Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular Carcinoma.
Nwosu, Zeribe Chike; Megger, Dominik Andre; Hammad, Seddik; Sitek, Barbara; Roessler, Stephanie; Ebert, Matthias Philip; Meyer, Christoph; Dooley, Steven
2017-09-01
Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC). We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers ( ECM2 and MMP9) (Pearson correlation P < .05) were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues. We identified 634 consistent metabolic genes, ∼60% of which are not yet described in HCC. The down-regulated genes (n = 350) are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism). In contrast, among consistently up-regulated metabolic genes (n = 284) are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes (n = 434) correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile. We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts.
Lijun Liu; Trevor Ramsay; Matthew S. Zinkgraf; David Sundell; Nathaniel Robert Street; Vladimir Filkov; Andrew Groover
2015-01-01
Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors...
MicroRNA profiling in the dentate gyrus in epileptic rats: The role of miR-187-3p.
Zhang, Suya; Kou, Yubin; Hu, Chunmei; Han, Yan
2017-06-01
This study aimed to explore the role of aberrant miRNA expression in epilepsy and to identify more potential genes associated with epileptogenesis.The miRNA expression profile of GSE49850, which included 20 samples from the rat epileptic dentate gyrus at 7, 14, 30, and 90 days after electrical stimulation and 20 additional samples from sham time-matched controls, was downloaded from the Gene Expression Omnibus database. The significantly differentially expressed miRNAs were identified in stimulated samples at each time point compared to time-matched controls, respectively. The target genes of consistently differentially expressed miRNAs were screened from miRDB and microRNA.org databases, followed by Gene Ontology (GO) and pathway enrichment analysis and regulatory network construction. The overlapping target genes for consistently differentially expressed miRNAs were also identified from these 2 databases. Furthermore, the potential binding sites of miRNAs and their target genes were analyzed.Rno-miR-187-3p was consistently downregulated in stimulated groups compared with time-matched controls. The predicted target genes of rno-miR-187-3p were enriched in different GO terms and pathways. In addition, 7 overlapping target genes of rno-miR-187-3p were identified, including NFS1, PAQR4, CAND1, DCLK1, PRKAR2A, AKAP3, and KCNK10. These 7 overlapping target genes were determined to have a different number of matched binding sites with rno-miR-187-3p.Our study suggests that miR-187-3p may play an important role in epilepsy development and progression via regulating numerous target genes, such as NFS1, CAND1, DCLK1, AKAP3, and KCNK10. Determining the underlying mechanism of the role of miR-187-3p in epilepsy may make it a potential therapeutic option.
PreCisIon: PREdiction of CIS-regulatory elements improved by gene's positION.
Elati, Mohamed; Nicolle, Rémy; Junier, Ivan; Fernández, David; Fekih, Rim; Font, Julio; Képès, François
2013-02-01
Conventional approaches to predict transcriptional regulatory interactions usually rely on the definition of a shared motif sequence on the target genes of a transcription factor (TF). These efforts have been frustrated by the limited availability and accuracy of TF binding site motifs, usually represented as position-specific scoring matrices, which may match large numbers of sites and produce an unreliable list of target genes. To improve the prediction of binding sites, we propose to additionally use the unrelated knowledge of the genome layout. Indeed, it has been shown that co-regulated genes tend to be either neighbors or periodically spaced along the whole chromosome. This study demonstrates that respective gene positioning carries significant information. This novel type of information is combined with traditional sequence information by a machine learning algorithm called PreCisIon. To optimize this combination, PreCisIon builds a strong gene target classifier by adaptively combining weak classifiers based on either local binding sequence or global gene position. This strategy generically paves the way to the optimized incorporation of any future advances in gene target prediction based on local sequence, genome layout or on novel criteria. With the current state of the art, PreCisIon consistently improves methods based on sequence information only. This is shown by implementing a cross-validation analysis of the 20 major TFs from two phylogenetically remote model organisms. For Bacillus subtilis and Escherichia coli, respectively, PreCisIon achieves on average an area under the receiver operating characteristic curve of 70 and 60%, a sensitivity of 80 and 70% and a specificity of 60 and 56%. The newly predicted gene targets are demonstrated to be functionally consistent with previously known targets, as assessed by analysis of Gene Ontology enrichment or of the relevant literature and databases.
Cas9-Guide RNA Directed Genome Editing in Soybean[OPEN
Li, Zhongsen; Liu, Zhan-Bin; Xing, Aiqiu; Moon, Bryan P.; Koellhoffer, Jessica P.; Huang, Lingxia; Ward, R. Timothy; Clifton, Elizabeth; Falco, S. Carl; Cigan, A. Mark
2015-01-01
Recently discovered bacteria and archaea adaptive immune system consisting of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) endonuclease has been explored in targeted genome editing in different species. Streptococcus pyogenes Cas9-guide RNA (gRNA) was successfully applied to generate targeted mutagenesis, gene integration, and gene editing in soybean (Glycine max). Two genomic sites, DD20 and DD43 on chromosome 4, were mutagenized with frequencies of 59% and 76%, respectively. Sequencing randomly selected transgenic events confirmed that the genome modifications were specific to the Cas9-gRNA cleavage sites and consisted of small deletions or insertions. Targeted gene integrations through homology-directed recombination were detected by border-specific polymerase chain reaction analysis for both sites at callus stage, and one DD43 homology-directed recombination event was transmitted to T1 generation. T1 progenies of the integration event segregated according to Mendelian laws and clean homozygous T1 plants with the donor gene precisely inserted at the DD43 target site were obtained. The Cas9-gRNA system was also successfully applied to make a directed P178S mutation of acetolactate synthase1 gene through in planta gene editing. PMID:26294043
Eggleston, Paul; Zhao, Yuguang
2001-01-01
Background Gene targeting would offer a number of advantages over current transposon-based strategies for insect transformation. These include freedom from both position effects associated with quasi-random integration and concerns over transgene instability mediated by endogenous transposases, independence from phylogenetic restrictions on transposon mobility and the ability to generate gene knockouts. Results We describe here our initial investigations of gene targeting in the mosquito. The target site was a hygromycin resistance gene, stably maintained as part of an extrachromosomal array. Using a promoter-trap strategy to enrich for targeted events, a neomycin resistance gene was integrated into the target site. This resulted in knockout of hygromycin resistance concurrent with the expression of high levels of neomycin resistance from the resident promoter. PCR amplification of the targeted site generated a product that was specific to the targeted cell line and consistent with precise integration of the neomycin resistance gene into the 5' end of the hygromycin resistance gene. Sequencing of the PCR product and Southern analysis of cellular DNA subsequently confirmed this molecular structure. Conclusions These experiments provide the first demonstration of gene targeting in mosquito tissue and show that mosquito cells possess the necessary machinery to bring about precise integration of exogenous sequences through homologous recombination. Further development of these procedures and their extension to chromosomally located targets hold much promise for the exploitation of gene targeting in a wide range of medically and economically important insect species. PMID:11513755
Stangeland, Biljana; Mughal, Awais A; Grieg, Zanina; Sandberg, Cecilie Jonsgar; Joel, Mrinal; Nygård, Ståle; Meling, Torstein; Murrell, Wayne; Vik Mo, Einar O; Langmoen, Iver A
2015-09-22
Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies.To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways.Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.
Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia
2009-01-01
Background microRNAs (miRNAs) are single-stranded RNA molecules of about 20–23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. Results GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. Conclusion GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA. PMID:19534746
Roubelakis, Maria G; Zotos, Pantelis; Papachristoudis, Georgios; Michalopoulos, Ioannis; Pappa, Kalliopi I; Anagnou, Nicholas P; Kossida, Sophia
2009-06-16
microRNAs (miRNAs) are single-stranded RNA molecules of about 20-23 nucleotides length found in a wide variety of organisms. miRNAs regulate gene expression, by interacting with target mRNAs at specific sites in order to induce cleavage of the message or inhibit translation. Predicting or verifying mRNA targets of specific miRNAs is a difficult process of great importance. GOmir is a novel stand-alone application consisting of two separate tools: JTarget and TAGGO. JTarget integrates miRNA target prediction and functional analysis by combining the predicted target genes from TargetScan, miRanda, RNAhybrid and PicTar computational tools as well as the experimentally supported targets from TarBase and also providing a full gene description and functional analysis for each target gene. On the other hand, TAGGO application is designed to automatically group gene ontology annotations, taking advantage of the Gene Ontology (GO), in order to extract the main attributes of sets of proteins. GOmir represents a new tool incorporating two separate Java applications integrated into one stand-alone Java application. GOmir (by using up to five different databases) introduces miRNA predicted targets accompanied by (a) full gene description, (b) functional analysis and (c) detailed gene ontology clustering. Additionally, a reverse search initiated by a potential target can also be conducted. GOmir can freely be downloaded BRFAA.
Konishi, Yuko; Karnan, Sivasundaram; Takahashi, Miyuki; Ota, Akinobu; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki
2012-09-01
Gene targeting in a broad range of human somatic cell lines has been hampered by inefficient homologous recombination. To improve this technology and facilitate its widespread application, it is critical to first have a robust and efficient research system for measuring gene targeting efficiency. Here, using a fusion gene consisting of hygromycin B phosphotransferase and 3'-truncated enhanced GFP (HygR-5' EGFP) as a reporter gene, we created a molecular system monitoring the ratio of homologous to random integration (H/R ratio) of targeting vectors into the genome. Cell clones transduced with a reporter vector containing HygR-5' EGFP were efficiently established from two human somatic cell lines. Established HygR-5' EGFP reporter clones retained their capacity to monitor gene targeting efficiency for a longer duration than a conventional reporter system using an unfused 5' EGFP gene. With the HygR-5' EGFP reporter system, we reproduced previous findings of gene targeting frequency being up-regulated by the use of an adeno-associated viral (AAV) backbone, a promoter-trap system, or a longer homology arm in a targeting vector, suggesting that this system accurately monitors H/R ratio. Thus, our HygR-5' EGFP reporter system will assist in the development of an efficient AAV-based gene targeting technology.
Pharmaco-miR: linking microRNAs and drug effects
Rukov, Jakob Lewin; Wilentzik, Roni; Jaffe, Ishai; Vinther, Jeppe; Shomron, Noam
2014-01-01
MicroRNAs (miRNAs) are short regulatory RNAs that down-regulate gene expression. They are essential for cell homeostasis and active in many disease states. A major discovery is the ability of miRNAs to determine the efficacy of drugs, which has given rise to the field of ‘miRNA pharmacogenomics’ through ‘Pharmaco-miRs’. miRNAs play a significant role in pharmacogenomics by down-regulating genes that are important for drug function. These interactions can be described as triplet sets consisting of a miRNA, a target gene and a drug associated with the gene. We have developed a web server which links miRNA expression and drug function by combining data on miRNA targeting and protein–drug interactions. miRNA targeting information derive from both experimental data and computational predictions, and protein–drug interactions are annotated by the Pharmacogenomics Knowledge base (PharmGKB). Pharmaco-miR’s input consists of miRNAs, genes and/or drug names and the output consists of miRNA pharmacogenomic sets or a list of unique associated miRNAs, genes and drugs. We have furthermore built a database, named Pharmaco-miR Verified Sets (VerSe), which contains miRNA pharmacogenomic data manually curated from the literature, can be searched and downloaded via Pharmaco-miR and informs on trends and generalities published in the field. Overall, we present examples of how Pharmaco-miR provides possible explanations for previously published observations, including how the cisplatin and 5-fluorouracil resistance induced by miR-148a may be caused by miR-148a targeting of the gene KIT. The information is available at www.Pharmaco-miR.org. PMID:23376192
Gene expression inference with deep learning.
Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui
2016-06-15
Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gene expression inference with deep learning
Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui
2016-01-01
Motivation: Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. Availability and implementation: D-GEX is available at https://github.com/uci-cbcl/D-GEX. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873929
Targeted gene deletion of miRNAs in mice by TALEN system.
Takada, Shuji; Sato, Tempei; Ito, Yoshiaki; Yamashita, Satoshi; Kato, Tomoko; Kawasumi, Miyuri; Kanai-Azuma, Masami; Igarashi, Arisa; Kato, Tomomi; Tamano, Moe; Asahara, Hiroshi
2013-01-01
Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.
Core Promoter Functions in the Regulation of Gene Expression of Drosophila Dorsal Target Genes*
Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar
2014-01-01
Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes. PMID:24634215
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragnum, Harald Bull; Røe, Kathrine; Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog
2013-11-15
Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvantmore » ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to tumor regression. HIF1α expression is probably not a useful hypoxia biomarker during ADT in prostate cancer.« less
Kleinmanns, Julia A; Schatlowski, Nicole; Heckmann, David; Schubert, Daniel
2017-01-01
HIGHLIGHTS The PRC2 interacting protein BLISTER likely acts downstream of PRC2 to silence Polycomb target genes and is a key regulator of specific stress responses in Arabidopsis . Polycomb group (PcG) proteins are key epigenetic regulators of development. The highly conserved Polycomb repressive complex 2 (PRC2) represses thousands of target genes by trimethylating H3K27 (H3K27me3). Plant specific PcG components and functions are largely unknown, however, we previously identified the plant-specific protein BLISTER (BLI) as a PRC2 interactor. BLI regulates PcG target genes and promotes cold stress resistance. To further understand the function of BLI , we analyzed the transcriptional profile of bli-1 mutants. Approximately 40% of the up-regulated genes in bli are PcG target genes, however, bli-1 mutants did not show changes in H3K27me3 levels at all tested genes, indicating that BLI regulates PcG target genes downstream of or in parallel to PRC2. Interestingly, a significant number of BLI regulated H3K27me3 target genes is regulated by the stress hormone absciscic acid (ABA). We further reveal an overrepresentation of genes responding to abiotic stresses such as drought, high salinity, or heat stress among the up-regulated genes in bli mutants. Consistently, bli mutants showed reduced desiccation stress tolerance. We conclude that the PRC2 associated protein BLI is a key regulator of stress-responsive genes in Arabidopsis : it represses ABA-responsive PcG target genes, likely downstream of PRC2, and promotes resistance to several stresses such as cold and drought.
Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery
Yata, Teerapong; Lee, Koon-Yang; Dharakul, Tararaj; Songsivilai, Sirirurg; Bismarck, Alexander; Mintz, Paul J; Hajitou, Amin
2014-01-01
Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage. PMID:25118171
Li, Ruixue; Chen, Dandan; Wang, Taichu; Wan, Yizhen; Li, Rongfang; Fang, Rongjun; Wang, Yuting; Hu, Fei; Zhou, Hong; Li, Long; Zhao, Weiguo
2017-01-01
MicroRNAs (miRNAs) play important regulatory roles by targeting mRNAs for cleavage or translational repression. Identification of miRNA targets is essential to better understanding the roles of miRNAs. miRNA targets have not been well characterized in mulberry (Morus alba). To anatomize miRNA guided gene regulation under drought stress, transcriptome-wide high throughput degradome sequencing was used in this study to directly detect drought stress responsive miRNA targets in mulberry. A drought library (DL) and a contrast library (CL) were constructed to capture the cleaved mRNAs for sequencing. In CL, 409 target genes of 30 conserved miRNA families and 990 target genes of 199 novel miRNAs were identified. In DL, 373 target genes of 30 conserved miRNA families and 950 target genes of 195 novel miRNAs were identified. Of the conserved miRNA families in DL, mno-miR156, mno-miR172, and mno-miR396 had the highest number of targets with 54, 52 and 41 transcripts, respectively, indicating that these three miRNA families and their target genes might play important functions in response to drought stress in mulberry. Additionally, we found that many of the target genes were transcription factors. By analyzing the miRNA-target molecular network, we found that the DL independent networks consisted of 838 miRNA-mRNA pairs (63.34%). The expression patterns of 11 target genes and 12 correspondent miRNAs were detected using qRT-PCR. Six miRNA targets were further verified by RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-5' RACE). Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these target transcripts were implicated in a broad range of biological processes and various metabolic pathways. This is the first study to comprehensively characterize target genes and their associated miRNAs in response to drought stress by degradome sequencing in mulberry. This study provides a framework for understanding the molecular mechanisms of drought resistance in mulberry.
ARNetMiT R Package: association rules based gene co-expression networks of miRNA targets.
Özgür Cingiz, M; Biricik, G; Diri, B
2017-03-31
miRNAs are key regulators that bind to target genes to suppress their gene expression level. The relations between miRNA-target genes enable users to derive co-expressed genes that may be involved in similar biological processes and functions in cells. We hypothesize that target genes of miRNAs are co-expressed, when they are regulated by multiple miRNAs. With the usage of these co-expressed genes, we can theoretically construct co-expression networks (GCNs) related to 152 diseases. In this study, we introduce ARNetMiT that utilize a hash based association rule algorithm in a novel way to infer the GCNs on miRNA-target genes data. We also present R package of ARNetMiT, which infers and visualizes GCNs of diseases that are selected by users. Our approach assumes miRNAs as transactions and target genes as their items. Support and confidence values are used to prune association rules on miRNA-target genes data to construct support based GCNs (sGCNs) along with support and confidence based GCNs (scGCNs). We use overlap analysis and the topological features for the performance analysis of GCNs. We also infer GCNs with popular GNI algorithms for comparison with the GCNs of ARNetMiT. Overlap analysis results show that ARNetMiT outperforms the compared GNI algorithms. We see that using high confidence values in scGCNs increase the ratio of the overlapped gene-gene interactions between the compared methods. According to the evaluation of the topological features of ARNetMiT based GCNs, the degrees of nodes have power-law distribution. The hub genes discovered by ARNetMiT based GCNs are consistent with the literature.
Bourras, Salim; Meyer, Michel; Grandaubert, Jonathan; Lapalu, Nicolas; Fudal, Isabelle; Linglin, Juliette; Ollivier, Benedicte; Blaise, Françoise; Balesdent, Marie-Hélène; Rouxel, Thierry
2012-08-01
The ever-increasing generation of sequence data is accompanied by unsatisfactory functional annotation, and complex genomes, such as those of plants and filamentous fungi, show a large number of genes with no predicted or known function. For functional annotation of unknown or hypothetical genes, the production of collections of mutants using Agrobacterium tumefaciens-mediated transformation (ATMT) associated with genotyping and phenotyping has gained wide acceptance. ATMT is also widely used to identify pathogenicity determinants in pathogenic fungi. A systematic analysis of T-DNA borders was performed in an ATMT-mutagenized collection of the phytopathogenic fungus Leptosphaeria maculans to evaluate the features of T-DNA integration in its particular transposable element-rich compartmentalized genome. A total of 318 T-DNA tags were recovered and analyzed for biases in chromosome and genic compartments, existence of CG/AT skews at the insertion site, and occurrence of microhomologies between the T-DNA left border (LB) and the target sequence. Functional annotation of targeted genes was done using the Gene Ontology annotation. The T-DNA integration mainly targeted gene-rich, transcriptionally active regions, and it favored biological processes consistent with the physiological status of a germinating spore. T-DNA integration was strongly biased toward regulatory regions, and mainly promoters. Consistent with the T-DNA intranuclear-targeting model, the density of T-DNA insertion correlated with CG skew near the transcription initiation site. The existence of microhomologies between promoter sequences and the T-DNA LB flanking sequence was also consistent with T-DNA integration to host DNA mediated by homologous recombination based on the microhomology-mediated end-joining pathway.
Horvath, David P; Hansen, Stephanie A; Moriles-Miller, Janet P; Pierik, Ronald; Yan, Changhui; Clay, David E; Scheffler, Brian; Clay, Sharon A
2015-07-01
Weeds reduce yield in soybeans (Glycine max) through incompletely defined mechanisms. The effects of weeds on the soybean transcriptome were evaluated in field conditions during four separate growing seasons. RNASeq data were collected from six biological samples of soybeans growing with or without weeds. Weed species and the methods to maintain weed-free controls varied between years to mitigate treatment effects, and to allow detection of general soybean weed responses. Soybean plants were not visibly nutrient- or water-stressed. We identified 55 consistently downregulated genes in weedy plots. Many of the downregulated genes were heat shock genes. Fourteen genes were consistently upregulated. Several transcription factors including a PHYTOCHROME INTERACTING FACTOR 3-like gene (PIF3) were included among the upregulated genes. Gene set enrichment analysis indicated roles for increased oxidative stress and jasmonic acid signaling responses during weed stress. The relationship of this weed-induced PIF3 gene to genes involved in shade avoidance responses in Arabidopsis provide evidence that this gene may be important in the response of soybean to weeds. These results suggest that the weed-induced PIF3 gene will be a target for manipulating weed tolerance in soybean. No claim to original US government works New Phytologist © 2015 New Phytologist Trust.
Yoon, J. Cliff; Chickering, Troy W.; Rosen, Evan D.; Dussault, Barry; Qin, Yubin; Soukas, Alexander; Friedman, Jeffrey M.; Holmes, William E.; Spiegelman, Bruce M.
2000-01-01
The nuclear receptor peroxisome proliferator-activated receptor γ regulates adipose differentiation and systemic insulin signaling via ligand-dependent transcriptional activation of target genes. However, the identities of the biologically relevant target genes are largely unknown. Here we describe the isolation and characterization of a novel target gene induced by PPARγ ligands, termed PGAR (for PPARγ angiopoietin related), which encodes a novel member of the angiopoietin family of secreted proteins. The transcriptional induction of PGAR follows a rapid time course typical of immediate-early genes and occurs in the absence of protein synthesis. The expression of PGAR is predominantly localized to adipose tissues and placenta and is consistently elevated in genetic models of obesity. Hormone-dependent adipocyte differentiation coincides with a dramatic early induction of the PGAR transcript. Alterations in nutrition and leptin administration are found to modulate the PGAR expression in vivo. Taken together, these data suggest a possible role for PGAR in the regulation of systemic lipid metabolism or glucose homeostasis. PMID:10866690
Sanders, Matthew; Maddelein, Wendy; Depicker, Anna; Van Montagu, Marc; Cornelissen, Marc; Jacobs, John
2002-11-01
Post-transcriptional gene silencing (PTGS) is characterized by the accumulation of short interfering RNAs that are proposed to mediate sequence-specific degradation of cognate and secondary target mRNAs. In plants, it is unclear to what extent endogenous genes contribute to this process. Here, we address the role of the endogenous target genes in transgene-mediated PTGS of beta-1,3-glucanases in tobacco. We found that mRNA sequences of the endogenous glucanase glb gene with varying degrees of homology to the Nicotiana plumbaginifolia gn1 transgene are targeted by the silencing machinery, although less efficiently than corresponding transgene regions. Importantly, we show that endogene-specific nucleotides in the glb sequence provide specificity to the silencing process. Consistent with this finding, small sense and antisense 21- to 23-nucleotide RNAs homologous to the endogenous glb gene were detected. Combined, these data demonstrate that a co-suppressed endogenous glucan ase gene is involved in signal amplification and selection of homologous targets, and show that endogenous genes can actively participate in PTGS in plants. The findings are introduced as a further sophistication of the post-transciptional silencing model.
Lee, Sang Joon; Seo, Eunseok; Cho, Yonghyun
2013-12-01
Many antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast-human-Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective treatment for drug-resistant strains of malaria. A simple computational tool to analyze the inferred SL genes of Plasmodium species (malaria parasites Plasmodium falciparum and Plasmodium vivax for human malarial therapy, and rodent parasite Plasmodium berghei for in vivo studies of human malarias) was established to identify SL genes that can be used as drug targets. Information on SL gene pairs with ADR genes and their first neighbors was inferred from yeast SL genes to search for pertinent antimalarial drug targets. We not only suggest drug target gene candidates for further experimental validation, but also provide information on new usage for already-described drugs. The proposed specific antimalarial drug candidates can be inferred by searching drugs that cause a fitness defect in yeast SL genes.
Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
Luo, Michelle L.; Mullis, Adam S.; Leenay, Ryan T.; Beisel, Chase L.
2015-01-01
CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing and transcriptional regulation. Because these RNA-directed immune systems are found in most prokaryotes, an opportunity exists to harness the endogenous systems as convenient tools in these organisms. Here, we report that the Type I-E CRISPR-Cas system in Escherichia coli can be co-opted for programmable transcriptional repression. We found that deletion of the signature cas3 gene converted this immune system into a programmable gene regulator capable of reversible gene silencing of heterologous and endogenous genes. Targeting promoter regions yielded the strongest repression, whereas targeting coding regions showed consistent strand bias. Furthermore, multi-targeting CRISPR arrays could generate complex phenotypes. This strategy offers a simple approach to convert many endogenous Type I systems into transcriptional regulators, thereby expanding the available toolkit for CRISPR-mediated genetic control while creating new opportunities for genome-wide screens and pathway engineering. PMID:25326321
Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells.
Byrne, Susan M; Ortiz, Luis; Mali, Prashant; Aach, John; Church, George M
2015-02-18
Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient 'knock-in' targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Fang, Lingzhao; Sørensen, Peter; Sahana, Goutam; Panitz, Frank; Su, Guosheng; Zhang, Shengli; Yu, Ying; Li, Bingjie; Ma, Li; Liu, George; Lund, Mogens Sandø; Thomsen, Bo
2018-06-19
MicroRNAs (miRNA) are key modulators of gene expression and so act as putative fine-tuners of complex phenotypes. Here, we hypothesized that causal variants of complex traits are enriched in miRNAs and miRNA-target networks. First, we conducted a genome-wide association study (GWAS) for seven functional and milk production traits using imputed sequence variants (13~15 million) and >10,000 animals from three dairy cattle breeds, i.e., Holstein (HOL), Nordic red cattle (RDC) and Jersey (JER). Second, we analyzed for enrichments of association signals in miRNAs and their miRNA-target networks. Our results demonstrated that genomic regions harboring miRNA genes were significantly (P < 0.05) enriched with GWAS signals for milk production traits and mastitis, and that enrichments within miRNA-target gene networks were significantly higher than in random gene-sets for the majority of traits. Furthermore, most between-trait and across-breed correlations of enrichments with miRNA-target networks were significantly greater than with random gene-sets, suggesting pleiotropic effects of miRNAs. Intriguingly, genes that were differentially expressed in response to mammary gland infections were significantly enriched in the miRNA-target networks associated with mastitis. All these findings were consistent across three breeds. Collectively, our observations demonstrate the importance of miRNAs and their targets for the expression of complex traits.
Xu, Yan; Chen, Yan; Li, Daliang; Liu, Qing; Xuan, Zhenyu; Li, Wen-Hong
2017-02-01
MicroRNAs are small non-coding RNAs acting as posttranscriptional repressors of gene expression. Identifying mRNA targets of a given miRNA remains an outstanding challenge in the field. We have developed a new experimental approach, TargetLink, that applied locked nucleic acid (LNA) as the affinity probe to enrich target genes of a specific microRNA in intact cells. TargetLink also consists a rigorous and systematic data analysis pipeline to identify target genes by comparing LNA-enriched sequences between experimental and control samples. Using miR-21 as a test microRNA, we identified 12 target genes of miR-21 in a human colorectal cancer cell by this approach. The majority of the identified targets interacted with miR-21 via imperfect seed pairing. Target validation confirmed that miR-21 repressed the expression of the identified targets. The cellular abundance of the identified miR-21 target transcripts varied over a wide range, with some targets expressed at a rather low level, confirming that both abundant and rare transcripts are susceptible to regulation by microRNAs, and that TargetLink is an efficient approach for identifying the target set of a specific microRNA in intact cells. C20orf111, one of the novel targets identified by TargetLink, was found to reside in the nuclear speckle and to be reliably repressed by miR-21 through the interaction at its coding sequence.
MicroRNA biogenesis and function in plants.
Chen, Xuemei
2005-10-31
A microRNA (miRNA) is a 21-24 nucleotide RNA product of a non-protein-coding gene. Plants, like animals, have a large number of miRNA-encoding genes in their genomes. The biogenesis of miRNAs in Arabidopsis is similar to that in animals in that miRNAs are processed from primary precursors by at least two steps mediated by RNAse III-like enzymes and that the miRNAs are incorporated into a protein complex named RISC. However, the biogenesis of plant miRNAs consists of an additional step, i.e., the miRNAs are methylated on the ribose of the last nucleotide by the miRNA methyltransferase HEN1. The high degree of sequence complementarity between plant miRNAs and their target mRNAs has facilitated the bioinformatic prediction of miRNA targets, many of which have been subsequently validated. Plant miRNAs have been predicted or confirmed to regulate a variety of processes, such as development, metabolism, and stress responses. A large category of miRNA targets consists of genes encoding transcription factors that play important roles in patterning the plant form.
Jackson, Belinda M; Abete-Luzi, Patricia; Krause, Michael W; Eisenmann, David M
2014-04-16
The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.
Revisiting inconsistency in large pharmacogenomic studies
Safikhani, Zhaleh; Smirnov, Petr; Freeman, Mark; El-Hachem, Nehme; She, Adrian; Rene, Quevedo; Goldenberg, Anna; Birkbak, Nicolai J.; Hatzis, Christos; Shi, Leming; Beck, Andrew H.; Aerts, Hugo J.W.L.; Quackenbush, John; Haibe-Kains, Benjamin
2017-01-01
In 2013, we published a comparative analysis of mutation and gene expression profiles and drug sensitivity measurements for 15 drugs characterized in the 471 cancer cell lines screened in the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). While we found good concordance in gene expression profiles, there was substantial inconsistency in the drug responses reported by the GDSC and CCLE projects. We received extensive feedback on the comparisons that we performed. This feedback, along with the release of new data, prompted us to revisit our initial analysis. We present a new analysis using these expanded data, where we address the most significant suggestions for improvements on our published analysis — that targeted therapies and broad cytotoxic drugs should have been treated differently in assessing consistency, that consistency of both molecular profiles and drug sensitivity measurements should be compared across cell lines, and that the software analysis tools provided should have been easier to run, particularly as the GDSC and CCLE released additional data. Our re-analysis supports our previous finding that gene expression data are significantly more consistent than drug sensitivity measurements. Using new statistics to assess data consistency allowed identification of two broad effect drugs and three targeted drugs with moderate to good consistency in drug sensitivity data between GDSC and CCLE. For three other targeted drugs, there were not enough sensitive cell lines to assess the consistency of the pharmacological profiles. We found evidence of inconsistencies in pharmacological phenotypes for the remaining eight drugs. Overall, our findings suggest that the drug sensitivity data in GDSC and CCLE continue to present challenges for robust biomarker discovery. This re-analysis provides additional support for the argument that experimental standardization and validation of pharmacogenomic response will be necessary to advance the broad use of large pharmacogenomic screens. PMID:28928933
Campa, Victor M; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M
2014-09-30
Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer.
Lee, Mikyung; Huang, Ruili; Tong, Weida
2016-01-01
Nuclear receptors (NRs) are ligand-activated transcriptional regulators that play vital roles in key biological processes such as growth, differentiation, metabolism, reproduction, and morphogenesis. Disruption of NRs can result in adverse health effects such as NR-mediated endocrine disruption. A comprehensive understanding of core transcriptional targets regulated by NRs helps to elucidate their key biological processes in both toxicological and therapeutic aspects. In this study, we applied a probabilistic graphical model to identify the transcriptional targets of NRs and the biological processes they govern. The Tox21 program profiled a collection of approximate 10 000 environmental chemicals and drugs against a panel of human NRs in a quantitative high-throughput screening format for their NR disruption potential. The Japanese Toxicogenomics Project, one of the most comprehensive efforts in the field of toxicogenomics, generated large-scale gene expression profiles on the effect of 131 compounds (in its first phase of study) at various doses, and different durations, and their combinations. We applied author-topic model to these 2 toxicological datasets, which consists of 11 NRs run in either agonist and/or antagonist mode (18 assays total) and 203 in vitro human gene expression profiles connected by 52 shared drugs. As a result, a set of clusters (topics), which consists of a set of NRs and their associated target genes were determined. Various transcriptional targets of the NRs were identified by assays run in either agonist or antagonist mode. Our results were validated by functional analysis and compared with TRANSFAC data. In summary, our approach resulted in effective identification of associated/affected NRs and their target genes, providing biologically meaningful hypothesis embedded in their relationships. PMID:26643261
Campa, Victor M.; Baltziskueta, Eder; Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; Wesołowski, Radosław; Waxman, Jonathan; Kypta, Robert M.
2014-01-01
Expression of Glycogen Synthase Kinase-3 (GSK-3) is elevated in prostate cancer and its inhibition reduces prostate cancer cell proliferation, in part by reducing androgen receptor (AR) signaling. However, GSK-3 inhibition can also activate signals that promote cell proliferation and survival, which may preclude the use of GSK-3 inhibitors in the clinic. To identify such signals in prostate cancer, we screened for changes in transcription factor target DNA binding activity in GSK-3-silenced cells. Among the alterations was a reduction in AR DNA target binding, as predicted from previous studies, and an increase in NFκB DNA target binding. Consistent with the latter, gene silencing of GSK-3 or inhibition using the GSK-3 inhibitor CHIR99021 increased basal NFκB transcriptional activity. Activation of NFκB was accompanied by an increase in the level of the NFκB family member RelB. Conversely, silencing RelB reduced activation of NFκB by CHIR99021. Furthermore, the reduction of prostate cancer cell proliferation by CHIR99021 was potentiated by inhibition of NFκB signaling using the IKK inhibitor PS1145. Finally, stratification of human prostate tumor gene expression data for GSK3 revealed an inverse correlation between NFκB-dependent and androgen-dependent gene expression, consistent with the results from the transcription factor target DNA binding screen. In addition, there was a correlation between expression of androgen-repressed NFκB target genes and reduced survival of patients with metastatic prostate cancer. These findings highlight an association between GSK-3/AR and NFκB signaling and its potential clinical importance in metastatic prostate cancer. PMID:25327559
Hatefi, Arash; Karjoo, Zahra; Nomani, Alireza
2017-09-11
The objective of this study was to genetically engineer a fully functional single chain fusion peptide composed of motifs from diverse biological and synthetic origins that can perform multiple tasks including DNA condensation, cell targeting, cell transfection, particle shielding from immune system and effective gene transfer to prostate tumors. To achieve the objective, a single chain biomacromolecule (vector) consisted of four repeatative units of histone H2A peptide, fusogenic peptide GALA, short elastin-like peptide, and PC-3 cell targeting peptide was designed. To examine the functionality of each motif in the vector sequence, it was characterized in terms of size and zeta potential by Zetasizer, PC-3 cell targeting and transfection by flowcytometry, IgG induction by immunogenicity assay, and PC-3 tumor transfection by quantitative live animal imaging. Overall, the results of this study showed the possibility of using genetic engineering techniques to program various functionalities into one single chain vector and create a multifunctional nonimmunogenic biomacromolecule for targeted gene transfer to prostate cancer cells. This proof-of-concept study is a significant step forward toward creating a library of vectors for targeted gene transfer to any cancer cell type at both in vitro and in vivo levels.
RNA interference can be used to disrupt gene function in tardigrades
Tenlen, Jennifer R.; McCaskill, Shaina; Goldstein, Bob
2012-01-01
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We show that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions, and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments. PMID:23187800
RNA interference can be used to disrupt gene function in tardigrades.
Tenlen, Jennifer R; McCaskill, Shaina; Goldstein, Bob
2013-05-01
How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We showed that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments.
Intragenomic spread of plastid-targeting presequences in the coccolithophore Emiliania huxleyi.
Burki, Fabien; Hirakawa, Yoshihisa; Keeling, Patrick J
2012-09-01
Nucleus-encoded plastid-targeted proteins of photosynthetic organisms are generally equipped with an N-terminal presequence required for crossing the plastid membranes. The acquisition of these presequences played a fundamental role in the establishment of plastids. Here, we report a unique case of two non-homologous proteins possessing completely identical presequences consisting of a bipartite plastid-targeting signal in the coccolithophore Emiliania huxleyi. We further show that this presequence is highly conserved in five additional proteins that did not originally function in plastids, representing de novo plastid acquisitions. These are among the most recent cases of presequence spreading from gene to gene and shed light on important evolutionary processes that have been usually erased by the ancient history of plastid evolution. We propose a mechanism of acquisition involving genomic duplications and gene replacement through non-homologous recombination that may have played a more general role for equipping proteins with targeting information.
NASA Astrophysics Data System (ADS)
Bhajun, Ricky; Guyon, Laurent; Pitaval, Amandine; Sulpice, Eric; Combe, Stéphanie; Obeid, Patricia; Haguet, Vincent; Ghorbel, Itebeddine; Lajaunie, Christian; Gidrol, Xavier
2015-02-01
MiRNAs are key regulators of gene expression. By binding to many genes, they create a complex network of gene co-regulation. Here, using a network-based approach, we identified miRNA hub groups by their close connections and common targets. In one cluster containing three miRNAs, miR-612, miR-661 and miR-940, the annotated functions of the co-regulated genes suggested a role in small GTPase signalling. Although the three members of this cluster targeted the same subset of predicted genes, we showed that their overexpression impacted cell fates differently. miR-661 demonstrated enhanced phosphorylation of myosin II and an increase in cell invasion, indicating a possible oncogenic miRNA. On the contrary, miR-612 and miR-940 inhibit phosphorylation of myosin II and cell invasion. Finally, expression profiling in human breast tissues showed that miR-940 was consistently downregulated in breast cancer tissues
Epigenetic events underlie the pathogenesis of sinonasal papillomas.
Stephen, Josena K; Vaught, Lori E; Chen, Kang M; Sethi, Seema; Shah, Veena; Benninger, Michael S; Gardner, Glendon M; Schweitzer, Vanessa G; Khan, Mumtaz; Worsham, Maria J
2007-10-01
Benign inverted papillomas have been reported as monoclonal but lacking common genetic alterations identified in squamous cell carcinoma of the head and neck. Epigenetic changes alter the heritable state of gene expression and chromatin organization without change in DNA sequence. We investigated whether epigenetic events of aberrant promoter hypermethylation in genes known to be involved in squamous head and neck cancer underlie the pathogenesis of sinonasal papillomas. Ten formalin-fixed paraffin DNA samples from three inverted papilloma cases, two exophytic (everted) papilloma cases, and two cases with inverted and exophytic components were studied. DNA was obtained from microdissected areas of normal and papilloma areas and examined using a panel of 41 gene probes, designed to interrogate 35 unique genes for aberrant methylation status (22 genes) using the methylation-specific multiplex-ligation-specific polymerase assay. Methylation-specific PCR was employed to confirm aberrant methylation detected by the methylation-specific multiplex-ligation-specific polymerase assay. All seven cases indicated at least one epigenetic event of aberrant promoter hypermethylation. The CDKN2B gene was a consistent target of aberrant methylation in six of seven cases. Methylation-specific PCR confirmed hypermethylation of CDKN2B. Recurrent biopsies from two inverted papilloma cases had common epigenetic events. Promoter hypermethylation of CDKN2B was a consistent epigenetic event. Common epigenetic alterations in recurrent biopsies underscore a monoclonal origin for these lesions. Epigenetic events contribute to the underlying pathogenesis of benign inverted and exophytic papillomas. As a consistent target of aberrant promoter hypermethylation, CDKN2B may serve as an important epigenetic biomarker for gene reactivation studies.
Ochiai, Hiroshi; Sakamoto, Naoaki; Fujita, Kazumasa; Nishikawa, Masatoshi; Suzuki, Ken-ichi; Matsuura, Shinya; Miyamoto, Tatsuo; Sakuma, Tetsushi; Shibata, Tatsuo; Yamamoto, Takashi
2012-01-01
To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B–GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos. PMID:22711830
The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning.
Jung, Jae-Hoon; Lee, Sangmin; Yun, Ju; Lee, Minyoung; Park, Chung-Mo
2014-02-01
microRNA172 (miR172) regulates phase transition and floral patterning in Arabidopsis by repressing targets that encode the APETALA2 (AP2) and AP2-like transcription factors. The miR172-mediated repression of the AP2 gene restricts AGAMOUS (AG) expression. In addition, most miR172 targets, including AP2, redundantly act as floral repressors, and the overexpression of the target genes causes delayed flowering. However, how miR172 targets other than AP2 regulate both of the developmental processes remains unclear. Here, we demonstrate that miR172-mediated repression of the TARGET OF EAT 3 (TOE3) gene is critical for floral patterning in Arabidopsis. Transgenic plants that overexpress a miR172-resistant TOE3 gene (rTOE3-ox) exhibit indeterminate flowers with numerous stamens and carpelloid organs, which is consistent with previous observations in transgenic plants that overexpress a miR172-resistant AP2 gene. TOE3 binds to the second intron of the AG gene. Accordingly, AG expression is significantly reduced in rTOE3-ox plants. TOE3 also interacts with AP2 in the nucleus. Given the major role of AP2 in floral patterning, miR172 likely regulates TOE3 in floral patterning, at least in part via AP2. In addition, a miR156 target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 directly activates TOE3 expression, revealing a novel signaling interaction between miR156 and miR172 in floral patterning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Pendergrass, Sarah A.; Lemaire, Raphael; Francis, Ian; Mahoney, J. Matthew; Lafyatis, Robert; Whitfield, Michael L.
2012-01-01
Skin biopsy gene expression was analyzed by DNA microarray from 13 dSSc patients enrolled in an open label study of rituximab, 9 dSSc patients not treated with rituximab, and 9 healthy controls. These data recapitulate the patient ‘intrinsic’ gene expression subsets described previously including proliferation, inflammatory, and normal-like groups. Serial skin biopsies showed consistent and non-progressing gene expression over time, and importantly, the patients in the inflammatory subset do not move to the fibroproliferative subset, and vice versa. We were unable to detect significant differences in gene expression before and after rituximab treatment, consistent with an apparent lack of clinical response. Serial biopsies from each patient stayed within the same gene expression subset regardless of treatment regimen or the time point at which they were taken. Collectively, these data emphasize the heterogeneous nature of SSc and demonstrate that the intrinsic subsets are an inherent, reproducible and stable feature of the disease that is independent of disease duration. Moreover, these data have fundamental importance for the future development of personalized therapy for SSc; drugs targeting inflammation are likely to benefit those patients with an inflammatory signature, whereas drugs targeting fibrosis are likely to benefit those with a fibroproliferative signature. PMID:22318389
Patel, Vir D; Capra, John A
2017-08-31
microRNAs (miRNAs) are essential to the regulation of gene expression in eukaryotes, and improper expression of miRNAs contributes to hundreds of diseases. Despite the essential functions of miRNAs, the evolutionary dynamics of how they are integrated into existing gene regulatory and functional networks is not well understood. Knowledge of the origin and evolutionary history a gene has proven informative about its functions and disease associations; we hypothesize that incorporating the evolutionary origins of miRNAs into analyses will help resolve differences in their functional dynamics and how they influence disease. We computed the phylogenetic age of miRNAs across 146 species and quantified the relationship between human miRNA age and several functional attributes. Older miRNAs are significantly more likely to be associated with disease than younger miRNAs, and the number of associated diseases increases with age. As has been observed for genes, the miRNAs associated with different diseases have different age profiles. For example, human miRNAs implicated in cancer are enriched for origins near the dawn of animal multicellularity. Consistent with the increasing contribution of miRNAs to disease with age, older miRNAs target more genes than younger miRNAs, and older miRNAs are expressed in significantly more tissues. Furthermore, miRNAs of all ages exhibit a strong preference to target older genes; 93% of validated miRNA gene targets were in existence at the origin of the targeting miRNA. Finally, we find that human miRNAs in evolutionarily related families are more similar in their targets and expression profiles than unrelated miRNAs. Considering the evolutionary origin and history of a miRNA provides useful context for the analysis of its function. Consistent with recent work in Drosophila, our results support a model in which miRNAs increase their expression and functional regulatory interactions over evolutionary time, and thus older miRNAs have increased potential to cause disease. We anticipate that these patterns hold across mammalian species; however, comprehensively evaluating them will require refining miRNA annotations across species and collecting functional data in non-human systems.
Coordinated action of histone modification and microRNA regulations in human genome.
Wang, Xuan; Zheng, Guantao; Dong, Dong
2015-10-10
Both histone modifications and microRNAs (miRNAs) play pivotal role in gene expression regulation. Although numerous studies have been devoted to explore the gene regulation by miRNA and epigenetic regulations, their coordinated actions have not been comprehensively examined. In this work, we systematically investigated the combinatorial relationship between miRNA and epigenetic regulation by taking advantage of recently published whole genome-wide histone modification data and high quality miRNA targeting data. The results showed that miRNA targets have distinct histone modification patterns compared with non-targets in their promoter regions. Based on this finding, we proposed a machine learning approach to fit predictive models on the task to discern whether a gene is targeted by a specific miRNA. We found a considerable advantage in both sensitivity and specificity in diverse human cell lines. Finally, we found that our predicted miRNA targets are consistently annotated with Gene Ontology terms. Our work is the first genome-wide investigation of the coordinated action of miRNA and histone modification regulations, which provide a guide to deeply understand the complexity of transcriptional regulation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomiyama, Tetsuro; Toita, Riki; Kang, Jeong-Hun; Koga, Haruka; Shiosaki, Shujiro; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki
2011-09-01
We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were <200 nm and between -10 and -15 mV, respectively. In tumor cell experiments, pDNA/PPC/CS complex showed lower stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.
The loss-of-allele assay for ES cell screening and mouse genotyping.
Frendewey, David; Chernomorsky, Rostislav; Esau, Lakeisha; Om, Jinsop; Xue, Yingzi; Murphy, Andrew J; Yancopoulos, George D; Valenzuela, David M
2010-01-01
Targeting vectors used to create directed mutations in mouse embryonic stem (ES) cells consist, in their simplest form, of a gene for drug selection flanked by mouse genomic sequences, the so-called homology arms that promote site-directed homologous recombination between the vector and the target gene. The VelociGene method for the creation of targeted mutations in ES cells employs targeting vectors, called BACVecs, that are based on bacterial artificial chromosomes. Compared with conventional short targeting vectors, BacVecs provide two major advantages: (1) their much larger homology arms promote high targeting efficiencies without the need for isogenicity or negative selection strategies; and (2) they enable deletions and insertions of up to 100kb in a single targeting event, making possible gene-ablating definitive null alleles and other large-scale genomic modifications. Because of their large arm sizes, however, BACVecs do not permit screening by conventional assays, such as long-range PCR or Southern blotting, that link the inserted targeting vector to the targeted locus. To exploit the advantages of BACVecs for gene targeting, we inverted the conventional screening logic in developing the loss-of-allele (LOA) assay, which quantifies the number of copies of the native locus to which the mutation was directed. In a correctly targeted ES cell clone, the LOA assay detects one of the two native alleles (for genes not on the X or Y chromosome), the other allele being disrupted by the targeted modification. We apply the same principle in reverse as a gain-of-allele assay to quantify the copy number of the inserted targeting vector. The LOA assay reveals a correctly targeted clone as having lost one copy of the native target gene and gained one copy of the drug resistance gene or other inserted marker. The combination of these quantitative assays makes LOA genotyping unequivocal and amenable to automated scoring. We use the quantitative polymerase chain reaction (qPCR) as our method of allele quantification, but any method that can reliably distinguish the difference between one and two copies of the target gene can be used to develop an LOA assay. We have designed qPCR LOA assays for deletions, insertions, point mutations, domain swaps, conditional, and humanized alleles and have used the insert assays to quantify the copy number of random insertion BAC transgenics. Because of its quantitative precision, specificity, and compatibility with high throughput robotic operations, the LOA assay eliminates bottlenecks in ES cell screening and mouse genotyping and facilitates maximal speed and throughput for knockout mouse production. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Liu, Lijun; Ramsay, Trevor; Zinkgraf, Matthew; Sundell, David; Street, Nathaniel Robert; Filkov, Vladimir; Groover, Andrew
2015-06-01
Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors expressed during secondary growth and wood formation. Software code (programs and scripts) for processing the Populus ChIP-seq data are provided within a publically available iPlant image, including tools for ChIP-seq data quality control and evaluation adapted from the human Encyclopedia of DNA Elements (ENCODE) project. Basic information for each transcription factor (including members of Class I KNOX, Class III HD ZIP, BEL1-like families) binding are summarized, including the number and location of binding regions, distribution of binding regions relative to gene features, associated putative target genes, and enriched functional categories of putative target genes. These ChIP-seq data have been integrated within the Populus Genome Integrative Explorer (PopGenIE) where they can be analyzed using a variety of web-based tools. We present an example analysis that shows preferential binding of transcription factor ARBORKNOX1 to the nearest neighbor genes in a pre-calculated co-expression network module, and enrichment for meristem-related genes within this module including multiple orthologs of Arabidopsis KNOTTED-like Arabidopsis 2/6. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes.
Yong, Seok-Beom; Song, Yoonsung; Kim, Yong-Hee
2017-12-01
Obesity is an increasingly prevalent global health problem. Due to its close relations with metabolic diseases and cancer, new therapeutic approaches for treating obesity and obesity-induced metabolic diseases are required. Visceral white adipose tissue (WAT) has been closely associated with obesity-induced inflammation and adipose tissue macrophages (ATMs) are responsible for obesity-induced inflammation by releasing inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6. TNF-α converting enzyme (TACE) is a transmembrane enzyme that induces the enzymatic cleavage and release of inflammatory cytokines. In this study, we developed a nonviral gene delivery system consisting of an oligopeptide (ATS-9R) that can selectively target visceral ATMs. In here we shows visceral adipose tissue-dominant inflammatory gene over-expressions in obese mouse and our strategy enabled the preferential delivery of therapeutic genes to visceral ATMs and successfully achieved ATM-targeted gene silencing. Finally, ATS-9R-mediated TACE gene silencing in visceral ATMs alleviated visceral fat inflammation and improved type 2 diabetes by reducing whole body inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Xiaoke; Asmann, Yan W; Erickson-Johnson, Michele R; Oliveira, Jennifer L; Zhang, Hongying; Moura, Rafael D; Lazar, Alexander J; Lev, Dina; Bill, Katelynn; Lloyd, Ricardo V; Yaszemski, Michael J; Maran, Avudaiappan; Oliveira, Andre M
2011-11-01
Well-differentiated liposarcoma (WDLS) is one of the most common malignant mesenchymal tumors and dedifferentiated liposarcoma (DDLS) is a malignant tumor consisting of both WDLS and a transformed nonlipogenic sarcomatous component. Cytogenetically, WDLS is characterized by the presence of ring or giant rod chromosomes containing several amplified genes, including MDM2, TSPAN31, CDK4, and others mainly derived from chromosome bands 12q13-15. However, the 12q13-15 amplicon is large and discontinuous. The focus of this study was to identify novel critical genes that are consistently amplified in primary (nonrecurrent) WDLS and with potential relevance for future targeted therapy. Using a high-resolution (5.0 kb) "single nucleotide polymorphism"/copy number variation microarray to screen the whole genome in a series of primary WDLS, two consistently amplified areas were found on chromosome 12: one region containing the MDM2 and CPM genes, and another region containing the FRS2 gene. Based on these findings, we further validated FRS2 amplification in both WDLS and DDLS. Fluorescence in situ hybridization confirmed FRS2 amplification in all WDLS and DDLS tested (n = 57). Real time PCR showed FRS2 mRNA transcriptional upregulation in WDLS (n = 19) and DDLS (n = 13) but not in lipoma (n = 5) and normal fat (n = 9). Immunoblotting revealed high expression levels of phospho-FRS2 at Y436 and slightly overexpression of total FRS2 protein in liposarcoma but not in normal fat or preadipocytes. Considering the critical role of FRS2 in mediating fibroblast growth factor receptor signaling, our findings indicate that FRS2 signaling should be further investigated as a potential therapeutic target for liposarcoma. Copyright © 2011 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhendong, E-mail: zdyu@hotmail.com; Wang, Hao; Zhang, Libin
CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrugmore » system.« less
Han, Jingjing; Xu, Guoliang; Xu, Tianjun
2016-07-01
MicroRNAs (miRNAs) as endogenous small non-coding RNAs play key regulatory roles in diverse biological processes via degrading the target mRNAs or inhibiting protein translation. Previously many researchers have reported the identification, characteristic of miRNAs and the interaction with its target gene. But, the study on the regulation of miRNAs to biological processes via regulatory the key signaling pathway was still limited. In order to comprehend the regulatory mechanism of miRNAs, two small RNA libraries from the spleen of miiuy croaker individuals with or without poly(I:C) infection were constructed. The 197 conserved miRNAs and 75 novel miRNAs were identified, and 14 conserved and 8 novel miRNAs appeared significant variations. Those differently expressed miRNAs relate to immune regulation of miiuy croaker. Furthermore, expressions of four differently expressed miRNAs were validated by qRT-PCR, and the result was consistent with sequencing data. The target genes of the differently expressed miRNAs in the two libraries were predicted, and some candidate target genes were involved in the RIG-I-like receptor (RLR) signaling pathway. The negative regulation of miRNAs to target genes were confirmed by comparing the expression pattern of miRNAs and their target genes. The results of regulating target genes were that firstly directly or indirectly activating the downstream signaling cascades and subsequent inducting the type I interferon, inflammatory cytokines and apoptosis. These studies could help us to deeper understand the roles of miRNAs played in the fish immune system, and provide a new way to investigate the defense mechanism of fish. Copyright © 2016 Elsevier Ltd. All rights reserved.
Garg, Aprajita; Wesolowski, Donna; Alonso, Dulce; Deitsch, Kirk W; Ben Mamoun, Choukri; Altman, Sidney
2015-09-22
Identification and genetic validation of new targets from available genome sequences are critical steps toward the development of new potent and selective antimalarials. However, no methods are currently available for large-scale functional analysis of the Plasmodium falciparum genome. Here we present evidence for successful use of morpholino oligomers (MO) to mediate degradation of target mRNAs or to inhibit RNA splicing or translation of several genes of P. falciparum involved in chloroquine transport, apicoplast biogenesis, and phospholipid biosynthesis. Consistent with their role in the parasite life cycle, down-regulation of these essential genes resulted in inhibition of parasite development. We show that a MO conjugate that targets the chloroquine-resistant transporter PfCRT is effective against chloroquine-sensitive and -resistant parasites, causes enlarged digestive vacuoles, and renders chloroquine-resistant strains more sensitive to chloroquine. Similarly, we show that a MO conjugate that targets the PfDXR involved in apicoplast biogenesis inhibits parasite growth and that this defect can be rescued by addition of isopentenyl pyrophosphate. MO-based gene regulation is a viable alternative approach to functional analysis of the P. falciparum genome.
FOXP2 Targets Show Evidence of Positive Selection in European Populations
Ayub, Qasim; Yngvadottir, Bryndis; Chen, Yuan; Xue, Yali; Hu, Min; Vernes, Sonja C.; Fisher, Simon E.; Tyler-Smith, Chris
2013-01-01
Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction. PMID:23602712
Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer
ZHANG, HAITAO; DONG, YAN; ZHAO, HONGJUAN; BROOKS, JAMES D.; HAWTHORN, LESLEYANN; NOWAK, NORMA; MARSHALL, JAMES R.; GAO, ALLEN C.; IP, CLEMENT
2008-01-01
Background A previous clinical trial showed that selenium supplementation significantly reduced the incidence of prostate cancer. We report here a bioinformatics approach to gain new insights into selenium molecular targets that might be relevant to prostate cancer chemoprevention. Materials and Methods We first performed data mining analysis to identify genes which are consistently dysregulated in prostate cancer using published datasets from gene expression profiling of clinical prostate specimens. We then devised a method to systematically analyze three selenium microarray datasets from the LNCaP human prostate cancer cells, and to match the analysis to the cohort of genes implicated in prostate carcinogenesis. Moreover, we compared the selenium datasets with two datasets obtained from expression profiling of androgen-stimulated LNCaP cells. Results We found that selenium reverses the expression of genes implicated in prostate carcinogenesis. In addition, we found that selenium could counteract the effect of androgen on the expression of a subset obtained from androgen-regulated genes. Conclusions The above information provides us with a treasure of new clues to investigate the mechanism of selenium chemoprevention of prostate cancer. Furthermore, these selenium target genes could also serve as biomarkers in future clinical trials to gauge the efficacy of selenium intervention. PMID:18548127
Explaining the disease phenotype of intergenic SNP through predicted long range regulation
Chen, Jingqi; Tian, Weidong
2016-01-01
Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. PMID:27280978
Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash
2016-01-01
Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499
MiR-3613-3p affects cell proliferation and cell cycle in hepatocellular carcinoma
Zhang, Donghui; Liu, Enqin; Kang, Jian; Yang, Xin; Liu, Hong
2017-01-01
Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors with poor sensitivity to chemotherapy drugs and poor prognosis among patients. In the present study, we downloaded the original data from the Gene Expression Omnibus and compared gene expression profiles of liver cancer cells in patients with HCC with those of colon epithelial cells of healthy controls to identify differentially expressed genes (DEGs). After filtering target microRNAs (miRNA) from core DEGs, we cultured HepG2 cells in vitro, knocked down the miRNA and core mRNAs, and analyzed the effects. We found 228 differentially expressed genes between liver cancer tissue and healthy control tissue. We also integrated the protein-proteininteraction network and module analysis to screen 13 core genes, consisting of 12 up-regulated genes and 1 down-regulated gene. Five core genes were regulated hsa-miR-3613-3p, therefor we hypothesized that hsa-miR-3613-3p was a critical miRNA. After the transfection procedure, we found that changes in hsa-miR-3613-3p were the most obvious. Therefore, we speculated that hsa-miR-3613-3p was a main target miRNA. In addition, we transfected with si (BIRC5, CDK1, NUF2, ZWINT and SPC24), to target genes that can be targeted by miR-3613-3p. Our data shows that BIRC5, NUF2, and SPC24 may be promising liver cancer biomarkers that may not only predict disease occurrence but also potential personalized treatment options. PMID:29190974
Cooperative Adaptive Responses in Gene Regulatory Networks with Many Degrees of Freedom
Inoue, Masayo; Kaneko, Kunihiko
2013-01-01
Cells generally adapt to environmental changes by first exhibiting an immediate response and then gradually returning to their original state to achieve homeostasis. Although simple network motifs consisting of a few genes have been shown to exhibit such adaptive dynamics, they do not reflect the complexity of real cells, where the expression of a large number of genes activates or represses other genes, permitting adaptive behaviors. Here, we investigated the responses of gene regulatory networks containing many genes that have undergone numerical evolution to achieve high fitness due to the adaptive response of only a single target gene; this single target gene responds to changes in external inputs and later returns to basal levels. Despite setting a single target, most genes showed adaptive responses after evolution. Such adaptive dynamics were not due to common motifs within a few genes; even without such motifs, almost all genes showed adaptation, albeit sometimes partial adaptation, in the sense that expression levels did not always return to original levels. The genes split into two groups: genes in the first group exhibited an initial increase in expression and then returned to basal levels, while genes in the second group exhibited the opposite changes in expression. From this model, genes in the first group received positive input from other genes within the first group, but negative input from genes in the second group, and vice versa. Thus, the adaptation dynamics of genes from both groups were consolidated. This cooperative adaptive behavior was commonly observed if the number of genes involved was larger than the order of ten. These results have implications in the collective responses of gene expression networks in microarray measurements of yeast Saccharomyces cerevisiae and the significance to the biological homeostasis of systems with many components. PMID:23592959
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Shalem, Ophir; Sanjana, Neville E; Hartenian, Ella; Shi, Xi; Scott, David A; Mikkelson, Tarjei; Heckl, Dirk; Ebert, Benjamin L; Root, David E; Doench, John G; Zhang, Feng
2014-01-03
The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.
JAK signaling globally counteracts heterochromatic gene silencing.
Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X
2006-09-01
The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation.
JAK signaling globally counteracts heterochromatic gene silencing
Shi, Song; Calhoun, Healani C; Xia, Fan; Li, Jinghong; Le, Long; Li, Willis X
2011-01-01
The JAK/STAT pathway has pleiotropic roles in animal development, and its aberrant activation is implicated in multiple human cancers1–3. JAK/STAT signaling effects have been attributed largely to direct transcriptional regulation by STAT of specific target genes that promote tumor cell proliferation or survival. We show here in a Drosophila melanogaster hematopoietic tumor model, however, that JAK overactivation globally disrupts heterochromatic gene silencing, an epigenetic tumor suppressive mechanism4. This disruption allows derepression of genes that are not direct targets of STAT, as evidenced by suppression of heterochromatin-mediated position effect variegation. Moreover, mutations in the genes encoding heterochromatin components heterochromatin protein 1 (HP1) and Su(var)3-9 enhance tumorigenesis induced by an oncogenic JAK kinase without affecting JAK/STAT signaling. Consistently, JAK loss of function enhances heterochromatic gene silencing, whereas overexpressing HP1 suppresses oncogenic JAK-induced tumors. These results demonstrate that the JAK/STAT pathway regulates cellular epigenetic status and that globally disrupting heterochromatin-mediated tumor suppression is essential for tumorigenesis induced by JAK overactivation. PMID:16892059
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yu, E-mail: xuyu1001@gmail.com; Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071; Liu, Zhengchun, E-mail: l135027@126.com
Highlights: {yields} A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. {yields} The promoter was characterized with radiation-inducibility and tumor-specificity. {yields} Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. {yields} Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expressionmore » of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.« less
Noguchi, Yuji; Sano, Motoaki; Kanamaru, Kyoko; Ko, Taro; Takeuchi, Michio; Kato, Masashi; Kobayashi, Tetsuo
2009-11-01
XlnR is a Zn(II)2Cys6 transcriptional activator of xylanolytic and cellulolytic genes in Aspergillus. Overexpression of the aoxlnR gene in Aspergillus oryzae (A. oryzae xlnR gene) resulted in elevated xylanolytic and cellulolytic activities in the culture supernatant, in which nearly 40 secreted proteins were detected by two-dimensional electrophoresis. DNA microarray analysis to identify the transcriptional targets of AoXlnR led to the identification of 75 genes that showed more than fivefold increase in their expression in the AoXlnR overproducer than in the disruptant. Of these, 32 genes were predicted to encode a glycoside hydrolase, highlighting the biotechnological importance of AoXlnR in biomass degradation. The 75 genes included the genes previously identified as AoXlnR targets (xynF1, xynF3, xynG2, xylA, celA, celB, celC, and celD). Thirty-six genes were predicted to be extracellular, which was consistent with the number of proteins secreted, and 61 genes possessed putative XlnR-binding sites (5'-GGCTAA-3', 5'-GGCTAG-3', and 5'-GGCTGA-3') in their promoter regions. Functional annotation of the genes revealed that AoXlnR regulated the expression of hydrolytic genes for degradation of beta-1,4-xylan, arabinoxylan, cellulose, and xyloglucan and of catabolic genes for the conversion of D-xylose to xylulose-5-phosphate. In addition, genes encoding glucose-6-phosphate 1-dehydrogenase and L-arabinitol-4- dehydrogenase involved in D-glucose and L-arabinose catabolism also appeared to be targets of AoXlnR.
Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach
Ruderfer, Douglas M; Charney, Alexander W; Readhead, Ben; Kidd, Brian A; Kähler, Anna K; Kenny, Paul J; Keiser, Michael J; Moran, Jennifer L; Hultman, Christina M; Scott, Stuart A; Sullivan, Patrick F; Purcell, Shaun M; Dudley, Joel T; Sklar, Pamela
2016-01-01
Summary Background Therapeutic treatments for schizophrenia do not alleviate symptoms for all patients and efficacy is limited by common, often severe, side-effects. Genetic studies of disease can identify novel drug targets, and drugs for which the mechanism has direct genetic support have increased likelihood of clinical success. Large-scale genetic studies of schizophrenia have increased the number of genes and gene sets associated with risk. We aimed to examine the overlap between schizophrenia risk loci and gene targets of a comprehensive set of medications to potentially inform and improve treatment of schizophrenia. Methods We defined schizophrenia risk loci as genomic regions reaching genome-wide significance in the latest Psychiatric Genomics Consortium schizophrenia genome-wide association study (GWAS) of 36 989 cases and 113 075 controls and loss of function variants observed only once among 5079 individuals in an exome-sequencing study of 2536 schizophrenia cases and 2543 controls (Swedish Schizophrenia Study). Using two large and orthogonally created databases, we collated drug targets into 167 gene sets targeted by pharmacologically similar drugs and examined enrichment of schizophrenia risk loci in these sets. We further linked the exome-sequenced data with a national drug registry (the Swedish Prescribed Drug Register) to assess the contribution of rare variants to treatment response, using clozapine prescription as a proxy for treatment resistance. Findings We combined results from testing rare and common variation and, after correction for multiple testing, two gene sets were associated with schizophrenia risk: agents against amoebiasis and other protozoal diseases (106 genes, p=0·00046, pcorrected =0·024) and antipsychotics (347 genes, p=0·00078, pcorrected=0·046). Further analysis pointed to antipsychotics as having independent enrichment after removing genes that overlapped these two target sets. We noted significant enrichment both in known targets of antipsychotics (70 genes, p=0·0078) and novel predicted targets (277 genes, p=0·019). Patients with treatment-resistant schizophrenia had an excess of rare disruptive variants in gene targets of antipsychotics (347 genes, p=0·0067) and in genes with evidence for a role in antipsychotic efficacy (91 genes, p=0·0029). Interpretation Our results support genetic overlap between schizophrenia pathogenesis and antipsychotic mechanism of action. This finding is consistent with treatment efficacy being polygenic and suggests that single-target therapeutics might be insufficient. We provide evidence of a role for rare functional variants in antipsychotic treatment response, pointing to a subset of patients where their genetic information could inform treatment. Finally, we present a novel framework for identifying treatments from genetic data and improving our understanding of therapeutic mechanism. PMID:26915512
Defoort, Jonas; Van de Peer, Yves; Vermeirssen, Vanessa
2018-06-05
Gene regulatory networks (GRNs) consist of different molecular interactions that closely work together to establish proper gene expression in time and space. Especially in higher eukaryotes, many questions remain on how these interactions collectively coordinate gene regulation. We study high quality GRNs consisting of undirected protein-protein, genetic and homologous interactions, and directed protein-DNA, regulatory and miRNA-mRNA interactions in the worm Caenorhabditis elegans and the plant Arabidopsis thaliana. Our data-integration framework integrates interactions in composite network motifs, clusters these in biologically relevant, higher-order topological network motif modules, overlays these with gene expression profiles and discovers novel connections between modules and regulators. Similar modules exist in the integrated GRNs of worm and plant. We show how experimental or computational methodologies underlying a certain data type impact network topology. Through phylogenetic decomposition, we found that proteins of worm and plant tend to functionally interact with proteins of a similar age, while at the regulatory level TFs favor same age, but also older target genes. Despite some influence of the duplication mode difference, we also observe at the motif and module level for both species a preference for age homogeneity for undirected and age heterogeneity for directed interactions. This leads to a model where novel genes are added together to the GRNs in a specific biological functional context, regulated by one or more TFs that also target older genes in the GRNs. Overall, we detected topological, functional and evolutionary properties of GRNs that are potentially universal in all species.
FOXP2 targets show evidence of positive selection in European populations.
Ayub, Qasim; Yngvadottir, Bryndis; Chen, Yuan; Xue, Yali; Hu, Min; Vernes, Sonja C; Fisher, Simon E; Tyler-Smith, Chris
2013-05-02
Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Targeted Next Generation Sequencing in Patients with Inborn Errors of Metabolism
Yubero, Dèlia; Brandi, Núria; Ormazabal, Aida; Garcia-Cazorla, Àngels; Pérez-Dueñas, Belén; Campistol, Jaime; Ribes, Antonia; Palau, Francesc
2016-01-01
Background Next-generation sequencing (NGS) technology has allowed the promotion of genetic diagnosis and are becoming increasingly inexpensive and faster. To evaluate the utility of NGS in the clinical field, a targeted genetic panel approach was designed for the diagnosis of a set of inborn errors of metabolism (IEM). The final aim of the study was to compare the findings for the diagnostic yield of NGS in patients who presented with consistent clinical and biochemical suspicion of IEM with those obtained for patients who did not have specific biomarkers. Methods The subjects studied (n = 146) were classified into two categories: Group 1 (n = 81), which consisted of patients with clinical and biochemical suspicion of IEM, and Group 2 (n = 65), which consisted of IEM cases with clinical suspicion and unspecific biomarkers. A total of 171 genes were analyzed using a custom targeted panel of genes followed by Sanger validation. Results Genetic diagnosis was achieved in 50% of patients (73/146). In addition, the diagnostic yield obtained for Group 1 was 78% (63/81), and this rate decreased to 15.4% (10/65) in Group 2 (X2 = 76.171; p < 0.0001). Conclusions A rapid and effective genetic diagnosis was achieved in our cohort, particularly the group that had both clinical and biochemical indications for the diagnosis. PMID:27243974
Selection of Differential Isolates of Magnaporthe oryzae for Postulation of Blast Resistance Genes.
Fang, W W; Liu, C C; Zhang, H W; Xu, H; Zhou, S; Fang, K X; Peng, Y L; Zhao, W S
2018-05-21
A set of differential isolates of Magnaporthe oryzae is needed for the postulation of blast resistance genes in numerous rice varieties and breeding materials. In this study, the pathotypes of 1,377 M. oryzae isolates from different regions of China were determined by inoculating detached rice leaves of 24 monogenic lines. Among them, 25 isolates were selected as differential isolates based on the following characteristics: they had distinct responses on the monogenic lines, contained the minimum number of avirulence genes, were stable in pathogenicity and conidiation during consecutive culture, were consistent colony growth rate, and, together, could differentiate combinations of the 24 major blast resistance genes. Seedlings of rice cultivars were inoculated with this differential set of isolates to postulate whether they contain 1 or more than 1 of the 24 blast resistance genes. The results were consistent with those from polymerase chain reaction analysis of target resistance genes. Establishment of a standard set of differential isolates will facilitate breeding for blast resistance and improved management of rice blast disease.
Mechanisms of double-strand-break repair during gene targeting in mammalian cells.
Ng, P; Baker, M D
1999-01-01
In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929
Paget, M S; Molle, V; Cohen, G; Aharonowitz, Y; Buttner, M J
2001-11-01
In the Gram-positive, antibiotic-producing bacterium Streptomyces coelicolor A3(2), the thiol-disulphide status of the hyphae is controlled by a novel regulatory system consisting of a sigma factor, sigmaR, and its cognate anti-sigma factor, RsrA. Oxidative stress induces intramolecular disulphide bond formation in RsrA, which causes it to lose affinity for sigmaR, thereby releasing sigmaR to activate transcription of the thioredoxin operon, trxBA. Here, we exploit a preliminary consensus sequence for sigmaR target promoters to identify 27 new sigmaR target genes and operons, thereby defining the global response to disulphide stress in this organism. Target genes related to thiol metabolism encode a second thioredoxin (TrxC), a glutaredoxin-like protein and enzymes involved in the biosynthesis of the low-molecular-weight thiol-containing compounds cysteine and molybdopterin. In addition, the level of the major actinomycete thiol buffer, mycothiol, was fourfold lower in a sigR null mutant, although no candidate mycothiol biosynthetic genes were identified among the sigmaR targets. Three sigmaR target genes encode ribosome-associated products (ribosomal subunit L31, ppGpp synthetase and tmRNA), suggesting that the translational machinery is modified by disulphide stress. The product of another sigmaR target gene was found to be a novel RNA polymerase-associated protein, RbpA, suggesting that the transcriptional machinery may also be modified in response to disulphide stress. We present DNA sequence evidence that many of the targets identified in S. coelicolor are also under the control of the sigmaR homologue in the actinomycete pathogen Mycobacterium tuberculosis.
Explaining the disease phenotype of intergenic SNP through predicted long range regulation.
Chen, Jingqi; Tian, Weidong
2016-10-14
Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Oligopeptide complex for targeted non-viral gene delivery to adipocytes
NASA Astrophysics Data System (ADS)
Won, Young-Wook; Adhikary, Partho Protim; Lim, Kwang Suk; Kim, Hyung Jin; Kim, Jang Kyoung; Kim, Yong-Hee
2014-12-01
Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS-9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS-9R into obese mice confirmed specific binding of ATS-9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS-9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS-9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.
Pan, Yue; Lu, Lingyun; Chen, Junquan; Zhong, Yong; Dai, Zhehao
2018-01-01
This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis. Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established. Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes. Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma.
Pharmacogenetics of clozapine treatment response and side-effects in schizophrenia: an update.
Sriretnakumar, Venuja; Huang, Eric; Müller, Daniel J
2015-01-01
Clozapine (CLZ) is the most effective treatment for treatment-resistant schizophrenia (SCZ) patients, with potential added benefits of reduction in suicide risk and aggression. However, CLZ is also mainly underused due to its high risk for the potentially lethal side-effect of agranulocytosis as well as weight gain and related metabolic dysregulation. Pharmacogenetics promises to enable the prediction of patient treatment response and risk of adverse effects based on patients' genetics, paving the way toward individualized treatment. This article reviews pharmacogenetics studies of CLZ response and side-effects with a focus on articles from January 2012 to February 2015, as an update to the previous reviews. Pharmacokinetic genes explored primarily include CYP1A2, while pharmacodynamic genes consisted of traditional pharmacogenetic targets such as brain-derived neurotrophic factor as well novel mitochondrial genes, NDUFS-1 and translocator protein. Pharmacogenetics is a promising avenue for individualized medication of CLZ in SCZ, with several consistently replicated gene variants predicting CLZ response and side-effects. However, a large proportion of studies have yielded mixed results. Large-scale Genome-wide association studies (e.g., CRESTAR) and targeted gene studies with standardized designs (response measurements, treatment durations, plasma level monitoring) are required for further progress toward clinical translation. Additionally, in order to improve study quality, we recommend accounting for important confounders, including polypharmacy, baseline measurements, treatment duration, gender, and age at onset.
Glioma IL13Rα2 Is Associated with Mesenchymal Signature Gene Expression and Poor Patient Prognosis
Starr, Renate; Deng, Xutao; Badie, Behnam; Yuan, Yate-Ching; Forman, Stephen J.; Barish, Michael E.
2013-01-01
A major challenge for successful immunotherapy against glioma is the identification and characterization of validated targets. We have taken a bioinformatics approach towards understanding the biological context of IL-13 receptor α2 (IL13Rα2) expression in brain tumors, and its functional significance for patient survival. Querying multiple gene expression databases, we show that IL13Rα2 expression increases with glioma malignancy grade, and expression for high-grade tumors is bimodal, with approximately 58% of WHO grade IV gliomas over-expressing this receptor. By several measures, IL13Rα2 expression in patient samples and low-passage primary glioma lines most consistently correlates with the expression of signature genes defining mesenchymal subclass tumors and negatively correlates with proneural signature genes as defined by two studies. Positive associations were also noted with proliferative signature genes, whereas no consistent associations were found with either classical or neural signature genes. Probing the potential functional consequences of this mesenchymal association through IPA analysis suggests that IL13Rα2 expression is associated with activation of proinflammatory and immune pathways characteristic of mesenchymal subclass tumors. In addition, survival analyses indicate that IL13Rα2 over-expression is associated with poor patient prognosis, a single gene correlation ranking IL13Rα2 in the top ~1% of total gene expression probes with regard to survival association with WHO IV gliomas. This study better defines the functional consequences of IL13Rα2 expression by demonstrating association with mesenchymal signature gene expression and poor patient prognosis. It thus highlights the utility of IL13Rα2 as a therapeutic target, and helps define patient populations most likely to respond to immunotherapy in present and future clinical trials. PMID:24204956
Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis.
Brown, Christine E; Warden, Charles D; Starr, Renate; Deng, Xutao; Badie, Behnam; Yuan, Yate-Ching; Forman, Stephen J; Barish, Michael E
2013-01-01
A major challenge for successful immunotherapy against glioma is the identification and characterization of validated targets. We have taken a bioinformatics approach towards understanding the biological context of IL-13 receptor α2 (IL13Rα2) expression in brain tumors, and its functional significance for patient survival. Querying multiple gene expression databases, we show that IL13Rα2 expression increases with glioma malignancy grade, and expression for high-grade tumors is bimodal, with approximately 58% of WHO grade IV gliomas over-expressing this receptor. By several measures, IL13Rα2 expression in patient samples and low-passage primary glioma lines most consistently correlates with the expression of signature genes defining mesenchymal subclass tumors and negatively correlates with proneural signature genes as defined by two studies. Positive associations were also noted with proliferative signature genes, whereas no consistent associations were found with either classical or neural signature genes. Probing the potential functional consequences of this mesenchymal association through IPA analysis suggests that IL13Rα2 expression is associated with activation of proinflammatory and immune pathways characteristic of mesenchymal subclass tumors. In addition, survival analyses indicate that IL13Rα2 over-expression is associated with poor patient prognosis, a single gene correlation ranking IL13Rα2 in the top ~1% of total gene expression probes with regard to survival association with WHO IV gliomas. This study better defines the functional consequences of IL13Rα2 expression by demonstrating association with mesenchymal signature gene expression and poor patient prognosis. It thus highlights the utility of IL13Rα2 as a therapeutic target, and helps define patient populations most likely to respond to immunotherapy in present and future clinical trials.
Sanders, Edward; Diehl, Svenja
2015-01-01
Background Many cancers adopt a metabolism that is characterized by the well-known Warburg effect (aerobic glycolysis). Recently, numerous attempts have been made to treat cancer by targeting one or more gene products involved in this pathway without notable success. This work outlines a transcriptomic approach to identify genes that are highly perturbed in clear cell renal cell carcinoma (CCRCC). Methods We developed a model of the extended Warburg effect and outlined the model using Cytoscape. Following this, gene expression fold changes (FCs) for tumor and adjacent normal tissue from patients with CCRCC (GSE6344) were mapped on to the network. Gene expression values with FCs of greater than two were considered as potential targets for treatment of CCRCC. Results The Cytoscape network includes glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP), the TCA cycle, the serine/glycine pathway, and partial glutaminolysis and fatty acid synthesis pathways. Gene expression FCs for nine of the 10 CCRCC patients in the GSE6344 data set were consistent with a shift to aerobic glycolysis. Genes involved in glycolysis and the synthesis and transport of lactate were over-expressed, as was the gene that codes for the kinase that inhibits the conversion of pyruvate to acetyl-CoA. Interestingly, genes that code for unique proteins involved in gluconeogenesis were strongly under-expressed as was also the case for the serine/glycine pathway. These latter two results suggest that the role attributed to the M2 isoform of pyruvate kinase (PKM2), frequently the principal isoform of PK present in cancer: i.e. causing a buildup of glucose metabolites that are shunted into branch pathways for synthesis of key biomolecules, may not be operative in CCRCC. The fact that there was no increase in the expression FC of any gene in the PPP is consistent with this hypothesis. Literature protein data generally support the transcriptomic findings. Conclusions A number of key genes have been identified that could serve as valid targets for anti-cancer pharmaceutical agents. Genes that are highly over-expressed include ENO2, HK2, PFKP, SLC2A3, PDK1, and SLC16A1. Genes that are highly under-expressed include ALDOB, PKLR, PFKFB2, G6PC, PCK1, FBP1, PC, and SUCLG1. PMID:25859558
2010-01-01
Background Adenosine to inosine (A-to-I) RNA-editing is an essential post-transcriptional mechanism that occurs in numerous sites in the human transcriptome, mainly within Alu repeats. It has been shown to have consistent levels of editing across individuals in a few targets in the human brain and altered in several human pathologies. However, the variability across human individuals of editing levels in other tissues has not been studied so far. Results Here, we analyzed 32 skin samples, looking at A-to-I editing level in three genes within coding sequences and in the Alu repeats of six different genes. We observed highly consistent editing levels across different individuals as well as across tissues, not only in coding targets but, surprisingly, also in the non evolutionary conserved Alu repeats. Conclusions Our findings suggest that A-to-I RNA-editing of Alu elements is a tightly regulated process and, as such, might have been recruited in the course of primate evolution for post-transcriptional regulatory mechanisms. PMID:21029430
Targeted and genome-scale methylomics reveals gene body signatures in human cell lines
Ball, Madeleine Price; Li, Jin Billy; Gao, Yuan; Lee, Je-Hyuk; LeProust, Emily; Park, In-Hyun; Xie, Bin; Daley, George Q.; Church, George M.
2012-01-01
Cytosine methylation, an epigenetic modification of DNA, is a target of growing interest for developing high throughput profiling technologies. Here we introduce two new, complementary techniques for cytosine methylation profiling utilizing next generation sequencing technology: bisulfite padlock probes (BSPPs) and methyl sensitive cut counting (MSCC). In the first method, we designed a set of ~10,000 BSPPs distributed over the ENCODE pilot project regions to take advantage of existing expression and chromatin immunoprecipitation data. We observed a pattern of low promoter methylation coupled with high gene body methylation in highly expressed genes. Using the second method, MSCC, we gathered genome-scale data for 1.4 million HpaII sites and confirmed that gene body methylation in highly expressed genes is a consistent phenomenon over the entire genome. Our observations highlight the usefulness of techniques which are not inherently or intentionally biased in favor of only profiling particular subsets like CpG islands or promoter regions. PMID:19329998
An animal model for Norrie disease (ND): gene targeting of the mouse ND gene.
Berger, W; van de Pol, D; Bächner, D; Oerlemans, F; Winkens, H; Hameister, H; Wieringa, B; Hendriks, W; Ropers, H H
1996-01-01
In order to elucidate the cellular and molecular processes which are involved in Norrie disease (ND), we have used gene targeting technology to generate ND mutant mice. The murine homologue of the ND gene was cloned and shown to encode a polypeptide that shares 94% of the amino acid sequence with its human counterpart. RNA in situ hybridization revealed expression in retina, brain and the olfactory bulb and epithelium of 2 week old mice. Hemizygous mice carrying a replacement mutation in exon 2 of the ND gene developed retrolental structures in the vitreous body and showed an overall disorganization of the retinal ganglion cell layer. The outer plexiform layer disappears occasionally, resulting in a juxtaposed inner and outer nuclear layer. At the same regions, the outer segments of the photoreceptor cell layer are no longer present. These ocular findings are consistent with observations in ND patients and the generated mouse line provides a faithful model for study of early pathogenic events in this severe X-linked recessive neurological disorder.
Hibio, Naoki; Hino, Kimihiro; Shimizu, Eigo; Nagata, Yoshiro; Ui-Tei, Kumiko
2012-01-01
MicroRNAs (miRNAs) are key regulators of sequence-specific gene silencing. However, crucial factors that determine the efficacy of miRNA-mediated target gene silencing are poorly understood. Here we mathematized base-pairing stability and showed that miRNAs with an unstable 5′ terminal duplex and stable seed-target duplex exhibit strong silencing activity. The results are consistent with the previous findings that an RNA strand with unstable 5′ terminal in miRNA duplex easily loads onto the RNA-induced silencing complex (RISC), and miRNA recognizes target mRNAs with seed-complementary sequences to direct posttranscriptional repression. Our results suggested that both the unwinding and target recognition processes of miRNAs could be proficiently controlled by the thermodynamics of base-pairing in protein-free condition. Interestingly, such thermodynamic parameters might be evolutionarily well adapted to the body temperatures of various species. PMID:23251782
Gurskaya, N G; Staroverov, D B; Lukyanov, K A
2016-01-01
Alternative splicing is an important mechanism of regulation of gene expression and expansion of proteome complexity. Recently we developed a new fluorescence reporter for quantitative analysis of alternative splicing of a target cassette exon in live cells (Gurskaya et al., 2012). It consists of a specially designed minigene encoding red and green fluorescent proteins (Katushka and TagGFP2) and a fragment of the target gene between them. Skipping or inclusion of the alternative exon induces a frameshift; ie, alternative exon length must not be a multiple of 3. Finally, red and green fluorescence intensities of cells expressing this reporter are used to estimate the percentage of alternative (exon-skipped) and normal (exon-retained) transcripts. Here, we provide a detailed description of design and application of the fluorescence reporter of a target alternative exon splicing in mammalian cell lines. © 2016 Elsevier Inc. All rights reserved.
Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S
2008-10-01
Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.
Furi, Leonardo; Haigh, Richard; Al Jabri, Zaaima J. H.; Morrissey, Ian; Ou, Hong-Yu; León-Sampedro, Ricardo; Martinez, Jose L.; Coque, Teresa M.; Oggioni, Marco R.
2016-01-01
The widely used biocide triclosan selectively targets FabI, the NADH-dependent trans-2-enoyl-acyl carrier protein (ACP) reductase, which is also an important target for the development of narrow spectrum antibiotics. The analysis of triclosan resistant Staphylococcus aureus isolates had previously shown that in about half of the strains, the mechanism of triclosan resistance consists on the heterologous duplication of the triclosan target gene due to the acquisition of an additional fabI allele derived from Staphylococcus haemolyticus (sh-fabI). In the current work, the genomic sequencing of 10 of these strains allowed the characterization of two novel composite transposons TnSha1 and TnSha2 involved in the spread of sh-fabI. TnSha1 harbors one copy of IS1272, whereas TnSha2 is a 11.7 kb plasmid carrying TnSha1 present either as plasmid or in an integrated form generally flanked by two IS1272 elements. The target and mechanism of integration for IS1272 and TnSha1 are novel and include targeting of DNA secondary structures, generation of blunt-end deletions of the stem-loop and absence of target duplication. Database analyses showed widespread occurrence of these two elements in chromosomes and plasmids, with TnSha1 mainly in S. aureus and with TnSha2 mainly in S. haemolyticus and S. epidermidis. The acquisition of resistance by means of an insertion sequence-based mobilization and consequent duplication of drug-target metabolic genes, as observed here for sh-fabI, is highly reminiscent of the situation with the ileS2 gene conferring mupirocin resistance, and the dfrA and dfrG genes conferring trimethoprim resistance both of which are mobilized by IS257. These three examples, which show similar mechanisms and levels of spread of metabolic genes linked to IS elements, highlight the importance of this genetic strategy for recruitment and rapid distribution of novel resistance mechanisms in staphylococci. PMID:27446047
Screening biomarkers of bladder cancer using combined miRNA and mRNA microarray analysis.
Jin, Ning; Jin, Xuefei; Gu, Xinquan; Na, Wanli; Zhang, Muchun; Zhao, Rui
2015-08-01
Biomarkers, such as microRNAs (miRNAs) may be useful for the diagnosis of bladder cancer. In order to understand the molecular mechanisms underlying bladder cancer, differentially expressed miRNAs (DE-miRNAs) and their target genes in bladder cancer were analyzed. In the present study, miRNA and mRNA expression profiles (GSE40355) were obtained from the Gene Expression Omnibus. These consisted of healthy bladder samples (n=8) and urothelial carcinoma samples (low-grade, n=8 and high-grade, n=8). DE-miRNAs and differentially expressed genes (DEGs) were identified using the limma package and the Benjamin and Hochberg method from the multtest package in R. Target genes of DE-miRNAs were screened. Associations between DEGs were investigated using STRING, and an interaction network was constructed using Cytoscape. Functional and pathway enrichment analyses were performed for DEGs from the interaction network. 87 DE-miRNAs and 2058 DEGs were screened from low-grade bladder cancer samples, and 40 DE-miRNAs and 2477 DEGs were screened from high-grade bladder cancer samples. DE-target genes were significantly associated with the regulation of cell apoptosis. Bladder cancer, non-small cell lung cancer and pancreatic cancer biological pathways were found to be enriched. The results of the present study demonstrated that E2F transcription factor 1, which is targeted by miR-106b, and cyclin-dependent kinase inhibitor 2A (CDKN2A) and V-Erb-B2 avian erythroblastic leukemia viral oncogene homolog-2, which are targeted by miR-125b, participate in the bladder cancer pathway. In conclusion, DE-miRNAs in bladder cancer tissue samples and DE-targeted genes, such as miR-106b and CDKN2A, which were identified in the present study, may provide the basis for targeted therapy for breast cancer and enhance understanding of its pathogenesis.
Le, Duc-Hau; Verbeke, Lieven; Son, Le Hoang; Chu, Dinh-Toi; Pham, Van-Huy
2017-11-14
MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous network that not only considers miRNAs but also the corresponding target genes in the network model. Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based method. Interestingly, we could relate this performance gain to the emergence of "disease modules" in the heterogeneous miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable, performing well when using both experimentally validated and predicted miRNA-target gene interaction data for network construction. Finally, using RWRMTN, we identified 76 novel miRNAs associated with 23 disease phenotypes which were present in a recent database of known disease-miRNA associations. Summarizing, using random walks on mutual miRNA-target networks improves the prediction of novel disease-associated miRNAs because of the existence of "disease modules" in these networks.
Gunbin, Konstantin V; Afonnikov, Dmitry A; Kolchanov, Nikolay A; Derevianko, Anatoly P; Rogaev, Eugeny I
2015-01-01
As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain. A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development. Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
2015-01-01
Background As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain. Results A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development. Conclusions Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines. PMID:26693966
2010-01-01
Background As one of the chlorinated antifertility compounds, alpha-chlorohydrin (ACH) can inhibit glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity in epididymal sperm and affect sperm energy metabolism, maturation and fertilization, eventually leading to male infertility. Further studies demonstrated that the inhibitory effect of ACH on G3PDH is not only confined to epididymal sperm but also to the epididymis. Moreover, little investigation on gene expression changes in the epididymis after ACH treatment has been conducted. Therefore, gene expression studies may indicate new epididymal targets related to sperm maturation and fertility through the analysis of ACH-treated infertile animals. Methods Rats were treated with ACH for ten consecutive days, and then each male rat copulated with two female rats in proestrus. Then sperm maturation and other fertility parameters were analyzed. Furthermore, we identified epididymal-specific genes that are associated with fertility between control and ACH groups using an Affymetrix Rat 230 2.0 oligo-microarray. Finally, we performed RT-PCR analysis for several differentially expressed genes to validate the alteration in gene expression observed by oligonucleotide microarray. Results Among all the differentially expressed genes, we analyzed and screened the down-regulated genes associated with metabolism processes, which are considered the major targets of ACH action. Simultaneously, the genes that were up-regulated by chlorohydrin were detected. The genes that negatively regulate sperm maturation and fertility include apoptosis and immune-related genes and have not been reported previously. The overall results of PCR analysis for selected genes were consistent with the array data. Conclusions In this study, we have described the genome-wide profiles of gene expression in the epididymides of infertile rats induced by ACH, which could become potential epididymal specific targets for male contraception and infertility treatment. PMID:20409345
Xie, Shuwu; Zhu, Yan; Ma, Li; Lu, Yingying; Zhou, Jieyun; Gui, Youlun; Cao, Lin
2010-04-22
As one of the chlorinated antifertility compounds, alpha-chlorohydrin (ACH) can inhibit glyceraldehyde-3-phosphate dehydrogenase (G3PDH) activity in epididymal sperm and affect sperm energy metabolism, maturation and fertilization, eventually leading to male infertility. Further studies demonstrated that the inhibitory effect of ACH on G3PDH is not only confined to epididymal sperm but also to the epididymis. Moreover, little investigation on gene expression changes in the epididymis after ACH treatment has been conducted. Therefore, gene expression studies may indicate new epididymal targets related to sperm maturation and fertility through the analysis of ACH-treated infertile animals. Rats were treated with ACH for ten consecutive days, and then each male rat copulated with two female rats in proestrus. Then sperm maturation and other fertility parameters were analyzed. Furthermore, we identified epididymal-specific genes that are associated with fertility between control and ACH groups using an Affymetrix Rat 230 2.0 oligo-microarray. Finally, we performed RT-PCR analysis for several differentially expressed genes to validate the alteration in gene expression observed by oligonucleotide microarray. Among all the differentially expressed genes, we analyzed and screened the down-regulated genes associated with metabolism processes, which are considered the major targets of ACH action. Simultaneously, the genes that were up-regulated by chlorohydrin were detected. The genes that negatively regulate sperm maturation and fertility include apoptosis and immune-related genes and have not been reported previously. The overall results of PCR analysis for selected genes were consistent with the array data. In this study, we have described the genome-wide profiles of gene expression in the epididymides of infertile rats induced by ACH, which could become potential epididymal specific targets for male contraception and infertility treatment.
Briggs, Christine E; Wang, Yulei; Kong, Benjamin; Woo, Tsung-Ung W; Iyer, Lakshmanan K; Sonntag, Kai C
2015-08-27
The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific. Copyright © 2015 Elsevier B.V. All rights reserved.
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
Konermann, Silvana; Brigham, Mark D; Trevino, Alexandro E; Joung, Julia; Abudayyeh, Omar O; Barcena, Clea; Hsu, Patrick D; Habib, Naomi; Gootenberg, Jonathan S; Nishimasu, Hiroshi; Nureki, Osamu; Zhang, Feng
2015-01-29
Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.
Ohno, Satoshi; Yoshikawa, Katsunori; Shimizu, Hiroshi; Tamura, Tomohiro
2014-01-01
We describe here the construction of a series of 71 vectors to silence central carbon metabolism genes in Escherichia coli. The vectors inducibly express antisense RNAs called paired-terminus antisense RNAs, which have a higher silencing efficacy than ordinary antisense RNAs. By measuring mRNA amounts, measuring activities of target proteins, or observing specific phenotypes, it was confirmed that all the vectors were able to silence the expression of target genes efficiently. Using this vector set, each of the central carbon metabolism genes was silenced individually, and the accumulation of metabolites was investigated. We were able to obtain accurate information on ways to increase the production of pyruvate, an industrially valuable compound, from the silencing results. Furthermore, the experimental results of pyruvate accumulation were compared to in silico predictions, and both sets of results were consistent. Compared to the gene disruption approach, the silencing approach has an advantage in that any E. coli strain can be used and multiple gene silencing is easily possible in any combination. PMID:24212579
Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.
Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M
2008-03-19
In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.
Perturbed desmosomal cadherin expression in grainy head-like 1-null mice
Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M
2008-01-01
In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution. PMID:18288204
McNeill, Brian; Perez-Iratxeta, Carol; Mazerolle, Chantal; Furimsky, Marosh; Mishina, Yuji; Andrade-Navarro, Miguel A; Wallace, Valerie A
2012-03-01
The hedgehog (Hh) signaling pathway is involved in numerous developmental and adult processes with many links to cancer. In vertebrates, the activity of the Hh pathway is mediated primarily through three Gli transcription factors (Gli1, 2 and 3) that can serve as transcriptional activators or repressors. The identification of Gli target genes is essential for the understanding of the Hh-mediated processes. We used a comparative genomics approach using the mouse and human genomes to identify 390 genes that contained conserved Gli binding sites. RT-qPCR validation of 46 target genes in E14.5 and P0.5 retinal explants revealed that Hh pathway activation resulted in the modulation of 30 of these targets, 25 of which demonstrated a temporal regulation. Further validation revealed that the expression of Bok, FoxA1, Sox8 and Wnt7a was dependent upon Sonic Hh (Shh) signaling in the retina and their regulation is under positive and negative controls by Gli2 and Gli3, respectively. We also show using chromatin immunoprecipitation that Gli2 binds to the Sox8 promoter, suggesting that Sox8 is an Hh-dependent direct target of Gli2. Finally, we demonstrate that the Hh pathway also modulates the expression of Sox9 and Sox10, which together with Sox8 make up the SoxE group. Previously, it has been shown that Hh and SoxE group genes promote Müller glial cell development in the retina. Our data are consistent with the possibility for a role of SoxE group genes downstream of Hh signaling on Müller cell development. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Quarterman, Josh; Kim, Soo Rin; Kim, Pan-Jun; Jin, Yong-Su
2015-01-20
In order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes. Over two-thirds of the knockout mutants identified by the in silico study did exhibit experimental behavior in qualitative agreement with model predictions, but the exceptions illustrate the limitation of using a purely stoichiometric model-based approach. Furthermore, there was a substantial quantitative variation in phenotype among the various respiration-deficient mutants that were screened in this study, and three genes encoding respiratory enzyme subunits were identified as the best knockout targets for improving hexose fermentation in microaerobic conditions. Specifically, deletion of either COX9 or QCR9 resulted in higher ethanol production rates than the parental strain by 37% and 27%, respectively, with slight growth disadvantages. Also, deletion of QCR6 led to improved ethanol production rate by 24% with no growth disadvantage. The beneficial effects of these gene deletions were consistently demonstrated in different strain backgrounds and with four common hexoses. The combination of stoichiometric modeling and genetic screening using a systematic knockout collection was useful for narrowing a large set of gene targets and identifying targets of interest. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Jianguo; Wu, Zai-Sheng; Li, Hongling; Wang, Zhenmeng; Le, Jingqing; Zheng, Tingting; Jia, Lee
2016-12-15
In the present study, we proposed a novel dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) based signal amplification system for highly sensitive determination of tumor suppressor genes. The system primarily consisted of a signaling hairpin probe (SHP), a label-free hairpin probe (LHP) and an initiating primer (IP). The presence of target DNA was able to induce one CNDP through continuous process of ligation, polymerization and nicking, leading to extensively accumulation of two nicked triggers (NT1 and NT2). Intriguingly, the NT1 could directly hybridize SHP, while the NT2 could act as the target analog to induce another CNDP. The resulting dual-CNDP contributed the striking signal amplification, and only a very weak blank noise existed since the ligation template of target was not involved. In this case, the target could be detected in a wide linear range (5 orders of magnitude), and a low detection limit (78 fM) was obtained, which is superior to most of the existing fluorescent methods. Moreover, the dual-CNDP sensing system provided a high selectivity towards target DNA against mismatched target and was successfully applied to analysis of target gene extracted from cancer cells or in human serum-contained samples, indicating its great potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jimmy
2015-01-01
Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Derived RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1 and OPR) in the hemi-biotrophic fungus Fusarium oxysporum f. sp. conglutinans. Expression of double stranded RNA molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75%, 83% and 72% reduction for FOW2, FRP1 and OPR respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30-50% survival and FOW2 between 45-70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants.
Nanoparticle-based targeted therapeutics in head-and-neck cancer.
Wu, Ting-Ting; Zhou, Shui-Hong
2015-01-01
Head-and-neck cancer is a major form of the disease worldwide. Treatment consists of surgery, radiation therapy and chemotherapy, but these have not resulted in improved survival rates over the past few decades. Versatile nanoparticles, with selective tumor targeting, are considered to have the potential to improve these poor outcomes. Application of nanoparticle-based targeted therapeutics has extended into many areas, including gene silencing, chemotherapeutic drug delivery, radiosensitization, photothermal therapy, and has shown much promise. In this review, we discuss recent advances in the field of nanoparticle-mediated targeted therapeutics for head-and-neck cancer, with an emphasis on the description of targeting points, including future perspectives.
Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment
Graves, Christopher J.; Makrides, Elizabeth J.; Schmidt, Victor T.; Giblin, Anne E.; Cardon, Zoe G.
2016-01-01
ABSTRACT Environmental nutrient enrichment from human agricultural and waste runoff could cause changes to microbial communities that allow them to capitalize on newly available resources. Currently, the response of microbial communities to nutrient enrichment remains poorly understood, and, while some studies have shown no clear changes in community composition in response to heavy nutrient loading, others targeting specific genes have demonstrated clear impacts. In this study, we compared functional metagenomic profiles from sediment samples taken along two salt marsh creeks, one of which was exposed for more than 40 years to treated sewage effluent at its head. We identified strong and consistent increases in the relative abundance of microbial genes related to each of the biochemical steps in the denitrification pathway at enriched sites. Despite fine-scale local increases in the abundance of denitrification-related genes, the overall community structures based on broadly defined functional groups and taxonomic annotations were similar and varied with other environmental factors, such as salinity, which were common to both creeks. Homology-based taxonomic assignments of nitrous oxide reductase sequences in our data show that increases are spread over a broad taxonomic range, thus limiting detection from taxonomic data alone. Together, these results illustrate a functionally targeted yet taxonomically broad response of microbial communities to anthropogenic nutrient loading, indicating some resolution to the apparently conflicting results of existing studies on the impacts of nutrient loading in sediment communities. IMPORTANCE In this study, we used environmental metagenomics to assess the response of microbial communities in estuarine sediments to long-term, nutrient-rich sewage effluent exposure. Unlike previous studies, which have mainly characterized communities based on taxonomic data or primer-based amplification of specific target genes, our whole-genome metagenomics approach allowed an unbiased assessment of the abundance of denitrification-related genes across the entire community. We identified strong and consistent increases in the relative abundance of gene sequences related to denitrification pathways across a broad phylogenetic range at sites exposed to long-term nutrient addition. While further work is needed to determine the consequences of these community responses in regulating environmental nutrient cycles, the increased abundance of bacteria harboring denitrification genes suggests that such processes may be locally upregulated. In addition, our results illustrate how whole-genome metagenomics combined with targeted hypothesis testing can reveal fine-scale responses of microbial communities to environmental disturbance. PMID:26944843
Functional Responses of Salt Marsh Microbial Communities to Long-Term Nutrient Enrichment.
Graves, Christopher J; Makrides, Elizabeth J; Schmidt, Victor T; Giblin, Anne E; Cardon, Zoe G; Rand, David M
2016-05-01
Environmental nutrient enrichment from human agricultural and waste runoff could cause changes to microbial communities that allow them to capitalize on newly available resources. Currently, the response of microbial communities to nutrient enrichment remains poorly understood, and, while some studies have shown no clear changes in community composition in response to heavy nutrient loading, others targeting specific genes have demonstrated clear impacts. In this study, we compared functional metagenomic profiles from sediment samples taken along two salt marsh creeks, one of which was exposed for more than 40 years to treated sewage effluent at its head. We identified strong and consistent increases in the relative abundance of microbial genes related to each of the biochemical steps in the denitrification pathway at enriched sites. Despite fine-scale local increases in the abundance of denitrification-related genes, the overall community structures based on broadly defined functional groups and taxonomic annotations were similar and varied with other environmental factors, such as salinity, which were common to both creeks. Homology-based taxonomic assignments of nitrous oxide reductase sequences in our data show that increases are spread over a broad taxonomic range, thus limiting detection from taxonomic data alone. Together, these results illustrate a functionally targeted yet taxonomically broad response of microbial communities to anthropogenic nutrient loading, indicating some resolution to the apparently conflicting results of existing studies on the impacts of nutrient loading in sediment communities. In this study, we used environmental metagenomics to assess the response of microbial communities in estuarine sediments to long-term, nutrient-rich sewage effluent exposure. Unlike previous studies, which have mainly characterized communities based on taxonomic data or primer-based amplification of specific target genes, our whole-genome metagenomics approach allowed an unbiased assessment of the abundance of denitrification-related genes across the entire community. We identified strong and consistent increases in the relative abundance of gene sequences related to denitrification pathways across a broad phylogenetic range at sites exposed to long-term nutrient addition. While further work is needed to determine the consequences of these community responses in regulating environmental nutrient cycles, the increased abundance of bacteria harboring denitrification genes suggests that such processes may be locally upregulated. In addition, our results illustrate how whole-genome metagenomics combined with targeted hypothesis testing can reveal fine-scale responses of microbial communities to environmental disturbance. Copyright © 2016 Graves et al.
Calvet, Christophe Y; Thalmensi, Jessie; Liard, Christelle; Pliquet, Elodie; Bestetti, Thomas; Huet, Thierry; Langlade-Demoyen, Pierre; Mir, Lluis M
2014-01-01
DNA vaccination consists in administering an antigen-encoding plasmid in order to trigger a specific immune response. This specific vaccine strategy is of particular interest to fight against various infectious diseases and cancer. Gene electrotransfer is the most efficient and safest non-viral gene transfer procedure and specific electrical parameters have been developed for several target tissues. Here, a gene electrotransfer protocol into the skin has been optimized in mice for efficient intradermal immunization against the well-known telomerase tumor antigen. First, the luciferase reporter gene was used to evaluate gene electrotransfer efficiency into the skin as a function of the electrical parameters and electrodes, either non-invasive or invasive. In a second time, these parameters were tested for their potency to generate specific cellular CD8 immune responses against telomerase epitopes. These CD8 T-cells were fully functional as they secreted IFNγ and were endowed with specific cytotoxic activity towards target cells. This simple and optimized procedure for efficient gene electrotransfer into the skin using the telomerase antigen is to be used in cancer patients for the phase 1 clinical evaluation of a therapeutic cancer DNA vaccine called INVAC-1. PMID:26015983
Tidball, Andrew M; Dang, Louis T; Glenn, Trevor W; Kilbane, Emma G; Klarr, Daniel J; Margolis, Joshua L; Uhler, Michael D; Parent, Jack M
2017-09-12
Specifically ablating genes in human induced pluripotent stem cells (iPSCs) allows for studies of gene function as well as disease mechanisms in disorders caused by loss-of-function (LOF) mutations. While techniques exist for engineering such lines, we have developed and rigorously validated a method of simultaneous iPSC reprogramming while generating CRISPR/Cas9-dependent insertions/deletions (indels). This approach allows for the efficient and rapid formation of genetic LOF human disease cell models with isogenic controls. The rate of mutagenized lines was strikingly consistent across experiments targeting four different human epileptic encephalopathy genes and a metabolic enzyme-encoding gene, and was more efficient and consistent than using CRISPR gene editing of established iPSC lines. The ability of our streamlined method to reproducibly generate heterozygous and homozygous LOF iPSC lines with passage-matched isogenic controls in a single step provides for the rapid development of LOF disease models with ideal control lines, even in the absence of patient tissue. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Genetic surgery - a right strategy to attack cancer.
Sverdlov, Eugene D
2011-12-01
The approaches now united under the term "gene therapy" can be divided into two broad strategies: (1) strategy using the ideology of molecular targeted therapy, but with genes in the role of agents targeted at certain molecular component(s) or pathways presumably crucial for cancer maintenance; (ii) strategy aimed at the destruction of tumors as a whole exploiting the features shared by all cancers, for example relatively fast mitotic cell division. While the first strategy is "true" gene therapy, the second one, as e.g. suicide gene therapy, is more like genetic surgery, when a surgeon just cuts off a tumor being not interested in subtle genetic mechanisms of cancer emergence and progression. This approach inherits the ideology of chemotherapy but escapes its severe toxic effects due to intracellular formation of toxic agents. Genetic surgery seems to be the most appropriate approach to combat cancer, and its simplicity is paradoxically adequate to the super-complexity of tumors. The review consists of three parts: (i) analysis of the reasons of tumor supercomplexity and fatally inevitable failure of molecular targeted therapy, (ii) general principles of the genetic surgery strategy, and (iii) examples of genetic surgery approaches with analysis of their drawbacks and the ways for their improvement.
Sanderson, Linda M.; Degenhardt, Tatjana; Koppen, Arjen; Kalkhoven, Eric; Desvergne, Beatrice; Müller, Michael; Kersten, Sander
2009-01-01
Peroxisome proliferator-activated receptor α (PPARα) is an important transcription factor in liver that can be activated physiologically by fasting or pharmacologically by using high-affinity synthetic agonists. Here we initially set out to elucidate the similarities in gene induction between Wy14643 and fasting. Numerous genes were commonly regulated in liver between the two treatments, including many classical PPARα target genes, such as Aldh3a2 and Cpt2. Remarkably, several genes induced by Wy14643 were upregulated by fasting independently of PPARα, including Lpin2 and St3gal5, suggesting involvement of another transcription factor. Using chromatin immunoprecipitation, Lpin2 and St3gal5 were shown to be direct targets of PPARβ/δ during fasting, whereas Aldh3a2 and Cpt2 were exclusive targets of PPARα. Binding of PPARβ/δ to the Lpin2 and St3gal5 genes followed the plasma free fatty acid (FFA) concentration, consistent with activation of PPARβ/δ by plasma FFAs. Subsequent experiments using transgenic and knockout mice for Angptl4, a potent stimulant of adipose tissue lipolysis, confirmed the stimulatory effect of plasma FFAs on Lpin2 and St3gal5 expression levels via PPARβ/δ. In contrast, the data did not support activation of PPARα by plasma FFAs. The results identify Lpin2 and St3gal5 as novel PPARβ/δ target genes and show that upregulation of gene expression by PPARβ/δ is sensitive to plasma FFA levels. In contrast, this is not the case for PPARα, revealing a novel mechanism for functional differentiation between PPARs. PMID:19805517
SNP discovery in candidate adaptive genes using exon capture in a free-ranging alpine ungulate
Roffler, Gretchen H.; Amish, Stephen J.; Smith, Seth; Cosart, Ted F.; Kardos, Marty; Schwartz, Michael K.; Luikart, Gordon
2016-01-01
Identification of genes underlying genomic signatures of natural selection is key to understanding adaptation to local conditions. We used targeted resequencing to identify SNP markers in 5321 candidate adaptive genes associated with known immunological, metabolic and growth functions in ovids and other ungulates. We selectively targeted 8161 exons in protein-coding and nearby 5′ and 3′ untranslated regions of chosen candidate genes. Targeted sequences were taken from bighorn sheep (Ovis canadensis) exon capture data and directly from the domestic sheep genome (Ovis aries v. 3; oviAri3). The bighorn sheep sequences used in the Dall's sheep (Ovis dalli dalli) exon capture aligned to 2350 genes on the oviAri3 genome with an average of 2 exons each. We developed a microfluidic qPCR-based SNP chip to genotype 476 Dall's sheep from locations across their range and test for patterns of selection. Using multiple corroborating approaches (lositan and bayescan), we detected 28 SNP loci potentially under selection. We additionally identified candidate loci significantly associated with latitude, longitude, precipitation and temperature, suggesting local environmental adaptation. The three methods demonstrated consistent support for natural selection on nine genes with immune and disease-regulating functions (e.g. Ovar-DRA, APC, BATF2, MAGEB18), cell regulation signalling pathways (e.g. KRIT1, PI3K, ORRC3), and respiratory health (CYSLTR1). Characterizing adaptive allele distributions from novel genetic techniques will facilitate investigation of the influence of environmental variation on local adaptation of a northern alpine ungulate throughout its range. This research demonstrated the utility of exon capture for gene-targeted SNP discovery and subsequent SNP chip genotyping using low-quality samples in a nonmodel species.
Shu, Yilai; Tao, Yong; Wang, Zhengmin; Tang, Yong; Li, Huawei; Dai, Pu; Gao, Guangping; Chen, Zheng-Yi
2016-01-01
The mammalian inner ear consists of diverse cell types with important functions. Gene mutations in these diverse cell types have been found to underlie different forms of genetic hearing loss. Targeting these mutations for gene therapy development represents a future therapeutic strategy to treat hearing loss. Adeno-associated viral (AAV) vectors have become the vector of choice for gene delivery in animal models in vivo. To identify AAV vectors that target inner ear cell subtypes, we systemically screened 12 AAV vectors with different serotypes (AAV1, 2, 5, 6, 6.2, 7, 8, 9, rh.8, rh.10, rh.39, and rh.43) that carry a reporter gene GFP in neonatal and adult mice by microinjection in vivo. We found that most AAVs infect both neonatal and adult inner ear, with different specificities and expression levels. The inner ear cochlear sensory epithelial region, which includes auditory hair cells and supporting cells, is most frequently targeted for gene delivery. Expression of the transgene is sustained, and neonatal inner ear delivery does not adversely affect hearing. Adult inner ear injection of AAV has a similar infection pattern as the younger inner ear, with the exception that outer hair cell death caused by the injection procedure can lead to hearing loss. In the adult, more so than in the neonatal mice, cell types infected and efficiency of infection are correlated with the site of injection. Most infected cells survive in neonatal and adult inner ears. The study adds to the list of AAV vectors that transduce the mammalian inner ear efficiently, providing the tools that are important to study inner ear gene function and for the development of gene therapy to treat hearing loss. PMID:27342665
Bai, Gaobo; Zheng, Wenling; Ma, Wenli
2018-05-01
Hepatitis C virus (HCV)-induced human hepatocellular carcinoma (HCC) progression may be due to a complex multi-step processes. The developmental mechanism of these processes is worth investigating for the prevention, diagnosis and therapy of HCC. The aim of the present study was to investigate the molecular mechanism underlying the progression of HCV-induced hepatocarcinogenesis. First, the dynamic gene module, consisting of key genes associated with progression between the normal stage and HCC, was identified using the Weighted Gene Co-expression Network Analysis tool from R language. By defining those genes in the module as seeds, the change of co-expression in differentially expressed gene sets in two consecutive stages of pathological progression was examined. Finally, interaction pairs of HCV viral proteins and their directly targeted proteins in the identified module were extracted from the literature and a comprehensive interaction dataset from yeast two-hybrid experiments. By combining the interactions between HCV and their targets, and protein-protein interactions in the Search Tool for the Retrieval of Interacting Genes database (STRING), the HCV-key genes interaction network was constructed and visualized using Cytoscape software 3.2. As a result, a module containing 44 key genes was identified to be associated with HCC progression, due to the dynamic features and functions of those genes in the module. Several important differentially co-expressed gene pairs were identified between non-HCC and HCC stages. In the key genes, cyclin dependent kinase 1 (CDK1), NDC80, cyclin A2 (CCNA2) and rac GTPase activating protein 1 (RACGAP1) were shown to be targeted by the HCV nonstructural proteins NS5A, NS3 and NS5B, respectively. The four genes perform an intermediary role between the HCV viral proteins and the dysfunctional module in the HCV key genes interaction network. These findings provided valuable information for understanding the mechanism of HCV-induced HCC progression and for seeking drug targets for the therapy and prevention of HCC.
Keshri, Jitendra; Mishra, Avinash; Jha, Bhavanath
2013-03-30
Population indices of bacteria and archaea were investigated from saline-alkaline soil and a possible microbe-environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline-alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling. Copyright © 2012 Elsevier GmbH. All rights reserved.
Characterization of circulating microRNA expression in patients with a ventricular septal defect.
Li, Dong; Ji, Long; Liu, Lianbo; Liu, Yizhi; Hou, Haifeng; Yu, Kunkun; Sun, Qiang; Zhao, Zhongtang
2014-01-01
Ventricular septal defect (VSD), one of the most common types of congenital heart disease (CHD), results from a combination of environmental and genetic factors. Recent studies demonstrated that microRNAs (miRNAs) are involved in development of CHD. This study was to characterize the expression of miRNAs that might be involved in the development or reflect the consequences of VSD. MiRNA microarray analysis and reverse transcription-polymerase chain reaction (RT-PCR) were employed to determine the miRNA expression profile from 3 patients with VSD and 3 VSD-free controls. 3 target gene databases were employed to predict the target genes of differentially expressed miRNAs. miRNAs that were generally consensus across the three databases were selected and then independently validated using real time PCR in plasma samples from 20 VSD patients and 15 VSD-free controls. Target genes of validated 8 miRNAs were predicted using bioinformatic methods. 36 differentially expressed miRNAs were found in the patients with VSD and the VSD-free controls. Compared with VSD-free controls, expression of 15 miRNAs were up-regulated and 21 miRNAs were downregulated in the VSD group. 15 miRNAs were selected based on database analysis results and expression levels of 8 miRNAs were validated. The results of the real time PCR were consistent with those of the microarray analysis. Gene ontology analysis indicated that the top target genes were mainly related to cardiac right ventricle morphogenesis. NOTCH1, HAND1, ZFPM2, and GATA3 were predicted as targets of hsa-let-7e-5p, hsa-miR-222-3p and hsa-miR-433. We report for the first time the circulating miRNA profile for patients with VSD and showed that 7 miRNAs were downregulated and 1 upregulated when matched to VSD-free controls. Analysis revealed target genes involved in cardiac development were probably regulated by these miRNAs.
A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis
Ni, Ying; Aghamirzaie, Delasa; Elmarakeby, Haitham; Collakova, Eva; Li, Song; Grene, Ruth; Heath, Lenwood S.
2016-01-01
Gene regulatory networks (GRNs) provide a representation of relationships between regulators and their target genes. Several methods for GRN inference, both unsupervised and supervised, have been developed to date. Because regulatory relationships consistently reprogram in diverse tissues or under different conditions, GRNs inferred without specific biological contexts are of limited applicability. In this report, a machine learning approach is presented to predict GRNs specific to developing Arabidopsis thaliana embryos. We developed the Beacon GRN inference tool to predict GRNs occurring during seed development in Arabidopsis based on a support vector machine (SVM) model. We developed both global and local inference models and compared their performance, demonstrating that local models are generally superior for our application. Using both the expression levels of the genes expressed in developing embryos and prior known regulatory relationships, GRNs were predicted for specific embryonic developmental stages. The targets that are strongly positively correlated with their regulators are mostly expressed at the beginning of seed development. Potential direct targets were identified based on a match between the promoter regions of these inferred targets and the cis elements recognized by specific regulators. Our analysis also provides evidence for previously unknown inhibitory effects of three positive regulators of gene expression. The Beacon GRN inference tool provides a valuable model system for context-specific GRN inference and is freely available at https://github.com/BeaconProjectAtVirginiaTech/beacon_network_inference.git. PMID:28066488
Osa-miR169 Negatively Regulates Rice Immunity against the Blast Fungus Magnaporthe oryzae
Li, Yan; Zhao, Sheng-Li; Li, Jin-Lu; Hu, Xiao-Hong; Wang, He; Cao, Xiao-Long; Xu, Yong-Ju; Zhao, Zhi-Xue; Xiao, Zhi-Yuan; Yang, Nan; Fan, Jing; Huang, Fu; Wang, Wen-Ming
2017-01-01
miR169 is a conserved microRNA (miRNA) family involved in plant development and stress-induced responses. However, how miR169 functions in rice immunity remains unclear. Here, we show that miR169 acts as a negative regulator in rice immunity against the blast fungus Magnaporthe oryzae by repressing the expression of nuclear factor Y-A (NF-YA) genes. The accumulation of miR169 was significantly increased in a susceptible accession but slightly fluctuated in a resistant accession upon M. oryzae infection. Consistently, the transgenic lines overexpressing miR169a became hyper-susceptible to different M. oryzae strains associated with reduced expression of defense-related genes and lack of hydrogen peroxide accumulation at the infection site. Consequently, the expression of its target genes, the NF-YA family members, was down-regulated by the overexpression of miR169a at either transcriptional or translational level. On the contrary, overexpression of a target mimicry that acts as a sponge to trap miR169a led to enhanced resistance to M. oryzae. In addition, three of miR169’s target genes were also differentially up-regulated in the resistant accession upon M. oryzae infection. Taken together, our data indicate that miR169 negatively regulates rice immunity against M. oryzae by differentially repressing its target genes and provide the potential to engineer rice blast resistance via a miRNA. PMID:28144248
Petrie, John L.; Al-Oanzi, Ziad H.; Arden, Catherine; Tudhope, Susan J.; Mann, Jelena; Kieswich, Julius; Yaqoob, Muhammad M.; Towle, Howard C.
2013-01-01
In the liver, a high glucose concentration activates transcription of genes encoding glucose 6-phosphatase and enzymes for glycolysis and lipogenesis by elevation in phosphorylated intermediates and recruitment of the transcription factor ChREBP (carbohydrate response element binding protein) and its partner, Mlx, to gene promoters. A proposed function for this mechanism is intracellular phosphate homeostasis. In extrahepatic tissues, MondoA, the paralog of ChREBP, partners with Mlx in transcriptional induction by glucose. We tested for glucose induction of regulatory proteins of the glycogenic pathway in hepatocytes and identified the glycogen-targeting proteins, GL and PTG (protein targeting to glycogen), as being encoded by Mlx-dependent glucose-inducible genes. PTG induction by glucose was MondoA dependent but ChREBP independent and was enhanced by forced elevation of fructose 2,6-bisphosphate and by additional xylitol-derived metabolites. It was counteracted by selective depletion of fructose 2,6-bisphosphate with a bisphosphatase-active kinase-deficient variant of phosphofructokinase 2/fructosebisphosphatase 2, which prevented translocation of MondoA to the nucleus and recruitment to the PTG promoter. We identify a novel role for MondoA in the liver and demonstrate that elevated fructose 2,6-bisphosphate is essential for recruitment of MondoA to the PTG promoter. Phosphometabolite activation of MondoA and ChREBP and their recruitment to target genes is consistent with a mechanism for gene regulation to maintain intracellular phosphate homeostasis. PMID:23207906
Jenkins, Catherine E; Gusscott, Samuel; Wong, Rachel J; Shevchuk, Olena O; Rana, Gurneet; Giambra, Vincenzo; Tyshchenko, Kateryna; Islam, Rashedul; Hirst, Martin; Weng, Andrew P
2018-05-04
RUNX1 is frequently mutated in T-cell acute lymphoblastic leukemia (T-ALL). The spectrum of RUNX1 mutations has led to the notion that it acts as a tumor suppressor in this context; however, other studies have placed RUNX1 along with transcription factors TAL1 and NOTCH1 as core drivers of an oncogenic transcriptional program. To reconcile these divergent roles, we knocked down RUNX1 in human T-ALL cell lines and deleted Runx1 or Cbfb in primary mouse T-cell leukemias. RUNX1 depletion consistently resulted in reduced cell proliferation and increased apoptosis. RUNX1 upregulated variable sets of target genes in each cell line, but consistently included a core set of oncogenic effectors including IGF1R and NRAS. Our results support the conclusion that RUNX1 has a net positive effect on cell growth in the context of established T-ALL. Copyright © 2018. Published by Elsevier Inc.
Repurposing the CRISPR-Cas9 system for targeted DNA methylation.
Vojta, Aleksandar; Dobrinić, Paula; Tadić, Vanja; Bočkor, Luka; Korać, Petra; Julg, Boris; Klasić, Marija; Zoldoš, Vlatka
2016-07-08
Epigenetic studies relied so far on correlations between epigenetic marks and gene expression pattern. Technologies developed for epigenome editing now enable direct study of functional relevance of precise epigenetic modifications and gene regulation. The reversible nature of epigenetic modifications, including DNA methylation, has been already exploited in cancer therapy for remodeling the aberrant epigenetic landscape. However, this was achieved non-selectively using epigenetic inhibitors. Epigenetic editing at specific loci represents a novel approach that might selectively and heritably alter gene expression. Here, we developed a CRISPR-Cas9-based tool for specific DNA methylation consisting of deactivated Cas9 (dCas9) nuclease and catalytic domain of the DNA methyltransferase DNMT3A targeted by co-expression of a guide RNA to any 20 bp DNA sequence followed by the NGG trinucleotide. We demonstrated targeted CpG methylation in a ∼35 bp wide region by the fusion protein. We also showed that multiple guide RNAs could target the dCas9-DNMT3A construct to multiple adjacent sites, which enabled methylation of a larger part of the promoter. DNA methylation activity was specific for the targeted region and heritable across mitotic divisions. Finally, we demonstrated that directed DNA methylation of a wider promoter region of the target loci IL6ST and BACH2 decreased their expression. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
G-protein gamma subunit 1 is required for sugar reception in Drosophila
Ishimoto, Hiroshi; Takahashi, Kuniaki; Ueda, Ryu; Tanimura, Teiichi
2005-01-01
Though G-proteins have been implicated in the primary step of taste signal transduction, no direct demonstration has been done in insects. We show here that a G-protein gamma subunit, Gγ1, is required for the signal transduction of sugar taste reception in Drosophila. The Gγ1 gene is expressed mainly in one of the gustatory receptor neurons. Behavioral responses of the flies to sucrose were reduced by the targeted suppression of neural functions of Gγ1-expressing cells using neural modulator genes such as the modified Shaker K+ channel (EKO), the tetanus toxin light chain or the shibire (shits1) gene. RNA interference targeting to the Gγ1 gene reduced the amount of Gγ1 mRNA and suppressed electrophysiological response of the sugar receptor neuron. We also demonstrated that responses to sugars were lowered in Gγ1 null mutant, Gγ1N159. These results are consistent with the hypothesis that Gγ1 participates in the signal transduction of sugar taste reception. PMID:16121192
Javierre, Biola M; Burren, Oliver S; Wilder, Steven P; Kreuzhuber, Roman; Hill, Steven M; Sewitz, Sven; Cairns, Jonathan; Wingett, Steven W; Várnai, Csilla; Thiecke, Michiel J; Burden, Frances; Farrow, Samantha; Cutler, Antony J; Rehnström, Karola; Downes, Kate; Grassi, Luigi; Kostadima, Myrto; Freire-Pritchett, Paula; Wang, Fan; Stunnenberg, Hendrik G; Todd, John A; Zerbino, Daniel R; Stegle, Oliver; Ouwehand, Willem H; Frontini, Mattia; Wallace, Chris; Spivakov, Mikhail; Fraser, Peter
2016-11-17
Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Identifying and targeting determinants of melanoma cellular invasion.
Jayachandran, Aparna; Prithviraj, Prashanth; Lo, Pu-Han; Walkiewicz, Marzena; Anaka, Matthew; Woods, Briannyn L; Tan, BeeShin; Behren, Andreas; Cebon, Jonathan; McKeown, Sonja J
2016-07-05
Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients.
Identifying and targeting determinants of melanoma cellular invasion
Jayachandran, Aparna; Prithviraj, Prashanth; Lo, Pu-Han; Walkiewicz, Marzena; Anaka, Matthew; Woods, Briannyn L.; Tan, BeeShin
2016-01-01
Epithelial-to-mesenchymal transition is a critical process that increases the malignant potential of melanoma by facilitating invasion and dissemination of tumor cells. This study identified genes involved in the regulation of cellular invasion and evaluated whether they can be targeted to inhibit melanoma invasion. We identified Peroxidasin (PXDN), Netrin 4 (NTN4) and GLIS Family Zinc Finger 3 (GLIS3) genes consistently elevated in invasive mesenchymal-like melanoma cells. These genes and proteins were highly expressed in metastatic melanoma tumors, and gene silencing led to reduced melanoma invasion in vitro. Furthermore, migration of PXDN, NTN4 or GLIS3 siRNA transfected melanoma cells was inhibited following transplantation into the embryonic chicken neural tube compared to control siRNA transfected melanoma cells. Our study suggests that PXDN, NTN4 and GLIS3 play a functional role in promoting melanoma cellular invasion, and therapeutic approaches directed toward inhibiting the action of these proteins may reduce the incidence or progression of metastasis in melanoma patients. PMID:27172792
Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs.
Khan, Aly A; Betel, Doron; Miller, Martin L; Sander, Chris; Leslie, Christina S; Marks, Debora S
2009-06-01
Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites with gene expression changes after transfections. The competition and saturation effects have practical implications for miRNA target prediction, the design of siRNA and short hairpin RNA (shRNA) genomic screens and siRNA therapeutics.
RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization.
HamediRad, Mohammad; Lian, Jiazhang; Li, Hejun; Zhao, Huimin
2018-06-01
Xylose is a major component of lignocellulosic biomass, one of the most abundant feedstocks for biofuel production. Therefore, efficient and rapid conversion of xylose to ethanol is crucial in the viability of lignocellulosic biofuel plants. In this study, RNAi Assisted Genome Evolution (RAGE) was used to improve the xylose utilization rate in SR8, one of the most efficient publicly available xylose utilizing Saccharomyces cerevisiae strains. To identify gene targets for further improvement, we created a genome-scale library consisting of both genetic over-expression and down-regulation mutations in SR8. Followed by screening in media containing xylose as the sole carbon source, yeast mutants with 29% faster xylose utilization, and 45% higher ethanol productivity were obtained relative to the parent strain. Two known and two new effector genes were identified in these mutant strains. Notably, down-regulation of CDC11, an essential gene, resulted in faster xylose utilization, and this gene target cannot be identified in genetic knock-out screens. © 2018 Wiley Periodicals, Inc.
A discovery of novel microRNAs in the silkworm (Bombyx mori) genome.
Yu, Xiaomin; Zhou, Qing; Cai, Yimei; Luo, Qibin; Lin, Hongbin; Hu, Songnian; Yu, Jun
2009-12-01
MicroRNAs (miRNAs) are pivotal regulators involved in various physiological and pathological processes via their post-transcriptional regulation of gene expressions. We sequenced 14 libraries of small RNAs constructed from samples spanning the life cycle of silkworms, and discovered 50 novel miRNAs previously not known in animals and verified 43 of them using stem-loop RT-PCR. Our genome-wide analyses of 27 species-specific miRNAs suggest they arise from transposable elements, protein-coding genes duplication/transposition and random foldback sequences; which is consistent with the idea that novel animal miRNAs may evolve from incomplete self-complementary transcripts and become fixed in the process of co-adaptation with their targets. Computational prediction suggests that the silkworm-specific miRNAs may have a preference of regulating genes that are related to life-cycle-associated traits, and these genes can serve as potential targets for subsequent studies of the modulating networks in the development of Bombyx mori.
Jaiswal, Alok; Peddinti, Gopal; Akimov, Yevhen; Wennerberg, Krister; Kuznetsov, Sergey; Tang, Jing; Aittokallio, Tero
2017-06-01
Genome-wide loss-of-function profiling is widely used for systematic identification of genetic dependencies in cancer cells; however, the poor reproducibility of RNA interference (RNAi) screens has been a major concern due to frequent off-target effects. Currently, a detailed understanding of the key factors contributing to the sub-optimal consistency is still a lacking, especially on how to improve the reliability of future RNAi screens by controlling for factors that determine their off-target propensity. We performed a systematic, quantitative analysis of the consistency between two genome-wide shRNA screens conducted on a compendium of cancer cell lines, and also compared several gene summarization methods for inferring gene essentiality from shRNA level data. We then devised novel concepts of seed essentiality and shRNA family, based on seed region sequences of shRNAs, to study in-depth the contribution of seed-mediated off-target effects to the consistency of the two screens. We further investigated two seed-sequence properties, seed pairing stability, and target abundance in terms of their capability to minimize the off-target effects in post-screening data analysis. Finally, we applied this novel methodology to identify genetic interactions and synthetic lethal partners of cancer drivers, and confirmed differential essentiality phenotypes by detailed CRISPR/Cas9 experiments. Using the novel concepts of seed essentiality and shRNA family, we demonstrate how genome-wide loss-of-function profiling of a common set of cancer cell lines can be actually made fairly reproducible when considering seed-mediated off-target effects. Importantly, by excluding shRNAs having higher propensity for off-target effects, based on their seed-sequence properties, one can remove noise from the genome-wide shRNA datasets. As a translational application case, we demonstrate enhanced reproducibility of genetic interaction partners of common cancer drivers, as well as identify novel synthetic lethal partners of a major oncogenic driver, PIK3CA, supported by a complementary CRISPR/Cas9 experiment. We provide practical guidelines for improved design and analysis of genome-wide loss-of-function profiling and demonstrate how this novel strategy can be applied towards improved mapping of genetic dependencies of cancer cells to aid development of targeted anticancer treatments.
NASA Astrophysics Data System (ADS)
Dunfield, K. E.; Gaiero, J. R.; Condron, L.
2017-12-01
Healthy and diverse communities of soil organisms influence key soil ecosystem services such as carbon sequestration, water quality protection, climate regulation and nutrient cycling. Microbially driven mineralization of organic phosphorus is an important contributor to plant available inorganic orthophosphates. In acidic soils, microbes produce non-specific acid phosphatases (NSAPs) which act on common forms of organic phosphorus (P). Our current understanding of P turnover in soils has been limited by lack of research tools capable of targeting these genes. Thus, we developed a set of oligonucleotide PCR primers that targeted bacteria with the genetic potential for acid phosphatase production. A long term randomized-block pasture trial was sampled following 22 years of continued aerial biomass removal and retention. Primers were used to target genes encoding alkaline phosphatase (phoD) and the three classes (CAAP, CBAP, CCAP) of non-specific acid phosphatases. PCR amplicons targeting total genes and gene transcripts were sequenced using Illumina MiSeq to understand the diversity of the bacterial phosphatase producing communities. In general, the majority of operational taxonomic units (OTUs) were shared across both treatments and across metagenomes and transcriptomes. However, analysis of DNA OTUs revealed significantly different communities driven by treatment differences (P < 0.05). Transcript expression was highest in the removed biomass treatment which corresponded the reduced Olsen P levels (15 vs. 36 mg kg-1 in retained treatment). Acid phosphatase activity was measured in all samples, and found to be highest in the biomass retained treatment (16.8 vs. 11.4 µmol g-1 dry soil h-1), likely elevated due to plant-derived enzymes; however, was still correlated to bacterial gene abundances. Overall, the phosphatase producing microbial communities responded to the effect of consistent P limitation as expected, through alteration in the composition of the community structure and through increased levels of gene expression of the phosphatase genes.
Allon, Nahum; Saxena, Ashima; Chambers, Carolyn; Doctor, Bhupendra P
2012-06-10
We formulated a new gene delivery system based on targeted liposomes. The efficacy of the delivery system was demonstrated in in vitro and in vivo models. The targeting moiety consists of a high-affinity 7-amino-acid peptide, covalently and evenly conjugated to the liposome surface. The targeting peptide acts as an endothelin antagonist, and accelerates liposome binding and internalization. It is devoid of other biological activity. Liposomes with high phosphatidyl serine (PS) were specially formulated to help their fusion with the endosomal membrane at low pH and enable release of the liposome payload into the cytoplasm. A DNA payload, pre-compressed by protamine, was encapsulated into the liposomes, which directed the plasmid into the cell's nucleus. Upon exposure to epithelial cells, binding of the liposomes occurred within 5-10 min, followed by facilitated internalization of the complex. Endosomal escape was complete within 30 min, followed by DNA accumulation in the nucleus 2h post-transfection. A549 lung epithelial cells transfected with plasmid encoding for GFP encapsulated in targeted liposomes expressed significantly more protein than those transfected with plasmid complexed with Lipofectamine. The intra-tracheal instillation of plasmid encoding for GFP encapsulated in targeted liposomes into rat lungs resulted in the expression of GFP in bronchioles and alveoli within 5 days. These results suggest that this delivery system has great potential in targeting genes to lungs. Copyright © 2011 Elsevier B.V. All rights reserved.
Data Mining of Gene Arrays for Biomarkers of Survival in Ovarian Cancer
Coveney, Clare; Boocock, David J.; Rees, Robert C.; Deen, Suha; Ball, Graham R.
2015-01-01
The expected five-year survival rate from a stage III ovarian cancer diagnosis is a mere 22%; this applies to the 7000 new cases diagnosed yearly in the UK. Stratification of patients with this heterogeneous disease, based on active molecular pathways, would aid a targeted treatment improving the prognosis for many cases. While hundreds of genes have been associated with ovarian cancer, few have yet been verified by peer research for clinical significance. Here, a meta-analysis approach was applied to two carefully selected gene expression microarray datasets. Artificial neural networks, Cox univariate survival analyses and T-tests identified genes whose expression was consistently and significantly associated with patient survival. The rigor of this experimental design increases confidence in the genes found to be of interest. A list of 56 genes were distilled from a potential 37,000 to be significantly related to survival in both datasets with a FDR of 1.39859 × 10−11, the identities of which both verify genes already implicated with this disease and provide novel genes and pathways to pursue. Further investigation and validation of these may lead to clinical insights and have potential to predict a patient’s response to treatment or be used as a novel target for therapy. PMID:27600227
Zhang, Zhigang; Vu, Gia-Phong; Gong, Hao; Xia, Chuan; Chen, Yuan-Chuan; Liu, Fenyong; Wu, Jianguo; Lu, Sangwei
2013-01-01
External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella-mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.
Bioinformatics study of the mangrove actin genes
NASA Astrophysics Data System (ADS)
Basyuni, M.; Wasilah, M.; Sumardi
2017-01-01
This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.
Richardson, Casey R.; Luo, Qing-Jun; Gontcharova, Viktoria; Jiang, Ying-Wen; Samanta, Manoj; Youn, Eunseog; Rock, Christopher D.
2010-01-01
Background MicroRNAs (miRNAs) and trans-acting small-interfering RNAs (tasi-RNAs) are small (20–22 nt long) RNAs (smRNAs) generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs) are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery. Principal Findings We explored rice (Oryza sativa) sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans) and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis ‘orphan’ hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM) was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the “ancient” (deeply conserved) class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for “new” rapidly-evolving MIRNA genes. Conclusions Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other kingdoms, which can provide insight into antisense transcription, miRNA evolution, and post-transcriptional gene regulation. PMID:20520764
Stanhope, Michael J.; Walsh, Stacey L.; Becker, Julie A.; Italia, Michael J.; Ingraham, Karen A.; Gwynn, Michael N.; Mathie, Tom; Poupard, James A.; Miller, Linda A.; Brown, James R.; Amrine-Madsen, Heather
2005-01-01
Fluoroquinolones are an important class of antibiotics for the treatment of infections arising from the gram-positive respiratory pathogen Streptococcus pneumoniae. Although there is evidence supporting interspecific lateral DNA transfer of fluoroquinolone target loci, no studies have specifically been designed to assess the role of intraspecific lateral transfer of these genes in the spread of fluoroquinolone resistance. This study involves a comparative evolutionary perspective, in which the evolutionary history of a diverse set of S. pneumoniae clinical isolates is reconstructed from an expanded multilocus sequence typing data set, with putative recombinants excluded. This control history is then assessed against networks of each of the four fluoroquinolone target loci from the same isolates. The results indicate that although the majority of fluoroquinolone target loci from this set of 60 isolates are consistent with a clonal dissemination hypothesis, 3 to 10% of the sequences are consistent with an intraspecific lateral transfer hypothesis. Also evident were examples of interspecific transfer, with two isolates possessing a parE-parC gene region arising from viridans group streptococci. The Spain 23F-1 clone is the most dominant fluoroquinolone-nonsusceptible clone in this set of isolates, and the analysis suggests that its members act as frequent donors of fluoroquinolone-nonsusceptible loci. Although the majority of fluoroquinolone target gene sequences in this set of isolates can be explained on the basis of clonal dissemination, a significant number are more parsimoniously explained by intraspecific lateral DNA transfer, and in situations of high S. pneumoniae population density, such events could be an important means of resistance spread. PMID:16189113
Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael
2018-04-01
Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.
Davis, Bryan T; Wang, Xiao-Jun; Rohret, Judy A; Struzynski, Jason T; Merricks, Elizabeth P; Bellinger, Dwight A; Rohret, Frank A; Nichols, Timothy C; Rogers, Christopher S
2014-01-01
Recent progress in engineering the genomes of large animals has spurred increased interest in developing better animal models for diseases where current options are inadequate. Here, we report the creation of Yucatan miniature pigs with targeted disruptions of the low-density lipoprotein receptor (LDLR) gene in an effort to provide an improved large animal model of familial hypercholesterolemia and atherosclerosis. Yucatan miniature pigs are well established as translational research models because of similarities to humans in physiology, anatomy, genetics, and size. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, male and female LDLR+/- pigs were generated. Subsequent breeding of heterozygotes produced LDLR-/- pigs. When fed a standard swine diet (low fat, no cholesterol), LDLR+/- pigs exhibited a moderate, but consistent increase in total and LDL cholesterol, while LDLR-/- pigs had considerably elevated levels. This severe hypercholesterolemia in homozygote animals resulted in atherosclerotic lesions in the coronary arteries and abdominal aorta that resemble human atherosclerosis. These phenotypes were more severe and developed over a shorter time when fed a diet containing natural sources of fat and cholesterol. LDLR-targeted Yucatan miniature pigs offer several advantages over existing large animal models including size, consistency, availability, and versatility. This new model of cardiovascular disease could be an important resource for developing and testing novel detection and treatment strategies for coronary and aortic atherosclerosis and its complications.
Gentsch, George E; Spruce, Thomas; Monteiro, Rita S; Owens, Nick D L; Martin, Stephen R; Smith, James C
2018-03-12
Antisense morpholino oligomers (MOs) have been indispensable tools for developmental biologists to transiently knock down (KD) genes rather than to knock them out (KO). Here we report on the implications of genetic KO versus MO-mediated KD of the mesoderm-specifying Brachyury paralogs in the frog Xenopus tropicalis. While both KO and KD embryos fail to activate the same core gene regulatory network, resulting in virtually identical morphological defects, embryos injected with control or target MOs also show a systemic GC content-dependent immune response and many off-target splicing defects. Optimization of MO dosage and increasing incubation temperatures can mitigate, but not eliminate, these MO side effects, which are consistent with the high affinity measured between MO and off-target sequence in vitro. We conclude that while MOs can be useful to profile loss-of-function phenotypes at a molecular level, careful attention must be paid to their immunogenic and off-target side effects. Copyright © 2018 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.
The drug target genes show higher evolutionary conservation than non-target genes.
Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie
2016-01-26
Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.
USDA-ARS?s Scientific Manuscript database
Plant breeding consists of creating phenotypic and genetic diversity by hybridizing diverse parents and selecting progeny which have new combinations of targeted traits. Soybean [Glycine max (L.) Merr.] genetic diversity is limited because domesticated soybean has undergone multiple genetic bottlene...
Zhang, Fang; Gao, Chao; Ma, Xiao-Feng; Peng, Xiao-Lin; Zhang, Rong-Xin; Kong, De-Xin; Simard, Alain R; Hao, Jun-Wei
2016-04-01
Long noncoding RNAs (lncRNAs) play a key role in regulating immunological functions. Their impact on the chronic inflammatory disease multiple sclerosis (MS), however, remains unknown. We investigated the expression of lncRNAs in peripheral blood mononuclear cells (PBMCs) of patients with MS and attempt to explain their possible role in the process of MS. For this study, we recruited 26 patients with MS according to the revised McDonald criteria. Then, we randomly chose 6 patients for microarray analysis. Microarray assays identified outstanding differences in lncRNA expression, which were verified through real-time PCR. LncRNA functions were annotated for target genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and regulatory relationships between lncRNAs and target genes were analyzed using the "cis" and "trans" model. There were 2353 upregulated lncRNAs, 389 downregulated lncRNAs, 1037 upregulated mRNAs, and 279 downregulated mRNAs in patients with MS compared to healthy control subjects (fold change >2.0). Real-time PCR results of six aberrant lncRNAs were consistent with the microarray data. The coexpression network comprised 864 lncRNAs and 628 mRNAs. Among differentially expressed lncRNAs, 10 lncRNAs were predicted to have 10 cis-regulated target genes, and 33 lncRNAs might regulate their trans target genes. We identified a subset of dysregulated lncRNAs and mRNAs. The differentially expressed lncRNAs may be important in the process of MS. However, the specific molecular mechanisms and biological functions of these lncRNAs in the pathogenesis of MS need further study. © 2016 The Authors. CNS Neuroscience & Therapeutics published by John Wiley & Sons Ltd.
Universal light-switchable gene promoter system
Quail, Peter H.; Huq, Enamul; Tepperman, James; Sato, Sae
2005-02-22
An artificial promoter system that can be fused upstream of any desired gene enabling reversible induction or repression of the expression of the gene at will in any suitable host cell or organisms by light is described. The design of the system is such that a molecule of the plant photoreceptor phytochrome is targeted to the specific DNA binding site in the promoter by a protein domain that is fused to the phytochrome and that specifically recognizes this binding site. This bound phytochrome, upon activation by light, recruits a second fusion protein consisting of a protein that binds to phytochrome only upon light activation and a transcriptional activation domain that activates expression of the gene downstream of the promoter.
A novel paired domain DNA recognition motif can mediate Pax2 repression of gene transcription.
Håvik, B; Ragnhildstveit, E; Lorens, J B; Saelemyr, K; Fauske, O; Knudsen, L K; Fjose, A
1999-12-20
The paired domain (PD) is an evolutionarily conserved DNA-binding domain encoded by the Pax gene family of developmental regulators. The Pax proteins are transcription factors and are involved in a variety of processes such as brain development, patterning of the central nervous system (CNS), and B-cell development. In this report we demonstrate that the zebrafish Pax2 PD can interact with a novel type of DNA sequences in vitro, the triple-A motif, consisting of a heptameric nucleotide sequence G/CAAACA/TC with an invariant core of three adjacent adenosines. This recognition sequence was found to be conserved in known natural Pax5 repressor elements involved in controlling the expression of the p53 and J-chain genes. By identifying similar high affinity binding sites in potential target genes of the Pax2 protein, including the pax2 gene itself, we obtained further evidence that the triple-A sites are biologically significant. The putative natural target sites also provide a basis for defining an extended consensus recognition sequence. In addition, we observed in transformation assays a direct correlation between Pax2 repressor activity and the presence of triple-A sites. The results suggest that a transcriptional regulatory function of Pax proteins can be modulated by PD binding to different categories of target sequences. Copyright 1999 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S.; Robert, M.F.; Mitchell, G.A.
1994-09-01
3-hydroxy-3-methylglutaryl CoA lyase (HL) is a mitochondrial matrix enzyme which catalyzes the last step of leucine catabolism and of ketogenesis. Autosomal recessive HL deficiency in humans results in episodes of hypoglycemia and coma. We are interested in the pathophysiology of HL deficiency as a model for both amino acid and fatty acid inborn errors. We have cloned the human and mouse HL genes. In order to analyze the 5{prime} nontranslated region of mouse HL gene, we cloned and sequenced a 1.8 kb fragment containing the 5{prime} extremity including exon 1 and about 1.6 kb of 5{prime} nontranslated sequence. The regionmore » surrounding exon 1 is CpG-rich (66.4%). Using the criteria of West, the Observed/Expected ratio for CpG dinucleotides is 0.7 ({ge}0.6 is consistent with a CpG island). We are carrying out primer extension and RNase protection experiments to determine the transcription initiation site. We constructed a gene targeting vector by introducing the neomycin resistance gene into exon 2 of a 7.5 kb genomic subclone of the mouse HL gene. Targeting was performed by electroporating 10 mg linearized vector into 10{sup 7} ES cells and selecting for 12 days with G418. 5/228 colonies (2.2%) had homologous recombination as shown by PCR screening and Southern analysis. We are microinjecting the 5 targeted clones into blastocysts to create an HL-deficient mouse. To date we have obtained two chimeras with contributions of 95% and 55% from 129, by coat color estimates. Three of 27 (11%) of the HL-deficient patients studied were suggested by genomic Southern analysis to be homozygous for large intragenic deletions. We confirmed this and defined the boundaries using exonic PCR.« less
Gao, M L; Zhong, X M; Ma, X; Ning, H J; Zhu, D; Zou, J Z
2016-06-02
To make genetic diagnosis of Alagille syndrome (ALGS) patients using target gene sequence capture and next generation sequencing technology. Target gene sequence capture and next generation sequencing were used to detect ALGS gene of 4 patients. They were hospitalized at the Affiliated Hospital, Capital Institute of Pediatrics between January 2014 and December 2015, referred to clinical diagnosis of ALGS typical and atypical respectively in 2 cases. Blood samples were collected from patients and their parents and genomic DNA was extracted from lymphocytes. Target gene sequence capture and next generation sequencing was detected. Sanger sequencing was used to confirm the results of the patients and their parents. Cholestasis, heart defects, inverted triangular face and butterfly vertebrae were presented as main clinical features in 4 male patients. The first hospital visiting ages ranged from 3 months and 14 days to 3 years and 1 month. The age of onset ranged from 3 days to 42 days (median 23 days). According to the clinical diagnostic criteria of ALGS, patient 1 and patient 2 were considered as typical ALGS. The other 2 patients were considered as atypical ALGS. Four Jagged 1(JAG1) pathogenic mutations were detected. Three different missense mutations were detected in patient 1 to patient 3 with ALGS(c.839C>T(p.W280X), c. 703G>A(p.R235X), c. 1720C>T(p.V574M)). The JAG1 mutation of patient 3 was first reported. Patient 4 had one novel insertion mutation (c.1779_1780insA(p.Ile594AsnfsTer23)). Parental analysis verified that the JAG1 missense mutation of 3 patients were de novo. The results of sanger sequencing was consistent with the results of the next generation sequencing. Target gene sequence capture combined with next generation sequencing can detect two pathogenic genes in ALGS and test genes of other related diseases in infantile cholestatic diseases simultaneously and presents a high throughput, high efficiency and low cost. It may provide molecular diagnosis and treatment for clinicians with good clinical application prospects.
The physical size of transcription factors is key to transcriptional regulation in chromatin domains
NASA Astrophysics Data System (ADS)
Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi
2015-02-01
Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.
Lu, Yifei; Yan, Hongxiang; Deng, Jiezhong; Huang, Zhigang; Jin, Xurui; Yu, Yanlan; Hu, Qiwen; Hu, Fuquan; Wang, Jing
2017-09-18
Lactococcus lactis is a food grade probiotics and widely used to express heterologous proteins. Generally, target genes are knocked into the L. lactis genome through double-crossover recombination to express heterologous proteins stably. However, creating marker-less heterologous genes knocked-in clones is laborious. In this study, an efficient heterologous gene knock-in reporter system was developed in L. lactis NZ9000. Our knock-in reporter system consists of a temperature-sensitive plasmid pJW and a recombinant L. lactis strain named NZB. The pJW contains homologous arms, and was constructed to knock-in heterologous genes at a fixed locus of NZ9000 genome. lacZ (β-galactosidase) gene was knocked into the chromosome of NZ9000 as a counter-selective marker through the plasmid pJW to generate NZB. The engineered NZB strain formed blue colonies on X-Gal plate. The desired double-crossover mutants formed white colonies distinctive from the predominantly blue colonies (parental and plasmid-integrated clones) when the embedded lacZ was replaced with the target heterologous genes carried by pJW in NZB. By using the system, the heterologous gene knocked-in clones are screened by colony phenotype change rather than by checking colonies individually. Our new knock-in reporter system provides an efficient method to create heterologous genes knocked-in clones.
Alenghat, Theresa; Yu, Jiujiu; Lazar, Mitchell A
2006-01-01
Unliganded thyroid hormone receptor (TR) actively represses transcription via the nuclear receptor corepressor (N-CoR)/histone deacetylase 3 (HDAC3) complex. Although transcriptional activation by liganded receptors involves chromatin remodeling, the role of ATP-dependent remodeling in receptor-mediated repression is unknown. Here we report that SNF2H, the mammalian ISWI chromatin remodeling ATPase, is critical for repression of a genomically integrated, TR-regulated reporter gene. N-CoR and HDAC3 are both required for recruitment of SNF2H to the repressed gene. SNF2H does not interact directly with the N-CoR/HDAC3 complex, but binds to unacetylated histone H4 tails, suggesting that deacetylase activity of the corepressor complex is critical to SNF2H function. Indeed, HDAC3 as well as SNF2H are required for nucleosomal organization on the TR target gene. Consistent with these findings, reduction of SNF2H induces expression of an endogenous TR-regulated gene, dio1, in liver cells. Thus, although not apparent from studies of transiently transfected reporter genes, gene repression by TR involves the targeting of chromatin remodeling factors to repressed genes by the HDAC activity of nuclear receptor corepressors. PMID:16917504
Feng, Hao; Xu, Ming; Zheng, Xiang; Zhu, Tongyi; Gao, Xiaoning; Huang, Lili
2017-01-01
miRNAs are important regulators involving in plant-pathogen interactions. However, their roles in apple tree response to Valsa canker pathogen ( Valsa mali, Vm ) infection were poorly understood. In this study, we constructed two miRNA libraries using the twig bark tissues of apple tree ( Malus domestica Borkh. cv. "Fuji") inoculated with Vm (IVm) and PDA medium (control, BMd). Among all detected miRNAs, 23 miRNAs were specifically isolated from BMd and 39 miRNAs were specifically isolated from IVm. Meanwhile, the expression of 294 miRNAs decreased; and another 172 miRNAs showed an increased expression trend in IVm compared with that in BMd. Furthermore, two degradome sequencing libraries were also constructed to identify the target genes of these miRNAs. In total, 353 differentially expressed miRNAs between IVm and BMd were detected to be able to target 1,077 unigenes with 2,251 cleavage sites. Based on GO and KEGG analysis, these genes were found to be mainly related to transcription regulation and signal transduction. In addition, we selected 17 miRNAs and 22 corresponding target genes to screen the expression profiles when apple twigs were infected by Vm . The expression trends of most miRNAs/target genes were consist with the results of deep sequencing. Many of them may involve in the apple twig- Vm interaction by inducing/reducing their expression. What's more, miRNAs and their target genes regulate the apple twig- Vm interaction by forming many complicated regulation networks rather than one to one model. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, most of which are disease resistance related genes. This indicates that mdm-miR482b may play important roles in apple twig response to Vm . More important, the feedback regulation of sRNA pathway in apple twig is also very complex, and play critical role in the interaction between apple twig and Vm based on the results of expression analysis. In all, the results will provide insights into the crucial functions of miRNAs in the woody plant, apple tree- Vm interaction.
Feng, Hao; Xu, Ming; Zheng, Xiang; Zhu, Tongyi; Gao, Xiaoning; Huang, Lili
2017-01-01
miRNAs are important regulators involving in plant-pathogen interactions. However, their roles in apple tree response to Valsa canker pathogen (Valsa mali, Vm) infection were poorly understood. In this study, we constructed two miRNA libraries using the twig bark tissues of apple tree (Malus domestica Borkh. cv. “Fuji”) inoculated with Vm (IVm) and PDA medium (control, BMd). Among all detected miRNAs, 23 miRNAs were specifically isolated from BMd and 39 miRNAs were specifically isolated from IVm. Meanwhile, the expression of 294 miRNAs decreased; and another 172 miRNAs showed an increased expression trend in IVm compared with that in BMd. Furthermore, two degradome sequencing libraries were also constructed to identify the target genes of these miRNAs. In total, 353 differentially expressed miRNAs between IVm and BMd were detected to be able to target 1,077 unigenes with 2,251 cleavage sites. Based on GO and KEGG analysis, these genes were found to be mainly related to transcription regulation and signal transduction. In addition, we selected 17 miRNAs and 22 corresponding target genes to screen the expression profiles when apple twigs were infected by Vm. The expression trends of most miRNAs/target genes were consist with the results of deep sequencing. Many of them may involve in the apple twig-Vm interaction by inducing/reducing their expression. What's more, miRNAs and their target genes regulate the apple twig-Vm interaction by forming many complicated regulation networks rather than one to one model. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, most of which are disease resistance related genes. This indicates that mdm-miR482b may play important roles in apple twig response to Vm. More important, the feedback regulation of sRNA pathway in apple twig is also very complex, and play critical role in the interaction between apple twig and Vm based on the results of expression analysis. In all, the results will provide insights into the crucial functions of miRNAs in the woody plant, apple tree-Vm interaction. PMID:29270184
Paasinen-Sohns, Aino; Koelzer, Viktor H; Frank, Angela; Schafroth, Julian; Gisler, Aline; Sachs, Melanie; Graber, Anne; Rothschild, Sacha I; Wicki, Andreas; Cathomas, Gieri; Mertz, Kirsten D
2017-03-01
Companion diagnostics rely on genomic testing of molecular alterations to enable effective cancer treatment. Here we report the clinical application and validation of the Oncomine Focus Assay (OFA), an integrated, commercially available next-generation sequencing (NGS) assay for the rapid and simultaneous detection of single nucleotide variants, short insertions and deletions, copy number variations, and gene rearrangements in 52 cancer genes with therapeutic relevance. Two independent patient cohorts were investigated to define the workflow, turnaround times, feasibility, and reliability of OFA targeted sequencing in clinical application and using archival material. Cohort I consisted of 59 diagnostic clinical samples from the daily routine submitted for molecular testing over a 4-month time period. Cohort II consisted of 39 archival melanoma samples that were up to 15years old. Libraries were prepared from isolated nucleic acids and sequenced on the Ion Torrent PGM sequencer. Sequencing datasets were analyzed using the Ion Reporter software. Genomic alterations were identified and validated by orthogonal conventional assays including pyrosequencing and immunohistochemistry. Sequencing results of both cohorts, including archival formalin-fixed, paraffin-embedded material stored up to 15years, were consistent with published variant frequencies. A concordance of 100% between established assays and OFA targeted NGS was observed. The OFA workflow enabled a turnaround of 3½ days. Taken together, OFA was found to be a convenient tool for fast, reliable, broadly applicable and cost-effective targeted NGS of tumor samples in routine diagnostics. Thus, OFA has strong potential to become an important asset for precision oncology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
AAV viral vector delivery to the brain by shape-conforming MR-guided infusions.
Bankiewicz, Krystof S; Sudhakar, Vivek; Samaranch, Lluis; San Sebastian, Waldy; Bringas, John; Forsayeth, John
2016-10-28
Gene transfer technology offers great promise as a potential therapeutic approach to the brain but has to be viewed as a very complex technology. Success of ongoing clinical gene therapy trials depends on many factors such as selection of the correct genetic and anatomical target in the brain. In addition, selection of the viral vector capable of transfer of therapeutic gene into target cells, along with long-term expression that avoids immunotoxicity has to be established. As with any drug development strategy, delivery of gene therapy has to be consistent and predictable in each study subject. Failed drug and vector delivery will lead to failed clinical trials. In this article, we describe our experience with AAV viral vector delivery system, that allows us to optimize and monitor in real time viral vector administration into affected regions of the brain. In addition to discussing MRI-guided technology for administration of AAV vectors we have developed and now employ in current clinical trials, we also describe ways in which infusion cannula design and stereotactic trajectory may be used to maximize the anatomical coverage by using fluid backflow. This innovative approach enables more precise coverage by fitting the shape of the infusion to the shape of the anatomical target. Copyright © 2016 Elsevier B.V. All rights reserved.
Miyamoto, R; Sugiura, R; Kamitani, S; Yada, T; Lu, Y; Sio, S O; Asakura, M; Matsuhisa, A; Shuntoh, H; Kuno, T
2000-07-01
Lithium is the drug of choice for the treatment of bipolar affective disorder. The identification of an in vivo target of lithium in fission yeast as a model organism may help in the understanding of lithium therapy. For this purpose, we have isolated genes whose overexpression improved cell growth under high LiCl concentrations. Overexpression of tol1(+), one of the isolated genes, increased the tolerance of wild-type yeast cells for LiCl but not for NaCl. tol1(+) encodes a member of the lithium-sensitive phosphomonoesterase protein family, and it exerts dual enzymatic activities, 3'(2'),5'-bisphosphate nucleotidase and inositol polyphosphate 1-phosphatase. tol1(+) gene-disrupted cells required high concentrations of sulfite in the medium for growth. Consistently, sulfite repressed the sulfate assimilation pathway in fission yeast. However, tol1(+) gene-disrupted cells could not fully recover from their growth defect and abnormal morphology even when the medium was supplemented with sulfite, suggesting the possible implication of inositol polyphosphate 1-phosphatase activity for cell growth and morphology. Given the remarkable functional conservation of the lithium-sensitive dual-specificity phosphomonoesterase between fission yeast and higher-eukaryotic cells during evolution, it may represent a likely in vivo target of lithium action across many species.
DeFaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Goto, Akira; Merilä, Juha
2011-06-01
Examples of parallel evolution of phenotypic traits have been repeatedly demonstrated in threespine sticklebacks (Gasterosteus aculeatus) across their global distribution. Using these as a model, we performed a targeted genome scan--focusing on physiologically important genes potentially related to freshwater adaptation--to identify genetic signatures of parallel physiological evolution on a global scale. To this end, 50 microsatellite loci, including 26 loci within or close to (<6 kb) physiologically important genes, were screened in paired marine and freshwater populations from six locations across the Northern Hemisphere. Signatures of directional selection were detected in 24 loci, including 17 physiologically important genes, in at least one location. Although no loci showed consistent signatures of selection in all divergent population pairs, several outliers were common in multiple locations. In particular, seven physiologically important genes, as well as reference ectodysplasin gene (EDA), showed signatures of selection in three or more locations. Hence, although these results give some evidence for consistent parallel molecular evolution in response to freshwater colonization, they suggest that different evolutionary pathways may underlie physiological adaptation to freshwater habitats within the global distribution of the threespine stickleback. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Interactions between the R2R3-MYB Transcription Factor, AtMYB61, and Target DNA Binding Sites
Prouse, Michael B.; Campbell, Malcolm M.
2013-01-01
Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing). The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators. PMID:23741471
Guo, Wei-Feng; Zhang, Shao-Wu; Shi, Qian-Qian; Zhang, Cheng-Ming; Zeng, Tao; Chen, Luonan
2018-01-19
The advances in target control of complex networks not only can offer new insights into the general control dynamics of complex systems, but also be useful for the practical application in systems biology, such as discovering new therapeutic targets for disease intervention. In many cases, e.g. drug target identification in biological networks, we usually require a target control on a subset of nodes (i.e., disease-associated genes) with minimum cost, and we further expect that more driver nodes consistent with a certain well-selected network nodes (i.e., prior-known drug-target genes). Therefore, motivated by this fact, we pose and address a new and practical problem called as target control problem with objectives-guided optimization (TCO): how could we control the interested variables (or targets) of a system with the optional driver nodes by minimizing the total quantity of drivers and meantime maximizing the quantity of constrained nodes among those drivers. Here, we design an efficient algorithm (TCOA) to find the optional driver nodes for controlling targets in complex networks. We apply our TCOA to several real-world networks, and the results support that our TCOA can identify more precise driver nodes than the existing control-fucus approaches. Furthermore, we have applied TCOA to two bimolecular expert-curate networks. Source code for our TCOA is freely available from http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm or https://github.com/WilfongGuo/guoweifeng . In the previous theoretical research for the full control, there exists an observation and conclusion that the driver nodes tend to be low-degree nodes. However, for target control the biological networks, we find interestingly that the driver nodes tend to be high-degree nodes, which is more consistent with the biological experimental observations. Furthermore, our results supply the novel insights into how we can efficiently target control a complex system, and especially many evidences on the practical strategic utility of TCOA to incorporate prior drug information into potential drug-target forecasts. Thus applicably, our method paves a novel and efficient way to identify the drug targets for leading the phenotype transitions of underlying biological networks.
Osato, Naoki
2018-01-19
Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional enrichments were related to the cellular functions. The normalized number of functional enrichments of human putative transcriptional target genes changed according to the criteria of enhancer-promoter assignments and correlated with the median expression level of the target genes. These analyses and characters of human putative transcriptional target genes would be useful to examine the criteria of enhancer-promoter assignments and to predict the novel mechanisms and factors such as DNA binding proteins and DNA sequences of enhancer-promoter interactions.
Li, Hansheng; Lin, Yuling; Chen, Xiaohui; Bai, Yu; Wang, Congqiao; Xu, Xiaoping; Wang, Yun
2018-01-01
While flavonoid metabolism’s regulation under light conditions by structural genes and transcription factors is understood, the roles of microRNAs (miRNAs) in this pathway have been rarely reported. In this paper, the accurate control of light was firstly enabled through the specially designed plant growth chamber which ensures consistency and accuracy of the cultivation of longan ECs and the repeatability of the experiments. Then, longan ECs were cultured in this chamber for 25 days. The change of growth rate of longan ECs was compared under different light qualities (dark, blue, green, white, green), intensities (16, 32, 64, 128, 256 μmol ·m-2 ·s-1), and durations (8 h, 12 h, 16 h, 20h, 24h). Results indicated that longan ECs had a high growth rate in the condition of blue or green light, at intensity ranged from 16 μmol·m-2·s-1 to 64 μmol·m-2·s-1, and duration from 8 h to 16 h. In addition, the contents of total flavonoids, rutin, and epicatechin were determined. Results indicated that flavonoid contents of longan ECs reached the highest value under blue light, at 32 μmol·m-2·s-1 and 12h/d. Blue light promoted the accumulation of epicatechin, but inhibited the synthesis of rutin. Finally, the expressions of flavonoid pathway genes, miRNAs and target genes were analyzed by qPCR. These results indicated that miR393 and its target gene DlTIR1-3, miR394 and its target gene DlAlMT12, and miR395 and its target gene DlAPS1 had a negative regulating relationship under blue light in longan ECs. Furthermore, miR393, miR394, and miR395 acted on target genes, which negatively regulated flavonoid key genes DlFLS and positively regulated key genes DlCHS, DlCHI, DlF3′H, DlDFR, DlLAR, and finally affected the accumulation of flavonoids. The treatment of longan ECs under the blue light at the intensity of 32 μmol·m-2·s-1 for 12 h/d inhibited the expression of miR393, miR394 and miR395, which promoted the expression of target genes and the accumulation of flavonoids and epicatechin, but inhibited the synthesis of rutin. PMID:29381727
Li, Hansheng; Lin, Yuling; Chen, Xiaohui; Bai, Yu; Wang, Congqiao; Xu, Xiaoping; Wang, Yun; Lai, Zhongxiong
2018-01-01
While flavonoid metabolism's regulation under light conditions by structural genes and transcription factors is understood, the roles of microRNAs (miRNAs) in this pathway have been rarely reported. In this paper, the accurate control of light was firstly enabled through the specially designed plant growth chamber which ensures consistency and accuracy of the cultivation of longan ECs and the repeatability of the experiments. Then, longan ECs were cultured in this chamber for 25 days. The change of growth rate of longan ECs was compared under different light qualities (dark, blue, green, white, green), intensities (16, 32, 64, 128, 256 μmol ·m-2 ·s-1), and durations (8 h, 12 h, 16 h, 20h, 24h). Results indicated that longan ECs had a high growth rate in the condition of blue or green light, at intensity ranged from 16 μmol·m-2·s-1 to 64 μmol·m-2·s-1, and duration from 8 h to 16 h. In addition, the contents of total flavonoids, rutin, and epicatechin were determined. Results indicated that flavonoid contents of longan ECs reached the highest value under blue light, at 32 μmol·m-2·s-1 and 12h/d. Blue light promoted the accumulation of epicatechin, but inhibited the synthesis of rutin. Finally, the expressions of flavonoid pathway genes, miRNAs and target genes were analyzed by qPCR. These results indicated that miR393 and its target gene DlTIR1-3, miR394 and its target gene DlAlMT12, and miR395 and its target gene DlAPS1 had a negative regulating relationship under blue light in longan ECs. Furthermore, miR393, miR394, and miR395 acted on target genes, which negatively regulated flavonoid key genes DlFLS and positively regulated key genes DlCHS, DlCHI, DlF3'H, DlDFR, DlLAR, and finally affected the accumulation of flavonoids. The treatment of longan ECs under the blue light at the intensity of 32 μmol·m-2·s-1 for 12 h/d inhibited the expression of miR393, miR394 and miR395, which promoted the expression of target genes and the accumulation of flavonoids and epicatechin, but inhibited the synthesis of rutin.
In vitro downregulated hypoxia transcriptome is associated with poor prognosis in breast cancer.
Abu-Jamous, Basel; Buffa, Francesca M; Harris, Adrian L; Nandi, Asoke K
2017-06-15
Hypoxia is a characteristic of breast tumours indicating poor prognosis. Based on the assumption that those genes which are up-regulated under hypoxia in cell-lines are expected to be predictors of poor prognosis in clinical data, many signatures of poor prognosis were identified. However, it was observed that cell line data do not always concur with clinical data, and therefore conclusions from cell line analysis should be considered with caution. As many transcriptomic cell-line datasets from hypoxia related contexts are available, integrative approaches which investigate these datasets collectively, while not ignoring clinical data, are required. We analyse sixteen heterogeneous breast cancer cell-line transcriptomic datasets in hypoxia-related conditions collectively by employing the unique capabilities of the method, UNCLES, which integrates clustering results from multiple datasets and can address questions that cannot be answered by existing methods. This has been demonstrated by comparison with the state-of-the-art iCluster method. From this collection of genome-wide datasets include 15,588 genes, UNCLES identified a relatively high number of genes (>1000 overall) which are consistently co-regulated over all of the datasets, and some of which are still poorly understood and represent new potential HIF targets, such as RSBN1 and KIAA0195. Two main, anti-correlated, clusters were identified; the first is enriched with MYC targets participating in growth and proliferation, while the other is enriched with HIF targets directly participating in the hypoxia response. Surprisingly, in six clinical datasets, some sub-clusters of growth genes are found consistently positively correlated with hypoxia response genes, unlike the observation in cell lines. Moreover, the ability to predict bad prognosis by a combined signature of one sub-cluster of growth genes and one sub-cluster of hypoxia-induced genes appears to be comparable and perhaps greater than that of known hypoxia signatures. We present a clustering approach suitable to integrate data from diverse experimental set-ups. Its application to breast cancer cell line datasets reveals new hypoxia-regulated signatures of genes which behave differently when in vitro (cell-line) data is compared with in vivo (clinical) data, and are of a prognostic value comparable or exceeding the state-of-the-art hypoxia signatures.
Analysis of hairpin RNA transgene-induced gene silencing in Fusarium oxysporum
2013-01-01
Background Hairpin RNA (hpRNA) transgenes can be effective at inducing RNA silencing and have been exploited as a powerful tool for gene function analysis in many organisms. However, in fungi, expression of hairpin RNA transcripts can induce post-transcriptional gene silencing, but in some species can also lead to transcriptional gene silencing, suggesting a more complex interplay of the two pathways at least in some fungi. Because many fungal species are important pathogens, RNA silencing is a powerful technique to understand gene function, particularly when gene knockouts are difficult to obtain. We investigated whether the plant pathogenic fungus Fusarium oxysporum possesses a functional gene silencing machinery and whether hairpin RNA transcripts can be employed to effectively induce gene silencing. Results Here we show that, in the phytopathogenic fungus F. oxysporum, hpRNA transgenes targeting either a β-glucuronidase (Gus) reporter transgene (hpGus) or the endogenous gene Frp1 (hpFrp) did not induce significant silencing of the target genes. Expression analysis suggested that the hpRNA transgenes are prone to transcriptional inactivation, resulting in low levels of hpRNA and siRNA production. However, the hpGus RNA can be efficiently transcribed by promoters acquired either by recombination with a pre-existing, actively transcribed Gus transgene or by fortuitous integration near an endogenous gene promoter allowing siRNA production. These siRNAs effectively induced silencing of a target Gus transgene, which in turn appeared to also induce secondary siRNA production. Furthermore, our results suggested that hpRNA transcripts without poly(A) tails are efficiently processed into siRNAs to induce gene silencing. A convergent promoter transgene, designed to express poly(A)-minus sense and antisense Gus RNAs, without an inverted-repeat DNA structure, induced consistent Gus silencing in F. oxysporum. Conclusions These results indicate that F. oxysporum possesses functional RNA silencing machineries for siRNA production and target mRNA cleavage, but hpRNA transgenes may induce transcriptional self-silencing due to its inverted-repeat structure. Our results suggest that F. oxysporum possesses a similar gene silencing pathway to other fungi like fission yeast, and indicate a need for developing more effective RNA silencing technology for gene function studies in this fungal pathogen. PMID:23819794
Identification of genes whose expression is altered by obesity throughout the arterial tree.
Padilla, Jaume; Jenkins, Nathan T; Thorne, Pamela K; Martin, Jeffrey S; Rector, R Scott; Davis, J Wade; Laughlin, M Harold
2014-11-15
We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.e., decreasing size of the artery). This trend was opposite in the diaphragm. We found a total of 15 genes that were consistently upregulated with obesity (MIS18A, CTRB1, FAM151B, FOLR2, PXMP4, OAS1B, SREBF2, KLRA17, SLC25A44, SNX10, SLFN3, MEF2BNB, IRF7, RAD23A, LGALS3BP) and five genes that were consistently downregulated with obesity (C2, GOLGA7, RIN3, PCP4, CYP2E1). A small fraction (∼9%) of the genes affected by obesity was modulated across all arteries examined. In conclusion, the present study identifies a select number of genes (i.e., 20 genes) whose expression is consistently altered throughout the arterial network in response to obesity and provides further insight into the heterogeneous vascular effects of obesity. Although there is no known direct function of the majority of 20 genes related to vascular health, the obesity-associated upregulation of SREBF2, LGALS3BP, IRF7, and FOLR2 across all arteries is suggestive of an unfavorable vascular phenotypic alteration with obesity. These data may serve as an important resource for identifying novel therapeutic targets against obesity-related vascular complications.
Identification of genes whose expression is altered by obesity throughout the arterial tree
Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Davis, J. Wade; Laughlin, M. Harold
2014-01-01
We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.e., decreasing size of the artery). This trend was opposite in the diaphragm. We found a total of 15 genes that were consistently upregulated with obesity (MIS18A, CTRB1, FAM151B, FOLR2, PXMP4, OAS1B, SREBF2, KLRA17, SLC25A44, SNX10, SLFN3, MEF2BNB, IRF7, RAD23A, LGALS3BP) and five genes that were consistently downregulated with obesity (C2, GOLGA7, RIN3, PCP4, CYP2E1). A small fraction (∼9%) of the genes affected by obesity was modulated across all arteries examined. In conclusion, the present study identifies a select number of genes (i.e., 20 genes) whose expression is consistently altered throughout the arterial network in response to obesity and provides further insight into the heterogeneous vascular effects of obesity. Although there is no known direct function of the majority of 20 genes related to vascular health, the obesity-associated upregulation of SREBF2, LGALS3BP, IRF7, and FOLR2 across all arteries is suggestive of an unfavorable vascular phenotypic alteration with obesity. These data may serve as an important resource for identifying novel therapeutic targets against obesity-related vascular complications. PMID:25271210
Manz, Judith; Rodríguez, Elke; ElSharawy, Abdou; Oesau, Eva-Maria; Petersen, Britt-Sabina; Baurecht, Hansjörg; Mayr, Gabriele; Weber, Susanne; Harder, Jürgen; Reischl, Eva; Schwarz, Agatha; Novak, Natalija; Franke, Andre; Weidinger, Stephan
2016-12-01
Gene-mapping studies have consistently identified a susceptibility locus for atopic dermatitis and other inflammatory diseases on chromosome band 11q13.5, with the strongest association observed for a common variant located in an intergenic region between the two annotated genes C11orf30 and LRRC32. Using a targeted resequencing approach we identified low-frequency and rare missense mutations within the LRRC32 gene encoding the protein GARP, a receptor on activated regulatory T cells that binds latent transforming growth factor-β. Subsequent association testing in more than 2,000 atopic dermatitis patients and 2,000 control subjects showed a significant excess of these LRRC32 variants in individuals with atopic dermatitis. Structural protein modeling and bioinformatic analysis predicted a disruption of protein transport upon these variants, and overexpression assays in CD4 + CD25 - T cells showed a significant reduction in surface expression of the mutated protein. Consistently, flow cytometric (FACS) analyses of different T-cell subtypes obtained from atopic dermatitis patients showed a significantly reduced surface expression of GARP and a reduced conversion of CD4 + CD25 - T cells into regulatory T cells, along with lower expression of latency-associated protein upon stimulation in carriers of the LRRC32 A407T variant. These results link inherited disturbances of transforming growth factor-β signaling with atopic dermatitis risk. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A Simple and Efficient Method for Assembling TALE Protein Based on Plasmid Library
Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying
2013-01-01
DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate. PMID:23840477
A simple and efficient method for assembling TALE protein based on plasmid library.
Zhang, Zhiqiang; Li, Duo; Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying
2013-01-01
DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate.
Picking Cell Lines for High-Throughput Transcriptomic Toxicity ...
High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captures the diversity of potential responses across chemicals. The ideal dataset to select these cell types would consist of hundreds of cell types treated with thousands of chemicals, but does not yet exist. However, basal gene expression data may be useful as a surrogate for representing the relevant biological space necessary for cell type selection. The goal of this study was to identify a small (< 20) number of cell types that capture a large, quantifiable fraction of basal gene expression diversity. Three publicly available collections of Affymetrix U133+2.0 cellular gene expression data were used: 1) 59 cell lines from the NCI60 set; 2) 303 primary cell types from the Mabbott et al (2013) expression atlas; and 3) 1036 cell lines from the Cancer Cell Line Encyclopedia. The data were RMA normalized, log-transformed, and the probe sets mapped to HUGO gene identifiers. The results showed that <20 cell lines capture only a small fraction of the total diversity in basal gene expression when evaluated using either the entire set of 20960 HUGO genes or a subset of druggable genes likely to be chemical targets. The fraction of the total gene expression variation explained was consistent when
Scott, Robert A.; Freitag, Daniel F.; Li, Li; Chu, Audrey Y.; Surendran, Praveen; Young, Robin; Grarup, Niels; Stancáková, Alena; Chen, Yuning; V.Varga, Tibor; Yaghootkar, Hanieh; Luan, Jian'an; Zhao, Jing Hua; Willems, Sara M.; Wessel, Jennifer; Wang, Shuai; Maruthur, Nisa; Michailidou, Kyriaki; Pirie, Ailith; van der Lee, Sven J.; Gillson, Christopher; Olama, Ali Amin Al; Amouyel, Philippe; Arriola, Larraitz; Arveiler, Dominique; Aviles-Olmos, Iciar; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Garcia, Sara Benlloch; Bis, Joshua C.; Blankenberg, Stefan; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Borecki, Ingrid B.; Bork-Jensen, Jette; Bowden, Sarah; Caldas, Carlos; Caslake, Muriel; Cupples, L. Adrienne; Cruchaga, Carlos; Czajkowski, Jacek; den Hoed, Marcel; Dunn, Janet A.; Earl, Helena M.; Ehret, Georg B.; Ferrannini, Ele; Ferrieres, Jean; Foltynie, Thomas; Ford, Ian; Forouhi, Nita G.; Gianfagna, Francesco; Gonzalez, Carlos; Grioni, Sara; Hiller, Louise; Jansson, Jan-Håkan; Jørgensen, Marit E.; Jukema, J. Wouter; Kaaks, Rudolf; Kee, Frank; Kerrison, Nicola D.; Key, Timothy J.; Kontto, Jukka; Kote-Jarai, Zsofia; Kraja, Aldi T.; Kuulasmaa, Kari; Kuusisto, Johanna; Linneberg, Allan; Liu, Chunyu; Marenne, Gaëlle; Mohlke, Karen L.; Morris, Andrew P.; Muir, Kenneth; Müller-Nurasyid, Martina; Munroe, Patricia B.; Navarro, Carmen; Nielsen, Sune F.; Nilsson, Peter M.; Nordestgaard, Børge G.; Packard, Chris J.; Palli, Domenico; Panico, Salvatore; Peloso, Gina M.; Perola, Markus; Peters, Annette; Poole, Christopher J.; Quirós, J. Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Salomaa, Veikko; Sánchez, María-José; Sattar, Naveed; Sharp, Stephen J.; Sims, Rebecca; Slimani, Nadia; Smith, Jennifer A.; Thompson, Deborah J.; Trompet, Stella; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Virtamo, Jarmo; Walker, Mark; Walter, Klaudia; Abraham, Jean E.; Amundadottir, Laufey T.; Aponte, Jennifer L.; Butterworth, Adam S.; Dupuis, Josée; Easton, Douglas F.; Eeles, Rosalind A.; Erdmann, Jeanette; Franks, Paul W.; Frayling, Timothy M.; Hansen, Torben; Howson, Joanna M. M.; Jørgensen, Torben; Kooner, Jaspal; Laakso, Markku; Langenberg, Claudia; McCarthy, Mark I.; Pankow, James S.; Pedersen, Oluf; Riboli, Elio; Rotter, Jerome I.; Saleheen, Danish; Samani, Nilesh J.; Schunkert, Heribert; Vollenweider, Peter; O'Rahilly, Stephen; Deloukas, Panos; Danesh, John; Goodarzi, Mark O.; Kathiresan, Sekar; Meigs, James B.; Ehm, Margaret G.; Wareham, Nicholas J.; Waterworth, Dawn M.
2016-01-01
Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to inform development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in 6 genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing, and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr;rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and lower T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomised controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process. PMID:27252175
Linehan, Erin K.; Schrader, Carol E.; Stavnezer, Janet
2015-01-01
Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID. PMID:26263206
The Pathogen-Host Interactions database (PHI-base): additions and future developments
Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.
2015-01-01
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340
Hua, Hong-Li; Zhang, Fa-Zhan; Labena, Abraham Alemayehu; Dong, Chuan; Jin, Yan-Ting; Guo, Feng-Biao
Investigation of essential genes is significant to comprehend the minimal gene sets of cell and discover potential drug targets. In this study, a novel approach based on multiple homology mapping and machine learning method was introduced to predict essential genes. We focused on 25 bacteria which have characterized essential genes. The predictions yielded the highest area under receiver operating characteristic (ROC) curve (AUC) of 0.9716 through tenfold cross-validation test. Proper features were utilized to construct models to make predictions in distantly related bacteria. The accuracy of predictions was evaluated via the consistency of predictions and known essential genes of target species. The highest AUC of 0.9552 and average AUC of 0.8314 were achieved when making predictions across organisms. An independent dataset from Synechococcus elongatus , which was released recently, was obtained for further assessment of the performance of our model. The AUC score of predictions is 0.7855, which is higher than other methods. This research presents that features obtained by homology mapping uniquely can achieve quite great or even better results than those integrated features. Meanwhile, the work indicates that machine learning-based method can assign more efficient weight coefficients than using empirical formula based on biological knowledge.
Clustered Mutation Signatures Reveal that Error-Prone DNA Repair Targets Mutations to Active Genes.
Supek, Fran; Lehner, Ben
2017-07-27
Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations. Copyright © 2017 Elsevier Inc. All rights reserved.
Powell, John H; Amish, Stephen J; Haynes, Gwilym D; Luikart, Gordon; Latch, Emily K
2016-09-01
Mule deer (Odocoileus hemionus) are an excellent nonmodel species for empirically testing hypotheses in landscape and population genomics due to their large population sizes (low genetic drift), relatively continuous distribution, diversity of occupied habitats and phenotypic variation. Because few genomic resources are currently available for this species, we used exon data from a cattle (Bos taurus) reference genome to direct targeted resequencing of 5935 genes in mule deer. We sequenced approximately 3.75 Mbp at minimum 20X coverage in each of the seven mule deer, identifying 23 204 single nucleotide polymorphisms (SNPs) within, or adjacent to, 6886 exons in 3559 genes. We found 91 SNP loci (from 69 genes) with putatively fixed allele frequency differences between the two major lineages of mule deer (mule deer and black-tailed deer), and our estimate of mean genetic divergence (genome-wide FST = 0.123) between these lineages was consistent with previous findings using microsatellite loci. We detected an over-representation of gamete generation and amino acid transport genes among the genes with SNPs exhibiting potentially fixed allele frequency differences between lineages. This targeted resequencing approach using exon capture techniques has identified a suite of loci that can be used in future research to investigate the genomic basis of adaptation and differentiation between black-tailed deer and mule deer. This study also highlights techniques (and an exon capture array) that will facilitate population genomic research in other cervids and nonmodel organisms. © 2016 John Wiley & Sons Ltd.
A Regulatory Role for MicroRNA 33* in Controlling Lipid Metabolism Gene Expression
Goedeke, Leigh; Vales-Lara, Frances M.; Fenstermaker, Michael; Cirera-Salinas, Daniel; Chamorro-Jorganes, Aranzazu; Ramírez, Cristina M.; Mattison, Julie A.; de Cabo, Rafael; Suárez, Yajaira
2013-01-01
hsa-miR-33a and hsa-miR-33b, intronic microRNAs (miRNAs) located within the sterol regulatory element-binding protein 2 and 1 genes (Srebp-2 and -1), respectively, have recently been shown to regulate lipid homeostasis in concert with their host genes. Although the functional role of miR-33a and -b has been highly investigated, the role of their passenger strands, miR-33a* and -b*, remains unclear. Here, we demonstrate that miR-33a* and -b* accumulate to steady-state levels in human, mouse, and nonhuman primate tissues and share a similar lipid metabolism target gene network as their sister strands. Analogous to miR-33, miR-33* represses key enzymes involved in cholesterol efflux (ABCA1 and NPC1), fatty acid metabolism (CROT and CPT1a), and insulin signaling (IRS2). Moreover, miR-33* also targets key transcriptional regulators of lipid metabolism, including SRC1, SRC3, NFYC, and RIP140. Importantly, inhibition of either miR-33 or miR-33* rescues target gene expression in cells overexpressing pre-miR-33. Consistent with this, overexpression of miR-33* reduces fatty acid oxidation in human hepatic cells. Altogether, these data support a regulatory role for the miRNA* species and suggest that miR-33 regulates lipid metabolism through both arms of the miR-33/miR-33* duplex. PMID:23547260
Huang, Hui; Chen, Yanhua; Chen, Huishuang; Ma, Yuanyuan; Chiang, Pei-Wen; Zhong, Jing; Liu, Xuyang; Asan; Wu, Jing; Su, Yan; Li, Xin; Deng, Jianlian; Huang, Yingping; Zhang, Xinxin; Li, Yang; Fan, Ning; Wang, Ying; Tang, Lihui; Shen, Jinting; Chen, Meiyan; Zhang, Xiuqing; Te, Deng; Banerjee, Santasree; Liu, Hui; Qi, Ming; Yi, Xin
2018-01-01
Inherited eye diseases are major causes of vision loss in both children and adults. Inherited eye diseases are characterized by clinical variability and pronounced genetic heterogeneity. Genetic testing may provide an accurate diagnosis for ophthalmic genetic disorders and allow gene therapy for specific diseases. A targeted gene capture panel was designed to capture exons of 283 inherited eye disease genes including 58 known causative retinitis pigmentosa (RP) genes. 180 samples were tested with this panel, 68 were previously tested by Sanger sequencing. Systematic evaluation of our method and comprehensive molecular diagnosis were carried on 99 RP patients. 96.85% targeted regions were covered by at least 20 folds, the accuracy of variants detection was 99.994%. In 4 of the 68 samples previously tested by Sanger sequencing, mutations of other diseases not consisting with the clinical diagnosis were detected by next-generation sequencing (NGS) not Sanger. Among the 99 RP patients, 64 (64.6%) were detected with pathogenic mutations, while in 3 patients, it was inconsistent between molecular diagnosis and their initial clinical diagnosis. After revisiting, one patient's clinical diagnosis was reclassified. In addition, 3 patients were found carrying large deletions. We have systematically evaluated our method and compared it with Sanger sequencing, and have identified a large number of novel mutations in a cohort of 99 RP patients. The results showed a sufficient accuracy of our method and suggested the importance of molecular diagnosis in clinical diagnosis.
Ma, Yuanyuan; Chiang, Pei-Wen; Zhong, Jing; Liu, Xuyang; Asan; Wu, Jing; Su, Yan; Li, Xin; Deng, Jianlian; Huang, Yingping; Zhang, Xinxin; Li, Yang; Fan, Ning; Wang, Ying; Tang, Lihui; Shen, Jinting; Chen, Meiyan; Zhang, Xiuqing; Te, Deng; Banerjee, Santasree; Liu, Hui; Qi, Ming; Yi, Xin
2018-01-01
Background Inherited eye diseases are major causes of vision loss in both children and adults. Inherited eye diseases are characterized by clinical variability and pronounced genetic heterogeneity. Genetic testing may provide an accurate diagnosis for ophthalmic genetic disorders and allow gene therapy for specific diseases. Methods A targeted gene capture panel was designed to capture exons of 283 inherited eye disease genes including 58 known causative retinitis pigmentosa (RP) genes. 180 samples were tested with this panel, 68 were previously tested by Sanger sequencing. Systematic evaluation of our method and comprehensive molecular diagnosis were carried on 99 RP patients. Results 96.85% targeted regions were covered by at least 20 folds, the accuracy of variants detection was 99.994%. In 4 of the 68 samples previously tested by Sanger sequencing, mutations of other diseases not consisting with the clinical diagnosis were detected by next-generation sequencing (NGS) not Sanger. Among the 99 RP patients, 64 (64.6%) were detected with pathogenic mutations, while in 3 patients, it was inconsistent between molecular diagnosis and their initial clinical diagnosis. After revisiting, one patient’s clinical diagnosis was reclassified. In addition, 3 patients were found carrying large deletions. Conclusions We have systematically evaluated our method and compared it with Sanger sequencing, and have identified a large number of novel mutations in a cohort of 99 RP patients. The results showed a sufficient accuracy of our method and suggested the importance of molecular diagnosis in clinical diagnosis. PMID:29641573
Cas9, Cpf1 and C2c1/2/3―What's next?
Yamamoto, Takashi; Sakuma, Tetsushi
2017-01-01
ABSTRACT Since the rapid emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system, developed as a genome engineering tool in 2012–2013, most researchers in the life science field have had a fixated interest in this fascinating technology. CRISPR-Cas9 is an RNA-guided DNA endonuclease system, which consists of Cas9 nuclease defining a few targeting base via protospacer adjacent motif complexed with easily customizable single guide RNA targeting around 20-bp genomic sequence. Although Streptococcus pyogenes Cas9 (SpCas9), one of the Cas9 proteins that applications in genome engineering were first demonstrated, still has wide usage because of its high nuclease activity and broad targeting range, there are several limitations such as large molecular weight and potential off-target effect. In this commentary, we describe various improvements and alternatives of CRISPR-Cas systems, including engineered Cas9 variants, Cas9 homologs, and novel Cas proteins other than Cas9. These variations enable flexible genome engineering with high efficiency and specificity, orthogonal genetic control at multiple gene loci, gene knockdown, or fluorescence imaging of transcripts mediated by RNA targeting, and beyond. PMID:28140746
Cas9, Cpf1 and C2c1/2/3-What's next?
Nakade, Shota; Yamamoto, Takashi; Sakuma, Tetsushi
2017-05-04
Since the rapid emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system, developed as a genome engineering tool in 2012-2013, most researchers in the life science field have had a fixated interest in this fascinating technology. CRISPR-Cas9 is an RNA-guided DNA endonuclease system, which consists of Cas9 nuclease defining a few targeting base via protospacer adjacent motif complexed with easily customizable single guide RNA targeting around 20-bp genomic sequence. Although Streptococcus pyogenes Cas9 (SpCas9), one of the Cas9 proteins that applications in genome engineering were first demonstrated, still has wide usage because of its high nuclease activity and broad targeting range, there are several limitations such as large molecular weight and potential off-target effect. In this commentary, we describe various improvements and alternatives of CRISPR-Cas systems, including engineered Cas9 variants, Cas9 homologs, and novel Cas proteins other than Cas9. These variations enable flexible genome engineering with high efficiency and specificity, orthogonal genetic control at multiple gene loci, gene knockdown, or fluorescence imaging of transcripts mediated by RNA targeting, and beyond.
Kumar, Deepak; Singh, S P; Karabasanavar, Nagappa S; Singh, Rashmi; Umapathi, V
2014-11-01
Authentication of meat assumes significance in view of religious, quality assurance, food safety, public health, conservation and legal concerns. Here, we describe a PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) assay targeting mitochondrial cytochrome-b gene for the identification of meats of five most common food animals namely cattle, buffalo, goat, sheep and pig. A pair of forward and reverse primers (VPH-F & VPH-R) amplifying a conserved region (168-776 bp) of mitochondrial cytochrome-b (cytb) gene for targeted species was designed which yielded a 609 bp PCR amplicon. Further, restriction enzyme digestion of the amplicons with Alu1 and Taq1 restriction enzymes resulted in a distinctive digestion pattern that was able to discriminate each species. The repeatability of the PCR-RFLP assay was validated ten times with consistent results observed. The developed assay can be used in routine diagnostic laboratories to differentiate the meats of closely related domestic livestock species namely cattle from buffalo and sheep from goat.
A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma
Do, Hongdo; Wong, Nicholas C.; Murone, Carmel; John, Thomas; Solomon, Benjamin; Mitchell, Paul L.; Dobrovic, Alexander
2014-01-01
DNA repair genes that have been inactivated by promoter methylation offer potential therapeutic targets either by targeting the specific repair deficiency, or by synthetic lethal approaches. This study evaluated promoter methylation status for eight selected DNA repair genes (ATM, BRCA1, ERCC1, MGMT, MLH1, NEIL1, RAD23B and XPC) in 56 non-small cell lung cancer (NSCLC) tumours and 11 lung cell lines using the methylation-sensitive high resolution melting (MS-HRM) methodology. Frequent methylation in NEIL1 (42%) and infrequent methylation in ERCC1 (2%) and RAD23B (2%) are reported for the first time in NSCLC. MGMT methylation was detected in 13% of the NSCLCs. Contrary to previous studies, methylation was not detected in ATM, BRCA1, MLH1 and XPC. Data from The Cancer Genome Atlas (TCGA) was consistent with these findings. The study emphasises the importance of using appropriate methodology for accurate assessment of promoter methylation. PMID:24569633
Zhang, Jie; Li, Yongxiang; Zheng, Jun; Zhang, Hongwei; Yang, Xiaohong; Wang, Jianhua; Wang, Guoying
2017-01-01
The extensive genetic variation present in maize (Zea mays) germplasm makes it possible to detect signatures of positive artificial selection that occurred during temperate and tropical maize improvement. Here we report an analysis of 532,815 polymorphisms from a maize association panel consisting of 368 diverse temperate and tropical inbred lines. We developed a gene-oriented approach adapting exonic polymorphisms to identify recently selected alleles by comparing haplotypes across the maize genome. This analysis revealed evidence of selection for more than 1100 genomic regions during recent improvement, and included regulatory genes and key genes with visible mutant phenotypes. We find that selected candidate target genes in temperate maize are enriched in biosynthetic processes, and further examination of these candidates highlights two cases, sucrose flux and oil storage, in which multiple genes in a common pathway can be cooperatively selected. Finally, based on available parallel gene expression data, we hypothesize that some genes were selected for regulatory variations, resulting in altered gene expression. PMID:28099470
Diagnostic application of clinical exome sequencing in Leber congenital amaurosis.
Han, Jinu; Rim, John Hoon; Hwang, In Sik; Kim, Jieun; Shin, Saeam; Lee, Seung-Tae; Choi, Jong Rak
2017-01-01
Leber congenital amaurosis (LCA) is a hereditary retinal dystrophy with wide genetic heterogeneity. Next-generation sequencing (NGS) targeting multiple genes can be a good option for the diagnosis of LCA, and we tested a clinical exome panel in patients with LCA. A total of nine unrelated Korean patients with LCA were sequenced using the Illumina TruSight One panel, which targets 4,813 clinically associated genes, followed by confirmation using Sanger sequencing. Patients' clinical information and familial study results were obtained and used for comprehensive interpretation. In all nine patients, we identified pathogenic variations in LCA-associated genes: NMNAT1 (n=3), GUCY2D (n=2), RPGRIP1 (n=2), CRX (n=1), and CEP290 or SPATA7 . Six patients had one or two mutations in accordance with inheritance patterns, all consistent with clinical phenotypes. Two patients had only one pathogenic mutation in recessive genes ( NMNAT1 and RPGRIP1 ), and the clinical features were specific to disorders associated with those genes. Six patients were solved for genetic causes, and it remains unclear for three patients with the clinical exome panel. With subsequent targeted panel sequencing with 113 genes associated with infantile nystagmus syndrome, a likely pathogenic allele in CEP290 was detected in one patient. Interestingly, one pathogenic variant (p.Arg237Cys) in NMNAT1 was present in three patients, and it had a high allele frequency (0.24%) in the general Korean population, suggesting that NMNAT1 could be a major gene responsible for LCA in Koreans. We confirmed that a commercial clinical exome panel can be effectively used in the diagnosis of LCA. Careful interpretation and clinical correlation could promote the successful implementation of clinical exome panels in routine diagnoses of retinal dystrophies, including LCA.
Frawley, Thomas; O'Brien, Cathal P; Conneally, Eibhlin; Vandenberghe, Elisabeth; Percy, Melanie; Langabeer, Stephen E; Haslam, Karl
2018-02-01
The classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), consisting of polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a heterogeneous group of neoplasms that harbor driver mutations in the JAK2, CALR, and MPL genes. The detection of mutations in these genes has been incorporated into the recent World Health Organization (WHO) diagnostic criteria for MPN. Given a pressing clinical need to screen for mutations in these genes in a routine diagnostic setting, a targeted next-generation sequencing (NGS) assay for the detection of MPN-associated mutations located in JAK2 exon 14, JAK2 exon 12, CALR exon 9, and MPL exon 10 was developed to provide a single platform alternative to reflexive, stepwise diagnostic algorithms. Polymerase chain reaction (PCR) primers were designed to target mutation hotspots in JAK2 exon 14, JAK2 exon 12, MPL exon 10, and CALR exon 9. Multiplexed PCR conditions were optimized by using qualitative PCR followed by NGS. Diagnostic genomic DNA from 35 MPN patients, known to harbor driver mutations in one of the target genes, was used to validate the assay. One hundred percent concordance was observed between the previously-identified mutations and those detected by NGS, with no false positives, nor any known mutations missed (specificity = 100%, CI = 0.96, sensitivity = 100%, CI = 0.89). Improved resolution of mutation sequences was also revealed by NGS analysis. Detection of diagnostically relevant driver mutations of MPN is enhanced by employing a targeted multiplex NGS approach. This assay presents a robust solution to classical MPN mutation screening, providing an alternative to time-consuming sequential analyses.
Potential complications when developing gene deletion clones in Xylella fastidiosa.
Johnson, Kameka L; Cursino, Luciana; Athinuwat, Dusit; Burr, Thomas J; Mowery, Patricia
2015-04-16
The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce's disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.
Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction
Engleman, Eric A.; Katner, Simon N.; Neal-Beliveau, Bethany S.
2016-01-01
Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH’s effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system–dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission in human addiction. Overall, C. elegans can be used to model aspects of drug addiction and identify systems and molecular mechanisms that mediate drug effects. The findings are surprisingly consistent with analogous findings in higher-level organisms. Further, model refinement is warranted to improve model validity and increase utility for medications development. PMID:26810004
Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.
Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S
2016-01-01
Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission in human addiction. Overall, C. elegans can be used to model aspects of drug addiction and identify systems and molecular mechanisms that mediate drug effects. The findings are surprisingly consistent with analogous findings in higher-level organisms. Further, model refinement is warranted to improve model validity and increase utility for medications development. Copyright © 2016. Published by Elsevier Inc.
Loy, Alexander; Lehner, Angelika; Lee, Natuschka; Adamczyk, Justyna; Meier, Harald; Ernst, Jens; Schleifer, Karl-Heinz; Wagner, Michael
2002-01-01
For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP-PhyloChip for diversity screening of SRPs in environmental and clinical samples was tested by using samples from periodontal tooth pockets and from the chemocline of a hypersaline cyanobacterial mat from Solar Lake (Sinai, Egypt). Consistent with previous studies, SRP-PhyloChip indicated the occurrence of Desulfomicrobium spp. in the tooth pockets and the presence of Desulfonema- and Desulfomonile-like SRPs (together with other SRPs) in the chemocline of the mat. The SRP-PhyloChip results were confirmed by several DNA microarray-independent techniques, including specific PCR amplification, cloning, and sequencing of SRP 16S rRNA genes and the genes encoding the dissimilatory (bi)sulfite reductase (dsrAB). PMID:12324358
New findings in pharmacogenetics of schizophrenia.
Zai, Clement C; Tiwari, Arun K; Zai, Gwyneth C; Maes, Miriam S; Kennedy, James L
2018-05-01
This review highlights recent advances in the investigation of genetic factors for antipsychotic response and side effects. Antipsychotics prescribed to treat psychotic symptoms are variable in efficacy and propensity for causing side effects. The major side effects include tardive dyskinesia, antipsychotic-induced weight gain (AIWG), and clozapine-induced agranulocytosis (CIA). Several promising associations of polymorphisms in genes including HSPG2, CNR1, and DPP6 with tardive dyskinesia have been reported. In particular, a functional genetic polymorphism in SLC18A2, which is a target of recently approved tardive dyskinesia medication valbenazine, was associated with tardive dyskinesia. Similarly, several consistent findings primarily from genes modulating energy homeostasis have also been reported (e.g. MC4R, HTR2C). CIA has been consistently associated with polymorphisms in the HLA genes (HLA-DQB1 and HLA-B). The association findings between glutamate system genes and antipsychotic response require additional replications. The findings to date are promising and provide us a better understanding of the development of side effects and response to antipsychotics. However, more comprehensive investigations in large, well characterized samples will bring us closer to clinically actionable findings.
Yanagawa, Rempei; Furukawa, Yoichi; Tsunoda, Tatsuhiko; Kitahara, Osamu; Kameyama, Masao; Murata, Kohei; Ishikawa, Osamu; Nakamura, Yusuke
2001-01-01
Abstract In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions. PMID:11687950
Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine
2013-01-01
We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032
NF-E2 p45 Is Important for Establishing Normal Function of Platelets
Fujita, Rie; Takayama-Tsujimoto, Mariko; Satoh, Hironori; Gutiérrez, Laura; Aburatani, Hiroyuki; Fujii, Satoshi; Sarai, Akinori; Bresnick, Emery H.
2013-01-01
NF-E2 is a heterodimeric transcription factor consisting of p45 and small Maf subunits. Since p45−/− mice display severe thrombocytopenia, p45 is recognized as a critical regulator of platelet production from megakaryocytes. To identify direct p45 target genes in megakaryocytes, we used chromatin immunoprecipitation (ChIP) sequencing to analyze the genome-wide chromatin occupancy of p45 in primary megakaryocytes. p45 target gene candidates obtained from the analysis are implicated in the production and function of platelets. Two of these genes, Selp and Myl9, were verified as direct p45 targets through multiple approaches. Since P-selectin, encoded by Selp, plays a critical role in platelet function during thrombogenesis, we tested whether p45 determines the intrinsic reactivity and potency of platelets generated from megakaryocytes. Mice expressing a hypomorphic p45 mutant instead of wild-type p45 in megakaryocytes (p45−/−:ΔNTD-Tg mice) displayed platelet hypofunction accompanied by mild thrombocytopenia. Furthermore, lung metastasis of melanoma cells, which requires platelet activation, was repressed in p45−/−:ΔNTD-Tg mice compared to control mice, validating the impaired function of platelets produced from p45−/−:ΔNTD-Tg megakaryocytes. By activating genes in megakaryocytes that mediate platelet production and function, p45 determines the quantity and quality of platelets. PMID:23648484
Bavarva, Jasmin H.; Tae, Hongseok; McIver, Lauren; Garner, Harold R.
2014-01-01
Although the connection between cancer and cigarette smoke is well established, nicotine is not characterized as a carcinogen. Here, we used exome sequencing to identify nicotine and oxidative stress-induced somatic mutations in normal human epithelial cells and its correlation with cancer. We identified over 6,400 SNVs, indels and microsatellites in each of the stress exposed cells relative to the control, of which, 2,159 were consistently observed at all nicotine doses. These included 429 nsSNVs including 158 novel and 79 cancer-associated. Over 80% of consistently nicotine induced variants overlap with variations detected in oxidative stressed cells, indicating that nicotine induced genomic alterations could be mediated through oxidative stress. Nicotine induced mutations were distributed across 1,585 genes, of which 49% were associated with cancer. MUC family genes were among the top mutated genes. Analysis of 591 lung carcinoma tumor exomes from The Cancer Genome Atlas (TCGA) revealed that 20% of non-small-cell lung cancer tumors in smokers have mutations in at least one of the MUC4, MUC6 or MUC12 genes in contrast to only 6% in non-smokers. These results indicate that nicotine induces genomic variations, promotes instability potentially mediated by oxidative stress, implicating nicotine in carcinogenesis, and establishes MUC genes as potential targets. PMID:24947164
Castiello, Luciano; Sabatino, Marianna; Zhao, Yingdong; Tumaini, Barbara; Ren, Jiaqiang; Ping, Jin; Wang, Ena; Wood, Lauren V; Marincola, Francesco M; Puri, Raj K; Stroncek, David F
2013-02-01
Cell-based immunotherapies are among the most promising approaches for developing effective and targeted immune response. However, their clinical usefulness and the evaluation of their efficacy rely heavily on complex quality control assessment. Therefore, rapid systematic methods are urgently needed for the in-depth characterization of relevant factors affecting newly developed cell product consistency and the identification of reliable markers for quality control. Using dendritic cells (DCs) as a model, we present a strategy to comprehensively characterize manufactured cellular products in order to define factors affecting their variability, quality and function. After generating clinical grade human monocyte-derived mature DCs (mDCs), we tested by gene expression profiling the degrees of product consistency related to the manufacturing process and variability due to intra- and interdonor factors, and how each factor affects single gene variation. Then, by calculating for each gene an index of variation we selected candidate markers for identity testing, and defined a set of genes that may be useful comparability and potency markers. Subsequently, we confirmed the observed gene index of variation in a larger clinical data set. In conclusion, using high-throughput technology we developed a method for the characterization of cellular therapies and the discovery of novel candidate quality assurance markers.
Simple Monitoring of Gene Targeting Efficiency in Human Somatic Cell Lines Using the PIGA Gene
Karnan, Sivasundaram; Konishi, Yuko; Ota, Akinobu; Takahashi, Miyuki; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki
2012-01-01
Gene targeting in most of human somatic cell lines has been labor-intensive because of low homologous recombination efficiency. The development of an experimental system that permits a facile evaluation of gene targeting efficiency in human somatic cell lines is the first step towards the improvement of this technology and its application to a broad range of cell lines. In this study, we utilized phosphatidylinositol glycan anchor biosynthesis class A (PIGA), a gene essential for the synthesis of glycosylphosphatidyl inositol (GPI) anchors, as a reporter of gene targeting events in human somatic cell lines. Targeted disruption of PIGA was quantitatively detected with FLAER, a reagent that specifically binds to GPI anchors. Using this PIGA-based reporter system, we successfully detected adeno-associated virus (AAV)-mediated gene targeting events both with and without promoter-trap enrichment of gene-targeted cell population. The PIGA-based reporter system was also capable of reproducing previous findings that an AAV-mediated gene targeting achieves a remarkably higher ratio of homologous versus random integration (H/R ratio) of targeting vectors than a plasmid-mediated gene targeting. The PIGA-based system also detected an approximately 2-fold increase in the H/R ratio achieved by a small negative selection cassette introduced at the end of the AAV-based targeting vector with a promoter-trap system. Thus, our PIGA-based system is useful for monitoring AAV-mediated gene targeting and will assist in improving gene targeting technology in human somatic cell lines. PMID:23056640
Ulrich, Julia; Dao, Van Anh; Majumdar, Upalparna; Schmitt-Engel, Christian; Schwirz, Jonas; Schultheis, Dorothea; Ströhlein, Nadi; Troelenberg, Nicole; Grossmann, Daniela; Richter, Tobias; Dönitz, Jürgen; Gerischer, Lizzy; Leboulle, Gérard; Vilcinskas, Andreas; Stanke, Mario; Bucher, Gregor
2015-09-03
Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.
Bioinformatics approach of salt tolerance gene in mangrove plant Rhizophora stylosa
NASA Astrophysics Data System (ADS)
Basyuni, M.; Sumardi
2017-01-01
This study descibes bioinformatics approach on the analyze of the salt tolerance genes in mangrove plant, Rhizophora stylosa on DDBJ/EMBL/GenBank as well as similarity, phylogenetic, potential peptide, and subcellular localization. The DNA sequence between salt tolerance gene from R. stylosa exhibited 42-11% between themselves The target peptide value of mitochondria varied from 0.163 to 0.430, indicated it was possible to exist. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove OSC genes. To clarify the relationship among the salt-tolerant genes in R. stylosa, a phylogenetic tree was constructed. The phylogenetic tree shows that there are three clusters, first branch of Cu/Zn SOD and reverse transcriptase genes, the second branch consists of the majority genes and the last group was MAP3K alpha protein kinase only. The present study, therefore, suggested that salt tolerance genes form distinct clusters in the tree.
Khan, Faheem Ahmed; Liu, Hui; Zhou, Hao; Wang, Kai; Qamar, Muhammad Tahir Ul; Pandupuspitasari, Nuruliarizki Shinta; Shujun, Zhang
2017-01-01
The biology of sperm, its capability of fertilizing an egg and its role in sex ratio are the major biological questions in reproductive biology. To answer these question we integrated X and Y chromosome transcriptome across different species: Bos taurus and Sus scrofa and identified reproductive driver genes based on Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. Our strategy resulted in 11007 and 10445 unique genes consisting of 9 and 11 reproductive modules in Bos taurus and Sus scrofa, respectively. The consensus module calculation yields an overall 167 overlapped genes which were mapped to 846 DEGs in Bos taurus to finally get a list of 67 dual feature genes. We develop gene co-expression network of selected 67 genes that consists of 58 nodes (27 down-regulated and 31 up-regulated genes) enriched to 66 GO biological process (BP) including 6 GO annotations related to reproduction and two KEGG pathways. Moreover, we searched significantly related TF (ISRE, AP1FJ, RP58, CREL) and miRNAs (bta-miR-181a, bta-miR-17-5p, bta-miR-146b, bta-miR-146a) which targeted the genes in co-expression network. In addition we performed genetic analysis including phylogenetic, functional domain identification, epigenetic modifications, mutation analysis of the most important reproductive driver genes PRM1, PPP2R2B and PAFAH1B1 and finally performed a protein docking analysis to visualize their therapeutic and gene expression regulation ability. PMID:28903352
Gene expression profiling in whole blood of patients with coronary artery disease
Taurino, Chiara; Miller, William H.; McBride, Martin W.; McClure, John D.; Khanin, Raya; Moreno, María U.; Dymott, Jane A.; Delles, Christian; Dominiczak, Anna F.
2010-01-01
Owing to the dynamic nature of the transcriptome, gene expression profiling is a promising tool for discovery of disease-related genes and biological pathways. In the present study, we examined gene expression in whole blood of 12 patients with CAD (coronary artery disease) and 12 healthy control subjects. Furthermore, ten patients with CAD underwent whole-blood gene expression analysis before and after the completion of a cardiac rehabilitation programme following surgical coronary revascularization. mRNA and miRNA (microRNA) were isolated for expression profiling. Gene expression analysis identified 365 differentially expressed genes in patients with CAD compared with healthy controls (175 up- and 190 down-regulated in CAD), and 645 in CAD rehabilitation patients (196 up- and 449 down-regulated post-rehabilitation). Biological pathway analysis identified a number of canonical pathways, including oxidative phosphorylation and mitochondrial function, as being significantly and consistently modulated across the groups. Analysis of miRNA expression revealed a number of differentially expressed miRNAs, including hsa-miR-140-3p (control compared with CAD, P=0.017), hsa-miR-182 (control compared with CAD, P=0.093), hsa-miR-92a and hsa-miR-92b (post- compared with pre-exercise, P<0.01). Global analysis of predicted miRNA targets found significantly reduced expression of genes with target regions compared with those without: hsa-miR-140-3p (P=0.002), hsa-miR-182 (P=0.001), hsa-miR-92a and hsa-miR-92b (P=2.2×10−16). In conclusion, using whole blood as a ‘surrogate tissue’ in patients with CAD, we have identified differentially expressed miRNAs, differentially regulated genes and modulated pathways which warrant further investigation in the setting of cardiovascular function. This approach may represent a novel non-invasive strategy to unravel potentially modifiable pathways and possible therapeutic targets in cardiovascular disease. PMID:20528768
Feinstein, P. G.; Kornfeld, K.; Hogness, D. S.; Mann, R. S.
1995-01-01
In Drosophila, the specific morphological characteristics of each segment are determined by the homeotic genes that regulate the expression of downstream target genes. We used a subtractive hybridization procedure to isolate activated target genes of the homeotic gene Ultrabithorax (Ubx). In addition, we constructed a set of mutant genotypes that measures the regulatory contribution of individual homeotic genes to a complex target gene expression pattern. Using these mutants, we demonstrate that homeotic genes can regulate target gene expression at the start of gastrulation, suggesting a previously unknown role for the homeotic genes at this early stage. We also show that, in abdominal segments, the levels of expression for two target genes increase in response to high levels of Ubx, demonstrating that the normal down-regulation of Ubx in these segments is functional. Finally, the DNA sequence of cDNAs for one of these genes predicts a protein that is similar to a human proto-oncogene involved in acute myeloid leukemias. These results illustrate potentially general rules about the homeotic control of target gene expression and suggest that subtractive hybridization can be used to isolate interesting homeotic target genes. PMID:7498738
Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system.
Peng, Feng; Wang, Xinyue; Sun, Yang; Dong, Guibin; Yang, Yankun; Liu, Xiuxia; Bai, Zhonghu
2017-11-14
Corynebacterium glutamicum (C. glutamicum) has traditionally been used as a microbial cell factory for the industrial production of many amino acids and other industrially important commodities. C. glutamicum has recently been established as a host for recombinant protein expression; however, some intrinsic disadvantages could be improved by genetic modification. Gene editing techniques, such as deletion, insertion, or replacement, are important tools for modifying chromosomes. In this research, we report a CRISPR/Cas9 system in C. glutamicum for rapid and efficient genome editing, including gene deletion and insertion. The system consists of two plasmids: one containing a target-specific guide RNA and a homologous sequence to a target gene, the other expressing Cas9 protein. With high efficiency (up to 100%), this system was used to disrupt the porB, mepA, clpX and Ncgl0911 genes, which affect the ability to express proteins. The porB- and mepA-deletion strains had enhanced expression of green fluorescent protein, compared with the wild-type stain. This system can also be used to engineer point mutations and gene insertions. In this study, we adapted the CRISPR/Cas9 system from S. pyogens to gene deletion, point mutations and insertion in C. glutamicum. Compared with published genome modification methods, methods based on the CRISPR/Cas9 system can rapidly and efficiently achieve genome editing. Our research provides a powerful tool for facilitating the study of gene function, metabolic pathways, and enhanced productivity in C. glutamicum.
Visschedijk, Marijn C; Alberts, Rudi; Mucha, Soren; Deelen, Patrick; de Jong, Dirk J; Pierik, Marieke; Spekhorst, Lieke M; Imhann, Floris; van der Meulen-de Jong, Andrea E; van der Woude, C Janneke; van Bodegraven, Adriaan A; Oldenburg, Bas; Löwenberg, Mark; Dijkstra, Gerard; Ellinghaus, David; Schreiber, Stefan; Wijmenga, Cisca; Rivas, Manuel A; Franke, Andre; van Diemen, Cleo C; Weersma, Rinse K
2016-01-01
Genome-wide association studies have revealed several common genetic risk variants for ulcerative colitis (UC). However, little is known about the contribution of rare, large effect genetic variants to UC susceptibility. In this study, we performed a deep targeted re-sequencing of 122 genes in Dutch UC patients in order to investigate the contribution of rare variants to the genetic susceptibility to UC. The selection of genes consists of 111 established human UC susceptibility genes and 11 genes that lead to spontaneous colitis when knocked-out in mice. In addition, we sequenced the promoter regions of 45 genes where known variants exert cis-eQTL-effects. Targeted pooled re-sequencing was performed on DNA of 790 Dutch UC cases. The Genome of the Netherlands project provided sequence data of 500 healthy controls. After quality control and prioritization based on allele frequency and pathogenicity probability, follow-up genotyping of 171 rare variants was performed on 1021 Dutch UC cases and 1166 Dutch controls. Single-variant association and gene-based analyses identified an association of rare variants in the MUC2 gene with UC. The associated variants in the Dutch population could not be replicated in a German replication cohort (1026 UC cases, 3532 controls). In conclusion, this study has identified a putative role for MUC2 on UC susceptibility in the Dutch population and suggests a population-specific contribution of rare variants to UC.
Ozawa, Keiya
2014-03-01
Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.
Identification of the miRNA-mRNA regulatory network of small cell osteosarcoma based on RNA-seq.
Xie, Lin; Liao, Yedan; Shen, Lida; Hu, Fengdi; Yu, Sunlin; Zhou, Yonghong; Zhang, Ya; Yang, Yihao; Li, Dongqi; Ren, Minyan; Yuan, Zhongqin; Yang, Zuozhang
2017-06-27
Small cell osteosarcoma (SCO) is a rare subtype of osteosarcoma characterized by highly aggressive progression and a poor prognosis. The miRNA and mRNA expression profiles of peripheral blood mononuclear cells (PBMCs) were obtained in 3 patients with SCO and 10 healthy individuals using high-throughput RNA-sequencing. We identified 37 dysregulated miRNAs and 1636 dysregulated mRNAs in patients with SCO compared to the healthy controls. Specifically, the 37 dysregulated miRNAs consisted of 27 up-regulated miRNAs and 10 down-regulated miRNAs; the 1636 dysregulated mRNAs consisted of 555 up-regulated mRNAs and 1081 down-regulated mRNAs. The target-genes of miRNAs were predicted, and 1334 negative correlations between miRNAs and mRNAs were used to construct an miRNA-mRNA regulatory network. Dysregulated genes were significantly enriched in pathways related to cancer, mTOR signaling and cell cycle signaling. Specifically, hsa-miR-26b-5p, hsa-miR-221-3p and hsa-miR-125b-2-3p were significantly dysregulated miRNAs and exhibited a high degree of connectivity with target genes. Overall, the expression of dysregulated genes in tumor tissues and peripheral blood samples of patients with SCO measured by quantitative real-time polymerase chain reaction corroborated with our bioinformatics analyses based on the expression profiles of PBMCs from patients with SCO. Thus, hsa-miR-26b-5p, hsa-miR-221-3p and hsa-miR-125b-2-3p may be involved in SCO tumorigenesis.
Analysis of physiological and miRNA responses to Pi deficiency in alfalfa (Medicago sativa L.).
Li, Zhenyi; Xu, Hongyu; Li, Yue; Wan, Xiufu; Ma, Zhao; Cao, Jing; Li, Zhensong; He, Feng; Wang, Yufei; Wan, Liqiang; Tong, Zongyong; Li, Xianglin
2018-03-01
The induction of miR399 and miR398 and the inhibition of miR156, miR159, miR160, miR171, miR2111, and miR2643 were observed under Pi deficiency in alfalfa. The miRNA-mediated genes involved in basic metabolic process, root and shoot development, stress response and Pi uptake. Inorganic phosphate (Pi) deficiency is known to be a limiting factor in plant development and growth. However, the underlying miRNAs associated with the Pi deficiency-responsive mechanism in alfalfa are unclear. To elucidate the molecular mechanism at the miRNA level, we constructed four small RNA (sRNA) libraries from the roots and shoots of alfalfa grown under normal or Pi-deficient conditions. In the present study, alfalfa plants showed reductions in biomass, photosynthesis, and Pi content and increases in their root-to-shoot ratio and citric, malic, and succinic acid contents under Pi limitation. Sequencing results identified 47 and 44 differentially expressed miRNAs in the roots and shoots, respectively. Furthermore, 909 potential target genes were predicted, and some targets were validated by RLM-RACE assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed prominent enrichment in signal transducer activity, binding and basic metabolic pathways for carbohydrates, fatty acids and amino acids; cellular response to hormone stimulus and response to auxin pathways were also enriched. qPCR results verified that the differentially expressed miRNA profile was consistent with sequencing results, and putative target genes exhibited opposite expression patterns. In this study, the miRNAs associated with the response to Pi limitation in alfalfa were identified. In addition, there was an enrichment of miRNA-targeted genes involved in biological regulatory processes such as basic metabolic pathways, root and shoot development, stress response, Pi transportation and citric acid secretion.
Differential effects of RNAi treatments on field populations of the western corn rootworm.
Chu, Chia-Ching; Sun, Weilin; Spencer, Joseph L; Pittendrigh, Barry R; Seufferheld, Manfredo J
2014-03-01
RNA interference (RNAi) mediated crop protection against insect pests is a technology that is greatly anticipated by the academic and industrial pest control communities. Prior to commercialization, factors influencing the potential for evolution of insect resistance to RNAi should be evaluated. While mutations in genes encoding the RNAi machinery or the sequences targeted for interference may serve as a prominent mechanism of resistance evolution, differential effects of RNAi on target pests may also facilitate such evolution. However, to date, little is known about how variation of field insect populations could influence the effectiveness of RNAi treatments. To approach this question, we evaluated the effects of RNAi treatments on adults of three western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) populations exhibiting different levels of gut cysteine protease activity, tolerance of soybean herbivory, and immune gene expression; two populations were collected from crop rotation-resistant (RR) problem areas and one from a location where RR was not observed (wild type; WT). Our results demonstrated that RNAi targeting DvRS5 (a highly expressed cysteine protease gene) reduced gut cysteine protease activity in all three WCR populations. However, the proportion of the cysteine protease activity that was inhibited varied across populations. When WCR adults were treated with double-stranded RNA of an immune gene att1, different changes in survival among WT and RR populations on soybean diets occurred. Notably, for both genes, the sequences targeted for RNAi were the same across all populations examined. These findings indicate that the effectiveness of RNAi treatments could vary among field populations depending on their physiological and genetic backgrounds and that the consistency of an RNAi trait's effectiveness on phenotypically different populations should be considered or tested prior to wide deployment. Also, genes that are potentially subjected to differential selection in the field should be avoided for RNAi-based pest control. Published by Elsevier Inc.
Jones, Kaylie D; Wheaton, Dianna K; Bowne, Sara J; Sullivan, Lori S; Birch, David G; Chen, Rui; Daiger, Stephen P
2017-01-01
With recent availability of next-generation sequencing (NGS), it is becoming more common to pursue disease-targeted panel testing rather than traditional sequential gene-by-gene dideoxy sequencing. In this report, we describe using NGS to identify multiple disease-causing mutations that contribute concurrently or independently to retinal dystrophy in three relatively small families. Family members underwent comprehensive visual function evaluations, and genetic counseling including a detailed family history. A preliminary genetic inheritance pattern was assigned and updated as additional family members were tested. Family 1 (FAM1) and Family 2 (FAM2) were clinically diagnosed with retinitis pigmentosa (RP) and had a suspected autosomal dominant pedigree with non-penetrance (n.p.). Family 3 (FAM3) consisted of a large family with a diagnosis of RP and an overall dominant pedigree, but the proband had phenotypically cone-rod dystrophy. Initial genetic analysis was performed on one family member with traditional Sanger single gene sequencing and/or panel-based testing, and ultimately, retinal gene-targeted NGS was required to identify the underlying cause of disease for individuals within the three families. Results obtained in these families necessitated further genetic and clinical testing of additional family members to determine the complex genetic and phenotypic etiology of each family. Genetic testing of FAM1 (n = 4 affected; 1 n.p.) identified a dominant mutation in RP1 (p.Arg677Ter) that was present for two of the four affected individuals but absent in the proband and the presumed non-penetrant individual. Retinal gene-targeted NGS in the fourth affected family member revealed compound heterozygous mutations in USH2A (p. Cys419Phe, p.Glu767Serfs*21). Genetic testing of FAM2 (n = 3 affected; 1 n.p.) identified three retinal dystrophy genes ( PRPH2 , PRPF8 , and USH2A ) with disease-causing mutations in varying combinations among the affected family members. Genetic testing of FAM3 (n = 7 affected) identified a mutation in PRPH2 (p.Pro216Leu) tracking with disease in six of the seven affected individuals. Additional retinal gene-targeted NGS testing determined that the proband also harbored a multiple exon deletion in the CRX gene likely accounting for her cone-rod phenotype; her son harbored only the mutation in CRX , not the familial mutation in PRPH2 . Multiple genes contributing to the retinal dystrophy genotypes within a family were discovered using retinal gene-targeted NGS. Families with noted examples of phenotypic variation or apparent non-penetrant individuals may offer a clue to suspect complex inheritance. Furthermore, this finding underscores that caution should be taken when attributing a single gene disease-causing mutation (or inheritance pattern) to a family as a whole. Identification of a disease-causing mutation in a proband, even with a clear inheritance pattern in hand, may not be sufficient for targeted, known mutation analysis in other family members.
Carbon Nanotube Arrays for Intracellular Delivery and Biological Applications
NASA Astrophysics Data System (ADS)
Golshadi, Masoud
Introducing nucleic acids into mammalian cells is a crucial step to elucidate biochemical pathways, modify gene expression in immortalized cells, primary cells, and stem cells, and intoduces new approaches for clinical diagnostics and therapeutics. Current gene transfer technologies, including lipofection, electroporation, and viral delivery, have enabled break-through advances in basic and translational science to enable derivation and programming of embryonic stem cells, advanced gene editing using CRISPR (Clustered regularly interspaced short palindromic repeats), and development of targeted anti-tumor therapy using chimeric antigen receptors in T-cells (CAR-T). Despite these successes, current transfection technologies are time consuming and limited by the inefficient introduction of test molecules into large populations of target cells, and the cytotoxicity of the techniques. Moreover, many cell types cannot be consistently transfected by lipofection or electroporation (stem cells, T-cells) and viral delivery has limitations to the size of experimental DNA that can be packaged. In this dissertation, a novel coverslip-like platform consisting of an array of aligned hollow carbon nanotubes (CNTs) embedded in a sacrificial template is developed that enhances gene transfer capabilities, including high efficiency, low toxicity, in an expanded range of target cells, with the potential to transfer mixed combinations of protein and nucleic acids. The CNT array devices are fabricated by a scalable template-based manufacturing method using commercially available membranes, eliminating the need for nano-assembly. High efficient transfection has been demonstrated by delivering various cargos (nanoparticles, dye and plasmid DNA) into populations of cells, achieving 85% efficiency of plasmid DNA delivery into immortalized cells. Moreover, the CNT-mediated transfection of stem cells shows 3 times higher efficiency compared to current lipofection methods. Evaluating the cell-CNT interaction elucidates the importance of the geometrical properties of CNT arrays (CNT exposed length and surface morphology) on transfection efficiency. The results indicate that densely-packed and shortly-exposed CNT arrays with planar surface will enhance gene delivery using this new platform. This technology offers a significant increase in efficiency and cell viability, along with the ease of use compared to current standard methods, which demonstrates its potential to accelerate the development of new cell models to study intractable diseases, decoding the signaling pathways, and drug discovery.
Differential Sensitivity of Target Genes to Translational Repression by miR-17~92
Jin, Hyun Yong; Oda, Hiroyo; Chen, Pengda; Kang, Seung Goo; Valentine, Elizabeth; Liao, Lujian; Zhang, Yaoyang; Gonzalez-Martin, Alicia; Shepherd, Jovan; Head, Steven R.; Kim, Pyeung-Hyeun; Fu, Guo; Liu, Wen-Hsien; Han, Jiahuai
2017-01-01
MicroRNAs (miRNAs) are thought to exert their functions by modulating the expression of hundreds of target genes and each to a small degree, but it remains unclear how small changes in hundreds of target genes are translated into the specific function of a miRNA. Here, we conducted an integrated analysis of transcriptome and translatome of primary B cells from mutant mice expressing miR-17~92 at three different levels to address this issue. We found that target genes exhibit differential sensitivity to miRNA suppression and that only a small fraction of target genes are actually suppressed by a given concentration of miRNA under physiological conditions. Transgenic expression and deletion of the same miRNA gene regulate largely distinct sets of target genes. miR-17~92 controls target gene expression mainly through translational repression and 5’UTR plays an important role in regulating target gene sensitivity to miRNA suppression. These findings provide molecular insights into a model in which miRNAs exert their specific functions through a small number of key target genes. PMID:28241004
Soragni, Elisabetta; Chou, C. James; Rusche, James R.; Gottesfeld, Joel M.
2015-01-01
The genetic defect in Friedreich’s ataxia (FRDA) is the hyperexpansion of a GAA•TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Histone post-translational modifications near the expanded repeats are consistent with heterochromatin formation and consequent FXN gene silencing. Using a newly developed human neuronal cell model, derived from patient-induced pluripotent stem cells, we find that 2-aminobenzamide histone deacetylase (HDAC) inhibitors increase FXN mRNA levels and frataxin protein in FRDA neuronal cells. However, only compounds targeting the class I HDACs 1 and 3 are active in increasing FXN mRNA in these cells. Structural analogs of the active HDAC inhibitors that selectively target either HDAC1 or HDAC3 do not show similar increases in FXN mRNA levels. To understand the mechanism of action of these compounds, we probed the kinetic properties of the active and inactive inhibitors, and found that only compounds that target HDACs 1 and 3 exhibited a slow-on/slow-off mechanism of action for the HDAC enzymes. HDAC1- and HDAC3-selective compounds did not show this activity. Using siRNA methods in the FRDA neuronal cells, we show increases in FXN mRNA upon silencing of either HDACs 1 or 3, suggesting the possibility that inhibition of each of these class I HDACs is necessary for activation of FXN mRNA synthesis, as there appears to be redundancy in the silencing mechanism caused by the GAA•TTC repeats. Moreover, inhibitors must have a long residence time on their target enzymes for this activity. By interrogating microarray data from neuronal cells treated with inhibitors of different specificity, we selected two genes encoding histone macroH2A (H2AFY2) and Polycomb group ring finger 2 (PCGF2) that were specifically down-regulated by the inhibitors targeting HDACs1 and 3 versus the more selective inhibitors for further investigation. Both genes are involved in transcriptional repression and we speculate their involvement in FXN gene silencing. Our results shed light on the mechanism whereby HDAC inhibitors increase FXN mRNA levels in FRDA neuronal cells. PMID:25798128
Jamet, Stevie; Quentin, Yves; Coudray, Coralie; Texier, Pauline; Laval, Françoise; Daffé, Mamadou
2015-01-01
ABSTRACT Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a Gram-positive bacterium with a unique cell envelope composed of an essential outer membrane. Mycolic acids, which are very-long-chain (up to C100) fatty acids, are the major components of this mycomembrane. The enzymatic pathways involved in the biosynthesis and transport of mycolates are fairly well documented and are the targets of the major antituberculous drugs. In contrast, only fragmented information is available on the expression and regulation of the biosynthesis genes. In this study, we report that the hadA, hadB, and hadC genes, which code for the mycolate biosynthesis dehydratase enzymes, are coexpressed with three genes that encode proteins of the translational apparatus. Consistent with the well-established control of the translation potential by nutrient availability, starvation leads to downregulation of the hadABC genes along with most of the genes required for the synthesis, modification, and transport of mycolates. The downregulation of a subset of the biosynthesis genes is partially dependent on RelMtb, the key enzyme of the stringent response. We also report the phylogenetic evolution scenario that has shaped the current genetic organization, characterized by the coregulation of the hadABC operon with genes of the translational apparatus and with genes required for the modification of the mycolates. IMPORTANCE Mycobacterium tuberculosis infects one-third of the human population worldwide, and despite the available therapeutic arsenal, it continues to kill millions of people each year. There is therefore an urgent need to identify new targets and develop a better understanding of how the bacterium is adapting itself to host defenses during infection. A prerequisite of this understanding is knowledge of how this adaptive skill has been implanted by evolution. Nutrient scarcity is an environmental condition the bacterium has to cope with during infection. In many bacteria, adaptation to starvation relies partly on the stringent response. M. tuberculosis's unique outer membrane layer, the mycomembrane, is crucial for its viability and virulence. Despite its being the target of the major antituberculosis drugs, only scattered information exists on how the genes required for biosynthesis of the mycomembrane are expressed and regulated during starvation. This work has addressed this issue as a step toward the identification of new targets in the fight against M. tuberculosis. PMID:26416833
Visual detection of multidrug resistance gene in living cell using the molecular beacon imaging
NASA Astrophysics Data System (ADS)
Zhou, Qiumei; Ma, Yi; Gu, Yueqing
2014-09-01
A major problem in cancer treatment is the development of resistance to chemotherapeutic agents in tumor cells. Detection of effective prognostic biomarkers and targets are of crucial importance to the management of individualized therapies. However, quantitative analysis of the drug resistance gene had been difficult because of technical limitations. In this study, we designed and used a special hairpin deoxyribonucleic acid (DNA), which served as a beacon for detecting human drug resistance indicater. Upon hybridizing with the target mRNA, the hairpin DNA modified gold nanoparticle beacons (hDAuNP beacons) release the fluorophores attached at 5'end of the oligonucleotide sequence. The fluorescence properties of the beacon before and after the hybridization with the complementary DNA were confirmed in vitro. The hDAuNP beacons could be taken up by living cells with low inherent cytotoxicity and higher stability. hDAuNP beacon imaged by confocal laser scanning microscopy to detect the resistance gene expression. The detected fluorescence in MCF7and MCF7/ADR cells correlates with the specific drug resistance gene expression, which is consistent with the result from Q-PCR. Thus, this approach overcame many of the challenges of previous techniques by creating highly sensitive and effective intracellular probes for monitoring gene expression.
Warters, Raymond L.; Packard, Ann T.; Kramer, Gwen F.; Gaffney, David K.; Moos, Philip J.
2009-01-01
Although skin is usually exposed during human exposures to ionizing radiation, there have been no thorough examinations of the transcriptional response of skin fibroblasts and keratinocytes to radiation. The transcriptional response of quiescent primary fibroblasts and keratinocytes exposed to from 10 cGy to 5 Gy and collected 4 h after treatment was examined. RNA was isolated and examined by microarray analysis for changes in the levels of gene expression. Exposure to ionizing radiation altered the expression of 279 genes across both cell types. Changes in RNA expression could be arranged into three main categories: (1) changes in keratinocytes but not in fibroblasts, (2) changes in fibroblasts but not in keratinocytes, and (3) changes in both. All of these changes were primarily of p53 target genes. Similar radiation-induced changes were induced in immortalized fibroblasts or keratinocytes. In separate experiments, protein was collected and analyzed by Western blotting for expression of proteins observed in microarray experiments to be overexpressed at the mRNA level. Both Q-PCR and Western blot analysis experiments validated these transcription changes. Our results are consistent with changes in the expression of p53 target genes as indicating the magnitude of cell responses to ionizing radiation. PMID:19580510
Hu, Fang; Knoedler, Joseph R.
2016-01-01
Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs. PMID:26886257
In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment
van Dam, Peter A.; van Dam, Pieter-Jan H. H.; Rolfo, Christian; Giallombardo, Marco; van Berckelaer, Christophe; Trinh, Xuan Bich; Altintas, Sevilay; Huizing, Manon; Papadimitriou, Kostas; Tjalma, Wiebren A. A.; van Laere, Steven
2016-01-01
An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a major component of cervical cancer biology. E2K identified a protein-protein interaction (PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges. This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling (Module 4) and chromatin modeling (Module 5). Potential targets for treatment which could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. The present study identified important driver pathways in cervical carcinogenesis which should be assessed for their potential therapeutic drugability. PMID:26701206
Zhou, Y; Dong, F; Lanz, T A; Reinhart, V; Li, M; Liu, L; Zou, J; Xi, H S; Mao, Y
2018-01-01
Recent genome-wide association studies identified over 100 genetic loci that significantly associate with schizophrenia (SZ). A top candidate gene, ZNF804A, was robustly replicated in different populations. However, its neural functions are largely unknown. Here we show in mouse that ZFP804A, the homolog of ZNF804A, is required for normal progenitor proliferation and neuronal migration. Using a yeast two-hybrid genome-wide screen, we identified novel interacting proteins of ZNF804A. Rather than transcriptional factors, genes involved in mRNA translation are highly represented in our interactome result. ZNF804A co-fractionates with translational machinery and modulates the translational efficiency as well as the mTOR pathway. The ribosomal protein RPSA interacts with ZNF804A and rescues the migration and translational defects caused by ZNF804A knockdown. RNA immunoprecipitation–RNAseq (RIP-Seq) identified transcripts bound to ZFP804A. Consistently, ZFP804A associates with many short transcripts involved in translational and mitochondrial regulation. Moreover, among the transcripts associated with ZFP804A, a SZ risk gene, neurogranin (NRGN), is one of ZFP804A targets. Interestingly, downregulation of ZFP804A decreases NRGN expression and overexpression of NRGN can ameliorate ZFP804A-mediated migration defect. To verify the downstream targets of ZNF804A, a Duolink in situ interaction assay confirmed genes from our RIP-Seq data as the ZNF804A targets. Thus, our work uncovered a novel mechanistic link of a SZ risk gene to neurodevelopment and translational control. The interactome-driven approach here is an effective way for translating genome-wide association findings into novel biological insights of human diseases. PMID:28924186
Regulation of Androgen Receptor-Mediated Transcription by RPB5 Binding Protein URI/RMP ▿
Mita, Paolo; Savas, Jeffrey N.; Djouder, Nabil; Yates, John R.; Ha, Susan; Ruoff, Rachel; Schafler, Eric D.; Nwachukwu, Jerome C.; Tanese, Naoko; Cowan, Nicholas J.; Zavadil, Jiri; Garabedian, Michael J.; Logan, Susan K.
2011-01-01
Androgen receptor (AR)-mediated transcription is modulated by interaction with coregulatory proteins. We demonstrate that the unconventional prefoldin RPB5 interactor (URI) is a new regulator of AR transcription and is critical for antagonist (bicalutamide) action. URI is phosphorylated upon androgen treatment, suggesting communication between the URI and AR signaling pathways. Whereas depletion of URI enhances AR-mediated gene transcription, overexpression of URI suppresses AR transcriptional activation and anchorage-independent prostate cancer cell growth. Repression of AR-mediated transcription is achieved, in part, by URI binding and regulation of androgen receptor trapped clone 27 (Art-27), a previously characterized AR corepressor. Consistent with this idea, genome-wide expression profiling in prostate cancer cells upon depletion of URI or Art-27 reveals substantially overlapping patterns of gene expression. Further, depletion of URI increases the expression of the AR target gene NKX-3.1, decreases the recruitment of Art-27, and increases AR occupancy at the NKX-3.1 promoter. While Art-27 can bind AR directly, URI is bound to chromatin prior to hormone-dependent recruitment of AR, suggesting a role for URI in modulating AR recruitment to target genes. PMID:21730289
Genomic signatures of positive selection in humans and the limits of outlier approaches.
Kelley, Joanna L; Madeoy, Jennifer; Calhoun, John C; Swanson, Willie; Akey, Joshua M
2006-08-01
Identifying regions of the human genome that have been targets of positive selection will provide important insights into recent human evolutionary history and may facilitate the search for complex disease genes. However, the confounding effects of population demographic history and selection on patterns of genetic variation complicate inferences of selection when a small number of loci are studied. To this end, identifying outlier loci from empirical genome-wide distributions of genetic variation is a promising strategy to detect targets of selection. Here, we evaluate the power and efficiency of a simple outlier approach and describe a genome-wide scan for positive selection using a dense catalog of 1.58 million SNPs that were genotyped in three human populations. In total, we analyzed 14,589 genes, 385 of which possess patterns of genetic variation consistent with the hypothesis of positive selection. Furthermore, several extended genomic regions were found, spanning >500 kb, that contained multiple contiguous candidate selection genes. More generally, these data provide important practical insights into the limits of outlier approaches in genome-wide scans for selection, provide strong candidate selection genes to study in greater detail, and may have important implications for disease related research.
Sellars, Laura E; Bryant, Jack A; Sánchez-Romero, María-Antonia; Sánchez-Morán, Eugenio; Busby, Stephen J W; Lee, David J
2017-08-03
In bacteria, many transcription activator and repressor proteins regulate multiple transcription units that are often distally distributed on the bacterial genome. To investigate the subcellular location of DNA bound proteins in the folded bacterial nucleoid, fluorescent reporters have been developed which can be targeted to specific DNA operator sites. Such Fluorescent Reporter-Operator System (FROS) probes consist of a fluorescent protein fused to a DNA binding protein, which binds to an array of DNA operator sites located within the genome. Here we have developed a new FROS probe using the Escherichia coli MalI transcription factor, fused to mCherry fluorescent protein. We have used this in combination with a LacI repressor::GFP protein based FROS probe to assess the cellular location of commonly regulated transcription units that are distal on the Escherichia coli genome. We developed a new DNA binding fluorescent reporter, consisting of the Escherichia coli MalI protein fused to the mCherry fluorescent protein. This was used in combination with a Lac repressor:green fluorescent protein fusion to examine the spatial positioning and possible co-localisation of target genes, regulated by the Escherichia coli AraC protein. We report that induction of gene expression with arabinose does not result in co-localisation of AraC-regulated transcription units. However, measurable repositioning was observed when gene expression was induced at the AraC-regulated promoter controlling expression of the araFGH genes, located close to the DNA replication terminus on the chromosome. Moreover, in dividing cells, arabinose-induced expression at the araFGH locus enhanced chromosome segregation after replication. Regions of the chromosome regulated by AraC do not colocalise, but transcription events can induce movement of chromosome loci in bacteria and our observations suggest a role for gene expression in chromosome segregation.
The Pathogen-Host Interactions database (PHI-base): additions and future developments.
Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G; Pedro, Helder; Hammond-Kosack, Kim E
2015-01-01
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Li, Meng; Ford, Tim; Li, Xiaoyan; Gu, Ji-Dong
2011-04-15
A newly designed primer set (AnnirS), together with a previously published primer set (ScnirS), was used to detect anammox bacterial nirS genes from sediments collected from three marine environments. Phylogenetic analysis demonstrated that all retrieved sequences were clearly different from typical denitrifiers' nirS, but do group together with the known anammox bacterial nirS. Sequences targeted by ScnirS are closely related to Scalindua nirS genes recovered from the Peruvian oxygen minimum zone (OMZ), whereas sequences targeted by AnnirS are more closely affiliated with the nirS of Candidatus 'Kuenenia stuttgartiensis' and even form a new phylogenetic nirS clade, which might be related to other genera of the anammox bacteria. Analysis demonstrated that retrieved sequences had higher sequence identities (>60%) with known anammox bacterial nirS genes than with denitrifiers' nirS, on both nucleotide and amino acid levels. Compared to the 16S rRNA and hydrazine oxidoreductase (hzo) genes, the anammox bacterial nirS not only showed consistent phylogenetic relationships but also demonstrated more reliable quantification of anammox bacteria because of the single copy of the nirS gene in the anammox bacterial genome and the specificity of PCR primers for different genera of anammox bacteria, thus providing a suitable functional biomarker for investigation of anammox bacteria.
Canonical Genetic Signatures of the Adult Human Brain
Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed
2015-01-01
The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460
STAT3 or USF2 Contributes to HIF Target Gene Specificity
Pawlus, Matthew R.; Wang, Liyi; Murakami, Aya; Dai, Guanhai; Hu, Cheng-Jun
2013-01-01
The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein. PMID:23991099
Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22.
Sharma, Akash; Heinze, Svenia D; Wu, Yanli; Kohlbrenner, Tea; Morilla, Ian; Brunner, Claudia; Wimmer, Ernst A; van de Zande, Louis; Robinson, Mark D; Beukeboom, Leo W; Bopp, Daniel
2017-05-12
Across species, animals have diverse sex determination pathways, each consisting of a hierarchical cascade of genes and its associated regulatory mechanism. Houseflies have a distinctive polymorphic sex determination system in which a dominant male determiner, the M-factor, can reside on any of the chromosomes. We identified a gene, Musca domestica male determiner ( Mdmd ), as the M-factor. Mdmd originated from a duplication of the spliceosomal factor gene CWC22 ( nucampholin ). Targeted Mdmd disruption results in complete sex reversal to fertile females because of a shift from male to female expression of the downstream genes transformer and doublesex The presence of Mdmd on different chromosomes indicates that Mdmd translocated to different genomic sites. Thus, an instructive signal in sex determination can arise by duplication and neofunctionalization of an essential splicing regulator. Copyright © 2017, American Association for the Advancement of Science.
Long-range evolutionary constraints reveal cis-regulatory interactions on the human X chromosome
Naville, Magali; Ishibashi, Minaka; Ferg, Marco; Bengani, Hemant; Rinkwitz, Silke; Krecsmarik, Monika; Hawkins, Thomas A.; Wilson, Stephen W.; Manning, Elizabeth; Chilamakuri, Chandra S. R.; Wilson, David I.; Louis, Alexandra; Lucy Raymond, F.; Rastegar, Sepand; Strähle, Uwe; Lenhard, Boris; Bally-Cuif, Laure; van Heyningen, Veronica; FitzPatrick, David R.; Becker, Thomas S.; Roest Crollius, Hugues
2015-01-01
Enhancers can regulate the transcription of genes over long genomic distances. This is thought to lead to selection against genomic rearrangements within such regions that may disrupt this functional linkage. Here we test this concept experimentally using the human X chromosome. We describe a scoring method to identify evolutionary maintenance of linkage between conserved noncoding elements and neighbouring genes. Chromatin marks associated with enhancer function are strongly correlated with this linkage score. We test >1,000 putative enhancers by transgenesis assays in zebrafish to ascertain the identity of the target gene. The majority of active enhancers drive a transgenic expression in a pattern consistent with the known expression of a linked gene. These results show that evolutionary maintenance of linkage is a reliable predictor of an enhancer's function, and provide new information to discover the genetic basis of diseases caused by the mis-regulation of gene expression. PMID:25908307
Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ
Mank, Nils N.; Berghoff, Bork A.; Hermanns, Yannick N.; Klug, Gabriele
2012-01-01
The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA. PMID:22988125
Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.
Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele
2012-10-02
The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.
A comparative study of disease genes and drug targets in the human protein interactome
2015-01-01
Background Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. Results In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. Conclusions The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing. PMID:25861037
A comparative study of disease genes and drug targets in the human protein interactome.
Sun, Jingchun; Zhu, Kevin; Zheng, W; Xu, Hua
2015-01-01
Disease genes cause or contribute genetically to the development of the most complex diseases. Drugs are the major approaches to treat the complex disease through interacting with their targets. Thus, drug targets are critical for treatment efficacy. However, the interrelationship between the disease genes and drug targets is not clear. In this study, we comprehensively compared the network properties of disease genes and drug targets for five major disease categories (cancer, cardiovascular disease, immune system disease, metabolic disease, and nervous system disease). We first collected disease genes from genome-wide association studies (GWAS) for five disease categories and collected their corresponding drugs based on drugs' Anatomical Therapeutic Chemical (ATC) classification. Then, we obtained the drug targets for these five different disease categories. We found that, though the intersections between disease genes and drug targets were small, disease genes were significantly enriched in targets compared to their enrichment in human protein-coding genes. We further compared network properties of the proteins encoded by disease genes and drug targets in human protein-protein interaction networks (interactome). The results showed that the drug targets tended to have higher degree, higher betweenness, and lower clustering coefficient in cancer Furthermore, we observed a clear fraction increase of disease proteins or drug targets in the near neighborhood compared with the randomized genes. The study presents the first comprehensive comparison of the disease genes and drug targets in the context of interactome. The results provide some foundational network characteristics for further designing computational strategies to predict novel drug targets and drug repurposing.
Zhang, Tingting; Hu, Shuhao; Yan, Caixia; Li, Chunjuan; Zhao, Xiaobo; Wan, Shubo; Shan, Shihua
2017-02-01
In the present investigation, a total of 60 conserved peanut (Arachis hypogaea L.) microRNA (miRNA) sequences, belonging to 16 families, were identified using bioinformatics methods. There were 392 target gene sequences, identified from 58 miRNAs with Target-align software and BLASTx analyses. Gene Ontology (GO) functional analysis suggested that these target genes were involved in mediating peanut growth and development, signal transduction and stress resistance. There were 55 miRNA sequences, verified employing a poly (A) tailing test, with a success rate of up to 91.67%. Twenty peanut target gene sequences were randomly selected, and the 5' rapid amplification of the cDNA ends (5'-RACE) method were used to validate the cleavage sites of these target genes. Of these, 14 (70%) peanut miRNA targets were verified by means of gel electrophoresis, cloning and sequencing. Furthermore, functional analysis and homologous sequence retrieval were conducted for target gene sequences, and 26 target genes were chosen as the objects for stress resistance experimental study. Real-time fluorescence quantitative PCR (qRT-PCR) technology was applied to measure the expression level of resistance-associated miRNAs and their target genes in peanut exposed to Aspergillus flavus (A. flavus) infection and drought stress, respectively. In consequence, 5 groups of miRNAs & targets were found accorded with the mode of miRNA negatively controlling the expression of target genes. This study, preliminarily determined the biological functions of some resistance-associated miRNAs and their target genes in peanut. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Kaushik, Abhinav; Bhatia, Yashuma; Ali, Shakir; Gupta, Dinesh
2015-01-01
Metastatic melanoma patients have a poor prognosis, mainly attributable to the underlying heterogeneity in melanoma driver genes and altered gene expression profiles. These characteristics of melanoma also make the development of drugs and identification of novel drug targets for metastatic melanoma a daunting task. Systems biology offers an alternative approach to re-explore the genes or gene sets that display dysregulated behaviour without being differentially expressed. In this study, we have performed systems biology studies to enhance our knowledge about the conserved property of disease genes or gene sets among mutually exclusive datasets representing melanoma progression. We meta-analysed 642 microarray samples to generate melanoma reconstructed networks representing four different stages of melanoma progression to extract genes with altered molecular circuitry wiring as compared to a normal cellular state. Intriguingly, a majority of the melanoma network-rewired genes are not differentially expressed and the disease genes involved in melanoma progression consistently modulate its activity by rewiring network connections. We found that the shortlisted disease genes in the study show strong and abnormal network connectivity, which enhances with the disease progression. Moreover, the deviated network properties of the disease gene sets allow ranking/prioritization of different enriched, dysregulated and conserved pathway terms in metastatic melanoma, in agreement with previous findings. Our analysis also reveals presence of distinct network hubs in different stages of metastasizing tumor for the same set of pathways in the statistically conserved gene sets. The study results are also presented as a freely available database at http://bioinfo.icgeb.res.in/m3db/. The web-based database resource consists of results from the analysis presented here, integrated with cytoscape web and user-friendly tools for visualization, retrieval and further analysis. PMID:26558755
Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko
2008-10-15
In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins. (c) 2008 Wiley-Liss, Inc.
The Mechanism of Gene Targeting in Human Somatic Cells
Kan, Yinan; Ruis, Brian; Lin, Sherry; Hendrickson, Eric A.
2014-01-01
Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells. PMID:24699519
Hipp, Jason D; Davies, Kelvin P; Tar, Moses; Valcic, Mira; Knoll, Abraham; Melman, Arnold; Christ, George J
2007-02-01
To identify early diabetes-related alterations in gene expression in bladder and erectile tissue that would provide novel diagnostic and therapeutic treatment targets to prevent, delay or ameliorate the ensuing bladder and erectile dysfunction. The RG-U34A rat GeneChip (Affymetrix Inc., Sunnyvale, CA, USA) oligonucleotide microarray (containing approximately 8799 genes) was used to evaluate gene expression in corporal and male bladder tissue excised from rats 1 week after confirmation of a diabetic state, but before demonstrable changes in organ function in vivo. A conservative analytical approach was used to detect alterations in gene expression, and gene ontology (GO) classifications were used to identify biological themes/pathways involved in the aetiology of the organ dysfunction. In all, 320 and 313 genes were differentially expressed in bladder and corporal tissue, respectively. GO analysis in bladder tissue showed prominent increases in biological pathways involved in cell proliferation, metabolism, actin cytoskeleton and myosin, as well as decreases in cell motility, and regulation of muscle contraction. GO analysis in corpora showed increases in pathways related to ion channel transport and ion channel activity, while there were decreases in collagen I and actin genes. The changes in gene expression in these initial experiments are consistent with the pathophysiological characteristics of the bladder and erectile dysfunction seen later in the diabetic disease process. Thus, the observed changes in gene expression might be harbingers or biomarkers of impending organ dysfunction, and could provide useful diagnostic and therapeutic targets for a variety of progressive urological diseases/conditions (i.e. lower urinary tract symptoms related to benign prostatic hyperplasia, erectile dysfunction, etc.).
Maasalu, Katre; Laius, Ott; Zhytnik, Lidiia; Kõks, Sulev; Prans, Ele; Reimann, Ene; Märtson, Aare
2017-01-01
Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10 -4 among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers.
Schiessl, Katharina; Muiño, Jose M; Sablowski, Robert
2014-02-18
Plant morphogenesis requires coordinated cytoplasmic growth, oriented cell wall extension, and cell cycle progression, but it is debated which of these processes are primary drivers for tissue growth and directly targeted by developmental genes. Here, we used ChIP high-throughput sequencing combined with transcriptome analysis to identify global target genes of the Arabidopsis transcription factor JAGGED (JAG), which promotes growth of the distal region of floral organs. Consistent with the roles of JAG during organ initiation and subsequent distal organ growth, we found that JAG directly repressed genes involved in meristem development, such as CLAVATA1 and HANABA TARANU, and genes involved in the development of the basal region of shoot organs, such as BLADE ON PETIOLE 2 and the GROWTH REGULATORY FACTOR pathway. At the same time, JAG regulated genes involved in tissue polarity, cell wall modification, and cell cycle progression. In particular, JAG directly repressed KIP RELATED PROTEIN 4 (KRP4) and KRP2, which control the transition to the DNA synthesis phase (S-phase) of the cell cycle. The krp2 and krp4 mutations suppressed jag defects in organ growth and in the morphology of petal epidermal cells, showing that the interaction between JAG and KRP genes is functionally relevant. Our work reveals that JAG is a direct mediator between genetic pathways involved in organ patterning and cellular functions required for tissue growth, and it shows that a regulatory gene shapes plant organs by releasing a constraint on S-phase entry.
Kellogg, Stephanie L; Kristich, Christopher J
2018-04-09
Two common signal transduction mechanisms used by bacteria to sense and respond to changing environments are two-component systems (TCSs) and eukaryotic-like Ser/Thr kinases and phosphatases (eSTK/Ps). Enterococcus faecalis is a Gram-positive bacterium and serious opportunistic pathogen that relies on both a TCS and an eSTK/P pathway for intrinsic resistance to cell wall-targeting antibiotics. The TCS consists of a histidine kinase (CroS) and response regulator (CroR) that become activated upon exposure of cells to cell wall-targeting antibiotics, leading to modulation of gene expression. The eSTK/P pathway consists of a transmembrane kinase (IreK) and its cognate phosphatase (IreP), which act antagonistically to mediate antibiotic resistance through an unknown mechanism. Because both CroS/R and IreK/P contribute to enterococcal resistance towards cell wall-targeting antibiotics, we hypothesized these signaling systems are intertwined. To test this hypothesis, we analyzed CroR phosphorylation and CroS/R-dependent gene expression to probe the influence of IreK and IreP on CroS/R signaling. In addition, we analyzed the phosphorylation state of CroS which revealed IreK-dependent phosphorylation of a Thr residue important for CroS function. Our results are consistent with a model in which IreK positively influences CroR-dependent gene expression through phosphorylation of CroS to promote antimicrobial resistance in E. faecalis Importance Two-component signaling systems (TCSs) and eukaryotic-like Ser/Thr kinases (eSTKs) are used by bacteria to sense and adapt to changing environments. Understanding how these pathways are regulated to promote bacterial survival is critical for a more complete understanding of bacterial stress responses and physiology. The opportunistic pathogen Enterococcus faecalis relies on both a TCS (CroS/R) and an eSTK (IreK) for intrinsic resistance to cell wall-targeting antibiotics. We probed the relationship between CroS/R and IreK, revealing convergence of IreK and the sensor kinase CroS to enhance signaling through CroS/R and increase antimicrobial resistance in E. faecalis This newly described example of eSTK/TCS convergence adds to our understanding of the signaling networks mediating antimicrobial resistance in E. faecalis . Copyright © 2018 American Society for Microbiology.
Biophysical characterization of an integrin-targeted lipopolyplex gene delivery vector.
Mustapa, M Firouz Mohd; Bell, Paul C; Hurley, Christopher A; Nicol, Alastair; Guénin, Erwann; Sarkar, Supti; Writer, Michele J; Barker, Susie E; Wong, John B; Pilkington-Miksa, Michael A; Papahadjopoulos-Sternberg, Brigitte; Shamlou, Parviz Ayazi; Hailes, Helen C; Hart, Stephen L; Zicha, Daniel; Tabor, Alethea B
2007-11-13
Nonviral gene delivery vectors now show good therapeutic potential: however, detailed characterization of the composition and macromolecular organization of such particles remains a challenge. This paper describes experiments to elucidate the structure of a ternary, targeted, lipopolyplex synthetic vector, the LID complex. This consists of a lipid component, Lipofectin (L) (1:1 DOTMA:DOPE), plasmid DNA (D), and a dual-function, cationic peptide component (I) containing DNA condensation and integrin-targeting sequences. Fluorophore-labeled lipid, peptide, and DNA components were used to formulate the vector, and the stoichiometry of the particles was established by fluorescence correlation spectroscopy (FCS). The size of the complex was measured by FCS, and the sizes of LID, L, LD, and ID complexes were measured by dynamic light scattering (DLS). Fluorescence quenching experiments and freeze-fracture electron microscopy were then used to demonstrate the arrangement of the lipid, peptide, and DNA components within the complex. These experiments showed that the cationic portion of the peptide, I, interacts with the plasmid DNA, resulting in a tightly condensed DNA-peptide inner core; this is surrounded by a disordered lipid layer, from which the integrin-targeting sequence of the peptide partially protrudes.
Targeting of deep-brain structures in nonhuman primates using MR and CT Images
NASA Astrophysics Data System (ADS)
Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Connolly, Brett; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.
2015-03-01
In vivo gene delivery in central nervous systems of nonhuman primates (NHP) is an important approach for gene therapy and animal model development of human disease. To achieve a more accurate delivery of genetic probes, precise stereotactic targeting of brain structures is required. However, even with assistance from multi-modality 3D imaging techniques (e.g. MR and CT), the precision of targeting is often challenging due to difficulties in identification of deep brain structures, e.g. the striatum which consists of multiple substructures, and the nucleus basalis of meynert (NBM), which often lack clear boundaries to supporting anatomical landmarks. Here we demonstrate a 3D-image-based intracranial stereotactic approach applied toward reproducible intracranial targeting of bilateral NBM and striatum of rhesus. For the targeting we discuss the feasibility of an atlas-based automatic approach. Delineated originally on a high resolution 3D histology-MR atlas set, the NBM and the striatum could be located on the MR image of a rhesus subject through affine and nonrigid registrations. The atlas-based targeting of NBM was compared with the targeting conducted manually by an experienced neuroscientist. Based on the targeting, the trajectories and entry points for delivering the genetic probes to the targets could be established on the CT images of the subject after rigid registration. The accuracy of the targeting was assessed quantitatively by comparison between NBM locations obtained automatically and manually, and finally demonstrated qualitatively via post mortem analysis of slices that had been labelled via Evan Blue infusion and immunohistochemistry.
Su, Fei; Zheng, Ke; Fu, Yiyun; Wu, Qian; Tang, Yuan; Wang, Weiya; Jiang, Lili
2018-05-20
Epidermal growth factor receptor (EGFR) gene mutation is closely related to the EGFR-TKI target treatment and prognosis of lung adenocarcinoma patients. The mutation status of EGFR is limited by tissue detection. The purpose of this study was to investigate the difference of EGFR mutants in plasmacirculating cell-free DNA (cfDNA) obtained from patients with non-small cell lung cancer (NSCLC) in three groups: pre-therapy, after traditional chemotherapy and targeted therapy. The aim of this study was to analyze whether the plasma cfDNA could effectively determine the EGFR mutations and monitor the drug resistant gene T790M, as well as its prognostic prediction value in patients with targeted therapy. ARMS (amplification refractory mutation system)-PCR was used to detect EGFR mutations in 107 (50 of pre-therapy, 29 after traditional chemotherapy and 28 after targeted therapy) cases of paired plasma and tumor tissue specimens, followed by comparing their concordance. The sensitivity, specificity and the prognostic value of plasma cfDNA detection were also observed. The total rate of EGFR mutation was 56% (60/107) in all plasma samples and 77.6% (83/107) in corresponding tumor tissues. Completely the same mutants and wild-type EGFR were found in 68.2% cases of paired specimens. The sensitivity of plasma cfDNA detection was 72.3% and the specificity was up to 100%. Patients were sub-categorized according to therapy. The results showed that the highest consistent rate of cfDNA and tumor tissues was found in the group of pre-therapy (74%, 37/50). Whereas, the lowest consistent rate was observed in the targeted therapy group (57.1%, 16/28). It indicated that the targeted treatment could change the EGFR status in plasma cfDNA. Further analyses on inconsistent cases in this group revealed that 50% of them were compound EGFR mutations with T790M. Thereby, it suggested that targeted therapy might induce the emergence of drug resistance gene T790M. This speculation was confirmed by survival analyses. Based on plasma cfDNA results, patients with T790M mutant had significantly worse progression-free survival (PFS) and overall survival (OS). For EGFR testing, ARMS-PCR on plasma cfDNA is a promising methodology with the highest specificity and effective sensitivity. It is useful for EGFR testing in patients before treatment, especially the late-stage patients. Simultaneously, plasma cfDNA could be used to monitor the drug resistant mutation, T790M status and predict prognosis after targeted therapy.
Specific genetic modifications of domestic animals by gene targeting and animal cloning
Wang, Bin; Zhou, Jiangfeng
2003-01-01
The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined. PMID:14614774
Yang, Maozhou; Zhang, Liang; Stevens, Jeff; Gibson, Gary
2014-12-01
The Swarm rat chondrosarcoma (RCS) cell lines derived from a spontaneous neoplasm in a rat spine several decades ago have provided excellent models of chondrosarcoma tumor development. In addition the robust chondrocyte phenotype (expression of a large panel of genes identical to that seen in normal rat cartilage) and the ability to generate cell clones have facilitated their extensive use in the identification of chondrocyte proteins and genes. The clustered regularly interspersed short palindromic repeat (CRISPR) technology employing the RNA-guided nuclease Cas9 has rapidly dominated the genome engineering field as a unique and powerful gene editing tool. We have generated a stable RCS cell line (RCS Cas9) expressing the nuclease Cas9 that enables the editing of any target gene or non-coding RNA by simple transfection with a guide RNA. As proof of principle, stable cell lines with targeted ablation of aggrecan expression (Acan KO) were generated and characterized. The studies show that stable chondrocyte cell lines with targeted genome editing can be quickly generated from RCS Cas9 cells using this system. The Acan KO cell lines also provided a tool for characterizing the response of chondrocytes to aggrecan loss and the role of aggrecan in chondrosarcoma development. Loss of aggrecan expression while not affecting the chondrocyte phenotype resulted in a much firmer attachment of cells to their substrate in culture. Large changes in the expression of several genes were observed in response to the absence of the proteoglycan matrix, including those for several small leucine rich proteoglycans (SLRPs), transcription factors and membrane transporters. Acan KO cells failed to form a substantial chondrosarcoma when injected subcutaneously in nude mice consistent with previous suggestions that the glycosaminoglycan-rich matrix surrounding the chondrosarcoma protects it from destruction by the host immune system. The studies provide new understanding of aggrecan function and the RCS Cas9 cell line is expected to provide a very valuable tool for the study gene function in chondrocytes. Copyright © 2014 Elsevier Inc. All rights reserved.
Zang, Hongyan; Li, Ning; Pan, Yuling; Hao, Jingguang
2017-03-01
Breast cancer is a common malignancy among women with a rising incidence. Our intention was to detect transcription factors (TFs) for deeper understanding of the underlying mechanisms of breast cancer. Integrated analysis of gene expression datasets of breast cancer was performed. Then, functional annotation of differentially expressed genes (DEGs) was conducted, including Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, TFs were identified and a global transcriptional regulatory network was constructed. Seven publically available GEO datasets were obtained, and a set of 1196 DEGs were identified (460 up-regulated and 736 down-regulated). Functional annotation results showed that cell cycle was the most significantly enriched pathway, which was consistent with the fact that cell cycle is closely related to various tumors. Fifty-three differentially expressed TFs were identified, and the regulatory networks consisted of 817 TF-target interactions between 46 TFs and 602 DEGs in the context of breast cancer. Top 10 TFs covering the most downstream DEGs were SOX10, NFATC2, ZNF354C, ARID3A, BRCA1, FOXO3, GATA3, ZEB1, HOXA5 and EGR1. The transcriptional regulatory networks could enable a better understanding of regulatory mechanisms of breast cancer pathology and provide an opportunity for the development of potential therapy.
Post-Transcriptional Regulation of BCL2 mRNA by the RNA-Binding Protein ZFP36L1 in Malignant B Cells
Zekavati, Anna; Nasir, Asghar; Alcaraz, Amor; Aldrovandi, Maceler; Marsh, Phil; Norton, John D.; Murphy, John J.
2014-01-01
The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3′ untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the ‘maximum information coefficient’ (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3′ untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3′ untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells. PMID:25014217
Paz-Ares, Javier; Weigel, Detlef
2010-01-01
Many targets of plant microRNAs (miRNAs) are thought to play important roles in plant physiology and development. However, because plant miRNAs are typically encoded by medium-size gene families, it has often been difficult to assess their precise function. We report the generation of a large-scale collection of knockdowns for Arabidopsis thaliana miRNA families; this has been achieved using artificial miRNA target mimics, a recently developed technique fashioned on an endogenous mechanism of miRNA regulation. Morphological defects in the aerial part were observed for ∼20% of analyzed families, all of which are deeply conserved in land plants. In addition, we find that non-cleavable mimic sites can confer translational regulation in cis. Phenotypes of plants expressing target mimics directed against miRNAs involved in development were in several cases consistent with previous reports on plants expressing miRNA–resistant forms of individual target genes, indicating that a limited number of targets mediates most effects of these miRNAs. That less conserved miRNAs rarely had obvious effects on plant morphology suggests that most of them do not affect fundamental aspects of development. In addition to insight into modes of miRNA action, this study provides an important resource for the study of miRNA function in plants. PMID:20661442
Disabling Cas9 by an anti-CRISPR DNA mimic.
Shin, Jiyung; Jiang, Fuguo; Liu, Jun-Jie; Bray, Nicolas L; Rauch, Benjamin J; Baik, Seung Hyun; Nogales, Eva; Bondy-Denomy, Joseph; Corn, Jacob E; Doudna, Jennifer A
2017-07-01
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 gene editing technology is derived from a microbial adaptive immune system, where bacteriophages are often the intended target. Natural inhibitors of CRISPR-Cas9 enable phages to evade immunity and show promise in controlling Cas9-mediated gene editing in human cells. However, the mechanism of CRISPR-Cas9 inhibition is not known, and the potential applications for Cas9 inhibitor proteins in mammalian cells have not been fully established. We show that the anti-CRISPR protein AcrIIA4 binds only to assembled Cas9-single-guide RNA (sgRNA) complexes and not to Cas9 protein alone. A 3.9 Å resolution cryo-electron microscopy structure of the Cas9-sgRNA-AcrIIA4 complex revealed that the surface of AcrIIA4 is highly acidic and binds with a 1:1 stoichiometry to a region of Cas9 that normally engages the DNA protospacer adjacent motif. Consistent with this binding mode, order-of-addition experiments showed that AcrIIA4 interferes with DNA recognition but has no effect on preformed Cas9-sgRNA-DNA complexes. Timed delivery of AcrIIA4 into human cells as either protein or expression plasmid allows on-target Cas9-mediated gene editing while reducing off-target edits. These results provide a mechanistic understanding of AcrIIA4 function and demonstrate that inhibitors can modulate the extent and outcomes of Cas9-mediated gene editing.
Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation.
Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G; Xie, Jiuyong
2012-09-01
The molecular basis of cell signal-regulated alternative splicing at the 3' splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3' splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3' splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3' splice site usage.
Zheng, Chong-Ke; Wang, Chun-Lian; Zhang, Xiao-Ping; Wang, Fu-Jun; Qin, Teng-Fei; Zhao, Kai-Jun
2014-09-01
To activate the expression of host genes that contribute to pathogen growth, pathogenic Xanthomonas bacteria inject their transcription activator-like effectors (TALEs) into plant cells and the TALEs bind to target gene promoters by the central repeat region consisting of near-perfect 34-amino-acid repeats (34-aa repeats). Based on the recognition codes between the 34-aa repeats and the targeted nucleotides, TALE-based technologies, such as designer TALEs (dTALEs) and TALE nucleases (TALENs), have been developed. Amazingly, every natural TALE invariantly has a truncated last half-repeat (LHR) at the end of the 34-aa repeats. Consequently, all the reported dTALEs and TALENs also harbour their LHRs. Here, we show that the LHRs in dTALEs are dispensable for the function of gene activation by both transient expression assays in Nicotiana benthamiana and gene-specific targeting in the rice genome, indicating that TALEs might originate from a single progenitor. In the light of this finding, we demonstrate that dTALEs can be constructed through two simple steps. Moreover, the activation strengths of dTALEs lacking the LHR are comparable with those of dTALEs harbouring the LHR. Our results provide new insights into the origin of natural TALEs, and will facilitate the simplification of the design and assembly of TALE-based tools, such as dTALEs and TALENs, in the near future. © 2014 BSPP AND JOHN WILEY & SONS LTD.
Kugler, Sabrina J; Gehring, Eva-Maria; Wallkamm, Veronika; Krüger, Victoria; Nagel, Anja C
2011-05-01
Putzig (Pzg) was originally identified as being an integral component of the TRF2/DREF complex in Drosophila melanogaster, thereby regulating the transcriptional activation of replication-related genes. In a DREF-independent manner, Pzg was shown to mediate Notch target gene activation. This function of Pzg entails an association with the nucleosome remodeling factor complex NURF, which directly binds the ecdysone receptor EcR and coregulates targets of the EcR via the NURF-specific subunit Nurf-301. In contrast, Nurf-301 acts as a negative regulator of JAK/STAT signaling. Here, we provide evidence to show that Pzg is fundamental for these functions of NURF, apart from the regulation of Notch signaling activity. A jump-out mutagenesis provided us with a pzg null mutant displaying early larval lethality, defects in growth, and molting accompanied by aberrant feeding behavior. We show that Pzg is associated with EcR in vivo and required for the transcriptional induction of EcR target genes, whereas reduced ecdysteroid levels imply a NURF-independent function of Pzg. Moreover, pzg interferes with JAK/STAT-signaling activity by acting as a corepressor of Ken. Lamellocyte differentiation was consistently affected in a JAK/STAT mutant background and the expression level of defense response genes was elevated in pzg mutants, leading to the formation of melanotic tumors. Our results suggest that Pzg acts as an important partner of NURF in the regulation of EcR and JAK/STAT signaling.
Gene essentiality, conservation index and co-evolution of genes in cyanobacteria.
Tiruveedula, Gopi Siva Sai; Wangikar, Pramod P
2017-01-01
Cyanobacteria, a group of photosynthetic prokaryotes, dominate the earth with ~ 1015 g wet biomass. Despite diversity in habitats and an ancient origin, cyanobacterial phylum has retained a significant core genome. Cyanobacteria are being explored for direct conversion of solar energy and carbon dioxide into biofuels. For this, efficient cyanobacterial strains will need to be designed via metabolic engineering. This will require identification of target knockouts to channelize the flow of carbon toward the product of interest while minimizing deletions of essential genes. We propose "Gene Conservation Index" (GCI) as a quick measure to predict gene essentiality in cyanobacteria. GCI is based on phylogenetic profile of a gene constructed with a reduced dataset of cyanobacterial genomes. GCI is the percentage of organism clusters in which the query gene is present in the reduced dataset. Of the 750 genes deemed to be essential in the experimental study on S. elongatus PCC 7942, we found 494 to be conserved across the phylum which largely comprise of the essential metabolic pathways. On the contrary, the conserved but non-essential genes broadly comprise of genes required under stress conditions. Exceptions to this rule include genes such as the glycogen synthesis and degradation enzymes, deoxyribose-phosphate aldolase (DERA), glucose-6-phosphate 1-dehydrogenase (zwf) and fructose-1,6-bisphosphatase class1, which are conserved but non-essential. While the essential genes are to be avoided during gene knockout studies as potentially lethal deletions, the non-essential but conserved set of genes could be interesting targets for metabolic engineering. Further, we identify clusters of co-evolving genes (CCG), which provide insights that may be useful in annotation. Principal component analysis (PCA) plots of the CCGs are demonstrated as data visualization tools that are complementary to the conventional heatmaps. Our dataset consists of phylogenetic profiles for 23,643 non-redundant cyanobacterial genes. We believe that the data and the analysis presented here will be a great resource to the scientific community interested in cyanobacteria.
Genetic identification of brain cell types underlying schizophrenia.
Skene, Nathan G; Bryois, Julien; Bakken, Trygve E; Breen, Gerome; Crowley, James J; Gaspar, Héléna A; Giusti-Rodriguez, Paola; Hodge, Rebecca D; Miller, Jeremy A; Muñoz-Manchado, Ana B; O'Donovan, Michael C; Owen, Michael J; Pardiñas, Antonio F; Ryge, Jesper; Walters, James T R; Linnarsson, Sten; Lein, Ed S; Sullivan, Patrick F; Hjerling-Leffler, Jens
2018-06-01
With few exceptions, the marked advances in knowledge about the genetic basis of schizophrenia have not converged on findings that can be confidently used for precise experimental modeling. By applying knowledge of the cellular taxonomy of the brain from single-cell RNA sequencing, we evaluated whether the genomic loci implicated in schizophrenia map onto specific brain cell types. We found that the common-variant genomic results consistently mapped to pyramidal cells, medium spiny neurons (MSNs) and certain interneurons, but far less consistently to embryonic, progenitor or glial cells. These enrichments were due to sets of genes that were specifically expressed in each of these cell types. We also found that many of the diverse gene sets previously associated with schizophrenia (genes involved in synaptic function, those encoding mRNAs that interact with FMRP, antipsychotic targets, etc.) generally implicated the same brain cell types. Our results suggest a parsimonious explanation: the common-variant genetic results for schizophrenia point at a limited set of neurons, and the gene sets point to the same cells. The genetic risk associated with MSNs did not overlap with that of glutamatergic pyramidal cells and interneurons, suggesting that different cell types have biologically distinct roles in schizophrenia.
Vandelle, Elodie; Puttilli, Maria Rita; Chini, Andrea; Devescovi, Giulia; Venturi, Vittorio; Polverari, Annalisa
2017-01-01
The life cycle of bacterial phytopathogens consists of a benign epiphytic phase, during which the bacteria grow in the soil or on the plant surface, and a virulent endophytic phase involving the penetration of host defenses and the colonization of plant tissues. Innovative strategies are urgently required to integrate copper treatments that control the epiphytic phase with complementary tools that control the virulent endophytic phase, thus reducing the quantity of chemicals applied to economically and ecologically acceptable levels. Such strategies include targeted treatments that weaken bacterial pathogens, particularly those inhibiting early infection steps rather than tackling established infections. This chapter describes a reporter gene-based chemical genomic high-throughput screen for the induction of bacterial virulence by plant molecules. Specifically, we describe a chemical genomic screening method to identify agonist and antagonist molecules for the induction of targeted bacterial virulence genes by plant extracts, focusing on the experimental controls required to avoid false positives and thus ensuring the results are reliable and reproducible.
MiR-980 is a memory suppressor microRNA that regulates the autism-susceptibility gene, A2bp1
Guven-Ozkan, Tugba; Busto, Germain U.; Schutte, Soleil S.; Cervantes-Sandoval, Isaac; O’Dowd, Diane K.; Davis, Ronald L.
2016-01-01
SUMMARY MicroRNAs have been associated with many different biological functions but little is known about their roles in conditioned behavior. We demonstrate that Drosophila miR-980 is a memory suppressor gene functioning in multiple regions of the adult brain. Memory acquisition and stability were both increased by miR-980 inhibition. Whole cell recordings and functional imaging experiments indicated that miR-980 regulates neuronal excitability. We identified the autism susceptibility gene, A2bp1, as an mRNA target for miR-980. A2bp1 levels varied inversely with miR-980 expression; memory performance was directly related to A2bp1 levels. In addition, A2bp1 knockdown reversed the memory gains produced by miR-980 inhibition, consistent with A2bp1 being a downstream target of miR-980 responsible for the memory phenotypes. Our results indicate that miR-980 represses A2bp1 expression to tune the excitable state of neurons, and the overall state of excitability translates to memory impairment or improvement. PMID:26876166
A multiplex degenerate PCR analytical approach targeting to eight genes for screening GMOs.
Guo, Jinchao; Chen, Lili; Liu, Xin; Gao, Ying; Zhang, Dabing; Yang, Litao
2012-06-01
Currently, the detection methods with lower cost and higher throughput are the major trend in screening genetically modified (GM) food or feed before specific identification. In this study, we developed a quadruplex degenerate PCR screening approach for more than 90 approved GMO events. This assay is consisted of four PCR systems targeting on nine DNA sequences from eight trait genes widely introduced into GMOs, such as CP4-EPSPS derived from Acetobacterium tumefaciens sp. strain CP4, phosphinothricin acetyltransferase gene derived from Streptomyceshygroscopicus (bar) and Streptomyces viridochromogenes (pat), and Cry1Ab, Cry1Ac, Cry1A(b/c), mCry3A, and Cry3Bb1 derived from Bacillus thuringiensis. The quadruplex degenerate PCR assay offers high specificity and sensitivity with the absolute limit of detection (LOD) of approximate 80targetcopies. Furthermore, the applicability of the quadruplex PCR assay was confirmed by screening either several artificially prepared samples or samples of Grain Inspection, Packers and Stockyards Administration (GIPSA) proficiency program. Copyright © 2011 Elsevier Ltd. All rights reserved.
Construction of a versatile SNP array for pyramiding useful genes of rice.
Kurokawa, Yusuke; Noda, Tomonori; Yamagata, Yoshiyuki; Angeles-Shim, Rosalyn; Sunohara, Hidehiko; Uehara, Kanako; Furuta, Tomoyuki; Nagai, Keisuke; Jena, Kshirod Kumar; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki; Doi, Kazuyuki
2016-01-01
DNA marker-assisted selection (MAS) has become an indispensable component of breeding. Single nucleotide polymorphisms (SNP) are the most frequent polymorphism in the rice genome. However, SNP markers are not readily employed in MAS because of limitations in genotyping platforms. Here the authors report a Golden Gate SNP array that targets specific genes controlling yield-related traits and biotic stress resistance in rice. As a first step, the SNP genotypes were surveyed in 31 parental varieties using the Affymetrix Rice 44K SNP microarray. The haplotype information for 16 target genes was then converted to the Golden Gate platform with 143-plex markers. Haplotypes for the 14 useful allele are unique and can discriminate among all other varieties. The genotyping consistency between the Affymetrix microarray and the Golden Gate array was 92.8%, and the accuracy of the Golden Gate array was confirmed in 3 F2 segregating populations. The concept of the haplotype-based selection by using the constructed SNP array was proofed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Moro orange juice prevents fatty liver in mice.
Salamone, Federico; Li Volti, Giovanni; Titta, Lucilla; Puzzo, Lidia; Barbagallo, Ignazio; La Delia, Francesco; Zelber-Sagi, Shira; Malaguarnera, Michele; Pelicci, Pier Giuseppe; Giorgio, Marco; Galvano, Fabio
2012-08-07
To establish if the juice of Moro, an anthocyanin-rich orange, may improve liver damage in mice with diet-induced obesity. Eight-week-old mice were fed a high-fat diet (HFD) and were administrated water or Moro juice for 12 wk. Liver morphology, gene expression of lipid transcription factors, and metabolic enzymes were assessed. Mice fed HFD displayed increased body weight, insulin resistance and dyslipidemia. Moro juice administration limited body weight gain, enhanced insulin sensitivity, and decreased serum triglycerides and total cholesterol. Mice fed HFD showed liver steatosis associated with ballooning. Dietary Moro juice markedly improved liver steatosis by inducing the expression of peroxisome proliferator-activated receptor-α and its target gene acylCoA-oxidase, a key enzyme of lipid oxidation. Consistently, Moro juice consumption suppressed the expression of liver X receptor-α and its target gene fatty acid synthase, and restored liver glycerol-3-phosphate acyltransferase 1 activity. Moro juice counteracts liver steatogenesis in mice with diet-induced obesity and thus may represent a promising dietary option for the prevention of fatty liver.
Fisher, C.L.; Lee, I.; Bloyer, S.; Bozza, S.; Chevalier, J.; Dahl, A; Bodner, C.; Helgason, C. D.; Hess, J.L.; Humphries, R.K.; Brock, H.W.
2009-01-01
The Additional sex combs (Asx) gene of Drosophila behaves genetically as an enhancer of trithorax and Polycomb (ETP) in displaying bidirectional homeotic phenotypes, suggesting that is required for maintenance of both activation and silencing of Hox genes. There are 3 murine homologs of Asx called Additional sex combs-like1, 2, and-3. Asxl1 is required for normal adult hematopoiesis; however its embryonic function is unknown. We used a targeted mouse mutant line Asxl1tm1Bc to determine if Asxl1 is required to silence and activate Hox genes in mice during axial patterning. The mutant embryos exhibit simultaneous anterior and posterior transformations of the axial skeleton, consistent with a role for Asxl1 in activation and silencing of Hox genes. Transformations of the axial skeleton are enhanced in compound mutant embryos for the Polycomb group gene M33/Cbx2. Hox a4, a7, and c8 are derepressed in Asxl1tm1Bc mutants in the antero-posterior axis, but Hox c8 expression is reduced in the brain of mutants, consistent with Asxl1 being required both for activation and repression of Hox genes. We discuss the genetic and molecular definition of ETPs, and suggest that the function of Asxl1 depends on its cellular context. PMID:19833123
Effects of proteasome inhibitor MG-132 on the parasite Schistosoma mansoni
de Paula, Renato G.; Ornelas, Alice M. M.; Moreira, Érika B. C.; Badoco, Fernanda Rafacho; Magalhães, Lizandra G.; Verjovski-Almeida, Sergio; Rodrigues, Vanderlei
2017-01-01
Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites’ tegument. We identified 1,919 genes with a statistically significant (q-value ≤ 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis inhibitor genes, IAP1 and BRE1, and in contrast, down-regulation of Apaf-1 apoptotic activator, thus suggesting that apoptosis is deregulated in S. mansoni exposed to MG-132. A considerable insight has been gained concerning the potential of MG-132 as a gene expression modulator, and overall the data suggest that the proteasome might be an important molecular target for the design of new drugs against schistosomiasis. PMID:28898250
An Integrated Analysis of miRNA and mRNA Expressions in Non-Small Cell Lung Cancers
Ma, Lina; Huang, Yanyan; Zhu, Wangyu; Zhou, Shiquan; Zhou, Jihang; Zeng, Fang; Liu, Xiaoguang; Zhang, Yongkui; Yu, Jun
2011-01-01
Using DNA microarrays, we generated both mRNA and miRNA expression data from 6 non-small cell lung cancer (NSCLC) tissues and their matching normal control from adjacent tissues to identify potential miRNA markers for diagnostics. We demonstrated that hsa-miR-96 is significantly and consistently up-regulated in all 6 NSCLCs. We validated this result in an independent set of 35 paired tumors and their adjacent normal tissues, as well as their sera that are collected before surgical resection or chemotherapy, and the results suggested that hsa-miR-96 may play an important role in NSCLC development and has great potential to be used as a noninvasive marker for diagnosing NSCLC. We predicted potential miRNA target mRNAs based on different methods (TargetScan and miRanda). Further classification of miRNA regulated genes based on their relationship with miRNAs revealed that hsa-miR-96 and certain other miRNAs tend to down-regulate their target mRNAs in NSCLC development, which have expression levels permissive to direct interaction between miRNAs and their target mRNAs. In addition, we identified a significant correlation of miRNA regulation with genes coincide with high density of CpG islands, which suggests that miRNA may represent a primary regulatory mechanism governing basic cellular functions and cell differentiations, and such mechanism may be complementary to DNA methylation in repressing or activating gene expression. PMID:22046296
The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression
Wolfram, Verena; Southall, Tony D.; Günay, Cengiz; Prinz, Astrid A.; Brand, Andrea H.
2014-01-01
Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K+ channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca2+, the fast K+ current is carried solely by Sh channels (unlike neurons in which a second fast K+ current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression. PMID:24523544
Viveka Thangaraj, Soundara; Periasamy, Jayaprakash; Bhaskar Rao, Divya; Barnabas, Georgina D.; Raghavan, Swetha; Ganesan, Kumaresan
2013-01-01
Genomic aberrations are common in cancers and the long arm of chromosome 1 is known for its frequent amplifications in breast cancer. However, the key candidate genes of 1q, and their contribution in breast cancer pathogenesis remain unexplored. We have analyzed the gene expression profiles of 1635 breast tumor samples using meta-analysis based approach and identified clinically significant candidates from chromosome 1q. Seven candidate genes including exonuclease 1 (EXO1) are consistently over expressed in breast tumors, specifically in high grade and aggressive breast tumors with poor clinical outcome. We derived a EXO1 co-expression module from the mRNA profiles of breast tumors which comprises 1q candidate genes and their co-expressed genes. By integrative functional genomics investigation, we identified the involvement of EGFR, RAS, PI3K / AKT, MYC, E2F signaling in the regulation of these selected 1q genes in breast tumors and breast cancer cell lines. Expression of EXO1 module was found as indicative of elevated cell proliferation, genomic instability, activated RAS/AKT/MYC/E2F1 signaling pathways and loss of p53 activity in breast tumors. mRNA–drug connectivity analysis indicates inhibition of RAS/PI3K as a possible targeted therapeutic approach for the patients with activated EXO1 module in breast tumors. Thus, we identified seven 1q candidate genes strongly associated with the poor survival of breast cancer patients and identified the possibility of targeting them with EGFR/RAS/PI3K inhibitors. PMID:24147022
Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong
2016-02-08
Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.
Identification of targets for rational pharmacological therapy in childhood craniopharyngioma.
Gump, Jacob M; Donson, Andrew M; Birks, Diane K; Amani, Vladimir M; Rao, Karun K; Griesinger, Andrea M; Kleinschmidt-DeMasters, B K; Johnston, James M; Anderson, Richard C E; Rosenfeld, Amy; Handler, Michael; Gore, Lia; Foreman, Nicholas; Hankinson, Todd C
2015-05-21
Pediatric adamantinomatous craniopharyngioma (ACP) is a histologically benign but clinically aggressive brain tumor that arises from the sellar/suprasellar region. Despite a high survival rate with current surgical and radiation therapy (75-95 % at 10 years), ACP is associated with debilitating visual, endocrine, neurocognitive and psychological morbidity, resulting in excheptionally poor quality of life for survivors. Identification of an effective pharmacological therapy could drastically decrease morbidity and improve long term outcomes for children with ACP. Using mRNA microarray gene expression analysis of 15 ACP patient samples, we have found several pharmaceutical targets that are significantly and consistently overexpressed in our panel of ACP relative to other pediatric brain tumors, pituitary tumors, normal pituitary and normal brain tissue. Among the most highly expressed are several targets of the kinase inhibitor dasatinib - LCK, EPHA2 and SRC; EGFR pathway targets - AREG, EGFR and ERBB3; and other potentially actionable cancer targets - SHH, MMP9 and MMP12. We confirm by western blot that a subset of these targets is highly expressed in ACP primary tumor samples. We report here the first published transcriptome for ACP and the identification of targets for rational therapy. Experimental drugs targeting each of these gene products are currently being tested clinically and pre-clinically for the treatment of other tumor types. This study provides a rationale for further pre-clinical and clinical studies of novel pharmacological treatments for ACP. Development of mouse and cell culture models for ACP will further enable the translation of these targets from the lab to the clinic, potentially ushering in a new era in the treatment of ACP.
Kumar, Anil; Hou, Xu; Lee, Chunsik; Li, Yang; Maminishkis, Arvydas; Tang, Zhongshu; Zhang, Fan; Langer, Harald F; Arjunan, Pachiappan; Dong, Lijin; Wu, Zhijian; Zhu, Linda Y; Wang, Lianchun; Min, Wang; Colosi, Peter; Chavakis, Triantafyllos; Li, Xuri
2010-05-14
Platelet-derived growth factor-DD (PDGF-DD) is a recently discovered member of the PDGF family. The role of PDGF-DD in pathological angiogenesis and the underlying cellular and molecular mechanisms remain largely unexplored. In this study, using different animal models, we showed that PDGF-DD expression was up-regulated during pathological angiogenesis, and inhibition of PDGF-DD suppressed both choroidal and retinal neovascularization. We also demonstrated a novel mechanism mediating the function of PDGF-DD. PDGF-DD induced glycogen synthase kinase-3beta (GSK3beta) Ser(9) phosphorylation and Tyr(216) dephosphorylation in vitro and in vivo, leading to increased cell survival. Consistently, GSK3beta activity was required for the antiangiogenic effect of PDGF-DD targeting. Moreover, PDGF-DD regulated the expression of GSK3beta and many other genes important for angiogenesis and apoptosis. Thus, we identified PDGF-DD as an important target gene for antiangiogenic therapy due to its pleiotropic effects on vascular and non-vascular cells. PDGF-DD inhibition may offer new therapeutic options to treat neovascular diseases.
About miRNAs, miRNA seeds, target genes and target pathways.
Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas
2017-12-05
miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).
Stewart, Paul A; Parapatics, Katja; Welsh, Eric A; Müller, André C; Cao, Haoyun; Fang, Bin; Koomen, John M; Eschrich, Steven A; Bennett, Keiryn L; Haura, Eric B
2015-01-01
We performed a pilot proteogenomic study to compare lung adenocarcinoma to lung squamous cell carcinoma using quantitative proteomics (6-plex TMT) combined with a customized Affymetrix GeneChip. Using MaxQuant software, we identified 51,001 unique peptides that mapped to 7,241 unique proteins and from these identified 6,373 genes with matching protein expression for further analysis. We found a minor correlation between gene expression and protein expression; both datasets were able to independently recapitulate known differences between the adenocarcinoma and squamous cell carcinoma subtypes. We found 565 proteins and 629 genes to be differentially expressed between adenocarcinoma and squamous cell carcinoma, with 113 of these consistently differentially expressed at both the gene and protein levels. We then compared our results to published adenocarcinoma versus squamous cell carcinoma proteomic data that we also processed with MaxQuant. We selected two proteins consistently overexpressed in squamous cell carcinoma in all studies, MCT1 (SLC16A1) and GLUT1 (SLC2A1), for further investigation. We found differential expression of these same proteins at the gene level in our study as well as in other public gene expression datasets. These findings combined with survival analysis of public datasets suggest that MCT1 and GLUT1 may be potential prognostic markers in adenocarcinoma and druggable targets in squamous cell carcinoma. Data are available via ProteomeXchange with identifier PXD002622.
Mallik, Saurav; Sen, Sagnik; Maulik, Ujjwal
2016-07-15
Involvement of intrinsically disordered proteins (IDPs) with various dreadful diseases like cancer is an interesting research topic. In order to gain novel insights into the regulation of IDPs, in this article, we perform a transcriptomic analysis of mRNAs (genes) for transcripts encoding IDPs on a human multi-omics prostate carcinoma dataset having both gene expression and methylation data. In this regard, firstly the genes that consist of both the expression and methylation data, and that are corresponding to the cancer-related prostate-tissue-specific disordered proteins of MobiDb database, are selected. We apply standard t-test for determining differentially expressed genes as well as differentially methylated genes. A network having these genes and their targeter miRNAs from Diana Tarbase v7.0 database and corresponding Transcription Factors from TRANSFAC and ITFP databases, is then built. Thereafter, we perform literature search, and KEGG pathway and Gene Ontology analyses using DAVID database. Finally, we report several significant potential gene-markers (with the corresponding IDPs) that have inverse relationship between differential expression and methylation patterns, and that are hub genes of the TF-miRNA-gene network. Copyright © 2016 Elsevier B.V. All rights reserved.
Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis.
Luo, Jun; Dunn, Thomas; Ewing, Charles; Sauvageot, Jurga; Chen, Yidong; Trent, Jeffrey; Isaacs, William
2002-05-15
Despite the high prevalence of benign prostatic hyperplasia (BPH) in the aging male, little is known regarding the etiology of this disease. A better understanding of the molecular etiology of BPH would be facilitated by a comprehensive analysis of gene expression patterns that are characteristic of benign growth in the prostate gland. Since genes differentially expressed between BPH and normal prostate tissues are likely to reflect underlying pathogenic mechanisms involved in the development of BPH, we performed comparative gene expression analysis using cDNA microarray technology to identify candidate genes associated with BPH. Total RNA was extracted from a set of 9 BPH specimens from men with extensive hyperplasia and a set of 12 histologically normal prostate tissues excised from radical prostatectomy specimens. Each of these 21 RNA samples was labeled with Cy3 in a reverse transcription reaction and cohybridized with a Cy5 labeled common reference sample to a cDNA microarray containing 6,500 human genes. Normalized fluorescent intensity ratios from each hybridization experiment were extracted to represent the relative mRNA abundance for each gene in each sample. Weighted gene and random permutation analyses were performed to generate a subset of genes with statistically significant differences in expression between BPH and normal prostate tissues. Semi-quantitative PCR analysis was performed to validate differential expression. A subset of 76 genes involved in a wide range of cellular functions was identified to be differentially expressed between BPH and normal prostate tissues. Semi-quantitative PCR was performed on 10 genes and 8 were validated. Genes consistently upregulated in BPH when compared to normal prostate tissues included: a restricted set of growth factors and their binding proteins (e.g. IGF-1 and -2, TGF-beta3, BMP5, latent TGF-beta binding protein 1 and -2); hydrolases, proteases, and protease inhibitors (e.g. neuropathy target esterase, MMP2, alpha-2-macroglobulin); stress response enzymes (e.g. COX2, GSTM5); and extracellular matrix molecules (e.g. laminin alpha 4 and beta 1, chondroitin sulfate proteoglycan 2, lumican). Genes consistently expressing less mRNA in BPH than in normal prostate tissues were less commonly observed and included the transcription factor KLF4, thrombospondin 4, nitric oxide synthase 2A, transglutaminase 3, and gastrin releasing peptide. We identified a diverse set of genes that are potentially related to benign prostatic hyperplasia, including genes both previously implicated in BPH pathogenesis as well as others not previously linked to this disease. Further targeted validation and investigations of these genes at the DNA, mRNA, and protein levels are warranted to determine the clinical relevance and possible therapeutic utility of these genes. Copyright 2002 Wiley-Liss, Inc.
CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation.
Miki, Daisuke; Zhang, Wenxin; Zeng, Wenjie; Feng, Zhengyan; Zhu, Jian-Kang
2018-05-17
Homologous recombination-based gene targeting is a powerful tool for precise genome modification and has been widely used in organisms ranging from yeast to higher organisms such as Drosophila and mouse. However, gene targeting in higher plants, including the most widely used model plant Arabidopsis thaliana, remains challenging. Here we report a sequential transformation method for gene targeting in Arabidopsis. We find that parental lines expressing the bacterial endonuclease Cas9 from the egg cell- and early embryo-specific DD45 gene promoter can improve the frequency of single-guide RNA-targeted gene knock-ins and sequence replacements via homologous recombination at several endogenous sites in the Arabidopsis genome. These heritable gene targeting can be identified by regular PCR. Our approach enables routine and fine manipulation of the Arabidopsis genome.
Narla, S T; Lee, Y-W; Benson, C A; Sarder, P; Brennand, K J; Stachowiak, E K; Stachowiak, M K
2017-07-01
The watershed-hypothesis of schizophrenia asserts that over 200 different mutations dysregulate distinct pathways that converge on an unspecified common mechanism(s) that controls disease ontogeny. Consistent with this hypothesis, our RNA-sequencing of neuron committed cells (NCCs) differentiated from established iPSCs of 4 schizophrenia patients and 4 control subjects uncovered a dysregulated transcriptome of 1349 mRNAs common to all patients. Data reveals a global dysregulation of developmental genome, deconstruction of coordinated mRNA networks, and the formation of aberrant, new coordinated mRNA networks indicating a concerted action of the responsible factor(s). Sequencing of miRNA transcriptomes demonstrated an overexpression of 16 miRNAs and deconstruction of interactive miRNA-mRNA networks in schizophrenia NCCs. ChiPseq revealed that the nuclear (n) form of FGFR1, a pan-ontogenic regulator, is overexpressed in schizophrenia NCCs and overtargets dysregulated mRNA and miRNA genes. The nFGFR1 targeted 54% of all human gene promoters and 84.4% of schizophrenia dysregulated genes. The upregulated genes reside within major developmental pathways that control neurogenesis and neuron formation, whereas downregulated genes are involved in oligodendrogenesis. Our results indicate (i) an early (preneuronal) genomic etiology of schizophrenia, (ii) dysregulated genes and new coordinated gene networks are common to unrelated cases of schizophrenia, (iii) gene dysregulations are accompanied by increased nFGFR1-genome interactions, and (iv) modeling of increased nFGFR1 by an overexpression of a nFGFR1 lead to up or downregulation of selected genes as observed in schizophrenia NCCs. Together our results designate nFGFR1 signaling as a potential common dysregulated mechanism in investigated patients and potential therapeutic target in schizophrenia. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Győrffy, Balázs; Bottai, Giulia; Lehmann-Che, Jacqueline; Kéri, György; Orfi, László; Iwamoto, Takayuki; Desmedt, Christine; Bianchini, Giampaolo; Turner, Nicholas C; de Thè, Hugues; André, Fabrice; Sotiriou, Christos; Hortobagyi, Gabriel N; Di Leo, Angelo; Pusztai, Lajos; Santarpia, Libero
2014-05-01
Breast cancers (BC) carry a complex set of gene mutations that can influence their gene expression and clinical behavior. We aimed to identify genes driven by the TP53 mutation status and assess their clinical relevance in estrogen receptor (ER)-positive and ER-negative BC, and their potential as targets for patients with TP53 mutated tumors. Separate ROC analyses of each gene expression according to TP53 mutation status were performed. The prognostic value of genes with the highest AUC were assessed in a large dataset of untreated, and neoadjuvant chemotherapy treated patients. The mitotic checkpoint gene MPS1 was the most significant gene correlated with TP53 status, and the most significant prognostic marker in all ER-positive BC datasets. MPS1 retained its prognostic value independently from the type of treatment administered. The biological functions of MPS1 were investigated in different BC cell lines. We also assessed the effects of a potent small molecule inhibitor of MPS1, SP600125, alone and in combination with chemotherapy. Consistent with the gene expression profiling and siRNA assays, the inhibition of MPS1 by SP600125 led to a reduction in cell viability and a significant increase in cell death, selectively in TP53-mutated BC cells. Furthermore, the chemical inhibition of MPS1 sensitized BC cells to conventional chemotherapy, particularly taxanes. Our results collectively demonstrate that TP53-correlated kinase MPS1, is a potential therapeutic target in BC patients with TP53 mutated tumors, and that SP600125 warrant further development in future clinical trials. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Martin, Elizabeth M; Clapp, Phillip W; Rebuli, Meghan E; Pawlak, Erica A; Glista-Baker, Ellen; Benowitz, Neal L; Fry, Rebecca C; Jaspers, Ilona
2016-07-01
Exposure to cigarette smoke is known to result in impaired host defense responses and immune suppressive effects. However, the effects of new and emerging tobacco products, such as e-cigarettes, on the immune status of the respiratory epithelium are largely unknown. We conducted a clinical study collecting superficial nasal scrape biopsies, nasal lavage, urine, and serum from nonsmokers, cigarette smokers, and e-cigarette users and assessed them for changes in immune gene expression profiles. Smoking status was determined based on a smoking history and a 3- to 4-wk smoking diary and confirmed using serum cotinine and urine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) levels. Total RNA from nasal scrape biopsies was analyzed using the nCounter Human Immunology v2 Expression panel. Smoking cigarettes or vaping e-cigarettes resulted in decreased expression of immune-related genes. All genes with decreased expression in cigarette smokers (n = 53) were also decreased in e-cigarette smokers. Additionally, vaping e-cigarettes was associated with suppression of a large number of unique genes (n = 305). Furthermore, the e-cigarette users showed a greater suppression of genes common with those changed in cigarette smokers. This was particularly apparent for suppressed expression of transcription factors, such as EGR1, which was functionally associated with decreased expression of 5 target genes in cigarette smokers and 18 target genes in e-cigarette users. Taken together, these data indicate that vaping e-cigarettes is associated with decreased expression of a large number of immune-related genes, which are consistent with immune suppression at the level of the nasal mucosa. Copyright © 2016 the American Physiological Society.
Genetic framework for GATA factor function in vascular biology.
Linnemann, Amelia K; O'Geen, Henriette; Keles, Sunduz; Farnham, Peggy J; Bresnick, Emery H
2011-08-16
Vascular endothelial dysfunction underlies the genesis and progression of numerous diseases. Although the GATA transcription factor GATA-2 is expressed in endothelial cells and is implicated in coronary heart disease, it has been studied predominantly as a master regulator of hematopoiesis. Because many questions regarding GATA-2 function in the vascular biology realm remain unanswered, we used ChIP sequencing and loss-of-function strategies to define the GATA-2-instigated genetic network in human endothelial cells. In contrast to erythroid cells, GATA-2 occupied a unique target gene ensemble consisting of genes encoding key determinants of endothelial cell identity and inflammation. GATA-2-occupied sites characteristically contained motifs that bind activator protein-1 (AP-1), a pivotal regulator of inflammatory genes. GATA-2 frequently occupied the same chromatin sites as c-JUN and c-FOS, heterodimeric components of AP-1. Although all three components were required for maximal AP-1 target gene expression, GATA-2 was not required for AP-1 chromatin occupancy. GATA-2 conferred maximal phosphorylation of chromatin-bound c-JUN at Ser-73, which stimulates AP-1-dependent transactivation, in a chromosomal context-dependent manner. This work establishes a link between a GATA factor and inflammatory genes, mechanistic insights underlying GATA-2-AP-1 cooperativity and a rigorous genetic framework for understanding GATA-2 function in normal and pathophysiological vascular states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, G.L.; He, Z.; DeSantis, T.Z.
Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogeneticmore » microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer oligonucleotide probes and covers more than 10,000 gene sequences in 150 gene categories involved in carbon, nitrogen, sulfur, and phosphorus cycling, metal resistance and reduction, and organic contaminant degradation. GeoChip can be used as a generic tool for microbial community analysis, and also link microbial community structure to ecosystem functioning. Examples of the application of both arrays in different environmental samples will be described in the two subsequent sections.« less
Kim, Pora; Ballester, Leomar Y.; Zhao, Zhongming
2017-01-01
Genomic rearrangements involving transcription factors (TFs) can form fusion proteins resulting in either enhanced, weakened, or even loss of TF activity. Functional domain (FD) retention is a critical factor in the activity of transcription factor fusion genes (TFFGs). A systematic investigation of FD retention in TFFGs and their outcome (e.g. expression changes) in a pan-cancer study has not yet been completed. Here, we examined the FD retention status in 386 TFFGs across 13 major cancer types and identified 83 TFFGs involving 67 TFs that retained FDs. To measure the potential biological relevance of TFs in TFFGs, we introduced a Major Active Isofusion Index (MAII) and built a prioritized TFFG network using MAII scores and the observed frequency of fusion positive samples. Interestingly, the four TFFGs (PML-RARA, RUNX1-RUNX1T1, TMPRSS2-ERG, and SFPQ-TFE3) with the highest MAII scores showed 50 differentially expressed target genes (DETGs) in fusion-positive versus fusion-negative cancer samples. DETG analysis revealed that they were involved in tumorigenesis-related processes in each cancer type. PLAU, which encodes plasminogen activator urokinase and serves as a biomarker for tumor invasion, was found to be consistently activated in the samples with the highest MAII scores. Among the 50 DETGs, 21 were drug targetable genes. Fourteen of these 21 DETGs were expressed in acute myeloid leukemia (AML) samples. Accordingly, we constructed an AML-specific TFFG network, which included 38 DETGs in RUNX1-RUNX1T1 or PML-RARA positive samples. In summary, this study revealed several TFFGs and their potential target genes, and provided insights into the clinical implications of TFFGs. PMID:29299133
Kumagai, Katsuyoshi; Takanashi, Masakatsu; Ohno, Shin-Ichiro; Kuroda, Masahiko; Sudo, Katsuko
2017-05-03
Targeted mutant mice generated on a C57BL/6 background are powerful tools for analysis of the biological functions of genes, and gene targeting technologies using mouse embryonic stem (ES) cells have been used to generate such mice. Recently, a bacterial artificial chromosome (BAC) recombineering system was established for the construction of targeting vectors. However, gene retrieval from BACs for the generation of gene targeting vectors using this system remains difficult. Even when construction of a gene targeting vector is successful, the efficiency of production of targeted mutant mice from ES cells derived from C57BL/6 mice are poor. Therefore, in this study, we first improved the strategy for the retrieval of genes from BACs and their transfer into a DT-A plasmid, for the generation of gene targeting vectors using the BAC recombineering system. Then, we attempted to generate targeted mutant mice from ES cell lines derived from C57BL/6 mice, by culturing in serum-free medium. In conclusion, we established an improved strategy for the efficient generation of targeted mutant mice on a C57BL/6 background, which are useful for the in vivo analysis of gene functions and regulation.
Bao, Zhang; Chen, Ran; Zhang, Pei; Lu, Shan; Chen, Xing; Yao, Yake; Jin, Xiaozheng; Sun, Yilan; Zhou, Jianying
2016-01-01
Mycobacterium tuberculosis (MTB), one of the major bacterial pathogens for lethal infectious diseases, is capable of surviving within the phagosomes of host alveolar macrophages; therefore, host genetic variations may alter the susceptibility to MTB. In this study, to identify host genes exploited by MTB during infection, genes were non-selectively inactivated using lentivirus-based antisense RNA methods in RAW264.7 macrophages, and the cells that survived virulent MTB infection were then screened. Following DNA sequencing of the surviving cell clones, 26 host genes affecting susceptibility to MTB were identified and their pathways were analyzed by bioinformatics analysis. In total, 9 of these genes were confirmed as positive regulators of collagen α-5(IV) chain (Col4a5) expression, a gene encoding a type IV collagen subunit present on the cell surface. The knockdown of Col4a5 consistently suppressed intracellular mycobacterial viability, promoting the survival of RAW264.7 macrophages following mycobacterial infection. Furthermore, Col4a5 deficiency lowered the pH levels of intracellular vesicles, including endosomes, lysosomes and phagosomes in the RAW264.7 cells. Finally, the knockdown of Col4a5 post-translationally increased microsomal vacuolar-type H+-ATPase activity in macrophages, leading to the acidification of intracellular vesicles. Our findings reveal a novel role for Col4a5 in the regulation of macrophage responses to mycobacterial infection and identify Col4a5 as a potential target for the host-directed anti-mycobacterial therapy. PMID:27432120
Funnell, Alister P. W.; Norton, Laura J.; Mak, Ka Sin; Burdach, Jon; Artuz, Crisbel M.; Twine, Natalie A.; Wilkins, Marc R.; Power, Carl A.; Hung, Tzong-Tyng; Perdomo, José; Koh, Philip; Bell-Anderson, Kim S.; Orkin, Stuart H.; Fraser, Stuart T.; Perkins, Andrew C.; Pearson, Richard C. M.
2012-01-01
The CACCC-box binding protein erythroid Krüppel-like factor (EKLF/KLF1) is a master regulator that directs the expression of many important erythroid genes. We have previously shown that EKLF drives transcription of the gene for a second KLF, basic Krüppel-like factor, or KLF3. We have now tested the in vivo role of KLF3 in erythroid cells by examining Klf3 knockout mice. KLF3-deficient adults exhibit a mild compensated anemia, including enlarged spleens, increased red pulp, and a higher percentage of erythroid progenitors, together with elevated reticulocytes and abnormal erythrocytes in the peripheral blood. Impaired erythroid maturation is also observed in the fetal liver. We have found that KLF3 levels rise as erythroid cells mature to become TER119+. Consistent with this, microarray analysis of both TER119− and TER119+ erythroid populations revealed that KLF3 is most critical at the later stages of erythroid maturation and is indeed primarily a transcriptional repressor. Notably, many of the genes repressed by KLF3 are also known to be activated by EKLF. However, the majority of these are not currently recognized as erythroid-cell-specific genes. These results reveal the molecular and physiological function of KLF3, defining it as a feedback repressor that counters the activity of EKLF at selected target genes to achieve normal erythropoiesis. PMID:22711990
Ecological transition predictably associated with gene degeneration.
Wessinger, Carolyn A; Rausher, Mark D
2015-02-01
Gene degeneration or loss can significantly contribute to phenotypic diversification, but may generate genetic constraints on future evolutionary trajectories, potentially restricting phenotypic reversal. Such constraints may manifest as directional evolutionary trends when parallel phenotypic shifts consistently involve gene degeneration or loss. Here, we demonstrate that widespread parallel evolution in Penstemon from blue to red flowers predictably involves the functional inactivation and degeneration of the enzyme flavonoid 3',5'-hydroxylase (F3'5'H), an anthocyanin pathway enzyme required for the production of blue floral pigments. Other types of genetic mutations do not consistently accompany this phenotypic shift. This pattern may be driven by the relatively large mutational target size of degenerative mutations to this locus and the apparent lack of associated pleiotropic effects. The consistent degeneration of F3'5'H may provide a mechanistic explanation for the observed asymmetry in the direction of flower color evolution in Penstemon: Blue to red transitions are common, but reverse transitions have not been observed. Although phenotypic shifts in this system are likely driven by natural selection, internal constraints may generate predictable genetic outcomes and may restrict future evolutionary trajectories. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tettelin, Hervé; Masignani, Vega; Cieslewicz, Michael J.; Donati, Claudio; Medini, Duccio; Ward, Naomi L.; Angiuoli, Samuel V.; Crabtree, Jonathan; Jones, Amanda L.; Durkin, A. Scott; DeBoy, Robert T.; Davidsen, Tanja M.; Mora, Marirosa; Scarselli, Maria; Margarit y Ros, Immaculada; Peterson, Jeremy D.; Hauser, Christopher R.; Sundaram, Jaideep P.; Nelson, William C.; Madupu, Ramana; Brinkac, Lauren M.; Dodson, Robert J.; Rosovitz, Mary J.; Sullivan, Steven A.; Daugherty, Sean C.; Haft, Daniel H.; Selengut, Jeremy; Gwinn, Michelle L.; Zhou, Liwei; Zafar, Nikhat; Khouri, Hoda; Radune, Diana; Dimitrov, George; Watkins, Kisha; O'Connor, Kevin J. B.; Smith, Shannon; Utterback, Teresa R.; White, Owen; Rubens, Craig E.; Grandi, Guido; Madoff, Lawrence C.; Kasper, Dennis L.; Telford, John L.; Wessels, Michael R.; Rappuoli, Rino; Fraser, Claire M.
2005-01-01
The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for ≈80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes. PMID:16172379
Weyda, István; Yang, Lei; Vang, Jesper; Ahring, Birgitte K; Lübeck, Mette; Lübeck, Peter S
2017-04-01
In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements. Copyright © 2017 Elsevier B.V. All rights reserved.
Lim, Eileen C P; Brett, Maggie; Lai, Angeline H M; Lee, Siew-Peng; Tan, Ee-Shien; Jamuar, Saumya S; Ng, Ivy S L; Tan, Ene-Choo
2015-12-14
Next-generation sequencing (NGS) has revolutionized genetic research and offers enormous potential for clinical application. Sequencing the exome has the advantage of casting the net wide for all known coding regions while targeted gene panel sequencing provides enhanced sequencing depths and can be designed to avoid incidental findings in adult-onset conditions. A HaloPlex panel consisting of 180 genes within commonly altered chromosomal regions is available for use on both the Ion Personal Genome Machine (PGM) and MiSeq platforms to screen for causative mutations in these genes. We used this Haloplex ICCG panel for targeted sequencing of 15 patients with clinical presentations indicative of an abnormality in one of the 180 genes. Sequencing runs were done using the Ion 318 Chips on the Ion Torrent PGM. Variants were filtered for known polymorphisms and analysis was done to identify possible disease-causing variants before validation by Sanger sequencing. When possible, segregation of variants with phenotype in family members was performed to ascertain the pathogenicity of the variant. More than 97% of the target bases were covered at >20×. There was an average of 9.6 novel variants per patient. Pathogenic mutations were identified in five genes for six patients, with two novel variants. There were another five likely pathogenic variants, some of which were unreported novel variants. In a cohort of 15 patients, we were able to identify a likely genetic etiology in six patients (40%). Another five patients had candidate variants for which further evaluation and segregation analysis are ongoing. Our results indicate that the HaloPlex ICCG panel is useful as a rapid, high-throughput and cost-effective screening tool for 170 of the 180 genes. There is low coverage for some regions in several genes which might have to be supplemented by Sanger sequencing. However, comparing the cost, ease of analysis, and shorter turnaround time, it is a good alternative to exome sequencing for patients whose features are suggestive of a genetic etiology involving one of the genes in the panel.
Kirchner, Thomas W; Niehaus, Markus; Debener, Thomas; Schenk, Manfred K; Herde, Marco
2017-01-01
A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which do not require germline transmission.
Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi
2017-03-21
This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon carcinogenesis.
Microelectronic electroporation array
NASA Astrophysics Data System (ADS)
Johnson, Lee J.; Shaffer, Kara J.; Skeath, Perry; Perkins, Frank K.; Pancrazio, Joseph; Scribner, Dean
2004-06-01
Gene Array technology has allowed for the study of gene binding by creating thousands of potential binding sites on a single device. A limitation of the current technology is that the effects of the gene and the gene-derived proteins cannot be studied in situ the same way, thousand site cell arrays are not readily available. We propose a new device structure to study the effects of gene modification on cells. This new array technology uses electroporation to target specific areas within a cell culture for transfection of genes. Electroporation arrays will allow high throughput analysis of gene effects on a given cell's response to a stress or a genes ability to restore normal cell function in disease modeling cells. Fluorescent imaging of dye labeled indicator molecules or cell viability will provide results indicating the most effective genes. The electroporation array consists of a microelectronic circuit, ancillary electronics, protecting electrode surface for cell culturing and a perfusion system for gene or drug delivery. The advantages of the current device are that there are 3200 sites for electroporation, all or any subsets of the electrodes can be activated. The cells are held in place by the electrode material. This technology could also be applied to high throughput screening of cell impermeant drugs.
Simon, Marissa; Bruex, Angela; Kainkaryam, Raghunandan M.; Zheng, Xiaohua; Huang, Ling; Woolf, Peter J.; Schiefelbein, John
2013-01-01
Traditional genetic analysis relies on mutants with observable phenotypes. Mutants lacking visible abnormalities may nevertheless exhibit molecular differences useful for defining gene function. To examine this, we analyzed tissue-specific transcript profiles from Arabidopsis thaliana transcription factor gene mutants with known roles in root epidermis development, but lacking a single-gene mutant phenotype due to genetic redundancy. We discovered substantial transcriptional changes in each mutant, preferentially affecting root epidermal genes in a manner consistent with the known double mutant effects. Furthermore, comparing transcript profiles of single and double mutants, we observed remarkable variation in the sensitivity of target genes to the loss of one or both paralogous genes, including preferential effects on specific branches of the epidermal gene network, likely reflecting the pathways of paralog subfunctionalization during evolution. In addition, we analyzed the root epidermal transcriptome of the transparent testa glabra2 mutant to clarify its role in the network. These findings provide insight into the molecular basis of genetic redundancy and duplicate gene diversification at the level of a specific gene regulatory network, and they demonstrate the usefulness of tissue-specific transcript profiling to define gene function in mutants lacking informative visible changes in phenotype. PMID:24014549
Formation of Nitrogenase NifDK Tetramers in the Mitochondria of Saccharomyces cerevisiae
2017-01-01
Transferring the prokaryotic enzyme nitrogenase into a eukaryotic host with the final aim of developing N2 fixing cereal crops would revolutionize agricultural systems worldwide. Targeting it to mitochondria has potential advantages because of the organelle’s high O2 consumption and the presence of bacterial-type iron–sulfur cluster biosynthetic machinery. In this study, we constructed 96 strains of Saccharomyces cerevisiae in which transcriptional units comprising nine Azotobacter vinelandii nif genes (nifHDKUSMBEN) were integrated into the genome. Two combinatorial libraries of nif gene clusters were constructed: a library of mitochondrial leading sequences consisting of 24 clusters within four subsets of nif gene expression strength, and an expression library of 72 clusters with fixed mitochondrial leading sequences and nif expression levels assigned according to factorial design. In total, 29 promoters and 18 terminators were combined to adjust nif gene expression levels. Expression and mitochondrial targeting was confirmed at the protein level as immunoblot analysis showed that Nif proteins could be efficiently accumulated in mitochondria. NifDK tetramer formation, an essential step of nitrogenase assembly, was experimentally proven both in cell-free extracts and in purified NifDK preparations. This work represents a first step toward obtaining functional nitrogenase in the mitochondria of a eukaryotic cell. PMID:28221768
Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer
Li, Honghui; Wang, Gui; Hao, Zhiqiang; Zhang, Guozhong; Qing, Yubo; Liu, Shuanghui; Qing, Lili; Pan, Weirong; Chen, Lei; Liu, Guichun; Zhao, Ruoping; Jia, Baoyu; Zeng, Luyao; Guo, Jianxiong; Zhao, Lixiao; Zhao, Heng; Lv, Chaoxiang; Xu, Kaixiang; Cheng, Wenmin; Li, Hushan; Zhao, Hong-Ye; Wang, Wen; Wei, Hong-Jiang
2016-01-01
Transgenic sheep can be used to achieve genetic improvements in breeds and as an important large-animal model for biomedical research. In this study, we generated a TALEN plasmid specific for ovine MSTN and transfected it into fetal fibroblast cells of STH sheep. MSTN biallelic-KO somatic cells were selected as nuclear donor cells for SCNT. In total, cloned embryos were transferred into 37 recipient gilts, 28 (75.7%) becoming pregnant and 15 delivering, resulting in 23 lambs, 12 of which were alive. Mutations in the lambs were verified via sequencing and T7EI assay, and the gene mutation site was consistent with that in the donor cells. Off-target analysis was performed, and no off-target mutations were detected. MSTN KO affected the mRNA expression of MSTN relative genes. The growth curve for the resulting sheep suggested that MSTN KO caused a remarkable increase in body weight compared with those of wild-type sheep. Histological analyses revealed that MSTN KO resulted in muscle fiber hypertrophy. These findings demonstrate the successful generation of MSTN biallelic-KO STH sheep via gene editing in somatic cells using TALEN technology and SCNT. These MSTN mutant sheep developed and grew normally, and exhibited increased body weight and muscle growth. PMID:27654750
Noorbakhsh, Farshid; Ramachandran, Rithwik; Barsby, Nicola; Ellestad, Kristofor K; LeBlanc, Andrea; Dickie, Peter; Baker, Glen; Hollenberg, Morley D; Cohen, Eric A; Power, Christopher
2010-06-01
MicroRNAs (miRNAs) are small noncoding RNA molecules, which are known to regulate gene expression in physiological and pathological conditions. miRNA profiling was performed using brain tissue from patients with HIV encephalitis (HIVE), a neuroinflammatory/degenerative disorder caused by HIV infection of the brain. Microarray analysis showed differential expression of multiple miRNAs in HIVE compared to control brains. Target prediction and gene ontology enrichment analysis disclosed targeting of several gene families/biological processes by differentially expressed miRNAs (DEMs), with cell death-related genes, including caspase-6, showing a bias toward down-regulated DEMs. Consistent with the miRNA data, HIVE brains exhibited higher levels of caspase-6 transcripts compared with control patients. Immunohistochemical analysis showed localization of the cleaved form of caspase-6 in astrocytes in HIVE brain sections. Exposure of cultured human primary astrocytes to HIV viral protein R (Vpr) induced p53 up-regulation, loss of mitochondrial membrane potential, and caspase-6 activation followed by cell injury. Transgenic mice, expressing Vpr in microglial cells, demonstrated astrocyte apoptosis in brain, which was associated with caspase-6 activation and neurobehavioral abnormalities. Overall, these data point to previously unrecognized alterations in miRNA profile in the brain during HIV infection, which contribute to cell death through dysregulation of cell death machinery.
Cheng, Zhiliang; Zaki, Ajlan Al; Hui, James Z; Tsourkas, Andrew
2012-01-01
Liposomes are intensively being developed for biomedical applications including drug and gene delivery. However, targeted liposomal delivery in cancer treatment is a very complicated multi-step process. Unfavorable liposome biodistribution upon intravenous administration and membrane destabilization in blood circulation could result in only a very small fraction of cargo reaching the tumors. It would therefore be desirable to develop new quantitative strategies to track liposomal delivery systems to improve the therapeutic index and decrease systemic toxicity. Here, we developed a simple and non-radiative method to quantify the tumor uptake of targeted and non-targeted control liposomes as well as their encapsulated contents simultaneously. Specifically, four different chelated lanthanide metals were encapsulated or surface-conjugated onto tumor-targeted and non-targeted liposomes, respectively. The two liposome formulations were then injected into tumor-bearing mice simultaneously and their tumor delivery was determined quantitatively via inductively coupled plasma-mass spectroscopy (ICP-MS), allowing for direct comparisons. Tumor uptake of the liposomes themselves and their encapsulated contents were consistent with targeted and non-targeted liposome formulations that were injected individually. PMID:22882145
Knutson, Todd P; Truong, Thu H; Ma, Shihong; Brady, Nicholas J; Sullivan, Megan E; Raj, Ganesh; Schwertfeger, Kathryn L; Lange, Carol A
2017-04-17
Estrogen and progesterone are potent breast mitogens. In addition to steroid hormones, multiple signaling pathways input to estrogen receptor (ER) and progesterone receptor (PR) actions via posttranslational events. Protein kinases commonly activated in breast cancers phosphorylate steroid hormone receptors (SRs) and profoundly impact their activities. To better understand the role of modified PRs in breast cancer, we measured total and phospho-Ser294 PRs in 209 human breast tumors represented on 2754 individual tissue spots within a tissue microarray and assayed the regulation of this site in human tumor explants cultured ex vivo. To complement this analysis, we assayed PR target gene regulation in T47D luminal breast cancer models following treatment with progestin (promegestone; R5020) and antiprogestins (mifepristone, onapristone, or aglepristone) in conditions under which the receptor is regulated by Lys388 SUMOylation (K388 intact) or is SUMO-deficient (via K388R mutation to mimic persistent Ser294 phosphorylation). Selected phospho-PR-driven target genes were validated by qRT-PCR and following RUNX2 shRNA knockdown in breast cancer cell lines. Primary and secondary mammosphere assays were performed to implicate phospho-Ser294 PRs, epidermal growth factor signaling, and RUNX2 in breast cancer stem cell biology. Phospho-Ser294 PR species were abundant in a majority (54%) of luminal breast tumors, and PR promoter selectivity was exquisitely sensitive to posttranslational modifications. Phospho-PR expression and target gene programs were significantly associated with invasive lobular carcinoma (ILC). Consistent with our finding that activated phospho-PRs undergo rapid ligand-dependent turnover, unique phospho-PR gene signatures were most prevalent in breast tumors clinically designated as PR-low to PR-null (luminal B) and included gene sets associated with cancer stem cell biology (HER2, PAX2, AHR, AR, RUNX). Validation studies demonstrated a requirement for RUNX2 in the regulation of selected phospho-PR target genes (SLC37A2). In vitro mammosphere formation assays support a role for phospho-Ser294-PRs via growth factor (EGF) signaling as well as RUNX2 as potent drivers of breast cancer stem cell fate. We conclude that PR Ser294 phosphorylation is a common event in breast cancer progression that is required to maintain breast cancer stem cell fate, in part via cooperation with growth factor-initiated signaling pathways and key phospho-PR target genes including SLC37A2 and RUNX2. Clinical measurement of phosphorylated PRs should be considered a useful marker of breast tumor stem cell potential. Alternatively, unique phospho-PR target gene sets may provide useful tools with which to identify patients likely to respond to selective PR modulators that block PR Ser294 phosphorylation as part of rational combination (i.e., with antiestrogens) endocrine therapies designed to durably block breast cancer recurrence.
Dziedzic, Slawomir A; Caplan, Allan B
2011-05-01
Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.
Kim, Kihoon; Kim, AeRi
2010-09-01
Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Razmilic, Valeria; Castro, Jean F; Andrews, Barbara; Asenjo, Juan A
2018-07-01
The first genome scale model (GSM) for Streptomyces leeuwenhoekii C34 was developed to study the biosynthesis pathways of specialized metabolites and to find metabolic engineering targets for enhancing their production. The model, iVR1007, consists of 1,722 reactions, 1,463 metabolites, and 1,007 genes, it includes the biosynthesis pathways of chaxamycins, chaxalactins, desferrioxamines, ectoine, and other specialized metabolites. iVR1007 was validated using experimental information of growth on 166 different sources of carbon, nitrogen and phosphorous, showing an 83.7% accuracy. The model was used to predict metabolic engineering targets for enhancing the biosynthesis of chaxamycins and chaxalactins. Gene knockouts, such as sle03600 (L-homoserine O-acetyltransferase), and sle39090 (trehalose-phosphate synthase), that enhance the production of the specialized metabolites by increasing the pool of precursors were identified. Using the algorithm of flux scanning based on enforced objective flux (FSEOF) implemented in python, 35 and 25 over-expression targets for increasing the production of chaxamycin A and chaxalactin A, respectively, that were not directly associated with their biosynthesis routes were identified. Nineteen over-expression targets that were common to the two specialized metabolites studied, like the over-expression of the acetyl carboxylase complex (sle47660 (accA) and any of the following genes: sle44630 (accA_1) or sle39830 (accA_2) or sle27560 (bccA) or sle59710) were identified. The predicted knockouts and over-expression targets will be used to perform metabolic engineering of S. leeuwenhoekii C34 and obtain overproducer strains. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Wei, E-mail: detachedy@yahoo.com.cn; Sun, Ting; Cao, Jianping
2012-05-01
Hypoxia is a common feature of solid tumors and an important contributor to tumor radioresistance. miR-210 is the most consistently and robustly induced microRNA under hypoxia in different types of tumor cells and normal cells. In the present study, to explore the feasibility of miR-210 as an effective therapeutic target, lentiviral-mediated anti-sense miR-210 gene transfer technique was employed to downregulate miR-210 expression in hypoxic human hepatoma SMMC-7721, HepG2 and HuH7 cells, and phenotypic changes of which were analyzed. Hypoxia led to an increased hypoxia inducible factor-1{alpha} (HIF-1{alpha}) and miR-210 expression and cell arrest in the G{sub 0}/G{sub 1} phase inmore » all cell lines. miR-210 downregulation significantly suppressed cell viability, induced cell arrest in the G{sub 0}/G{sub 1} phase, increased apoptotic rate and enhanced radiosensitivity in hypoxic human hepatoma cells. Moreover, apoptosis-inducing factor, mitochondrion-associated, 3 (AIFM3) was identified as a direct target gene of miR-210. AIFM3 downregulation by siRNA attenuated radiation induced apoptosis in miR-210 downregulated hypoxic human hepatoma cells. Taken together, these data suggest that miR-210 might be a potential therapeutic target and specific inhibition of miR-210 expression in combination with radiotherapy might be expected to exert strong anti-tumor effect on hypoxic human hepatoma cells. -- Highlights: Black-Right-Pointing-Pointer miR-210 downregulation radiosensitized hypoxic hepatoma. Black-Right-Pointing-Pointer AIFM3 was identified as a direct target gene of miR-210. Black-Right-Pointing-Pointer miR-210 might be a therapeutic target to hypoxic hepatoma.« less
Karnan, Sivasundaram; Ota, Akinobu; Konishi, Yuko; Wahiduzzaman, Md; Hosokawa, Yoshitaka; Konishi, Hiroyuki
2016-01-01
The adeno-associated virus (AAV)-based targeting vector has been one of the tools commonly used for genome modification in human cell lines. It allows for relatively efficient gene targeting associated with 1–4-log higher ratios of homologous-to-random integration of targeting vectors (H/R ratios) than plasmid-based targeting vectors, without actively introducing DNA double-strand breaks. In this study, we sought to improve the efficiency of AAV-mediated gene targeting by introducing a 2A-based promoter-trap system into targeting constructs. We generated three distinct AAV-based targeting vectors carrying 2A for promoter trapping, each targeting a GFP-based reporter module incorporated into the genome, PIGA exon 6 or PIGA intron 5. The absolute gene targeting efficiencies and H/R ratios attained using these vectors were assessed in multiple human cell lines and compared with those attained using targeting vectors carrying internal ribosome entry site (IRES) for promoter trapping. We found that the use of 2A for promoter trapping increased absolute gene targeting efficiencies by 3.4–28-fold and H/R ratios by 2–5-fold compared to values obtained with IRES. In CRISPR-Cas9-assisted gene targeting using plasmid-based targeting vectors, the use of 2A did not enhance the H/R ratios but did upregulate the absolute gene targeting efficiencies compared to the use of IRES. PMID:26657635
Whole-Genome Thermodynamic Analysis Reduces siRNA Off-Target Effects
Chen, Xi; Liu, Peng; Chou, Hui-Hsien
2013-01-01
Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST. We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools, siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by Picky, a whole-genome thermodynamic analysis tool. Picky can identify off-target genes that may hybridize to a siRNA within a user-specified melting temperature range. Our experiments validated that some off-target genes predicted by Picky can indeed be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes were also found to be inhibited as predicted by Picky. In summary, we demonstrate that whole-genome thermodynamic analysis can identify off-target genes that are missed in sequence-level screening. Because Picky prediction is deterministic according to thermodynamics, if a siRNA candidate has no Picky predicted off-targets, it is unlikely to cause off-target effects. Therefore, we recommend including Picky as an additional screening step in siRNA design. PMID:23484018
Puniya, Bhanwar Lal; Allen, Laura; Hochfelder, Colleen; Majumder, Mahbubul; Helikar, Tomáš
2016-01-01
Dysregulation in signal transduction pathways can lead to a variety of complex disorders, including cancer. Computational approaches such as network analysis are important tools to understand system dynamics as well as to identify critical components that could be further explored as therapeutic targets. Here, we performed perturbation analysis of a large-scale signal transduction model in extracellular environments that stimulate cell death, growth, motility, and quiescence. Each of the model’s components was perturbed under both loss-of-function and gain-of-function mutations. Using 1,300 simulations under both types of perturbations across various extracellular conditions, we identified the most and least influential components based on the magnitude of their influence on the rest of the system. Based on the premise that the most influential components might serve as better drug targets, we characterized them for biological functions, housekeeping genes, essential genes, and druggable proteins. The most influential components under all environmental conditions were enriched with several biological processes. The inositol pathway was found as most influential under inactivating perturbations, whereas the kinase and small lung cancer pathways were identified as the most influential under activating perturbations. The most influential components were enriched with essential genes and druggable proteins. Moreover, known cancer drug targets were also classified in influential components based on the affected components in the network. Additionally, the systemic perturbation analysis of the model revealed a network motif of most influential components which affect each other. Furthermore, our analysis predicted novel combinations of cancer drug targets with various effects on other most influential components. We found that the combinatorial perturbation consisting of PI3K inactivation and overactivation of IP3R1 can lead to increased activity levels of apoptosis-related components and tumor-suppressor genes, suggesting that this combinatorial perturbation may lead to a better target for decreasing cell proliferation and inducing apoptosis. Finally, our approach shows a potential to identify and prioritize therapeutic targets through systemic perturbation analysis of large-scale computational models of signal transduction. Although some components of the presented computational results have been validated against independent gene expression data sets, more laboratory experiments are warranted to more comprehensively validate the presented results. PMID:26904540
Chai, Hui; Yan, Zhaoyuan; Huang, Ke; Jiang, Yuanqing; Zhang, Lin
2018-02-01
This study aimed to systematically investigate the relationship between miRNA expression and the occurrence of ventricular septal defect (VSD), and characterize the miRNA target genes and pathways that can lead to VSD. The miRNAs that were differentially expressed in blood samples from VSD and normal infants were screened and validated by implementing miRNA microarrays and qRT-PCR. The target genes regulated by differentially expressed miRNAs were predicted using three target gene databases. The functions and signaling pathways of the target genes were enriched using the GO database and KEGG database, respectively. The transcription and protein expression of specific target genes in critical pathways were compared in the VSD and normal control groups using qRT-PCR and western blotting, respectively. Compared with the normal control group, the VSD group had 22 differentially expressed miRNAs; 19 were downregulated and three were upregulated. The 10,677 predicted target genes participated in many biological functions related to cardiac development and morphogenesis. Four target genes (mGLUR, Gq, PLC, and PKC) were involved in the PKC pathway and four (ECM, FAK, PI3 K, and PDK1) were involved in the PI3 K-Akt pathway. The transcription and protein expression of these eight target genes were significantly upregulated in the VSD group. The 22 miRNAs that were dysregulated in the VSD group were mainly downregulated, which may result in the dysregulation of several key genes and biological functions related to cardiac development. These effects could also be exerted via the upregulation of eight specific target genes, the subsequent over-activation of the PKC and PI3 K-Akt pathways, and the eventual abnormal cardiac development and VSD.
Safe and stable noninvasive focal gene delivery to the mammalian brain following focused ultrasound.
Stavarache, Mihaela A; Petersen, Nicholas; Jurgens, Eric M; Milstein, Elizabeth R; Rosenfeld, Zachary B; Ballon, Douglas J; Kaplitt, Michael G
2018-04-27
OBJECTIVE Surgical infusion of gene therapy vectors has provided opportunities for biological manipulation of specific brain circuits in both animal models and human patients. Transient focal opening of the blood-brain barrier (BBB) by MR-guided focused ultrasound (MRgFUS) raises the possibility of noninvasive CNS gene therapy to target precise brain regions. However, variable efficiency and short follow-up of studies to date, along with recent suggestions of the potential for immune reactions following MRgFUS BBB disruption, all raise questions regarding the viability of this approach for clinical translation. The objective of the current study was to evaluate the efficiency, safety, and long-term stability of MRgFUS-mediated noninvasive gene therapy in the mammalian brain. METHODS Focused ultrasound under the control of MRI, in combination with microbubbles consisting of albumin-coated gas microspheres, was applied to rat striatum, followed by intravenous infusion of an adeno-associated virus serotype 1/2 (AAV1/2) vector expressing green fluorescent protein (GFP) as a marker. Following recovery, animals were followed from several hours up to 15 months. Immunostaining for GFP quantified transduction efficiency and stability of expression. Quantification of neuronal markers was used to determine histological safety over time, while inflammatory markers were examined for evidence of immune responses. RESULTS Transitory disruption of the BBB by MRgFUS resulted in efficient delivery of the AAV1/2 vector to the targeted rodent striatum, with 50%-75% of striatal neurons transduced on average. GFP transgene expression appeared to be stable over extended periods of time, from 2 weeks to 6 months, with evidence of ongoing stable expression as long as 16 months in a smaller cohort of animals. No evidence of substantial toxicity, tissue injury, or neuronal loss was observed. While transient inflammation from BBB disruption alone was noted for the first few days, consistent with prior observations, no evidence of brain inflammation was observed from 2 weeks to 6 months following MRgFUS BBB opening, despite delivery of a virus and expression of a foreign protein in target neurons. CONCLUSIONS This study demonstrates that transitory BBB disruption using MRgFUS can be a safe and efficient method for site-specific delivery of viral vectors to the brain, raising the potential for noninvasive focal human gene therapy for neurological disorders.
Nakamura, Aya; Tanaka, Ryo; Morishita, Kazushige; Yoshida, Hideki; Higuchi, Yujiro; Takashima, Hiroshi; Yamaguchi, Masamitsu
2017-07-01
Mutations in FAT4 gene, one of the human FAT family genes, have been identified in Van Maldergem syndrome (VMS) and Hennekam lymphangiectasia-lymphedema syndrome (HS). The FAT4 gene encodes a large protein with extracellular cadherin repeats, EGF-like domains and Laminin G-like domains. FAT4 plays a role in tumor suppression and planar cell polarity. Drosophila contains a human FAT4 homologue, fat. Drosophila fat has been mainly studied with Drosophila eye and wing systems. Here, we specially knocked down Drosophila fat in nerve system. Neuron-specific knockdown of fat shortened the life span and induced the defect in locomotive abilities of adult flies. In consistent with these phenotypes, defects in synapse structure at neuromuscular junction were observed in neuron-specific fat-knockdown flies. In addition, aberrations in axonal targeting of photoreceptor neuron in third-instar larvae were also observed, suggesting that fat involves in axonal targeting. Taken together, the results indicate that Drosophila fat plays an essential role in formation and/or maintenance of neuron. Both VMS and HS show mental retardation and neuronal defects. We therefore consider that these two rare human diseases could possibly be caused by the defect in FAT4 function in neuronal cells. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
SOX2 regulates common and specific stem cell features in the CNS and endoderm derived organs.
Hagey, Daniel W; Klum, Susanne; Kurtsdotter, Idha; Zaouter, Cecile; Topcic, Danijal; Andersson, Olov; Bergsland, Maria; Muhr, Jonas
2018-02-01
Stem cells are defined by their capacities to self-renew and generate progeny of multiple lineages. The transcription factor SOX2 has key roles in the regulation of stem cell characteristics, but whether SOX2 achieves these functions through similar mechanisms in distinct stem cell populations is not known. To address this question, we performed RNA-seq and SOX2 ChIP-seq on embryonic mouse cortex, spinal cord, stomach and lung/esophagus. We demonstrate that, although SOX2 binds a similar motif in the different cell types, its target regions are primarily cell-type-specific and enriched for the distinct binding motifs of appropriately expressed interacting co-factors. Furthermore, cell-type-specific SOX2 binding in endodermal and neural cells is most often found around genes specifically expressed in the corresponding tissue. Consistent with this, we demonstrate that SOX2 target regions can act as cis-regulatory modules capable of directing reporter expression to appropriate tissues in a zebrafish reporter assay. In contrast, SOX2 binding sites found in both endodermal and neural tissues are associated with genes regulating general stem cell features, such as proliferation. Notably, we provide evidence that SOX2 regulates proliferation through conserved mechanisms and target genes in both germ layers examined. Together, these findings demonstrate how SOX2 simultaneously regulates cell-type-specific, as well as core transcriptional programs in neural and endodermal stem cells.
NASA Astrophysics Data System (ADS)
Hasan, Mahadi; Tarashima, Noriko; Fujikawa, Koki; Ohgita, Takashi; Hama, Susumu; Tanaka, Tamotsu; Saito, Hiroyuki; Minakawa, Noriaki; Kogure, Kentaro
2016-01-01
An intelligent shRNA expression device (iRed) contains the minimum essential components needed for shRNA production in cells, and could be a novel tool to regulate target genes. However, general delivery carriers consisting of cationic polymers/lipids could impede function of a newly generated shRNA via electrostatic interaction in the cytoplasm. Recently, we found that faint electric treatment (fET) of cells enhanced delivery of siRNA and functional nucleic acids into the cytoplasm in the absence of delivery carriers. Here, we examined fET of cells stably expressing luciferase in the presence of iRed encoding anti-luciferase shRNA. Transfection of lipofectamine 2000 (LFN)/iRed lipoplexes showed an RNAi effect, but fET-mediated iRed transfection did not, likely because of the endosomal localization of iRed after delivery. However, fET in the presence of lysosomotropic agent chloroquine significantly improved the RNAi effect of iRed/fET to levels that were higher than those for the LFN/iRed lipoplexes. Furthermore, the amount of lipid droplets in adipocytes significantly decreased following fET with iRed against resistin in the presence of chloroquine. Thus, iRed could be a useful tool to regulate target genes following fET-mediated cytoplasmic delivery with endosomal escape devices.
Dissection of combinatorial control by the Met4 transcriptional complex.
Lee, Traci A; Jorgensen, Paul; Bognar, Andrew L; Peyraud, Caroline; Thomas, Dominique; Tyers, Mike
2010-02-01
Met4 is the transcriptional activator of the sulfur metabolic network in Saccharomyces cerevisiae. Lacking DNA-binding ability, Met4 must interact with proteins called Met4 cofactors to target promoters for transcription. Two types of DNA-binding cofactors (Cbf1 and Met31/Met32) recruit Met4 to promoters and one cofactor (Met28) stabilizes the DNA-bound Met4 complexes. To dissect this combinatorial system, we systematically deleted each category of cofactor(s) and analyzed Met4-activated transcription on a genome-wide scale. We defined a core regulon for Met4, consisting of 45 target genes. Deletion of both Met31 and Met32 eliminated activation of the core regulon, whereas loss of Met28 or Cbf1 interfered with only a subset of targets that map to distinct sectors of the sulfur metabolic network. These transcriptional dependencies roughly correlated with the presence of Cbf1 promoter motifs. Quantitative analysis of in vivo promoter binding properties indicated varying levels of cooperativity and interdependency exists between members of this combinatorial system. Cbf1 was the only cofactor to remain fully bound to target promoters under all conditions, whereas other factors exhibited different degrees of regulated binding in a promoter-specific fashion. Taken together, Met4 cofactors use a variety of mechanisms to allow differential transcription of target genes in response to various cues.
Evolving phage vectors for cell targeted gene delivery.
Larocca, David; Burg, Michael A; Jensen-Pergakes, Kristen; Ravey, Edward Prenn; Gonzalez, Ana Maria; Baird, Andrew
2002-03-01
We adapted filamentous phage vectors for targeted gene delivery to mammalian cells by inserting a mammalian reporter gene expression cassette (GFP) into the vector backbone and fusing the pIII coat protein to a cell targeting ligand (i.e. FGF2, EGF). Like transfection with animal viral vectors, targeted phage gene delivery is concentration, time, and ligand dependent. Importantly, targeted phage particles are specific for the appropriate target cell surface receptor. Phage have distinct advantages over existing gene therapy vectors because they are simple, economical to produce at high titer, have no intrinsic tropism for mammalian cells, and are relatively simple to genetically modify and evolve. Initially transduction by targeted phage particles was low resulting in foreign gene expression in 1-2% of transfected cells. We increased transduction efficiency by modifying both the transfection protocol and vector design. For example, we stabilized the display of the targeting ligand to create multivalent phagemid-based vectors with transduction efficiencies of up to 45% in certain cell lines when combined with genotoxic treatment. Taken together, these studies establish that the efficiency of phage-mediated gene transfer can be significantly improved through genetic modification. We are currently evolving phage vectors with enhanced cell targeting, increased stability, reduced immunogenicity and other properties suitable for gene therapy.
SH3BP4, a novel pigmentation gene, is inversely regulated by miR-125b and MITF
Kim, Kyu-Han; Lee, Tae Ryong; Cho, Eun-Gyung
2017-01-01
Our previous work has identified miR-125b as a negative regulator of melanogenesis. However, the specific melanogenesis-related genes targeted by this miRNA had not been identified. In this study, we established a screening strategy involving three consecutive analytical approaches—analysis of target genes of miR-125b, expression correlation analysis between each target gene and representative pigmentary genes, and functional analysis of candidate genes related to melanogenesis—to discover melanogenesis-related genes targeted by miR-125b. Through these analyses, we identified SRC homology 3 domain-binding protein 4 (SH3BP4) as a novel pigmentation gene. In addition, by combining bioinformatics analysis and experimental validation, we demonstrated that SH3BP4 is a direct target of miR-125b. Finally, we found that SH3BP4 is transcriptionally regulated by microphthalmia-associated transcription factor as its direct target. These findings provide important insights into the roles of miRNAs and their targets in melanogenesis. PMID:28819321
Cancer diagnostics: The journey from histomorphology to molecular profiling.
Ahmed, Atif A; Abedalthagafi, Malak
2016-09-06
Although histomorphology has made significant advances into the understanding of cancer etiology, classification and pathogenesis, it is sometimes complicated by morphologic ambiguities, and other shortcomings that necessitate the development of ancillary tests to complement its diagnostic value. A new approach to cancer patient management consists of targeting specific molecules or gene mutations in the cancer genome by inhibitory therapy. Molecular diagnostic tests and genomic profiling methods are increasingly being developed to identify tumor targeted molecular profile that is the basis of targeted therapy. Novel targeted therapy has revolutionized the treatment of gastrointestinal stromal tumor, renal cell carcinoma and other cancers that were previously difficult to treat with standard chemotherapy. In this review, we discuss the role of histomorphology in cancer diagnosis and management and the rising role of molecular profiling in targeted therapy. Molecular profiling in certain diagnostic and therapeutic difficulties may provide a practical and useful complement to histomorphology and opens new avenues for targeted therapy and alternative methods of cancer patient management.
NASA Astrophysics Data System (ADS)
Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng
2014-08-01
Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.
Pfleger, Brian; Mendez-Perez, Daniel
2013-11-05
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
Pfleger, Brian; Mendez-Perez, Daniel
2015-05-19
Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.
Saito, Shinta; Ura, Kiyoe; Kodama, Miho; Adachi, Noritaka
2015-06-30
Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy.
Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii.
Jiang, Wenzhi; Brueggeman, Andrew J; Horken, Kempton M; Plucinak, Thomas M; Weeks, Donald P
2014-11-01
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has become a powerful and precise tool for targeted gene modification (e.g., gene knockout and gene replacement) in numerous eukaryotic organisms. Initial attempts to apply this technology to a model, the single-cell alga, Chlamydomonas reinhardtii, failed to yield cells containing edited genes. To determine if the Cas9 and single guide RNA (sgRNA) genes were functional in C. reinhardtii, we tested the ability of a codon-optimized Cas9 gene along with one of four different sgRNAs to cause targeted gene disruption during a 24-h period immediately following transformation. All three exogenously supplied gene targets as well as the endogenous FKB12 (rapamycin sensitivity) gene of C. reinhardtii displayed distinct Cas9/sgRNA-mediated target site modifications as determined by DNA sequencing of cloned PCR amplicons of the target site region. Success in transient expression of Cas9 and sgRNA genes contrasted with the recovery of only a single rapamycin-resistant colony bearing an appropriately modified FKB12 target site in 16 independent transformation experiments involving >10(9) cells. Failure to recover transformants with intact or expressed Cas9 genes following transformation with the Cas9 gene alone (or even with a gene encoding a Cas9 lacking nuclease activity) provided strong suggestive evidence for Cas9 toxicity when Cas9 is produced constitutively in C. reinhardtii. The present results provide compelling evidence that Cas9 and sgRNA genes function properly in C. reinhardtii to cause targeted gene modifications and point to the need for a focus on development of methods to properly stem Cas9 production and/or activity following gene editing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S
2005-07-15
A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.
Silencing Effect of Hominoid Highly Conserved Noncoding Sequences on Embryonic Brain Development
Mahmoudi Saber, Morteza
2017-01-01
Abstract Superfamily Hominoidea, which consists of Hominidae (humans and great apes) and Hylobatidae (gibbons), is well-known for sharing human-like characteristics, however, the genomic origins of these shared unique phenotypes have mainly remained elusive. To decipher the underlying genomic basis of Hominoidea-restricted phenotypes, we identified and characterized Hominoidea-restricted highly conserved noncoding sequences (HCNSs) that are a class of potential regulatory elements which may be involved in evolution of lineage-specific phenotypes. We discovered 679 such HCNSs from human, chimpanzee, gorilla, orangutan and gibbon genomes. These HCNSs were demonstrated to be under purifying selection but with lineage-restricted characteristics different from old CNSs. A significant proportion of their ancestral sequences had accelerated rates of nucleotide substitutions, insertions and deletions during the evolution of common ancestor of Hominoidea, suggesting the intervention of positive Darwinian selection for creating those HCNSs. In contrary to enhancer elements and similar to silencer sequences, these Hominoidea-restricted HCNSs are located in close proximity of transcription start sites. Their target genes are enriched in the nervous system, development and transcription, and they tend to be remotely located from the nearest coding gene. Chip-seq signals and gene expression patterns suggest that Hominoidea-restricted HCNSs are likely to be functional regulatory elements by imposing silencing effects on their target genes in a tissue-restricted manner during fetal brain development. These HCNSs, emerged through adaptive evolution and conserved through purifying selection, represent a set of promising targets for future functional studies of the evolution of Hominoidea-restricted phenotypes. PMID:28633494
Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation
Cao, Wenguang; Razanau, Aleh; Feng, Dairong; Lobo, Vincent G.; Xie, Jiuyong
2012-01-01
The molecular basis of cell signal-regulated alternative splicing at the 3′ splice site remains largely unknown. We isolated a protein kinase A-responsive ribonucleic acid (RNA) element from a 3′ splice site of the synaptosomal-associated protein 25 (Snap25) gene for forskolin-inhibited splicing during neuronal differentiation of rat pheochromocytoma PC12 cells. The element binds specifically to heterogeneous nuclear ribonucleo protein (hnRNP) K in a phosphatase-sensitive way, which directly competes with the U2 auxiliary factor U2AF65, an essential component of early spliceosomes. Transcripts with similarly localized hnRNP K target motifs upstream of alternative exons are enriched in genes often associated with neurological diseases. We show that such motifs upstream of the Runx1 exon 6 also bind hnRNP K, and importantly, hnRNP K is required for forskolin-induced repression of the exon. Interestingly, this exon encodes the peptide domain that determines the switch of the transcriptional repressor/activator activity of Runx1, a change known to be critical in specifying neuron lineages. Consistent with an important role of the target genes in neurons, knocking down hnRNP K severely disrupts forskolin-induced neurite growth. Thus, through hnRNP K, the neuronal differentiation stimulus forskolin targets a critical 3′ splice site component of the splicing machinery to control alternative splicing of crucial genes. This also provides a regulated direct competitor of U2AF65 for cell signal control of 3′ splice site usage. PMID:22684629
Clyde, Karen; Glaunsinger, Britt A.
2011-01-01
One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine herpesvirus 68 (MHV68), is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5) have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq). Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection. PMID:21573023
Jaeger, Alex M.; Makley, Leah N.; Gestwicki, Jason E.; Thiele, Dennis J.
2014-01-01
The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer. PMID:25204655
As Technologies for Nucleotide Therapeutics Mature, Products Emerge.
Beierlein, Jennifer M; McNamee, Laura M; Ledley, Fred D
2017-12-15
The long path from initial research on oligonucleotide therapies to approval of antisense products is not unfamiliar. This lag resembles those encountered with monoclonal antibodies, gene therapies, and many biological targets and is consistent with studies of innovation showing that technology maturation is a critical determinant of product success. We previously described an analytical model for the maturation of biomedical research, demonstrating that the efficiency of targeted and biological development is connected to metrics of technology growth. The present work applies this model to characterize the advance of oligonucleotide therapeutics. We show that recent oligonucleotide product approvals incorporate technologies and targets that are past the established point of technology growth, as do most of the oligonucleotide products currently in phase 3. Less mature oligonucleotide technologies, such as miRNAs and some novel gene targets, have not passed the established point and have not yielded products. This analysis shows that oligonucleotide product development has followed largely predictable patterns of innovation. While technology maturation alone does not ensure success, these data show that many oligonucleotide technologies are sufficiently mature to be considered part of the arsenal for therapeutic development. These results demonstrate the importance of technology assessment in strategic management of biomedical technologies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.
Folcher, Marc; Oesterle, Sabine; Zwicky, Katharina; Thekkottil, Thushara; Heymoz, Julie; Hohmann, Muriel; Christen, Matthias; Daoud El-Baba, Marie; Buchmann, Peter; Fussenegger, Martin
2014-11-11
Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain-computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice.
Sun, Di; Wang, Qian; Chen, Zhi; Li, Jilun; Wen, Ying
2017-01-01
Alternative σ factors in bacteria redirect RNA polymerase to recognize alternative promoters, thereby facilitating coordinated gene expression necessary for adaptive responses. The gene sig8 ( sav_741 ) in Streptomyces avermitilis encodes an alternative σ factor, σ 8 , highly homologous to σ B in Streptomyces coelicolor . Studies reported here demonstrate that σ 8 is an important regulator of both avermectin production and stress responses in S. avermitilis . σ 8 inhibited avermectin production by indirectly repressing expression of cluster-situated activator gene aveR , and by directly initiating transcription of its downstream gene sav_742 , which encodes a direct repressor of ave structural genes. σ 8 had no effect on cell growth or morphological differentiation under normal growth conditions. Growth of a sig8- deletion mutant was less than that of wild-type strain on YMS plates following treatment with heat, H 2 O 2 , diamide, NaCl, or KCl. sig8 transcription was strongly induced by these environmental stresses, indicating response by σ 8 itself. A series of σ 8 -dependent genes responsive to heat, oxidative and osmotic stress were identified by EMSAs, qRT-PCR and in vitro transcription experiments. These findings indicate that σ 8 plays an important role in mediating protective responses to various stress conditions by activating transcription of its target genes. Six σ 8 -binding promoter sequences were determined and consensus binding sequence BGVNVH-N 15 -GSNNHH (B: C, T or G, V: A, C or G, S: C or G, H: A, C or T, N: any nucleotide) was identified, leading to prediction of the σ 8 regulon. The list consists of 940 putative σ 8 target genes, assignable to 17 functional groups, suggesting the wide range of cellular functions controlled by σ 8 in S. avermitilis .
Tiwary, Bipransh Kumar; Kumar, Anoop
2014-01-01
Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value≤0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum. PMID:25229331
Ghosh, Runu; Tiwary, Bipransh Kumar; Kumar, Anoop; Chakraborty, Ranadhir
2014-01-01
Quorum sensing (QS) is a process mediated via small molecules termed autoinducers (AI) that allow bacteria to respond and adjust according to the cell population density by altering the expression of multitudinous genes. Since QS governs numerous bioprocesses in bacteria, including virulence, its inhibition promises to be an ideal target for the development of novel therapeutics. We found that the aqueous leaf extract of Psidium guajava (GLE) exhibited anti-QS properties as evidenced by inhibition of violacein production in Chromobacterium violaceum and swarming motility of Pseudomonas aeruginosa. The gram-negative bacterium, C. violaceum is a rare pathogen with high mortality rate. In this study, perhaps for the first time, we identified the target genes of GLE in C. violaceum MTCC 2656 by whole transcriptome analysis on Ion Torrent. Our data revealed that GLE significantly down-regulated 816 genes at least three fold, with p value ≤ 0.01, which comprises 19% of the C. violaceum MTCC 2656 genome. These genes were distributed throughout the genome and were associated with virulence, motility and other cellular processes, many of which have been described as quorum regulated in C. violaceum and other gram negative bacteria. Interestingly, GLE did not affect the growth of the bacteria. However, consistent with the gene expression pattern, GLE treated C. violaceum cells were restrained from causing lysis of human hepatoma cell line, HepG2, indicating a positive relationship between the QS-regulated genes and pathogenicity. Overall, our study proposes GLE as a QS inhibitor (QSI) with the ability to attenuate virulence without affecting growth. To the best of our knowledge, this is the first report which provides with a plausible set of candidate genes regulated by the QS system in the neglected pathogen C. violaceum.
Seinen, Erwin; Burgerhof, Johannes G. M.; Jansen, Ritsert C.; Sibon, Ody C. M.
2010-01-01
Background RNAi technology is widely used to downregulate specific gene products. Investigating the phenotype induced by downregulation of gene products provides essential information about the function of the specific gene of interest. When RNAi is applied in Drosophila melanogaster or Caenorhabditis elegans, often large dsRNAs are used. One of the drawbacks of RNAi technology is that unwanted gene products with sequence similarity to the gene of interest can be down regulated too. To verify the outcome of an RNAi experiment and to avoid these unwanted off-target effects, an additional non-overlapping dsRNA can be used to down-regulate the same gene. However it has never been tested whether this approach is sufficient to reduce the risk of off-targets. Methodology We created a novel tool to analyse the occurance of off-target effects in Drosophila and we analyzed 99 randomly chosen genes. Principal Findings Here we show that nearly all genes contain non-overlapping internal sequences that do show overlap in a common off-target gene. Conclusion Based on our in silico findings, off-target effects should not be ignored and our presented on-line tool enables the identification of two RNA interference constructs, free of overlapping off-targets, from any gene of interest. PMID:20957038
Javan, Bita; Shahbazi, Majid
2017-01-01
Transcriptional targeting is the best approach for specific gene therapy. Hypoxia is a common feature of the tumour microenvironment. Therefore, targeting gene expression in hypoxic cells by placing transgene under the control of a hypoxia-responsive promoter can be a good strategy for cancer-specific gene therapy. The hypoxia-inducible gene expression system has been investigated more in suicide gene therapy and it can also be of great help in knocking down cancer gene therapy with siRNAs. However, this system needs to be optimised to have maximum efficacy with minimum side effects in normal tissues. The combination of tissue-/tumour-specific promoters with HRE core sequences has been found to enhance the specificity and efficacy of this system. In this review, hypoxia-inducible gene expression system as well as gene therapy strategies targeting tumour hypoxia will be discussed. This review will also focus on hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation systems developed for cancer-specific gene therapy. PMID:28798809
Construction and application of a bovine immune-endocrine cDNA microarray.
Tao, Wenjing; Mallard, Bonnie; Karrow, Niel; Bridle, Byram
2004-09-01
A variety of commercial DNA arrays specific for humans and rodents are widely available; however, microarrays containing well-characterized genes to study pathway-specific gene expression are not as accessible for domestic animals, such as cattle, sheep and pigs. Therefore, a small-scale application-targeted bovine immune-endocrine cDNA array was developed to evaluate genetic pathways involved in the immune-endocrine axis of cattle during periods of altered homeostasis provoked by physiological or environmental stressors, such as infection, vaccination or disease. For this purpose, 167 cDNA sequences corresponding to immune, endocrine and inflammatory response genes were collected and categorized. Positive controls included 5 housekeeping genes (glyceraldehydes-3-phosphate dehydrogenase, hypoxanthine phosphoribosyltransferase, ribosomal protein L19, beta-actin, beta2-microglobulin) and bovine genomic DNA. Negative controls were a bacterial gene (Rhodococcus equi 17-kDa virulence-associated protein) and a partial sequence of the plasmid pACYC177. In addition, RNA extracted from un-stimulated, as well as superantigen (Staphylococcus aureus enterotoxin-A, S. aureus Cowan Pansorbin Cells) and mitogen-stimulated (LPS, ConA) bovine blood leukocytes was mixed, reverse transcribed and PCR amplified using gene-specific primers. The endocrine-associated genes were amplified from cDNA derived from un-stimulated bovine hypothalamus, pituitary, adrenal and thyroid gland tissues. The array was constructed in 4 repeating grids of 180 duplicated spots by coupling the PCR amplified 213-630 bp gene fragments onto poly-l-lysine coated glass slides. The bovine immune-endocrine arrays were standardized and preliminary gene expression profiles generated using Cy3 and Cy5 labelled cDNA from un-stimulated and ConA (5 microg/ml) stimulated PBMC of 4 healthy Holstein cows (2-4 replicate arrays/cow) in a time course study. Mononuclear cell-derived cytokine and chemokine (IL-2, IL-1alpha, TNFalpha, IFN-gamma, TGFbeta-1, MCP-1, MCP-2 and MIP-3alpha) mRNA exhibited a repeatable and consistently low expression in un-stimulated cells and at least a two-fold increased expression following 6 and 24 h ConA stimulation as compared to 0 h un-stimulated controls. In contrast, expression of antigen presenting molecules, MHC-DR, MHC-DQ and MHC-DY, were consistently at least two-fold lower following 6 and 24 h ConA stimulation. The only endocrine gene with differential expression following ConA stimulation was prolactin. Additionally, due to the high level of genetic homology between ovine, swine and bovine genes, RNA similarly acquired from sheep and pigs was evaluated and similar gene expression patterns were noted. These data demonstrate that this application-targeted array containing a set of well characterized genes can be used to determine the relative gene expression corresponding to immune-endocrine responses of cattle and related species, sheep and pigs.
Kikuta, Hiroshi; Laplante, Mary; Navratilova, Pavla; Komisarczuk, Anna Z.; Engström, Pär G.; Fredman, David; Akalin, Altuna; Caccamo, Mario; Sealy, Ian; Howe, Kerstin; Ghislain, Julien; Pezeron, Guillaume; Mourrain, Philippe; Ellingsen, Staale; Oates, Andrew C.; Thisse, Christine; Thisse, Bernard; Foucher, Isabelle; Adolf, Birgit; Geling, Andrea; Lenhard, Boris; Becker, Thomas S.
2007-01-01
We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated “bystander” genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs. PMID:17387144
Turankar, Ravindra P; Pandey, Shradha; Lavania, Mallika; Singh, Itu; Nigam, Astha; Darlong, Joydeepa; Darlong, Fam; Sengupta, Utpal
2015-03-01
PCR assay is a highly sensitive, specific and reliable diagnostic tool for the identification of pathogens in many infectious diseases. Genome sequencing Mycobacterium leprae revealed several gene targets that could be used for the detection of DNA from clinical and environmental samples. The PCR sensitivity of particular gene targets for specific clinical and environmental isolates has not yet been established. The present study was conducted to compare the sensitivity of RLEP, rpoT, Sod A and 16S rRNA gene targets in the detection of M. leprae in slit skin smear (SSS), blood, soil samples of leprosy patients and their surroundings. Leprosy patients were classified into Paucibacillary (PB) and Multibacillary (MB) types. Ziehl-Neelsen (ZN) staining method for all the SSS samples and Bacteriological Index (BI) was calculated for all patients. Standard laboratory protocol was used for DNA extraction from SSS, blood and soil samples. PCR technique was performed for the detection of M. leprae DNA from all the above-mentioned samples. RLEP gene target was able to detect the presence of M. leprae in 83% of SSS, 100% of blood samples and in 36% of soil samples and was noted to be the best out of all other gene targets (rpoT, Sod A and 16S rRNA). It was noted that the RLEP gene target was able to detect the highest number (53%) of BI-negative leprosy patients amongst all the gene targets used in this study. Amongst all the gene targets used in this study, PCR positivity using RLEP gene target was the highest in all the clinical and environmental samples. Further, the RLEP gene target was able to detect 53% of blood samples as positive in BI-negative leprosy cases indicating its future standardization and use for diagnostic purposes. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.
Blom, Mozes P K; Bragg, Jason G; Potter, Sally; Moritz, Craig
2017-05-01
Accurate gene tree inference is an important aspect of species tree estimation in a summary-coalescent framework. Yet, in empirical studies, inferred gene trees differ in accuracy due to stochastic variation in phylogenetic signal between targeted loci. Empiricists should, therefore, examine the consistency of species tree inference, while accounting for the observed heterogeneity in gene tree resolution of phylogenomic data sets. Here, we assess the impact of gene tree estimation error on summary-coalescent species tree inference by screening ${\\sim}2000$ exonic loci based on gene tree resolution prior to phylogenetic inference. We focus on a phylogenetically challenging radiation of Australian lizards (genus Cryptoblepharus, Scincidae) and explore effects on topology and support. We identify a well-supported topology based on all loci and find that a relatively small number of high-resolution gene trees can be sufficient to converge on the same topology. Adding gene trees with decreasing resolution produced a generally consistent topology, and increased confidence for specific bipartitions that were poorly supported when using a small number of informative loci. This corroborates coalescent-based simulation studies that have highlighted the need for a large number of loci to confidently resolve challenging relationships and refutes the notion that low-resolution gene trees introduce phylogenetic noise. Further, our study also highlights the value of quantifying changes in nodal support across locus subsets of increasing size (but decreasing gene tree resolution). Such detailed analyses can reveal anomalous fluctuations in support at some nodes, suggesting the possibility of model violation. By characterizing the heterogeneity in phylogenetic signal among loci, we can account for uncertainty in gene tree estimation and assess its effect on the consistency of the species tree estimate. We suggest that the evaluation of gene tree resolution should be incorporated in the analysis of empirical phylogenomic data sets. This will ultimately increase our confidence in species tree estimation using summary-coalescent methods and enable us to exploit genomic data for phylogenetic inference. [Coalescence; concatenation; Cryptoblepharus; exon capture; gene tree; phylogenomics; species tree.]. © The authors 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
Li, Fangwei; Shi, Wenhua; Wan, Yixin; Wang, Qingting; Feng, Wei; Yan, Xin; Wang, Jian; Chai, Limin; Zhang, Qianqian; Li, Manxiang
2017-12-01
The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro .
Andrews, Erik; Wang, Yue; Xia, Tian; Cheng, Wenqing; Cheng, Chao
2017-01-01
Gene expression regulators, such as transcription factors (TFs) and microRNAs (miRNAs), have varying regulatory targets based on the tissue and physiological state (context) within which they are expressed. While the emergence of regulator-characterizing experiments has inferred the target genes of many regulators across many contexts, methods for transferring regulator target genes across contexts are lacking. Further, regulator target gene lists frequently are not curated or have permissive inclusion criteria, impairing their use. Here, we present a method called iterative Contextual Transcriptional Activity Inference of Regulators (icTAIR) to resolve these issues. icTAIR takes a regulator’s previously-identified target gene list and combines it with gene expression data from a context, quantifying that regulator’s activity for that context. It then calculates the correlation between each listed target gene’s expression and the quantitative score of regulatory activity, removes the uncorrelated genes from the list, and iterates the process until it derives a stable list of refined target genes. To validate and demonstrate icTAIR’s power, we use it to refine the MSigDB c3 database of TF, miRNA and unclassified motif target gene lists for breast cancer. We then use its output for survival analysis with clinicopathological multivariable adjustment in 7 independent breast cancer datasets covering 3,430 patients. We uncover many novel prognostic regulators that were obscured prior to refinement, in particular NFY, and offer a detailed look at the composition and relationships among the breast cancer prognostic regulome. We anticipate icTAIR will be of general use in contextually refining regulator target genes for discoveries across many contexts. The icTAIR algorithm can be downloaded from https://github.com/icTAIR. PMID:28103241
Twist1 Transcriptional Targets in the Developing Atrio-Ventricular Canal of the Mouse
Vrljicak, Pavle; Cullum, Rebecca; Xu, Eric; Chang, Alex C. Y.; Wederell, Elizabeth D.; Bilenky, Mikhail; Jones, Steven J. M.; Marra, Marco A.; Karsan, Aly; Hoodless, Pamela A.
2012-01-01
Malformations of the cardiovascular system are the most common type of birth defect in humans, frequently affecting the formation of valves and septa. During heart valve and septa formation, cells from the atrio-ventricular canal (AVC) and outflow tract (OFT) regions of the heart undergo an epithelial-to-mesenchymal transformation (EMT) and invade the underlying extracellular matrix to give rise to endocardial cushions. Subsequent maturation of newly formed mesenchyme cells leads to thin stress-resistant leaflets. TWIST1 is a basic helix-loop-helix transcription factor expressed in newly formed mesenchyme cells of the AVC and OFT that has been shown to play roles in cell survival, cell proliferation and differentiation. However, the downstream targets of TWIST1 during heart valve formation remain unclear. To identify genes important for heart valve development downstream of TWIST1, we performed global gene expression profiling of AVC, OFT, atria and ventricles of the embryonic day 10.5 mouse heart by tag-sequencing (Tag-seq). Using this resource we identified a novel set of 939 genes, including 123 regulators of transcription, enriched in the valve forming regions of the heart. We compared these genes to a Tag-seq library from the Twist1 null developing valves revealing significant gene expression changes. These changes were consistent with a role of TWIST1 in controlling differentiation of mesenchymal cells following their transformation from endothelium in the mouse. To study the role of TWIST1 at the DNA level we performed chromatin immunoprecipitation and identified novel direct targets of TWIST1 in the developing heart valves. Our findings support a role for TWIST1 in the differentiation of AVC mesenchyme post-EMT in the mouse, and suggest that TWIST1 can exert its function by direct DNA binding to activate valve specific gene expression. PMID:22815831
Generating gene knockout rats by homologous recombination in embryonic stem cells
Tong, Chang; Huang, Guanyi; Ashton, Charles; Li, Ping; Ying, Qi-Long
2013-01-01
We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell–based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats. PMID:21637202
I-SceI-Induced Gene Replacement at a Natural Locus in Embryonic Stem Cells
Cohen-Tannoudji, Michel; Robine, Sylvie; Choulika, André; Pinto, Daniel; El Marjou, Fatima; Babinet, Charles; Louvard, Daniel; Jaisser, Frédéric
1998-01-01
Gene targeting is a very powerful tool for studying mammalian development and physiology and for creating models of human diseases. In many instances, however, it is desirable to study different modifications of a target gene, but this is limited by the generally low frequency of homologous recombination in mammalian cells. We have developed a novel gene-targeting strategy in mouse embryonic stem cells that is based on the induction of endogenous gap repair processes at a defined location within the genome by induction of a double-strand break (DSB) in the gene to be mutated. This strategy was used to knock in an NH2-ezrin mutant in the villin gene, which encodes an actin-binding protein expressed in the brush border of the intestine and the kidney. To induce the DSB, an I-SceI yeast meganuclease restriction site was first introduced by gene targeting to the villin gene, followed by transient expression of I-SceI. The repair of the ensuing DSB was achieved with high efficiency (6 × 10−6) by a repair shuttle vector sharing only a 2.8-kb region of homology with the villin gene and no negative selection marker. Compared to conventional gene-targeting experiments at the villin locus, this represents a 100-fold stimulation of gene-targeting frequency, notwithstanding a much lower length of homology. This strategy will be very helpful in facilitating the targeted introduction of several types of mutations within a gene of interest. PMID:9488460
Wang, Kui; Kievit, Forrest M; Florczyk, Stephen J; Stephen, Zachary R; Zhang, Miqin
2015-10-12
Cationic nanoparticles (NPs) for targeted gene delivery are conventionally evaluated using 2D in vitro cultures. However, this does not translate well to corresponding in vivo studies because of the marked difference in NP behavior in the presence of the tumor microenvironment. In this study, we investigated whether prostate cancer (PCa) cells cultured in three-dimensional (3D) chitosan-alginate (CA) porous scaffolds could model cationic NP-mediated gene targeted delivery to tumors in vitro. We assessed in vitro tumor cell proliferation, formation of tumor spheroids, and expression of marker genes that promote tumor malignancy in CA scaffolds. The efficacy of NP-targeted gene delivery was evaluated in PCa cells in 2D cultures, PCa tumor spheroids grown in CA scaffolds, and PCa tumors in a mouse TRAMP-C2 flank tumor model. PCa cells cultured in CA scaffolds grew into tumor spheroids and displayed characteristics of higher malignancy as compared to those in 2D cultures. Significantly, targeted gene delivery was only observed in cells cultured in CA scaffolds, whereas cells cultured on 2D plates showed no difference in gene delivery between targeted and nontarget control NPs. In vivo NP evaluation confirmed targeted gene delivery, indicating that only CA scaffolds correctly modeled NP-mediated targeted delivery in vivo. These findings suggest that CA scaffolds serve as a better in vitro platform than 2D cultures for evaluation of NP-mediated targeted gene delivery to PCa.
Murali, Reena; John, Philips George; Peter S, David
2015-05-15
The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model shall be useful for designing exogenous siRNA for therapeutic applications and gene silencing techniques in the area of bioinformatics. The software is developed as a desktop application and available at http://opsid.in/opsid/. Copyright © 2015 Elsevier B.V. All rights reserved.
Martyanov, Viktor; Whitfield, Michael L
2016-01-01
The goal of this review is to summarize recent advances into the pathogenesis and treatment of systemic sclerosis (SSc) from genomic and proteomic studies. Intrinsic gene expression-driven molecular subtypes of SSc are reproducible across three independent datasets. These subsets are a consistent feature of SSc and are found in multiple end-target tissues, such as skin and esophagus. Intrinsic subsets as well as baseline levels of molecular target pathways are potentially predictive of clinical response to specific therapeutics, based on three recent clinical trials. A gene expression-based biomarker of modified Rodnan skin score, a measure of SSc skin severity, can be used as a surrogate outcome metric and has been validated in a recent trial. Proteome analyses have identified novel biomarkers of SSc that correlate with SSc clinical phenotypes. Integrating intrinsic gene expression subset data, baseline molecular pathway information, and serum biomarkers along with surrogate measures of modified Rodnan skin score provides molecular context in SSc clinical trials. With validation, these approaches could be used to match patients with the therapies from which they are most likely to benefit and thus increase the likelihood of clinical improvement.
Kersten, Roland D; Ziemert, Nadine; Gonzalez, David J; Duggan, Brendan M; Nizet, Victor; Dorrestein, Pieter C; Moore, Bradley S
2013-11-19
Glycosyl groups are an essential mediator of molecular interactions in cells and on cellular surfaces. There are very few methods that directly relate sugar-containing molecules to their biosynthetic machineries. Here, we introduce glycogenomics as an experiment-guided genome-mining approach for fast characterization of glycosylated natural products (GNPs) and their biosynthetic pathways from genome-sequenced microbes by targeting glycosyl groups in microbial metabolomes. Microbial GNPs consist of aglycone and glycosyl structure groups in which the sugar unit(s) are often critical for the GNP's bioactivity, e.g., by promoting binding to a target biomolecule. GNPs are a structurally diverse class of molecules with important pharmaceutical and agrochemical applications. Herein, O- and N-glycosyl groups are characterized in their sugar monomers by tandem mass spectrometry (MS) and matched to corresponding glycosylation genes in secondary metabolic pathways by a MS-glycogenetic code. The associated aglycone biosynthetic genes of the GNP genotype then classify the natural product to further guide structure elucidation. We highlight the glycogenomic strategy by the characterization of several bioactive glycosylated molecules and their gene clusters, including the anticancer agent cinerubin B from Streptomyces sp. SPB74 and an antibiotic, arenimycin B, from Salinispora arenicola CNB-527.
MiR-980 Is a Memory Suppressor MicroRNA that Regulates the Autism-Susceptibility Gene A2bp1.
Guven-Ozkan, Tugba; Busto, Germain U; Schutte, Soleil S; Cervantes-Sandoval, Isaac; O'Dowd, Diane K; Davis, Ronald L
2016-02-23
MicroRNAs have been associated with many different biological functions, but little is known about their roles in conditioned behavior. We demonstrate that Drosophila miR-980 is a memory suppressor gene functioning in multiple regions of the adult brain. Memory acquisition and stability were both increased by miR-980 inhibition. Whole cell recordings and functional imaging experiments indicated that miR-980 regulates neuronal excitability. We identified the autism susceptibility gene, A2bp1, as an mRNA target for miR-980. A2bp1 levels varied inversely with miR-980 expression; memory performance was directly related to A2bp1 levels. In addition, A2bp1 knockdown reversed the memory gains produced by miR-980 inhibition, consistent with A2bp1 being a downstream target of miR-980 responsible for the memory phenotypes. Our results indicate that miR-980 represses A2bp1 expression to tune the excitable state of neurons, and the overall state of excitability translates to memory impairment or improvement. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Nigam, Deepti; Sawant, Samir V
2013-01-01
Technological development led to an increased interest in systems biological approaches in plants to characterize developmental mechanism and candidate genes relevant to specific tissue or cell morphology. AUX-IAA proteins are important plant-specific putative transcription factors. There are several reports on physiological response of this family in Arabidopsis but in cotton fiber the transcriptional network through which AUX-IAA regulated its target genes is still unknown. in-silico modelling of cotton fiber development specific gene expression data (108 microarrays and 22,737 genes) using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals 3690 putative AUX-IAA target genes of which 139 genes were known to be AUX-IAA co-regulated within Arabidopsis. Further AUX-IAA targeted gene regulatory network (GRN) had substantial impact on the transcriptional dynamics of cotton fiber, as showed by, altered TF networks, and Gene Ontology (GO) biological processes and metabolic pathway associated with its target genes. Analysis of the AUX-IAA-correlated gene network reveals multiple functions for AUX-IAA target genes such as unidimensional cell growth, cellular nitrogen compound metabolic process, nucleosome organization, DNA-protein complex and process related to cell wall. These candidate networks/pathways have a variety of profound impacts on such cellular functions as stress response, cell proliferation, and cell differentiation. While these functions are fairly broad, their underlying TF networks may provide a global view of AUX-IAA regulated gene expression and a GRN that guides future studies in understanding role of AUX-IAA box protein and its targets regulating fiber development. PMID:24497725
Yin, Yufang; Wang, Qian; Xiao, Li; Wang, Fengjiao; Song, Zhuo; Zhou, Cuilan; Liu, Xuan; Xing, Chungen; He, Nongyue; Li, Kai; Feng, Yan; Zhang, Jia
2018-03-01
In the past decades, significant progresses have been achieved in genetic engineering of nucleases. Among the genetically engineered nucleases, zinc finger nucleases, transcription activator-like (TAL) effector nucleases, and CRIPSPR/Cas9 system form a new field of gene editing. The gene editing efficiency or targeting effect and the off-target effect are the two major determinant factors in evaluating the usefulness of a new enzyme. Engineering strategies in improving these gene editing enzymes, particularly in minimizing their off-target effects, are the focus of this paper. Examples of using these genetically engineered enzymes in genome modification are discussed in order to better understand the requirement of engineering efforts in obtaining more powerful and useful gene editing enzymes. In addition, the identification of naturally existed anti-Cas proteins has been employed in minimizing off-target effects. Considering the future application in human gene therapy, optimization of these well recognized gene editing enzymes and exploration of more novel enzymes are both required. Before people find an ideal gene editing system having virtually no off-target effect, technologies used to screen and identify off-target effects are of importance in clinical trials employing gene therapy.
Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines.
Gulec, Cagri; Coban, Neslihan; Ozsait-Selcuk, Bilge; Sirma-Ekmekci, Sema; Yildirim, Ozlem; Erginel-Unaltuna, Nihan
2017-04-01
ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analyses of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses. Copyright © 2017 Elsevier Inc. All rights reserved.
The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion
2012-01-01
Background Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on primary sequence data. The dynamic nature of this gene family differentiates PPO from other oxidative enzymes, and is consistent with a protein important for a diversity of functions relating to environmental adaptation. PMID:22897796
Chavolla-Calderón, Mara; Bayer, Meggan K; Fontán, J Julio Pérez
2003-04-01
Neurogenic inflammation is believed to originate with the antidromic release of substance P, and of other neurokinins encoded by the preprotachykinin A (PPT-A) gene, from unmyelinated nerve fibers (C-fibers) following noxious stimuli. Consistent with this concept, we show here that selective sensory-fiber denervation with capsaicin and targeted deletion of the PPT-A gene protect murine lungs against both immune complex-mediated and stretch-mediated injuries. Reconstitution of PPT-A gene-deleted mice with WT bone marrow does not abrogate this protection, demonstrating a critical role for PPT-A gene expression by sensory neurons in pulmonary inflammation. Surprisingly, reconstitution of WT mice with PPT-A gene-deficient bone marrow also confers protection against pulmonary injury, revealing that PPT-A gene expression in hemopoietic cells has a previously unanticipated essential role in tissue injury. Taken together, these findings demonstrate a critical synergy between capsaicin-sensitive sensory fibers and hemopoietic cells in neurokinin-mediated inflammation and suggest that such synergy may be the basis for a stereotypical mechanism of response to injury in the respiratory tract.
A new type of gene-disruption cassette with a rescue gene for Pichia pastoris.
Shibui, Tatsuro; Hara, Hiroyoshi
2017-09-01
Pichia pastoris has been used for the production of many recombinant proteins, and many useful mutant strains have been created. However, the efficiency of mutant isolation by gene-targeting is usually low and the procedure is difficult for those inexperienced in yeast genetics. In order to overcome these issues, we developed a new gene-disruption system with a rescue gene using an inducible Cre/mutant-loxP system. With only short homology regions, the gene-disruption cassette of the system replaces its target-gene locus containing a mutation with a compensatory rescue gene. As the cassette contains the AOX1 promoter-driven Cre gene, when targeted strains are grown on media containing methanol, the DNA fragment, i.e., the marker, rescue and Cre genes, between the mutant-loxP sequences in the cassette is excised, leaving only the remaining mutant-loxP sequence in the genome, and consequently a target gene-disrupted mutant can be isolated. The system was initially validated on ADE2 gene disruption, where the disruption can easily be detected by color-change of the colonies. Then, the system was applied for knocking-out URA3 and OCH1 genes, reported to be difficult to accomplish by conventional gene-targeting methods. All three gene-disruption cassettes with their rescue genes replaced their target genes, and the Cre/mutant-loxP system worked well to successfully isolate their knock-out mutants. This study identified a new gene-disruption system that could be used to effectively and strategically knock out genes of interest, especially whose deletion is detrimental to growth, without using special strains, e.g., deficient in nonhomologous end-joining, in P. pastoris. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1201-1208, 2017. © 2017 American Institute of Chemical Engineers.
Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review)
WAN, CAIFENG; LI, FENGHUA; LI, HONGLI
2015-01-01
The eye is an ideal target organ for gene therapy as it is easily accessible and immune-privileged. With the increasing insight into the underlying molecular mechanisms of ocular diseases, gene therapy has been proposed as an effective approach. Successful gene therapy depends on efficient gene transfer to targeted cells to prove stable and prolonged gene expression with minimal toxicity. At present, the main hindrance regarding the clinical application of gene therapy is not the lack of an ideal gene, but rather the lack of a safe and efficient method to selectively deliver genes to target cells and tissues. Ultrasound-targeted microbubble destruction (UTMD), with the advantages of high safety, repetitive applicability and tissue targeting, has become a potential strategy for gene- and drug delivery. When gene-loaded microbubbles are injected, UTMD is able to enhance the transport of the gene to the targeted cells. High-amplitude oscillations of microbubbles act as cavitation nuclei which can effectively focus ultrasound energy, produce oscillations and disruptions that increase the permeability of the cell membrane and create transient pores in the cell membrane. Thereby, the efficiency of gene therapy can be significantly improved. The UTMD-mediated gene delivery system has been widely used in pre-clinical studies to enhance gene expression in a site-specific manner in a variety of organs. With reasonable application, the effects of sonoporation can be spatially and temporally controlled to improve localized tissue deposition of gene complexes for ocular gene therapy applications. In addition, appropriately powered, focused ultrasound combined with microbubbles can induce a reversible disruption of the blood-retinal barrier with no significant side effects. The present review discusses the current status of gene therapy of ocular diseases as well as studies on gene therapy of ocular diseases meditated by UTMD. PMID:26151686
Luo, Ming; Gilbert, Brian; Ayliffe, Michael
2016-07-01
Mutagenesis continues to play an essential role for understanding plant gene function and, in some instances, provides an opportunity for plant improvement. The development of gene editing technologies such as TALENs and zinc fingers has revolutionised the targeted mutation specificity that can now be achieved. The CRISPR/Cas9 system is the most recent addition to gene editing technologies and arguably the simplest requiring only two components; a small guide RNA molecule (sgRNA) and Cas9 endonuclease protein which complex to recognise and cleave a specific 20 bp target site present in a genome. Target specificity is determined by complementary base pairing between the sgRNA and target site sequence enabling highly specific, targeted mutation to be readily engineered. Upon target site cleavage, error-prone endogenous repair mechanisms produce small insertion/deletions at the target site usually resulting in loss of gene function. CRISPR/Cas9 gene editing has been rapidly adopted in plants and successfully undertaken in numerous species including major crop species. Its applications are not restricted to mutagenesis and target site cleavage can be exploited to promote sequence insertion or replacement by recombination. The multiple applications of this technology in plants are described.
2017-08-01
biodistribution studies with FMT, ultrasound imaging and ex vivo tissue analysis (months 10-14) 2d. Measure bubble dynamic parameters (months 10-14) 1...doctoral training studying post -transcriptional gene regulation National Institutes of Health-NICHD, Bethesda, MD Postdoctoral Fellow 02/1996 IRTA...and manage these studies . My research career has been hybrid consisting of experience in the biotech industry in addition to my academic position
Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy
Pranjol, Md Zahidul Islam; Hajitou, Amin
2015-01-01
Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration. PMID:25606974
Bacteriophage-derived vectors for targeted cancer gene therapy.
Pranjol, Md Zahidul Islam; Hajitou, Amin
2015-01-19
Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration.
Towards β-globin gene-targeting with integrase-defective lentiviral vectors.
Inanlou, Davoud Nouri; Yakhchali, Bagher; Khanahmad, Hossein; Gardaneh, Mossa; Movassagh, Hesam; Cohan, Reza Ahangari; Ardestani, Mehdi Shafiee; Mahdian, Reza; Zeinali, Sirous
2010-11-01
We have developed an integrase-defective lentiviral (LV) vector in combination with a gene-targeting approach for gene therapy of β-thalassemia. The β-globin gene-targeting construct has two homologous stems including sequence upstream and downstream of the β-globin gene, a β-globin gene positioned between hygromycin and neomycin resistant genes and a herpes simplex virus type 1 thymidine kinase (HSVtk) suicide gene. Utilization of integrase-defective LV as a vector for the β-globin gene increased the number of selected clones relative to non-viral methods. This method represents an important step toward the ultimate goal of a clinical gene therapy for β-thalassemia.
NLRP3 inflammasome is a target for development of broad-spectrum anti-infective drugs.
Thacker, James D; Balin, Brian J; Appelt, Denah M; Sassi-Gaha, Sihem; Purohit, Mitali; Rest, Richard F; Artlett, Carol M
2012-04-01
We describe the molecular mode of action and pharmacodynamics of a new molecular entity (NME) that induces the NLRP3 inflammasome-mediated innate immune response. This innate response reduces the pathogen load in an experimentally induced methicillin-resistant Staphylococcos aureus infection, enhances survival in an experimentally induced Gram-negative bacteremia, and overrides the escape mechanism of an obligate intracellular pathogen, viz. Chlamydia pneumoniae. Furthermore, the NME is more effective than standard-of-care antibiotic therapy in a clinically established multifactorial bacterial infection. Analysis of transcriptional regulation of inflammasome signaling genes and innate/adaptive immune genes revealed consistent and significant host changes responsible for the improved outcomes in these infections. These studies pave the way for the development of first-in-class drugs that enhance inflammasome-mediated pathogen clearance and identify the NLRP3 inflammasome as a drug target to address the global problem of emerging new infectious diseases and the reemergence of old diseases in an antibiotic-resistant form.
Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORα and RORγ.
Wang, Yongjun; Kumar, Naresh; Nuhant, Philippe; Cameron, Michael D; Istrate, Monica A; Roush, William R; Griffin, Patrick R; Burris, Thomas P
2010-11-19
The retinoic acid receptor-related receptors (RORs) are members of the nuclear receptor (NR) superfamily of transcription factors. Several NRs are still characterized as orphan receptors because ligands have not yet been identified for these proteins. Here, we describe the identification of a synthetic RORα/RORγ ligand, SR1078. SR1078 modulates the conformation of RORγ in a biochemical assay and activates RORα and RORγ driven transcription. Furthermore, SR1078 stimulates expression of endogenous ROR target genes in HepG2 cells that express both RORα and RORγ. Pharmacokinetic studies indicate that SR1078 displays reasonable exposure following injection into mice, and consistent with SR1078 functioning as a RORα/RORγ agonist, expression of two ROR target genes, glucose-6-phosphatase and fibroblast growth factor 21, were stimulated in the liver. Thus, we have identified the first synthetic RORα/γ agonist, and this compound can be utilized as a chemical tool to probe the function of these receptors both in vitro and in vivo.
Identification of a Synthetic Agonist for the Orphan Nuclear Receptors RORα and RORγ, SR1078
Wang, Yongjun; Kumar, Naresh; Nuhant, Philippe; Cameron, Michael D.; Istrate, Monica A.; Roush, William R.; Griffin, Patrick R.; Burris, Thomas P.
2010-01-01
The retinoic acid receptor-related receptors (RORs) are members of the nuclear receptor (NR) superfamily of transcription factors. Several NRs are still characterized as orphan receptors since ligands have not yet been identified for these proteins. Here, we describe the identification of a synthetic RORα/RORγ ligand, SR1078. SR1078 modulates the conformation of RORγ in a biochemical assay and activates RORα and RORγ driven transcription. Furthermore, SR1078 stimulates expression of endogenous ROR target genes in HepG2 cells that express both RORα and RORγ. Pharmacokinetic studies indicate that SR1078 displays reasonable exposure following injection into mice and consistent with SR1078 functioning as a RORα/RORγ agonist, expression of two ROR target genes, glucose-6-phosphatase and fibroblast growth factor 21, were stimulated in the liver. Thus, we have identified the first synthetic RORα/γ agonist and this compound can be utilized as a chemical tool to probe the function of these receptors both in vitro and in vivo. PMID:20735016
NLRP3 Inflammasome Is a Target for Development of Broad-Spectrum Anti-Infective Drugs
Balin, Brian J.; Appelt, Denah M.; Sassi-Gaha, Sihem; Purohit, Mitali; Rest, Richard F.; Artlett, Carol M.
2012-01-01
We describe the molecular mode of action and pharmacodynamics of a new molecular entity (NME) that induces the NLRP3 inflammasome-mediated innate immune response. This innate response reduces the pathogen load in an experimentally induced methicillin-resistant Staphylococcos aureus infection, enhances survival in an experimentally induced Gram-negative bacteremia, and overrides the escape mechanism of an obligate intracellular pathogen, viz. Chlamydia pneumoniae. Furthermore, the NME is more effective than standard-of-care antibiotic therapy in a clinically established multifactorial bacterial infection. Analysis of transcriptional regulation of inflammasome signaling genes and innate/adaptive immune genes revealed consistent and significant host changes responsible for the improved outcomes in these infections. These studies pave the way for the development of first-in-class drugs that enhance inflammasome-mediated pathogen clearance and identify the NLRP3 inflammasome as a drug target to address the global problem of emerging new infectious diseases and the reemergence of old diseases in an antibiotic-resistant form. PMID:22290938
Mumbach, Maxwell R; Satpathy, Ansuman T; Boyle, Evan A; Dai, Chao; Gowen, Benjamin G; Cho, Seung Woo; Nguyen, Michelle L; Rubin, Adam J; Granja, Jeffrey M; Kazane, Katelynn R; Wei, Yuning; Nguyen, Trieu; Greenside, Peyton G; Corces, M Ryan; Tycko, Josh; Simeonov, Dimitre R; Suliman, Nabeela; Li, Rui; Xu, Jin; Flynn, Ryan A; Kundaje, Anshul; Khavari, Paul A; Marson, Alexander; Corn, Jacob E; Quertermous, Thomas; Greenleaf, William J; Chang, Howard Y
2018-01-01
The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer–promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases. PMID:28945252
Zhao, Qing-Qing; Hu, Yu-Lan; Zhou, Yang; Li, Ni; Han, Min; Tang, Gu-Ping; Qiu, Feng; Tabata, Yasuhiko; Gao, Jian-Qing
2012-01-01
The success of gene transfection is largely dependent on the development of a vehicle or vector that can efficiently deliver a gene to cells with minimal toxicity. A liver cancer-targeted specific peptide (FQHPSF sequence) was successfully synthesized and linked with chitosan-linked polyethylenimine (CP) to form a new targeted gene delivery vector called CPT (CP/peptide). The structure of CPT was confirmed by (1)H nuclear magnetic resonance spectroscopy and ultraviolet spectrophotometry. The particle size of CPT/ DNA complexes was measured using laser diffraction spectrometry and the cytotoxicity of the copolymer was evaluated by methylthiazol tetrazolium method. The transfection efficiency evaluation of the CP copolymer was performed using luciferase activity assay. Cellular internalization of the CP/DNA complex was observed under confocal laser scanning microscopy. The targeting specificity of the polymer coupled to peptide was measured by competitive inhibition transfection study. The liver targeting specificity of the CPT copolymer in vivo was demonstrated by combining the copolymer with a therapeutic gene, interleukin-12, and assessed by its abilities in suppressing the growth of ascites tumor in mouse model. The results showed that the liver cancer-targeted specific peptide was successfully synthesized and linked with CP to form a new targeted gene delivery vector called CPT. The composition of CPT was confirmed and the vector showed low cytotoxicity and strong targeting specificity to liver tumors in vitro. The in vivo study results showed that interleukin-12 delivered by the new gene vector CPT/DNA significantly enhanced the antitumor effect on ascites tumor-bearing imprinting control region mice as compared with polyethylenimine (25 kDa), CP, and other controls, which further demonstrate the targeting specificity of the new synthesized polymer. The synthesized CPT copolymer was proven to be an effective liver cancer-targeted vector for therapeutic gene delivery, which could be a potential candidate for targeted cancer gene therapy.
Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato.
Wang, Yunxiang; Wang, Qing; Gao, Lipu; Zhu, Benzhong; Luo, Yunbo; Deng, Zhiping; Zuo, Jinhua
2017-11-01
Circular RNAs (circRNAs) are a large class of non-coding endogenous RNAs that could act as competing endogenous RNAs (ceRNAs) to terminate the mRNA targets' suppression of miRNAs. To elucidate the intricate regulatory roles of circRNAs in the ethylene pathway in tomato fruit, deep sequencing and bioinformatics methods were performed. After strict screening, a total of 318 circRNAs were identified. Among these circRNAs, 282 were significantly differentially expressed among wild-type and sense-/antisense-LeERF1 transgenic tomato fruits. Besides, 1254 target genes were identified and a large amount of them were found to be involved in ethylene pathway. In addition, a sophisticated regulatory model consisting of circRNAs, target genes and ethylene was set up. Importantly, 61 circRNAs were found to be potential ceRNAs to combine with miRNAs and some of the miRNAs had been revealed to participate in the ethylene signaling pathway. This research further raised the possibility that the ethylene pathway in tomato fruit may be under the regulation of various circRNAs and provided a new perspective of the roles of circRNAs. © 2017 Scandinavian Plant Physiology Society.
Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins
Kfoury, N.; Kapatos, G.
2009-01-01
CCAAT/Enhancer Binding Proteins (C/EBPs) play pivotal roles in development and plasticity of the nervous system. Identification of the physiological targets of C/EBPs (C/EBP target genes) should therefore provide insight into the underlying biology of these processes. We used unbiased genome-wide mapping to identify 115 C/EBPβ target genes in PC12 cells that include transcription factors, neurotransmitter receptors, ion channels, protein kinases and synaptic vesicle proteins. C/EBPβ binding sites were located primarily within introns, suggesting novel regulatory functions, and were associated with binding sites for other developmentally important transcription factors. Experiments using dominant negatives showed C/EBPβ to repress transcription of a subset of target genes. Target genes in rat brain were subsequently found to preferentially bind C/EBPα, β and δ. Analysis of the hippocampal transcriptome of C/EBPβ knockout mice revealed dysregulation of a high percentage of transcripts identified as C/EBP target genes. These results support the hypothesis that C/EBPs play non-redundant roles in the brain. PMID:19103292
Leongamornlert, D; Saunders, E; Dadaev, T; Tymrakiewicz, M; Goh, C; Jugurnauth-Little, S; Kozarewa, I; Fenwick, K; Assiotis, I; Barrowdale, D; Govindasami, K; Guy, M; Sawyer, E; Wilkinson, R; Antoniou, A C; Eeles, R; Kote-Jarai, Z
2014-03-18
Prostate cancer (PrCa) is one of the most common diseases to affect men worldwide and among the leading causes of cancer-related death. The purpose of this study was to use second-generation sequencing technology to assess the frequency of deleterious mutations in 22 tumour suppressor genes in familial PrCa and estimate the relative risk of PrCa if these genes are mutated. Germline DNA samples from 191 men with 3 or more cases of PrCa in their family were sequenced for 22 tumour suppressor genes using Agilent target enrichment and Illumina technology. Analysis for genetic variation was carried out by using a pipeline consisting of BWA, Genome Analysis Toolkit (GATK) and ANNOVAR. Clinical features were correlated with mutation status using standard statistical tests. Modified segregation analysis was used to determine the relative risk of PrCa conferred by the putative loss-of-function (LoF) mutations identified. We discovered 14 putative LoF mutations in 191 samples (7.3%) and these mutations were more frequently associated with nodal involvement, metastasis or T4 tumour stage (P=0.00164). Segregation analysis of probands with European ancestry estimated that LoF mutations in any of the studied genes confer a relative risk of PrCa of 1.94 (95% CI: 1.56-2.42). These findings show that LoF mutations in DNA repair pathway genes predispose to familial PrCa and advanced disease and therefore warrants further investigation. The clinical utility of these findings will become increasingly important as targeted screening and therapies become more widespread.
Miller, Brooke H.; Zeier, Zane; Xi, Li; Lanz, Thomas A.; Deng, Shibing; Strathmann, Julia; Willoughby, David; Kenny, Paul J.; Elsworth, John D.; Lawrence, Matthew S.; Roth, Robert H.; Edbauer, Dieter; Kleiman, Robin J.; Wahlestedt, Claes
2012-01-01
Schizophrenia is characterized by affective, cognitive, neuromorphological, and molecular abnormalities that may have a neurodevelopmental origin. MicroRNAs (miRNAs) are small noncoding RNA sequences critical to neurodevelopment and adult neuronal processes by coordinating the activity of multiple genes within biological networks. We examined the expression of 854 miRNAs in prefrontal cortical tissue from 100 control, schizophrenic, and bipolar subjects. The cyclic AMP-responsive element binding- and NMDA-regulated microRNA miR-132 was significantly down-regulated in both the schizophrenic discovery cohort and a second, independent set of schizophrenic subjects. Analysis of miR-132 target gene expression in schizophrenia gene-expression microarrays identified 26 genes up-regulated in schizophrenia subjects. Consistent with NMDA-mediated hypofunction observed in schizophrenic subjects, administration of an NMDA antagonist to adult mice results in miR-132 down-regulation in the prefrontal cortex. Furthermore, miR-132 expression in the murine prefrontal cortex exhibits significant developmental regulation and overlaps with critical neurodevelopmental processes during adolescence. Adult prefrontal expression of miR-132 can be down-regulated by pharmacologic inhibition of NMDA receptor signaling during a brief postnatal period. Several key genes, including DNMT3A, GATA2, and DPYSL3, are regulated by miR-132 and exhibited altered expression either during normal neurodevelopment or in tissue from adult schizophrenic subjects. Our data suggest miR-132 dysregulation and subsequent abnormal expression of miR-132 target genes contribute to the neurodevelopmental and neuromorphological pathologies present in schizophrenia. PMID:22315408
Schwartz, John C; Gibson, Mark S; Heimeier, Dorothea; Koren, Sergey; Phillippy, Adam M; Bickhart, Derek M; Smith, Timothy P L; Medrano, Juan F; Hammond, John A
2017-04-01
Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination.
Sudha, Dhandayuthapani; Patric, Irene Rosita Pia; Ganapathy, Aparna; Agarwal, Smitha; Krishna, Shuba; Neriyanuri, Srividya; Sripriya, Sarangapani; Sen, Parveen; Chidambaram, Subbulakshmi; Arunachalam, Jayamuruga Pandian
2017-01-01
In this study, we present a juvenile retinoschisis patient with developmental delay, sensorineural hearing loss, and reduced axial tone. X-linked juvenile retinoschisis (XLRS) is a retinal dystrophy, most often not associated with systemic anomalies and also not showing any locus heterogeneity. Therefore it was of interest to understand the genetic basis of the condition in this patient. RS1 gene screening for XLRS was performed by Sanger sequencing. Whole genome SNP 6.0 array analysis was carried out to investigate gross chromosomal aberrations that could result in systemic phenotype. In addition, targeted next generation sequencing (NGS) was employed to determine any possible involvement of X-linked syndromic and non-syndromic mental retardation genes. This NGS panel consisted of 550 genes implicated in several other rare inherited diseases. RS1 gene screening revealed a pathogenic hemizygous splice site mutation (c.78+1G>T), inherited from the mother. SNP 6.0 array analysis did not indicate any significant chromosomal aberrations that could be disease-associated. Targeted resequencing did not identify any mutations in the X-linked mental retardation genes. However, variations in three other genes (NSD1, LARGE, and POLG) were detected, which were all inherited from the patient's unaffected father. Taken together, RS1 mutation was found to segregate with retinoschisis phenotype while none of the other identified variations were co-segregating with the systemic defects. Hereby, we infer that the multisystemic defects harbored by the patient are a rare coexistence of XLRS, developmental delay, sensorineural hearing loss, and reduced axial tone reported for the first time in the literature.
Salazar-Jaramillo, Laura; Jalvingh, Kirsten M; de Haan, Ammerins; Kraaijeveld, Ken; Buermans, Henk; Wertheim, Bregje
2017-04-27
Parasitoid resistance in Drosophila varies considerably, among and within species. An immune response, lamellocyte-mediated encapsulation, evolved in a subclade of Drosophila and was subsequently lost in at least one species within this subclade. While the mechanisms of resistance are fairly well documented in D. melanogaster, much less is known for closely related species. Here, we studied the inter- and intra-species variation in gene expression after parasitoid attack in Drosophila. We used RNA-seq after parasitization of four closely related Drosophila species of the melanogaster subgroup and replicated lines of D. melanogaster experimentally selected for increased resistance to gain insights into short- and long-term evolutionary changes. We found a core set of genes that are consistently up-regulated after parasitoid attack in the species and lines tested, regardless of their level of resistance. Another set of genes showed no up-regulation or expression in D. sechellia, the species unable to raise an immune response against parasitoids. This set consists largely of genes that are lineage-restricted to the melanogaster subgroup. Artificially selected lines did not show significant differences in gene expression with respect to non-selected lines in their responses to parasitoid attack, but several genes showed differential exon usage. We showed substantial similarities, but also notable differences, in the transcriptional responses to parasitoid attack among four closely related Drosophila species. In contrast, within D. melanogaster, the responses were remarkably similar. We confirmed that in the short-term, selection does not act on a pre-activation of the immune response. Instead it may target alternative mechanisms such as differential exon usage. In the long-term, we found support for the hypothesis that the ability to immunologically resist parasitoid attack is contingent on new genes that are restricted to the melanogaster subgroup.
Wang, Xia; Wang, Hui; Sun, Vincent; Tuan, Han-Fang; Keser, Vafa; Wang, Keqing; Ren, Huanan; Lopez, Irma; Zaneveld, Jacques E; Siddiqui, Sorath; Bowles, Stephanie; Khan, Ayesha; Salvo, Jason; Jacobson, Samuel G; Iannaccone, Alessandro; Wang, Feng; Birch, David; Heckenlively, John R; Fishman, Gerald A; Traboulsi, Elias I; Li, Yumei; Wheaton, Dianna; Koenekoop, Robert K; Chen, Rui
2014-01-01
Background Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) are inherited retinal diseases that cause early onset severe visual impairment. An accurate molecular diagnosis can refine the clinical diagnosis and allow gene specific treatments. Methods We developed a capture panel that enriches the exonic DNA of 163 known retinal disease genes. Using this panel, we performed targeted next generation sequencing (NGS) for a large cohort of 179 unrelated and prescreened patients with the clinical diagnosis of LCA or juvenile RP. Systematic NGS data analysis, Sanger sequencing validation, and segregation analysis were utilised to identify the pathogenic mutations. Patients were revisited to examine the potential phenotypic ambiguity at the time of initial diagnosis. Results Pathogenic mutations for 72 patients (40%) were identified, including 45 novel mutations. Of these 72 patients, 58 carried mutations in known LCA or juvenile RP genes and exhibited corresponding phenotypes, while 14 carried mutations in retinal disease genes that were not consistent with their initial clinical diagnosis. We revisited patients in the latter case and found that homozygous mutations in PRPH2 can cause LCA/juvenile RP. Guided by the molecular diagnosis, we reclassified the clinical diagnosis in two patients. Conclusions We have identified a novel gene and a large number of novel mutations that are associated with LCA/juvenile RP. Our results highlight the importance of molecular diagnosis as an integral part of clinical diagnosis. PMID:23847139
Nomikou, N; Feichtinger, G A; Saha, S; Nuernberger, S; Heimel, P; Redl, H; McHale, A P
2018-01-01
Gene-activated matrix (GAM)-based therapeutics for tissue regeneration are limited by efficacy, the lack of spatiotemporal control and availability of target cells, all of which impact negatively on their translation to the clinic. Here, an advanced ultrasound-responsive GAM is described containing target cells that facilitates matrix-assisted sonoporation (MAS) to induce osteogenic differentiation. Ultrasound-responsive GAMs consisting of fibrin/collagen hybrid-matrices containing microbubbles, bone morphogenetic protein BMP2/7 coexpression plasmids together with C2C12 cells were treated with ultrasound either in vitro or following parenteral intramuscular implantation in vivo. Using direct measurement for alkaline phosphatase activity, von Kossa staining and immunohistochemical analysis for osteocalcin expression, MAS-stimulated osteogenic differentiation was confirmed in the GAMs in vitro 7 days after treatment with ultrasound. At day 30 post-treatment with ultrasound, ectopic osteogenic differentiation was confirmed in vivo using X-ray microcomputed tomography and histological analysis. Osteogenic differentiation was indicated by the presence of ectopic bone structures in all animals treated with MAS. In addition, bone volumes in this group were statistically greater than those in the control groups. This novel approach of incorporating a MAS capability into GAMs could be exploited to facilitate ex vivo gene transfer with subsequent surgical implantation or alternatively provide a minimally invasive means of stimulating in situ transgene delivery for osteoinductive gene-based therapies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Chester, N; Kuo, F; Kozak, C; O'Hara, C D; Leder, P
1998-11-01
Bloom's syndrome is a human autosomal genetic disorder characterized at the cellular level by genome instability and increased sister chomatid exchanges (SCEs). Clinical features of the disease include proportional dwarfism and a predisposition to develop a wide variety of malignancies. The human BLM gene has been cloned recently and encodes a DNA helicase. Mouse embryos homozygous for a targeted mutation in the murine Bloom's syndrome gene (Blm) are developmentally delayed and die by embryonic day 13.5. The fact that the interrupted gene is the homolog of the human BLM gene was confirmed by its homologous sequence, its chromosomal location, and by demonstrating high numbers of SCEs in cultured murine Blm-/- fibroblasts. The proportional dwarfism seen in the human is consistent with the small size and developmental delay (12-24 hr) seen during mid-gestation in murine Blm-/- embryos. Interestingly, the growth retardation in mutant embryos can be accounted for by a wave of increased apoptosis in the epiblast restricted to early post-implantation embryogenesis. Mutant embryos do not survive past day 13.5, and at this time exhibit severe anemia. Red blood cells and their precursors from Blm-/- embryos are heterogeneous in appearance and have increased numbers of macrocytes and micronuclei. Both the apoptotic wave and the appearance of micronuclei in red blood cells are likely cellular consequences of damaged DNA caused by effects on replicating or segregating chromosomes.
Trafficking arms: oomycete effectors enter host plant cells.
Birch, Paul R J; Rehmany, Anne P; Pritchard, Leighton; Kamoun, Sophien; Beynon, Jim L
2006-01-01
Oomycetes cause devastating plant diseases of global importance, yet little is known about the molecular basis of their pathogenicity. Recently, the first oomycete effector genes with cultivar-specific avirulence (AVR) functions were identified. Evidence of diversifying selection in these genes and their cognate plant host resistance genes suggests a molecular "arms race" as plants and oomycetes attempt to achieve and evade detection, respectively. AVR proteins from Hyaloperonospora parasitica and Phytophthora infestans are detected in the plant host cytoplasm, consistent with the hypothesis that oomycetes, as is the case with bacteria and fungi, actively deliver effectors inside host cells. The RXLR amino acid motif, which is present in these AVR proteins and other secreted oomycete proteins, is similar to a host-cell-targeting signal in virulence proteins of malaria parasites (Plasmodium species), suggesting a conserved role in pathogenicity.
Zhang, Hui; Zhang, Jinshan; Wei, Pengliang; Zhang, Botao; Gou, Feng; Feng, Zhengyan; Mao, Yanfei; Yang, Lan; Zhang, Heng; Xu, Nanfei; Zhu, Jian-Kang
2014-08-01
The CRISPR/Cas9 system has been demonstrated to efficiently induce targeted gene editing in a variety of organisms including plants. Recent work showed that CRISPR/Cas9-induced gene mutations in Arabidopsis were mostly somatic mutations in the early generation, although some mutations could be stably inherited in later generations. However, it remains unclear whether this system will work similarly in crops such as rice. In this study, we tested in two rice subspecies 11 target genes for their amenability to CRISPR/Cas9-induced editing and determined the patterns, specificity and heritability of the gene modifications. Analysis of the genotypes and frequency of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in rice, with target genes edited in nearly half of the transformed embryogenic cells before their first cell division. Homozygotes of edited target genes were readily found in T0 plants. The gene mutations were passed to the next generation (T1) following classic Mendelian law, without any detectable new mutation or reversion. Even with extensive searches including whole genome resequencing, we could not find any evidence of large-scale off-targeting in rice for any of the many targets tested in this study. By specifically sequencing the putative off-target sites of a large number of T0 plants, low-frequency mutations were found in only one off-target site where the sequence had 1-bp difference from the intended target. Overall, the data in this study point to the CRISPR/Cas9 system being a powerful tool in crop genome engineering. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Li, Zheng; Srivastava, Shireesh; Yang, Xuerui; Mittal, Sheenu; Norton, Paul; Resau, James; Haab, Brian; Chan, Christina
2007-01-01
Background Free fatty acids (FFA) and tumor necrosis factor alpha (TNF-α) have been implicated in the pathogenesis of many obesity-related metabolic disorders. When human hepatoblastoma cells (HepG2) were exposed to different types of FFA and TNF-α, saturated fatty acid was found to be cytotoxic and its toxicity was exacerbated by TNF-α. In order to identify the processes associated with the toxicity of saturated FFA and TNF-α, the metabolic and gene expression profiles were measured to characterize the cellular states. A computational model was developed to integrate these disparate data to reveal the underlying pathways and mechanisms involved in saturated fatty acid toxicity. Results A hierarchical framework consisting of three stages was developed to identify the processes and genes that regulate the toxicity. First, discriminant analysis identified that fatty acid oxidation and intracellular triglyceride accumulation were the most relevant in differentiating the cytotoxic phenotype. Second, gene set enrichment analysis (GSEA) was applied to the cDNA microarray data to identify the transcriptionally altered pathways and processes. Finally, the genes and gene sets that regulate the metabolic responses identified in step 1 were identified by integrating the expression of the enriched gene sets and the metabolic profiles with a multi-block partial least squares (MBPLS) regression model. Conclusion The hierarchical approach suggested potential mechanisms involved in mediating the cytotoxic and cytoprotective pathways, as well as identified novel targets, such as NADH dehydrogenases, aldehyde dehydrogenases 1A1 (ALDH1A1) and endothelial membrane protein 3 (EMP3) as modulator of the toxic phenotypes. These predictions, as well as, some specific targets that were suggested by the analysis were experimentally validated. PMID:17498300
Li, Wenli; Turner, Amy; Aggarwal, Praful; Matter, Andrea; Storvick, Erin; Arnett, Donna K; Broeckel, Ulrich
2015-12-16
Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of input RNA and complications led by non-specific mapping of short reads. The Ion AmpliSeq Transcriptome Human Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene quantification kit to overcome these limitations of RNA-seq. To assess the performance of this new methodology, we performed a comprehensive comparison of AmpliSeq with RNA-seq using two well-established next-generation sequencing platforms (Illumina HiSeq and Ion Torrent Proton). We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). Using published data from two standard RNA reference samples, we observed a strong concordance of log2 fold change for all genes when comparing AmpliSeq to Illumina HiSeq (Pearson's r = 0.92) and Ion Torrent Proton (Pearson's r = 0.92). We used ROC, Matthew's correlation coefficient and RMSD to determine the overall performance characteristics. All three statistical methods demonstrate AmpliSeq as a highly accurate method for differential gene expression analysis. Additionally, for genes with high abundance, AmpliSeq outperforms the two RNA-seq methods. When analyzing four closely related hiPSC-CM lines, we show that both AmpliSeq and RNA-seq capture similar global gene expression patterns consistent with known sources of variations. Our study indicates that AmpliSeq excels in the limiting areas of RNA-seq for gene expression quantification analysis. Thus, AmpliSeq stands as a very sensitive and cost-effective approach for very large scale gene expression analysis and mRNA marker screening with high accuracy.
2010-01-01
Subtraction technique has been broadly applied for target gene discovery. However, most current protocols apply relative differential subtraction and result in great amount clone mixtures of unique and differentially expressed genes. This makes it more difficult to identify unique or target-orientated expressed genes. In this study, we developed a novel method for subtraction at mRNA level by integrating magnetic particle technology into driver preparation and tester–driver hybridization to facilitate uniquely expressed gene discovery between peanut immature pod and leaf through a single round subtraction. The resulting target clones were further validated through polymerase chain reaction screening using peanut immature pod and leaf cDNA libraries as templates. This study has resulted in identifying several genes expressed uniquely in immature peanut pod. These target genes can be used for future peanut functional genome and genetic engineering research. PMID:21406066
Schmitz, Ulf; Lai, Xin; Winter, Felix; Wolkenhauer, Olaf; Vera, Julio; Gupta, Shailendra K.
2014-01-01
MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/. PMID:24875477
Langston, Lance D; Symington, Lorraine S
2005-06-15
Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.
Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.
Li, Jun; Meng, Xiangbing; Zong, Yuan; Chen, Kunling; Zhang, Huawei; Liu, Jinxing; Li, Jiayang; Gao, Caixia
2016-09-12
Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.
The past and presence of gene targeting: from chemicals and DNA via proteins to RNA.
Geel, T M; Ruiters, M H J; Cool, R H; Halby, L; Voshart, D C; Andrade Ruiz, L; Niezen-Koning, K E; Arimondo, P B; Rots, M G
2018-06-05
The ability to target DNA specifically at any given position within the genome allows many intriguing possibilities and has inspired scientists for decades. Early gene-targeting efforts exploited chemicals or DNA oligonucleotides to interfere with the DNA at a given location in order to inactivate a gene or to correct mutations. We here describe an example towards correcting a genetic mutation underlying Pompe's disease using a nucleotide-fused nuclease (TFO-MunI). In addition to the promise of gene correction, scientists soon realized that genes could be inactivated or even re-activated without inducing potentially harmful DNA damage by targeting transcriptional modulators to a particular gene. However, it proved difficult to fuse protein effector domains to the first generation of programmable DNA-binding agents. The engineering of gene-targeting proteins (zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs)) circumvented this problem. The disadvantage of protein-based gene targeting is that a fusion protein needs to be engineered for every locus. The recent introduction of CRISPR/Cas offers a flexible approach to target a (fusion) protein to the locus of interest using cheap designer RNA molecules. Many research groups now exploit this platform and the first human clinical trials have been initiated: CRISPR/Cas has kicked off a new era of gene targeting and is revolutionizing biomedical sciences.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'. © 2018 The Author(s).
2013-01-01
Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize deregulated genes and group them into gene modules by simultaneously considering gene expression level changes and gene-gene co-regulations. When applied to both simulated and empirical data, nDGE outperforms the traditional DGE method. More specifically, when applied to smoker and non-smoker lung cancer sets, nDGE results illustrate the molecular differences between smoker and non-smoker lung cancer. PMID:24341432
Brett, Maggie; McPherson, John; Zang, Zhi Jiang; Lai, Angeline; Tan, Ee-Shien; Ng, Ivy; Ong, Lai-Choo; Cham, Breana; Tan, Patrick; Rozen, Steve; Tan, Ene-Choo
2014-01-01
Developmental delay and/or intellectual disability (DD/ID) affects 1–3% of all children. At least half of these are thought to have a genetic etiology. Recent studies have shown that massively parallel sequencing (MPS) using a targeted gene panel is particularly suited for diagnostic testing for genetically heterogeneous conditions. We report on our experiences with using massively parallel sequencing of a targeted gene panel of 355 genes for investigating the genetic etiology of eight patients with a wide range of phenotypes including DD/ID, congenital anomalies and/or autism spectrum disorder. Targeted sequence enrichment was performed using the Agilent SureSelect Target Enrichment Kit and sequenced on the Illumina HiSeq2000 using paired-end reads. For all eight patients, 81–84% of the targeted regions achieved read depths of at least 20×, with average read depths overlapping targets ranging from 322× to 798×. Causative variants were successfully identified in two of the eight patients: a nonsense mutation in the ATRX gene and a canonical splice site mutation in the L1CAM gene. In a third patient, a canonical splice site variant in the USP9X gene could likely explain all or some of her clinical phenotypes. These results confirm the value of targeted MPS for investigating DD/ID in children for diagnostic purposes. However, targeted gene MPS was less likely to provide a genetic diagnosis for children whose phenotype includes autism. PMID:24690944
Penrod, Nadia M; Moore, Jason H
2014-02-05
The demand for novel molecularly targeted drugs will continue to rise as we move forward toward the goal of personalizing cancer treatment to the molecular signature of individual tumors. However, the identification of targets and combinations of targets that can be safely and effectively modulated is one of the greatest challenges facing the drug discovery process. A promising approach is to use biological networks to prioritize targets based on their relative positions to one another, a property that affects their ability to maintain network integrity and propagate information-flow. Here, we introduce influence networks and demonstrate how they can be used to generate influence scores as a network-based metric to rank genes as potential drug targets. We use this approach to prioritize genes as drug target candidates in a set of ER⁺ breast tumor samples collected during the course of neoadjuvant treatment with the aromatase inhibitor letrozole. We show that influential genes, those with high influence scores, tend to be essential and include a higher proportion of essential genes than those prioritized based on their position (i.e. hubs or bottlenecks) within the same network. Additionally, we show that influential genes represent novel biologically relevant drug targets for the treatment of ER⁺ breast cancers. Moreover, we demonstrate that gene influence differs between untreated tumors and residual tumors that have adapted to drug treatment. In this way, influence scores capture the context-dependent functions of genes and present the opportunity to design combination treatment strategies that take advantage of the tumor adaptation process. Influence networks efficiently find essential genes as promising drug targets and combinations of targets to inform the development of molecularly targeted drugs and their use.
2014-01-01
Background The demand for novel molecularly targeted drugs will continue to rise as we move forward toward the goal of personalizing cancer treatment to the molecular signature of individual tumors. However, the identification of targets and combinations of targets that can be safely and effectively modulated is one of the greatest challenges facing the drug discovery process. A promising approach is to use biological networks to prioritize targets based on their relative positions to one another, a property that affects their ability to maintain network integrity and propagate information-flow. Here, we introduce influence networks and demonstrate how they can be used to generate influence scores as a network-based metric to rank genes as potential drug targets. Results We use this approach to prioritize genes as drug target candidates in a set of ER + breast tumor samples collected during the course of neoadjuvant treatment with the aromatase inhibitor letrozole. We show that influential genes, those with high influence scores, tend to be essential and include a higher proportion of essential genes than those prioritized based on their position (i.e. hubs or bottlenecks) within the same network. Additionally, we show that influential genes represent novel biologically relevant drug targets for the treatment of ER + breast cancers. Moreover, we demonstrate that gene influence differs between untreated tumors and residual tumors that have adapted to drug treatment. In this way, influence scores capture the context-dependent functions of genes and present the opportunity to design combination treatment strategies that take advantage of the tumor adaptation process. Conclusions Influence networks efficiently find essential genes as promising drug targets and combinations of targets to inform the development of molecularly targeted drugs and their use. PMID:24495353
Sethi, Isha; Gluck, Christian; Zhou, Huiqing
2017-01-01
Abstract Although epidermal keratinocyte development and differentiation proceeds in similar fashion between humans and mice, evolutionary pressures have also wrought significant species-specific physiological differences. These differences between species could arise in part, by the rewiring of regulatory network due to changes in the global targets of lineage-specific transcriptional master regulators such as p63. Here we have performed a systematic and comparative analysis of the p63 target gene network within the integrated framework of the transcriptomic and epigenomic landscape of mouse and human keratinocytes. We determined that there exists a core set of ∼1600 genomic regions distributed among enhancers and super-enhancers, which are conserved and occupied by p63 in keratinocytes from both species. Notably, these DNA segments are typified by consensus p63 binding motifs under purifying selection and are associated with genes involved in key keratinocyte and skin-centric biological processes. However, the majority of the p63-bound mouse target regions consist of either murine-specific DNA elements that are not alignable to the human genome or exhibit no p63 binding in the orthologous syntenic regions, typifying an occupancy lost subset. Our results suggest that these evolutionarily divergent regions have undergone significant turnover of p63 binding sites and are associated with an underlying inactive and inaccessible chromatin state, indicative of their selective functional activity in the transcriptional regulatory network in mouse but not human. Furthermore, we demonstrate that this selective targeting of genes by p63 correlates with subtle, but measurable transcriptional differences in mouse and human keratinocytes that converges on major metabolic processes, which often exhibit species-specific trends. Collectively our study offers possible molecular explanation for the observable phenotypic differences between the mouse and human skin and broadly informs on the prevailing principles that govern the tug-of-war between evolutionary forces of rigidity and plasticity over transcriptional regulatory programs. PMID:28505376
Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics
NASA Astrophysics Data System (ADS)
Hao, Liangliang
Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct novel SNA-based nanomaterials with desired properties and applying targeting moieties to the SNA platform to achieve cell type specific gene regulation effects. Due to the flexibility of the SNA approach, the SNA platform can potentially be applied to many genetic disorders through tailored target specificities.
Nikmanesh, Bahram; Mirhendi, Hossein; Mahmoudi, Shahram; Rokni, Mohammad Bagher
2017-12-01
Echinococcus granulosus is now considered a complex consisting of at least four species and ten genotypes. Different molecular targets have been described for molecular characterization of E. granulosus; however, in almost all studies only one or two of the targets have been used, and only limited data is available on the utilization of multiple loci. Therefore, we investigated the genetic diversity among 64 strains isolated from 138 cyst specimens of human and animal isolates, using a set of nuclear and mitochondrial genes; i.e., cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunit 1 (nad1), ATPase subunit 6 (atp6), 12S rRNA (12S), and Actin II (act II). In comparison to the use of molecular reference targets (nad1 + cox1), using singular target (act II or 12S or atp6) yielded lower discriminatory power. Act II and 12S genes could accurately discriminate the G6 genotype, but they were not able to differentiate between G1 and G3 genotypes. As the G1 and G3 genotypes belong to the E. granulosus sensu stricto, low intra-species variation was observed for act II and 12S. The atp6 gene could identify the G3 genotype but could not differentiate G6 and G1 genotypes. Using concatenated sequence of five genes (cox1 + nad1 + atp6 + 12S + act II), genotypes were identified accurately, and markedly higher resolution was obtained in comparison with the use of reference markers (nad1 + cox1) only. Application of multilocus sequence analysis (MLSA) to large-scale studies could provide valuable epidemiological data to make efficient control and management measures for cystic echinococcosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Yallowitz, Alisha R.; Gong, Ke-Qin; Swinehart, Ilea T.; Nelson, Lisa T.; Wellik, Deneen M.
2009-01-01
Summary Hox genes control many developmental events along the AP axis, but few target genes have been identified. Whether target genes are activated or repressed, what enhancer elements are required for regulation, and how different domains of the Hox proteins contribute to regulatory specificity is poorly understood. Six2 is genetically downstream of both the Hox11 paralogous genes in the developing mammalian kidney and Hoxa2 in branchial arch and facial mesenchyme. Loss-of-function of Hox11 leads to loss of Six2 expression and loss-of-function of Hoxa2 leads to expanded Six2 expression. Herein we demonstrate that a single enhancer site upstream of the Six2 coding sequence is responsible for both activation by Hox11 proteins in the kidney and repression by Hoxa2 in the branchial arch and facial mesenchyme in vivo. DNA binding activity is required for both activation and repression, but differential activity is not controlled by differences in the homeodomains. Rather, protein domains N- and C-terminal to the homeodomain confer activation versus repression activity. These data support a model in which the DNA binding specificity of Hox proteins in vivo may be similar, consistent with accumulated in vitro data, and that unique functions result mainly from differential interactions mediated by non-homeodomain regions of Hox proteins. PMID:19716816
In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation.
Moreno, Ana M; Fu, Xin; Zhu, Jie; Katrekar, Dhruva; Shih, Yu-Ru V; Marlett, John; Cabotaje, Jessica; Tat, Jasmine; Naughton, John; Lisowski, Leszek; Varghese, Shyni; Zhang, Kang; Mali, Prashant
2018-04-25
Development of efficacious in vivo delivery platforms for CRISPR-Cas9-based epigenome engineering will be critical to enable the ability to target human diseases without permanent modification of the genome. Toward this, we utilized split-Cas9 systems to develop a modular adeno-associated viral (AAV) vector platform for CRISPR-Cas9 delivery to enable the full spectrum of targeted in situ gene regulation functionalities, demonstrating robust transcriptional repression (up to 80%) and activation (up to 6-fold) of target genes in cell culture and mice. We also applied our platform for targeted in vivo gene-repression-mediated gene therapy for retinitis pigmentosa. Specifically, we engineered targeted repression of Nrl, a master regulator of rod photoreceptor determination, and demonstrated Nrl knockdown mediates in situ reprogramming of rod cells into cone-like cells that are resistant to retinitis pigmentosa-specific mutations, with concomitant prevention of secondary cone loss. Furthermore, we benchmarked our results from Nrl knockdown with those from in vivo Nrl knockout via gene editing. Taken together, our AAV-CRISPR-Cas9 platform for in vivo epigenome engineering enables a robust approach to target disease in a genomically scarless and potentially reversible manner. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Complete Chloroplast Genome Sequences of Four Meliaceae Species and Comparative Analyses
Mader, Malte; Pakull, Birte; Blanc-Jolivet, Céline; Paulini-Drewes, Maike; Bouda, Zoéwindé Henri-Noël; Degen, Bernd; Small, Ian
2018-01-01
The Meliaceae family mainly consists of trees and shrubs with a pantropical distribution. In this study, the complete chloroplast genomes of four Meliaceae species were sequenced and compared with each other and with the previously published Azadirachta indica plastome. The five plastomes are circular and exhibit a quadripartite structure with high conservation of gene content and order. They include 130 genes encoding 85 proteins, 37 tRNAs and 8 rRNAs. Inverted repeat expansion resulted in a duplication of rps19 in the five Meliaceae species, which is consistent with that in many other Sapindales, but different from many other rosids. Compared to Azadirachta indica, the four newly sequenced Meliaceae individuals share several large deletions, which mainly contribute to the decreased genome sizes. A whole-plastome phylogeny supports previous findings that the four species form a monophyletic sister clade to Azadirachta indica within the Meliaceae. SNPs and indels identified in all complete Meliaceae plastomes might be suitable targets for the future development of genetic markers at different taxonomic levels. The extended analysis of SNPs in the matK gene led to the identification of four potential Meliaceae-specific SNPs as a basis for future validation and marker development. PMID:29494509
TALE-PvuII fusion proteins--novel tools for gene targeting.
Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang
2013-01-01
Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.
Martínez, Cristina; Rodiño-Janeiro, Bruno K; Lobo, Beatriz; Stanifer, Megan L; Klaus, Bernd; Granzow, Martin; González-Castro, Ana M; Salvo-Romero, Eloisa; Alonso-Cotoner, Carmen; Pigrau, Marc; Roeth, Ralph; Rappold, Gudrun; Huber, Wolfgang; González-Silos, Rosa; Lorenzo, Justo; de Torres, Inés; Azpiroz, Fernando; Boulant, Steeve; Vicario, María; Niesler, Beate; Santos, Javier
2017-09-01
Micro-RNAs (miRNAs) play a crucial role in controlling intestinal epithelial barrier function partly by modulating the expression of tight junction (TJ) proteins. We have previously shown differential messenger RNA (mRNA) expression correlated with ultrastructural abnormalities of the epithelial barrier in patients with diarrhoea-predominant IBS (IBS-D). However, the participation of miRNAs in these differential mRNA-associated findings remains to be established. Our aims were (1) to identify miRNAs differentially expressed in the small bowel mucosa of patients with IBS-D and (2) to explore putative target genes specifically involved in epithelial barrier function that are controlled by specific dysregulated IBS-D miRNAs. Healthy controls and patients meeting Rome III IBS-D criteria were studied. Intestinal tissue samples were analysed to identify potential candidates by: (a) miRNA-mRNA profiling; (b) miRNA-mRNA pairing analysis to assess the co-expression profile of miRNA-mRNA pairs; (c) pathway analysis and upstream regulator identification; (d) miRNA and target mRNA validation. Candidate miRNA-mRNA pairs were functionally assessed in intestinal epithelial cells. IBS-D samples showed distinct miRNA and mRNA profiles compared with healthy controls. TJ signalling was associated with the IBS-D transcriptional profile. Further validation of selected genes showed consistent upregulation in 75% of genes involved in epithelial barrier function. Bioinformatic analysis of putative miRNA binding sites identified hsa-miR-125b-5p and hsa-miR-16 as regulating expression of the TJ genes CGN (cingulin) and CLDN2 (claudin-2), respectively. Consistently, protein expression of CGN and CLDN2 was upregulated in IBS-D, while the respective targeting miRNAs were downregulated. In addition, bowel dysfunction, perceived stress and depression and number of mast cells correlated with the expression of hsa-miR-125b-5p and hsa-miR-16 and their respective target proteins. Modulation of the intestinal epithelial barrier function in IBS-D involves both transcriptional and post-transcriptional mechanisms. These molecular mechanisms include miRNAs as master regulators in controlling the expression of TJ proteins and are associated with major clinical symptoms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Seamless Genome Editing in Rice via Gene Targeting and Precise Marker Elimination.
Nishizawa-Yokoi, Ayako; Saika, Hiroaki; Toki, Seiichi
2016-01-01
Positive-negative selection using hygromycin phosphotransferase (hpt) and diphtheria toxin A-fragment (DT-A) as positive and negative selection markers, respectively, allows enrichment of cells harboring target genes modified via gene targeting (GT). We have developed a successful GT system employing positive-negative selection and subsequent precise marker excision via the piggyBac transposon derived from the cabbage looper moth to introduce desired modifications into target genes in the rice genome. This approach could be applied to the precision genome editing of almost all endogenous genes throughout the genome, at least in rice.
In Silico Prediction and Validation of Gfap as an miR-3099 Target in Mouse Brain.
Abidin, Shahidee Zainal; Leong, Jia-Wen; Mahmoudi, Marzieh; Nordin, Norshariza; Abdullah, Syahril; Cheah, Pike-See; Ling, King-Hwa
2017-08-01
MicroRNAs are small non-coding RNAs that play crucial roles in the regulation of gene expression and protein synthesis during brain development. MiR-3099 is highly expressed throughout embryogenesis, especially in the developing central nervous system. Moreover, miR-3099 is also expressed at a higher level in differentiating neurons in vitro, suggesting that it is a potential regulator during neuronal cell development. This study aimed to predict the target genes of miR-3099 via in-silico analysis using four independent prediction algorithms (miRDB, miRanda, TargetScan, and DIANA-micro-T-CDS) with emphasis on target genes related to brain development and function. Based on the analysis, a total of 3,174 miR-3099 target genes were predicted. Those predicted by at least three algorithms (324 genes) were subjected to DAVID bioinformatics analysis to understand their overall functional themes and representation. The analysis revealed that nearly 70% of the target genes were expressed in the nervous system and a significant proportion were associated with transcriptional regulation and protein ubiquitination mechanisms. Comparison of in situ hybridization (ISH) expression patterns of miR-3099 in both published and in-house-generated ISH sections with the ISH sections of target genes from the Allen Brain Atlas identified 7 target genes (Dnmt3a, Gabpa, Gfap, Itga4, Lxn, Smad7, and Tbx18) having expression patterns complementary to miR-3099 in the developing and adult mouse brain samples. Of these, we validated Gfap as a direct downstream target of miR-3099 using the luciferase reporter gene system. In conclusion, we report the successful prediction and validation of Gfap as an miR-3099 target gene using a combination of bioinformatics resources with enrichment of annotations based on functional ontologies and a spatio-temporal expression dataset.
Hao, Jun; Ci, Xinpei; Xue, Hui; Wu, Rebecca; Dong, Xin; Choi, Stephen Yiu Chuen; He, Haiqing; Wang, Yu; Zhang, Fang; Qu, Sifeng; Zhang, Fan; Haegert, Anne M; Gout, Peter W; Zoubeidi, Amina; Collins, Colin; Gleave, Martin E; Lin, Dong; Wang, Yuzhuo
2018-06-01
Although androgen deprivation therapy is initially effective in controlling growth of hormone-naive prostate cancers (HNPCs) in patients, currently incurable castration-resistant prostate cancer (CRPC) inevitably develops. To identify CRPC driver genes that may provide new targets to enhance CRPC therapy. Patient-derived xenografts (PDXs) of HNPCs that develop CRPC following host castration were examined for changes in expression of genes at various time points after castration using transcriptome profiling analysis; particular attention was given to pre-CRPC changes in expression indicative of genes acting as potential CRPC drivers. The functionality of a potential CRPC driver was validated via its knockdown in cultured prostate cancer cells; its clinical relevance was established using data from prostate cancer patient databases. Eighty genes were found to be significantly upregulated at the CRPC stage, while seven of them also showed elevated expression prior to CRPC development. Among the latter, growth factor receptor bound protein 10 (GRB10) was the most significantly and consistently upregulated gene. Moreover, elevated GRB10 expression in clinical prostate cancer samples correlated with more aggressive tumor types and poorer patient treatment outcome. GRB10 knockdown markedly reduced prostate cancer cell proliferation and activity of AKT, a well-established CRPC mediator. A positive correlation between AKT activity and GRB10 expression was also found in clinical cohorts. GRB10 acts as a driver of CRPC and sensitizes androgen receptor pathway inhibitors, and hence GRB10 targeting provides a novel therapeutic strategy for the disease. Development of castration-resistant prostate cancer (CRPC) is a major problem in the management of the disease. Using state-of-the-art patient-derived hormone-naive prostate cancer xenograft models, we found and validated the growth factor receptor bound protein 10 gene as a driver of CRPC, indicating that it may be used as a new molecular target to enhance current CRPC therapy. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul
2011-01-01
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.
Curie, Thomas; Franken, Paul
2011-01-01
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), −6, −12, and −18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and −6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven. PMID:22039518
Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles
2013-01-01
Gene therapy provides an efficient approach for treatment of cardiovascular disease. To realize the therapeutic effect, both efficient delivery to the target cells and sustained expression of transgenes are required. Ultrasound targeted microbubble destruction (UTMD) technique has become a potential strategy for target-specific gene and drug delivery. When gene-loaded microbubble is injected, the ultrasound-mediated microbubble destruction may spew the transported gene to the targeted cells or organ. Meanwhile, high amplitude oscillations of microbubbles increase the permeability of capillary and cell membrane, facilitating uptake of the released gene into tissue and cell. Therefore, efficiency of gene therapy can be significantly improved. To date, UTMD has been successfully investigated in many diseases, and it has achieved outstanding progress in the last two decades. Herein, we discuss the current status of gene therapy of cardiovascular diseases, and reviewed the progress of the delivery of genes to cardiovascular system by UTMD. PMID:23594865
Quinn, Michael C J; Wilson, Daniel J; Young, Fiona; Dempsey, Adam A; Arcand, Suzanna L; Birch, Ashley H; Wojnarowicz, Paulina M; Provencher, Diane; Mes-Masson, Anne-Marie; Englert, David; Tonin, Patricia N
2009-07-06
As gene expression signatures may serve as biomarkers, there is a need to develop technologies based on mRNA expression patterns that are adaptable for translational research. Xceed Molecular has recently developed a Ziplex technology, that can assay for gene expression of a discrete number of genes as a focused array. The present study has evaluated the reproducibility of the Ziplex system as applied to ovarian cancer research of genes shown to exhibit distinct expression profiles initially assessed by Affymetrix GeneChip analyses. The new chemiluminescence-based Ziplex gene expression array technology was evaluated for the expression of 93 genes selected based on their Affymetrix GeneChip profiles as applied to ovarian cancer research. Probe design was based on the Affymetrix target sequence that favors the 3' UTR of transcripts in order to maximize reproducibility across platforms. Gene expression analysis was performed using the Ziplex Automated Workstation. Statistical analyses were performed to evaluate reproducibility of both the magnitude of expression and differences between normal and tumor samples by correlation analyses, fold change differences and statistical significance testing. Expressions of 82 of 93 (88.2%) genes were highly correlated (p < 0.01) in a comparison of the two platforms. Overall, 75 of 93 (80.6%) genes exhibited consistent results in normal versus tumor tissue comparisons for both platforms (p < 0.001). The fold change differences were concordant for 87 of 93 (94%) genes, where there was agreement between the platforms regarding statistical significance for 71 (76%) of 87 genes. There was a strong agreement between the two platforms as shown by comparisons of log2 fold differences of gene expression between tumor versus normal samples (R = 0.93) and by Bland-Altman analysis, where greater than 90% of expression values fell within the 95% limits of agreement. Overall concordance of gene expression patterns based on correlations, statistical significance between tumor and normal ovary data, and fold changes was consistent between the Ziplex and Affymetrix platforms. The reproducibility and ease-of-use of the technology suggests that the Ziplex array is a suitable platform for translational research.
Addiction, Adolescence, and Innate Immune Gene Induction
Crews, Fulton T.; Vetreno, Ryan Peter
2011-01-01
Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control, and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB) facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g., negative affect-anxiety and loss of frontal–cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy. PMID:21629837
Pattern Genes Suggest Functional Connectivity of Organs
NASA Astrophysics Data System (ADS)
Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang
2016-05-01
Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.
2016-01-01
Background COPD patients have high pulmonary and systemic oxidative stress that correlates with severity of disease. Sulforaphane has been shown to induce expression of antioxidant genes via activation of a transcription factor, nuclear factor erythroid-2 related factor 2 (Nrf2). Methods This parallel, placebo-controlled, phase 2, randomized trial was conducted at three US academic medical centers. Patients who met GOLD criteria for COPD and were able to tolerate bronchoscopies were randomly assigned (1:1:1) to receive placebo, 25 μmoles, or 150 μmoles sulforaphane daily by mouth for four weeks. The primary outcomes were changes in Nrf2 target gene expression (NQ01, HO1, AKR1C1 and AKR1C3) in alveolar macrophages and bronchial epithelial cells. Secondary outcomes included measures of oxidative stress and airway inflammation, and pulmonary function tests. Results Between July 2011 and May 2013, 89 patients were enrolled and randomized. Sulforaphane was absorbed in the patients as evident from their plasma metabolite levels. Changes in Nrf2 target gene expression relative to baseline ranged from 0.79 to 1.45 and there was no consistent pattern among the three groups; the changes were not statistically significantly different from baseline. Changes in measures of inflammation and pulmonary function tests were not different among the groups. Sulforaphane was well tolerated at both dose levels. Conclusion Sulforaphane administered for four weeks at doses of 25 μmoles and 150 μmoles to patients with COPD did not stimulate the expression of Nrf2 target genes or have an effect on levels of other anti-oxidants or markers of inflammation. Trial Registration Clinicaltrials.gov: NCT01335971. PMID:27832073
Wise, Robert A; Holbrook, Janet T; Criner, Gerard; Sethi, Sanjay; Rayapudi, Sobharani; Sudini, Kuladeep R; Sugar, Elizabeth A; Burke, Alyce; Thimmulappa, Rajesh; Singh, Anju; Talalay, Paul; Fahey, Jed W; Berenson, Charles S; Jacobs, Michael R; Biswal, Shyam
2016-01-01
COPD patients have high pulmonary and systemic oxidative stress that correlates with severity of disease. Sulforaphane has been shown to induce expression of antioxidant genes via activation of a transcription factor, nuclear factor erythroid-2 related factor 2 (Nrf2). This parallel, placebo-controlled, phase 2, randomized trial was conducted at three US academic medical centers. Patients who met GOLD criteria for COPD and were able to tolerate bronchoscopies were randomly assigned (1:1:1) to receive placebo, 25 μmoles, or 150 μmoles sulforaphane daily by mouth for four weeks. The primary outcomes were changes in Nrf2 target gene expression (NQ01, HO1, AKR1C1 and AKR1C3) in alveolar macrophages and bronchial epithelial cells. Secondary outcomes included measures of oxidative stress and airway inflammation, and pulmonary function tests. Between July 2011 and May 2013, 89 patients were enrolled and randomized. Sulforaphane was absorbed in the patients as evident from their plasma metabolite levels. Changes in Nrf2 target gene expression relative to baseline ranged from 0.79 to 1.45 and there was no consistent pattern among the three groups; the changes were not statistically significantly different from baseline. Changes in measures of inflammation and pulmonary function tests were not different among the groups. Sulforaphane was well tolerated at both dose levels. Sulforaphane administered for four weeks at doses of 25 μmoles and 150 μmoles to patients with COPD did not stimulate the expression of Nrf2 target genes or have an effect on levels of other anti-oxidants or markers of inflammation. Clinicaltrials.gov: NCT01335971.
Xu, Rong; Wang, QuanQiu
2015-02-01
Anticancer drug-associated side effect knowledge often exists in multiple heterogeneous and complementary data sources. A comprehensive anticancer drug-side effect (drug-SE) relationship knowledge base is important for computation-based drug target discovery, drug toxicity predication and drug repositioning. In this study, we present a two-step approach by combining table classification and relationship extraction to extract drug-SE pairs from a large number of high-profile oncological full-text articles. The data consists of 31,255 tables downloaded from the Journal of Oncology (JCO). We first trained a statistical classifier to classify tables into SE-related and -unrelated categories. We then extracted drug-SE pairs from SE-related tables. We compared drug side effect knowledge extracted from JCO tables to that derived from FDA drug labels. Finally, we systematically analyzed relationships between anti-cancer drug-associated side effects and drug-associated gene targets, metabolism genes, and disease indications. The statistical table classifier is effective in classifying tables into SE-related and -unrelated (precision: 0.711; recall: 0.941; F1: 0.810). We extracted a total of 26,918 drug-SE pairs from SE-related tables with a precision of 0.605, a recall of 0.460, and a F1 of 0.520. Drug-SE pairs extracted from JCO tables is largely complementary to those derived from FDA drug labels; as many as 84.7% of the pairs extracted from JCO tables have not been included a side effect database constructed from FDA drug labels. Side effects associated with anticancer drugs positively correlate with drug target genes, drug metabolism genes, and disease indications. Copyright © 2014 Elsevier Inc. All rights reserved.
Escalante-Maldonado, Oscar; Kayali, Ahmad Y.; Yamazaki, Wataru; Vuddhakul, Varaporn; Nakaguchi, Yoshitsugu; Nishibuchi, Mitsuaki
2015-01-01
Vibrio parahaemolyticus is a marine microorganism that can cause seafood-borne gastroenteritis in humans. The infection can be spread and has become a pandemic through the international trade of contaminated seafood. Strains carrying the tdh gene encoding the thermostable direct hemolysin (TDH) and/or the trh gene encoding the TDH-related hemolysin (TRH) are considered to be pathogenic with the former gene being the most frequently found in clinical strains. However, their distribution frequency in environmental isolates is below 1%. Thus, very sensitive methods are required for detection and quantitation of tdh+ strains in seafood. We previously reported a method to detect and quantify tdh+ V. parahaemolyticus in seafood. This method consists of three components: the most-probable-number (MPN), the immunomagnetic separation (IMS) targeting all established K antigens, and the loop-mediated isothermal amplification (LAMP) targeting the tdh gene. However, this method faces regional issues in tropical zones of the world. Technicians have difficulties in securing dependable reagents in high-temperature climates where we found MPN underestimation in samples having tdh+ strains as well as other microorganisms present at high concentrations. In the present study, we solved the underestimation problem associated with the salt polymyxin broth enrichment for the MPN component and with the immunomagnetic bead-target association for the IMS component. We also improved the supply and maintenance of the dependable reagents by introducing a dried reagent system to the LAMP component. The modified method is specific, sensitive, quick and easy and applicable regardless of the concentrations of tdh+ V. parahaemolyticus. Therefore, we conclude this modified method is useful in world tropical, sub-tropical, and temperate zones. PMID:25914681
Härtl, Katja; Kalinowski, Gregor; Hoffmann, Thomas; Preuss, Anja; Schwab, Wilfried
2017-05-01
RNA interference (RNAi) has been exploited as a reverse genetic tool for functional genomics in the nonmodel species strawberry (Fragaria × ananassa) since 2006. Here, we analysed for the first time different but overlapping nucleotide sections (>200 nt) of two endogenous genes, FaCHS (chalcone synthase) and FaOMT (O-methyltransferase), as inducer sequences and a transitive vector system to compare their gene silencing efficiencies. In total, ten vectors were assembled each containing the nucleotide sequence of one fragment in sense and corresponding antisense orientation separated by an intron (inverted hairpin construct, ihp). All sequence fragments along the full lengths of both target genes resulted in a significant down-regulation of the respective gene expression and related metabolite levels. Quantitative PCR data and successful application of a transitive vector system coinciding with a phenotypic change suggested propagation of the silencing signal. The spreading of the signal in strawberry fruit in the 3' direction was shown for the first time by the detection of secondary small interfering RNAs (siRNAs) outside of the primary targets by deep sequencing. Down-regulation of endogenes by the transitive method was less effective than silencing by ihp constructs probably because the numbers of primary siRNAs exceeded the quantity of secondary siRNAs by three orders of magnitude. Besides, we observed consistent hotspots of primary and secondary siRNA formation along the target sequence which fall within a distance of less than 200 nt. Thus, ihp vectors seem to be superior over the transitive vector system for functional genomics in strawberry fruit. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Krause, William C.; Shafi, Ayesha A.; Nakka, Manjula; Weigel, Nancy L.
2014-01-01
Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. PMID:25008967
Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites
Grau, Jan; Wolf, Annett; Reschke, Maik; Bonas, Ulla; Posch, Stefan; Boch, Jens
2013-01-01
Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally. We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is implemented as part of the open-source Java library Jstacs, and is freely available as a web-application and a command line program. PMID:23526890
Adhikary, Till; Wortmann, Annika; Schumann, Tim; Finkernagel, Florian; Lieber, Sonja; Roth, Katrin; Toth, Philipp M.; Diederich, Wibke E.; Nist, Andrea; Stiewe, Thorsten; Kleinesudeik, Lara; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf
2015-01-01
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPARβ/δ-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NFκB and STAT1 target genes that are repressed by agonists. Accordingly, PPARβ/δ agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPARβ/δ agonists enhanced macrophage survival under hypoxic stress and stimulated CD8+ T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fcγ receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPARβ/δ transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPARβ/δ agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPARβ/δ in immune regulation. PMID:25934804
Yang, Qiaoli; Wang, Shuyue; Wang, Yuan; Qu, Yane; Xue, Jun; Mi, Yang; Wang, Yanhong; Luo, Xuguang; Deng, Zhihua; Wang, Guiqin
2017-06-01
Decorin (DCN) is a negative regulatory factor for the growth of cancer cells and can inhibit the proliferation, metastasis of cancer cells and angiogenesis in cancer tissues. The aims of this study were to prepare the nanoparticles consisting of DCN and poly lactic-co-glycolic acid (PLGA) modified by anti-alpha fetoprotein (AFP) monoclonal antibody (mAb) and to examine the conventional physical properties, the in-vitro release of DCN and the targeting effect of these nanoparticles on HepG2 cells. The encapsulated plasmid was slowly and steadily released from the nanoparticles. The targeted PLGA nanoparticles were initiatively taken in HepG2 cells high-efficiently. According to the results of RT-PCR, DCN gene in AFPmAb-PLGA-rhDCN nanoparticles can be expressed in HepG2 cells successfully. These nanoparticles significantly inhibited the proliferation of HepG2 cells and induced apoptosis. The mRNA expression of Bcl-2 gene in the AFPmAb-PLGA-rhDCN-treated groups appeared significantly to decrease and the caspase-3 gene had the opposite trend as compared with that of control group (P < 0.01). These studies revealed that these nanoparticles were capable of specifically targeting the HepG2 cells and inhibiting the proliferation and they induce apoptosis of HepG2 cells in vitro, which was in a dose- and time-dependent manner. © 2017 Royal Pharmaceutical Society.
Lefèvre, L; Omeiri, H; Drougat, L; Hantel, C; Giraud, M; Val, P; Rodriguez, S; Perlemoine, K; Blugeon, C; Beuschlein, F; de Reyniès, A; Rizk-Rabin, M; Bertherat, J; Ragazzon, B
2015-01-01
Adrenocortical cancer (ACC) is a very aggressive tumor, and genomics studies demonstrate that the most frequent alterations of driver genes in these cancers activate the Wnt/β-catenin signaling pathway. However, the adrenal-specific targets of oncogenic β-catenin-mediating tumorigenesis have not being established. A combined transcriptomic analysis from two series of human tumors and the human ACC cell line H295R harboring a spontaneous β-catenin activating mutation was done to identify the Wnt/β-catenin targets. Seven genes were consistently identified in the three studies. Among these genes, we found that AFF3 mediates the oncogenic effects of β-catenin in ACC. The Wnt response element site located at nucleotide position −1408 of the AFF3 transcriptional start sites (TSS) mediates the regulation by the Wnt/β-catenin signaling pathway. AFF3 silencing decreases cell proliferation and increases apoptosis in the ACC cell line H295R. AFF3 is located in nuclear speckles, which play an important role in RNA splicing. AFF3 overexpression in adrenocortical cells interferes with the organization and/or biogenesis of these nuclear speckles and alters the distribution of CDK9 and cyclin T1 such that they accumulate at the sites of AFF3/speckles. We demonstrate that AFF3 is a new target of Wnt/β-catenin pathway involved in ACC, acting on transcription and RNA splicing. PMID:26214578
Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing.
Koch, Birgit; Nijmeijer, Bianca; Kueblbeck, Moritz; Cai, Yin; Walther, Nike; Ellenberg, Jan
2018-06-01
Gene tagging with fluorescent proteins is essential for investigations of the dynamic properties of cellular proteins. CRISPR-Cas9 technology is a powerful tool for inserting fluorescent markers into all alleles of the gene of interest (GOI) and allows functionality and physiological expression of the fusion protein. It is essential to evaluate such genome-edited cell lines carefully in order to preclude off-target effects caused by (i) incorrect insertion of the fluorescent protein, (ii) perturbation of the fusion protein by the fluorescent proteins or (iii) nonspecific genomic DNA damage by CRISPR-Cas9. In this protocol, we provide a step-by-step description of our systematic pipeline to generate and validate homozygous fluorescent knock-in cell lines.We have used the paired Cas9D10A nickase approach to efficiently insert tags into specific genomic loci via homology-directed repair (HDR) with minimal off-target effects. It is time-consuming and costly to perform whole-genome sequencing of each cell clone to check for spontaneous genetic variations occurring in mammalian cell lines. Therefore, we have developed an efficient validation pipeline of the generated cell lines consisting of junction PCR, Southern blotting analysis, Sanger sequencing, microscopy, western blotting analysis and live-cell imaging for cell-cycle dynamics. This protocol takes between 6 and 9 weeks. With this protocol, up to 70% of the targeted genes can be tagged homozygously with fluorescent proteins, thus resulting in physiological levels and phenotypically functional expression of the fusion proteins.
Fan, Lihua; Shuai, Jiangbing; Zeng, Ruoxue; Mo, Hongfei; Wang, Suhua; Zhang, Xiaofeng; He, Yongqiang
2017-12-01
Genome fragment enrichment (GFE) method was applied to identify host-specific bacterial genetic markers that differ among different fecal metagenomes. To enrich for swine-specific DNA fragments, swine fecal DNA composite (n = 34) was challenged against a DNA composite consisting of cow, human, goat, sheep, chicken, duck and goose fecal DNA extracts (n = 83). Bioinformatic analyses of 384 non-redundant swine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode metabolism-associated, cellular processes and information storage and processing. After challenged against fecal DNA extracted from different animal sources, four sequences from the clone libraries targeting two Bacteroidales- (genes 1-38 and 3-53), a Clostridia- (gene 2-109) as well as a Bacilli-like sequence (gene 2-95), respectively, showed high specificity to swine feces based on PCR analysis. Host-specificity and host-sensitivity analysis confirmed that oligonucleotide primers and probes capable of annealing to select Bacteroidales-like sequences (1-38 and 3-53) exhibited high specificity (>90%) in quantitative PCR assays with 71 fecal DNAs from non-target animal sources. The two assays also demonstrated broad distributions of corresponding genetic markers (>94% positive) among 72 swine feces. After evaluation with environmental water samples from different areas, swine-targeted assays based on two Bacteroidales-like GFE sequences appear to be suitable quantitative tracing tools for swine fecal pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast
2004-05-01
AD Award Number: DAMD17-03-1-0232 TITLE: A Functional Genomics Approach to Identify Novel Breast Cancer Gene Targets in Yeast PRINCIPAL INVESTIGATOR...Approach to Identify Novel Breast DAMD17-03-1-0232 Cancer Gene Targets in Yeast 6. A UTHOR(S) Craig Bennett, Ph.D. 7. PERFORMING ORGANIZA TION NAME(S...Unlimited 13. ABSTRACT (Maximum 200 Words) We are using the yeast Saccharomyces cerevisiae to identify new cancer gene targets that interact with the
Kujoth, Gregory C.; Sullivan, Thomas D.; Merkhofer, Richard; Lee, Taek-Jin; Wang, Huafeng; Brandhorst, Tristan; Wüthrich, Marcel
2018-01-01
ABSTRACT Blastomyces dermatitidis is a human fungal pathogen of the lung that can lead to disseminated disease in healthy and immunocompromised individuals. Genetic analysis of this fungus is hampered by the relative inefficiency of traditional recombination-based gene-targeting approaches. Here, we demonstrate the feasibility of applying CRISPR/Cas9-mediated gene editing to Blastomyces, including to simultaneously target multiple genes. We created targeting plasmid vectors expressing Cas9 and either one or two single guide RNAs and introduced these plasmids into Blastomyces via Agrobacterium gene transfer. We succeeded in disrupting several fungal genes, including PRA1 and ZRT1, which are involved in scavenging and uptake of zinc from the extracellular environment. Single-gene-targeting efficiencies varied by locus (median, 60% across four loci) but were approximately 100-fold greater than traditional methods of Blastomyces gene disruption. Simultaneous dual-gene targeting proceeded with efficiencies similar to those of single-gene-targeting frequencies for the respective targets. CRISPR/Cas9 disruption of PRA1 or ZRT1 had a variable impact on growth under zinc-limiting conditions, showing reduced growth at early time points in low-passage-number cultures and growth similar to wild-type levels by later passage. Individual impairment of PRA1 or ZRT1 resulted in a reduction of the fungal burden in a mouse model of Blastomyces infection by a factor of ~1 log (range, up to 3 logs), and combined disruption of both genes had no additional impact on the fungal burden. These results underscore the utility of CRISPR/Cas9 for efficient gene disruption in dimorphic fungi and reveal a role for zinc metabolism in Blastomyces fitness in vivo. PMID:29615501
Chen, Wei; Zhao, Wenshan; Yang, Aiting; Xu, Anjian; Wang, Huan; Cong, Min; Liu, Tianhui; Wang, Ping; You, Hong
2017-12-15
Liver fibrosis, characterized with the excessive accumulation of extracellular matrix (ECM) proteins, represents the final common pathway of chronic liver inflammation. Ever-increasing evidence indicates microRNAs (miRNAs) dysregulation has important implications in the different stages of liver fibrosis. However, our knowledge of miRNA-gene regulation details pertaining to such disease remains unclear. The publicly available Gene Expression Omnibus (GEO) datasets of patients suffered from cirrhosis were extracted for integrated analysis. Differentially expressed miRNAs (DEMs) and genes (DEGs) were identified using GEO2R web tool. Putative target gene prediction of DEMs was carried out using the intersection of five major algorithms: DIANA-microT, TargetScan, miRanda, PICTAR5 and miRWalk. Functional miRNA-gene regulatory network (FMGRN) was constructed based on the computational target predictions at the sequence level and the inverse expression relationships between DEMs and DEGs. DAVID web server was selected to perform KEGG pathway enrichment analysis. Functional miRNA-gene regulatory module was generated based on the biological interpretation. Internal connections among genes in liver fibrosis-related module were determined using String database. MiRNA-gene regulatory modules related to liver fibrosis were experimentally verified in recombinant human TGFβ1 stimulated and specific miRNA inhibitor treated LX-2 cells. We totally identified 85 and 923 dysregulated miRNAs and genes in liver cirrhosis biopsy samples compared to their normal controls. All evident miRNA-gene pairs were identified and assembled into FMGRN which consisted of 990 regulations between 51 miRNAs and 275 genes, forming two big sub-networks that were defined as down-network and up-network, respectively. KEGG pathway enrichment analysis revealed that up-network was prominently involved in several KEGG pathways, in which "Focal adhesion", "PI3K-Akt signaling pathway" and "ECM-receptor interaction" were remarked significant (adjusted p<0.001). Genes enriched in these pathways coupled with their regulatory miRNAs formed a functional miRNA-gene regulatory module that contains 7 miRNAs, 22 genes and 42 miRNA-gene connections. Gene interaction analysis based on String database revealed that 8 out of 22 genes were highly clustered. Finally, we experimentally confirmed a functional regulatory module containing 5 miRNAs (miR-130b-3p, miR-148a-3p, miR-345-5p, miR-378a-3p, and miR-422a) and 6 genes (COL6A1, COL6A2, COL6A3, PIK3R3, COL1A1, CCND2) associated with liver fibrosis. Our integrated analysis of miRNA and gene expression profiles highlighted a functional miRNA-gene regulatory module associated with liver fibrosis, which, to some extent, may provide important clues to better understand the underlying pathogenesis of liver fibrosis. Copyright © 2017. Published by Elsevier B.V.
Mecp2 truncation in male mice promotes affiliative social behavior
Pearson, B.L.; Defensor, E.B.; Pobbe, R.L.H.; Yamamoto, L.H.L.; Bolivar, V.J.; Blanchard, D.C.; Blanchard, R.J.
2018-01-01
Mouse models of Rett syndrome, with targeted mutations in the Mecp2 gene, show a high degree of phenotypic consistency with the clinical syndrome. In addition to severe and age-specific regression in motor and cognitive abilities, a variety of studies have demonstrated that Mecp2 mutant mice display impaired social behavior. Conversely, other studies indicate complex enhancements of social behavior in Mecp2 mutant mice. Since social behavior is a complicated accumulation of constructs, we performed a series of classic and refined social behavior tasks and revealed a relatively consistent pattern of enhanced pro-social behavior in hypomorphic Mecp2308/Y mutant mice. Analyses of repetitive motor acts, and cognitive stereotypy did not reveal any profound differences due to genotype. Taken together, these results suggest that the mutations associated with Rett syndrome are not necessarily associated with autism-relevant social impairment in mice. However, this gene may be a valuable candidate for revealing basic mechanisms of affiliative behavior. PMID:21909962
Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems.
Shen, Lazhen; Li, Bei; Qiao, Yongsheng
2018-02-23
Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.
Kaut, Callan S.; Duncan, Mark D.; Kim, Ji Yei; Maclaren, Joshua J.; Cochran, Keith T.; Julio, Steven M.
2011-01-01
Bacterial virulence is influenced by the activity of two-component regulator systems (TCSs), which consist of membrane-bound sensor kinases that allow bacteria to sense the external environment and cytoplasmic, DNA-binding response regulator proteins that control appropriate gene expression. Respiratory pathogens of the Bordetella genus require the well-studied TCS BvgAS to control the expression of many genes required for colonization of the mammalian respiratory tract. Here we describe the identification of a novel gene in Bordetella bronchiseptica, plrS, the product of which shares sequence homology to several NtrY-family sensor kinases and is required for B. bronchiseptica to colonize and persist in the lower, but not upper, respiratory tract in rats and mice. The plrS gene is located immediately 5′ to and presumably cotranscribed with a gene encoding a putative response regulator, supporting the idea that PlrS and the product of the downstream gene may compose a TCS. Consistent with this hypothesis, the PlrS-dependent colonization phenotype requires a conserved histidine that serves as the site of autophosphorylation in other sensor kinases, and in strains lacking plrS, the production and/or cellular localization of several immune-recognized proteins is altered in comparison to that in the wild-type strain. Because plrS is required for colonization and persistence only in the lower respiratory tract, a site where innate and adaptive immune mechanisms actively target infectious agents, we hypothesize that its role may be to allow Bordetella to resist the host immune response. PMID:21606184
Ferreira, Ana M; Tuominen, Iina; Sousa, Sónia; Gerbens, Frans; van Dijk-Bos, Krista; Osinga, Jan; Kooi, Krista A; Sanjabi, Bahram; Esendam, Chris; Oliveira, Carla; Terpstra, Peter; Hardonk, Menno; van der Sluis, Tineke; Zazula, Monika; Stachura, Jerzy; van der Zee, Ate G; Hollema, Harry; Sijmons, Rolf H; Aaltonen, Lauri A; Seruca, Raquel; Hofstra, Robert M W; Westers, Helga
2014-12-01
Microsatellite instability (MSI) in tumors results in an accumulation of mutations in (target) genes. Previous studies suggest that the profile of target genes differs according to tumor type. This paper describes the first genome-wide search for target genes for mismatch repair-deficient endometrial cancers. Genes expressed in normal endometrium containing coding repeats were analyzed for mutations in tumors. We identified 44 possible genes of which seven are highly mutated (>15%). Some candidates were also found mutated in colorectal and gastric tumors. The most frequently mutated gene, NRIP1 encoding nuclear receptor-interacting protein 1, was silenced in an endometrial tumor cell line and expression microarray experiments were performed. Silencing of NRIP1 was associated with differences in the expression of several genes in the estrogen-receptor network. Furthermore, an enrichment of genes related to cell cycle (regulation) and replication was observed. We present a new profile of target genes, some of them tissue specific, whereas others seem to play a more general role in MSI tumors. The high-mutation frequency combined with the expression data suggest, for the first time, an involvement of NRIP1 in endometrial cancer development. © 2014 WILEY PERIODICALS, INC.
Burke, Caitlin W.; Suk, Jung Soo; Kim, Anthony J.; Hsiang, Yu-Han J.; Klibanov, Alexander L.; Hanes, Justin; Price, Richard J.
2012-01-01
Our goal was to enhance ultrasound (US)-targeted skeletal muscle transfection through the use of poly(ethyleneglycol) (PEG)/polyethylenimine (PEI) nanocomplex gene carriers and adjustments to US and microbubble (MB) parameters. C57BL/6 mice received an intravenous infusion of MBs and either “naked” luciferase plasmid or luciferase plasmid condensed in PEG/PEI nanocomplexes. Pulsed ultrasound (1MHz; 0.6 MPa or 0.8 MPa) was applied to the right hindlimb for 12 mins. Luciferase activity in both hindlimbs was assessed at 3, 5, 7, and 10 days post-treatment by bioluminescent imaging. When targeted to hindlimb using unsorted MBs and 0.6 MPa US, 7 days after treatment, we observed a >60-fold increase in luciferase activity in PEG/PEI nanocomplex treated muscles over muscles treated with “naked” plasmid DNA. Luciferase activity was consistently greater after treatment with PEG/PEI nanocomplexes at 0.6 MPa as compared to 0.8 MPa. The combination of small diameter MBs and 0.6 MPa US also resulted in significantly greater gene expression when compared to concentration matched intramuscular injections, a control condition in which considerably more PEG/PEI nanocomplexes were present in tissue. This result suggests that, in addition to facilitating PEG/PEI nanocomplex delivery from the bloodstream to tissue, US enhances transfection via one or more secondary mechanisms, including increased cellular uptake and/or trafficking to the nucleus of PEG/PEI nanocomplexes. We conclude that PEG/PEI nanocomplexes may be used to markedly enhance the amplitude of US-MB-targeted skeletal muscle transfection and that activating “small” MBs with a moderate level (0.6 MPa) of acoustic pressure can further enhance these effects. PMID:22800583
Shi, Jiandong; Sun, Jing; Wu, Meini; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang
2016-11-01
Hepatitis A virus (HAV), the causative agent of acute hepatitis, grows slowly without causing any cytopathic effect (CPE) and lead to a persistent infection in the fibroblasts in vitro. miRNAs play a key role in the viral pathogenesis and virus-host interactions. In this study, the comprehensive miRNA expression profiles of HAV-infected and uninfected fibroblasts were investigated by sRNA-seq and validated by RT-qPCR. The results showed that a total of 94 miRNAs were differentially expressed during HAV infection, including 11 up-regulated miRNAs and 83 down-regulated miRNAs. RT-qPCR analysis showed the expression levels of specific miRNAs were consistent with sRNA-seq data. Further, target prediction analysis showed 729 putative target genes that included many immune-related transcripts were revealed. The GO enrichment analysis and the KEGG pathway analysis of the target genes showed that various biological pathways, including JAK-STAT cascade, type I interferon signaling pathway could be affected by HAV infection by the alteration of host miRNAs. The core regulatory relationship between miRNAs and their targets were revealed by miRNA-gene-network. Collectively, this study provides an overall analysis of miRNA profile in cell culture infected with HAV. The present results imply the alteration of miRNAs expression induced by HAV infection which may be related to the establishment of persistent HAV infection and might provide new clues for understanding the persistent HAV infections in vitro and the unique biological characteristics associated with HAV during infection. Copyright © 2016 Elsevier B.V. All rights reserved.
The druggable genome and support for target identification and validation in drug development.
Finan, Chris; Gaulton, Anna; Kruger, Felix A; Lumbers, R Thomas; Shah, Tina; Engmann, Jorgen; Galver, Luana; Kelley, Ryan; Karlsson, Anneli; Santos, Rita; Overington, John P; Hingorani, Aroon D; Casas, Juan P
2017-03-29
Target identification (determining the correct drug targets for a disease) and target validation (demonstrating an effect of target perturbation on disease biomarkers and disease end points) are important steps in drug development. Clinically relevant associations of variants in genes encoding drug targets model the effect of modifying the same targets pharmacologically. To delineate drug development (including repurposing) opportunities arising from this paradigm, we connected complex disease- and biomarker-associated loci from genome-wide association studies to an updated set of genes encoding druggable human proteins, to agents with bioactivity against these targets, and, where there were licensed drugs, to clinical indications. We used this set of genes to inform the design of a new genotyping array, which will enable association studies of druggable genes for drug target selection and validation in human disease. Copyright © 2017, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuasa, Katsutoshi; Aoki, Natsumi; Hijikata, Takao, E-mail: hijikata@musashino-u.ac.jp
Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes.more » AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis. - Highlights: • JAZF1 promotes cell cycle progression and proliferation of myoblasts. • JAZF1 retards myogenic differentiation and hypertrophy of myotubes. • JAZF1 transcriptionally represses Mef2C and Mrf4 expression. • JAZF1 has an impact on the phosphorylation of AMPK.« less
Nadal, Eulàlia de; Casadomé, Laura; Posas, Francesc
2003-01-01
Exposure of Saccharomyces cerevisiae to increases in extracellular osmolarity activates the stress-activated Hog1 mitogen-activated protein kinase (MAPK), which is essential for cell survival upon osmotic stress. Yeast cells respond to osmotic stress by inducing the expression of a very large number of genes, and the Hog1 MAPK plays a critical role in gene transcription upon stress. To understand how Hog1 controls gene expression, we designed a genetic screen to isolate new transcription factors under the control of the MAPK and identified the MEF2-like transcription factor, Smp1, as a target for Hog1. Overexpression of SMP1 induced Hog1-dependent expression of osmoresponsive genes such as STL1, whereas smp1Δ cells were defective in their expression. Consistently, smp1Δ cells displayed reduced viability upon osmotic shock. In vivo coprecipitation and phosphorylation studies showed that Smp1 and Hog1 interact and that Smp1 is phosphorylated upon osmotic stress in a Hog1-dependent manner. Hog1 phosphorylated Smp1 in vitro at the C-terminal region. Phosphorylation of Smp1 by the MAPK is essential for its function, since a mutant allele unable to be phosphorylated by the MAPK displays impaired stress responses. Thus, our data indicate that Smp1 acts downstream of Hog1, controlling a subset of the responses induced by the MAPK. Moreover, Smp1 concentrates in the nucleus during the stationary phase, and the lack of SMP1 results in cells that lose viability in the stationary phase. Localization of Smp1 depends on HOG1, and consistently, hog1Δ cells also lose viability during this growth phase. These data suggest that Smp1 could be mediating a role for the Hog1 MAPK during the stationary phase. PMID:12482976
DIANA-microT web server: elucidating microRNA functions through target prediction.
Maragkakis, M; Reczko, M; Simossis, V A; Alexiou, P; Papadopoulos, G L; Dalamagas, T; Giannopoulos, G; Goumas, G; Koukis, E; Kourtis, K; Vergoulis, T; Koziris, N; Sellis, T; Tsanakas, P; Hatzigeorgiou, A G
2009-07-01
Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.
Rinker, Jennifer A.; Fulmer, Diana B.; Trantham-Davidson, Heather; Smith, Maren L.; Williams, Robert W.; Lopez, Marcelo F.; Randall, Patrick K.; Chandler, L. Judson; Miles, Michael F.; Becker, Howard C.; Mulholland, Patrick J.
2016-01-01
Alcohol (ethanol) dependence is a chronic relapsing brain disorder partially influenced by genetics and characterized by an inability to regulate harmful levels of drinking. Emerging evidence has linked genes that encode KV7, KIR, and KCa2 K+ channels with variation in alcohol-related behaviors in rodents and humans. This led us to experimentally test relations between K+ channel genes and escalation of drinking in a chronic intermittent ethanol (CIE) exposure model of dependence in BXD recombinant inbred strains of mice. Transcript levels for K+ channel genes in the prefrontal cortex (PFC) and nucleus accumbens (NAc) covary with voluntary ethanol drinking in a non-dependent cohort. Transcripts that encode KV7 channels covary negatively with drinking in non-dependent BXD strains. Using a pharmacological approach to validate the genetic findings, C57BL/6J mice were allowed intermittent access to ethanol to establish baseline consumption before they were treated with retigabine, an FDA-approved KV7 channel positive modulator. Systemic administration significantly reduced drinking, and consistent with previous evidence, retigabine was more effective at reducing voluntary consumption in high-drinking than low-drinking subjects. We evaluated the specific K+ channel genes that were most sensitive to CIE exposure and identified a gene subset in the NAc and PFC dysregulated in the alcohol-dependent BXD cohort. CIE-induced modulation of nine genes in the NAc and six genes in the PFC covaried well with the changes in drinking induced by ethanol dependence. Here we identified novel candidate genes in the NAc and PFC that are regulated by ethanol dependence and correlate with voluntary drinking in non-dependent and dependent BXD mice. The findings that Kcnq expression correlate with drinking and that retigabine reduces consumption suggest that KV7 channels could be pharmacogenetic targets to treat individuals with alcohol addiction. PMID:27432260
Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts
Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W
2011-01-01
Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's functions. PMID:21892412
Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.
Loging, W T; Reisman, D
1999-11-01
The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.
Lapébie, Pascal; Ruggiero, Antonella; Barreau, Carine; Chevalier, Sandra; Chang, Patrick; Dru, Philippe; Houliston, Evelyn; Momose, Tsuyoshi
2014-01-01
We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at “oral” and “aboral” poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP) disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and previously unexplored members, but also demonstrated that fundamental developmental processes including axial patterning and endoderm formation in cnidarians can involve newly evolved (or highly diverged) genes. PMID:25233086
Lapébie, Pascal; Ruggiero, Antonella; Barreau, Carine; Chevalier, Sandra; Chang, Patrick; Dru, Philippe; Houliston, Evelyn; Momose, Tsuyoshi
2014-09-01
We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at "oral" and "aboral" poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP) disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and previously unexplored members, but also demonstrated that fundamental developmental processes including axial patterning and endoderm formation in cnidarians can involve newly evolved (or highly diverged) genes.
MusTRD can regulate postnatal fiber-specific expression.
Issa, Laura L; Palmer, Stephen J; Guven, Kim L; Santucci, Nicole; Hodgson, Vanessa R M; Popovic, Kata; Joya, Josephine E; Hardeman, Edna C
2006-05-01
Human MusTRD1alpha1 was isolated as a result of its ability to bind a critical element within the Troponin I slow upstream enhancer (TnIslow USE) and was predicted to be a regulator of slow fiber-specific genes. To test this hypothesis in vivo, we generated transgenic mice expressing hMusTRD1alpha1 in skeletal muscle. Adult transgenic mice show a complete loss of slow fibers and a concomitant replacement by fast IIA fibers, resulting in postural muscle weakness. However, developmental analysis demonstrates that transgene expression has no impact on embryonic patterning of slow fibers but causes a gradual postnatal slow to fast fiber conversion. This conversion was underpinned by a demonstrable repression of many slow fiber-specific genes, whereas fast fiber-specific gene expression was either unchanged or enhanced. These data are consistent with our initial predictions for hMusTRD1alpha1 and suggest that slow fiber genes contain a specific common regulatory element that can be targeted by MusTRD proteins.
Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach
Harrison, Peter W.; Montgomery, Stephen H.
2017-01-01
What adaptive changes in brain structure and function underpin the evolution of increased cognitive performance in humans and our close relatives? Identifying the genetic basis of brain evolution has become a major tool in answering this question. Numerous cases of positive selection, altered gene expression or gene duplication have been identified that may contribute to the evolution of the neocortex, which is widely assumed to play a predominant role in cognitive evolution. However, the components of the neocortex co-evolve with other functionally interdependent regions of the brain, most notably in the cerebellum. The cerebellum is linked to a range of cognitive tasks and expanded rapidly during hominoid evolution. Here we present data that suggest that, across anthropoid primates, protein-coding genes with known roles in cerebellum development were just as likely to be targeted by selection as genes linked to cortical development. Indeed, based on currently available gene ontology data, protein-coding genes with known roles in cerebellum development are more likely to have evolved adaptively during hominoid evolution. This is consistent with phenotypic data suggesting an accelerated rate of cerebellar expansion in apes that is beyond that predicted from scaling with the neocortex in other primates. Finally, we present evidence that the strength of selection on specific genes is associated with variation in the volume of either the neocortex or the cerebellum, but not both. This result provides preliminary evidence that co-variation between these brain components during anthropoid evolution may be at least partly regulated by selection on independent loci, a conclusion that is consistent with recent intraspecific genetic analyses and a mosaic model of brain evolution that predicts adaptive evolution of brain structure. PMID:28683440
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru
Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CARmore » and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their cell cycle and apoptosis target genes. • DDT produced increases in cell cycle and anti-apoptosis proteins and decrease in p53. • DDT mixture was unable to stimulate the β-catenin signalling pathway in mouse livers.« less
[Non-viral gene therapy approach for regenerative recovery of skin wounds in mammals].
Efremov, A M; Dukhovlinov, I V; Dizhe, E B; Burov, S V; Leko, M V; Akif'ev, B N; Mogilenko, D A; Ivanov, I A; Perevozchikov, A P; Orlov, S V
2010-01-01
The rate and character of skin tissue regeneration after wounds, burns and other traumas depend on the cell proliferation within damaged area. Acceleration of healing by stimulation of cell proliferation and extracellular matrix synthesis is one of the most important tasks of modern medicine. There are gene therapy approaches to wound treatment consisting in the transfer of genes encoding mitogenic growth factors to wound area. The most important step in the development of gene therapy approaches is the design of gene delivery tools. In spite of high efficacy of viral vectors, the non-viral means have some preferences (low toxicity, low immunogenity, safety and the absence of backside effects). Among non-viral gene delivery tools, molecular conjugates are the most popular because of their efficacy, simplicity, and the capacity to the targeted gene transfer. In the present work we have developed two molecular conjugates--NLS-TSF7 and NLS-TSF12 consisting of the modified signal of nuclear localization of T-antigen of SV40 virus (cationic part) and the peptide ligands of mammalian transferrin receptor (ligand part). These conjugates bind to plasmid DNA with formation of polyelectrolytic complexes and are capable to deliver plasmid DNA into cells expressing transferrin receptors by receptor-mediated endocytosis. Transfer of the expression vector of luciferase gene in the complex with molecular conjugate NLS-TSF7 to murine surface tissues led to about 100 fold increasing of luciferase activity in comparison with the transfer of free expression vector. Treatment of slash wounds in mice with the complexes of expression vector of synthetic human gene encoding insulin-like growth factor 1 with molecular conjugates NLS-TSF7 led to acceleration of healing in comparison with mice treated with free expression vector. The results obtained confirm the high efficiency of the developed regenerative gene therapy approach for the treatment of damaged skin tissues in mammals.
Prognostic Power of a Tumor Differentiation Gene Signature for Bladder Urothelial Carcinomas.
Mo, Qianxing; Nikolos, Fotis; Chen, Fengju; Tramel, Zoe; Lee, Yu-Cheng; Hayashi, Kazukuni; Xiao, Jing; Shen, Jianjun; Chan, Keith Syson
2018-05-01
Muscle-invasive bladder cancers (MIBCs) cause approximately 150 000 deaths per year worldwide. Survival for MIBC patients is heterogeneous, with no clinically validated molecular markers that predict clinical outcome. Non-MIBCs (NMIBCs) generally have favorable outcome; however, a portion progress to MIBC. Hence, development of a prognostic tool that can guide decision-making is crucial for improving clinical management of bladder urothelial carcinomas. Tumor grade is defined by pathologic evaluation of tumor cell differentiation, and it often associates with clinical outcome. The current study extrapolates this conventional wisdom and combines it with molecular profiling. We developed an 18-gene signature that molecularly defines urothelial cellular differentiation, thus classifying MIBCs and NMIBCs into two subgroups: basal and differentiated. We evaluated the prognostic capability of this "tumor differentiation signature" and three other existing gene signatures including the The Cancer Genome Atlas (TCGA; 2707 genes), MD Anderson Cancer Center (MDA; 2252 genes/2697 probes), and University of North Carolina at Chapel Hill (UNC; 47 genes) using five gene expression data sets derived from MIBC and NMIBC patients. All statistical tests were two-sided. The tumor differentiation signature demonstrated consistency and statistical robustness toward stratifying MIBC patients into different overall survival outcomes (TCGA cohort 1, P = .03; MDA discovery, P = .009; MDA validation, P = .01), while the other signatures were not as consistent. In addition, we analyzed the progression (Ta/T1 progressing to ≥T2) probability of NMIBCs. NMIBC patients with a basal tumor differentiation signature associated with worse progression outcome (P = .008). Gene functional term enrichment and gene set enrichment analyses revealed that genes involved in the biologic process of immune response and inflammatory response are among the most elevated within basal bladder cancers, implicating them as candidates for immune checkpoint therapies. These results provide definitive evidence that a biology-prioritizing clustering methodology generates meaningful insights into patient stratification and reveals targetable molecular pathways to impact future therapeutic approach.
2012-01-01
Background Histone H3 lysine 27 tri-methylation and lysine 9 di-methylation are independent repressive chromatin modifications in Arabidopsis thaliana. H3K27me3 is established and maintained by Polycomb repressive complexes whereas H3K9me2 is catalyzed by SUVH histone methyltransferases. Both modifications can spread to flanking regions after initialization and were shown to be mutually exclusive in Arabidopsis. Results We analyzed the extent of natural variation of H3K27me3 in the two accessions Landsberg erecta (Ler) and Columbia (Col) and their F1 hybrids. The majority of H3K27me3 target genes in Col were unchanged in Ler and F1 hybrids. A small number of Ler-specific targets were detected and confirmed. Consistent with a cis-regulatory mechanism for establishing H3K27me3, differential targets showed allele-specific H3K27me3 in hybrids. Five Ler-specific targets showed the active mark H3K4me3 in Col and for this group, differential H3K27me3 enrichment accorded to expression variation. On the other hand, the majority of Ler-specific targets were not expressed in Col, Ler or 17 other accessions. Instead of H3K27me3, the antagonistic mark H3K9me2 and other heterochromatic features were observed at these loci in Col. These loci were frequently flanked by transposable elements, which were often missing in the Ler genome assembly. Conclusion There is little variation in H3K27me3 occupancy within the species, although H3K27me3 targets were previously shown as overrepresented among differentially expressed genes. The existing variation in H3K27me3 seems mostly explained by flanking polymorphic transposable elements. These could nucleate heterochromatin, which then spreads into neighboring H3K27me3 genes, thus converting them to H3K9me2 targets. PMID:23253144
Andréasson, Claes; Schick, Anna J; Pfeiffer, Susanne M; Sarov, Mihail; Stewart, Francis; Wurst, Wolfgang; Schick, Joel A
2013-01-01
Efficient gene targeting in embryonic stem cells requires that modifying DNA sequences are identical to those in the targeted chromosomal locus. Yet, there is a paucity of isogenic genomic clones for human cell lines and PCR amplification cannot be used in many mutation-sensitive applications. Here, we describe a novel method for the direct cloning of genomic DNA into a targeting vector, pRTVIR, using oligonucleotide-directed homologous recombination in yeast. We demonstrate the applicability of the method by constructing functional targeting vectors for mammalian genes Uhrf1 and Gfap. Whereas the isogenic targeting of the gene Uhrf1 showed a substantial increase in targeting efficiency compared to non-isogenic DNA in mouse E14 cells, E14-derived DNA performed better than the isogenic DNA in JM8 cells for both Uhrf1 and Gfap. Analysis of 70 C57BL/6-derived targeting vectors electroporated in JM8 and E14 cell lines in parallel showed a clear dependence on isogenicity for targeting, but for three genes isogenic DNA was found to be inhibitory. In summary, this study provides a straightforward methodological approach for the direct generation of isogenic gene targeting vectors.
A transcriptional dynamic network during Arabidopsis thaliana pollen development.
Wang, Jigang; Qiu, Xiaojie; Li, Yuhua; Deng, Youping; Shi, Tieliu
2011-01-01
To understand transcriptional regulatory networks (TRNs), especially the coordinated dynamic regulation between transcription factors (TFs) and their corresponding target genes during development, computational approaches would represent significant advances in the genome-wide expression analysis. The major challenges for the experiments include monitoring the time-specific TFs' activities and identifying the dynamic regulatory relationships between TFs and their target genes, both of which are currently not yet available at the large scale. However, various methods have been proposed to computationally estimate those activities and regulations. During the past decade, significant progresses have been made towards understanding pollen development at each development stage under the molecular level, yet the regulatory mechanisms that control the dynamic pollen development processes remain largely unknown. Here, we adopt Networks Component Analysis (NCA) to identify TF activities over time course, and infer their regulatory relationships based on the coexpression of TFs and their target genes during pollen development. We carried out meta-analysis by integrating several sets of gene expression data related to Arabidopsis thaliana pollen development (stages range from UNM, BCP, TCP, HP to 0.5 hr pollen tube and 4 hr pollen tube). We constructed a regulatory network, including 19 TFs, 101 target genes and 319 regulatory interactions. The computationally estimated TF activities were well correlated to their coordinated genes' expressions during the development process. We clustered the expression of their target genes in the context of regulatory influences, and inferred new regulatory relationships between those TFs and their target genes, such as transcription factor WRKY34, which was identified that specifically expressed in pollen, and regulated several new target genes. Our finding facilitates the interpretation of the expression patterns with more biological relevancy, since the clusters corresponding to the activity of specific TF or the combination of TFs suggest the coordinated regulation of TFs to their target genes. Through integrating different resources, we constructed a dynamic regulatory network of Arabidopsis thaliana during pollen development with gene coexpression and NCA. The network illustrated the relationships between the TFs' activities and their target genes' expression, as well as the interactions between TFs, which provide new insight into the molecular mechanisms that control the pollen development.
Hypoxia regulates alternative splicing of HIF and non-HIF target genes.
Sena, Johnny A; Wang, Liyi; Heasley, Lynn E; Hu, Cheng-Jun
2014-09-01
Hypoxia is a common characteristic of many solid tumors. The hypoxic microenvironment stabilizes hypoxia-inducible transcription factor 1α (HIF1α) and 2α (HIF2α/EPAS1) to activate gene transcription, which promotes tumor cell survival. The majority of human genes are alternatively spliced, producing RNA isoforms that code for functionally distinct proteins. Thus, an effective hypoxia response requires increased HIF target gene expression as well as proper RNA splicing of these HIF-dependent transcripts. However, it is unclear if and how hypoxia regulates RNA splicing of HIF targets. This study determined the effects of hypoxia on alternative splicing (AS) of HIF and non-HIF target genes in hepatocellular carcinoma cells and characterized the role of HIF in regulating AS of HIF-induced genes. The results indicate that hypoxia generally promotes exon inclusion for hypoxia-induced, but reduces exon inclusion for hypoxia-reduced genes. Mechanistically, HIF activity, but not hypoxia per se is found to be necessary and sufficient to increase exon inclusion of several HIF targets, including pyruvate dehydrogenase kinase 1 (PDK1). PDK1 splicing reporters confirm that transcriptional activation by HIF is sufficient to increase exon inclusion of PDK1 splicing reporter. In contrast, transcriptional activation of a PDK1 minigene by other transcription factors in the absence of endogenous HIF target gene activation fails to alter PDK1 RNA splicing. This study demonstrates a novel function of HIF in regulating RNA splicing of HIF target genes. ©2014 American Association for Cancer Research.
[Progress in application of targeting viral vector regulated by microRNA in gene therapy: a review].
Zhang, Guohai; Wang, Qizhao; Zhang, Jinghong; Xu, Ruian
2010-06-01
A safe and effective targeting viral vector is the key factor for successful clinical gene therapy. microRNA, a class of small, single-stranded endogenous RNAs, act as post-transcriptional regulators of gene expression. The discovery of these kind regulatory elements provides a new approach to regulate gene expression more accurately. In this review, we elucidated the principle of microRNA in regulation of targeting viral vector. The applications of microRNA in the fields of elimination contamination from replication competent virus, reduction of transgene-specific immunity, promotion of cancer-targeted gene therapy and development of live attenuated vaccines were also discussed.
Rodrigues, Adriana C; Ortiz, Paola A; Costa-Martins, André G; Neves, Luis; Garcia, Herakles A; Alves, João M P; Camargo, Erney P; Alfieri, Silvia C; Gibson, Wendy; Teixeira, Marta M G
2014-04-01
Trypanosoma congolense is the most important agent of nagana, a wasting livestock trypanosomosis in sub-Saharan Africa. This species is a complex of three subgroups (Savannah, Forest and Kilifi) that differ in virulence, pathogenicity, drug resistance, vectors, and geographical distribution. Congopain, the major Cathepsin L-like cysteine protease (CP2) of T. congolense, has been extensively investigated as a pathogenic factor and target for drugs and vaccines, but knowledge about this enzyme is mostly restricted to the reference strain IL3000, which belongs to the Savannah subgroup. In this work we compared sequences of congopain genes from IL3000 genome database and isolates of the three subgroups of T. congolense. Results demonstrated that the congopain genes diverged into three subclades consistent with the three subgroups within T. congolense. Laboratory and field isolates of Savannah exhibited a highly polymorphic repertoire both inter- and intra-isolates: sequences sharing the archetypical catalytic triad clustered into SAV1-SAV3 groups, whereas polymorphic sequences that, in general, exhibited unusual catalytic triad (variants) assigned to SAV4 or not assigned to any group. Congopain homologous genes from Forest and Kilifi isolates showed, respectively, moderate and limited diversity. In the phylogenetic tree based on congopain and homologues, Savannah was closer to Forest than to Kilifi. All T. congolense subgroup nested into a single clade, which together with the sister clade formed by homologues from Trypanosoma simiae and Trypanosoma godfreyi formed a clade supporting the subgenus Nannomonas. A single PCR targeting congopain sequences was developed for the diagnosis of T. congolense isolates of the three subgroups. Our findings demonstrated that congopain genes are valuable targets for the diagnosis, genotyping, and phylogenetic and taxonomic inferences among T. congolense isolates and other members of the subgenus Nannomonas. Copyright © 2014 Elsevier B.V. All rights reserved.
Arun, Pattatheyil; Brown, Matthew S; Ehsanian, Reza; Chen, Zhong; Van Waes, Carter
2009-10-01
Aberrant nuclear activation and phosphorylation of the canonical NF-kappaB subunit RELA/p65 at Serine-536 by inhibitor kappaB kinase is prevalent in head and neck squamous cell carcinoma (HNSCC), but the role of other kinases in NF-kappaB activation has not been well defined. Here, we investigated the prevalence and function of p65-Ser276 phosphorylation by protein kinase A (PKA) in the malignant phenotype and gene transactivation, and studied p65-Ser276 as a potential target for therapy. Phospho and total p65 protein expression and localization were determined in HNSCC tissue array and in cell lines. The effects of the PKA inhibitor H-89 on NF-kappaB activation, downstream gene expression, cell proliferation and cell cycle were examined. Knockdown of PKA by specific siRNA confirmed the specificity. NF-kappaB p65 phosphorylated at Ser276 was prevalent in HNSCC and adjacent dysplastic mucosa, but localized to the cytoplasm in normal mucosa. In HNSCC lines, tumor necrosis factor-alpha (TNF-alpha) significantly increased, whereas H-89 inhibited constitutive and TNF-alpha-induced nuclear p65 (Ser276) phosphorylation, and significantly suppressed NF-kappaB and target gene IL-8 reporter activity. Knockdown of PKA by small interfering RNA inhibited NF-kappaB, IL-8, and BCL-XL reporter gene activities. H-89 suppressed cell proliferation, induced cell death, and blocked the cell cycle in G(1)-S phase. Consistent with its biological effects, H-89 down-modulated expression of NF-kappaB-related genes Cyclin D1, BCL2, BCL-XL, COX2, IL-8, and VEGF, as well as induced cell cycle inhibitor p21(CIP1/WAF1), while suppressing proliferative marker Ki67. NF-kappaB p65 (Ser276) phosphorylation by PKA promotes the malignant phenotype and holds potential as a therapeutic target in HNSCC.
Differential induction of FosB isoforms throughout the brain by fluoxetine and chronic stress.
Vialou, Vincent; Thibault, Mackenzie; Kaska, Sophia; Cooper, Sarah; Gajewski, Paula; Eagle, Andrew; Mazei-Robison, Michelle; Nestler, Eric J; Robison, A J
2015-12-01
Major depressive disorder is thought to arise in part from dysfunction of the brain's "reward circuitry", consisting of the mesolimbic dopamine system and the glutamatergic and neuromodulatory inputs onto this system. Both chronic stress and antidepressant treatment regulate gene transcription in many of the brain regions that make up these circuits, but the exact nature of the transcription factors and target genes involved in these processes remain unclear. Here, we demonstrate induction of the FosB family of transcription factors in ∼25 distinct regions of adult mouse brain, including many parts of the reward circuitry, by chronic exposure to the antidepressant fluoxetine. We further uncover specific patterns of FosB gene product expression (i.e., differential expression of full-length FosB, ΔFosB, and Δ2ΔFosB) in brain regions associated with depression--the nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus--in response to chronic fluoxetine treatment, and contrast these patterns with differential induction of FosB isoforms in the chronic social defeat stress model of depression with and without fluoxetine treatment. We find that chronic fluoxetine, in contrast to stress, causes induction of the unstable full-length FosB isoform in the NAc, PFC, and hippocampus even 24 h following the final injection, indicating that these brain regions may undergo chronic activation when fluoxetine is on board, even in the absence of stress. We also find that only the stable ΔFosB isoform correlates with behavioral responses to stress. These data suggest that NAc, PFC, and hippocampus may present useful targets for directed intervention in mood disorders (ie, brain stimulation or gene therapy), and that determining the gene targets of FosB-mediated transcription in these brain regions in response to fluoxetine may yield novel inroads for pharmaceutical intervention in depressive disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Changes of expression of miR-155 in colitis-associated colonic carcinogenesis].
Li, Weiwei; Han, Wenxiao; Zhao, Xinhua; Wang, Hongying
2014-04-01
To investigate the changes of miR-155 and its target genes in colitis-associated carcinogenesis. Colitis-associated colon cancer was induced by azoxymethane (AOM) and dextran sulfate sodium (DSS) in C57BL/6 mice. Mice of three different stages during the development of colon cancer were obtained, named AD1, AD2 and AD3, respectively. A control group of mice without any treatment and a DSS only group representing chronic inflammation without cancer were set up as well. Colon tissue was collected and expression of miR-155 in the colon tissues was measured by real-time fluorescent quantitative PCR. TargetScan and PicTar were used to predict potential target genes of miR-155, which were then preliminarily screened with our gene expression microarray database of AOM-DSS mouse model. Regular PCR was used to confirm the changes of the expression of these potential target genes in AOM-DSS mouse model. Colitis-associated colon cancer was effectively induced by azoxymethane and dextran sulfate sodium in C57BL/6 mice. Histological examination revealed that the evolution process was sequentially from normal, mild dysplasia, moderate dysplasia, and severe dysplasia to adenocarcinoma in the AOM-DSS mouse model. The level of miR-155 was gradually elevated with the formation of colitis-associated colon cancer. There was no significant difference between the levels of miR-155 expression in the DSS group (0.005 6 ± 0.003 7) and control group (0.012 0 ± 0.005 1) (P > 0.05), but the level of miR-155 in the AD3 group (0.054 4 ± 0.027 0) was significantly higher than that of the DSS group (0.005 6 ± 0.003 7)(P < 0.01). No significant change of miR-155 expression was found in the DSS only group. The relative expression levels of miR-155 in the control group, DSS only group and AD3 group were 0.012 0 ± 0.005 1, 0.005 6 ± 0.003 7, 0.054 4 ± 0.027 0, respectively. Data analysis with the gene expression microarray showed that Tle4, Kcna1, Itk, Bcorl1, Cacna1c, Rspo2 and Foxo3 were potential target genes of miR-155 in the AOM-DSS mouse model. Changes of Kcna1 and Cacna1c in the AOM-DSS mouse model were validated to be consistent with the changes obtained with the gene expression microarray. The up-regulation of miR-155 is related to colitis-associated carcinogenesis, but is irrelevant to chronic inflammation in the mouse model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayakawa, Kazuo; Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya
2013-03-22
Highlights: ► We tried to identify targets of synovial sarcoma (SS)-associated SYT–SSX fusion gene. ► We established pluripotent stem cell (PSC) lines with inducible SYT–SSX gene. ► SYT–SSX responsive genes were identified by the induction of SYT–SSX in PSC. ► SS-related genes were selected from database by in silico analyses. ► 51 genes were finally identified among SS-related genes as targets of SYT–SSX in PSC. -- Abstract: Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT–SSX. Although precise function of SYT–SSX remains to be investigated, accumulating evidences suggestmore » its role in gene regulation via epigenetic mechanisms, and the product of SYT–SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT–SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT–SSX2 gene. SYT–SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24 h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24 h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT–SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT–SSX, respectively. Association of these genes with SYT–SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were strikingly different in response to the induction of SYT–SSX, and more than half of SYT–SSX target genes in hPSCs were not induced in hMSCs. These results suggest the importance of cellular context for correct understanding of SYT–SSX function, and demonstrated how our new system will help to overcome this issue.« less
Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.
2005-01-01
Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807
Rodrigues, Thais B; Duan, Jian J; Palli, Subba R; Rieske, Lynne K
2018-03-22
Recent study has shown that RNA interference (RNAi) is efficient in emerald ash borer (EAB), Agrilus planipennis, and that ingestion of double-stranded RNA (dsRNA) targeting specific genes causes gene silencing and mortality in neonates. Here, we report on the identification of highly effective target genes for RNAi-mediated control of EAB. We screened 13 candidate genes in neonate larvae and selected the most effective target genes for further investigation, including their effect on EAB adults and on a non-target organism, Tribolium castaneum. The two most efficient target genes selected, hsp (heat shock 70-kDa protein cognate 3) and shi (shibire), caused up to 90% mortality of larvae and adults. In EAB eggs, larvae, and adults, the hsp is expressed at higher levels when compared to that of shi. Ingestion of dsHSP and dsSHI caused mortality in both neonate larvae and adults. Administration of a mixture of both dsRNAs worked better than either dsRNA by itself. In contrast, injection of EAB.dsHSP and EAB.dsSHI did not cause mortality in T. castaneum. Thus, the two genes identified cause high mortality in the EAB with no apparent phenotype effects in a non-target organism, the red flour beetle, and could be used in RNAi-mediated control of this invasive pest.
Gao, Ruimin; Austin, Ryan S; Amyot, Lisa; Hannoufa, Abdelali
2016-08-19
Medicago sativa (alfalfa) is a low-input forage and potential bioenergy crop, and improving its yield and quality has always been a focus of the alfalfa breeding industry. Transgenic alfalfa plants overexpressing a precursor of alfalfa microRNA156 (MsmiR156) were recently generated by our group. These plants (miR156OE) showed enhanced biomass yield, reduced internodal length, increased shoot branching and trichome density, and a delay in flowering time. Transcripts of three SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) genes (MsSPL6, MsSPL12, and MsSPL13) were found to be targeted for cleavage by MsmiR156 in alfalfa. To further illustrate the molecular mechanisms underlying the effects of miR156 in alfalfa, two miR156OE genotypes (A11a and A17) were subjected to Next Generation RNA Sequencing with Illumina HiSeq. More than 1.11 billion clean reads were obtained from our available sequenced samples. A total of 160,472 transcripts were generated using Trinity de novo assembly and 4,985 significantly differentially expressed genes were detected in miR156OE plants A11a and A17 using the Medicago truncatula genome as reference. A total of 17 genes (including upregulated, downregulated, and unchanged) were selected for quantitative real-time PCR (qRT-PCR) validation, which showed that gene expression levels were largely consistent between qRT-PCR and RNA-Seq data. In addition to the established SPL genes MsSPL6, MsSPL12 and MsSPL13, four new SPLs; MsSPL2, MsSPL3, MsSPL4 and MsSPL9 were also down-regulated significantly in both miR156OE plants. These seven SPL genes belong to genes phylogeny clades VI, IV, VIII, V and VII, which have been reported to be targeted by miR156 in Arabidopsis thaliana. The gene ontology terms characterized electron transporter, starch synthase activity, sucrose transport, sucrose-phosphate synthase activity, chitin binding, sexual reproduction, flavonoid biosynthesis and lignin catabolism correlate well to the phenotypes of miR156OE alfalfa plants. This is the first report of changes in global gene expression in response to miR156 overexpression in alfalfa. The discovered miR156-targeted SPL genes belonging to different clades indicate miR156 plays fundamental and multifunctional roles in regulating alfalfa plant development.
Multi-targeted priming for genome-wide gene expression assays.
Adomas, Aleksandra B; Lopez-Giraldez, Francesc; Clark, Travis A; Wang, Zheng; Townsend, Jeffrey P
2010-08-17
Complementary approaches to assaying global gene expression are needed to assess gene expression in regions that are poorly assayed by current methodologies. A key component of nearly all gene expression assays is the reverse transcription of transcribed sequences that has traditionally been performed by priming the poly-A tails on many of the transcribed genes in eukaryotes with oligo-dT, or by priming RNA indiscriminately with random hexamers. We designed an algorithm to find common sequence motifs that were present within most protein-coding genes of Saccharomyces cerevisiae and of Neurospora crassa, but that were not present within their ribosomal RNA or transfer RNA genes. We then experimentally tested whether degenerately priming these motifs with multi-targeted primers improved the accuracy and completeness of transcriptomic assays. We discovered two multi-targeted primers that would prime a preponderance of genes in the genomes of Saccharomyces cerevisiae and Neurospora crassa while avoiding priming ribosomal RNA or transfer RNA. Examining the response of Saccharomyces cerevisiae to nitrogen deficiency and profiling Neurospora crassa early sexual development, we demonstrated that using multi-targeted primers in reverse transcription led to superior performance of microarray profiling and next-generation RNA tag sequencing. Priming with multi-targeted primers in addition to oligo-dT resulted in higher sensitivity, a larger number of well-measured genes and greater power to detect differences in gene expression. Our results provide the most complete and detailed expression profiles of the yeast nitrogen starvation response and N. crassa early sexual development to date. Furthermore, our multi-targeting priming methodology for genome-wide gene expression assays provides selective targeting of multiple sequences and counter-selection against undesirable sequences, facilitating a more complete and precise assay of the transcribed sequences within the genome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulec, Cagri, E-mail: cagri.gulec@gmail.com; Coban, Neslihan, E-mail: neslic@istanbul.edu.tr; Ozsait-Selcuk, Bilge, E-mail: ozsaitb@istanbul.edu.tr
ROR-alpha is a nuclear receptor, activity of which can be modulated by natural or synthetic ligands. Due to its possible involvement in, and potential therapeutic target for atherosclerosis, we aimed to identify ROR-alpha target genes in monocytic and endothelial cell lines. We performed chromatin immunoprecipitation (ChIP) followed by tiling array (ChIP-on-chip) for ROR-alpha in monocytic cell line THP1 and endothelial cell line HUVEC. Following bioinformatic analysis of the array data, we tested four candidate genes in terms of dependence of their expression level on ligand-mediated ROR-alpha activity, and two of them in terms of promoter occupancy by ROR-alpha. Bioinformatic analysesmore » of ChIP-on-chip data suggested that ROR-alpha binds to genomic regions near the transcription start site (TSS) of more than 3000 genes in THP1 and HUVEC. Potential ROR-alpha target genes in both cell types seem to be involved mainly in membrane receptor activity, signal transduction and ion transport. While SPP1 and IKBKA were shown to be direct target genes of ROR-alpha in THP1 monocytes, inflammation related gene HMOX1 and heat shock protein gene HSPA8 were shown to be potential target genes of ROR-alpha. Our results suggest that ROR-alpha may regulate signaling receptor activity, and transmembrane transport activity through its potential target genes. ROR-alpha seems also to play role in cellular sensitivity to environmental substances like arsenite and chloroprene. Although, the expression analyses have shown that synthetic ROR-alpha ligands can modulate some of potential ROR-alpha target genes, functional significance of ligand-dependent modulation of gene expression needs to be confirmed with further analyses.« less
Ohba, Kenji; Singh, Brijesh Kumar; Sinha, Rohit Anthony; Lesmana, Ronny; Liao, Xiao-Hui; Ghosh, Sujoy; Refetoff, Samuel
2016-01-01
Clinical symptoms may vary and not necessarily reflect serum thyroid hormone (TH) levels during acute and chronic hyperthyroidism as well as recovery from hyperthyroidism. We thus examined changes in hepatic gene expression and serum TH/TSH levels in adult male mice treated either with a single T3 (20 μg per 100 g body weight) injection (acute T3) or daily injections for 14 days (chronic T3) followed by 10 days of withdrawal. Gene expression arrays from livers harvested at these time points showed that among positively-regulated target genes, 320 were stimulated acutely and 429 chronically by T3. Surprisingly, only 69 of 680 genes (10.1%) were induced during both periods, suggesting desensitization of the majority of acutely stimulated target genes. About 90% of positively regulated target genes returned to baseline expression levels after 10 days of withdrawal; however, 67 of 680 (9.9%) did not return to baseline despite normalization of serum TH/TSH levels. Similar findings also were observed for negatively regulated target genes. Chromatin immunoprecipitation analysis of representative positively regulated target genes suggested that acetylation of H3K9/K14 was associated with acute stimulation, whereas trimethylation of H3K4 was associated with chronic stimulation. In an in vivo model of chronic intrahepatic hyperthyroidism since birth, adult male monocarboxylate transporter-8 knockout mice also demonstrated desensitization of most acutely stimulated target genes that were examined. In summary, we have identified transcriptional desensitization and incomplete recovery of gene expression during chronic hyperthyroidism and recovery. Our findings may be a potential reason for discordance between clinical symptoms and serum TH levels observed in these conditions. PMID:26866609
Honda, Arata; Hirose, Michiko; Sankai, Tadashi; Yasmin, Lubna; Yuzawa, Kazuaki; Honsho, Kimiko; Izu, Haruna; Iguchi, Atsushi; Ikawa, Masahito; Ogura, Atsuo
2015-01-01
Targeted genome editing of nonrodent mammalian species has provided the potential for highly accurate interventions into gene function in humans and the generation of useful animal models of human diseases. Here we show successful clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas)-mediated gene targeting via circular plasmid injection in rabbits. The rabbit tyrosinase gene (TYR) was effectively disrupted, and we confirmed germline transmission by pronuclear injection of a circular plasmid expressing humanized Cas9 (hCas9) and single-guide RNA. Direct injection into pronuclear stage zygotes was possible following an in vitro validation assay. Neither off-target mutagenesis nor hCas9 transgenesis was detected in any of the genetically targeted pups and embryos examined. Gene targeting with this rapid and simplified strategy will help accelerate the development of translational research using other nonrodent mammalian species.
Honda, Arata; Hirose, Michiko; Sankai, Tadashi; Yasmin, Lubna; Yuzawa, Kazuaki; Honsho, Kimiko; Izu, Haruna; Iguchi, Atsushi; Ikawa, Masahito; Ogura, Atsuo
2014-01-01
Targeted genome editing of nonrodent mammalian species has provided the potential for highly accurate interventions into gene function in humans and the generation of useful animal models of human diseases. Here we show successful clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas)-mediated gene targeting via circular plasmid injection in rabbits. The rabbit tyrosinase gene (TYR) was effectively disrupted, and we confirmed germline transmission by pronuclear injection of a circular plasmid expressing humanized Cas9 (hCas9) and single-guide RNA. Direct injection into pronuclear stage zygotes was possible following an in vitro validation assay. Neither off-target mutagenesis nor hCas9 transgenesis was detected in any of the genetically targeted pups and embryos examined. Gene targeting with this rapid and simplified strategy will help accelerate the development of translational research using other nonrodent mammalian species. PMID:25195632
Targeted polymeric nanoparticles for cancer gene therapy
Kim, Jayoung; Wilson, David R.; Zamboni, Camila G.; Green, Jordan J.
2015-01-01
In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented. PMID:26061296
Slattery, Martha L; Herrick, Jennifer S; Stevens, John R; Wolff, Roger K; Mullany, Lila E
2017-01-01
Determination of functional pathways regulated by microRNAs (miRNAs), while an essential step in developing therapeutics, is challenging. Some miRNAs have been studied extensively; others have limited information. In this study, we focus on 254 miRNAs previously identified as being associated with colorectal cancer and their database-identified validated target genes. We use RNA-Seq data to evaluate messenger RNA (mRNA) expression for 157 subjects who also had miRNA expression data. In the replication phase of the study, we replicated associations between 254 miRNAs associated with colorectal cancer and mRNA expression of database-identified target genes in normal colonic mucosa. In the discovery phase of the study, we evaluated expression of 18 miR-NAs (those with 20 or fewer database-identified target genes along with miR-21-5p, miR-215-5p, and miR-124-3p which have more than 500 database-identified target genes) with expression of 17 434 mRNAs to identify new targets in colon tissue. Seed region matches between miRNA and newly identified targeted mRNA were used to help determine direct miRNA-mRNA associations. From the replication of the 121 miRNAs that had at least 1 database-identified target gene using mRNA expression methods, 97.9% were expressed in normal colonic mucosa. Of the 8622 target miRNA-mRNA associations identified in the database, 2658 (30.2%) were associated with gene expression in normal colonic mucosa after adjusting for multiple comparisons. Of the 133 miRNAs with database-identified target genes by non-mRNA expression methods, 97.2% were expressed in normal colonic mucosa. After adjustment for multiple comparisons, 2416 miRNA-mRNA associations remained significant (19.8%). Results from the discovery phase based on detailed examination of 18 miRNAs identified more than 80 000 miRNA-mRNA associations that had not previously linked to the miRNA. Of these miRNA-mRNA associations, 15.6% and 14.8% had seed matches for CRCh38 and CRCh37, respectively. Our data suggest that miRNA target gene databases are incomplete; pathways derived from these databases have similar deficiencies. Although we know a lot about several miRNAs, little is known about other miRNAs in terms of their targeted genes. We encourage others to use their data to continue to further identify and validate miRNA-targeted genes.
Co-clustering phenome–genome for phenotype classification and disease gene discovery
Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui
2012-01-01
Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708
Petty, Robert D; McCarthy, Neil E; Le Dieu, Rifca; Kerr, Jonathan R
2016-01-01
Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients. miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets. Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology. This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function.
Petty, Robert D.; McCarthy, Neil E.; Le Dieu, Rifca; Kerr, Jonathan R.
2016-01-01
Background Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients. Methods miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets. Results Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology. Conclusion This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function. PMID:26967895
Geng, Huili; Sui, Zhenghong; Zhang, Shu; Du, Qingwei; Ren, Yuanyuan; Liu, Yuan; Kong, Fanna; Zhong, Jie; Ma, Qingxia
2015-01-01
Micro-ribonucleic acids (miRNAs) are a large group of endogenous, tiny, non-coding RNAs consisting of 19–25 nucleotides that regulate gene expression at either the transcriptional or post-transcriptional level by mediating gene silencing in eukaryotes. They are considered to be important regulators that affect growth, development, and response to various stresses in plants. Alexandrium catenella is an important marine toxic phytoplankton species that can cause harmful algal blooms (HABs). To date, identification and function analysis of miRNAs in A. catenella remain largely unexamined. In this study, high-throughput sequencing was performed on A. catenella to identify and quantitatively profile the repertoire of small RNAs from two different growth phases. A total of 38,092,056 and 32,969,156 raw reads were obtained from the two small RNA libraries, respectively. In total, 88 mature miRNAs belonging to 32 miRNA families were identified. Significant differences were found in the member number, expression level of various families, and expression abundance of each member within a family. A total of 15 potentially novel miRNAs were identified. Comparative profiling showed that 12 known miRNAs exhibited differential expression between the lag phase and the logarithmic phase. Real-time quantitative RT-PCR (qPCR) was performed to confirm the expression of two differentially expressed miRNAs that were one up-regulated novel miRNA (aca-miR-3p-456915), and one down-regulated conserved miRNA (tae-miR159a). The expression trend of the qPCR assay was generally consistent with the deep sequencing result. Target predictions of the 12 differentially expressed miRNAs resulted in 1813target genes. Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG) annotations revealed that some miRNAs were associated with growth and developmental processes of the alga. These results provide insights into the roles that miRNAs play in the growth of A. catenella, and they provide the basis for further studies of the molecular mechanisms that underlie bloom growth in red tides species. PMID:26398216
A gene expression biomarker accurately predicts estrogen ...
The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c
Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Yang, Yi-Chao; Li, Hong-Mei; Chen, Ying-Dan; Zhou, Xiao-Nong
2014-06-01
To identify Clonorchis sinensis metacercariae using PCR targeting ribosomal DNA ITS region and COX1 gene. Pseudorasbora parva were collected from Hengxian County of Guangxi at the end of May 2013. Single metacercaria of C. sinensis and other trematodes were separated from muscle tissue of P. parva by digestion method. Primers targeting ribosomal DNA ITS region and COX1 gene of C. sinensis were designed for PCR and the universal primers were used as control. The sensitivity and specificity of the PCR detection were analyzed. C. sinensis metacercariae at different stages were identified by PCR. DNA from single C. sinensis metacercaria was detected by PCR targeting ribosomal DNA ITS region and COX1 gene. The specific amplicans have sizes of 437/549, 156/249 and 195/166 bp, respectively. The ratio of the two positive numbers in PCR with universal primers and specific primers targeting C. sinensis ribosomal DNA ITS1 and ITS2 regions was 0.905 and 0.952, respectively. The target gene fragments were amplified by PCR using COX1 gene-specific primers. The PCR with specific primers did not show any non-specific amplification. However, the PCR with universal primers targeting ribosomal DNA ITS regions performed serious non-specific amplification. C. sinensis metacercariae at different stages are identified by morphological observation and PCR method. Species-specific primers targeting ribosomal DNA ITS region show higher sensitivity and specificity than the universal primers. PCR targeting COX1 gene shows similar sensitivity and specificity to PCR with specific primers targeting ribosomal DNA ITS regions.
BioShuttle-mediated Plasmid Transfer
Braun, Klaus; von Brasch, Leonie; Pipkorn, Ruediger; Ehemann, Volker; Jenne, Juergen; Spring, Herbert; Debus, Juergen; Didinger, Bernd; Rittgen, Werner; Waldeck, Waldemar
2007-01-01
An efficient gene transfer into target tissues and cells is needed for safe and effective treatment of genetic diseases like cancer. In this paper, we describe the development of a transport system and show its ability for transporting plasmids. This non-viral peptide-based BioShuttle-mediated transfer system consists of a nuclear localization address sequence realizing the delivery of the plasmid phNIS-IRES-EGFP coding for two independent reporter genes into nuclei of HeLa cells. The quantification of the transfer efficiency was achieved by measurements of the sodium iodide symporter activity. EGFP gene expression was measured with Confocal Laser Scanning Microscopy and quantified with biostatistical methods by analysis of the frequency of the amplitude distribution in the CLSM images. The results demonstrate that the “BioShuttle”-Technology is an appropriate tool for an effective transfer of genetic material carried by a plasmid. PMID:18026568
Possibilities in identification of genomic species of Burkholderia cepacia complex by PCR and RFLP.
Navrátilová, Lucie; Chromá, Magdalena; Hanulík, Vojtech; Raclavský, Vladislav
2013-01-01
The strains belonging to Burkholderia cepacia complex are important opportunistic pathogens in immunocompromised patients and cause serious diseases. It is possible to obtain isolates from soil, water, plants and human samples. Taxonomy of this group is difficult. Burkholderia cepacia complex consists of seventeen genomic species and the genetic scheme is based on recA gene. Commonly, first five genomovars occurre in humans, mostly genomovars II and III, subdivision IIIA. Within this study we tested identification of first five genomovars by PCR with following melting analysis and RFLP. The experiments were targeted on eubacterial 16S rDNA and specific gene recA, which allowed identification of all five genomovars. RecA gene appeared as more suitable than 16S rDNA, which enabled direct identification of only genomovars II and V; genomovars I, III and IV were similar within 16S rDNA sequence.
Correia, Telmo; Grammel, Nicolas; Ortel, Ingo; Keller, Ullrich; Tudzynski, Paul
2003-12-01
Claviceps purpurea produces the pharmacological important ergopeptines, a class of cyclol-structured alkaloid peptides containing D-lysergic acid. These compounds are assembled from D-lysergic acid and three different amino acids by the nonribosomal peptide synthetase enzymes LPS1 and LPS2. Cloning of alkaloid biosynthesis genes from C. purpurea has revealed a gene cluster including two NRPS genes, cpps 1 and cpps 2. Protein sequence data had assigned earlier cpps1 to encode the trimodular LPS1 assembling the tripeptide portion of ergopeptines. Here, we show by transcriptional analysis, targeted inactivation, analysis of disruption mutants, and heterologous expression that cpps 2 encodes the monomodular LPS2 responsible for D-lysergic acid activation and incorporation into the ergopeptine backbone. The presence of two distinct NRPS subunits catalyzing formation of ergot peptides is the first example of a fungal NRPS system consisting of different NRPS subunits.
Novel polymer carriers and gene constructs for treatment of myocardial ischemia and infarction.
Yockman, James W; Kastenmeier, Andrew; Erickson, Harold M; Brumbach, Jonathan G; Whitten, Matthew G; Albanil, Aida; Li, Dean Y; Kim, Sung Wan; Bull, David A
2008-12-18
The number one cause of mortality in the US is cardiovascular related disease. Future predictions do not see a reduction in this rate especially with the continued rise in obesity [P. Poirier, et al., Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss, Arterioscler Thromb Vasc Biol. 26(5), (2006) 968-976.; K. Obunai, S. Jani, G.D. Dangas, Cardiovascular morbidity and mortality of the metabolic syndrome, Med.Clin. North Am., 91(6), (2007) 1169-1184]. Even so, potential molecular therapeutic targets for cardiac gene delivery are in no short supply thanks to continuing advances in molecular cardiology. However, efficient and safe delivery remains a bottleneck in clinical gene therapy [O.J. Muller, H.A. Katus, R. Bekeredjian, Targeting the heart with gene therapy-optimized gene delivery methods, Cardiovasc Res, 73(3), (2007) 453-462]. Viral vectors are looked upon favorably for their high transduction efficiency, although their ability to elicit toxic immune responses remains [C.F. McTiernan, et al., Myocarditis following adeno-associated viral gene expression of human soluble TNF receptor (TNFRII-Fc) in baboon hearts, Gene Ther, 14(23), (2007) 1613-1622]. However, this high transduction does not necessarily translate into improved efficacy [X. Hao, et al., Myocardial angiogenesis after plasmid or adenoviral VEGF-A(165) gene transfer in rat myocardial infarction model, Cardiovasc Res., 73(3), (2007) 481-487]. Naked DNA remains the preferred method of DNA delivery to cardiac myocardium and has been explored extensively in clinical trials. The results from these trials have demonstrated efficacy in regard to secondary end-points of reduced symptomatology and perfusion, but have failed to establish significant angiogenesis or an increase in myocardial function [P.B. Shah, D.W. Losordo, Non-viral vectors for gene therapy: clinical trials in cardiovascular disease, Adv Genet, 54, (2005) 339-361]. This may be due in part to reduced transfection efficiency but can also be attributed to use of suboptimal candidate genes. Currently, polymeric non-viral gene delivery to cardiac myocardium remains underrepresented. In the past decade several advances in non-viral vector development has demonstrated increased transfection efficiency [O.J. Muller, H.A. Katus, R. Bekeredjian, Targeting the heart with gene therapy-optimized gene delivery methods, Cardiovasc Res, 73(3), (2007) 453-462]. Of these polymers, those that employ lipid modifications to improve transfection or target cardiovascular tissues have proven themselves to be extremely beneficial. Water-soluble lipopolymer (WSLP) consists of a low molecular weight branched PEI (1800) and cholesterol. The cholesterol moiety adds extra condensation by forming stable micellular complexes and was later employed for myocardial gene therapy to exploit the high expression of lipoprotein lipase found within cardiac tissue. Use of WSLP to deliver hypoxia-responsive driven expression of hVEGF to ischemic rabbit myocardium has proven to provide for even better expression in cardiovascular cells than Terplex and has demonstrated a significant reduction in infarct size (13+/-4%, p<0.001) over constitutive VEGF expression (32+/-7%, p=0.007) and sham-injected controls (48+/-7%). A significant reduction in apoptotic values and an increase in capillary growth were also seen in surrounding tissue. Recently, investigations have begun using bioreducible polymers made of poly(amido polyethylenimines) (SS-PAEI). SS-PAEIs breakdown within the cytoplasm through inherent redox mechanisms and provide for high transfection efficiencies (upwards to 60% in cardiovascular cell types) with little to no demonstrable toxicity. In vivo transfections in normoxic and hypoxic rabbit myocardium have proven to exceed those results of WSLP transfections by 2-5 fold [L.V. Christensen, et al., Reducible poly(amido ethylenediamine) for hypoxia-inducible VEGF delivery, J Control Release, 118(2), (2007) 254-261]. This new breed of polymer(s) may allow for decreased doses and use of new molecular mechanisms not previously available due to low transfection efficiencies. Little development has been seen in the use of new gene agents for treatment of myocardial ischemia and infarction. Current treatment consists of using mitogenic factors, described decades earlier, alone or in combination to spur angiogenesis or modulating intracellular Ca2+ homeostasis through SERCA2a but to date, failed to demonstrate clinical efficacy. Recent data suggests that axonal guidance cues also act on vasculature neo-genesis and provide a new means of investigation for treatment.
Identification and consequences of miRNA-target interactions--beyond repression of gene expression.
Hausser, Jean; Zavolan, Mihaela
2014-09-01
Comparative genomics analyses and high-throughput experimental studies indicate that a microRNA (miRNA) binds to hundreds of sites across the transcriptome. Although the knockout of components of the miRNA biogenesis pathway has profound phenotypic consequences, most predicted miRNA targets undergo small changes at the mRNA and protein levels when the expression of the miRNA is perturbed. Alternatively, miRNAs can establish thresholds in and increase the coherence of the expression of their target genes, as well as reduce the cell-to-cell variability in target gene expression. Here, we review the recent progress in identifying miRNA targets and the emerging paradigms of how miRNAs shape the dynamics of target gene expression.
Hey bHLH transcription factors.
Weber, David; Wiese, Cornelia; Gessler, Manfred
2014-01-01
Hey bHLH transcription factors are direct targets of canonical Notch signaling. The three mammalian Hey proteins are closely related to Hes proteins and they primarily repress target genes by either directly binding to core promoters or by inhibiting other transcriptional activators. Individual candidate gene approaches and systematic screens identified a number of Hey target genes, which often encode other transcription factors involved in various developmental processes. Here, we review data on interaction partners and target genes and conclude with a model for Hey target gene regulation. Furthermore, we discuss how expression of Hey proteins affects processes like cell fate decisions and differentiation, e.g., in cardiovascular, skeletal, and neural development or oncogenesis and how this relates to the observed developmental defects and phenotypes observed in various knockout mice. © 2014 Elsevier Inc. All rights reserved.
EBF factors drive expression of multiple classes of target genes governing neuronal development.
Green, Yangsook S; Vetter, Monica L
2011-04-30
Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koller, B.H.; Hyungsuk Kim; Latour, A.M.
1991-12-01
A gene-targeting construct was made containing 7.8 kilobases of DNA spanning exon 10 of the mouse cystic fibrosis transmembrane regulator (CFTR) gene in which part of the exon has been replaced by two neomycin-resistance (Neo) genes driven by different promoters. (This replacement introduces a chain-termination codon at amino acid position 489 in the CFTR sequence). A herpes simplex thymidine kinase gene was on each end of the construct, which was electroporated into embryonic stem (ES) cells. Colonies resistant to G418, or to G418 plus ganciclovir, were selected and screened by Southern blotting or by PCR amplification. Five pools of G418-resistantmore » cells gave PCR products diagnostic of targeting. Four independent clones of ES cells with a disrupted CFTR gene have been isolated from these pools. The frequency of targeting was 1/2500 G418-resistant colonies. This low frequency is not the consequence of marginal expression of the Neo genes in the targeted cells. The CFTR targeting events were clustered among our experiments in a manner suggesting that some unidentified factor(s), possible passage number, influences the recovery of CFTR-targeted cells.« less
Murthi, Padma; Abumaree, Mohamed; Kalionis, Bill
2014-01-01
Homeobox genes are essential for both the development of the blood and lymphatic vascular systems, as well as for their maintenance in the adult. Homeobox genes comprise an important family of transcription factors, which are characterized by a well conserved DNA binding motif; the homeodomain. The specificity of the homeodomain allows the transcription factor to bind to the promoter regions of batteries of target genes and thereby regulates their expression. Target genes identified for homeodomain proteins have been shown to control fundamental cell processes such as proliferation, differentiation, and apoptosis. We and others have reported that homeobox genes are expressed in the placental vasculature, but our knowledge of their downstream target genes is limited. This review highlights the importance of studying the cellular and molecular mechanisms by which homeobox genes and their downstream targets may regulate important vascular cellular processes such as proliferation, migration, and endothelial tube formation, which are essential for placental vasculogenesis and angiogenesis. A better understanding of the molecular targets of homeobox genes may lead to new therapies for aberrant angiogenesis associated with clinically important pregnancy pathologies, including fetal growth restriction and preeclampsia. PMID:24926269
The Roles of Two miRNAs in Regulating the Immune Response of Sea Cucumber.
Zhang, Pengjuan; Li, Chenghua; Zhang, Ran; Zhang, Weiwei; Jin, Chunhua; Wang, Lingling; Song, Linsheng
2015-12-01
MicroRNAs (miRNAs) have emerged as key regulators in many pathological processes by suppressing the transcriptional and post-transcriptional expression of target genes. MiR-2008 was previously found to be significantly up-regulated in diseased sea cucumber Apostichopus japonicus by high-through sequencing, whereas the reads of miR-137, a well-documented tumor repressor, displayed no significant change. In the present study, we found that miR-137 expression was slightly attenuated and miR-2008 was significantly enhanced after Vibrio splendidus infection or Lipopolysaccharides application. Further target screening and dual-luciferase reporter assay revealed that the two important miRNAs shared a common target gene of betaine-homocysteine S-methyltransferase (AjBHMT), which exhibited noncorrelated messenger RNA and protein expression patterns after bacterial challenge. In order to fully understand their regulatory mechanisms, we conducted the functional experiments in vitro and in vivo. The overexpression of miR-137 in sea cucumber or primary coelomocytes significantly decreased, whereas the inhibition of miR-137 increased the mRNA and protein expression levels of AjBHMT. In contrast, miR-2008 overexpression and inhibition showed no effect on AjBHMT mRNA levels, but the concentration of AjBHMT protein displayed significant changes both in vitro and in vivo. Consistently, the homocysteine (Hcy) contents were also accordingly altered in the aberrant expression analysis of both miRNAs, consistent with the results of the AjBHMT silencing assay in vitro and in vivo. More importantly, small interfering RNA mediated AjBHMT knockdown and Hcy exposure analyses both significantly increased reactive oxygen species (ROS) production and decreased the number of surviving invasive pathogen in sea cucumber coelomocytes. Taken together, these findings confirmed the differential roles of sea cucumber miR-137 and miR-2008 in regulating the common target AjBHMT to promote ROS production and the clearance of pathogenic microorganisms through Hcy accumulation. Copyright © 2015 by the Genetics Society of America.
Trentin, Diana; Hall, Heike; Wechsler, Sandra; Hubbell, Jeffrey A
2006-02-21
Hypoxia-inducible factor (HIF) constitutes a target in therapeutic angiogenesis. HIF-1alpha functions as a sensor of hypoxia and induces expression of vascular endothelial growth factor (VEGF), which then induces angiogenesis. To explore the potential of HIF-1alpha gene therapy in stimulating wound healing, we delivered a gene encoding a stabilized form of HIF-1alpha, lacking the oxygen-sensitive degradation domain, namely HIF-1alpha deltaODD, by using a previously characterized peptide-based gene delivery vector in fibrin as a surgical matrix. The peptide vector consisted of multiple domains: (i) A cysteine-flanked lysine hexamer provided DNA interactions that were stable extracellularly but destabilized intracellularly after reduction of the formed disulfide bonds. This DNA-binding domain was fused to either (ii) a fibrin-binding peptide for entrapment within the matrix or (iii) a nuclear localization sequence for efficient nuclear targeting. The HIF-1alpha deltaODD gene was expressed and translocated to the nucleus under normoxic conditions, leading to up-regulation of vascular endothelial growth factor (VEGF)-A165 mRNA and protein levels in vitro. When the peptide-DNA nanoparticles entrapped in fibrin matrices were applied to full-thickness dermal wounds in the mouse (10 microg per wound in 30 microl of fibrin), angiogenesis was increased comparably strongly to that induced by VEGF-A165 protein (1.25 microg per wound in 30 microl of fibrin). However, the maturity of the vessels induced by HIF-1alpha deltaODD was significantly higher than that induced by VEGF-A165 protein, as shown by stabilization of the neovessels with smooth muscle. Nonviral, local administration of this potent angiogenesis-inducing gene by using this peptide vector represents a powerful approach in tissue engineering and therapeutic angiogenesis.
Craig, David W; O'Shaughnessy, Joyce A; Kiefer, Jeffrey A; Aldrich, Jessica; Sinari, Shripad; Moses, Tracy M; Wong, Shukmei; Dinh, Jennifer; Christoforides, Alexis; Blum, Joanne L; Aitelli, Cristi L; Osborne, Cynthia R; Izatt, Tyler; Kurdoglu, Ahmet; Baker, Angela; Koeman, Julie; Barbacioru, Catalin; Sakarya, Onur; De La Vega, Francisco M; Siddiqui, Asim; Hoang, Linh; Billings, Paul R; Salhia, Bodour; Tolcher, Anthony W; Trent, Jeffrey M; Mousses, Spyro; Von Hoff, Daniel; Carpten, John D
2013-01-01
Triple-negative breast cancer (TNBC) is characterized by the absence of expression of estrogen receptor, progesterone receptor, and HER-2. Thirty percent of patients recur after first-line treatment, and metastatic TNBC (mTNBC) has a poor prognosis with median survival of one year. Here, we present initial analyses of whole genome and transcriptome sequencing data from 14 prospective mTNBC. We have cataloged the collection of somatic genomic alterations in these advanced tumors, particularly those that may inform targeted therapies. Genes mutated in multiple tumors included TP53, LRP1B, HERC1, CDH5, RB1, and NF1. Notable genes involved in focal structural events were CTNNA1, PTEN, FBXW7, BRCA2, WT1, FGFR1, KRAS, HRAS, ARAF, BRAF, and PGCP. Homozygous deletion of CTNNA1 was detected in 2 of 6 African Americans. RNA sequencing revealed consistent overexpression of the FOXM1 gene when tumor gene expression was compared with nonmalignant breast samples. Using an outlier analysis of gene expression comparing one cancer with all the others, we detected expression patterns unique to each patient's tumor. Integrative DNA/RNA analysis provided evidence for deregulation of mutated genes, including the monoallelic expression of TP53 mutations. Finally, molecular alterations in several cancers supported targeted therapeutic intervention on clinical trials with known inhibitors, particularly for alterations in the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. In conclusion, whole genome and transcriptome profiling of mTNBC have provided insights into somatic events occurring in this difficult to treat cancer. These genomic data have guided patients to investigational treatment trials and provide hypotheses for future trials in this irremediable cancer.
Identification of the interleukin 4 receptor alpha gene as a direct target for p73.
Sasaki, Yasushi; Mita, Hiroaki; Toyota, Minoru; Ishida, Setsuko; Morimoto, Ichiro; Yamashita, Toshiharu; Tanaka, Toshihiro; Imai, Kohzoh; Nakamura, Yusuke; Tokino, Takashi
2003-12-01
p73 has a high degree of structural homology to p53 and can activate transcription of p53-responsive genes. However, analysis of p73-deficient mice revealed a marked divergence in the physiological activities of p53 family genes and distinguishes p73 from p53. Mice deficient for p73 exhibit profound defects, including hippocampal dysgenesis, chronic infection, and inflammation, as well as abnormalities in pheromone sensory pathways. p73 plays important roles in neurogenesis, sensory pathways, and homeostatic regulation. Here, we found that the interleukin 4 receptor alpha (IL-4Ralpha) gene is up-regulated by p73 but not significantly by p53 in several human cancer cell lines. IL-4Ralphatranscription is also activated in response to cisplatin, a DNA-damaging agent known to induce p73. By using small interference RNA designed to target p73, we demonstrated that silencing endogenous p73 abrogates the induction of the IL-4Ralpha gene after cisplatin treatment. Furthermore, we identified a p73-binding site in the first intron of the IL-4Ralpha gene that can directly interact with the p73 protein in vivo. This p73-binding site consists of eight copies of a 10-bp consensus p53-binding motif and is a functional response element that is relatively specific for p73 among the p53 family. p73beta promoted localized nucleosomal acetylation through recruitment of coactivator p300, indicating that p73 regulates transcription of IL-4Ralpha through the unique p73-binding site. We also found that p73beta-transfected tumor cells are sensitive to IL-4-mediated apoptosis. Our data suggest that IL-4Ralpha could mediate, in part, certain immune responses and p73-dependent cell death.
Vakili, Hana; Jin, Yan; Menticoglou, Savas; Cattini, Peter A
2013-08-02
Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in "normal" pregnancy. Maternal obesity can exacerbate this "resistance," suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m(2)) versus lean (BMI 20-25 kg/m(2)) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development.
Qi, Jingjing; Yu, Yong; Akilli Öztürk, Özlem; Holland, Jane D; Besser, Daniel; Fritzmann, Johannes; Wulf-Goldenberg, Annika; Eckert, Klaus; Fichtner, Iduna; Birchmeier, Walter
2016-10-01
We have previously identified a 115-gene signature that characterises the metastatic potential of human primary colon cancers. The signature included the canonical Wnt target gene BAMBI, which promoted experimental metastasis in mice. Here, we identified three new direct Wnt target genes from the signature, and studied their functions in epithelial-mesenchymal transition (EMT), cell migration and experimental metastasis. We examined experimental liver metastases following injection of selected tumour cells into spleens of NOD/SCID mice. Molecular and cellular techniques were used to identify direct transcription target genes of Wnt/β-catenin signals. Microarray analyses and experiments that interfered with cell migration through inhibitors were performed to characterise downstream signalling systems. Three new genes from the colorectal cancer (CRC) metastasis signature, BOP1, CKS2 and NFIL3, were identified as direct transcription targets of β-catenin/TCF4. Overexpression and knocking down of these genes in CRC cells promoted and inhibited, respectively, experimental metastasis in mice, EMT and cell motility in culture. Cell migration was repressed by interfering with distinct signalling systems through inhibitors of PI3K, JNK, p38 mitogen-activated protein kinase and/or mTOR. Gene expression profiling identified a series of migration-promoting genes, which were induced by BOP1, CKS2 and NFIL3, and could be repressed by inhibitors that are specific to these pathways. We identified new direct Wnt/β-catenin target genes, BOP1, CKS2 and NFIL3, which induced EMT, cell migration and experimental metastasis of CRC cells. These genes crosstalk with different downstream signalling systems, and activate migration-promoting genes. These pathways and downstream genes may serve as therapeutic targets in the treatment of CRC metastasis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
A Morpholino-based screen to identify novel genes involved in craniofacial morphogenesis
Melvin, Vida Senkus; Feng, Weiguo; Hernandez-Lagunas, Laura; Artinger, Kristin Bruk; Williams, Trevor
2014-01-01
BACKGROUND The regulatory mechanisms underpinning facial development are conserved between diverse species. Therefore, results from model systems provide insight into the genetic causes of human craniofacial defects. Previously, we generated a comprehensive dataset examining gene expression during development and fusion of the mouse facial prominences. Here, we used this resource to identify genes that have dynamic expression patterns in the facial prominences, but for which only limited information exists concerning developmental function. RESULTS This set of ~80 genes was used for a high throughput functional analysis in the zebrafish system using Morpholino gene knockdown technology. This screen revealed three classes of cranial cartilage phenotypes depending upon whether knockdown of the gene affected the neurocranium, viscerocranium, or both. The targeted genes that produced consistent phenotypes encoded proteins linked to transcription (meis1, meis2a, tshz2, vgll4l), signaling (pkdcc, vlk, macc1, wu:fb16h09), and extracellular matrix function (smoc2). The majority of these phenotypes were not altered by reduction of p53 levels, demonstrating that both p53 dependent and independent mechanisms were involved in the craniofacial abnormalities. CONCLUSIONS This Morpholino-based screen highlights new genes involved in development of the zebrafish craniofacial skeleton with wider relevance to formation of the face in other species, particularly mouse and human. PMID:23559552
Choi, Seungkyu; Go, Jai Hyang; Kim, Eun Kyung; Lee, Hojung; Lee, Won Mi; Cho, Chun-Sung; Han, Kyudong
2016-09-01
Extranodal natural killer (NK)/T-cell lymphoma, nasal type (NKTCL), is a malignant disorder of cytotoxic lymphocytes of NK or T cells. It is an aggressive neoplasm with a very poor prognosis. Although extranodal NKTCL reportedly has a strong association with Epstein-Barr virus, the molecular pathogenesis of NKTCL has been unexplored. The recent technological advancements in next-generation sequencing (NGS) have made DNA sequencing cost- and time-effective, with more reliable results. Using the Ion Proton Comprehensive Cancer Panel, we sequenced 409 cancer-related genes to identify somatic mutations in five NKTCL tissue samples. The sequencing analysis detected 25 mutations in 21 genes. Among them, KMT2D , a histone modification-related gene, was the most frequently mutated gene (four of the five cases). This result was consistent with recent NGS studies that have suggested KMT2D as a novel driver gene in NKTCL. Mutations were also found in ARID1A , a chromatin remodeling gene, and TP53 , which also recurred in recent NGS studies. We also found mutations in 18 novel candidate genes, with molecular functions that were potentially implicated in cancer development. We suggest that these genes may result in multiple oncogenic events and may be used as potential bio-markers of NKTCL in the future.
An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize.
Char, Si Nian; Neelakandan, Anjanasree K; Nahampun, Hartinio; Frame, Bronwyn; Main, Marcy; Spalding, Martin H; Becraft, Philip W; Meyers, Blake C; Walbot, Virginia; Wang, Kan; Yang, Bing
2017-02-01
CRISPR/Cas9 is a powerful genome editing tool in many organisms, including a number of monocots and dicots. Although the design and application of CRISPR/Cas9 is simpler compared to other nuclease-based genome editing tools, optimization requires the consideration of the DNA delivery and tissue regeneration methods for a particular species to achieve accuracy and efficiency. Here, we describe a public sector system, ISU Maize CRISPR, utilizing Agrobacterium-delivered CRISPR/Cas9 for high-frequency targeted mutagenesis in maize. This system consists of an Escherichia coli cloning vector and an Agrobacterium binary vector. It can be used to clone up to four guide RNAs for single or multiplex gene targeting. We evaluated this system for its mutagenesis frequency and heritability using four maize genes in two duplicated pairs: Argonaute 18 (ZmAgo18a and ZmAgo18b) and dihydroflavonol 4-reductase or anthocyaninless genes (a1 and a4). T 0 transgenic events carrying mono- or diallelic mutations of one locus and various combinations of allelic mutations of two loci occurred at rates over 70% mutants per transgenic events in both Hi-II and B104 genotypes. Through genetic segregation, null segregants carrying only the desired mutant alleles without the CRISPR transgene could be generated in T 1 progeny. Inheritance of an active CRISPR/Cas9 transgene leads to additional target-specific mutations in subsequent generations. Duplex infection of immature embryos by mixing two individual Agrobacterium strains harbouring different Cas9/gRNA modules can be performed for improved cost efficiency. Together, the findings demonstrate that the ISU Maize CRISPR platform is an effective and robust tool to targeted mutagenesis in maize. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rascle, Anne; Neumann, Tanja; Raschta, Anne-Sarah
2009-01-01
LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-{kappa}B target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-{kappa}B activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-{kappa}B activity by TNF-{alpha} synergizes induction of NF-{kappa}B target genes by LMX1B. Chromatin immunoprecipitation demonstratedmore » that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized {kappa}B site, and that LMX1B recruitment correlates with increased NF-{kappa}B DNA association. IL-6 promoter-reporter assays showed that the {kappa}B site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-{kappa}B target genes is affected in the kidney of Lmx1b{sup -/-} knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-{kappa}B target genes in cooperation with nuclear p50/p65 NF-{kappa}B.« less
Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems
Shen, Lazhen; Li, Bei; Qiao, Yongsheng
2018-01-01
Fe3O4 nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe3O4 NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe3O4 NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe3O4 NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe3O4 NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe3O4 NPs targeting drug/gene delivery systems. PMID:29473914
Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases1[W][OA
Curtin, Shaun J.; Zhang, Feng; Sander, Jeffry D.; Haun, William J.; Starker, Colby; Baltes, Nicholas J.; Reyon, Deepak; Dahlborg, Elizabeth J.; Goodwin, Mathew J.; Coffman, Andrew P.; Dobbs, Drena; Joung, J. Keith; Voytas, Daniel F.; Stupar, Robert M.
2011-01-01
We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform—a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting DICER-LIKE (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome. PMID:21464476
Angiopoietin-Like 4 Regulates Epidermal Differentiation
Huang, Royston-Luke; Goh, Yan Yih; Wang, Xiao Ling; Tang, Mark Boon Yang; Tan, Nguan Soon
2011-01-01
The nuclear hormone receptor PPARβ/δ is integral to efficient wound re-epithelialization and implicated in epidermal maturation. However, the mechanism underlying the latter process of epidermal differentiation remains unclear. We showed that ligand-activated PPARβ/δ indirectly stimulated keratinocyte differentiation, requiring de novo gene transcription and protein translation. Using organotypic skin cultures constructed from PPARβ/δ- and angiopoietin-like 4 (ANGPTL4)-knockdown human keratinocytes, we showed that the expression of ANGPTL4, a PPARβ/δ target gene, is essential for the receptor mediated epidermal differentiation. The pro-differentiation effect of PPARβ/δ agonist GW501516 was also abolished when keratinocytes were co-treated with PPARβ/δ antagonist GSK0660 and similarly in organotypic skin culture incubated with blocking ANGPTL4 monoclonal antibody targeted against the C-terminal fibrinogen-like domain. Our focused real-time PCR gene expression analysis comparing the skin biopsies from wildtype and ANGPTL4-knockout mice confirmed a consistent down-regulation of numerous genes involved in epidermal differentiation and proliferation in the ANGPTL4-knockout skin. We further showed that the deficiency of ANGPTL4 in human keratinocytes and mice skin have diminished expression of various protein kinase C isotypes and phosphorylated transcriptional factor activator protein-1, which are well-established for their roles in keratinocyte differentiation. Chromatin immunoprecipitation confirmed that ANGPTL4 stimulated the activation and binding of JUNB and c-JUN to the promoter region of human involucrin and transglutaminase type 1 genes, respectively. Taken together, we showed that PPARβ/δ regulates epidermal maturation via ANGPTL4-mediated signalling pathway. PMID:21966511
Stoeckel, D.M.; Stelzer, E.A.; Dick, L.K.
2009-01-01
Quantitative PCR (qPCR), applied to complex environmental samples such as water, wastewater, and feces, is susceptible to methodological and sample related biases. In this study, we evaluated two exogenous DNA spike-and-recovery controls as proxies for recovery efficiency of Bacteroidales 16S rDNA gene sequences (AllBac and qHF183) that are used for microbial source tracking (MST) in river water. Two controls-(1) the plant pathogen Pantoea stewartii, carrying the chromosomal target gene cpsD, and (2) Escherichia coli, carrying the plasmid-borne target gene DsRed2-were added to raw water samples immediately prior to concentration and DNA extraction for qPCR. When applied to samples processed in replicate, recovery of each control was positively correlated with the observed concentration of each MST marker. Adjustment of MST marker concentrations according to recovery efficiency reduced variability in replicate analyses when consistent processing and extraction methodologies were applied. Although the effects of this procedure on accuracy could not be tested due to uncertainties in control DNA concentrations, the observed reduction in variability should improve the strength of statistical comparisons. These findings suggest that either of the tested spike-and-recovery controls can be useful to measure efficiency of extraction and recovery in routine laboratory processing. ?? 2009 Elsevier Ltd.
Hoballa, Mohamad Hussein; Soltani, Bahram M; Mowla, Seyed Javad; Sheikhpour, Mojgan; Kay, Maryam
2018-07-01
Frequent abnormalities in 7p12 locus in different tumors like lung cancer candidate this region for novel regulatory elements. MiRNAs as novel regulatory elements encoded within the human genome are potentially oncomiRs or miR suppressors. Here, we have used bioinformatics tools to search for the novel miRNAs embedded within human chromosome 7p12. A bona fide stem loop (named mirZa precursor) had the features of producing a real miRNA (named miRZa) which was detected through RT-qPCR following the overexpression of its precursor. Then, endogenous miRZa was detected in human cell lines and tissues and sequenced. Consistent to the bioinformatics prediction, RT-qPCR as well as dual luciferase assay indicated that SMAD3 and IGF1R genes were targeted by miRZa. MiRZa-3p and miRZa-5p were downregulated in lung tumor tissue samples detected by RT-qPCR, and mirZa precursor overexpression in SW480 cells resulted in increased sub-G1 cell population. Overall, here we introduced a novel miRNA which is capable of targeting SMAD3 and IGF1R regulatory genes and increases the cell population in sub-G1 stage.
Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto
2016-10-01
Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer-probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications.
True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells.
Gurushidze, Maia; Hensel, Goetz; Hiekel, Stefan; Schedel, Sindy; Valkov, Vladimir; Kumlehn, Jochen
2014-01-01
Transcription activator-like effector nucleases (TALENs) are customizable fusion proteins able to cleave virtually any genomic DNA sequence of choice, and thereby to generate site-directed genetic modifications in a wide range of cells and organisms. In the present study, we expressed TALENs in pollen-derived, regenerable cells to establish the generation of instantly true-breeding mutant plants. A gfp-specific TALEN pair was expressed via Agrobacterium-mediated transformation in embryogenic pollen of transgenic barley harboring a functional copy of gfp. Thanks to the haploid nature of the target cells, knock-out mutations were readily detected, and homozygous primary mutant plants obtained following genome duplication. In all, 22% of the TALEN transgenics proved knocked out with respect to gfp, and the loss of function could be ascribed to the deletions of between four and 36 nucleotides in length. The altered gfp alleles were transmitted normally through meiosis, and the knock-out phenotype was consistently shown by the offspring of two independent mutants. Thus, here we describe the efficient production of TALEN-mediated gene knock-outs in barley that are instantaneously homozygous and non-chimeric in regard to the site-directed mutations induced. This TALEN approach has broad applicability for both elucidating gene function and tailoring the phenotype of barley and other crop species.
Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto
2016-01-01
Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer–probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications. PMID:27763786
Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting.
Masuda, Junko; Kawamoto, Hiroshi; Strober, Warren; Takayama, Eiji; Mizutani, Akifumi; Murakami, Hiroshi; Ikawa, Tomokatsu; Kitani, Atsushi; Maeno, Narumi; Shigehiro, Tsukasa; Satoh, Ayano; Seno, Akimasa; Arun, Vaidyanath; Kasai, Tomonari; Fuss, Ivan J; Katsura, Yoshimoto; Seno, Masaharu
2016-12-01
Transplantation of hematopoietic stem and progenitor cells (HSCs) i.e., self-renewing cells that retain multipotentiality, is now a widely performed therapy for many hematopoietic diseases. However, these cells are present in low number and are subject to replicative senescence after extraction; thus, the acquisition of sufficient numbers of cells for transplantation requires donors able to provide repetitive blood samples and/or methods of expanding cell numbers without disturbing cell multipotentiality. Previous studies have shown that HSCs maintain their multipotentiality and self-renewal activity if TCF3 transcription function is blocked under B cell differentiating conditions. Taking advantage of this finding to devise a new approach to HSC expansion in vitro, we constructed an episomal expression vector that specifically targets and transiently represses the TCF3 gene. This consisted of a vector encoding a transcription activator-like effector (TALE) fused to a Krüppel-associated box (KRAB) repressor. We showed that this TALE-KRAB vector repressed expression of an exogenous reporter gene in HEK293 and COS-7 cell lines and, more importantly, efficiently repressed endogenous TCF3 in a human B lymphoma cell line. These findings suggest that this vector can be used to maintain multipotentiality in HSC being subjected to a long-term expansion regimen prior to transplantation.
Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.
Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina
2015-11-13
To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.
Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification
Ziesemer, Kirsten A.; Mann, Allison E.; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T.; Brandt, Bernd W.; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C.; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A.; MacDonald, Sandy J.; Thomas, Gavin H.; Collins, Matthew J.; Lewis, Cecil M.; Hofman, Corinne; Warinner, Christina
2015-01-01
To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions. PMID:26563586
Liu, Liping; Guan, Hongyu; Li, Yun; Ying, Zhe; Wu, Jueheng; Zhu, Xun; Song, Libing
2016-01-01
ABSTRACT Astrocyte elevated gene 1 (AEG-1) is an oncoprotein that strongly promotes the development and progression of cancers. However, the detailed underlying mechanisms through which AEG-1 enhances tumor development and progression remain to be determined. In this study, we identified c-Jun and p300 to be novel interacting partners of AEG-1 in gliomas. AEG-1 promoted c-Jun transcriptional activity by interacting with the c-Jun/p300 complex and inducing c-Jun acetylation. Furthermore, the AEG-1/c-Jun/p300 complex was found to bind the promoter of c-Jun downstream targeted genes, consequently establishing an acetylated chromatin state that favors transcriptional activation. Importantly, AEG-1/p300-mediated c-Jun acetylation resulted in the development of a more aggressive malignant phenotype in gliomas through a drastic increase in glioma cell proliferation and angiogenesis in vitro and in vivo. Consistently, the AEG-1 expression levels in clinical glioma specimens correlated with the status of c-Jun activation. Taken together, our results suggest that AEG-1 mediates a novel epigenetic mechanism that enhances c-Jun transcriptional activity to induce glioma progression and that AEG-1 might be a novel, potential target for the treatment of gliomas. PMID:27956703
p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation
Brosh, Ran; Shalgi, Reut; Liran, Atar; Landan, Gilad; Korotayev, Katya; Nguyen, Giang Huong; Enerly, Espen; Johnsen, Hilde; Buganim, Yosef; Solomon, Hilla; Goldstein, Ido; Madar, Shalom; Goldfinger, Naomi; Børresen-Dale, Anne-Lise; Ginsberg, Doron; Harris, Curtis C; Pilpel, Yitzhak; Oren, Moshe; Rotter, Varda
2008-01-01
Normal cell growth is governed by a complicated biological system, featuring multiple levels of control, often deregulated in cancers. The role of microRNAs (miRNAs) in the control of gene expression is now increasingly appreciated, yet their involvement in controlling cell proliferation is still not well understood. Here we investigated the mammalian cell proliferation control network consisting of transcriptional regulators, E2F and p53, their targets and a family of 15 miRNAs. Indicative of their significance, expression of these miRNAs is downregulated in senescent cells and in breast cancers harboring wild-type p53. These miRNAs are repressed by p53 in an E2F1-mediated manner. Furthermore, we show that these miRNAs silence antiproliferative genes, which themselves are E2F1 targets. Thus, miRNAs and transcriptional regulators appear to cooperate in the framework of a multi-gene transcriptional and post-transcriptional feed-forward loop. Finally, we show that, similarly to p53 inactivation, overexpression of representative miRNAs promotes proliferation and delays senescence, manifesting the detrimental phenotypic consequence of perturbations in this circuit. Taken together, these findings position miRNAs as novel key players in the mammalian cellular proliferation network. PMID:19034270
Gene therapy in pancreatic cancer
Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang
2014-01-01
Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC. PMID:25309069
The MicroRNA Interaction Network of Lipid Diseases
Kandhro, Abdul H.; Shoombuatong, Watshara; Nantasenamat, Chanin; Prachayasittikul, Virapong; Nuchnoi, Pornlada
2017-01-01
Background: Dyslipidemia is one of the major forms of lipid disorder, characterized by increased triglycerides (TGs), increased low-density lipoprotein-cholesterol (LDL-C), and decreased high-density lipoprotein-cholesterol (HDL-C) levels in blood. Recently, MicroRNAs (miRNAs) have been reported to involve in various biological processes; their potential usage being a biomarkers and in diagnosis of various diseases. Computational approaches including text mining have been used recently to analyze abstracts from the public databases to observe the relationships/associations between the biological molecules, miRNAs, and disease phenotypes. Materials and Methods: In the present study, significance of text mined extracted pair associations (miRNA-lipid disease) were estimated by one-sided Fisher's exact test. The top 20 significant miRNA-disease associations were visualized on Cytoscape. The CyTargetLinker plug-in tool on Cytoscape was used to extend the network and predicts new miRNA target genes. The Biological Networks Gene Ontology (BiNGO) plug-in tool on Cytoscape was used to retrieve gene ontology (GO) annotations for the targeted genes. Results: We retrieved 227 miRNA-lipid disease associations including 148 miRNAs. The top 20 significant miRNAs analysis on CyTargetLinker provides defined, predicted and validated gene targets, further targeted genes analyzed by BiNGO showed targeted genes were significantly associated with lipid, cholesterol, apolipoprotein, and fatty acids GO terms. Conclusion: We are the first to provide a reliable miRNA-lipid disease association network based on text mining. This could help future experimental studies that aim to validate predicted gene targets. PMID:29018475
Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D
2016-11-03
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.
The evolution of resistance genes in multi-protein plant resistance systems.
Friedman, Aaron R; Baker, Barbara J
2007-12-01
The genomic perspective aids in integrating the analysis of single resistance (R-) genes into a higher order model of complex plant resistance systems. The majority of R-genes encode a class of proteins with nucleotide binding (NB) and leucine-rich repeat (LRR) domains. Several R-proteins act in multi-protein R-complexes that mediate interaction with pathogen effectors to induce resistance signaling. The complexity of these systems seems to have resulted from multiple rounds of plant-pathogen co-evolution. R-gene evolution is thought to be facilitated by the formation of R-gene clusters, which permit sequence exchanges via recombinatorial mispairing and generate high haplotypic diversity. This pattern of evolution may also generate diversity at other loci that contribute to the R-complex. The rate of recombination at R-clusters is not necessarily homogeneous or consistent over evolutionary time: recent evidence suggests that recombination at R-clusters is increased following pathogen infection, suggesting a mechanism that induces temporary genome instability in response to extreme stress. DNA methylation and chromatin modifications may allow this instability to be conditionally regulated and targeted to specific genome regions. Knowledge of natural R-gene evolution may contribute to strategies for artificial evolution of novel resistance specificities.
Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.
2016-01-01
Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111
Hiller, Ekkehard; Istel, Fabian; Tscherner, Michael; Brunke, Sascha; Ames, Lauren; Firon, Arnaud; Green, Brian; Cabral, Vitor; Marcet-Houben, Marina; Jacobsen, Ilse D.; Quintin, Jessica; Seider, Katja; Frohner, Ingrid; Glaser, Walter; Jungwirth, Helmut; Bachellier-Bassi, Sophie; Chauvel, Murielle; Zeidler, Ute; Ferrandon, Dominique; Gabaldón, Toni; Hube, Bernhard; d'Enfert, Christophe; Rupp, Steffen; Cormack, Brendan; Haynes, Ken; Kuchler, Karl
2014-01-01
The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes. PMID:24945925
Scanning the Human Genome for Novel Therapeutic Targets for Breast Cancer
2005-04-01
colon cancer genome, in sum representing only 34 annotated genes (Figure 3A). Consistent with its role in the pathogenesis of human cancers ( Ruas and...high-confidence list includes two previously established tumor suppressors, p16INKaA and TGFI3RII (Derynck et al., 2001; Ruas and Peters, 1998; Siegel...cancer. Nat Rev Cancer 4, 118-132. Chong, J. A., Tapia- Ramirez , J., Kim, S., Toledo-Aral, J. J., Zheng, Y., Boutros, M. C.. Altshuller, Y. M., Frohman
Ayalew, M; Le-Niculescu, H; Levey, D F; Jain, N; Changala, B; Patel, S D; Winiger, E; Breier, A; Shekhar, A; Amdur, R; Koller, D; Nurnberger, J I; Corvin, A; Geyer, M; Tsuang, M T; Salomon, D; Schork, N J; Fanous, A H; O'Donovan, M C; Niculescu, A B
2012-01-01
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein–coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology. PMID:22584867
Pan, Zhiqiang; Agarwal, Ameeta K; Xu, Tao; Feng, Qin; Baerson, Scott R; Duke, Stephen O; Rimando, Agnes M
2008-01-01
Background Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as Vitis and Vacciunium, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast Saccharomyces cerevisiae. Methods S. cerevisiae strain S288C was exposed to pterostilbene at the IC50 concentration (70 μM) for one generation (3 h). Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and S. cerevisiae mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene. Results Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment. Conclusion Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the induction of mitochondrial genes is consistent with its demonstrated role in apoptosis in human cancer cell lines. Furthermore, our data show that pterostilbene has a significant effect on methionine metabolism, a previously unreported effect for this compound. PMID:18366703
van Breda, Simone G J; van Agen, Ebienus; van Sanden, Suzy; Burzykowski, Tomasz; Kienhuis, Anne S; Kleinjans, Jos C S; van Delft, Joost H M
2005-08-01
There is abundant epidemiological evidence that vegetable consumption decreases colorectal cancer (CRC) risk. However, the molecular targets in the genome are mostly unknown. The present study investigated the effects of vegetable consumption on gene expression in the colon mucosa of female C57Bl/6 mice using cDNA microarray technology. Mice were fed one of 8 diets: a control diet containing no vegetables (diet 1); a diet containing 100 g/kg (diet 2, 10% dose), 200 g/kg (diet 3, 20% dose), or 400 g/kg (diet 4, 40% dose) of a vegetable mixture; or a diet containing 70 g/kg of cauliflower (diet 5, 7% dose), 73 g/kg of carrots (diet 6, 7.3% dose), 226 g/kg of peas (diet 7, 22.6% dose); or 31 g/kg of onions (diet 8, 3.1% dose). The vegetable mixture used in diets 2 to 4 consisted of the 4 individual vegetables used in diets 5 to 8: cauliflower (30% wet wt), carrots (30% wet wt), peas (30% wet wt), and onions (10% wet wt). To assess gene expression changes, colonic mucosal cells were collected after the mice were killed. Total RNA was isolated and microarray technology was used to measure the expression levels of 602 genes simultaneously. For 39 genes, significant dose-dependent effects were found, although in general the relations were not linear. For 15 genes, the altered expression could indeed explain reduced cancer risk at various stages of CRC development. Eleven genes were modulated by the vegetable mixture as well as by one or more of the individual vegetables. For 7 of the genes, the modulation by the mixture was due to the effect of a particular vegetable. These genes are of particular interest because they were consistently affected and could be involved in the prevention of CRC by vegetable consumption.
Targeting gene therapy to cancer: a review.
Dachs, G U; Dougherty, G J; Stratford, I J; Chaplin, D J
1997-01-01
In recent years the idea of using gene therapy as a modality in the treatment of diseases other than genetically inherited, monogenic disorders has taken root. This is particularly obvious in the field of oncology where currently more than 100 clinical trials have been approved worldwide. This report will summarize some of the exciting progress that has recently been made with respect to both targeting the delivery of potentially therapeutic genes to tumor sites and regulating their expression within the tumor microenvironment. In order to specifically target malignant cells while at the same time sparing normal tissue, cancer gene therapy will need to combine highly selective gene delivery with highly specific gene expression, specific gene product activity, and, possibly, specific drug activation. Although the efficient delivery of DNA to tumor sites remains a formidable task, progress has been made in recent years using both viral (retrovirus, adenovirus, adeno-associated virus) and nonviral (liposomes, gene gun, injection) methods. In this report emphasis will be placed on targeted rather than high-efficiency delivery, although those would need to be combined in the future for effective therapy. To date delivery has been targeted to tumor-specific and tissue-specific antigens, such as epithelial growth factor receptor, c-kit receptor, and folate receptor, and these will be described in some detail. To increase specificity and safety of gene therapy further, the expression of the therapeutic gene needs to be tightly controlled within the target tissue. Targeted gene expression has been analyzed using tissue-specific promoters (breast-, prostate-, and melanoma-specific promoters) and disease-specific promoters (carcinoembryonic antigen, HER-2/neu, Myc-Max response elements, DF3/MUC). Alternatively, expression could be regulated externally with the use of radiation-induced promoters or tetracycline-responsive elements. Another novel possibility that will be discussed is the regulation of therapeutic gene products by tumor-specific gene splicing. Gene expression could also be targeted at conditions specific to the tumor microenvironment, such as glucose deprivation and hypoxia. We have concentrated on hypoxia-targeted gene expression and this report will discuss our progress in detail. Chronic hypoxia occurs in tissue that is more than 100-200 microns away from a functional blood supply. In solid tumors hypoxia is widespread both because cancer cells are more prolific than the invading endothelial cells that make up the blood vessels and because the newly formed blood supply is disorganized. Measurements of oxygen partial pressure in patients' tumors showed a high percentage of severe hypoxia readings (less than 2.5 mmHg), readings not seen in normal tissue. This is a major problem in the treatment of cancer, because hypoxic cells are resistant to radiotherapy and often to chemotherapy. However, severe hypoxia is also a physiological condition specific to tumors, which makes it a potentially exploitable target. We have utilized hypoxia response elements (HRE) derived from the oxygen-regulated phosphoglycerate kinase gene to control gene expression in human tumor cells in vitro and in experimental tumors. The list of genes that have been considered for use in the treatment of cancer is extensive. It includes cytokines and costimulatory cell surface molecules intended to induce an effective systemic immune response against tumor antigens that would not otherwise develop. Other inventive strategies include the use of internally expressed antibodies to target oncogenic proteins (intrabodies) and the use of antisense technology (antisense oligonucleotides, antigenes, and ribozymes). This report will concentrate more on novel genes encoding prodrug activating enzymes, so-called suicide genes (Herpes simplex virus thymidine kinase, Escherichia coli nitroreductase, E. (ABSTRACT TRUNCATED)
Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...
Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA.
Zelensky, Alex N; Schimmel, Joost; Kool, Hanneke; Kanaar, Roland; Tijsterman, Marcel
2017-07-07
Off-target or random integration of exogenous DNA hampers precise genomic engineering and presents a safety risk in clinical gene therapy strategies. Genetic definition of random integration has been lacking for decades. Here, we show that the A-family DNA polymerase θ (Pol θ) promotes random integration, while canonical non-homologous DNA end joining plays a secondary role; cells double deficient for polymerase θ and canonical non-homologous DNA end joining are devoid of any integration events, demonstrating that these two mechanisms define random integration. In contrast, homologous recombination is not reduced in these cells and gene targeting is improved to 100% efficiency. Such complete reversal of integration outcome, from predominately random integration to exclusively gene targeting, provides a rational way forward to improve the efficacy and safety of DNA delivery and gene correction approaches.Random off-target integration events can impair precise gene targeting and poses a safety risk for gene therapy. Here the authors show that repression of polymerase θ and classical non-homologous recombination eliminates random integration.
Geller, Bruce L.; Mellbye, Brett; Lane, Douglas; Iversen, Patrick L.; Bavari, Sina
2012-01-01
Targeting bacterial essential genes using antisense phosphorodiamidate morpholino oligomers (PMOs) represents an important strategy in the development of novel antibacterial therapeutics. PMOs are neutral DNA analogues that inhibit gene expression in a sequence-specific manner. In this study, several cationic, membrane-penetrating peptides were conjugated to PMOs (PPMOs) that target 2 bacterial essential genes: acyl carrier protein (acpP) and gyrase A (gyrA). These were tested for their ability to inhibit growth of Bacillus anthracis, a gram-positive spore-forming bacterium and causative agent of anthrax. PPMOs targeted upstream of both target gene start codons and conjugated with the bacterium-permeating peptide (RFF)3R were found to be most effective in inhibiting bacterial growth in vitro. Both of the gene-targeted PPMOs protected macrophages from B. anthracis induced cell death. Subsequent, in vivo testing of the PPMOs resulted in increased survival of mice challenged with the virulent Ames strain of B. anthracis. Together, these studies suggest that PPMOs targeting essential genes have the potential of being used as antisense antibiotics to treat B. anthracis infections. PMID:22978365