP) cotranslationally targets proteins to cell membranes by coordinated binding and release of ribosome-associated nascent polypeptides and a membrane-associated SRP receptor. GTP uptake and hydrolysis by the SRP-receptor complex govern this targeting cycle. Because no GTPase-activating proteins (GAPs) are known for the SRP and SRP receptor GTPases, however, it has been unclear whether and how GTP hydrolysis is stimulated during protein trafficking in vivo. Using both biochemical and genetic experiments, we show here that SRP RNA enhances GTPase activity of the SRP–receptor complex above a critical threshold required for cell viability. Furthermore, this stimulation is a property of the SRP RNA tetraloop. SRP RNA tetraloop mutants that confer defective growth phenotypes can assemble into SRP–receptor complexes, but fail to stimulate GTP hydrolysis in these complexes in vitro. Tethered hydroxyl radical probing data reveal that specific positioning of the RNA tetraloop within the SRP–receptor complex is required to stimulate GTPase activity to a level sufficient to support cell growth. These results explain why no external GAP is needed and why the phylogenetically conserved SRP RNA tetraloop is required in vivo. PMID:17164479

  20. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents

    PubMed Central

    Souza, Glauco R.; Christianson, Dawn R.; Staquicini, Fernanda I.; Ozawa, Michael G.; Snyder, Evan Y.; Sidman, Richard L.; Miller, J. Houston; Arap, Wadih; Pasqualini, Renata

    2006-01-01

    Biological molecular assemblies are excellent models for the development of nanoengineered systems with desirable biomedical properties. Here we report an approach for fabrication of spontaneous, biologically active molecular networks consisting of bacteriophage (phage) directly assembled with gold (Au) nanoparticles (termed Au–phage). We show that when the phage are engineered so that each phage particle displays a peptide, such networks preserve the cell surface receptor binding and internalization attributes of the displayed peptide. The spontaneous organization of these targeted networks can be manipulated further by incorporation of imidazole (Au–phage–imid), which induces changes in fractal structure and near-infrared optical properties. The networks can be used as labels for enhanced fluorescence and dark-field microscopy, surface-enhanced Raman scattering detection, and near-infrared photon-to-heat conversion. Together, the physical and biological features within these targeted networks offer convenient multifunctional integration within a single entity with potential for nanotechnology-based biomedical applications. PMID:16434473

  1. Antiinflammatory Activity of a Novel Folic Acid Targeted Conjugate of the mTOR Inhibitor Everolimus

    PubMed Central

    Lu, Yingjuan; Parker, Nikki; Kleindl, Paul J; Cross, Vicky A; Wollak, Kristin; Westrick, Elaine; Stinnette, Torian W; Gehrke, Mark A; Wang, Kevin; Santhapuram, Hari Krishna R; You, Fei; Hahn, Spencer J; Vaughn, Jeremy F; Klein, Patrick J; Vlahov, Iontcho R; Low, Philip S; Leamon, Christopher P

    2015-01-01

    Folate receptor (FR)-β has been identified as a promising target for antimacrophage and antiinflammatory therapies. In the present study, we investigated EC0565, a folic acid–derivative of everolimus, as a FR-specific inhibitor of the mammalian target of rapamycin (mTOR). Because of its amphiphilic nature, EC0565 was first evaluated for water solubility, critical micelle formation, stability in culture and FR-binding specificity. Using FR-expressing macrophages, the effect of EC0565 on mTOR signaling and cellular proliferation was studied. The pharmacokinetics, metabolism and bioavailability of EC0565 were studied in normal rats. The in vivo activity of EC0565 was assessed in rats with adjuvant arthritis, a “macrophage-rich” model with close resemblance to rheumatoid arthritis. EC0565 forms micellar aggregates in physiological buffers and demonstrates good water solubility as well as strong multivalent FR-binding capacity. EC0565 inhibited mTOR signaling in rat macrophages at nanomolar concentrations and induced G0/G1 cell cycle arrest in serum-starved RAW264.7 cells. Subcutaneously administered EC0565 in rats displayed good bioavailability and a relatively long half-life (~12 h). When given at 250 nmol/kg, EC0565 selectively inhibited proliferating cell nuclear antigen expression in thioglycollate-stimulated rat peritoneal cells. With limited dosing regimens, the antiarthritic activity of EC0565 was found superior to that of etanercept, everolimus and a nontargeted everolimus analog. The in vivo activity of EC0565 was also comparable to that of a folate-targeted aminopterin. Folate-targeted mTOR inhibition may be an effective way of suppressing activated macrophages in sites of inflammation, especially in nutrient-deprived conditions, such as in the arthritic joints. Further investigation and improvement upon the physical and biochemical properties of EC0565 are warranted. PMID:26181632

  2. DOTAM derivatives as active cartilage-targeting drug carriers for the treatment of osteoarthritis.

    PubMed

    Hu, Hai-Yu; Lim, Ngee-Han; Ding-Pfennigdorff, Danping; Saas, Joachim; Wendt, K Ulrich; Ritzeler, Olaf; Nagase, Hideaki; Plettenburg, Oliver; Schultz, Carsten; Nazare, Marc

    2015-03-18

    Targeted drug-delivery methods are crucial for effective treatment of degenerative joint diseases such as osteoarthritis (OA). Toward this goal, we developed a small multivalent structure as a model drug for the attenuation of cartilage degradation. The DOTAM (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid amide)-based model structure is equipped with the cathepsin D protease inhibitor pepstatin A, a fluorophore, and peptide moieties targeting collagen II. In vivo injection of these soluble probes into the knee joints of mice resulted in 7-day-long local retention, while the drug carrier equipped with a scrambled peptide sequence was washed away within 6-8 h. The model drug conjugate successfully reduced the cathepsin D protease activity as measured by release of GAG peptide. Therefore, these conjugates represent a promising first drug conjugate for the targeted treatment of degenerative joint diseases.

  3. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    NASA Astrophysics Data System (ADS)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  4. Design and fabrication of metal-insulator-metal diode for high frequency applications

    NASA Astrophysics Data System (ADS)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2017-02-01

    Metal-insulator-metal (MIM) diodes play significant role in high speed electronics where high frequency rectification is needed. Quantum based tunneling mechanism helps MIM diodes to rectify at high frequency signals. Rectenna, antenna coupled MIM diodes are becoming popular due to their potential use as IR detectors and energy harvesters. Because of small active area, MIM diodes could easily be incorporated into integrated circuits (IC's). The objective of the work is to design and develop MIM diodes for high frequency rectification. In this work, thin insulating layer of ZnO was fabricated using Langmuir-Blodgett (LB) technique which facilitates ultrathin thin, uniform and pinhole free fabrication of insulating layer. The ZnO layer was synthesized from organic precursor of zinc acetate layer. The optimization in the LB technique of fabrication process led to fabricate MIM diodes with high non-linearity and sensitivity. Moreover, the top and bottom electrodes as well as active area of the diodes were patterned using UV-tunneling conduction mechanism. The highest sensitivity of the diode was measured around 37 (A/W), and the rectification ratio was found around 36 under low applied bias at +/-100 mV.

  5. Design and fabrication of a full-scale actively controlled satellite appendage simulator unit

    NASA Astrophysics Data System (ADS)

    Jacobs, Jack H.; Quenon, Dan; Hadden, Steve; Self, Rick

    1999-07-01

    Modern satellites require the ability to slew and settle quickly in order to acquire or transmit data efficiently. Solar arrays and communication antennas cause low frequency disturbances to the satellite bus during these maneuvers causing undesirable induced vibration of the payload. The ability to develop and experimentally demonstrate attitude control laws which compensate for these flexible body disturbances is of prime importance to modern day satellite manufacturers. Honeywell has designed and fabricated an actively controlled Appendage Simulator Unit (ASU) which can physically induce the modal characteristics of satellite appendages on to a ground based satellite test bed installed on an air bearing. The ASU consists of two orthogonal fulcrum beams weighting over 800 pounds each utilizing two electrodynamic shakers to induce active torques onto the bus. The ASU is programmed with the state space characteristics of the desired appendage and responds in real time to the bus motion to generate realistic disturbances back onto the satellite. Two LVDT's are used on each fulcrum beam to close the loop and insure the system responds in real time the same way a real solar array would on-orbit. Each axis is independently programmable in order to simulate various orientations or modal contributions from an appendage. The design process for the ASU involved the optimization of sensors, actuators, control authority, weight, power and functionality. The smart structure system design process and experimental results are described in detail.

  6. Targeted delivery of peptide-conjugated biocompatible gold nanoparticles into cancer cell nucleus

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Curry, Taeyjuana; Che, Yong; Kopelman, Raoul

    2013-02-01

    Nucleus remains a significant target for nanoparticles with diagnostic and therapeutic applications because both genetic information of the cell and transcription machinery reside there. Novel therapeutic strategies (for example, gene therapy), enabled by safe and efficient delivery of nanoparticles and drug molecules into the nucleus, are heralded by many as the ultimate treatment for severe and intractable diseases. However, most nanomaterials and macromolecules are incapable of reaching the cell nucleus on their own, because of biological barriers carefully honed by evolution including cellular membrane and nuclear envelope. In this paper, we have demonstrated an approach of fabrication of biocompatible gold nanoparticle (Au NP)-based vehicles which can entering into cancer cell nucleus by modifying Au NPs with both PEG 5000 and two different peptides (RGD and nuclear localization signal (NLS) peptide). The Au NPs used were fabricated via femtosecond laser ablation of Au bulk target in deionized water. The Au NPs produced by this method provide chemical free, virgin surface, which allows us to carry out "Sequential Conjugation" to modify their surface with PEG 5000, RGD, and NLS. "Sequential Conjugation" described in this presentation is very critical for the fabrication of Au NP-based vehicles capable of entering into cancer cell nucleus as it enables the engineering and tuning surface chemistries of Au NPs by independently adjusting amounts of PEG and peptides bound onto surface of Au NPs so as to maximize their nuclear targeting performance and biocompatibility regarding the cell line of interest. Both optical microscopy and transmission electron microscopy (TEM) are used to confirm the in vitro targeted nuclear delivery of peptide-conjugated biocompatible Au NPs by showing their presence in the cancer cell nucleus.

  7. Activation of RAS family members confers resistance to ROS1 targeting drugs

    PubMed Central

    Cargnelutti, Marilisa; Corso, Simona; Pergolizzi, Margherita; Mévellec, Laurence; Aisner, Dara L.; Dziadziuszko, Rafal; Varella-Garcia, Marileila; Comoglio, Paolo M.; Doebele, Robert C.; Vialard, Jorge; Giordano, Silvia

    2015-01-01

    The ROS1 tyrosine kinase is activated in lung cancer as a consequence of chromosomal rearrangement. Although high response rates and disease control have been observed in lung cancer patients bearing rearranged ROS1 tumors (ROS1+) treated with the kinase inhibitor crizotinib, many of these patients eventually relapse. To identify mechanisms of resistance to ROS1 inhibitors we generated resistant cells from HCC78 lung cancer cells bearing the SLC34A2-ROS1 rearrangement. We found that activation of the RAS pathway in the HCC78 cell model, due to either KRAS/NRAS mutations or to KRAS amplification, rendered the cells resistant to ROS1 inhibition. These cells were cross-resistant to different ROS1 inhibitors, but sensitive to inhibitors of the RAS signaling pathway. Interestingly, we identified focal KRAS amplification in a biopsy of a tumor from a patient that had become resistant to crizotinib treatment. Altogether our data suggest that the activation of members of the RAS family can confer resistance to ROS1 inhibitors. This has important clinical implications as: (i) RAS genetic alterations in ROS1+ primary tumors are likely negative predictors of efficacy for targeted drugs and (ii) this kind of resistance is unlikely to be overcome by the use of more specific or more potent ROS1 targeting drugs. PMID:25691052

  8. Racialized geography, corporate activity, and health disparities: tobacco industry targeting of inner cities.

    PubMed

    Yerger, Valerie B; Przewoznik, Jennifer; Malone, Ruth E

    2007-11-01

    Industry has played a complex role in the rise of tobacco-related diseases in the United States. The tobacco industry's activities, including targeted marketing, are arguably among the most powerful corporate influences on health and health policy. We analyzed over 400 internal tobacco industry documents to explore how, during the past several decades, the industry targeted inner cities populated predominantly by low-income African American residents with highly concentrated menthol cigarette marketing. We study how major tobacco companies competed against one another in menthol wars fought within these urban cores. Little previous work has analyzed the way in which the inner city's complex geography of race, class, and place shaped the avenues used by tobacco corporations to increase tobacco use in low-income, predominantly African American urban cores in the 1970s-1990s. Our analysis shows how the industry's activities contributed to the racialized geography of today's tobacco-related health disparities.

  9. Recovering actives in multi-antitarget and target design of analogs of the myosin II inhibitor blebbistatin

    NASA Astrophysics Data System (ADS)

    Roman, Bart I.; Guedes, Rita C.; Stevens, Christian V.; García-Sosa, Alfonso T.

    2018-05-01

    In multitarget drug design, it is critical to identify active and inactive compounds against a variety of targets and antitargets. Multitarget strategies thus test the limits of available technology, be that in screening large databases of compounds versus a large number of targets, or in using in silico methods for understanding and reliably predicting these pharmacological outcomes. In this paper, we have evaluated the potential of several in silico approaches to predict the target, antitarget and physicochemical profile of (S)-blebbistatin, the best-known myosin II ATPase inhibitor, and a series of analogs thereof. Standard and augmented structure-based design techniques could not recover the observed activity profiles. A ligand-based method using molecular fingerprints was, however, able to select actives for myosin II inhibition. Using further ligand- and structure-based methods, we also evaluated toxicity through androgen receptor binding, affinity for an array of antitargets and the ADME profile (including assay-interfering compounds) of the series. In conclusion, in the search for (S)-blebbistatin analogs, the dissimilarity distance of molecular fingerprints to known actives and the computed antitarget and physicochemical profile of the molecules can be used for compound design for molecules with potential as tools for modulating myosin II and motility-related diseases.

  10. Protease activated receptor-2 (PAR2): possible target of phytochemicals.

    PubMed

    Kakarala, Kavita Kumari; Jamil, Kaiser

    2015-09-01

    The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.

  11. Uniform hydrogen fuel layers for inertial fusion targets by microgravity

    NASA Technical Reports Server (NTRS)

    Parks, P. B.; Fagaly, Robert L.

    1994-01-01

    A critical concern in the fabrication of targets for inertial confinement fusion (ICF) is ensuring that the hydrogenic (D(sub 2) or DT) fuel layer maintains spherical symmetry. Solid layered targets have structural integrity, but lack the needed surface smoothness. Liquid targets are inherently smooth, but suffer from gravitationally induced sagging. One method to reduce the effective gravitational field environment is freefall insertion into the target chamber. Another method to counterbalance field gravitational force is to use an applied magnetic field combined with a gradient field to induce a magnetic dipole force on the liquid fuel layer. Based on time dependent calculations of the dynamics of the liquid fuel layer in microgravity environments, we show that it may be possible to produce a liquid layered ICF target that satisfies both smoothness and symmetry requirements.

  12. Effect of a non-woven fabric covering on the residual activity of pendimethalin in lettuce and soil.

    PubMed

    Jursík, Miroslav; Kováčová, Jana; Kočárek, Martin; Hamouzová, Kateřina; Soukup, Josef

    2017-05-01

    Lettuce (Lactuca sativa L.) is a crop that is very sensitive to herbicide contamination owing to its short growing season. The use of long-residual herbicides and non-woven fabric coverings could therefore influence pendimethalin concentrations in soil and lettuce. The pendimethalin half-life in soil ranged between 18 and 85 days and was mainly affected by season (i.e. weather), and especially by soil moisture. Pendimethalin degradation in soil was slowest under dry conditions. A longer pendimethalin half-life was observed under the non-woven fabric treatment, but the effect of varying application rate was not significant. Pendimethalin residue concentrations in lettuce heads were significantly influenced by pendimethalin application rate and by non-woven fabric cover, especially at the lettuce's early growth stages. The highest pendimethalin concentration at final harvest was determined in lettuce grown on uncovered plots treated with pendimethalin at an application rate of 1200 g ha -1 (7-38 µg kg -1 ). Depending on growing season duration and weather conditions, pendimethalin concentrations in lettuce grown under non-woven fabric ranged from 0 to 21 µg kg -1 . Use of transparent non-woven fabric cover with lettuce can help to reduce application rates of soil herbicides and diminish the risk of herbicide contamination in the harvested vegetables. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Design verification and fabrication of active control systems for the DAST ARW-2 high aspect ratio wing, part 1

    NASA Technical Reports Server (NTRS)

    Mcgehee, C. R.

    1986-01-01

    A study was conducted under Drones for Aerodynamic and Structural Testing (DAST) program to accomplish the final design and hardware fabrication for four active control systems compatible with and ready for installation in the NASA Aeroelastic Research Wing No. 2 (ARW-2) and Firebee II drone flight test vehicle. The wing structure was designed so that Active Control Systems (ACS) are required in the normal flight envelope by integrating control system design with aerodynamics and structure technologies. The DAST ARW-2 configuration uses flutter suppression, relaxed static stability, and gust and maneuver load alleviation ACS systems, and an automatic flight control system. Performance goals and criteria were applied to individual systems and the systems collectively to assure that vehicle stability margins, flutter margins, flying qualities and load reductions are achieved.

  14. Fabrics for aeronautic construction

    NASA Technical Reports Server (NTRS)

    Walen, E D

    1918-01-01

    The Bureau of Standards undertook the investigation of airplane fabrics with the view of finding suitable substitutes for the linen fabrics, and it was decided that the fibers to be considered were cotton, ramie, silk, and hemp. Of these, the cotton fiber was the logical one to be given primary consideration. Report presents the suitability, tensibility and stretching properties of cotton fabric obtained by laboratory tests.

  15. Electrosynthesis of magnetoresponsive microrobot for targeted drug delivery using calcium alginate.

    PubMed

    Chengzhi Hu; Riederer, Katharina; Klemmer, Michael; Pane, Salvador; Nelson, Bradley J

    2016-08-01

    Targeted drug delivery systems deliver drugs precisely to a specific targeted site inside the body, and can also release the drugs with controlled kinetics to prolong the efficacy of single dose administration. The advantageous properties of hydrogels make them attractive for use in the area of drug delivery. Calcium alginate is a pH sensitive hydrogel stable in acidic media and soluble in basic media. This enables the hydrogel to absorb and release aqueous solutions at certain ranges of pH values. By absorbing an aqueous solution containing a drug, an active drug release can be triggered at a specified range of pH value. In this paper, we combined calcium alginate with cobalt nickel (CoNi) in a cylindrical hybrid micro robot by electrodeposition. The designed microrobot can be wirelessly actuated with an external magnetic manipulation system and, hence, targeted to a specific location in the human body. At this specific location, characterized by its pH range, the absorbed drug will be released. Here, the fabrication steps of the specified microrobot are characterized, namely the production of a template on a silicon chip and the subsequent template-assisted electrodeposition of CoNi and alginate. Additionally, the dynamics of drug release of calcium alginate is studied.

  16. Structure and yarn sensor for fabric

    DOEpatents

    Mee, David K.; Allgood, Glenn O.; Mooney, Larry R.; Duncan, Michael G.; Turner, John C.; Treece, Dale A.

    1998-01-01

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  17. Embedding Intervention Targets into Caregiving Routines and Other Activities of the Families Choice.

    ERIC Educational Resources Information Center

    Hollingshead, Lorie; Harris, Kristy; Stremel, Kathleen

    This training module on embedding intervention targets into caregiving routines and other activities of the families' choice is from the Mississippi Early Education Program for Children with Multiple Disabilities, a program designed to train Individuals with Disabilities Education Act Part H service coordinators and service providers to use family…

  18. Fabrication of polycrystalline thin films by pulsed laser processing

    DOEpatents

    Mitlitsky, Fred; Truher, Joel B.; Kaschmitter, James L.; Colella, Nicholas J.

    1998-02-03

    A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

  19. Discovery of tanshinone derivatives with anti-MRSA activity via targeted bio-transformation.

    PubMed

    He, Wenni; Liu, Miaomiao; Huang, Pei; Abdel-Mageed, Wael M; Han, Jianying; Watrous, Jeramie D; Nguyen, Don D; Wang, Wenzhao; Song, Fuhang; Dai, Huanqin; Zhang, Jingyu; Quinn, Ronald J; Grkovi, Tanja; Luo, Houwei; Zhang, Lixin; Liu, Xueting

    2016-09-01

    Two potent anti-MRSA tanshinone glycosides ( 1 and 2 ) were discovered by targeted microbial biotransformation, along with rapid identification via MS/MS networking. Serial reactions including dehydrogenation, demethylations, reduction, glycosylation and methylation have been observed after incubation of tanshinone IIA and fungus Mucor rouxianus AS 3.3447. In addition, tanshinosides B ( 2 ) showed potent activities against serial clinical isolates of oxacillin-resistant Staphylococcus aureus with MIC values of 0.78 μg/mL. This is the first study that shows a significant increase in the level and activities of tanshinone glycosides relative to the substrate tanshinone IIA.

  20. Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range.

    PubMed

    Safari, Hanieh; Adili, Reheman; Holinstat, Michael; Eniola-Adefeso, Omolola

    2018-05-15

    Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. 75 FR 13127 - Lead-Based Paint Renovation, Repair and Painting Activities in Target Housing and Child Occupied...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-R07-OPPT-2010-0155; FRL-9128-4] Lead-Based Paint Renovation, Repair and Painting Activities in Target Housing and Child Occupied Facilities; State of Iowa. Notice of... target housing and child-occupied facilities: 1. Establish the discipline of lead-safe renovator. 2...

  2. Development of Targeted, Enzyme-Activated Nano-Conjugates for Hepatic Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Kuruvilla, Sibu Philip

    Hepatocellular carcinoma (HCC) is the 5th most commonly-occurring cancer worldwide and the 2nd highest cause for cancer-related deaths globally. The current treatment strategy is the direct injection of a chemotherapeutic agent (e.g. doxorubicin; DOX) into the hepatic artery, through a process called hepatic arterial infusion (HAI). Unfortunately, HAI is severely hindered by limited therapeutic efficacy against the tumor and high systemic toxicity to surrounding organs (e.g. cardiotoxicity). This thesis focuses on the development of a targeted, nanoparticle-based drug delivery system aimed to improve the clinical treatment of HCC. In particular, we employ generation 5 (G5) poly(amido amine) (PAMAM) dendrimers targeted to hepatic cancer cells via N-acetylgalactosamine (NAcGal) ligands attached to the surface through a poly(ethylene glycol) (PEG) brush. DOX is attached to the G5 surface through two different enzyme-sensitive linkages, L3 or L4, to achieve controllable release of the drug inside hepatic cancer cells. The combination of NAcGal-PEG targeting branches with either L3- or L4-DOX linkages led to the development of P1 and P2 particles, respectively. In Part 1, we discuss the development of these particles and measure their ability to target and kill hepatic cancer cells in vitro. In Part 2, we investigate the antitumor activity of P1 and P2 particles in tumor-bearing mice in comparison to the free drug, and we measure the cardiac function of mice undergoing treatment to assess differences in DOX-induced cardiotoxicity. Finally, in Part 3, we explore multi-valent targeting of G5 dendrimers in pursuit of further improving their specificity to hepatic cancer cells. Ultimately, this thesis provides insight into the utility of nanoparticle-based drug delivery systems that can potentially be translated to the clinic to improve cancer therapy.

  3. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    NASA Astrophysics Data System (ADS)

    Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.

    2011-04-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  4. K+ Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria.

    PubMed

    Groß, Christina J; Mishra, Ritu; Schneider, Katharina S; Médard, Guillaume; Wettmarshausen, Jennifer; Dittlein, Daniela C; Shi, Hexin; Gorka, Oliver; Koenig, Paul-Albert; Fromm, Stephan; Magnani, Giovanni; Ćiković, Tamara; Hartjes, Lara; Smollich, Joachim; Robertson, Avril A B; Cooper, Matthew A; Schmidt-Supprian, Marc; Schuster, Michael; Schroder, Kate; Broz, Petr; Traidl-Hoffmann, Claudia; Beutler, Bruce; Kuster, Bernhard; Ruland, Jürgen; Schneider, Sabine; Perocchi, Fabiana; Groß, Olaf

    2016-10-18

    Imiquimod is a small-molecule ligand of Toll-like receptor-7 (TLR7) that is licensed for the treatment of viral infections and cancers of the skin. Imiquimod has TLR7-independent activities that are mechanistically unexplained, including NLRP3 inflammasome activation in myeloid cells and apoptosis induction in cancer cells. We investigated the mechanism of inflammasome activation by imiquimod and the related molecule CL097 and determined that K + efflux was dispensable for NLRP3 activation by these compounds. Imiquimod and CL097 inhibited the quinone oxidoreductases NQO2 and mitochondrial Complex I. This induced a burst of reactive oxygen species (ROS) and thiol oxidation, and led to NLRP3 activation via NEK7, a recently identified component of this inflammasome. Metabolic consequences of Complex I inhibition and endolysosomal effects of imiquimod might also contribute to NLRP3 activation. Our results reveal a K + efflux-independent mechanism for NLRP3 activation and identify targets of imiquimod that might be clinically relevant. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations.

    PubMed

    Tronel, Claire; Largeau, Bérenger; Santiago Ribeiro, Maria Joao; Guilloteau, Denis; Dupont, Anne-Claire; Arlicot, Nicolas

    2017-04-11

    Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals' binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians' expectations.

  6. Design and fabrication of vertically-integrated CMOS image sensors.

    PubMed

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.

  7. Fabrication and characterization of mesoporous activated carbon from Lemna minor using one-step H3PO4 activation for Pb(II) removal

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Li, Shunxing; Lin, Haibin; Chen, Jianhua

    2014-10-01

    A low cost and locally available material, Lemna minor, was used to fabricate activated carbon using H3PO4 activation. After H3PO4 activation, the L. minor activated carbons (LACs) possess high mesoporosity (92.2%) and a surface area of 531.9 m2/g according to Brunauer-Emmett-Teller (BET) analysis. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectrometer (XPS) analyses reveal the presence of rich hydroxyl, carboxyl, amide and phosphate functional groups on the LACs surface, leading to facile Pb(II) binding to the surface through strong chemisorptive bonds or ion-exchange. The kinetic and equilibrium data were well described by pseudo-first-order model and Langmuir isotherm, with the maximum monolayer adsorption capacity (qm) 170.9 mg/g at 25 °C. The intra-particle diffusion mechanism was partially responsible for the adsorption. The adsorption process was spontaneous and endothermic with negative ΔG and positive ΔH. The Pb(II)-loaded LACs could be easily regenerated using 0.1-M HCl and reused for seven cycles without significant adsorption capacity reduction. The maximum percentage removal rate for Pb(II) (20 mg/L) was found to be 91.8% within 30 min, at optimum conditions of pH 6.0 and 25 °C. These suggested that the low-cost LACs could be used as a potential adsorbent in the treatment of lead-contaminated water.

  8. Low cost damage tolerant composite fabrication

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.; Freeman, W. T.

    1988-01-01

    The resin transfer molding (RTM) process applied to composite aircraft parts offers the potential for using low cost resin systems with dry graphite fabrics that can be significantly less expensive than prepreg tape fabricated components. Stitched graphite fabric composites have demonstrated compression after impact failure performance that equals or exceeds that of thermoplastic or tough thermoset matrix composites. This paper reviews methods developed to fabricate complex shape composite parts using stitched graphite fabrics to increase damage tolerance with RTM processes to reduce fabrication cost.

  9. A multi-layered active target for the study of neutron-unbound nuclides at NSCL

    NASA Astrophysics Data System (ADS)

    Freeman, Jessica; Gueye, Paul; Redpath, Thomas; MoNA Collaboration

    2017-01-01

    The characteristics of neutron-unbound nuclides were investigated using a multi-layered Si/Be active target designed for use with the MoNA/LISA setup at the National Superconducting Cyclotron (NSCL). The setup consists of the MoNA/LISA arrays (for neutron detection) and a superconducting sweeper magnet (for charged separation) to identify products following the decay of neutron unbound states. The segmented target consisted of three 700 mg/cm2 beryllium targets and four 0.14 mm thick 62x62 mm2 silicon detectors. As a commissioning experiment for the target the decay of two-neutron unbound 26O populated in a one-proton removal reaction from a radioactive 27F beam was performed. The 27F secondary radioactive beam from the NSCL's Coupled Cyclotron Facility was produced from the fragmentation of a 140 MeV/u 48Ca beam incident on a thick beryllium target and then cleanly selected by the A1900 fragment separator. The energy loss and position spectra of the incoming beam and reaction products were used to calibrate the Silicon detectors to within 1.5% in both energy and position. A dedicated Geant4 model of the target was developed to simulate the energy loss within the target. A description of the experimental setup, simulation work, and energy and position calibration will be presented. DoE/NNSA - DE-NA0000979.

  10. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor

    NASA Astrophysics Data System (ADS)

    Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L.; Kim, Jong-Hoon; Kim, Jong Seung

    2016-07-01

    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic (“phototheranostic”).

  11. Final report SI 08-SI-004: Fusion application targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biener, J; Kucheyev, S O; Wang, M Y

    2010-12-03

    Complex target structures are necessary to take full advantage of the unique laboratory environment created by inertial confinement fusion experiments. For example, uses-of-ignition targets that contain a thin layer of a low density nanoporous material inside a spherical ablator shell allow placing dopants in direct contact with the DT fuel. The ideal foam for this application is a low-density hydrocarbon foam that is strong enough to survive wetting with cryogenic hydrogen, and low enough in density (density less than {approx}30 mg/cc) to not reduce the yield of the target. Here, we discuss the fabrication foam-lined uses-of-ignition targets, and the developmentmore » of low-density foams that can be used for this application. Much effort has been directed over the last 20 years toward the development of spherical foam targets for direct-drive and fast-ignition experiments. In these targets, the spherical foam shell is used to define the shape of the cryogenic DT fuel layer, or acts as a surrogate to simulate the cryogenic fuel layer. These targets are fabricated from relatively high-density aerogels (>100 mg/cc) and coated with a few micron thick permeation barrier. With exception of the above mentioned fast ignition targets, the wall of these targets is typically larger than 100 microns. In contrast, the fusion application targets for indirect-drive experiments on NIF will require a much thinner foam shell surrounded by a much thicker ablator shell. The design requirements for both types of targets are compared in Table 1. The foam shell targets for direct-drive experiments can be made in large quantities and with reasonably high yields using an encapsulation technique pioneered by Takagi et al. in the early 90's. In this approach, targets are made by first generating unsupported foam shells using a triple-orifice droplet generator, followed by coating the dried foam shells with a thin permeation barrier. However, this approach is difficult, if not impossible

  12. Structure and yarn sensor for fabric

    DOEpatents

    Mee, D.K.; Allgood, G.O.; Mooney, L.R.; Duncan, M.G.; Turner, J.C.; Treece, D.A.

    1998-10-20

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric. 13 figs.

  13. Bioconjugation of recombinant tissue plasminogen activator to magnetic nanocarriers for targeted thrombolysis

    PubMed Central

    Yang, Hung-Wei; Hua, Mu-Yi; Lin, Kun-Ju; Wey, Shiaw-Pyng; Tsai, Rung-Ywan; Wu, Siao-Yun; Lu, Yi-Ching; Liu, Hao-Li; Wu, Tony; Ma, Yunn-Hwa

    2012-01-01

    Low-toxicity magnetic nanocarriers (MNCs) composed of a shell of poly [aniline-co-N-(1-one-butyric acid) aniline] over a Fe3O4 magnetic nanoparticle core were developed to carry recombinant tissue plasminogen activator (rtPA) in MNC-rtPA for targeted thrombolysis. With an average diameter of 14.8 nm, the MNCs exerted superparamagnetic properties. Up to 276 μg of active rtPA was immobilized per mg of MNCs, and the stability of the immobilized rtPA was greatly improved during storage at 4°C and 25°C. In vitro thrombolysis testing with a tubing system demonstrated that magnet-guided MNC-rtPA showed significantly improved thrombolysis compared with free rtPA and reduced the clot lysis time from 39.2 ± 3.2 minutes to 10.8 ± 4.2 minutes. In addition, magnet-guided MNC-rtPA at 20% of the regular rtPA dose restored blood flow within 15–25 minutes of treatment in a rat embolism model without triggering hematological toxicity. In conclusion, this improved system is based on magnetic targeting accelerated thrombolysis and is potentially amenable to therapeutic applications in thromboembolic diseases. PMID:23055728

  14. Fabrication and installation of the Solar Two central receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, R.Z.; Rogers, R.D.

    The heart of the Solar Two power plant is the molten salt central receiver that has been designed, fabricated, and installed over an 18 month schedule. During this time, the receiver system from Solar One was also completely disassembled and removed. The receiver tower structure, for the most part, was left intact because Solar Two was designed to fit this structure such that construction time and costs could be minimized. In order to meet this aggressive schedule, receiver panel fabrication required the parallel production of many components. The sequence for assembly of the four major receiver panel components (i.e., tubes,more » header assembly, strongback, and header oven covers) and key fabrication activities such as welding are described. Once the receiver panels were complete, their installation at the site was begun, and the order in which receiver system components were installed in the tower is described. The completion of the Solar Two receiver proved the fabricability of this important system. However, successful operation of the system at Solar Two is needed to demonstrate the technical feasibility of the molten salt central receiver concept.« less

  15. IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity.

    PubMed

    Bassères, Daniela S; Ebbs, Aaron; Cogswell, Patricia C; Baldwin, Albert S

    2014-04-01

    Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-Kras (G12D)) combined with loss of p53 (LSL-Kras (G12D)/p53 (fl/fl)). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity.

  16. Targeting RhoA/Rho kinase and p21-activated kinase signaling to prevent cancer development and progression.

    PubMed

    Chang, Yu-Wen E; Bean, Ronald R; Jakobi, Rolf

    2009-06-01

    Elevated RhoA/Rho kinase and p21-activated kinase signaling have been shown to promote cancer development and metastasis and have drawn much attention as potential targets of anti-cancer therapy. Elevated RhoA and Rho kinase activity promote cancer cell invasion and eventually lead to metastasis by disrupting E-cadherin-mediated adherens junctions and degradation of the extracellular matrix. Elevated p21-activated kinase activity promotes invasion by stimulating cell motility but also promotes cancer cell survival and growth. In this review we describe normal functions of RhoA/Rho kinase and p21-activated kinase signaling, mechanisms that lead to constitutive activation of RhoA/Rho kinase and p21-activated kinase pathways, and processes by which constitutive RhoA/Rho kinase and p21-activated kinase activity promote cancer development and progression to more aggressive and metastatic phenotypes. In addition, we summarize relevant patents on RhoA/Rho kinase and p21-activated kinase as targets of anti-cancer therapy and discuss the clinical potential of different approaches to modulate RhoA/Rho kinase and p21-activated kinase signaling.

  17. Properties of Native High-Density Lipoproteins Inspire Synthesis of Actively Targeted In Vivo siRNA Delivery Vehicles.

    PubMed

    McMahon, Kaylin M; Plebanek, Michael P; Thaxton, C Shad

    2016-11-15

    Efficient systemic administration of therapeutic short interfering RNA (siRNA) is challenging. High-density lipoproteins (HDL) are natural in vivo RNA delivery vehicles. Specifically, native HDLs: 1) Load single-stranded RNA; 2) Are anionic, which requires charge reconciliation between the RNA and HDL, and 3) Actively target scavenger receptor type B-1 (SR-B1) to deliver RNA. Emphasizing these particular parameters, we employed templated lipoprotein particles (TLP), mimics of spherical HDLs, and self-assembled them with single-stranded complements of, presumably, any highly unmodified siRNA duplex pair after formulation with a cationic lipid. Resulting siRNA templated lipoprotein particles (siRNA-TLP) are anionic and tunable with regard to RNA assembly and function. Data demonstrate that the siRNA-TLPs actively target SR-B1 to potently reduce androgen receptor (AR) and enhancer of zeste homolog 2 (EZH2) proteins in multiple cancer cell lines. Systemic administration of siRNA-TLPs demonstrated no off-target toxicity and significantly reduced the growth of prostate cancer xenografts. Thus, native HDLs inspired the synthesis of a hybrid siRNA delivery vehicle that can modularly load single-stranded RNA complements after charge reconciliation with a cationic lipid, and that function due to active targeting of SR-B1.

  18. PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells).

    PubMed

    Meena, Ramovatar; Kumar, Sumit; Kumar, Raj; Gaharwar, Usha Singh; Rajamani, Paulraj

    2017-10-01

    Triple-negative breast cancers (TNBC) are aggressive cancers, which do not control by hormonal therapy or therapies that target HER-2 receptors. Curcumin (Cur) has shown cytotoxic effects in multiple cancer cell lines. However, its medical uses remain limited due to low aqueous solubility and poor bioavailability. Therefore, present study was aimed to fabricate the small positive charge curcumin nanoparticles (CN) by nanoprecipitation methods using PLGA and CTAB, and to evaluate its anticancer efficacy and underlying the mechanism in triple negative breast cancer cell lines (MDA-MB-231 cells). In in-vitro drug release assay, Cur was released from CN by flicking diffusion and anomalous transport process. CN showed a higher cellular incorporation than free Cur resulted in higher cytotoxicity. Checking the anticancer activity at the molecular level, Cur has shown to induce the reactive oxygen species production that subsequently causes the DNA damage and resulting in p38-MAPK activation. The p38-MAPK induce the expression of p16 /INKK4a , p21 /waf1/cip1 and p53 resulting in a reduction in the level of CDK2, CDK4, cyclin D1 and cyclin E and subsequently cell cycle arrest at G1/S and G2/M phase. It also reduces the expression of DNA repair gene, i.e. BRCA1, BRCA2, Rad51, Rad50, Mre11 and NBS1 resulting in apoptosis induction due to persistent DNA damage. This study presents an effective delivery of curcumin in TNBC cancer cells and it could open the new frontiers in clinical cancer chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Design, fabrication, and characterization of Fresnel lens array with spatial filtering for passive infrared motion sensors

    NASA Astrophysics Data System (ADS)

    Cirino, Giuseppe A.; Barcellos, Robson; Morato, Spero P.; Bereczki, Allan; Neto, Luiz G.

    2006-09-01

    A cubic-phase distribution is applied in the design, fabrication and characterization of inexpensive Fresnel lens arrays for passive infrared motion sensors. The resulting lens array produces a point spread function (PSF) capable of distinguish the presence of humans from pets by the employment of the so-called wavefront coding method. The cubic phase distribution used in the design can also reduce the optical aberrations present in the system. This aberration control allows a high tolerance in the fabrication of the lenses and in the alignment errors of the sensor. In order to proof the principle, a lens was manufactured on amorphous hydrogenated carbon thin film, by well-known micro fabrication process steps. The optical results demonstrates that the optical power falling onto the detector surface is attenuated for targets that present a mass that is horizontally distributed in space (e.g. pets) while the optical power is enhanced for targets that present a mass vertically distributed in space (e.g. humans). Then a mould on steel was fabricated by laser engraving, allowing large-scale production of the lens array in polymeric material. A polymeric lens was injected and its optical transmittance was characterized by Fourier Transform Infrared Spectrometry technique, which has shown an adequate optical transmittance in the 8-14 μm wavelength range. Finally the performance of the sensor was measured in a climate-controlled test laboratory constructed for this purpose. The results show that the sensor operates normally with a human target, with a 12 meter detection zone and within an angle of 100 degrees. On the other hand, when a small pet runs through a total of 22 different trajectories no sensor trips are observed. The novelty of this work is the fact that the so-called pet immunity function was implemented in a purely optical filtering. As a result, this approach allows the reduction of some hardware parts as well as decreasing the software complexity, once the

  20. Target Residence Time-Guided Optimization on TTK Kinase Results in Inhibitors with Potent Anti-Proliferative Activity.

    PubMed

    Uitdehaag, Joost C M; de Man, Jos; Willemsen-Seegers, Nicole; Prinsen, Martine B W; Libouban, Marion A A; Sterrenburg, Jan Gerard; de Wit, Joeri J P; de Vetter, Judith R F; de Roos, Jeroen A D M; Buijsman, Rogier C; Zaman, Guido J R

    2017-07-07

    The protein kinase threonine tyrosine kinase (TTK; also known as Mps1) is a critical component of the spindle assembly checkpoint and a promising drug target for the treatment of aggressive cancers, such as triple negative breast cancer. While the first TTK inhibitors have entered clinical trials, little is known about how the inhibition of TTK with small-molecule compounds affects cellular activity. We studied the selective TTK inhibitor NTRC 0066-0, which was developed in our own laboratory, together with 11 TTK inhibitors developed by other companies, including Mps-BAY2b, BAY 1161909, BAY 1217389 (Bayer), TC-Mps1-12 (Shionogi), and MPI-0479605 (Myrexis). Parallel testing shows that the cellular activity of these TTK inhibitors correlates with their binding affinity to TTK and, more strongly, with target residence time. TTK inhibitors are therefore an example where target residence time determines activity in in vitro cellular assays. X-ray structures and thermal stability experiments reveal that the most potent compounds induce a shift of the glycine-rich loop as a result of binding to the catalytic lysine at position 553. This "lysine trap" disrupts the catalytic machinery. Based on these insights, we developed TTK inhibitors, based on a (5,6-dihydro)pyrimido[4,5-e]indolizine scaffold, with longer target residence times, which further exploit an allosteric pocket surrounding Lys553. Their binding mode is new for kinase inhibitors and can be classified as hybrid Type I/Type III. These inhibitors have very potent anti-proliferative activity that rivals classic cytotoxic therapy. Our findings will open up new avenues for more applications for TTK inhibitors in cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.