Sample records for target genes cyp3a4

  1. [Toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect].

    PubMed

    Liao, R Y; Liu, S

    2016-06-20

    To investigate the toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect. The normal human liver cells (L02 cells) and liver cells with CYP3A4 gene defect were exposed to trichloroethylene at different doses (0.0, 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L). CCK8 assay and RT-qPCR were used to measure cell viability and changes in the expression of apoptosis genes and oncogenes. After being exposed to trichloroethylene at doses of 1.6, 3.2, and 6.4 mmol/L, the liver cells with CYP3A4 gene defect showed significantly higher cell viability than L02 cells (0.91±0.06/0.89±0.05/0.85±0.07 vs 0.80±0.04/0.73±0.06/0.67±0.07, P<0.05). The L02 cells in the 0.8~3.2 mmol/L trichloroethylene groups showed significant increases in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 (P<0.05) , as well as the oncogenes c-myc, c-fos, and k-ras (P<0.05). Compared with the L02 cells, the cells with CYP3A4 gene defect showed significant reductions in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 and the oncogenes c-myc, c-fos, and k-ras (P<0.05). Trichloroethylene exposure has a less effect on the expression of apoptosis genes and oncogenes in liver cells with CYP3A4 gene defect than in normal human liver cells, suggesting that CYP3A4 gene defect reduces the inductive effect of trichloroethylene on apoptosis genes and oncogenes.

  2. Analysis of single-nucleotide polymorphisms (SNPs) in human CYP3A4 and CYP3A5 genes: potential implications for the metabolism of HIV drugs

    PubMed Central

    2014-01-01

    Background Drug metabolism via the cytochrome P450 (CYP450) system has emerged as an important determinant in the occurrence of several drug interactions (adverse drug reactions, reduced pharmacological effect, drug toxicities). In particular, CYP3A4 and CYP3A5 (interacting with more than 60% of licensed drugs) exhibit the most individual variations of gene expression, mostly caused by single nucleotide polymorphisms (SNPs) within the regulatory region of the CYP3A4 and CYP3A5 genes which might affect the level of enzyme production. In this study, we sought to improve the performance of sensitive screening for CYP3A polymorphism detection in twenty HIV-1 infected patients undergoing lopinavir/ritonavir (LPV/r) monotherapy. Methods The study was performed by an effective, easy and inexpensive home-made Polymerase Chain Reaction Direct Sequencing approach for analyzing CYP3A4 and CYP3A5 genes which can detect both reported and unreported genetic variants potentially associated with altered or decreased functions of CYP3A4 and CYP3A5 proteins. Proportions and tests of association were used. Results Among the genetic variants considered, CYP3A4*1B (expression of altered function) was only found in 3 patients (15%) and CYP3A5*3 (expression of splicing defect) in 3 other patients (15%). CYP3A5*3 did not appear to be associated with decreased efficacy of LPV/r in any patient, since none of the patients carrying this variant showed virological rebound during LPV/r treatment or low levels of TDM. In contrast, low-level virological rebound was observed in one patient and a low TDM level was found in another; both were carrying CYP3A4*1B. Conclusions Our method exhibited an overall efficiency of 100% (DNA amplification and sequencing in our group of patients). This may contribute to producing innovative results for better understanding the inter-genotypic variability in gene coding for CYP3A, and investigating SNPs as biological markers of individual response to drugs

  3. Assessment of human pregnane X receptor involvement in pesticide-mediated activation of CYP3A4 gene.

    PubMed

    Matsubara, Tsutomu; Noracharttiyapot, Wachiraporn; Toriyabe, Takayoshi; Yoshinari, Kouichi; Nagata, Kiyoshi; Yamazoe, Yasushi

    2007-05-01

    Assessment of foreign chemical inducibility on CYP3A4 is necessary to optimize drug therapies. The properties of chemicals such as pesticides, however, are not well investigated. In the present study, properties of various pesticides on human CYP3A4 induction have been tested using HepG2-derived cells stably expressing the CYP3A4 promoter/enhancer (3-1-10 cells) and the human pregnane X receptor (hPXR)-small interfering RNA (siRNA) system. Among the examined pesticides, 13 pesticides were observed to activate the CYP3A4 gene. Surprisingly, pyributicarb was found to increase the CYP3A4 reporter activity at 0.1 to 1 microM more strongly than typical CYP3A4 inducer rifampicin. Expression of hPXR-siRNA clearly diminished the pyributicarb-stimulated CYP3A4 reporter activity in 3-1-10 cells and decreased the endogenous CYP3A4 mRNA levels in HepG2 cells. Pyributicarb caused enhancement of CYP3A4-derived reporter activity in mouse livers introduced with hPXR by adenovirus. These results indicate pyributicarb as a potent activator of CYP3A4 gene, suggesting the existence of pesticides leading to CYP3A4 induction in our environment.

  4. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease.

    PubMed

    Bhatnagar, Vibha; Garcia, Erin P; O'Connor, Daniel T; Brophy, Victoria H; Alcaraz, John; Richard, Erin; Bakris, George L; Middleton, John P; Norris, Keith C; Wright, Jackson; Hiremath, Leena; Contreras, Gabriel; Appel, Lawrence J; Lipkowitz, Michael S

    2010-01-01

    To explore the association between CYP3A4 and CYP3A5 gene polymorphisms and blood pressure response to amlodipine among participants from the African-American Study of Kidney Disease and Hypertension Trial randomized to amlodipine (n = 164). Cox proportional hazards models were used to determine the risk of reaching a target mean arterial pressure (MAP) of < or =107 mm Hg by CYP3A4 (A-392G and T16090C) and CYP3A5 (A6986G) gene polymorphisms, stratified by MAP randomization group (low or usual) and controlling for other predictors for blood pressure response. Women randomized to a usual MAP goal with an A allele at CYP3A4 A-392G were more likely to reach a target MAP of 107 mm Hg. The adjusted hazard ratio (AA/AG compared to GG) with 95% confidence interval was 3.41 (1.20-9.64; p = 0.020). Among participants randomized to a lower MAP goal, those with the C allele at CYP3A4 T16090C were more likely to reach target MAP: The adjusted hazard ratio was 2.04 (1.17-3.56; p = 0.010). After adjustment for multiple testing using a threshold significance level of p = 0.016, only the CYP3A4 T16090C SNP remained significant. CYP3A5 A6986G was not associated with blood pressure response. Our findings suggest that blood pressure response to amlodipine among high-risk African-Americans appears to be determined by CYP3A4 genotypes, and sex specificity may be an important consideration. Clinical applications of CYP3A4 genotype testing for individualized treatment regimens warrant further study. Copyright (c) 2009 S. Karger AG, Basel.

  5. Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans?

    PubMed Central

    2010-01-01

    Background Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies. Methods Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients. Results We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). CYP3A4*1B, CYP3A5*3 and CYP3A5*6 alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. CYP3A5*1/CYP3A5*1 and CYP3A5*1/CYP3A5*3 genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin. Conclusion A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders. PMID:20630055

  6. Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans?

    PubMed

    Kudzi, William; Dodoo, Alexander N O; Mills, Jeremy J

    2010-07-14

    Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies. Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients. We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). CYP3A4*1B, CYP3A5*3 and CYP3A5*6 alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. CYP3A5*1/CYP3A5*1 and CYP3A5*1/CYP3A5*3 genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin. A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders.

  7. CYP3A4 and CYP3A5 Polymorphisms and Blood Pressure Response to Amlodipine among African-American Men and Women with Early Hypertensive Renal Disease

    PubMed Central

    Bhatnagar, Vibha; Garcia, Erin P.; O’Connor, Daniel T.; Brophy, Victoria H.; Alcaraz, John; Richard, Erin; Bakris, George L.; Middleton, John P.; Norris, Keith C.; Wright, Jackson; Hiremath, Leena; Contreras, Gabriel; Appel, Lawrence J.; Lipkowitz, Michael S.

    2010-01-01

    Purpose To explore the association between CYP3A4 and CYP3A5 gene polymorphisms and blood pressure response to amlodipine among participants from the African-American Study of Kidney Disease and Hypertension Trial randomized to amlodipine (n = 164). Methods Cox proportional hazards models were used to determine the risk of reaching a target mean arterial pressure (MAP) of ≤107 mm Hg by CYP3A4 (A–392G and T16090C) and CYP3A5 (A6986G) gene polymorphisms, stratified by MAP randomization group (low or usual) and controlling for other predictors for blood pressure response. Results Women randomized to a usual MAP goal with an A allele at CYP3A4 A–392G were more likely to reach a target MAP of 107 mm Hg. The adjusted hazard ratio (AA/AG compared to GG) with 95% confidence interval was 3.41 (1.20–9.64; p = 0.020). Among participants randomized to a lower MAP goal, those with the C allele at CYP3A4 T16090C were more likely to reach target MAP: The adjusted hazard ratio was 2.04 (1.17–3.56; p = 0.010). After adjustment for multiple testing using a threshold significance level of p = 0.016, only the CYP3A4 T16090C SNP remained significant. CYP3A5 A6986G was not associated with blood pressure response. Conclusions Our findings suggest that blood pressure response to amlodipine among high-risk African-Americans appears to be determined by CYP3A4 genotypes, and sex specificity may be an important consideration. Clinical applications of CYP3A4 genotype testing for individualized treatment regimens warrant further study. PMID:19907160

  8. Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor.

    PubMed

    Kumagai, Takeshi; Aratsu, Yusuke; Sugawara, Ryosuke; Sasaki, Takamitsu; Miyairi, Shinichi; Nagata, Kiyoshi

    2016-04-01

    Ban-Lan-Gen is the common name for the dried roots of indigo plants, including Polygonum tinctorium, Isatis indigotica, Isatis tinctoria, and Strobilanthes cusia. Ban-Lan-Gen is frequently used as an anti-inflammatory and an anti-viral for the treatment of hepatitis, influenza, and various types of inflammation. One of the cytochrome P450 (CYP) enzymes, CYP3A4, is responsible for the metabolism of a wide variety of xenobiotics, including an estimated 60% of all clinically used drugs. In this study, we investigated the effect of Ban-Lan-Gen on the transcriptional activation of the CYP3A4 gene. Ban-Lan-Gen extract increased CYP3A4 gene reporter activity in a dose-dependent manner. Indirubin, one of the biologically active ingredients in the Ban-Lan-Gen, also dose-dependently increased CYP3A4 gene reporter activity. Expression of short hairpin RNA for the human pregnane X receptor (hPXR-shRNA) inhibited CYP3A4 gene reporter activity, and overexpression of human PXR increased indirubin- and rifampicin-induced CYP3A4 gene reporter activity. Furthermore, indirubin induced CYP3A4 mRNA expression in HepG2 cells. Taken together, these results indicate that indirubin, a component of Ban-Lan-Gen, activated CYP3A4 gene transcription through the activation of the human PXR. Copyright © 2016. Published by Elsevier Ltd.

  9. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR

    PubMed Central

    Pondugula, Satyanarayana R.; Flannery, Patrick C.; Abbott, Kodye L.; Coleman, Elaine S.; Mani, Sridhar; Samuel, Temesgen; Xie, Wen

    2015-01-01

    Activation of human pregnane X receptor (hPXR)-regulated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1) plays an important role in mediating adverse drug interactions. Given the common use of natural products as part of adjunct human health behavior, there is a growing concern about natural products for their potential to induce undesired drug interactions through the activation of hPXR-regulated CYP3A4 and MDR1. Here, we studied whether 3,3′-diindolylmethane (DIM), a natural health supplement, could induce hPXR-mediated regulation of CYP3A4 and MDR1 in human hepatocytes and intestinal cells. DIM, at its physiologically relevant concentrations, not only induced hPXR transactivation of CYP3A4 promoter activity but also induced gene expression of CYP3A4 and MDR1. DIM decreased intracellular accumulation of MDR1 substrate rhodamine 123, suggesting that DIM induces the functional expression of MDR1. Pharmacologic inhibition or genetic knockdown of hPXR resulted in attenuation of DIM induced CYP3A4 and MDR1 gene expression, suggesting that DIM induces CYP3A4 and MDR1 in an hPXR-dependent manner. Together, these results support our conclusion that DIM induces hPXR-regulated CYP3A4 and MDR1 gene expression. The inductive effects of DIM on CYP3A4 and MDR1 expression caution the use of DIM in conjunction with other medications metabolized and transported via CYP3A4 and MDR1, respectively. PMID:25542144

  10. CYP3A4 and CYP3A5 genotyping by Pyrosequencing

    PubMed Central

    Garsa, Adam A; McLeod, Howard L; Marsh, Sharon

    2005-01-01

    Background Human cytochrome P450 3A enzymes, particularly CYP3A4 and CYP3A5, play an important role in drug metabolism. CYP3A expression exhibits substantial interindividual variation, much of which may result from genetic variation. This study describes Pyrosequencing assays for key SNPs in CYP3A4 (CYP3A4*1B, CYP3A4*2, and CYP3A4*3) and CYP3A5 (CYP3A5*3C and CYP3A5*6). Methods Genotyping of 95 healthy European and 95 healthy African volunteers was performed using Pyrosequencing. Linkage disequilibrium, haplotype inference, Hardy-Weinberg equilibrium, and tag SNPs were also determined for these samples. Results CYP3A4*1B allele frequencies were 4% in Europeans and 82% in Africans. The CYP3A4*2 allele was found in neither population sample. CYP3A4*3 had an allele frequency of 2% in Europeans and 0% in Africans. The frequency of CYP3A5*3C was 94% in Europeans and 12% in Africans. No CYP3A5*6 variants were found in the European samples, but this allele had a frequency of 16% in the African samples. Allele frequencies and haplotypes show interethnic variation, highlighting the need to analyze clinically relevant SNPs and haplotypes in a variety of ethnic groups. Conclusion Pyrosequencing is a versatile technique that could improve the efficiency of SNP analysis for pharmacogenomic research with the ultimate goal of pre-screening patients for individual therapy selection. PMID:15882469

  11. Mutation analysis of the human CYP3A4 gene 5' regulatory region: population screening using non-radioactive SSCP.

    PubMed

    Hamzeiy, Hossein; Vahdati-Mashhadian, Nasser; Edwards, Helen J; Goldfarb, Peter S

    2002-03-20

    Human CYP3A4 is the major cytochrome P450 isoenzyme in adult human liver and is known to metabolise many xenobiotic and endogenous compounds. There is substantial inter-individual variation in the hepatic levels of CYP3A4. Although, polymorphic mutations have been reported in the 5' regulatory region of the CYP3A4 gene, those that have been investigated so far do not appear to have any effect on gene expression. To determine whether other mutations exist in this region of the gene, we have performed a new population screen on a panel of 101 human DNA samples. A 1140 bp section of the 5' proximal regulatory region of the CYP3A4 gene, containing numerous regulatory motifs, was amplified from genomic DNA as three overlapping segments. The 300 bp distal enhancer region at -7.9kb containing additional regulatory motifs was also amplified. Mutation analysis of the resulting PCR products was carried out using non-radioactive single strand conformation polymorphism (SSCP) and confirmatory sequencing of both DNA strands in those samples showing extra SSCP bands. In addition to detection of the previously reported CYP3A4*1B allele in nine subjects, three novel alleles were found: CYP3A4*1E (having a T-->A transversion at -369 in one subject), CYP3A4*1F (having a C-->G tranversion at -747 in 17 subjects) and CYP3A4*15B containing a nine-nucleotide insertion between -845 and -844 linked to an A-->G transition at -392 and a G-->A transition in exon 6 (position 485 in the cDNA) in one subject. All the novel alleles were heterozygous. No mutations were found in the upstream distal enhancer region. Our results clearly indicate that this rapid and simple SSCP approach can reveal mutant alleles in drug metabolising enzyme genes. Detection and determination of the frequency of novel alleles in CYP3A4 will assist investigation of the relationship between genotype, xenobiotic metabolism and toxicity in the CYP3A family of isoenzymes.

  12. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population

    PubMed Central

    Han, Jun Hyun; Lee, Yong Seong; Kim, Hae Jong; Lee, Shin Young; Myung, Soon Chul

    2015-01-01

    In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa) in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP) database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese) in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1), locations (SNPs in exons were preferred), and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2) (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04–2.18) was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02–3.43) was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04–3.68) and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07–4.11) showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men. PMID:25337833

  13. Association between cytochrome CYP17A1, CYP3A4, and CYP3A43 polymorphisms and prostate cancer risk and aggressiveness in a Korean study population.

    PubMed

    Han, Jun Hyun; Lee, Yong Seong; Kim, Hae Jong; Lee, Shin Young; Myung, Soon Chul

    2015-01-01

    In this study, we evaluated genetic variants of the androgen metabolism genes CYP17A1, CYP3A4, and CYP3A43 to determine whether they play a role in the development of prostate cancer (PCa) in Korean men. The study population included 240 pathologically diagnosed cases of PCa and 223 age-matched controls. Among the 789 single-nucleotide polymorphism (SNP) database variants detected, 129 were reported in two Asian groups (Han Chinese and Japanese) in the HapMap database. Only 21 polymorphisms of CYP17A1, CYP3A4, and CYP3A43 were selected based on linkage disequilibrium in Asians (r2 = 1), locations (SNPs in exons were preferred), and amino acid changes and were assessed. In addition, we performed haplotype analysis for the 21 SNPs in CYP17A1, CYP3A4, and CYP3A43 genes. To determine the association between genotype and haplotype distributions of patients and controls, logistic analyses were carried out, controlling for age. Twelve sequence variants and five major haplotypes were identified in CYP17A1. Five sequence variants and two major haplotypes were identified in CYP3A4. Four sequence variants and four major haplotypes were observed in CYP3A43. CYP17A1 haplotype-2 (Ht-2) (odds ratio [OR], 1.51; 95% confidence interval [CI], 1.04-2.18) was associated with PCa susceptibility. CYP3A4 Ht-2 (OR: 1.87; 95% CI: 1.02-3.43) was associated with PCa metastatic potential according to tumor stage. rs17115149 (OR: 1.96; 95% CI: 1.04-3.68) and CYP17A1 Ht-4 (OR: 2.01; 95% CI: 1.07-4.11) showed a significant association with histologic aggressiveness according to Gleason score. Genetic variants of CYP17A1 and CYP3A4 may play a role in the development of PCa in Korean men.

  14. Gene-gene-environment interactions between drugs, transporters, receptors, and metabolizing enzymes: Statins, SLCO1B1, and CYP3A4 as an example.

    PubMed

    Sadee, Wolfgang

    2013-09-01

    Pharmacogenetic biomarker tests include mostly specific single gene-drug pairs, capable of accounting for a portion of interindividual variability in drug response and toxicity. However, multiple genes are likely to contribute, either acting independently or epistatically, with the CYP2C9-VKORC1-warfarin test panel, an example of a clinically used gene-gene-dug interaction. I discuss here further instances of gene-gene-drug interactions, including a proposed dynamic effect on statin therapy by genetic variants in both a transporter (SLCO1B1) and a metabolizing enzyme (CYP3A4) in liver cells, the main target site where statins block cholesterol synthesis. These examples set a conceptual framework for developing diagnostic panels involving multiple gene-drug combinations. Copyright © 2013 Wiley Periodicals, Inc.

  15. A PXR reporter gene assay in a stable cell culture system: CYP3A4 and CYP2B6 induction by pesticides.

    PubMed

    Lemaire, Géraldine; de Sousa, Georges; Rahmani, Roger

    2004-12-15

    A stable hepatoma cell line expressing the human pregnane X receptor (hPXR) and the cytochrome P4503A4 (CYP3A4) distal and proximal promoters plus the luciferase reporter gene was developed to assess the ability of several xenobiotic agents to induce CYP3A4 and CYP2B6. After selection for neomycin resistance, one clone, displaying high luciferase activity in response to rifampicin (RIF), was isolated and the stable expression of hPXR was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Dose-response curves were generated by treating these cells with increasing concentrations of RIF, phenobarbital (PB), clotrimazole (CLOT) or 5beta-pregnane-3,20-dione (5beta-PREGN). The effective concentrations for half maximal response (EC50) were determined for each of these compounds. RIF was the most effective compound, with maximal luciferase activity induced at 10 microM. The agonist activities of PXR-specific inducers measured using our stable model were consistent with those measured in transient transfectants. The abilities of organochlorine (OC), organophosphate (OP) and pyrethroid pesticides (PY) to activate hPXR were also assessed and found to be consistent with the abilities of these compounds to induce CYP3A4 and CYP2B6 in primary culture of human hepatocytes. These results suggest that CYP3A4 and CYP2B6 regulation through PXR activation by persistent pesticides may have an impact on the metabolism of xenobiotic agents and endogenous steroid hormones. Our model provides a useful tool for studying hPXR activation and for identifying agents capable of inducing CYP3A4 and CYP2B6.

  16. Gene structure of CYP3A4, an adult-specific form of cytochrome P450 in human livers, and its transcriptional control.

    PubMed

    Hashimoto, H; Toide, K; Kitamura, R; Fujita, M; Tagawa, S; Itoh, S; Kamataki, T

    1993-12-01

    CYP3 A4 is the adult-specific form of cytochrome P450 in human livers [Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K. & Kamataki, T. (1990) Biochemistry 29, 4430-4433]. The sequences of three genomic clones for CYP3A4 were analyzed for all exons, exon-intron junctions and the 5'-flanking region from the major transcription site to nucleotide position -1105, and compared with those of the CYP3A7 gene, a fetal-specific form of cytochrome P450 in humans. The results showed that the identity of 5'-flanking sequences between CYP3A4 and CYP3A7 genes was 91%, and that each 5'-flanking region had characteristic sequences termed as NFSE (P450NF-specific element) and HFLaSE (P450HFLa specific element), respectively. A basic transcription element (BTE) also lay in the 5'-flanking region of the CYP3A4 gene as seen in many CYP genes [Yanagida, A., Sogawa, K., Yasumoto, K. & Fujii-Kuriyama, Y. (1990) Mol. Cell. Biol. 10, 1470-1475]. The BTE binding factor (BTEB) was present in both adult and fetal human livers. To examine the transcriptional activity of the CYP3A4 gene, DNA fragments in the 5'-flanking region of the gene were inserted in front of the simian virus 40 promoter and the chloramphenicol acetyltransferase structural gene, and the constructs were transfected in HepG2 cells. The analysis of the chloramphenicol acetyltransferase activity indicated that (a) specific element(s) which could bind with a factor(s) in livers was present in the 5'-flanking region of the CYP3A4 gene to show the transcriptional activity.

  17. Analysis of CYP3A4 genetic polymorphisms in Han Chinese.

    PubMed

    Zhou, Qing; Yu, Xiaomin; Shu, Chang; Cai, Yimei; Gong, Wei; Wang, Xumin; Wang, Duen-mei; Hu, Songnian

    2011-06-01

    Our study aimed to comprehensively investigate the genetic polymorphisms of CYP3A4 in Han Chinese. We sequenced the gene regions of CYP3A4, including its promoter, exons, surrounding introns and 3' untranslated region (3'UTR), from 100 unrelated-healthy Han Chinese individuals. We detected 11 SNPs, three of which are novel. According to in silico functional prediction of novel variants, 20148 A>G in exon 10, resulting in substitution of Tyr319 with Cys (CYP3A4*21), may induce dramatic alteration of protein conformation, and 26908 G>A in 3'UTR may disrupt post-transcriptional regulation. We identified five alleles in Han Chinese, the allele frequencies of CYP3A4*1, *5, *6, *18 and *21 are 97, 0.5, 1, 1 and 0.5%, respectively. Haplotype inference revealed 14 haplotypes, of which the major haplotype CYP3A4*1A constitutes 59% of the total chromosomes. We also examined the possible role of natural selection in shaping the variation of CYP3A4 and confirmed a trend, consistent with the action of positive selection. We systematically screened the genetic polymorphisms of CYP3A4 in Han Chinese, highlighted possible functional impairment of the novel allele and summarized the distinct allele and haplotype frequency distribution, with an emphasis on detecting the footprint of recent positive selection on the CYP3A4 gene in Han Chinese.

  18. Systematic screening for CYP3A4 genetic polymorphisms in a Han Chinese population.

    PubMed

    Hu, Guo-Xin; Dai, Da-Peng; Wang, Hao; Huang, Xiang-Xin; Zhou, Xiao-Yang; Cai, Jie; Chen, Hao; Cai, Jian-Ping

    2017-03-01

    To systematically investigate the genetic polymorphisms of the CYP3A4 gene in a Han Chinese population. The promoter and exons of CYP3A4 gene in 1114 unrelated, healthy Han Chinese subjects were amplified and genotyped by direct sequencing. In total, five previously reported alleles (*1G, *4, *5, *18B and *23) were detected, of which one allele (*23) was reported for the first time in Han Chinese population. Additionally, seven novel exonic variants were also identified and designated as new alleles CYP3A4*28-*34. This study provides the most comprehensive data of CYP3A4 polymorphisms in Han Chinese population and detects the largest number of novel CYP3A4 alleles in one ethnic group.

  19. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population.

    PubMed

    Fukushima-Uesaka, Hiromi; Saito, Yoshiro; Watanabe, Hidemi; Shiseki, Kisho; Saeki, Mayumi; Nakamura, Takahiro; Kurose, Kouichi; Sai, Kimie; Komamura, Kazuo; Ueno, Kazuyuki; Kamakura, Shiro; Kitakaze, Masafumi; Hanai, Sotaro; Nakajima, Toshiharu; Matsumoto, Kenji; Saito, Hirohisa; Goto, Yu-ichi; Kimura, Hideo; Katoh, Masaaki; Sugai, Kenji; Minami, Narihiro; Shirao, Kuniaki; Tamura, Tomohide; Yamamoto, Noboru; Minami, Hironobu; Ohtsu, Atsushi; Yoshida, Teruhiko; Saijo, Nagahiro; Kitamura, Yutaka; Kamatani, Naoyuki; Ozawa, Shogo; Sawada, Jun-ichi

    2004-01-01

    In order to identify single nucleotide polymorphisms (SNPs) and haplotype frequencies of CYP3A4 in a Japanese population, the distal enhancer and proximal promoter regions, all exons, and the surrounding introns were sequenced from genomic DNA of 416 Japanese subjects. We found 24 SNPs, including 17 novel ones: two in the distal enhancer, four in the proximal promoter, one in the 5'-untranslated region (UTR), seven in the introns, and three in the 3'-UTR. The most common SNP was c.1026+12G>A (IVS10+12G>A), with a 0.249 frequency. Four non-synonymous SNPs, c.554C>G (p.T185S, CYP3A4(*)16), c.830_831insA (p.E277fsX8, (*)6), c.878T>C (p.L293P, (*)18), and c.1088 C>T (p.T363M, (*)11) were found with frequencies of 0.014, 0.001, 0.028, and 0.002, respectively. No SNP was found in the known nuclear transcriptional factor-binding sites in the enhancer and promoter regions. Using these 24 SNPs, 16 haplotypes were unambiguously identified, and nine haplotypes were inferred by aid of an expectation-maximization-based program. In addition, using data from 186 subjects enabled a close linkage to be found between CYP3A4 and CYP3A5 SNPs, especially among the SNPs at c.1026+12 in CYP3A4 and c.219-237 (IVS3-237, a key SNP site for CYP3A5(*)3), c.865+77 (IVS9+77) and c.1523 in CYP3A5. This result suggested that CYP3A4 and CYP3A5 are within the same gene block. Haplotype analysis between CYP3A4 and CYP3A5 revealed several major haplotype combinations in the CYP3A4-CYP3A5 block. Our findings provide fundamental and useful information for genotyping CYP3A4 (and CYP3A5) in the Japanese, and probably Asian populations. Copyright 2003 Wiley-Liss, Inc.

  20. Phylogenetic analysis of the cytochrome P450 3 (CYP3) gene family.

    PubMed

    McArthur, Andrew G; Hegelund, Tove; Cox, Rachel L; Stegeman, John J; Liljenberg, Mette; Olsson, Urban; Sundberg, Per; Celander, Malin C

    2003-08-01

    Cytochrome P450 genes (CYP) constitute a superfamily with members known from the Bacteria, Archaea, and Eukarya. The CYP3 gene family includes the CYP3A and CYP3B subfamilies. Members of the CYP3A subfamily represent the dominant CYP forms expressed in the digestive and respiratory tracts of vertebrates. The CYP3A enzymes metabolize a wide variety of chemically diverse lipophilic organic compounds. To understand vertebrate CYP3 diversity better, we determined the killifish (Fundulus heteroclitus) CYP3A30 and CYP3A56 and the ball python (Python regius) CYP3A42 sequences. We performed phylogenetic analyses of 45 vertebrate CYP3 amino acid sequences using a Bayesian approach. Our analyses indicate that teleost, diapsid, and mammalian CYP3A genes have undergone independent diversification and that the ancestral vertebrate genome contained a single CYP3A gene. Most CYP3A diversity is the product of recent gene duplication events. There is strong support for placement of the guinea pig CYP3A genes within the rodent CYP3A diversification. The rat, mouse, and hamster CYP3A genes are mixed among several rodent CYP3A subclades, indicative of a complex history involving speciation and gene duplication.

  1. Pharmacogenetics in American Indian populations: analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes.

    PubMed

    Fohner, Alison; Muzquiz, LeeAnna I; Austin, Melissa A; Gaedigk, Andrea; Gordon, Adam; Thornton, Timothy; Rieder, Mark J; Pershouse, Mark A; Putnam, Elizabeth A; Howlett, Kevin; Beatty, Patrick; Thummel, Kenneth E; Woodahl, Erica L

    2013-08-01

    Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. We resequenced CYP2D6 in 187 CSKT individuals and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT individuals. We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9, and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. These results highlight the importance of carrying out pharmacogenomic research in AI/AN populations and show that extrapolation from other populations is not appropriate. This information could help optimize drug therapy for the CSKT population.

  2. Pharmacogenetics in American Indian Populations: Analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes

    PubMed Central

    Fohner, Alison; Muzquiz, LeeAnna I.; Austin, Melissa A.; Gaedigk, Andrea; Gordon, Adam; Thornton, Timothy; Rieder, Mark J.; Pershouse, Mark A.; Putnam, Elizabeth A.; Howlett, Kevin; Beatty, Patrick; Thummel, Kenneth E.; Woodahl, Erica L.

    2014-01-01

    Objectives Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. Methods We resequenced CYP2D6 in 187 CSKT subjects and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT subjects. Results We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9 and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. Conclusions These results highlight the importance of conducting pharmacogenomic research in AI/AN populations and demonstrate that extrapolation from other populations is not appropriate. This information could help to optimize drug therapy for the CSKT population. PMID:23778323

  3. CAR/PXR provide directives for Cyp3a41 gene regulation differently from Cyp3a11.

    PubMed

    Anakk, S; Kalsotra, A; Kikuta, Y; Huang, W; Zhang, J; Staudinger, J L; Moore, D D; Strobel, H W

    2004-01-01

    This study reports that Cyp3a41 gene contains 13 exons and is localized on the chromosome 5. CYP3A41 is a female-specific isoform that is predominantly expressed in the liver. Estrogen signaling is not responsible for its female specificity. CYP3A41 expression in kidney and brain is observed only in 50% of mice examined. PXR mediates dexamethasone-dependent suppression of CYP3A41. In contrast to CYP3A11, CYP3A41 expression is not induced by pregnenolone-16alpha-carbonitrile (PCN) in wild-type mice, but is significantly suppressed by PCN in PXR(-/-) mice. Phenobarbital and TCPOBOP induce CYP3A11 expression only in the presence of CAR, but have no effect on CYP3A41 expression. Immunoblot and erythromycin demethylase activity analysis reveal robust CYP3A induction after PCN treatment, which is poorly correlated to CYP3A41. These findings suggest a differential role for CAR/PXR in regulating individual CYP3A isoforms by previously characterized CYP3A inducers.

  4. Drosophila CYP6g1 and its human homolog CYP3A4 confer tolerance to methylmercury during development

    PubMed Central

    Rand, Matthew D.; Lowe, Jessica A.; Mahapatra, Cecon T.

    2012-01-01

    Methylmercury (MeHg) is a persistent environmental toxicant that is commonly encountered through dietary fish and seafood. While the fetal nervous system is a well-known primary target for MeHg toxicity, the risks of MeHg exposures that are commonly experienced today through diet and environmental exposure remain uncertain. Despite knowledge of numerous cellular processes that are affected by MeHg, the mechanisms that ultimately influence tolerance or susceptibility to MeHg in the developing fetus are not well understood. Using transcriptomic analyses of developing brains of MeHg tolerant and susceptible strains of Drosophila, we previously identified members of the cytochrome p450 (CYP) family of monooxygenases/oxidoreductases as candidate MeHg tolerance genes. While CYP genes encode Phase I enzymes best known for xenobiotic metabolism in the liver, several classes of CYPs are required for synthesis or degradation of essential endobiotics, such as hormones and fatty acids, that are critical to normal development. We now demonstrate that variation in expression CYP genes can strongly influence MeHg tolerance in the developing fly. Importantly, modulating expression of a single CYP, CYP6g1, specifically in neurons or the fat body (liver equivalent) is sufficient to rescue development in the presence of MeHg. We also demonstrate a conserved function for CYP3A4, a human homolog of CYP6g1, in conferring MeHg tolerance to flies. Finally, we show that pharmacological induction of CYPs with caffeine parallels an increase in tolerance to MeHg in developing flies. These findings establish a previously unidentified role for CYPs in MeHg toxicity and point to a potentially conserved role of CYP genes to influence susceptibility to MeHg toxicity across species. PMID:22699155

  5. Endosulfan-alpha Induces CYP26 and CYP3A4 by Activating the Pregnane X Receptor But Not the Constitutive Androstane Receptor

    DTIC Science & Technology

    2006-01-01

    CYP3A4 gene expression by organochlorine pesticides . Biochem Pharmacol 64:1513-1519. Dinham B (1993) The Pesticide Hazard. A Global Health and...Coumoul X, Diry M and Barouki R (2002) PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides . Biochem Pharmacol 64:1513...system: CYP3A4 and CYP2B6 induction by pesticides . Biochem Pharmacol 68:2347-2358. 71 Nelson D (2003) Cytochrome P450 Homepage (http

  6. Association of polymorphisms in CYP19A1 and CYP3A4 genes with lower urinary tract symptoms, prostate volume, uroflow and PSA in a population-based sample.

    PubMed

    Berges, Richard; Gsur, Andrea; Feik, Elisabeth; Höfner, Klaus; Senge, Theodor; Pientka, Ludger; Baierl, Andreas; Michel, Martin C; Ponholzer, Anton; Madersbacher, Stephan

    2011-04-01

    The known importance of testosterone for the development of benign prostatic hyperplasia (BPH) prompted us to test the hypothesis whether polymorphisms of two genes (CYP19A1 and CYP3A4) involved in testosterone metabolism are associated with clinical BPH-parameters. A random sample of the population-based Herne lower urinary tract symptoms cohort was analysed. All these men underwent a detailed urological work-up. Two polymorphisms in the CYP19A1 gene [rs700518 in exon 4 (A57G); rs10046 at the 3'UTR(C268T)] and one in the 3'UTR of CYP3A4 [rs2740574 (A392G)] were determined by TaqMan assay from genomic DNA of peripheral blood. These polymorphisms were correlated to clinical and laboratory BPH-parameters. A total of 392 men (65.4 ± 7.0 years; 52-79 years) were analysed. Mean International Prostate Symptom Score (IPSS; 7.5), Q (max) (15.4 ml/s), prostate volume (31 ml) and prostate specific antigen (PSA) (1.8 ng/ml) indicated a typical elderly population. Both polymorphisms in the CYP19A1 gene were not correlated to age, IPSS, Q (max), prostate volume and post-void residual volume. Serum PSA was higher in men carrying the heterozygous rs10046 genotype (2.0 ± 0.1 ng/ml) than in those with the CC-genotype (1.7 ± 0.2 ng/ml, P = 0.012). Men carrying one a mutated allele of the CYP3A4 gene had smaller prostates (27.0 ± 2.0 vs. 32 ± 0.8 ml, P = 0.02) and lower PSA levels (1.6 ± 0.3 vs. 1.9 ± 0.1 ng/ml). The inconsistent associations observed herein and for other gene polymorphisms warrant further studies. In general, the data regarding the association of gene polymorphism to BPH-parameters suggest that this disease is caused by multiple rather than a single genetic variant. A rigorous patient selection based on anatomo-pathological and hormonal profile may possible reduce the number of confounders for future studies thus enabling a more detailed assessment of the association between genetic factors and BPH-parameters.

  7. Fluticasone Propionate Pharmacogenetics: CYP3A4*22 Polymorphism and Pediatric Asthma Control

    PubMed Central

    Stockmann, Chris; Fassl, Bernhard; Gaedigk, Roger; Nkoy, Flory; Uchida, Derek A.; Monson, Steven; Reilly, Christopher A.; Leeder, J. Steven; Yost, Garold S.; Ward, Robert M.

    2012-01-01

    Objective To determine the relationship between allelic variations in genes involved in fluticasone propionate (FP) metabolism and asthma control among children with asthma managed with inhaled FP. Study design The relationship between variability in asthma control scores and genetic variation in drug metabolism was assessed by genotyping nine single nucleotide polymorphisms (SNPs) in CYP3A4, CYP3A5, and CYP3A7. Genotype information was compared with asthma control scores (0 = well-controlled to 15 = poorly-controlled), determined by using a questionnaire modified from the National Heart Lung and Blood Institute Expert Panel 3 guidelines. Results Our study cohort was comprised of 734 children with asthma (mean age 8.8 ± 4.3 years), who were predominantly male (61%) and non-Hispanic Whites (53%); 413 children (56%) were receiving inhaled glucocorticoids daily, of which FP was prescribed most frequently (65%). Among the children receiving daily FP, SNPs in the genes CYP3A5 and CYP3A7 were not associated with asthma control scores. In contrast, asthma control scores were significantly improved among 20 (7%) children with the CYP3A4*22 allele (median 3, range 0-6), as compared with the 201 patients without the CYP3A4*22 allele (median 4, range 0-15) (P=0.02). The presence of CYP3A4*22 was associated with improved asthma control scores by 2.1 points (95% CI: 0.5-3.8). Conclusions The presence of CYP3A4*22, which is associated with decreased hepatic CYP3A4 expression and activity, was accompanied by improved asthma control among FP treated children. Decreased CYP3A4 activity may improve asthma control with inhaled FP. PMID:23290512

  8. Pregnane X receptor-dependent induction of the CYP3A4 gene by o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane.

    PubMed

    Medina-Díaz, Irma M; Arteaga-Illán, Georgina; de León, Mario Bermudez; Cisneros, Bulmaro; Sierra-Santoyo, Adolfo; Vega, Libia; Gonzalez, Frank J; Elizondo, Guillermo

    2007-01-01

    CYP3A4, the predominant cytochrome P450 (P450) expressed in human liver and intestine, contributes to the metabolism of approximately half the drugs in clinical use today. CYP3A4 catalyzes the 6beta-hydroxylation of a number of steroid hormones and is involved in the bioactivation of environmental procarcinogens. The expression of CYP3A4 is affected by several stimuli, including environmental factors such as insecticides and pesticides. The o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) isomer of DDT comprises approximately 20% of technical grade DDT, which is an organochloride pesticide. We have recently shown that o,p'-DDT exposure increases CYP3A4 mRNA levels in HepG2 cells. To determine the mechanism by which o,p'-DDT induces CYP3A4 expression, transactivation and electrophoretic mobility shift assays were carried out, revealing that o,p'-DDT activates the CYP3A4 gene promoter through the pregnane X receptor (PXR). CYP3A4 gene promoter activation resulted in both an increase in CYP3A4 mRNA levels and an increase in the total CYP3A4 activity in HepG2 cells. We also observed induction of CYP3A4 and mouse Cyp3a11 mRNA in the intestine of CYP3A4-transgenic mice after exposure to 1 mg/kg o,p'-DDT. At higher doses, a decrease of CYP3A4 inducibility was observed together with an increase in levels of interleukin 6 mRNA, a proinflammatory cytokine that strongly represses CYP3A4 transcription. The present study indicates that regulation of other genes under PXR control may be altered by o,p'-DDT exposure.

  9. CYP3A4*18: it is not rare allele in Japanese population.

    PubMed

    Yamamoto, Takehito; Nagafuchi, Nobue; Ozeki, Takeshi; Kubota, Takahiro; Ishikawa, Hiroshi; Ogawa, Seishi; Yamada, Yasuhiko; Hirai, Hisamaru; Iga, Tatsuji

    2003-01-01

    We sequenced all 13 exons of the CYP3A4 gene derived from 48 Japanese subjects. One subject possess the 20070 T>C mutation in the exon 10 (result in leu293Pro substitution, namely CYP3A4(*)18), as heterozygote. Thus, we investigated the frequency of CYP3A4(*)18 in 118 Japanese population using polymerase chain reaction-restriction fragment length polymorphism with Msp I and determined that the frequency of the CYP3A4(*)18 allele was 1.3%.

  10. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions.

    PubMed Central

    Lehmann, J M; McKee, D D; Watson, M A; Willson, T M; Moore, J T; Kliewer, S A

    1998-01-01

    The cytochrome P-450 monooxygenase 3A4 (CYP3A4) is responsible for the oxidative metabolism of a wide variety of xenobiotics including an estimated 60% of all clinically used drugs. Although expression of the CYP3A4 gene is known to be induced in response to a variety of compounds, the mechanism underlying this induction, which represents a basis for drug interactions in patients, has remained unclear. We report the identification of a human (h) orphan nuclear receptor, termed the pregnane X receptor (PXR), that binds to a response element in the CYP3A4 promoter and is activated by a range of drugs known to induce CYP3A4 expression. Comparison of hPXR with the recently cloned mouse PXR reveals marked differences in their activation by certain drugs, which may account in part for the species-specific effects of compounds on CYP3A gene expression. These findings provide a molecular explanation for the ability of disparate chemicals to induce CYP3A4 levels and, furthermore, provide a basis for developing in vitro assays to aid in predicting whether drugs will interact in humans. PMID:9727070

  11. Cytochrome P450 CYP4DE1 and CYP6CW3v2 contribute to ethiprole resistance in Laodelphax striatellus (Fallén).

    PubMed

    Elzaki, M E A; Zhang, W; Han, Z

    2015-06-01

    Laodelphax striatellus Fallén (Hemiptera: Delphacidae), a destructive pest of rice, has developed high resistance to multiple insecticides, threatening the success of pest management programmes. The present study investigated ethiprole resistance mechanisms in a field population that is highly resistant to ethiprole. That population was used to establish a laboratory population that was subjected to further selection to produce a resistant strain. Target genes were cloned and compared between the resistant and the susceptible strains, the role of detoxification enzymes was examined, and the relative expression levels of 71 detoxification enzyme genes were tested using quantitative real time (RT)-PCR. The laboratory selection enhanced the resistance from 107-fold to 180-fold. The Rdl-type target site mutation seldom occurred in the resistant strain and is unlikely to represent the major mechanism underlying the observed resistance. Of the three important detoxification enzymes, only P450 monooxygenase was found to be associated with ethiprole resistance. Moreover, two genes, CYP4DE1 and CYP6CW3v2, were found to be overexpressed in the resistant strain. Furthermore, gene-silencing via a double-stranded RNA feeding test was carried out, and the results showed that the mRNA levels of CYP4DE1 and CYP6CW3v2 were reduced in the resistant strain, whereas ethiprole susceptibility was increased. These results suggest that CYP4DE1 and CYP6CW3v2 play an important role in ethiprole resistance in L. striatellus. © 2015 The Royal Entomological Society.

  12. Differential gene expression of CYP3A isoforms in equine liver and intestines.

    PubMed

    Tydén, E; Löfgren, M; Pegolo, S; Capolongo, F; Tjälve, H; Larsson, P

    2012-12-01

    Recently, seven CYP3A isoforms - CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP129 - have been isolated from the horse genome. In this study, we have examined the hepatic and intestinal gene expression of these CYP3A isoforms using TaqMan probes. We have also studied the enzyme activity using luciferin-isopropyl acetal (LIPA) as a substrate. The results show a differential gene expression of the CYP3A isoforms in the liver and intestines in horses. In the liver, CYP3A89, CYP3A94, CYP3A96 and CYP3A97 were highly expressed, while in the intestine there were only two dominating isoforms, CYP3A93 and CYP3A96. The isoform CYP3A129 was not detected in the liver or the intestine, although this gene consists of a complete set of exons and should therefore code for a functional protein. It is possible that this gene is expressed in tissues other than the liver and intestines. In the intestine, both CYP3A96 and CYP3A93 showed the highest gene expression in the duodenum and the proximal parts of the jejunum. This correlated with a high protein expression in these tissues. Studies of the enzyme activity showed the same K(m) for the LIPA substrate in the liver and the intestine, while the maximum velocity (V(max)) in the liver was higher than in the intestine. Our finding of a differential gene expression of the CYP3A isoforms in the liver and the intestines contributes to a better understanding of drug metabolism in horses. © 2012 Blackwell Publishing Ltd.

  13. Fatal Methadone Toxicity: Potential Role of CYP3A4 Genetic Polymorphism

    PubMed Central

    Richards-Waugh, Lauren L.; Primerano, Donald A.; Dementieva, Yulia; Kraner, James C.; Rankin, Gary O.

    2014-01-01

    Methadone is difficult to administer as a therapeutic agent because of a wide range of interindividual pharmacokinetics, likely due to genetic variability of the CYP450 enzymes responsible for metabolism to its principal metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). CYP3A4 is one of the primary CYP450 isoforms responsible for the metabolism of methadone to EDDP in humans. The purpose of this study was to evaluate the role of CYP3A4 genetic polymorphisms in accidental methadone fatalities. A study cohort consisting of 136 methadone-only and 92 combined methadone/benzodiazepine fatalities was selected from cases investigated at the West Virginia and Kentucky Offices of the Chief Medical Examiner. Seven single nucleotide polymorphisms (SNPs) were genotyped within the CYP3A4 gene. Observed allelic and genotypic frequencies were compared with expected frequencies obtained from The National Center for Biotechnology Information dbSNP database. SNPs rs2242480 and rs2740574 demonstrated an apparent enrichment within the methadone-only overdose fatalities compared with the control group and the general population. This enrichment was not apparent in the methadone/benzodiazepine cases for these two SNPs. Our findings indicate that there may be two or more SNPs on the CYP3A4 gene that cause or contribute to the methadone poor metabolizer phenotype. PMID:25217544

  14. Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on antiepileptic drug metabolism in pediatric patients with refractory epilepsy.

    PubMed

    López-García, Miguel A; Feria-Romero, Iris A; Serrano, Héctor; Rayo-Mares, Darío; Fagiolino, Pietro; Vázquez, Marta; Escamilla-Núñez, Consuelo; Grijalva, Israel; Escalante-Santiago, David; Orozco-Suarez, Sandra

    2017-06-01

    Identified the polymorphisms of CYP2D6, CYP2C9, CYP2C19 and CYP3A4, within a rigorously selected population of pediatric patients with drug-resistant epilepsy. The genomic DNA of 23 drug-resistant epilepsy patients and 7 patients with good responses were analyzed. Ten exons in these four genes were genotyped, and the drug concentrations in saliva and plasma were determined. The relevant SNPs with pharmacogenomics relations were CYP2D6*2 (rs16947) decreased your activity and CYP2D6*4 (rs1065852), CYP2C19*2 (rs4244285) and CYP3A4*1B (rs2740574) by association with poor metabolizer. The strongest risk factors were found in the AA genotype and allele of SNP rs3892097 from the CYP2D6 gene, followed by the alleles A and T of SNPs rs2740574 and rs2687116, respectively from CYP3A4. The most important concomitance was between homozygous genotype AA of rs3892097 and genotype AA of rs2740574 with 78.3% in drug-resistant epilepsy patients as compared to 14.3% in control patients. The results demonstrated the important role of the CYP 3A4*1B allelic variant as risk factor for developing drug resistance and CYP2D6, CYP2C19 SNPs and haplotypes may affect the response to antiepileptic drugs. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  15. An in vitro bioassay for xenobiotics using the SXR-driven human CYP3A4/lacZ reporter gene.

    PubMed

    Lee, Mi R; Kim, Yeon J; Hwang, Dae Y; Kang, Tae S; Hwang, Jin H; Lim, Chae H; Kang, Hyung K; Goo, Jun S; Lim, Hwa J; Ahn, Kwang S; Cho, Jung S; Chae, Kap R; Kim, Yong K

    2003-01-01

    The dose and time effect of nine xenobiotics, including 17beta-estradiol, corticosterone, dexamethasone, progesterone, nifedipine, bisphenol A, rifampicin, methamphetamine, and nicotine were investigated, in vitro, using human steroid and xenobiotics receptor (SXR)-binding sites on the human CYP3A4 promoter, which can enhance the linked lacZ reporter gene transcription. To test this, liver-specific SAP (human serum amyloid P component)-SXR (SAP/SXR) and human CYP3A4 promoter-regulated lacZ (hCYP3A4/lacZ) constructs were transiently transfected into HepG2 and NIH3T3 cells to compare the xenobiotic responsiveness between human and nonhuman cell lines. In the HepG2 cells, rifampicin, followed by corticosterone, nicotine, methamphetamine, and dexamethasone, exhibited enhanced levels of the lacZ transcript, whereas those of bisphenol A and nifedipine were found to be reduced. No significant responses were observed with 17beta-estradiol or progesterone. In addition, 17beta-estradiol and progesterone did not change the levels of the lacZ transcripts in the HepG2 cells, but did induce significant increases in the transcripts of the NIH3T3 cells. Treatment with corticosterone and dexamethasone, which were highly expressed in the HepG2 cells, did not affect the levels of the lacZ transcript in NIH3T3 cells. These results show that lacZ transcripts can be measured, rapidly and reproducibly, using reverse transcriptase-polymerase chain reaction (RT-PCR) based on the expression of the hCYP3A4/lacZ reporter gene, and was mediated by the SXR. Thus, this in vitro reporter gene bioassay is useful for measuring xenobiotic activities, and is a means to a better relevant bioassay, using human cells, human genes and human promoters, in order to get a closer look at actual human exposure.

  16. Novel mutations of CYP3A4 in Chinese.

    PubMed

    Hsieh, K P; Lin, Y Y; Cheng, C L; Lai, M L; Lin, M S; Siest, J P; Huang, J D

    2001-03-01

    Human cytochrome P450 3A4 is a major P450 enzyme in the liver and gastrointestinal tract. It plays important roles in the metabolism of a wide variety of drugs, some endogenous steroids, and harmful environmental contaminants. CYP3A4 exhibits a remarkable interindividual activity variation as high as 20-fold. To investigate whether the interindividual variation in CYP3A4 levels can be partly explained by genetic polymorphism, we analyzed DNA samples from 102 Chinese subjects by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis for novel point mutation in the CYP3A4 coding sequence and promoter region. Using PCR and directed sequencing method to establish the complete intron sequence of CYP3A4 from leukocytes, the complete genomic sequence from exon 1 through 13 of CYP3A4 was determined and published in the GenBank database (accession no. AF209389). CYP3A4-specific primers were designed accordingly. After PCR-single-strand conformation polymorphism and restriction fragment length polymorphism screening, we found three novel mutations; two are point mutations and one is insertion. The first variant allele (CYP3A4*4), an Ile118Val change, was found in 3 of 102 Chinese subjects. The next allele (CYP3A4*5), which causes a Pro218Arg amino acid change, was found in 2 of 102 subjects. We found an insertion in A(17776), designated as CYP3A4*6, which causes frame shift and an early stop codon in exon 9, in one heterozygous subject. We also investigated the CYP3A4 activity in these mutant subjects by measuring the morning spot urinary 6beta-hydroxycortisol to free cortisol ratio with the enzyme-linked immunosorbent assay method. When compared with healthy Chinese population data, the 6beta-hydroxycortisol to free cortisol ratio data suggested that these alleles (CYP3A4*4, CYP3A4*5, and CYP3A4*6) may decrease the CYP3A4 activity. Incidences of these mutations in Chinese subjects are rare. The prevalence of these point mutations in other ethnic

  17. Genetic Predictors of Interindividual Variability in Hepatic CYP3A4 ExpressionS⃞

    PubMed Central

    Lamba, Vishal; Panetta, John C.; Strom, Stephen

    2010-01-01

    Variability in hepatic CYP3A4 cannot be explained by common CYP3A4 coding variants. We previously identified polymorphisms in pregnane X receptor (PXR) and ATP-binding cassette subfamily B member 1 (ABCB1) associated with CYP3A4 mRNA levels in small cohorts of human livers. However, the relative contributions of these genetic variations or of polymorphisms in other CYP3A4 regulators to variable CYP3A4 expression were not known. We phenotyped livers from white donors (n = 128) by quantitative real-time polymerase chain reaction for expression of CYP3A4, CYP3A5, and CYP3A7 and nine transcriptional regulators, coactivators, and corepressors. We resequenced hepatic nuclear factor-3-β (HNF3β, FoxA2), HNF4α, HNF3γ (FoxA3), nuclear receptor corepressor 2 (NCoR2), and regions of the CYP3A4 promoter and genotyped informative single-nucleotide polymorphisms in PXR and ABCB1 in the same livers. CYP3A4 mRNA was positively correlated with PXR and FoxA2 and negatively correlated with NCoR2 mRNA. A common silent polymorphism and a polymorphic trinucleotide (CCT) repeat in FoxA2 were associated with CYP3A4 expression. The transcriptional activity of the FoxA2 polymorphic CCT repeat alleles (wild-type, n = 14 and variant, n = 13, 15, and 19) when assayed by luciferase reporter transactivation assays was greatest for the wild-type repeat, with deviations from this number having decreased transcriptional activity. This corresponded with higher expression of FoxA2 mRNA and its targets PXR and CYP3A4 in human livers with (CCT) n = 14 genotypes. Multiple linear regression analysis was used to quantify the contributions of selected genetic polymorphisms to variable CYP3A4 expression. This approach identified sex and polymorphisms in FoxA2, HNF4α, FoxA3, PXR, ABCB1, and the CYP3A4 promoter that together explained as much as 24.6% of the variation in hepatic CYP3A4 expression. PMID:19934400

  18. Bromuconazole-induced hepatotoxicity is accompanied by upregulation of PXR/CYP3A1 and downregulation of CAR/CYP2B1 gene expression.

    PubMed

    Abdelhadya, Doaa H; El-Magd, Mohammed Abu; Elbialy, Zizy I; Saleh, Ayman A

    2017-09-01

    Despite widespread use of bromuconazole as a pesticide for food crops and fruits, limited studies have been done to evaluate its toxic effects. Here, we evaluated the hepatotoxic effect of bromuconazole using classical toxicological (biochemical analysis and histopathological examination) and gene-based molecular methods. Male rats were treated either orally or topically with bromuconazole at doses equal to no observed adverse effect level (NOAEL) and 1/10 LD50 for 90 d. Bromuconazole increased activities of liver enzymes (ALT, AST, ALP, and ACP), and levels of bilirubin. It also induced hepatic oxidative stress as evidenced by significant decrease in the activities of superoxide dismutase (SOD), and significant increase in levels of malondialdehyde (MDA) in liver. In addition, bromuconazole caused an increase in liver weights and necrobiotic changes (vacuolation and hepatocellular hypertrophy). It also strongly induced the expression of PXR and its downstream target CYP3A1 gene as well as the activity of CYP3A1. However, it inhibited the expression of CAR and its downstream target CYP2B1 gene without significant changing in CYP2B1 activity. Overall, the oral route showed higher hepatotoxic effect and molecular changes than the dermal route and all changes were dose dependent. This is the first investigation to report that bromuconazole-induced liver oxidative damage is accompanied by upregulation of PXR/CYP3A1 and downregulation of CAR/CYP2B1.

  19. Genetic analysis of drug metabolizing phase-I enzymes CYP3A4 in Tibetan populations.

    PubMed

    Liu, Lijun; Chang, Yu; Du, Shuli; Shi, Xugang; Yang, Hua; Kang, Longli; Jin, Tianbo; Yuan, Dongya; He, Yongjun

    2017-06-01

    The enzymatic activity of CYP3A4 results in broad interindividual variability in response to certain pharmacotherapies. The present study aimed to screen Tibetan volunteers for CYP3A4 genetic polymorphisms. Previous research has focussed on Han Chinese patients, while little is known about the genetic variation of CYP3A4 in the Tibetan populations. Here, we adopted DNA sequencing to investigate the promoter, exons and surrounding introns, and 3'-untranslated region of the CYP3A4 gene in 96 unrelated healthy Tibetan individuals.We identified 20 different CYP3A4 polymorphisms in the Tibetan population, including two novel variants (21824 A>G and 15580 G>C). In addition, we also determined the allele frequencies of CYP3A4*1A and CYP3A4*1H were 82.29% and 28.13%, respectively. CYP3A4*1P and *1G were relatively rare with frequencies of only 1.04% and 0.52%, respectively. Our results provide information on CYP3A4 polymorphisms in Tibetan individuals which may help to optimize pharmacotherapy effectiveness by providing personalized medicine to this ethnic group.

  20. Comparative study of polymorphism frequencies of the CYP2D6, CYP3A5, CYP2C8 and IL-10 genes in Mexican and Spanish women with breast cancer.

    PubMed

    Alcazar-González, Gregorio Antonio; Calderón-Garcidueñas, Ana Laura; Garza-Rodríguez, María Lourdes; Rubio-Hernández, Gabriela; Escorza-Treviño, Sergio; Olano-Martin, Estibaliz; Cerda-Flores, Ricardo Martín; Castruita-Avila, Ana Lilia; González-Guerrero, Juan Francisco; le Brun, Stéphane; Simon-Buela, Laureano; Barrera-Saldaña, Hugo Alberto

    2013-10-01

    Pharmacogenetic studies in breast cancer (BC) may predict the efficacy of tamoxifen and the toxicity of paclitaxel and capecitabine. We determined the frequency of polymorphisms in the CYP2D6 gene associated with activation of tamoxifen, and those of the genes CYP2C8, CYP3A5 and DPYD associated with toxicity of paclitaxel and capecitabine. We also included a IL-10 gene polymorphism associated with advanced tumor stage at diagnosis. Genomic DNAs from 241 BC patients from northeast Mexico were genotyped using DNA microarray technology. For tamoxifen processing, CYP2D6 genotyping predicted that 90.8% of patients were normal metabolizers, 4.2% ultrarapid, 2.1% intermediate and 2.9% poor metabolizers. For paclitaxel and the CYP2C8 gene, 75.3% were normal, 23.4% intermediate and 1.3% poor metabolizers. Regarding the DPYD gene, only one patient was a poor metabolizer. For the IL-10 gene, 47.1% were poor metabolizers. These results contribute valuable information towards personalizing BC chemotherapy in Mexican women.

  1. Gender Difference of Hepatic and Intestinal CYP3A4 in CYP3AHumanized Mice Generated by a Human Chromosome-engineering Technique.

    PubMed

    Kobayashi, Kaoru; Abe, Chihiro; Endo, Mika; Kazuki, Yasuhiro; Oshimura, Mitsuo; Chiba, Kan

    2017-11-17

    Cytochrome P450 3A4 (CYP3A4) is an important drug-metabolizing enzyme that is expressed in the liver and small intestine of humans. Various factors influence the expression of CYP3A4, but gender difference in CYP3A4 expression remains debatable. To clarify gender difference of hepatic and intestinal CYP3A4 in CYP3A-humanized mice generated by a human artificial chromosome (HAC) vector system. The CYP3A-humanized (CYP3AHAC) mice have essential regulatory regions, including promoters and enhancers, and unknown elements affecting the expression of CYP3A4. We examined the expression and activity of hepatic and intestinal CYP3A4 in male and female CYP3A-HAC mice. CYP3A activity was determined as α- and 4-hydroxylation activity of triazolam in liver and intestinal microsomes. Expression level of CYP3A protein was determined by Western blot analysis. Expression level of CYP3A4 mRNA was measured by quantitative real-time PCR. The results showed that triazolam hydroxylation activities and protein levels of CYP3A in the liver were significantly higher in female than in male CYP3A-HAC mice, whereas those in the intestine were not significantly different between the genders. In addition, the expression of CYP3A4 mRNA showed a tendency similar to that found for the activity and expression of CYP3A protein in the liver and intestine of CYP3A-HAC mice. These findings suggest that the expression and activity levels of CYP3A4 in the liver are higher in females than in males, whereas there is no gender difference in the levels in the intestine of CYP3A-HAC mice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. CYP1A1, CYP3A5 and CYP3A7 polymorphisms and testicular cancer susceptibility.

    PubMed

    Kristiansen, W; Haugen, T B; Witczak, O; Andersen, J M; Fosså, S D; Aschim, E L

    2011-02-01

    Testicular cancer (TC) incidence is increasing worldwide, but the aetiology remains largely unknown. An unbalanced level of oestrogens and androgens in utero is hypothesized to influence TC risk. Polymorphisms in genes encoding cytochrome P450 (CYP) enzymes involved in metabolism of reproductive hormones, such as CYP1A1, CYP3A5 and CYP3A7, may contribute to variability of an individual's susceptibility to TC. The aim of this case-control study was to investigate possible associations between different CYP genotypes and TC, as well as histological type of TC. The study comprised 652 TC cases and 199 controls of Norwegian Caucasian origin. Genotyping of the CYP1A1*2A (MspI), CYP1A1*2C (I462V), CYP1A1*4 (T461N), CYP3A5*3C (A6986G) and CYP3A7*2 (T409R) polymorphisms was performed using TaqMan allelic discrimination or sequencing. The CYP1A1*2A allele was associated with 44% reduced risk of TC with each polymorphic allele [odds ratio (OR) = 0.56, 95% confidence interval (CI) = 0.40-0.78, p(trend) = 0.001], whereas the CYP1A1*2C allele was associated with 56% reduced risk of TC with each polymorphic allele (OR = 0.44, 95% CI = 0.25-0.75, p(trend) = 0.003). The decreased risk per allele was significant for seminomas (OR = 0.46, 95% CI, 0.31-0.70, p(trend) < 0.001 and OR = 0.31, 95% CI = 0.14-0.66, p(trend) = 0.002, respectively), but only borderline significant for non-seminomas (OR = 0.65, 95% CI = 0.45-0.95, p(trend) = 0.027 and OR = 0.55, 95% CI = 0.30-1.01, p(trend) = 0.052, respectively). There were no statistically significant differences in the distribution of the CYP3A5*3C and CYP3A7*2 polymorphic alleles between TC cases and controls. This study suggests that polymorphisms in the CYP1A1 gene may contribute to variability of individual susceptibility to TC. © 2010 The Authors. International Journal of Andrology © 2010 European Academy of Andrology.

  3. Correspondence between the CYP2C19 and CYP3A4 genotypes with the inferred metabolizer phenotype by omeprazole administration in Mexican healthy children.

    PubMed

    Favela-Mendoza, A F; Martínez-Cortes, G; Romero-Prado, M M; Romero-Tejeda, E M; Islas-Carbajal, M C; Sosa-Macias, M; Lares-Asseff, I; Rangel-Villalobos, H

    2018-05-07

    CYP2C19 genotypes presumably allow the prediction of the metabolizer phenotypes: poor (PMs), extensive (EMs) and ultra-rapid (UMs). However, evidence from previous studies regarding this predictive power is unclear, which is important because the benefits expected by healthcare institutions and patients are based on this premise. Therefore, we aimed to complete a formal evaluation of the diagnostic value of CYP2C19 and CYP3A4 genes for predicting metabolizer phenotypes established by omeprazole (OME) administration in 118 healthy children from Jalisco (western Mexico). The genotypes for CYP3A4*1B and CYP2C19*2, *3, *4, *5 and *17 alleles were determined. CYP2C19 and CYP3A4 phenotypes were obtained after 20 mg OME administration and HPLC quantification in plasma to estimate the Hydroxylation Index (HI = OME/HOME) and Sulfonation Index (SI = OME/SOME), respectively. The distribution of genotypes and phenotypes for CYP2C19 and CYP3A4 was similar to previous studies in Mexico and Latin America. We estimated the CYP2C19 UM, EM and PM phenotype frequency in 0.84%, 96.61% and 2.54%, respectively. Although differences in the HI distribution were observed between CYP2C19 genotypes, they showed a poor diagnostic ability to predict the CYP2C19 metabolizer phenotype. Similarly, the number of CYP2C19 and CYP3A4 functional alleles was correlated with the HI distribution, but also their diagnostic ability to predict the CYP2C19 phenotype was poor. The CYP2C19 phenotype is not predicted by the number of functional alleles of CYP2C19 and CYP3A4 genes. Phenotyping is still the most valuable alternative to dose individualization for CYP2C19 substrate drugs. © 2018 John Wiley & Sons Ltd.

  4. Characterization of the genetic variation present in CYP3A4 in three South African populations.

    PubMed

    Drögemöller, Britt; Plummer, Marieth; Korkie, Lundi; Agenbag, Gloudi; Dunaiski, Anke; Niehaus, Dana; Koen, Liezl; Gebhardt, Stefan; Schneider, Nicol; Olckers, Antonel; Wright, Galen; Warnich, Louise

    2013-01-01

    The CYP3A4 enzyme is the most abundant human cytochrome P450 (CYP) and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry (MA) individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of ~600 bp of the 5'-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4(*)12, CYP3A4(*)15, and the reportedly functional CYP3A4(*)1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations.

  5. Isolation of a promoter region in mouse cytochrome P450 3A (Cyp3A16) gene and its transcriptional control.

    PubMed

    Itoh, S; Abe, Y; Kubo, A; Okuda, M; Shimoji, M; Nakayama, K; Kamataki, T

    1997-02-07

    An 11.5 kb fragment of the mouse Cyp3a16 gene containing the 5' flanking region was isolated from the lambda DASHII mouse genomic library. A part of the 5' flanking region and the first exon of Cyp3a16 gene were sequenced. S1 mapping analysis showed the presence of two transcriptional initiation sites. The first exon was completely identical to Cyp3a16 cDNA. The identity of 5' flanking sequences between Cyp3a16 and Cyp3a11 genes was about 69%. A typical TATA box and a basic transcription element (BTE) were found as seen with other CYP3A genes from various animal species Moreover, some putative transcriptional regulatory elements were also found in addition to the sequence motif seen for the formation of Z-type DNA. To examine the transcriptional activity of Cyp3a11 gene, DNA fragments in the 5'-flanking region of the gene were inserted front of the luciferase structural gene, and the constructs were transfected in primary hepatocytes. The analysis of the luciferase activity indicated that the region between -146 and -56 was necessary for the transcription of CYP3a16 gene.

  6. Cytotoxicity of chloroacetanilide herbicide alachlor in HepG2 cells independent of CYP3A4 and CYP3A7.

    PubMed

    Miranda, Sonia R; Meyer, Sharon A

    2007-05-01

    Alachlor is cytotoxic to human hepatoblastoma HepG2s, a cell line that expresses constitutive CYP3A7 and dexamethasone (DEX)-inducible CYP3A4 and CYP3A7. CYP3A4 catalyzes alachlor N-dealkylation to 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA), precursor of 2,6-diethylbenzoquinoneimine, putative reactive metabolite for rat nasal carcinogenicity. We hypothesized that HepG2 alachlor cytotoxicity would be mediated by CYP3A4/7 and increased with DEX. Here, we report time-dependent alachlor cytotoxicity (EC(50) approximately 500 microM and 264+/-17 microM at 6 and 24h, respectively) as assessed by lactate dehydrogenase leakage. DEX pretreatment (25 microM, 48 h) significantly increased CYP3A7-catalyzed luciferin 6' benzylether O-debenzylation, but had no effect on alachlor toxicity. Further, CYP3A4/7 inhibitor triacetyloleandomycin did not prevent, but rather potentiated, alachlor cytotoxicity. In agreement, CDEPA was less toxic than parent alachlor. HepG2 CYP3A4 activity was unaffected by 48 h DEX pretreatment; therefore, studies were done in DPX-2 cells, a HepG2 derivative engineered to overexpress pregnane-X receptor (PXR) that exhibits rifampicin (RIF)-inducible endogenous CYP3A4. Alachlor cytotoxicity in DPX-2 cells occurred over a concentration range equivalent to that in HepG2. CYP3A4 activity of DPX-2 cells treated with RIF (10 microM, 48 h) was twice that of untreated cells, but RIF did not increase alachlor toxicity. These results demonstrate that neither CYP3A4 nor CYP3A7 initiate a pathway leading to a toxic alachlor metabolite.

  7. Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri.

    PubMed

    Killiny, Nabil; Hajeri, Subhas; Tiwari, Siddharth; Gowda, Siddarame; Stelinski, Lukasz L

    2014-01-01

    Silencing of genes through RNA interference (RNAi) in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4) in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa) in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development.

  8. Double-Stranded RNA Uptake through Topical Application, Mediates Silencing of Five CYP4 Genes and Suppresses Insecticide Resistance in Diaphorina citri

    PubMed Central

    Killiny, Nabil; Hajeri, Subhas; Tiwari, Siddharth; Gowda, Siddarame; Stelinski, Lukasz L.

    2014-01-01

    Silencing of genes through RNA interference (RNAi) in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4) in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa) in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development. PMID:25330026

  9. Information theory-based analysis of CYP2C19, CYP2D6 and CYP3A5 splicing mutations.

    PubMed

    Rogan, Peter K; Svojanovsky, Stan; Leeder, J Steven

    2003-04-01

    Several mutations are known or suspected to affect mRNA splicing of CYP2C19, CYP2D6 and CYP3A5 genes; however, little experimental evidence exists to support these conclusions. The present study applies mathematical models that measure changes in information content of splice sites in these genes to demonstrate the relationship between the predicted phenotypes of these variants to the corresponding genotypes. Based on information analysis, the CYP2C19*2 variant activates a new cryptic site 40 nucleotides downstream of the natural splice site. CYP2C19*7 abolishes splicing at the exon 5 donor site. The CYP2D6*4 allele similarly inactivates splicing at the acceptor site of exon 4 and activates a new cryptic site one nucleotide downstream of the natural acceptor. CYP2D6*11 inactivates the acceptor site of exon 2. The CYP3A5*3 allele activates a new cryptic site 236 nucleotides upstream of the exon 4 natural acceptor site. CYP3A5*5 inactivates the exon 5 donor site and CYP3A5*6 strengthens a site upstream of the natural donor site, resulting in skipping of exon 7. Other previously described missense and nonsense mutations at terminal codons of exons in these genes affected splicing. CYP2D6*8 and CYP2D6*14 both decrease the strength of the exon 3 donor site, producing transcripts lacking this exon. The results of information analysis are consistent with the poor metabolizer phenotypes observed in patients with these mutations, and illustrate the potential value of these mathematical models to quantitatively evaluate the functional consequences of new mutations suspected of altering mRNA splicing.

  10. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  11. The CYP3A4 *1B polymorphism and prostate cancer susceptibility in a Portuguese population.

    PubMed

    Nogal, Ana; Coelho, Ana; Catarino, Raquel; Morais, António; Lobo, Francisco; Medeiros, Rui

    2007-09-01

    Testosterone exposure has been implicated in prostate carcinogenesis, and genes that alter its metabolism, such as CYP3A4, have been associated with prostate cancer susceptibility. The aim of our study was to assess the relationship between the CYP3A4 *1B polymorphism and its possible role in the development of prostate cancer. DNA samples obtained from the peripheral blood cells of 414 individuals diagnosed with prostate cancer and 337 healthy male donors were used in this case-control study. The CYP3A4*1B polymorphism was analyzed by polymerase chain reaction-restriction fragment length polymorphism methodology. We found no statistically significant differences in the distribution of the CYP3A4*1B genotypes between cases and controls (P = 0.470; odds ratio = 1.191; 95% confidence interval=0.740-1.918), as well as after the stratification of our analysis, according to important clinicopathologic parameters of prostate cancer. Our results suggest that the CYP3A4*1B polymorphism is not associated with prostate cancer risk within the Portuguese population.

  12. Regulation of zebrafish CYP3A65 transcription by AHR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting

    2013-07-15

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenicmore » lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  13. Metabolic Pathway of Icotinib In Vitro: The Differential Roles of CYP3A4, CYP3A5, and CYP1A2 on Potential Pharmacokinetic Drug-Drug Interaction.

    PubMed

    Zhang, TianHong; Zhang, KeRong; Ma, Li; Li, Zheng; Wang, Juan; Zhang, YunXia; Lu, Chuang; Zhu, Mingshe; Zhuang, XiaoMei

    2018-04-01

    Icotinib is the first self-developed small molecule drug in China for targeted therapy of non-small cell lung cancer. To date, systematic studies on the pharmacokinetic drug-drug interaction of icotinib were limited. By identifying metabolite generated in human liver microsomes and revealing the contributions of major cytochromes P450 (CYPs) in the formation of major metabolites, the aim of the present work was to understand the mechanisms underlying pharmacokinetic and pharmacological variability in clinic. A liquid chromatography/UV/high-resolution mass spectrometer method was developed to characterize the icotinib metabolites. The formation of 6 major metabolites was studied in recombinant CYP isozymes and human liver microsomes with specific inhibitors to identify the CYPs responsible for icotinib metabolism. The metabolic pathways observed in vitro are consistent with those observed in human. Results demonstrated that the metabolites are predominantly catalyzed by CYP3A4 (77%∼87%), with a moderate contribution from CYP3A5 (5%∼15%) and CYP1A2 (3.7%∼7.5%). The contribution of CYP2C8, 2C9, 2C19, and 2D6 is insignificant. Based on our observations, to minimize drug-drug interaction risk in clinic, coprescription of icotinib with strong CYP3A inhibitors or inducers must be weighed. CYP1A2, a highly inducible enzyme in the smoking population, may also represent a determinant of pharmacokinetic and pharmacological variability of icotinib, especially in lung cancer patients with smoking history. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold)more » and CYP3A4 (11-fold) promoter activities over control at 10 {mu}M. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 {mu}M. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 {mu}M, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 {mu}M and 10 {mu}M, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.« less

  15. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.

    PubMed

    Casabar, Richard C T; Das, Parikshit C; Dekrey, Gregory K; Gardiner, Catherine S; Cao, Yan; Rose, Randy L; Wallace, Andrew D

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 microM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 microM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 microM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 microM and 10 microM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Differential Regulation of CYP3A4 and CYP3A5 and Its Implication in Drug Discovery

    PubMed Central

    Lolodi, Ogheneochukome; Wang, Yue-Ming; Wright, William C.; Chen, Taosheng

    2017-01-01

    Cancer cells use several mechanisms to resist the cytotoxic effects of drugs, resulting in tumor progression and invasion. One such mechanism capitalizes on the body’s natural defense against xenobiotics by increasing the rate of xenobiotic efflux and metabolic inactivation. Xenobiotic metabolism typically involves conversion of parent molecules to more soluble and easily excreted derivatives in reactions catalyzed by Phase I and Phase II drug metabolizing enzymes. Recent reports indicate that components of the xenobiotic response system are upregulated in some diseases, including many cancers. Such components include the pregnane X receptor (PXR) and the cytochrome P450 (CYP) 3A4 and 3A5 enzymes. The CYP3A enzymes are a subset of the numerous enzymes that are transcriptionally activated following the interaction of PXR and many ligands. Intense research is ongoing to understand the functional ramifications of aberrant expression of these components in diseased states with the goal of designing novel drugs that can selectively target them. PMID:28558634

  17. PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides.

    PubMed

    Coumoul, Xavier; Diry, Monique; Barouki, Robert

    2002-11-15

    OCP are xenobiotics which display various toxic effects on animal and human health. One of their effects is to bind and activate estrogen receptor alpha (ERalpha). We have previously studied the down-regulation of induced CYP1A1 (cytochrome P450) expression by this class of molecules in mammary carcinoma cells and shown the importance of ERalpha in this process. However, an alternative mechanism was suggested by those experiments in hepatoma cells. In this study, we have performed Northern blot and transient transfection assays in various cell lines and shown that OCP activate human pregnane X receptor (PXR) and subsequent CYP3A4 mRNA expression. This effect is mediated by the distal xenobiotic responsive element modulator of the promoter. The induction of CYP3A4 by OCP was dose-dependent within the 1-10 microM range. The data suggest that chronic exposure to OCP could alter a major metabolite pathway in human liver and putatively modify the pharmacokinetics of drugs and pollutants.

  18. BDE47 induces rat CYP3A1 by targeting the transcriptional regulation of miR-23b

    NASA Astrophysics Data System (ADS)

    Sun, Zhenzhen; Zhang, Zhan; Ji, Minghui; Yang, Hongbao; Cromie, Meghan; Gu, Jun; Wang, Chao; Yang, Lu; Yu, Yongquan; Gao, Weimin; Wang, Shou-Lin

    2016-08-01

    Cytochrome P450 3A (CYP3A) is the most abundant CYP450 enzyme in the liver and is involved in the metabolism of over 50% of xenobiotics. Our previous studies revealed that 2,2‧,4,4‧-tetrabromodiphenyl ether (BDE47) could induce rat CYP3A1 expression, but the molecular basis remains unclear. Using in silico analysis, we identified a potential miR-23b recognition element (MRE23b) in the 3‧-UTR region of CYP3A1 mRNA, which was verified by the luciferase assay. The miR-23b mimic and inhibitor significantly down- and up-regulated the expression of CYP3A1, respectively. Additionally, BDE47 significantly down-regulated the expression of miR-23b in rats and in hepatic H4IIE cells. Induction or blockage of CYP3A1 by a miR-23b inhibitor or mimic could correspondingly alter BDE47-induced expression of CYP3A1 and cytotoxicity in H4IIE cells. Furthermore, LV-anti-miR-23b significantly decreased endogenous levels of miR-23b and increased the expression and activity of CYP3A1 in rat liver. LV-anti-miR-23b also significantly increased the hydroxylated metabolites of BDE47 (3-OH-BDE47, 4-OH-BDE42, and 4‧-OH-BDE49) in rat serum. In conclusion, we first found that BDE47 induced rat CYP3A1 expression by targeting the transcriptional regulation of miR-23b. This study helps provide a better understanding of CYP3A regulation and offers novel clues for the role of miRNAs in the metabolism and distribution of environmental pollutants.

  19. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women.

    PubMed

    Floyd, Michael D; Gervasini, Guillermo; Masica, Andrew L; Mayo, Gail; George, Alfred L; Bhat, Kolari; Kim, Richard B; Wilkinson, Grant R

    2003-10-01

    CYP3A activity in adults varies between individuals and it has been suggested that this has a genetic basis, possibly related to variant alleles in CYP3A4 and CYP3A5 genes. Accordingly, genotype-phenotype associations were investigated under constitutive and induced conditions. Midazolam's systemic and oral clearances, and the erythromycin breath test (ERBT) were determined in 57 healthy subjects: 23 (11 men, 12 women) European- and 34 (14 men, 20 women) African-Americans. Studies were undertaken in the basal state and after 14-15 days pretreatment with rifampin. DNA was characterized for the common polymorphisms CYP3A4*1B, CYP3A5*3, CYP3A5*6 and CYP3A5*7 by direct sequencing, and for exon 21 and exon 26 variants of MDR1 by allele-specific, real-time polymerase chain reaction. In 95% of subjects, the basal systemic clearance of midazolam was unimodally distributed and variability was less than four-fold whereas, in 98% of the study population, oral clearance varied five-fold. No population or sex-related differences were apparent. Similar findings were observed with the ERBT. Rifampin pretreatment markedly increased the systemic (two-fold) and oral clearance (16-fold) of midazolam, and the ERBT (two-fold) but the variabilities were unchanged. No associations were noted between these phenotypic measures and any of the studied genotypes, except for oral clearance and its fold-increase after rifampin. These were related to the presence of CYP3A4*1B and the inversely linked CYP3A5*3 polymorphism, with the extent of induction being approximately 50% greater in CYP3A5*3 homozygotes compared to wild-type subjects. In most healthy subjects, variability in intestinal and hepatic CYP3A activity, using midazolam as an in-vivo probe, is modest and common polymorphisms in CYP3A4 and CYP3A5 do not appear to have important functional significance.

  1. CYP2C8 but not CYP3A4 is important in the pharmacokinetics of montelukast

    PubMed Central

    Karonen, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2012-01-01

    AIM According to product information, montelukast is extensively metabolized by CYP3A4 and CYP2C9. However, CYP2C8 was also recently found to be involved. Our aim was to study the effects of selective CYP2C8 and CYP3A4 inhibitors on the pharmacokinetics of montelukast. METHODS In a randomized crossover study, 11 healthy subjects ingested gemfibrozil 600 mg, itraconazole 100 mg (first dose 200 mg) or both, or placebo twice daily for 5 days, and on day 3, 10 mg montelukast. Plasma concentrations of montelukast, gemfibrozil, itraconazole and their metabolites were measured up to 72 h. RESULTS The CYP2C8 inhibitor gemfibrozil increased the AUC(0,∞) of montelukast 4.3-fold and its t1/2 2.1-fold (P < 0.001). Gemfibrozil impaired the formation of the montelukast primary metabolite M6, reduced the AUC and Cmax of the secondary (major) metabolite M4 by more than 90% (P < 0.05) and increased those of M5a and M5b (P < 0.05). The CYP3A4 inhibitor itraconazole had no significant effect on the pharmacokinetic variables of montelukast or its M6 and M4 metabolites, but markedly reduced the AUC and Cmax of M5a and M5b (P < 0.05). The effects of the gemfibrozil-itraconazole combination on the pharmacokinetics of montelukast did not differ from those of gemfibrozil alone. CONCLUSIONS CYP2C8 is the dominant enzyme in the biotransformation of montelukast in humans, accounting for about 80% of its metabolism. CYP3A4 only mediates the formation of the minor metabolite M5a/b, and is not important in the elimination of montelukast. Montelukast may serve as a safe and useful CYP2C8 probe drug. PMID:21838784

  2. CYP3A5 as a candidate gene for hypertension: no support from an unselected indigenous West African population.

    PubMed

    Fisher, D L; Plange-Rhule, J; Moreton, M; Eastwood, J B; Kerry, S M; Micah, F; Johnston, A; Cappuccio, F P; MacPhee, I A M

    2016-12-01

    CYP3A5 (cytochrome P450, family 3, subfamily A, polypeptide 5) expression stimulates the sodium retentive actions of the mineralocorticoid receptor causative of hypertension, probably by means of its ability to substantially increase the level of 6β-hydroxylase activity. Most Black individuals are functional CYP3A5 expressers, and this is a candidate gene for the high incidence of hypertension in Black populations. The study investigates whether CYP3A5 expression results in higher blood pressure in a Ghanaian population. Real-time PCR was used to genotype 898 DNA samples for the CYP3A5*3 and CYP3A5*6 single-nucleotide polymorphisms with technically adequate genotyping for 881 samples. Of these, 803 were genetic CYP3A5 expressers, 44 nonexpressers and 34 uncertain (CYP3A5*3/*6). Although there was a trend in the proportion of hypertensive individuals as CYP3A5 expression decreased, using a two-sided t-test, no statistically significant relationship was established between systolic or diastolic pressure and CYP3A5*3 or CYP3A5*6 genotypes, or their haplotypes (Systolic confidence interval: -8.44 to -7.70, P=0.93, Diastolic confidence interval: -4.89 to 4.85, P=0.99). We conclude, therefore, that there is either no association between CYP3A5 expression and blood pressure or, if there is a relationship, the strength of the association is very small.

  3. Gene-gene interactions of CYP2A6 and MAOA polymorphisms on smoking behavior in Chinese male population.

    PubMed

    Tang, Xun; Guo, Song; Sun, Hongqiang; Song, Xuemei; Jiang, Zuonin; Sheng, Lixiang; Zhou, Dongfeng; Hu, Yonghua; Chen, Dafang

    2009-05-01

    Nicotine is the major psychoactive ingredient in tobacco, and is responsible for dependence through the nicotine-stimulated reward pathway mediated by the central dopaminergic system. Consequently, genetic polymorphisms in both nicotine metabolism and dopamine catabolism genes may influence smoking behavior, and interact with each other resulting in risk modulation. In this study, we investigated the association and multilocus gene-gene interactions of cytochrome P450 2A6 (CYP2A6), dopamine beta-hydroxylase (DBH), catechol O-methyl transferase (COMT), and monoamine oxidase A (MAOA) polymorphisms with smoking behavior in a community-based Chinese male population. The polymorphisms were genotyped in 203 current smokers, 66 former smokers, and 102 never smokers. Multivariate logistic regression models and the multifactor dimensionality reduction method were used to analyze the association and multilocus gene-gene interactions. Statistically significant trends were shown for increased risk of smoking initiation in participants with CYP2A6*1B/CYP2A6*1B genotypes compared with those with CYP2A6*1A/CYP2A6*1A genotypes [odds ratio (OR)=3.5, 95% confidence interval (CI)= 1.5-8.1], and participants with CYP2A6*1/CYP2A6*1 genotypes were at higher risk of smoking initiation (OR=2.4, 95% CI=1.2-4.5) and smoking persistence (OR=4.0, 95% CI=1.5-10.3) than those who have CYP2A6*4C genotypes. Moreover, the best model involved a gene-gene interaction between MAOA and CYP2A6 was characterized by the multifactor dimensionality reduction method (64.11% accuracy, P<0.001), and indicated that carriers of the combined 1460 T/O genotype for MAOA EcoRV and CYP2A6*1/CYP2A6*1 genotypes were at higher risk of smoking (OR=15.4, 95% CI=4.5-52.5). These findings suggested a substantial influence of CYP2A6 polymorphism as well as the interaction with MAOA resulting in risk modulation on smoking behavior in Chinese male population.

  4. Cree antidiabetic plant extracts display mechanism-based inactivation of CYP3A4.

    PubMed

    Tam, Teresa W; Liu, Rui; Arnason, John T; Krantis, Anthony; Staines, William A; Haddad, Pierre S; Foster, Brian C

    2011-01-01

    Seventeen Cree antidiabetic medicinal plants were studied to determine their potential to inhibit cytochrome P450 3A4 (CYP3A4) through mechanism-based inactivation (MBI). The ethanolic extracts of the medicinal plants were studied for their inhibition of CYP3A4 using the substrates testosterone and dibenzylfluorescein (DBF) in high pressure liquid chromatography (HPLC) and microtiter fluorometric assays, respectively. Using testosterone as a substrate, extracts of Alnus incana, Sarracenia purpurea, and Lycopodium clavatum were identified as potent CYP3A4 MBIs, while those from Abies balsamea, Picea mariana, Pinus banksiana, Rhododendron tomentosum, Kalmia angustifolia, and Picea glauca were identified as less potent inactivators. Not unexpectedly, the other substrate, DBF, showed a different profile of inhibition. Only A. balsamea was identified as a CYP3A4 MBI using DBF. Abies balsamea displayed both NADPH- and time-dependence of CYP3A4 inhibition using both substrates. Overall, several of the medicinal plants may markedly deplete CYP3A4 through MBI and, consequently, decrease the metabolism of CYP3A4 substrates including numerous medications used by diabetics.

  5. CYP3A4 and CYP3A5 catalyse the conversion of the N-methyl-D-aspartate (NMDA) antagonist CJ-036878 to two novel dimers.

    PubMed

    Emoto, C; Nishida, H; Hirai, H; Iwasaki, K

    2007-12-01

    CJ-036878, N-(3-phenethoxybenzyl)-4-hydroxybenzamide, was developed as an antagonist of the N-methyl-D-aspartate receptor NR2B subunit. Two dimeric metabolites, CJ-047710 and CJ-047713, were identified from the incubation mixture with CJ-036878 in human liver microsomes (HLM). The identification of the enzymes involved in the formation of these dimeric metabolites was investigated in the current study. Inhibition of the formation of CJ-047710 and CJ-047713 in pooled HLM by 1-aminobenztriazole, SKF-525A, and ketoconazole were observed. Ketoconazole played a significant role in inhibiting formation of these two metabolites in a concentration-dependent manner. Recombinant CYP3A4 and CYP3A5 exhibited a markedly high activity toward the formation of CJ-047710 and CJ-047713 from CJ-036878, but the contribution of other CYP enzymes to these formations was at a very low level or negligible. The formation of CJ-047710 and CJ-047713 in pooled HLM, CYP3A4, and CYP3A5 showed sigmoid characteristics. S50 values for CJ-047710 and CJ-047713 formation in HLM were almost equivalent with those for CYP3A4 and CYP3A5. For the CYP3A enzymes, maximal clearance due to auto-activation values for CJ-047710 and CJ-047713 formation catalysed by CYP3A5 were 3.6- and 3.1-fold higher than those catalysed by CYP3A4. This is the first report that shows both CYP3A4 and CYP3A5 simultaneously contribute to dimerization through oxidative C-C and C-O coupling reactions.

  6. Contrasting exome constancy and regulatory region variation in the gene encoding CYP3A4: an examination of the extent and potential implications.

    PubMed

    Creemer, Olivia J; Ansari-Pour, Naser; Ekong, Rosemary; Tarekegn, Ayele; Plaster, Christopher; Bains, Ripudaman K; Itan, Yuval; Bekele, Endashaw; Bradman, Neil

    2016-06-01

    CYP3A4 expression varies up to 100-fold among individuals, and, to date, genetic causes remain elusive. As a major drug-metabolizing enzyme, elucidation of such genetic causes would increase the potential for introducing personalized dose adjustment of therapies involving CYP3A4 drug substrates. The foetal CYP3A isoform, CYP3A7, is reported to be expressed in ∼10% of European adults and may thus contribute towards the metabolism of endogenous substances and CYP3A drug substrates. However, little is known about the distribution of the variant expressed in the adult. We resequenced the exons, flanking introns, regulatory elements and 3'UTR of CYP3A4 in five Ethiopian populations and incorporated data from the 1000 Genomes Project. Using bioinformatic analysis, we assessed likely consequences of observed CYP3A4 genomic variation. We also conducted the first extensive geographic survey of alleles associated with adult expression of CYP3A7 - that is, CYP3A7*1B and CYP3A7*1C. Ethiopia contained 60 CYP3A4 variants (26 novel) and more variants (>1%) than all non-African populations combined. No nonsynonymous mutation was found in the homozygous form or at more than 2.8% in any population. Seventy-nine per cent of haplotypes contained 3'UTR and/or regulatory region variation with striking pairwise population differentiation, highlighting the potential for interethnic variation in CYP3A4 expression. Conversely, coding region variation showed that significant interethnic variation is unlikely at the protein level. CYP3A7*1C was found at up to 17.5% in North African populations and in significant linkage disequilibrium with CYP3A5*3, indicating that adult expression of the foetal isoform is likely to be accompanied by reduced or null expression of CYP3A5.

  7. Determination of a quantitative relationship between hepatic CYP3A5*1/*3 and CYP3A4 expression for use in the prediction of metabolic clearance in virtual populations.

    PubMed

    Barter, Z E; Perrett, H F; Yeo, K Rowland; Allorge, D; Lennard, M S; Rostami-Hodjegan, A

    2010-11-01

    The creation of virtual populations allows the estimation of pharmacokinetic parameters, such as metabolic clearance in extreme individuals rather than the 'average human'. Prediction of variability in metabolic clearance within genetically diverse populations relies on understanding the covariation in the expression of enzymes. A number of statistically significant positive correlations have been observed in the hepatic expression of cytochrome P450 drug metabolising enzymes. However, these rarely provided a quantitative description of the relationships which is required in creating virtual populations. Collation of data from 40 human liver microsomal samples in the current study indicated a significant positive relationship between hepatic microsomal CYP3A5*1/*3 and CYP3A4 content. Having developed a model describing the relationship between hepatic CYP3A4 and CYP3A5*1/*3, the Simcyp Population-based Simulator(®) was used to investigate the consequences of either incorporating or ignoring the relationship between the two enzymes on estimates of drug clearance. Simulations indicated that for a compound with greater metabolism by CYP3A5 than CYP3A4, such as tacrolimus, incorporation of the correlation between CYP3A4 and CYP3A5 does have an impact on the prediction of oral clearance. Failure to consider the relationship between CYP3A4 and CYP3A5 when creating the virtual population led to a 32% lower estimate of oral clearance in individuals possessing both the CYP3A5*1/*3 genotype and high basal concentrations of CYP3A4. Potential clinical implications may include an inadequate dose estimation during clinical study design, the consequences of which may include organ rejection in transplant recipients using immunosuppressants such as tacrolimus or toxicity due to elevated concentrations of circulating metabolites. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Identification of a CYP3A form (CYP3A126) in fathead minnow (Pimephales promelas) and characterisation of putative CYP3A enzyme activity.

    PubMed

    Christen, Verena; Caminada, Daniel; Arand, Michael; Fent, Karl

    2010-01-01

    Cytochrome P450-dependent monooxygenases (CYPs) are involved in the metabolic defence against xenobiotics. Human CYP3A enzymes metabolise about 50% of all pharmaceuticals in use today. Induction of CYPs and associated xenobiotic metabolism occurs also in fish and may serve as a useful tool for biomonitoring of environmental contamination. In this study we report on the cloning of a CYP3A family gene from fathead minnows (Pimephales promelas), which has been designated as CYP3A126 by the P450 nomenclature committee (GenBank no. EU332792). The cDNA was isolated, identified and characterised by extended inverse polymerase chain reaction (PCR), an alternative to the commonly used method of rapid amplification of cDNA ends. In a fathead minnow cell line we identified a full-length cDNA sequence (1,863 base pairs (bp)) consisting of a 1,536 bp open reading frame encoding a 512 amino acid protein. Genomic analysis of the identified CYP3A isoenzyme revealed a DNA sequence consisting of 13 exons and 12 introns. CYP3A126 is also expressed in fathead minnow liver as demonstrated by reverse transcription PCR. Exposure of fathead minnow (FHM) cells with the CYP3A inducer rifampicin leads to dose-dependent increase in putative CYP3A enzyme activity. In contrast, inhibitory effects of diazepam treatment were observed on putative CYP3A enzyme activity and additionally on CYP3A126 mRNA expression. This indicates that CYP3A is active in FHM cells and that CYP3A126 is at least in part responsible for this CYP3A activity. Further investigations will show whether CYP3A126 is involved in the metabolism of environmental chemicals.

  9. Arsenite and its metabolites, MMA(III) and DMA(III), modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice.

    PubMed

    Medina-Díaz, I M; Estrada-Muñiz, E; Reyes-Hernández, O D; Ramírez, P; Vega, L; Elizondo, G

    2009-09-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA(III) induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA(III) increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA(III) induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  10. A Case Report of a Patient Carrying CYP2C9*3/4 Genotype with Extremely Low Warfarin Dose Requirement

    PubMed Central

    Lee, Soo-Youn; Nam, Myung-Hyun; Kim, June Soo

    2007-01-01

    We report a case of intolerance to warfarin dosing due to impaired drug metabolism in a patient with CYP2C9*3/*4. A 73-yr-old woman with atrial fibrilation was taking warfarin. She attained a high prothrombin time international normalized ratio (INR) at the standard doses during the induction of anticoagulation and extremely low dose of warfarin (6.5 mg/week) was finally chosen to reach the target INR. Genotyping for CYP2C9 revealed that this patient had a genotype CYP2C9*3/*4. This is the first Korean compound heterozygote for CYP2C9*3 and *4. This case suggests the clinical usefulness of pharmacogenetic testing for individualized dosage adjustments of warfarin. PMID:17596671

  11. A case report of a patient carrying CYP2C9*3/4 genotype with extremely low warfarin dose requirement.

    PubMed

    Lee, Soo Youn; Nam, Myung Hyun; Kim, June Soo; Kim, Jong Won

    2007-06-01

    We report a case of intolerance to warfarin dosing due to impaired drug metabolism in a patient with CYP2C9*3/*4. A 73-yr-old woman with atrial fibrilation was taking warfarin. She attained a high prothrombin time international normalized ratio (INR) at the standard doses during the induction of anticoagulation and extremely low dose of warfarin (6.5 mg/week) was finally chosen to reach the target INR. Genotyping for CYP2C9 revealed that this patient had a genotype CYP2C9*3/*4. This is the first Korean compound heterozygote for CYP2C9*3 and *4. This case suggests the clinical usefulness of pharmacogenetic testing for individualized dosage adjustments of warfarin.

  12. The Role of CYP3A4 mRNA Transcript with Shortened 3′-Untranslated Region in Hepatocyte Differentiation, Liver Development, and Response to Drug InductionS⃞

    PubMed Central

    Li, Dan; Gaedigk, Roger; Hart, Steven N.; Leeder, J. Steven

    2012-01-01

    Cytochrome P450 3A4 (CYP3A4) metabolizes more than 50% of prescribed drugs. The expression of CYP3A4 changes during liver development and may be affected by the administration of some drugs. Alternative mRNA transcripts occur in more than 90% of human genes and are frequently observed in cells responding to developmental and environmental signals. Different mRNA transcripts may encode functionally distinct proteins or contribute to variability of mRNA stability or protein translation efficiency. The purpose of this study was to examine expression of alternative CYP3A4 mRNA transcripts in hepatocytes in response to developmental signals and drugs. cDNA cloning and RNA sequencing (RNA-Seq) were used to identify CYP3A4 mRNA transcripts. Three transcripts were found in HepaRG cells and liver tissues: one represented a canonical mRNA with full-length 3′-untranslated region (UTR), one had a shorter 3′-UTR, and one contained partial intron-6 retention. The alternative mRNA transcripts were validated by either rapid amplification of cDNA 3′-end or endpoint polymerase chain reaction (PCR). Quantification of the transcripts by RNA-Seq and real time quantitative PCR revealed that the CYP3A4 transcript with shorter 3′-UTR was preferentially expressed in developed livers, differentiated hepatocytes, and in rifampicin- and phenobarbital-induced hepatocytes. The CYP3A4 transcript with shorter 3′-UTR was more stable and produced more protein compared with the CYP3A4 transcript with canonical 3′-UTR. We conclude that the 3′-end processing of CYP3A4 contributes to the quantitative regulation of CYP3A4 gene expression through alternative polyadenylation, which may serve as a regulatory mechanism explaining changes of CYP3A4 expression and activity during hepatocyte differentiation and liver development and in response to drug induction. PMID:21998292

  13. Identification of epoxybergamottin as a CYP3A4 inhibitor in grapefruit peel.

    PubMed

    Wangensteen, H; Molden, E; Christensen, H; Malterud, K E

    2003-02-01

    The oral availability of many drugs metabolised by the enzyme cytochrome P(450) 3A4 (CYP3A4) is increased if co-administered with grapefruit juice. Extracts from grapefruit peel have also demonstrated inhibitory activity and, during commercial manufacturing of grapefruit juice, inhibitory components might be squeezed into the juice from the peel. Thus, the aim of this in vitro study was to identify CYP3A4 inhibitors in grapefruit peel. Grapefruit peel was extracted with diethyl ether, and the extract was further fractionated by normal-phase chromatography. Fractions demonstrating significant CYP3A4 inhibitory activity, as measured by the relative reduction in N-demethylation of diltiazem in transfected human liver epithelial cells, were subsequently separated by preparative thin-layer chromatography. Constituents of the fractions and isolated compounds were identified by nuclear magnetic resonance spectroscopy. Analysis of diltiazem and N-demethyl-diltiazem was performed using high-performance liquid chromatography. Of the identified components in grapefruit peel, only epoxybergamottin demonstrated a concentration-dependent inhibition of the CYP3A4-mediated N-demethylation of diltiazem. The IC(50) value was calculated to be 4.2+/-1.1 micro M. Coumarins without the furan ring and flavonoids isolated from grapefruit peel did not interfere with the metabolism of diltiazem. The results indicated the presence of other CYP3A4 inhibitors in grapefruit peel, but these agents were lost during the purification process excluding their identification. The furanocoumarin epoxybergamottin, present in grapefruit peel, is an inhibitor of CYP3A4. In commercial manufacturing of grapefruit juice, epoxybergamottin is possibly distributed into the juice. During manufacturing, however, epoxybergamottin may be hydrolysed to 6',7'-dihydroxybergamottin, which has been suggested as an important CYP3A4 inhibitor in grapefruit juice.

  14. Time-dependent inhibition (TDI) of CYP3A4 and CYP2C9 by noscapine potentially explains clinical noscapine-warfarin interaction.

    PubMed

    Fang, Zhong-Ze; Zhang, Yan-Yan; Ge, Guang-Bo; Huo, Hong; Liang, Si-Cheng; Yang, Ling

    2010-02-01

    To investigate the inhibition potential and kinetic information of noscapine to seven CYP isoforms and extrapolate in vivo noscapine-warfarin interaction magnitude from in vitro data. The activities of seven CYP isoforms (CYP3A4, CYP1A2, CYP2A6, CYP2E1, CYP2D6, CYP2C9, CYP2C8) in human liver microsomes were investigated following co- or preincubation with noscapine. A two-step incubation method was used to examine in vitro time-dependent inhibition (TDI) of noscapine. Reversible and TDI prediction equations were employed to extrapolate in vivo noscapine-warfarin interaction magnitude from in vitro data. Among seven CYP isoforms tested, the activities of CYP3A4 and CYP2C9 were strongly inhibited with an IC(50) of 10.8 +/- 2.5 microm and 13.3 +/- 1.2 microm. Kinetic analysis showed that inhibition of CYP2C9 by noscapine was best fit to a noncompetitive type with K(i) value of 8.8 microm, while inhibition of CYP3A4 by noscapine was best fit to a competitive manner with K(i) value of 5.2 microm. Noscapine also exhibited TDI to CYP3A4 and CYP2C9. The inactivation parameters (K(I) and k(inact)) were calculated to be 9.3 microm and 0.06 min(-1) for CYP3A4 and 8.9 microm and 0.014 min(-1) for CYP2C9, respectively. The AUC of (S)-warfarin and (R)-warfarin was predicted to increase 1.5% and 1.1% using C(max) or 0.5% and 0.4% using unbound C(max) with reversible inhibition prediction equation, while the AUC of (S)-warfarin and (R)-warfarin was estimated to increase by 110.9% and 48.9% using C(max) or 41.8% and 32.7% using unbound C(max) with TDI prediction equation. TDI of CYP3A4 and CYP2C9 by noscapine potentially explains clinical noscapine-warfarin interaction.

  15. Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol.

    PubMed

    Kanebratt, K P; Diczfalusy, U; Bäckström, T; Sparve, E; Bredberg, E; Böttiger, Y; Andersson, T B; Bertilsson, L

    2008-11-01

    The Karolinska cocktail, comprising caffeine, losartan, omeprazole, and quinine, was given before and after administration of rifampicin (20, 100, or 500 mg daily) to measure induction of cytochrome P450 (P450) enzymes. Rifampicin was given for 14 days to eight healthy subjects (all of whom possessed at least one wild-type CYP2C9 and one wild-type CYP2C19 gene) in each dose group. 4beta-hydroxycholesterol was assessed as an endogenous marker of CYP3A4 induction. A fourfold induction of CYP3A4 was seen at the highest dose by both quinine:3'-hydroxyquinine and 4beta-hydroxycholesterol measurements (P < 0.001). CYP3A4 was also induced at the two lower doses of rifampicin when measured by these two markers (P < 0.01 or P < 0.001). CYP1A2, CYP2C9, and CYP2C19 were induced after 500 mg rifampicin daily (1.2-fold, P < 0.05; 1.4-fold, P < 0.05; and 4.2-fold, P < 0.01, respectively). In conclusion, we have shown that the Karolinska cocktail and 4beta-hydroxycholesterol can be used for an initial screening of the induction properties of a drug candidate.

  16. SPR and electrochemical analyses of interactions between CYP3A4 or 3A5 and cytochrome b5

    NASA Astrophysics Data System (ADS)

    Gnedenko, O. V.; Yablokov, E. O.; Usanov, S. A.; Mukha, D. V.; Sergeev, G. V.; Bulko, T. V.; Kuzikov, A. V.; Moskaleva, N. E.; Shumyantseva, V. V.; Ivanov, A. S.; Archakov, A. I.

    2014-02-01

    The combination of SPR biosensor with electrochemical analysis was used for the study of protein-protein interaction between cytochromes CYP3A4 or 3А5 and cytochromes b5: the microsomal, mitochondrial forms of this protein, and 2 ≪chimeric≫ proteins. Kinetic constants of CYP3A4 and CYP3А5 complex formation with cytochromes b5 were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was observed upon their interactions with mitochondrial cytochrome b5. The electrochemical analysis of CYP3A4, CYP3A5, and cytochromes b5 immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435 to -0.350 V (vs. Ag/AgCl).

  17. Delineation of the interactions between the chemotherapeutic agent eribulin mesylate (E7389) and human CYP3A4.

    PubMed

    Zhang, Z-Y; King, B M; Pelletier, R D; Wong, Y N

    2008-09-01

    Eribulin mesylate (E7389), a structurally simplified, synthetic analog of the marine natural product halichondrin B, acts by inhibiting microtubule dynamics via mechanisms distinct from those of other tubulin-targeted agents. Eribulin is currently in Phase III clinical trials for the treatment of metastatic breast cancer. Since drug-induced modulation of cytochrome P450 enzymes, particularly CYP3A4, is a frequent cause of drug-drug interactions, we examined the effects of eribulin on the activity and expression of hepatic and recombinant CYP3A4 (rCYP3A4) in vitro. Identification of the enzyme(s) responsible for eribulin metabolism was based on compound depletion and metabolite formation in reaction mixtures containing subcellular liver fractions or primary human hepatocytes, plus recombinant Phases I and II metabolic enzymes. The role of the enzyme(s) identified was confirmed using enzyme-selective inhibitors and the correlation with prototypic enzyme activity. The effect of eribulin on enzymatic activity was characterized using both microsomal preparations and recombinant enzymes, while the possible modulation of protein expression was evaluated in primary cultures of human hepatocytes. Eribulin was primarily metabolized by CYP3A4, resulting in the formation of at least four monooxygenated metabolites. In human liver microsomal preparations, eribulin suppressed the activities of CYP3A4-mediated testosterone and midazolam hydroxylation with an apparent K (i) of approximately 20 microM. Eribulin competitively inhibited the testosterone 6beta-hydroxylation, nifedipine dehydration, and R-warfarin 10-hydroxylation activities of rCYP3A4, with an average apparent K (i) of approximately 10 microM. These inhibitions were reversible, with no apparent mechanism-based inactivation. Eribulin did not induce the expression or activities of CYP1A and CYP3A enzymes in human primary hepatocytes, and clinically relevant concentrations of eribulin did not inhibit CYP3A4-mediated

  18. The Effect of microRNAs in the Regulation of Human CYP3A4: a Systematic Study using a Mathematical Model

    NASA Astrophysics Data System (ADS)

    Wei, Zhiyun; Jiang, Songshan; Zhang, Yiting; Wang, Xiaofei; Peng, Xueling; Meng, Chunjie; Liu, Yichen; Wang, Honglian; Guo, Luo; Qin, Shengying; He, Lin; Shao, Fengmin; Zhang, Lirong; Xing, Qinghe

    2014-03-01

    CYP3A4 metabolizes more than 50% of the drugs on the market. The large inter-individual differences of CYP3A4 expression may contribute to the variability of human drug responses. Post-transcriptional regulation of CYP3A4 is poorly understood, whereas transcriptional regulation has been studied much more thoroughly. In this study, we used multiple software programs to predict miRNAs that might bind to CYP3A4 and identified 112 potentially functional miRNAs. Then a luciferase reporter system was used to assess the effect of the overexpression of each potentially functional miRNA in HEK 293T cells. Fourteen miRNAs that significantly decreased reporter activity were measured in human liver samples (N = 27) as candidate miRNAs. To establish a more effective way to analyze in vivo data for miRNA candidates, the relationship between functional miRNA and target mRNA was modeled mathematically. Taking advantage of this model, we found that hsa-miR-577, hsa-miR-1, hsa-miR-532-3p and hsa-miR-627 could significantly downregulate the translation efficiency of CYP3A4 mRNA in liver. This study used in silico, in vitro and in vivo methods to progressively screen functional miRNAs for CYP3A4 and to enhance our understanding of molecular events underlying the large inter-individual differences of CYP3A4 expression in human populations.

  19. The Effect of microRNAs in the Regulation of Human CYP3A4: a Systematic Study using a Mathematical Model

    PubMed Central

    Wei, Zhiyun; Jiang, Songshan; Zhang, Yiting; Wang, Xiaofei; Peng, Xueling; Meng, Chunjie; Liu, Yichen; Wang, Honglian; Guo, Luo; Qin, Shengying; He, Lin; Shao, Fengmin; Zhang, Lirong; Xing, Qinghe

    2014-01-01

    CYP3A4 metabolizes more than 50% of the drugs on the market. The large inter-individual differences of CYP3A4 expression may contribute to the variability of human drug responses. Post-transcriptional regulation of CYP3A4 is poorly understood, whereas transcriptional regulation has been studied much more thoroughly. In this study, we used multiple software programs to predict miRNAs that might bind to CYP3A4 and identified 112 potentially functional miRNAs. Then a luciferase reporter system was used to assess the effect of the overexpression of each potentially functional miRNA in HEK 293T cells. Fourteen miRNAs that significantly decreased reporter activity were measured in human liver samples (N = 27) as candidate miRNAs. To establish a more effective way to analyze in vivo data for miRNA candidates, the relationship between functional miRNA and target mRNA was modeled mathematically. Taking advantage of this model, we found that hsa-miR-577, hsa-miR-1, hsa-miR-532-3p and hsa-miR-627 could significantly downregulate the translation efficiency of CYP3A4 mRNA in liver. This study used in silico, in vitro and in vivo methods to progressively screen functional miRNAs for CYP3A4 and to enhance our understanding of molecular events underlying the large inter-individual differences of CYP3A4 expression in human populations. PMID:24594634

  20. A new donors' CYP3A5 and recipients' CYP3A4 cluster predicting tacrolimus disposition, and new-onset hypertension in Chinese liver transplant patients.

    PubMed

    Liu, Yuan; Zhang, Tao; Zhang, Xiaoqing; Ye, Ling; Gu, Haitao; Zhong, Lin; Sun, Hongcheng; Song, Chenlong; Peng, Zhihai; Fan, Junwei

    2017-09-19

    The purpose of the current study was to investigate individualized therapy of tacrolimus (Tac), as well as complications after liver transplantation (LT) with the known genetic determinants and clinical factors. In this retrospective study, two cohorts (n=170) from the China Liver Transplant Registry (CLTR) database from July 2007 to March 2015 were included. Both donors' CYP3A5 *3 and recipients' CYP3A4 *1G had a correlation with Tac pharmacokinetics at four weeks (all P <0.05), except recipients' CYP3A4 *1G nearly had an association at week 2 ( P =0.055). The model of donors' CYP3A5 *3, recipients' CYP3A4*1G , and total bilirubin (TBL), for the prediction of Tac disposition, was better than donors' CYP3A5 *3 only at week 1, 2, and 3 ( P =0.010, P =0.007, and P =0.010, respectively), but not apparent at week 4 ( P =0.297). Besides, when the P value was greater than or equal to 0.6685 after considering the false-positive rate R=10%, the patients were considered to have a faster metabolism, according to the mentioned model. Interestingly, we found that if more than or equal to two alleles A were present in the combination of donors' CYP3A5 *3 and recipients' CYP3A4 *1G genotype, there was a lower Tac C/D ration at week 1, 2, and 3 ( P <0.001, P =0.001, and P <0.001), except at week 4 ( P =0.082), and the probability of new-onset hypertension was lesser ( P <0.001). These data provided a potential basis for a comprehensive approach to predicting the Tac dose requirement in individual patients and provided a strategy for the effective prevention, early diagnosis of new-onset hypertension in Chinese LT recipients.

  1. Overexpression of CYP3A4 in a COLO 205 Colon Cancer Stem Cell Model in vitro

    PubMed Central

    Olszewski, Ulrike; Liedauer, Richard; Ausch, Christoph; Thalhammer, Theresia; Hamilton, Gerhard

    2011-01-01

    Cancer stem cells (CSCs) seem to constitute a subpopulation of tumor cells that escape from chemotherapy and cause recurrent disease. Low proliferation rates, protection in a stem cell niche and overexpression of drug resistance proteins are considered to confer chemoresistance. We established an in vitro colon CSC-like model using the COLO 205 cell line, which revealed transiently increased expression of CD133 when transferred to serum-free stem cell culture medium. Assessment of global gene expression of COLO 205 cells under these conditions identified a set of upregulated genes including cytochrome P450 3A4 (CYP3A4) and aldehyde dehydrogenase 1A1 (ALDH1A1), as confirmed by real-time qPCR. ALDH1A1 is a CSC marker for certain tumor entities and confers resistance to cyclophosphamide. CYP3A4 is expressed in liver and colon and its overexpression seems particularly relevant in colon cancer, since it inactivates irinotecan and other xenobiotics, such as taxols and vinca alkaloids. In conclusion, this COLO 205 model provides evidence for CD133 induction concomitant with overexpression of CYP3A4, which, together with ATP-binding cassette, subfamily G, member 2 (ABCG2) and others, may have a role in chemoresistant colon CSCs and a negative impact on disease-free survival in colon cancer patients. PMID:24212669

  2. Dose-dependent induction of cytochrome P450 (CYP) 3A4 and activation of pregnane X receptor by topiramate.

    PubMed

    Nallani, Srikanth C; Glauser, Tracy A; Hariparsad, Niresh; Setchell, Kenneth; Buckley, Donna J; Buckley, Arthur R; Desai, Pankaj B

    2003-12-01

    In clinical studies, topiramate (TPM) was shown to cause a dose-dependent increase in the clearance of ethinyl estradiol. We hypothesized that this interaction results from induction of hepatic cytochrome P450 (CYP) 3A4 by TPM. Accordingly, we investigated whether TPM induces CYP3A4 in primary human hepatocytes and activates the human pregnane X receptor (hPXR), a nuclear receptor that serves as a regulator of CYP3A4 transcription. Human hepatocytes were treated for 72 h with TPM (10, 25, 50, 100, 250, and 500 microM) and known inducers, phenobarbital (PB; 2 mM), and rifampicin (10 microM). The rate of testosterone 6beta-hydroxylation by hepatocytes served as a marker for CYP3A4 activity. The CYP3A4-specific protein and mRNA levels were determined by using Western and Northern blot analyses, respectively. The hPXR activation was assessed with cell-based reporter gene assay. Compared with controls, TPM (50-500 microM)-treated hepatocytes exhibited a considerable increase in the CYP3A4 activity (1. 6- to 8.2-fold), protein levels (4.6- to 17.3-fold), and mRNA levels (1.9- to 13.3-fold). Comparatively, rifampicin (10 microM) effected 14.5-, 25.3-, and a 20.3-fold increase in CYP3A4 activity, immunoreactive protein levels, and mRNA levels, respectively. TPM (50-500 microM) caused 1.3- to 3-fold activation of the hPXR, whereas rifampicin (10 microM) caused a 6-fold activation. The observed induction of CYP3A4 by TPM, especially at the higher concentrations, provides a potential mechanistic explanation of the reported increase in the ethinyl estradiol clearance by TPM. It also is suggestive of other potential interactions when high-dose TPM therapy is used.

  3. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems

    PubMed Central

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-01-01

    Fe3O4 nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe3O4 NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe3O4 NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe3O4 NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe3O4 NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe3O4 NPs targeting drug/gene delivery systems. PMID:29473914

  4. CYP3A variation and the evolution of salt-sensitivity variants.

    PubMed

    Thompson, E E; Kuttab-Boulos, H; Witonsky, D; Yang, L; Roe, B A; Di Rienzo, A

    2004-12-01

    Members of the cytochrome P450 3A subfamily catalyze the metabolism of endogenous substrates, environmental carcinogens, and clinically important exogenous compounds, such as prescription drugs and therapeutic agents. In particular, the CYP3A4 and CYP3A5 genes play an especially important role in pharmacogenetics, since they metabolize >50% of the drugs on the market. However, known genetic variants at these two loci are not sufficient to account for the observed phenotypic variability in drug response. We used a comparative genomics approach to identify conserved coding and noncoding regions at these genes and resequenced them in three ethnically diverse human populations. We show that remarkable interpopulation differences exist with regard to frequency spectrum and haplotype structure. The non-African samples are characterized by a marked excess of rare variants and the presence of a homogeneous group of long-range haplotypes at high frequency. The CYP3A5*1/*3 polymorphism, which is likely to influence salt and water retention and risk for salt-sensitive hypertension, was genotyped in >1,000 individuals from 52 worldwide population samples. The results reveal an unusual geographic pattern whereby the CYP3A5*3 frequency shows extreme variation across human populations and is significantly correlated with distance from the equator. Furthermore, we show that an unlinked variant, AGT M235T, previously implicated in hypertension and pre-eclampsia, exhibits a similar geographic distribution and is significantly correlated in frequency with CYP3A5*1/*3. Taken together, these results suggest that variants that influence salt homeostasis were the targets of a shared selective pressure that resulted from an environmental variable correlated with latitude.

  5. CYP3A Variation and the Evolution of Salt-Sensitivity Variants

    PubMed Central

    Thompson, E. E.; Kuttab-Boulos, H.; Witonsky, D.; Yang, L.; Roe, B. A.; Di Rienzo, A.

    2004-01-01

    Members of the cytochrome P450 3A subfamily catalyze the metabolism of endogenous substrates, environmental carcinogens, and clinically important exogenous compounds, such as prescription drugs and therapeutic agents. In particular, the CYP3A4 and CYP3A5 genes play an especially important role in pharmacogenetics, since they metabolize >50% of the drugs on the market. However, known genetic variants at these two loci are not sufficient to account for the observed phenotypic variability in drug response. We used a comparative genomics approach to identify conserved coding and noncoding regions at these genes and resequenced them in three ethnically diverse human populations. We show that remarkable interpopulation differences exist with regard to frequency spectrum and haplotype structure. The non-African samples are characterized by a marked excess of rare variants and the presence of a homogeneous group of long-range haplotypes at high frequency. The CYP3A5*1/*3 polymorphism, which is likely to influence salt and water retention and risk for salt-sensitive hypertension, was genotyped in >1,000 individuals from 52 worldwide population samples. The results reveal an unusual geographic pattern whereby the CYP3A5*3 frequency shows extreme variation across human populations and is significantly correlated with distance from the equator. Furthermore, we show that an unlinked variant, AGT M235T, previously implicated in hypertension and pre-eclampsia, exhibits a similar geographic distribution and is significantly correlated in frequency with CYP3A5*1/*3. Taken together, these results suggest that variants that influence salt homeostasis were the targets of a shared selective pressure that resulted from an environmental variable correlated with latitude. PMID:15492926

  6. Pioglitazone, an in vitro inhibitor of CYP2C8 and CYP3A4, does not increase the plasma concentrations of the CYP2C8 and CYP3A4 substrate repaglinide.

    PubMed

    Kajosaari, Lauri I; Jaakkola, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2006-03-01

    Pioglitazone, a thiazolidinedione antidiabetic, inhibits cytochrome P450 (CYP) 2C8 and CYP3A4 enzymes in vitro. Repaglinide, a meglitinide analogue antidiabetic, is metabolised by CYP2C8 and CYP3A4. In patients with type 2 diabetes, the pioglitazone-repaglinide combination has acted synergistically on glycaemic parameters. Our aim was to determine whether pioglitazone increases the plasma concentrations of repaglinide. In a randomized, 2-phase cross-over study, 12 healthy volunteers received 30 mg pioglitazone or placebo once daily for 5 days. On day 5, they ingested a single 0.25 mg dose of repaglinide 1 h after the last pretreatment dose. Plasma repaglinide and pioglitazone, and blood glucose concentrations were measured for 12 h. During the pioglitazone phase, the mean peak plasma repaglinide concentration (C(max)) and the total area under the concentration-time curve [AUC(0-infinity)] of repaglinide were 100% (range 53-157%, P=0.99) and 90% (range 63-120%, P=0.22), respectively, of those during the placebo phase. Also the half-life of repaglinide was unaffected, but the median peak time of repaglinide was shortened from 40 min to 20 min by pioglitazone (P=0.014). The short-term pioglitazone administration did not modify the blood glucose-lowering effect of a single dose of repaglinide. Pioglitazone does not increase the plasma concentrations of repaglinide, indicating that the inhibitory effect of pioglitazone on CYP2C8 and CYP3A4 is very weak in vivo, probably due to its extensive plasma protein binding. The synergistic effect of repaglinide and pioglitazone on the glycaemic parameters, seen in patients with type 2 diabetes during their long-term use, is unlikely to be caused by inhibition of repaglinide metabolism by pioglitazone.

  7. Polymorphisms in CYP1A1 and CYP3A5 Genes Contribute to the Variability in Granisetron Clearance and Exposure in Pregnant Women with Nausea and Vomiting.

    PubMed

    Bustos, Martha L; Zhao, Yang; Chen, Huijun; Caritis, Steve N; Venkataramanan, Raman

    2016-12-01

    Nausea and vomiting affect up to 90% of pregnant women. Granisetron is a potent and highly selective serotonin receptor antagonist and is an effective antiemetic. Findings from a prior study in pregnant women demonstrated a large interindividual variability in granisetron exposure. Granisetron is primarily metabolized by the cytochrome P450 (CYP) enzymes CYP1A1 and CYP3A and is likely a substrate of the ABCB1 transporter. Single-nucleotide polymorphisms (SNPs) in CYP3A, CYP1A1, and ABCB1 can alter drug metabolism. This study evaluated the influence of polymorphisms in CYP3A4, CYP3A5, CYP1A1, and ABCB1 on the pharmacokinetic properties of granisetron in pregnant women. The study enrolled 16 pregnant women (gestational age of 12-19 wks). All patients had nausea and vomiting and were treated with granisetron 1 mg. Granisetron plasma concentrations were determined using liquid chromatography tandem-mass spectrometry. The patients' genotype was determined using TaqMan SNP Genotyping Assays. The Hardy-Weinberg equilibrium was assessed by comparing observed and expected genotype frequencies, using the exact test. Intravenous granisetron clearance was used as the dependent variable for analysis of associations. Of 16 patients, 25% were homozygous for the allele variant CYP3A5*3 and had a significantly lower granisetron clearance and increased area under the plasma concentration-versus-time curve (AUC) compared with nonhomozygous patients. Approximately one-third of patients (n=5) were carriers for the allele variant CYP1A1*2A and had a significantly higher granisetron clearance and decreased AUC. We did not find significant differences in the AUC or clearance for any SNPs in CYP3A4 and ABCB1 genes. Polymorphisms in CYP3A5 and CYP1A1 account for some of the variability in systemic clearance and exposure of granisetron in pregnant women. © 2016 Pharmacotherapy Publications, Inc.

  8. CYP3A4 Mediates Oxidative Metabolism of the Synthetic Cannabinoid AKB-48.

    PubMed

    Holm, Niels Bjerre; Nielsen, Line Marie; Linnet, Kristian

    2015-09-01

    Synthetic cannabinoid designer drugs have emerged as drugs of abuse during the last decade, and acute intoxication cases are documented in the scientific literature. Synthetic cannabinoids are extensively metabolized, but our knowledge of the involved enzymes is limited. Here, we investigated the metabolism of N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48), a compound identified in herbal blends from 2012 and onwards. We screened for metabolite formation using a panel of nine recombinant cytochrome P450 (CYP) enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) and compared the formed metabolites to human liver microsomal (HLM) incubations with specific inhibitors against CYP2D6, 2C19, and 3A4, respectively. The data reported here demonstrate CYP3A4 to be the major CYP enzyme responsible for the oxidative metabolism of AKB-48, preferentially performing the oxidation on the adamantyl moiety. Genetic polymorphisms are likely not important with regard to toxicity given the major involvement of CYP3A4. Adverse drug-drug interactions (DDIs) could potentially occur in cases with co-intake of strong CYP3A4 inhibitors, e.g., HIV antivirals and azole antifungal agents.

  9. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5

    PubMed Central

    Yoshida, K; Sun, B; Zhang, L; Zhao, P; Abernethy, DR; Nolin, TD; Rostami‐Hodjegan, A; Zineh, I

    2016-01-01

    Recent reviews suggest that chronic kidney disease (CKD) can affect the pharmacokinetics of nonrenally eliminated drugs, but the impact of CKD on individual elimination pathways has not been systematically evaluated. In this study we developed a comprehensive dataset of the effect of CKD on the pharmacokinetics of CYP2D6‐ and CYP3A4/5‐metabolized drugs. Drugs for evaluation were selected based on clinical drug–drug interaction (CYP3A4/5 and CYP2D6) and pharmacogenetic (CYP2D6) studies. Information from dedicated CKD studies was available for 13 and 18 of the CYP2D6 and CYP3A4/5 model drugs, respectively. Analysis of these data suggested that CYP2D6‐mediated clearance is generally decreased in parallel with the severity of CKD. There was no apparent relationship between the severity of CKD and CYP3A4/5‐mediated clearance. The observed elimination‐route dependency in CKD effects between CYP2D6 and CYP3A4/5 may inform the need to conduct clinical CKD studies with nonrenally eliminated drugs for optimal use of drugs in patients with CKD. PMID:26800425

  10. cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450.

    PubMed

    Domanski, T L; Finta, C; Halpert, J R; Zaphiropoulos, P G

    2001-02-01

    The RACE amplification technology was used on a novel CYP3A-like exon 1 sequence detected during the reverse transcriptase/polymerase chain reaction analysis of human CYP3A gene expression. This resulted in the identification of cDNAs encompassing the complete coding sequence of a new member of the CYP3A gene subfamily, CYP3A43. Interestingly, the majority of the cDNAs identified were characterized by alternative splicing events such as exon skipping and complete or partial intron inclusion. CYP3A43 expression was detected in liver, kidney, pancreas, and prostate. The amino acid sequence is 75% identical to that of CYP3A4 and CYP3A5 and 71% identical to CYP3A7. CYP3A43 differs from CYP3A4 at six amino acid residues, found within the putative substrate recognition sites of CYP3A4, that are known to be determinants of substrate selectivity. The N terminus of CYP3A43 was modified for efficient expression of the protein in Escherichia coli, and a 6X histidine tag was added at the C terminus to facilitate purification. CYP3A43 gave a reduced carbon monoxide difference spectra with an absorbance maximum at 450 nm. The level of heterologous expression was significantly lower than that observed for CYP3A4 and CYP3A5. Immunoblot analyses revealed that CYP3A43 comigrates with CYP3A4 in polyacrylamide gel electrophoresis but does separate from CYP3A5. Monooxygenase assays were performed under a variety of conditions, several of which yielded reproducible, albeit low, testosterone hydroxylase activity. The findings from this study demonstrate that there is a novel CYP3A member expressed in human tissues, although its relative contribution to drug metabolism has yet to be ascertained.

  11. Modeling of drug-mediated CYP3A4 induction by using human iPS cell-derived enterocyte-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negoro, Ryosuke; Takayama, Kazuo; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research

    Many drugs have potential to induce the expression of drug-metabolizing enzymes, particularly cytochrome P450 3A4 (CYP3A4), in small intestinal enterocytes. Therefore, a model that can accurately evaluate drug-mediated CYP3A4 induction is urgently needed. In this study, we overlaid Matrigel on the human induced pluripotent stem cells-derived enterocyte-like cells (hiPS-ELCs) to generate the mature hiPS-ELCs that could be applied to drug-mediated CYP3A4 induction test. By overlaying Matrigel in the maturation process of enterocyte-like cells, the gene expression levels of intestinal markers (VILLIN, sucrase-isomaltase, intestine-specific homeobox, caudal type homeobox 2, and intestinal fatty acid-binding protein) were enhanced suggesting that the enterocyte-like cellsmore » were maturated by Matrigel overlay. The percentage of VILLIN-positive cells in the hiPS-ELCs found to be approximately 55.6%. To examine the CYP3A4 induction potential, the hiPS-ELCs were treated with various drugs. Treatment with dexamethasone, phenobarbital, rifampicin, or 1α,25-dihydroxyvitamin D3 resulted in 5.8-fold, 13.4-fold, 9.8-fold, or 95.0-fold induction of CYP3A4 expression relative to that in the untreated controls, respectively. These results suggest that our hiPS-ELCs would be a useful model for CYP3A4 induction test. - Highlights: • The hiPS-ELCs were matured by Matrigel overlay. • The hiPS-ELCs expressed intestinal nuclear receptors, such as PXR, GR and VDR. • The hiPS-ELC is a useful model for the drug-mediated CYP3A4 induction test.« less

  12. CYP3A5 Contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects.

    PubMed

    Yamaori, Satoshi; Yamazaki, Hiroshi; Iwano, Shunsuke; Kiyotani, Kazuma; Matsumura, Keiko; Honda, Goro; Nakagawa, Kazuko; Ishizaki, Takashi; Kamataki, Tetsuya

    2004-04-01

    The purpose of this study was to evaluate a contribution of polymorphic cytochrome P450 (CYP) 3A5 to the oxidation of diltiazem, midazolam and testosterone by liver microsomes from Japanese subjects. Twenty-seven liver samples were classified into three groups according to the CYP3A5 genotypes; CYP3A5(*)1/(*)1 (n=3), (*)1/(*)3 (n=12) and (*)3/(*)3 (n=12). The results of genotyping and immunochemical quantitation of CYP3A5 protein showed a good accordance between the CYP3A5 genotype and CYP3A5 content but not CYP3A4 content in liver microsomes. The expression levels of hepatic CYP3A5 protein ranged from 20 to 60% of the sum of CYP3A4 and CYP3A5 contents in subjects with at least one wild type allele ((*)1). The CYP3A5 contents correlated well with liver microsomal activities of diltiazem N-demethylation, midazolam 1'- and 4-hydroxylations and testosterone 6beta-hydroxylation among subjects carrying at least one (*)1 allele. In addition, the correlation coefficients of CYP3A5 contents with the rates of diltiazem N-demethylation, midazolam 1'-hydroxylation and testosterone 6beta- hydroxylation were higher than those of CYP3A4, although the value of CYP3A5 with the midazolam 4-hydroxylation rate was similar to that of CYP3A4. Kinetic analyses revealed a biphasic diltiazem N-demethylation in liver microsomes from subjects carrying the (*)1 allele. The apparent V(max)/K(m) values for recombinant CYP3A5 indicated the greater contributions to diltiazem N-demethylation and midazolam 1'-hydroxylation as compared with CYP3A4. These results suggest that polymorphic CYP3A5 contributes markedly to the drug oxidations, particularly diltiazem N-demethylation, midazolam 1'- hydroxylation and testosterone 6beta-hydroxylation by liver microsomes from Japanese subjects.

  13. Modulation of human cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) in Caco-2 cell monolayers by selected commercial-source milk thistle and goldenseal products.

    PubMed

    Budzinski, Jason W; Trudeau, Vance L; Drouin, Cathy E; Panahi, Mitra; Arnason, J Thor; Foster, Brian C

    2007-09-01

    In this study, we used an in vitro Caco-2 cell monolayer model to evaluate aqueous extracts of commercial-source goldenseal (Hydrastis canadensis) and milk thistle (Silybum marianum) capsule formulations, their marker phytochemicals (berberine and silibinin, respectively), as well as dillapiol, vinblastine, and the HIV protease inhibitor saquinavir for their ability to modulate CYP3A4 and ABCB1 expression after short-term exposure (48 h). Both upregulation and downregulation of CYP3A4 expression was observed with extracts of varying concentrations of the two natural health products (NHPs). CYP3A4 was highly responsive in our system, showing a strong dose-dependent modulation by the CYP3A4 inhibitor dillapiol (upregulation) and the milk thistle flavonolignan silibinin (downregulation). ABCB1 was largely unresponsive in this cellular model and appears to be of little value as a biomarker under our experimental conditions. Therefore, the modulation of CYP3A4 gene expression can serve as an important marker for the in vitro assessment of NHP-drug interactions.

  14. Arsenite and its metabolites, MMA{sup III} and DMA{sup III}, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina-Diaz, I.M.; Estrada-Muniz, E.; Reyes-Hernandez, O.D.

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half themore » drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA{sup III} induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA{sup III} increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA{sup III} induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.« less

  15. Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation.

    PubMed

    Yanagimachi, Masakatsu; Naruto, Takuya; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Kajiwara, Ryosuke; Fujii, Hisaki; Tanaka, Fumiko; Goto, Hiroaki; Yagihashi, Tatsuhiko; Kosaki, Kenjiro; Yokota, Shumpei

    2010-01-01

    One severe side effect of calcineurin inhibitors (CNIs: such as cyclosporine [CsA] and tacrolimus [FK506]) is neurotoxicity. CNIs are substrates for CYP3A5 and P-glycoprotein (P-gp), encoded by ABCB1 gene. In the present study, we hypothesized that genetic variability in CYP3A5 and ABCB1 genes may be associated with CNI-related neurotoxicity. The effects of the polymorphisms, such as CYP3A5 A6986G, ABCB1 C1236T, G2677T/A, and C3435T, associated with CNI-related neurotoxicity were evaluated in 63 patients with hematopoietic stem cell transplantation.   Of the 63 cases, 15 cases developed CNI-related neurotoxicity. In the CsA patient group (n = 30), age (p = 0.008), hypertension (p = 0.017), renal dysfunction (p < 0.001), ABCB1 C1236T (p < 0.001), and G2677T/A (p = 0.014) were associated with neurotoxicities. The CC genotype at ABCB1 C1236T was associated with it, but not significantly so (p = 0.07), adjusted for age, hypertension, and renal dysfunction. In the FK506 patient group (n = 33), CYP3A5 A6986G (p < 0.001), and ABCB1 C1236T (p = 0.002) were associated with neurotoxicity. At least one A allele at CYP3A5 A6986G (expressor genotype) was strongly associated with it according to logistic regression analysis (p = 0.01; OR, 8.5; 95% CI, 1.4-51.4).   The polymorphisms in CYP3A5 and ABCB1 genes were associated with CNI-related neurotoxicity. This outcome is probably because of CYP3A5 or P-gp functions or metabolites of CNIs. © 2009 John Wiley & Sons A/S.

  16. Dual-Color Fluorescence Imaging to Monitor CYP3A4 and CYP3A7 Expression in Human Hepatic Carcinoma HepG2 and HepaRG Cells

    PubMed Central

    Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako

    2014-01-01

    Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps. PMID:25101946

  17. Dual-color fluorescence imaging to monitor CYP3A4 and CYP3A7 expression in human hepatic carcinoma HepG2 and HepaRG cells.

    PubMed

    Tsuji, Saori; Kawamura, Fumihiko; Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako

    2014-01-01

    Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.

  18. Up-regulation of the alligator CYP3A77 gene by toxaphene and dexamethasone and its short term effect on plasma testosterone concentrations.

    PubMed

    Gunderson, M P; Kohno, S; Blumberg, B; Iguchi, T; Guillette, L J

    2006-06-30

    In this study we describe an alligator hepatic CYP3A gene, CYP3A77, which is inducible by dexamethasone and toxaphene. CYP3A plays a broad role in biotransforming both exogenous compounds and endogenous hormones such as testosterone and estradiol. Alligators collected from sites in Florida that are contaminated with organochlorine compounds exhibit differences in sex steroid concentrations. Many organochlorine compounds induce CYP3A expression in other vertebrates; hence, CYP3A induction by organochlorine contaminants could increase biotransformation and clearance of sex steroids by CYP3A and provide a plausible mechanism for the lowering of endogenous sex steroid concentrations in alligator plasma. We used real time PCR to examine whether known and suspected CYP3A inducers (dexamethasone, metyrapone, rifampicin, and toxaphene) up-regulate steady state levels of hepatic CYP3A77 transcript to determine if induction patterns in female juvenile alligators are similar to those reported in other vertebrates and whether toxaphene, an organochlorine compound found in high concentrations in Lake Apopka alligators, induces this gene. Estrogen receptor alpha (ERalpha), estrogen receptor beta (ERbeta), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), and steroid-xenobiotic receptor (SXR) transcripts were also measured to determine whether any of these nuclear receptors are also regulated by these compounds in alligators. Dexamethasone (4.2-fold) and toxaphene (3.5-fold) significantly induced CYP3A77 gene transcript, whereas rifampicin (2.8-fold) and metyrapone (2.1-fold) up-regulated ERbeta after 24h. None of the compounds significantly up-regulated AR, ERalpha, GR, PR, or SXR over this time period. Plasma testosterone (T) did not change significantly after 24h in alligators from any of the treatment groups. Dexamethasone treated animals exhibited a strong relationship between the 24h plasma T concentrations and CYP3A77 (R(2)=0.9, positive

  19. CYP3A4-dependent cellular response does not relate to CYP3A4-catalysed metabolites of C-1748 and C-1305 acridine antitumor agents in HepG2 cells.

    PubMed

    Augustin, Ewa; Niemira, Magdalena; Hołownia, Adam; Mazerska, Zofia

    2014-11-01

    High CYP3A4 expression sensitizes tumor cells to certain antitumor agents while for others it can lower their therapeutic efficacy. We have elucidated the influence of CYP3A4 overexpression on the cellular response induced by antitumor acridine derivatives, C-1305 and C-1748, in two hepatocellular carcinoma (HepG2) cell lines, Hep3A4 stably transfected with CYP3A4 isoenzyme, and HepC34 expressing empty vector. The compounds were selected considering their different chemical structures and different metabolic pathways seen earlier in human and rat liver microsomes C-1748 was transformed to several metabolites at a higher rate in Hep3A4 than in HepC34 cells. In contrast, C-1305 metabolism in Hep3A4 cells was unchanged compared to HepC34 cells, with each cell line producing a single metabolite of comparable concentration. C-1748 resulted in a progressive appearance of sub-G1 population to its high level in both cell lines. In turn, the sub-G1 fraction was dominated in CYP3A4-overexpressing cells following C-1305 exposure. Both compounds induced necrosis and to a lesser extent apoptosis, which were more pronounced in Hep3A4 than in wild-type cells. In conclusion, CYP3A4-overexpressing cells produce higher levels of C-1748 metabolites, but they do not affect the cellular responses to the drug. Conversely, cellular response was modulated following C-1305 treatment in CYP3A4-overexpressing cells, although metabolism of this drug was unaltered. © 2014 International Federation for Cell Biology.

  20. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5.

    PubMed

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.

  1. An in vitro system for measuring genotoxicity mediated by human CYP3A4 in Saccharomyces cerevisiae.

    PubMed

    Fasullo, Michael; Freedland, Julian; St John, Nicholas; Cera, Cinzia; Egner, Patricia; Hartog, Matthew; Ding, Xinxin

    2017-05-01

    P450 activity is required to metabolically activate many chemical carcinogens, rendering them highly genotoxic. CYP3A4 is the most abundantly expressed P450 enzyme in the liver, accounting for most drug metabolism and constituting 50% of all hepatic P450 activity. CYP3A4 is also expressed in extrahepatic tissues, including the intestine. However, the role of CYP3A4 in activating chemical carcinogens into potent genotoxins is unclear. To facilitate efforts to determine whether CYP3A4, per se, can activate carcinogens into potent genotoxins, we expressed human CYP3A4 in the DNA-repair mutant (rad4 rad51) strain of budding yeast Saccharomyces cerevisiae and tested the novel, recombinant yeast strain for ability to report CYP3A4-mediated genotoxicity of a well-known genotoxin, aflatoxin B1 (AFB 1 ). Yeast microsomes containing human CYP3A4, but not those that do not contain CYP3A4, were active in hydroxylation of diclofenac, a known CYP3A4 substrate drug, a result confirming CYP3A4 activity in the recombinant yeast strain. In cells exposed to AFB 1 , the expression of CYP3A4 supported DNA adduct formation, chromosome rearrangements, cell death, and expression of the large subunit of ribonucleotide reductase, Rnr3, a marker of DNA damage. Expression of CYP3A4 also conferred sensitivity in rad4 rad51 mutants exposed to colon carcinogen, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). These data confirm the ability of human CYP3A4 to mediate the genotoxicity of AFB 1 , and illustrate the usefulness of the CYP3A4-expressing, DNA-repair mutant yeast strain for screening other chemical compounds that are CYP3A4 substrates, for potential genotoxicity. Environ. Mol. Mutagen. 58:217-227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Furocoumarins from grapefruit juice and their effect on human CYP 3A4 and CYP 1B1 isoenzymes.

    PubMed

    Girennavar, Basavaraj; Poulose, Shibu M; Jayaprakasha, Guddadarangavvanahally K; Bhat, Narayan G; Patil, Bhimanagouda S

    2006-04-15

    Bioactive compounds present in grapefruit juice are known to increase the bioavailability of certain medications by acting as potent CYP 3A4 inhibitors. An efficient technique has been developed for isolation and purification of three furocoumarins. The isolated compounds have been tested for the inhibition of human CYP 1B1 isoform using specific substrates. Grapefruit juice was extracted with ethyl acetate (EtOAc) and the dried extract was loaded onto silica gel column chromatography. Further, column fractions were subjected to preparative HPLC to obtain three compounds. The purity of these compounds was analyzed by HPLC and structures were determined by NMR studies. The identified compounds, bergamottin, 6',7'-dihydroxybergamottin (DHB), and paradisin-A, were tested for their inhibitory effects on hydroxylase and O-dealkylase activities of human cytochrome P450 isoenzymes CYP 3A4 and CYP 1B1. Paradisin-A was found to be a potent CYP 3A4 inhibitor with an IC50 of 1.2 microM followed by DHB and bergamottin. All three compounds showed a substantial inhibitory effect on CYP 3A4 below 10 microM. Inhibitory effects on CYP 1B1 exhibited a greater variation due to the specificity of substrates. Paradisin A showed an IC50 of 3.56+/-0.12 microM for the ethoxy resorufin O-dealkylase (EROD) activity and 33.56+/-0.72 microM for the benzyloxy resorufin (BROD). DHB and bergamottin showed considerable variations for EROD and BROD activities with an IC50 of 7.17 microM and 13.86 microM, respectively.

  3. The genes of all seven CYP3A isoenzymes identified in the equine genome are expressed in the airways of horses.

    PubMed

    Tydén, E; Löfgren, M; Hakhverdyan, M; Tjälve, H; Larsson, P

    2013-08-01

    In the present study, we examined the gene expression of cytochrome P450 3A (CYP3A) isoenzymes in the tracheal and bronchial mucosa and in the lung of equines using TaqMan probes. The results show that all seven CYP3A isoforms identified in the equine genome, that is, CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, CYP3A97 and CYP3A129, are expressed in the airways of the investigated horses. Though in previous studies, CYP3A129 was found to be absent in equine intestinal mucosa and liver, this CYP3A isoform is expressed in the airways of horses. The gene expression of the CYP3A isoenzymes varied considerably between the individual horses studied. However, in most of the horses CYP3A89, CYP3A93, CYP3A96, CYP3A97 and CYP3A129 were expressed to a high extent, while CYP3A94 and CYP3A95 were expressed to a low extent in the different parts of the airways. The CYP3A isoenzymes present in the airways may play a role in the metabolic degradation of inhaled xenobiotics. In some instances, the metabolism may, however, result in bioactivation of the xenobiotics and subsequent tissue injury. © 2012 John Wiley & Sons Ltd.

  4. CYP98A6 from Lithospermum erythrorhizon encodes 4-coumaroyl-4'-hydroxyphenyllactic acid 3-hydroxylase involved in rosmarinic acid biosynthesis.

    PubMed

    Matsuno, Michiyo; Nagatsu, Akito; Ogihara, Yukio; Ellis, Brian E; Mizukami, Hajime

    2002-03-13

    Rosmarinic acid is the dominant hydroxycinnamic acid ester accumulated in Boraginaceae and Lamiaceae plants. A cytochrome P450 cDNA was isolated by differential display from cultured cells of Lithospermum erythrorhizon, and the gene product was designated CYP98A6 based on the deduced amino acid sequence. After expression in yeast, the P450 was shown to catalyze the 3-hydroxylation of 4-coumaroyl-4'-hydroxyphenyllactic acid, one of the final two steps leading to rosmarinic acid. The expression level of CYP98A6 is dramatically increased by addition of yeast extract or methyl jasmonate to L. erythrorhizon cells, and its expression pattern reflected the elicitor-induced change in rosmarinic acid production, indicating that CYP98A6 plays an important role in regulation of rosmarinic acid biosynthesis.

  5. Genomic characterization and regulation of CYP3a13: role of xenobiotics and nuclear receptors.

    PubMed

    Anakk, Sayeepriyadarshini; Kalsotra, Auinash; Shen, Qi; Vu, Mary T; Staudinger, Jeffrey L; Davies, Peter J A; Strobel, Henry W

    2003-09-01

    We report that CYP3a13 gene, located on mouse chromosome 5, spans 27.5 Kb and contains 13 exons. The transcription start site is 35 bp upstream of the coding region and results in a 109 bp 5' untranslated region. CYP3a13 promoter shows putative binding sites for retinoid X receptor, pregnane X receptor, and estrogen receptor. CYP3a13 shows a broad tissue distribution with predominant expression in liver. Although CYP3a13 shares 92% nucleotide identity with the female-specific rat CYP3A9, its expression does not exhibit sexual dimorphism. Ligand activation of peroxisomal proliferator-activated receptor-gamma and retinoid X receptor inhibit expression of CYP3a13 at the transcription level in a tissue-specific manner. Another novel finding is hepatic induction of CYP3a13 by dexamethasone occurring only in pregnane X receptor null mice. We also report that pregnane X receptor is essential to maintain robust in vivo basal levels of CYP3a13 in contrast to CYP3a11. CYP3a13 protein expressed in vitro can metabolize clinically active drugs ethylmorphine and erythromycin, as well as benzphetamine. We conclude that CYP3a13 is regulated differentially by various nuclear receptors. In humans this may lead to altered drug metabolism, as many of the newly synthesized ligands/drugs targeted toward these nuclear receptors could influence CYP3A gene expression.

  6. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    PubMed

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos.

    PubMed

    Dai, D; Tang, J; Rose, R; Hodgson, E; Bienstock, R J; Mohrenweiser, H W; Goldstein, J A

    2001-12-01

    CYP3A4 is the most abundant isoform of cytochrome P450 (CYP) in adult human liver. It metabolizes numerous clinically, physiologically, and toxicologically important compounds. The expression of CYP3A4 varies 40-fold in individual human livers, and metabolism of CYP3A4 substrates varies at least 10-fold in vivo. Single nucleotide polymorphisms (SNPs) in CYP3A4 were identified by direct sequencing of genomic DNA in 72 individuals from three different ethnic groups, including Caucasians, Blacks (African-Americans and African pygmies), and Asians. A total of 28 SNPs were identified, including five which produced coding changes M445T (CYP3A4*3), R162Q (CYP3A4*15), F189S (CYP3A4*17), L293P (CYP3A4*18), and P467S (CYP3A4*19). The latter four represent new alleic variants. Racial variability was observed for the frequency of individual SNPs. CYP3A R162Q was identified only in Black populations with an allelic frequency of 4%. CYP3A4 F189S and CYP3A4 M445T were identified in Caucasians with allelic frequencies 2% and 4%, respectively. L293P and P467S were only observed in Asians at allelic frequencies of 2%. The cDNAs for the F189S, L293P, M445T, and P467S mutant alleles were constructed by site-directed mutagenesis and expressed in an Escherichia coli expression system. Testosterone and the insecticide chlorpyrifos were used to assess the catalytic activities of the most common CYP3A4 allele (CYP3A4*1) and its allelic variants. CYP3A4 F189S exhibited lower turnover numbers for testosterone and chlorpyrifos, while CYP3A4 L293P had higher turnover numbers for both substrates. The turnover numbers of the CYP3A4 M445T and P467S alleles to metabolize these compounds were not significantly different from those of wild-type CYP3A4.

  8. Associations of CYP3A4, NR1I2, CYP2C19 and P2RY12 polymorphisms with clopidogrel resistance in Chinese patients with ischemic stroke

    PubMed Central

    Liu, Rui; Zhou, Zi-yi; Chen, Yi-bei; Li, Jia-li; Yu, Wei-bang; Chen, Xin-meng; Zhao, Min; Zhao, Yuan-qi; Cai, Ye-feng; Jin, Jing; Huang, Min

    2016-01-01

    Aim: There is a high incidence of the antiplatelet drug clopidogrel resistance (CR) in Asian populations. Because clopidogrel is a prodrug, polymorphisms of genes encoding the enzymes involved in its biotransformation may be the primary influential factors. The goal of this study was to investigate the associations of polymorphisms of CYP3A4, NR1I2, CYP2C19 and P2RY12 genes with CR in Chinese patients with ischemic stroke. Methods: A total of 191 patients with ischemic stroke were enrolled. The patients were treated with clopidogrel for at least 5 days. Platelet function was measured by light transmission aggregometry. The SNPs NR1I2 (rs13059232), CYP3A4*1G (rs2242480), CYP2C19*2 (rs4244285) and P2RY12 (rs2046934) were genotyped. Results: The CR rate in this population was 36%. The CYP2C19*2 variant was a risk factor for CR (*2/*2+wt/*2 vs wt/wt, OR: 2.366, 95% CI: 1.180–4.741, P=0.014), whereas the CYP3A4*1G variant had a protective effect on CR (*1/*1 vs *1G/*1G+*1/*1G, OR: 2.360, 95% CI: 1.247–4.468, P=0.008). The NR1I2 (rs13059232) polymorphism was moderately associated with CR (CC vs TT+TC, OR: 0.533, 95% CI: 0.286–0.991, P=0.046). The C allele in P2RY12 (rs2046934) was predicted to be a protective factor for CR (CC+TC vs TT, OR: 0.407, 95% CI: 0.191–0.867, P=0.018). In addition, an association was found between hypertension and CR (P=0.022). Conclusion: The individuals with both the CYP2C19*2 allele and hypertension are at high risk of CR during anti-thrombosis therapy. The CYP3A4*1G allele, P2RY12 (rs2046934) C allele and NR1I2 (rs13059232) CC genotype may be protective factors for CR. The associated SNPs studied may be useful to predict clopidogrel resistance in Chinese patients with ischemic stroke. PMID:27133299

  9. A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients.

    PubMed

    Tavira, Beatriz; Coto, Eliecer; Diaz-Corte, Carmen; Alvarez, Victoria; López-Larrea, Carlos; Ortega, Francisco

    2013-08-01

    The CYP3A5*3 and CYP3A4*1B alleles have been related with tacrolimus (Tac) dose requirements. The rare CYP3A4*22 variant has also been associated with a significantly lower Tac dose. We genotyped the three single-nucleotide polymorphisms in 206 kidney-transplanted patients who received Tac as the primary immunosuppressor. CYP3A5*1 and CYP3A4*1B allele carriers received a significantly higher Tac dose (P<0.01) compared with wild-type homozygotes. We did not find significant differences between the CYP3A4*22 genotypes, either nominally or according to the CYP3A5 genotype (expressers vs. nonexpressers). Sequencing of CYP3A4 coding exons in a total of 15 patients revealed only one nonreported missense change (p.P227>T) in one patient. We concluded that CYP3A5*3 and CYP3A4*1B were the main determinants of the Tac dose-adjusted blood concentration in our cohort of renal-transplanted patients.

  10. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  11. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    PubMed Central

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-01-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification. PMID:26899743

  12. The associations of genetic polymorphisms in CYP1A2 and CYP3A4 with clinical outcomes of breast cancer patients in northern China

    PubMed Central

    Bai, Xianan; Xie, Jingjing; Sun, Shanshan; Zhang, Xianyu; Jiang, Yongdong; Pang, Da

    2017-01-01

    Background Cytochrome P450 (CYP) 1A2 and CYP3A4 may play a role in the differentiation of clinical outcomes among breast cancer women. This study aimed to analyze the association of genetic polymorphisms in the CYP1A2 and CYP3A4 genes with clinicopathological features, protein expression and prognosis of breast cancer in the northern Chinese population. Results Firstly, SNP rs11636419, rs17861162 and rs2470890 in the CYP1A2 were significantly associated with age and menstruation status. And SNP rs11636419 and rs17861162 were associated with the P53 status. Secondly, SNP rs2470890 was correlated with CYP1A2 protein expression under the co-dominant and dominant model (P = 0.017, P = 0.006, respectively). Thirdly, for SNP rs2470890, the Kaplan–Meier 5 year survival curves showed that patients carrying genotypes CT or TT had a worse OS compared with the genotype CC carriers under both codominant and dominant model (P < 0.001, P < 0.001, respectively). Materials and Methods Four single nucleotide polymorphisms (SNPs) were successfully genotyped in 459 breast cancer patients using the SNaPshot method. The associations of four polymorphisms with protein expression and clinicopathological characteristics were evaluated by Pearson's chi-square test. The Cox hazard regression analysis and Kaplan–Meier survival analysis were performed to evaluate the relationship between the SNPs and overall survival (OS) of breast cancer. Conclusions CYP1A2 rs2470890 was significantly associated with the prognosis of patients with breast cancer and could serve as an independent impact factor of prognosis of breast carcinoma. PMID:28418906

  13. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors' dose requirements and trough blood levels in stable renal transplant patients.

    PubMed

    Elens, Laure; van Schaik, Ron H; Panin, Nadtha; de Meyer, Martine; Wallemacq, Pierre; Lison, Dominique; Mourad, Michel; Haufroid, Vincent

    2011-10-01

    CYP3A4 is involved in the oxidative metabolism of many drugs and xenobiotics including the immunosuppressants tacrolimus (Tac) and cyclosporine (CsA). The objective of the study was to assess the potential influence of a new functional SNP in CYP3A4 on the pharmacokinetic parameters assessed by dose requirements and trough blood levels of both calcineurin inhibitors (CNI) in stable renal transplant patients. A total of 99 stable renal transplant patients receiving either Tac (n = 49) or CsA (n = 50) were genotyped for the CYP3A4 intron 6 C>T (rs35599367) and CYP3A5*3 SNPs. Trough blood levels ([Tac](0) or [CsA](0) in ng/ml), dose-adjusted [Tac](0) or [CsA](0) (ng/ml per mg/kg bodyweight) as well as doses (mg/kg bodyweight) required to achieve target concentrations were compared among patients according to allelic status for CYP3A4 and CYP3A5. Dose-adjusted concentrations were 2.0- and 1.6-fold higher in T-variant allele carriers for the CYP3A4 intron 6 C>T SNP compared with homozygous CC for Tac and CsA, respectively. When CYP3A4/CYP3A5 genotypes were combined, the difference was even more striking as the so-defined CYP3A poor metabolizer group presented dose-adjusted concentration 1.6- and 4.1-fold higher for Tac, and 1.5- and 2.2-fold higher for CsA than the intermediate metabolizer and extensive metabolizer groups, respectively. Multiple linear regression analysis revealed that, taken together, both CYP3A4 intron 6 and CYP3A5*3 SNPs explained more than 60 and 20% of the variability observed in dose-adjusted [Tac](0) and [CsA](0), respectively. The CYP3A4 intron 6 C>T polymorphism is associated with altered Tac and CsA metabolism. CYP3A4 intron 6 C>T along with CYP3A5*3 (especially for Tac) pharmacogenetic testing performed just before transplantation may help identifying patients at risk of CNI overexposure and contribute to limit CNI-related nephrotoxicity by refining the starting dose according to their genotype. Original submitted 5 May 2011; Revision

  14. In vitro inhibition of CYP3A4 by herbal remedies frequently used by cancer patients.

    PubMed

    Engdal, Silje; Nilsen, Odd Georg

    2009-07-01

    The herbal remedies Natto K2, Agaricus, mistletoe, noni juice, green tea and garlic, frequently used by cancer patients, were investigated for their in vitro inhibition potential of cytochrome P-450 3A4 (CYP3A4) metabolism. To our knowledge, only garlic and green tea had available data on the possible inhibition of CYP3A4 metabolism. Metabolic studies were performed with human c-DNA baculovirus expressed CYP3A4. Testosterone was used as a substrate and ketoconazole as a positive quantitative inhibition control. The formation of 6-beta-OH-testosterone was quantified by a validated HPLC methodology. Green tea was the most potent inhibitor of CYP3A4 metabolism (IC(50): 73 microg/mL), followed by Agaricus, mistletoe and noni juice (1324, 3594, >10 000 microg/mL, respectively). All IC(50) values were high compared with those determined for crude extracts of other herbal remedies. The IC(50)/IC(25) ratios for the inhibiting herbal remedies ranged from 2.15 to 2.67, indicating similar inhibition profiles of the herbal inhibitors of CYP3A4. Garlic and Natto K2 were classified as non-inhibitors. Although Agaricus, noni juice, mistletoe and green tea inhibited CYP3A4 metabolism in vitro, clinically relevant systemic or intestinal interactions with CYP3A4 were considered unlikely, except for a probable inhibition of intestinal CYP3A4 by the green tea product. Copyright 2009 John Wiley & Sons, Ltd.

  15. The impact of Cytochrome P450 CYP1A2, CYP2C9, CYP2C19 and CYP2D6 genes on suicide attempt and suicide risk-a European multicentre study on treatment-resistant major depressive disorder.

    PubMed

    Höfer, Peter; Schosser, Alexandra; Calati, Raffaella; Serretti, Alessandro; Massat, Isabelle; Kocabas, Neslihan Aygun; Konstantinidis, Anastasios; Linotte, Sylvie; Mendlewicz, Julien; Souery, Daniel; Zohar, Joseph; Juven-Wetzler, Alzbeta; Montgomery, Stuart; Kasper, Siegfried

    2013-08-01

    Recently published data have reported associations between cytochrome P450 metabolizer status and suicidality. The aim of our study was to investigate the role of genetic polymorphisms of the cytochrome P450 genes on suicide risk and/or a personal history of suicide attempts. Two hundred forty-three major depressive disorder patients were collected in the context of a European multicentre resistant depression study and treated with antidepressants at adequate doses for at least 4 weeks. Suicidality was assessed using the Mini International Neuropsychiatric Interview and the Hamilton Rating Scale for Depression (HAM-D). Treatment response was defined as HAM-D ≤ 17 and remission as HAM-D ≤ 7 after 4 weeks of treatment with antidepressants at adequate dose. Genotyping was performed for all relevant variations of the CYP1A2 gene (*1A, *1F, *1C, *1 J, *1 K), the CYP2C9 gene (*2, *3), the CYP2C19 gene (*2, *17) and the CYP2D6 gene (*3, *4, *5, *6, *9, *19, *XN). No association between both suicide risk and personal history of suicide attempts, and the above mentioned metabolic profiles were found after multiple testing corrections. In conclusion, the investigated cytochrome gene polymorphisms do not seem to be associated with suicide risk and/or a personal history of suicide attempts, though methodological and sample size limitations do not allow definitive conclusions.

  16. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5☆

    PubMed Central

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)–deficient (Nrf2−⧸−) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2−⧸− mouse livers were lower than that in wild-type mouse livers. Nrf2−⧸− mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression. PMID:24494203

  17. PXR-Mediated Upregulation of CYP3A Expression by Herb Compound Praeruptorin C from Peucedanum praeruptorum Dunn

    PubMed Central

    Huang, Ling; Wu, Qian; Li, Yu-Hua; Wang, Yi-Tao; Bi, Hui-Chang

    2013-01-01

    We recently reported that Praeruptorin C effectively transactivated the mRNA, protein expression, and catalytic activity of CYP3A4 via the CAR-mediated pathway, but whether and how PC could affect the expression and catalytic activity of CYP3A4 via PXR pathway remains unknown. Therefore, in this study, the effect of PC on the CYP3A gene expression was investigated in mice primary hepatocytes after knockdown of PXR by transient transfection of PXR siRNA, and the gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells with PXR overexpression were determined by real-time PCR, western blot analysis, and LC-MS/MS-based CYP3A4 substrate assay, respectively. We found that the level of CYP3a11 gene expression in mouse primary hepatocytes was significantly increased by praeruptorin C, but such an induction was suppressed after knockdown of pregnane X receptor by its siRNA. In PXR-overexpressed LS174T cells, PC significantly enhanced CYP3A4 mRNA, protein expression, and functional activity through PXR-mediated pathway; conversely, no such increase was found in the untransfected cells. These findings suggest that PC can significantly upregulate CYP3A level via the PXR-mediated pathway, and this should be taken into consideration to predict any potential herb-drug interactions between PC, Qianhu, and the other coadministered drugs. PMID:24379885

  18. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance

    PubMed Central

    Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping

    2015-01-01

    Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1–4) encoding 8′-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. PMID:25956880

  19. CYP2B6, CYP2D6, and CYP3A4 catalyze the primary oxidative metabolism of perhexiline enantiomers by human liver microsomes.

    PubMed

    Davies, Benjamin J; Coller, Janet K; Somogyi, Andrew A; Milne, Robert W; Sallustio, Benedetta C

    2007-01-01

    The cytochrome P450 (P450)-mediated 4-monohydroxylations of the individual enantiomers of the racemic antianginal agent perhexiline (PHX) were investigated in human liver microsomes (HLMs) to identify stereoselective differences in metabolism and to determine the contribution of the polymorphic enzyme CYP2D6 and other P450s to the intrinsic clearance of each enantiomer. The cis-, trans1-, and trans2-4-monohydroxylation rates of (+)- and (-)-PHX by human liver microsomes from three extensive metabolizers (EMs), two intermediate metabolizers (IMs), and two poor metabolizers (PMs) of CYP2D6 were measured with a high-performance liquid chromatography assay. P450 isoform-specific inhibitors, monoclonal antibodies directed against P450 isoforms, and recombinantly expressed human P450 enzymes were used to define the P450 isoform profile of PHX 4-monohydroxylations. The total in vitro intrinsic clearance values (mean +/- S.D.) of (+)- and (-)-PHX were 1376 +/- 330 and 2475 +/- 321, 230 +/- 225 and 482 +/- 437, and 63.4 +/- 1.6 and 54.6 +/- 1.2 microl/min/mg for the EM, IM, and PM HLMs, respectively. CYP2D6 catalyzes the formation of cis-OH-(+)-PHX and trans1-OH-(+)-PHX from (+)-PHX and cis-OH-(-)-PHX from (-)-PHX with high affinity. CYP2B6 and CYP3A4 each catalyze the trans1- and trans2-4-monohydroxylation of both (+)- and (-)-PHX with low affinity. Both enantiomers of PHX are subject to significant polymorphic metabolism by CYP2D6, although this enzyme exhibits distinct stereoselectivity with respect to the conformation of metabolites and the rate at which they are formed. CYP2B6 and CYP3A4 are minor contributors to the intrinsic P450-mediated hepatic clearance of both enantiomers of PHX, except in CYP2D6 PMs.

  20. Metabolism of Endosulfan-Alpha by Human Liver Microsomes and its Utility as a Simultaneous In Vitro Probe for CYP2B6 and CYP3A4

    DTIC Science & Technology

    2006-03-30

    METABOLISM OF ENDOSULFAN-ALPHA BY HUMAN LIVER MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 Richard C.T. Casabar...MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 Corresponding Author: Randy L. Rose Department of Environmental and Molecular...ALPHA BY HUMAN LIVER MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 . 6. AUTHOR(S) CAPT CASABAR RICHARD C 7

  1. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs

    PubMed Central

    Wang, D; Guo, Y; Wrighton, SA; Cooke, GE; Sadee, W

    2011-01-01

    Cytochrome P450 3A4 (CYP3A4) metabolizes ~50% of all clinically used drugs. Although CYP3A4 expression varies widely between individuals, the contribution of genetic factors remains uncertain. In this study, we measured allelic CYP3A4 heteronuclear RNA (hnRNA) and mRNA expression in 76 human liver samples heterozygous for at least one of eight marker SNPs and found marked allelic expression imbalance (1.6–6.3-fold) in 10/76 liver samples (13%). This was fully accounted for by an intron 6 SNP (rs35599367, C>T), which also affected mRNA expression in cell culture on minigene transfections. CYP3A4 mRNA level and enzyme activity in livers with CC genotype were 1.7- and 2.5-fold, respectively, greater than in CT and TT carriers. In 235 patients taking stable doses of atorvastatin, simvastatin, or lovastatin for lipid control, carriers of the T allele required significantly lower statin doses (0.2–0.6-fold, P=0.019) than non-T carriers for optimal lipid control. These results indicate that intron 6 SNP rs35599367 markedly affects expression of CYP3A4 and could serve as a biomarker for predicting response to CYP3A4-metabolized drugs. PMID:20386561

  2. Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients.

    PubMed

    Chowbay, Balram; Cumaraswamy, Sivathasan; Cheung, Yin Bun; Zhou, Qingyu; Lee, Edmund J D

    2003-02-01

    Intestinal cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) both play a vital role in the metabolism of oral cyclosporine (CsA). We investigated the genetic polymorphisms in CYP3A4(promoter region and exons 5, 7 and 9) and MDR1 (exons 12, 21 and 26) genes and the impact of these polymorphisms on the pharmacokinetics of oral CsA in stable heart transplant patients (n = 14). CYP3A4 polymorphisms were rare in the Asian population and transplant patients. Haplotype analysis revealed 12 haplotypes in the Chinese, eight in the Malays and 10 in the Indians. T-T-T was the most common haplotype in all ethnic groups. The frequency of the homozygous mutant genotype at all three loci (TT-TT-TT) was highest in the Indians (31%) compared to 19% and 15% in the Chinese and Malays, respectively. In heart transplant patients, CsA exposure (AUC(0-4 h), AUC(0-12 h) and C(max)) was high in patients with the T-T-T haplotypes compared to those with C-G-C haplotypes. These findings suggest that haplotypes rather than genotypes influence CsA disposition in transplant patients.

  3. Phenobarbital Mediates an Epigenetic Switch at the Constitutive Androstane Receptor (CAR) Target Gene Cyp2b10 in the Liver of B6C3F1 Mice

    PubMed Central

    Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-01-01

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis. PMID:21455306

  4. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice.

    PubMed

    Lempiäinen, Harri; Müller, Arne; Brasa, Sarah; Teo, Soon-Siong; Roloff, Tim-Christoph; Morawiec, Laurent; Zamurovic, Natasa; Vicart, Axel; Funhoff, Enrico; Couttet, Philippe; Schübeler, Dirk; Grenet, Olivier; Marlowe, Jennifer; Moggs, Jonathan; Terranova, Rémi

    2011-03-24

    Evidence suggests that epigenetic perturbations are involved in the adverse effects associated with some drugs and toxicants, including certain classes of non-genotoxic carcinogens. Such epigenetic changes (altered DNA methylation and covalent histone modifications) may take place at the earliest stages of carcinogenesis and their identification holds great promise for biomedical research. Here, we evaluate the sensitivity and specificity of genome-wide epigenomic and transcriptomic profiling in phenobarbital (PB)-treated B6C3F1 mice, a well-characterized rodent model of non-genotoxic liver carcinogenesis. Methylated DNA Immunoprecipitation (MeDIP)-coupled microarray profiling of 17,967 promoter regions and 4,566 intergenic CpG islands was combined with genome-wide mRNA expression profiling to identify liver tissue-specific PB-mediated DNA methylation and transcriptional alterations. Only a limited number of significant anti-correlations were observed between PB-induced transcriptional and promoter-based DNA methylation perturbations. However, the constitutive androstane receptor (CAR) target gene Cyp2b10 was found to be concomitantly hypomethylated and transcriptionally activated in a liver tissue-specific manner following PB treatment. Furthermore, analysis of active and repressive histone modifications using chromatin immunoprecipitation revealed a strong PB-mediated epigenetic switch at the Cyp2b10 promoter. Our data reveal that PB-induced transcriptional perturbations are not generally associated with broad changes in the DNA methylation status at proximal promoters and suggest that the drug-inducible CAR pathway regulates an epigenetic switch from repressive to active chromatin at the target gene Cyp2b10. This study demonstrates the utility of integrated epigenomic and transcriptomic profiling for elucidating early mechanisms and biomarkers of non-genotoxic carcinogenesis.

  5. Structure and expression of the rat CYP3A1 gene: isolation of the gene (P450/6betaB) and characterization of the recombinant protein.

    PubMed

    Nagata, K; Ogino, M; Shimada, M; Miyata, M; Gonzalez, F J; Yamazoe, Y

    1999-02-15

    A P450 gene (P450/6betaB) of the CYP3A subfamily was isolated from a rat genomic library. Nucleotide sequencing of the exons revealed a high similarity with P450PCN1 cDNA (Gonzalez et al. (1985), J. Biol. Chem. 260, 7345-7441), but differed in 41 nucleotides, resulting in 11 changes and 2 deletions of amino acid residues. The P450/6betaB spanned about 30 kbp and consisted of 13 exons, and was in exon number and size identical with CYP3A2 gene except in the 6th exon, which was shorter than that of CYP3A2. 6beta-B mRNA, which may be transcribed from P450/6betaB, was detected on Northern blotting and by reverse transcription-polymerase chain reaction (RT-PCR). Profiles of the developmental change and induction by a treatment with several chemicals were very similar to those of P450PCN1 mRNA reported previously. P450PCN1 mRNA and gene, however, were not detected by PCR in rats. To determine whether P450/6betaB encodes an active protein, a cDNA was isolated and expressed. Expression of 6beta-B cDNA in COS-1 cells was carried out and revealed that the recombinant protein comigrated with purified P4506beta-4 previously identified as CYP3A1. The recombinant 6beta-B protein showed similar turnover rate and regioselectivity for testosterone with purified P4506beta-4 by the simultaneous addition of NADPH-cytochrome P450 reductase and cytochrome b5. These data suggest that P450/6betaB encodes an active P450 form corresponding to CYP3A1 and P450PCN1 reported previously does not exist in rats. Copyright 1999 Academic Press.

  6. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide

    PubMed Central

    Bidstrup, Tanja Busk; Bjørnsdottir, Inga; Sidelmann, Ulla Grove; Thomsen, Mikael Søndergård; Hansen, Kristian Tage

    2003-01-01

    Aims To identify the principal human cytochrome P450 (CYP) enzyme(s) responsible for the human in vitro biotransformation of repaglinide. Previous experiments have identified CYP3A4 as being mainly responsible for the in vitro metabolism of repaglinide, but the results of clinical investigations have suggested that more than one enzyme may be involved in repaglinide biotransformation. Methods [14C]-Repaglinide was incubated with recombinant CYP and with human liver microsomes (HLM) from individual donors in the presence of inhibitory antibodies specific for individual CYP enzymes. Metabolites, measured by high-performance liquid chromatography (HPLC) with on-line radiochemical detection, were identified by liquid chromatography-mass spectrophotometry (LC-MS) and LC-MS coupled on-line to a nuclear magnetic resonance spectrometer (LC-MS-NMR). Results CYP3A4 and CYP2C8 were found to be responsible for the conversion of repaglinide into its two primary metabolites, M4 (resulting from hydroxylation on the piperidine ring system) and M1 (an aromatic amine). Specific inhibitory monoclonal antibodies against CYP3A4 and CYP2C8 significantly inhibited (> 71%) formation of M4 and M1 in HLM. In a panel of HLM from 12 individual donors formation of M4 and M1 varied from approximately 160–880 pmol min−1 mg−1 protein and from 100–1110 pmol min−1 mg−1 protein, respectively. The major metabolite generated by CYP2C8 was found to be M4. The rate of formation of this metabolite in HLM correlated significantly with paclitaxel 6α-hydroxylation (rs = 0.80; P = 0.0029). Two other minor metabolites were also detected. One of them was M1 and the other was repaglinide hydroxylated on the isopropyl moiety (M0-OH). The rate of formation of M4 in CYP2C8 Supersomes™ was 2.5 pmol min−1 pmol−1 CYP enzyme and only about 0.1 pmol min−1 pmol−1 CYP enzyme in CYP3A4 Supersomes™. The major metabolite generated by CYP3A4 was M1. The rate of formation of this metabolite in HLM

  7. Lack of association between genetic polymorphisms of CYP3A4, CYP2C9 and CYP2C19 and antituberculosis drug-induced liver injury in a community-based Chinese population.

    PubMed

    Tang, Shao-Wen; Lv, Xiao-Zhen; Chen, Ru; Wu, Shan-Shan; Yang, Zhi-Rong; Chen, Da-Fang; Zhan, Si-Yan

    2013-05-01

    The precise pathogenic mechanism of antituberculosis (anti-TB) drug-induced liver injury (ATLI) is poorly understood. It may be associated with drug-metabolizing enzymes, such as cytochrome P450 (CYP) 3A4, CYP2C9 and CYP2C19. The aim of the present study was to explore the role of tagging single nucleotide polymorphisms (tSNPs) of CYP3A4, CYP2C9 and CYP2C19 in the risk of ATLI in a population-based anti-TB treatment cohort. A nested case-control study was designed. Each ATLI case was matched 1 : 4 with controls on the basis of age, gender, treatment history, disease severity and drug dosage. The tSNPs were selected using Haploview 4.2 based on the HapMap database of Han Chinese in Beijing and genotyped by TaqMan allelic discrimination technology. Eighty-nine patients with ATLI and 356 controls were included in the study. One tSNP in CYP3A4 (rs12333983), two in CYP2C9 (rs4918758, rs9332098) and two in CYP2C19 (rs11568732, rs4986894) were selected and genotyped. The minor allele frequencies of rs12333983, rs4918758, rs9332098, rs11568732 and rs4986894 were 36.0%, 41.4%, 1.1%, 5.7% and 35.7%, respectively, in the patients, compared with 31.7%, 42.9%, 3.4%, 8.9% and 35.1%, respectively, in the controls. No significant differences were observed in genotypes or allele frequencies of the five tSNPs between the two groups and none of the CYP2C9 or CYP2C19 haplotypes was significantly associated with the development of ATLI. Based on the Chinese anti-TB treatment cohort, we did not find a significant association between the risk of ATLI and genetic polymorphisms of CYP3A4, CYP2C9 and CYP2C19. None of the haplotypes exhibited a significant association with the development of ATLI in a Chinese tuberculosis population. © 2013 The Authors Clinical and Experimental Pharmacology and Physiology © 2013 Wiley Publishing Asia Pty Ltd.

  8. Induction of CYP3A4 by efavirenz in primary human hepatocytes: comparison with rifampin and phenobarbital.

    PubMed

    Hariparsad, Niresh; Nallani, Srikanth C; Sane, Rucha S; Buckley, Donna J; Buckley, Arthur R; Desai, Pankaj B

    2004-11-01

    The antiretroviral agent efavirenz enhances the systemic clearance of coadministered drugs that are cytochrome P450 (CYP) 3A4 substrates. The mechanism of the apparent increase in CYP3A4 activity by efavirenz and the magnitude of change relative to other known inducers are not known. The authors tested the hypothesis that increased enzymatic activity by efavirenz entails CYP3A4 induction and activation of the human pregnane X receptor (hPXR), a key transcriptional regulator of CYP3A4. Employing primary cultures of human hepatocytes, they compared the CYP3A4 inductive effects of efavirenz (1-10 microM) to rifampin (10 microM) and phenobarbital (2 mM). A cell-based reporter assay was employed to assess hPXR activation. The authors observed that efavirenz caused a concentration-dependent CYP3A4 induction and hPXR activation. Based on the CYP3A4 activity assay, the average magnitude of induction by efavirenz (5-10 microM) was approximately 3- to 4-fold. In comparison, phenobarbital (2 mM) and rifampin (10 microM) caused a 5- and 6-fold induction, respectively.

  9. Time-dependent inhibition of CYP3A4 by gallic acid in human liver microsomes and recombinant systems.

    PubMed

    Pu, Qiang-Hong; Shi, Liang; Yu, Chao

    2015-03-01

    1.Gallic acid is a main polyphenol in various fruits and plants. Inhibitory characteristics of gallic acid on CYP3A4 were still unclear. The objective of this work is hence to investigate inhibitory characteristics of gallic acid on CYP3A4 using testosterone as the probe substrate in human liver microsomes (HLMs) and recombinant CYP3A4 (rCYP3A4) systems. 2.Gallic acid caused concentration-dependent loss of CYP3A4 activity with IC50 values of 615.2 μM and 669.5 μM in HLM and rCYP3A4 systems, respectively. IC50-shift experiments showed that pre-incubation with gallic acid in the absence of NADPH contributed to 12- or 14-fold reduction of IC50 in HLM and rCYP3A4 systems, respectively, supporting a time-dependent inhibition. In HLM, time-dependent inactivation variables KI and Kinact were 485.8 μM and 0.05 min(-1), respectively. 3.Compared with the presence of NADPH, pre-incubation of gallic acid in the absence of NADPH markedly increased its inhibitory effects in HLM and rCYP3A4 systems. Those results indicate that CYP3A4 inactivation by gallic acid was independent on NADPH and was mainly mediated its oxidative products. 4.In conclusion, we showed that gallic acid weakly and time-dependently inactivated CYP3A4 via its oxidative products.

  10. The effects of splicing variant of PXR PAR-2 on CYP3A4 and MDR1 mRNA expressions.

    PubMed

    Liu, Yan; Ji, Wei; Yin, You; Fan, Lan; Zhang, Jian; Yun, Huang; Wang, Nianci; Li, Qing; Wei, Zhang; Ouyang, Dongshen; Zhou, Hong-Hao

    2009-05-01

    PAR-2(SV1), a splicing variant of PXR, has similar activity as PXR wild type. Currently, a 6bp-deletion variant ((-133)GAGAAG(-128)) in promoter region of PAR-2(SV1) was reported, which could diminish the hPAR-2 promote activity in HepG2 cells. The distribution and functions of 6bp-deletion in Chinese were investigated. The PXR genotype was analyzed from 56 liver samples and 177 blood samples. Then the mRNA expression of PAR-2(SV1), total PXR, CYP3A4 and MDR1 were quantitatively analyzed by real-time PCR. The allelic frequencies of 6bp-deletion were 22.4%, 38.4% and 23.7%, in blood of Chinese healthy (n=177), hepatic carcinoma samples (n=33) and calculus of bile duct ones (n=23) respectively. PAR-2(SV1) transcript represented approximately 15.3% of the total PXR transcripts in all liver samples. The 6bp-deletion cut down PAR-2(SV1) mRNA and total PXR mRNA transcriptional expression, and then led to down regulations of MDR1 and CYP3A4. PAR-2(SV1) plays an important role in total PXR mRNA expression. The 6bp-deletion affects the PAR-2(SV1) expression greatly, and then contributes to the adjustment of expression and function of total PXR. Thus it leads to the changed target gene expressions, which may partly explain interindividual variations in CYP3A4 and MDR1. And these phenomena suggest that individuals with 6bp-deletion are prone to carcinoma when exposed to toxicity.

  11. Enhancement of hepatic 4-hydroxylation of 25-hydroxyvitamin D3 through CYP3A4 induction in vitro and in vivo: implications for drug-induced osteomalacia.

    PubMed

    Wang, Zhican; Lin, Yvonne S; Dickmann, Leslie J; Poulton, Emma-Jane; Eaton, David L; Lampe, Johanna W; Shen, Danny D; Davis, Connie L; Shuhart, Margaret C; Thummel, Kenneth E

    2013-05-01

    Long-term therapy with certain drugs, especially cytochrome P450 (P450; CYP)-inducing agents, confers an increased risk of osteomalacia that is attributed to vitamin D deficiency. Human CYP24A1, CYP3A4, and CYP27B1 catalyze the inactivation and activation of vitamin D and have been implicated in the adverse drug response. In this study, the inducibility of these enzymes and monohydroxylation of 25-hydroxyvitamin D3 (25OHD3) were evaluated after exposure to P450-inducing drugs. With human hepatocytes, treatment with phenobarbital, hyperforin, carbamazepine, and rifampin significantly increased the levels of CYP3A4, but not CYP24A1 or CYP27B1 mRNA. In addition, rifampin pretreatment resulted in an 8-fold increase in formation of the major metabolite of 25OHD3, 4β,25(OH)2D3. This inductive effect was blocked by the addition of 6',7'-dihydroxybergamottin, a selective CYP3A4 inhibitor. With human renal proximal tubular HK-2 cells, treatment with the same inducers did not alter CYP3A4, CYP24A1, or CYP27B1 expression. 24R,25(OH)2 D3 was the predominant monohydroxy metabolite produced from 25OHD3, but its formation was unaffected by the inducers. With healthy volunteers, the mean plasma concentration of 4β,25(OH)2D3 was increased 60% (p < 0.01) after short-term rifampin administration. This was accompanied by a statistically significant reduction in plasma 1α,25(OH)2D3 (-10%; p = 0.03), and a nonsignificant change in 24R,25(OH)2D3 (-8%; p = 0.09) levels. Further analysis revealed a negative correlation between the increase in 4β,25(OH)2D3 and decrease in 1α,25(OH)2D3 levels. Examination of the plasma monohydroxy metabolite/25OHD3 ratios indicated selective induction of the CYP3A4-dependent 4β-hydroxylation pathway of 25OHD3 elimination. These results suggest that induction of hepatic CYP3A4 may be important in the etiology of drug-induced osteomalacia. Copyright © 2013 American Society for Bone and Mineral Research.

  12. Utility of Nicotiana tabacum cell suspension cultures expressing human CYP1A1, CYP1A2 and CYP3A4 to study the oxidative metabolism of the herbicide 14C-fluometuron.

    PubMed

    Breuer, Maren Anne; Schmidt, Burkhard; Schuphan, Ingolf

    2009-01-01

    The metabolism and biotransformation of the (14)C-labeled phenylurea herbicide fluometuron was examined using tobacco cell suspension cultures transformed separately with human cyp1a1, cyp1a2 and cyp3a4, and corresponding non-transformed cultures in order to screen and predict metabolic patterns. Experimental parameters modified were concentration of (14)C-fluometuron, incubation period, and additional application of inhibitor carbaryl. Media and cell extracts were analyzed by radio-TLC and radio-HPLC, isolated metabolites by LC-MS, and non-extractable residues by combustion. During 48 hours, the CYP1A1 expressing cultures metabolized 90.0 % of applied fluometuron, while the non-transgenic controls transformed 67.0 %. The CYP1A2 expressing cultures exhibited highest rates (95.1 %), CYP3A4 expressing cultures lowest rates (43.0 %). The primary metabolites identified were mono-demethyl (main metabolite in controls) and di-demethyl fluometuron (mainly in CYP1A2 cultures), besides a non-identified primary product (mainly in CYP1A1 cultures); metabolic profiles differed distinctly among cultures. After addition of carbaryl, rates of fluometuron decreased noticeably in controls and not in CYP3A4 expressing cultures. This may indicate inhibition of endogenous tobacco P450s involved in fluometuron metabolism but not of CYP3A4. Additionally, the P450-transgenic cultures proved to be valuable tools to produce large amounts of metabolites for thorough identification.

  13. Herbal medicine yin zhi huang induces CYP3A4-mediated sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole.

    PubMed

    Fan, Lan; Wang, Guo; Wang, Lian-Sheng; Chen, Yao; Zhang, Wei; Huang, Yuan-Fei; Huang, Rui-Xue; Hu, Dong-Li; Wang, Dan; Zhou, Hong-Hao

    2007-10-01

    To explore the potential interactions between yin zhi huang (YZH) and omeprazole, a substrate of CYP3A4 and CYP2C19. Eighteen healthy volunteers, including 6 CYP2C19*1/*1, 6 CYP2C19*1/*2 or *3 and 6 CYP2C19*2/*2 were enrolled in a 2-phase, randomized, crossover clinical trial. In each phase, the volunteers received either placebo or 10 mL YZH oral liquid, 3 times daily for 14 d. Then all the patients took a 20 mg omeprazole capsule orally. Blood samples were collected up to 12 h after omeprazole administration. Plasma concentrations of omeprazole and its metabolites were quantified by HPLC with UV detection. After 14 d of treatment of YZH, plasma omeprazole significantly decreased and those of omeprazole sulfone and 5-hydroxyomeprazole significantly increased. The ratios of the area under the plasma concentration-time curves from time 0 to infinity (AUC(0-infinity) of omeprazole to 5-hydroxyomprazole and those of omeprazole to omeprazole sulfone decreased by 64.80%+/-12.51% (P=0.001) and 63.31%+/-18.45% (P=0.004) in CYP2C19*1/*1, 57.98%+/-14.80% (P=0.002) and 54.87%+/-18.42% (P=0.003) in CYP2C19*1/*2 or *3, and 37.74%+/-16.07% (P=0.004) and 45.16%+/-15.54% (P=0.003) in CYP2C19*2/*2, respectively. The decrease of the AUC(0-infinity) ratio of omeprazole to 5-hydroxyomprazole in CYP2C19*1/*1 and CYP2C19*1/*2 or *3 was greater than those in CYP2C19*2/*2 (P=0.047 and P=0.009). YZH induces both CYP3A4-catalyzed sulfoxidation and CYP2C19-dependent hydroxylation of omeprazole leading to decreases in plasma omeprazole concentrations.

  14. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.

    PubMed

    Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping

    2015-07-01

    Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Metabolism of endosulfan-alpha by human liver microsomes and its utility as a simultaneous in vitro probe for CYP2B6 and CYP3A4.

    PubMed

    Casabar, Richard C T; Wallace, Andrew D; Hodgson, Ernest; Rose, Randy L

    2006-10-01

    Endosulfan-alpha is metabolized to a single metabolite, endosulfan sulfate, in pooled human liver microsomes (Km = 9.8 microM, Vmax = 178.5 pmol/mg/min). With the use of recombinant cytochrome P450 (P450) isoforms, we identified CYP2B6 (Km = 16.2 microM, Vmax = 11.4 nmol/nmol P450/min) and CYP3A4 (Km = 14.4 microM, Vmax = 1.3 nmol/nmol P450/min) as the primary enzymes catalyzing the metabolism of endosulfan-alpha, although CYP2B6 had an 8-fold higher intrinsic clearance rate (CL(int) = 0.70 microl/min/pmol P450) than CYP3A4 (CL(int) = 0.09 microl/min/pmol P450). Using 16 individual human liver microsomes (HLMs), a strong correlation was observed with endosulfan sulfate formation and S-mephenytoin N-demethylase activity of CYP2B6 (r(2) = 0.79), whereas a moderate correlation with testosterone 6 beta-hydroxylase activity of CYP3A4 (r(2) = 0.54) was observed. Ticlopidine (5 microM), a potent CYP2B6 inhibitor, and ketoconazole (10 microM), a selective CYP3A4 inhibitor, together inhibited approximately 90% of endosulfan-alpha metabolism in HLMs. Using six HLM samples, the percentage total normalized rate (% TNR) was calculated to estimate the contribution of each P450 in the total metabolism of endosulfan-alpha. In five of the six HLMs used, the percentage inhibition with ticlopidine and ketoconazole in the same incubation correlated with the combined % TNRs for CYP2B6 and CYP3A4. This study shows that endosulfan-alpha is metabolized by HLMs to a single metabolite, endosulfan sulfate, and that it has potential use, in combination with inhibitors, as an in vitro probe for CYP2B6 and 3A4 catalytic activities.

  16. A new CYP21A1P/CYP21A2 chimeric gene identified in an Italian woman suffering from classical congenital adrenal hyperplasia form

    PubMed Central

    Concolino, Paola; Mello, Enrica; Minucci, Angelo; Giardina, Emiliano; Zuppi, Cecilia; Toscano, Vincenzo; Capoluongo, Ettore

    2009-01-01

    Background More than 90% of Congenital Adrenal Hyperplasia (CAH) cases are associated with mutations in the 21-hydroxylase gene (CYP21A2) in the HLA class III area on the short arm of chromosome 6p21.3. In this region, a 30 kb deletion produces a non functional chimeric gene with its 5' and 3' ends corresponding to CYP21A1P pseudogene and CYP21A2, respectively. To date, five different CYP21A1P/CYP21A2 chimeric genes have been found and characterized in recent studies. In this paper, we describe a new CYP21A1P/CYP21A2 chimera (CH-6) found in an Italian CAH patient. Methods Southern blot analysis and CYP21A2 sequencing were performed on the patient. In addition, in order to isolate the new CH-6 chimeric gene, two different strategies were used. Results The CYP21A2 sequencing analysis showed that the patient was homozygote for the g.655C/A>G mutation and heterozygote for the p.P30L missense mutation. In addition, the promoter sequence revealed the presence, in heterozygosis, of 13 SNPs generally produced by microconversion events between gene and pseudogene. Southern blot analysis showed that the woman was heterozygote for the classic 30-kb deletion producing a new CYP21A1P/CYP21A2 chimeric gene (CH-6). The hybrid junction site was located between the end of intron 2 pseudogene, after the g.656C/A>G mutation, and the beginning of exon 3, before the 8 bp deletion. Consequently, CH-6 carries three mutations: the weak pseudogene promoter region, the p.P30L and the g.655C/A>G splice mutation. Conclusion We describe a new CYP21A1P/CYP21A2 chimera (CH-6), associated with the HLA-B15, DR13 haplotype, in a young Italian CAH patient. PMID:19624807

  17. CYP1A1 induction and CYP3A4 inhibition by the fungicide imazalil in the human intestinal Caco-2 cells-comparison with other conazole pesticides.

    PubMed

    Sergent, Thérèse; Dupont, Isabelle; Jassogne, Coralie; Ribonnet, Laurence; van der Heiden, Edwige; Scippo, Marie-Louise; Muller, Marc; McAlister, Dan; Pussemier, Luc; Larondelle, Yvan; Schneider, Yves-Jacques

    2009-02-10

    Imazalil (IMA) is a widely used imidazole-antifungal pesticide and, therefore, a food contaminant. This compound is also used as a drug (enilconazole). As intestine is the first site of exposure to ingested drugs and pollutants, we have investigated the effects of IMA, at realistic intestinal concentrations, on xenobiotic-metabolizing enzymes and efflux pumps by using Caco-2 cells, as a validated in vitro model of the human intestinal absorptive epithelium. For comparison, other conazole fungicides, i.e. ketoconazole, propiconazole and tebuconazole, were also studied. IMA induced cytochrome P450 (CYP) 1A1 activity to the same extent as benzo(a)pyrene (B(a)P) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), in a dose- and time-dependent manner. Cell-free aryl hydrocarbon receptor (AhR) binding assay and reporter gene assay suggested that IMA is not an AhR-ligand, implying that IMA-mediated induction should involve an AhR-independent pathway. Moreover, IMA strongly inhibited the CYP3A4 activity in 1,25-vitamin D(3)-induced Caco-2 cells. The other fungicides had weak or nil effects on CYP activities. Study of the apical efflux pump activities revealed that ketoconazole inhibited both P-glycoprotein (Pgp) and multidrug resistance-associated protein 2 (MRP-2) or breast cancer resistance protein (BCRP), whereas IMA and other fungicides did not. Our results imply that coingestion of IMA-contaminated food and CYP3A4- or CYP1A1-metabolizable drugs or chemicals could lead to drug bioavailability modulation or toxicological interactions, with possible adverse effects for human health.

  18. An Autoregulatory Loop Controlling CYP1A1 Gene Expression: Role of H2O2 and NFI

    PubMed Central

    Morel, Yannick; Mermod, Nicolas; Barouki, Robert

    1999-01-01

    Cytochrome P450 1A1 (CYP1A1), like many monooxygenases, can produce reactive oxygen species during its catalytic cycle. Apart from the well-characterized xenobiotic-elicited induction, the regulatory mechanisms involved in the control of the steady-state activity of CYP1A1 have not been elucidated. We show here that reactive oxygen species generated from the activity of CYP1A1 limit the levels of induced CYP1A1 mRNAs. The mechanism involves the repression of the CYP1A1 gene promoter activity in a negative-feedback autoregulatory loop. Indeed, increasing the CYP1A1 activity by transfecting CYP1A1 expression vectors into hepatoma cells elicited an oxidative stress and led to the repression of a reporter gene driven by the CYP1A1 gene promoter. This negative autoregulation is abolished by ellipticine (an inhibitor of CYP1A1) and by catalase (which catalyzes H2O2 catabolism), thus implying that H2O2 is an intermediate. Down-regulation is also abolished by the mutation of the proximal nuclear factor I (NFI) site in the promoter. The transactivating domain of NFI/CTF was found to act in synergy with the arylhydrocarbon receptor pathway during the induction of CYP1A1 by 2,3,7,8-tetrachloro-p-dibenzodioxin. Using an NFI/CTF-Gal4 fusion, we show that NFI/CTF transactivating function is decreased by a high activity of CYP1A1. This regulation is also abolished by catalase or ellipticine. Consistently, the transactivating function of NFI/CTF is repressed in cells treated with H2O2, a novel finding indicating that the transactivating domain of a transcription factor can be targeted by oxidative stress. In conclusion, an autoregulatory loop leads to the fine tuning of the CYP1A1 gene expression through the down-regulation of NFI activity by CYP1A1-based H2O2 production. This mechanism allows a limitation of the potentially toxic CYP1A1 activity within the cell. PMID:10490621

  19. Enhancement of hepatic 4-hydroxylation of 25-hydroxyvitamin D3 through CYP3A4 induction in vitro and in vivo: Implications for drug-induced osteomalacia

    PubMed Central

    Wang, Zhican; Lin, Yvonne S.; Dickmann, Leslie J.; Poulton, Emma-Jane; Eaton, David L.; Lampe, Johanna W.; Shen, Danny D.; Davis, Connie L.; Shuhart, Margaret C.; Thummel, Kenneth E.

    2012-01-01

    Long-term therapy with certain drugs, especially P450 inducing agents, confers an increased risk of osteomalacia that is attributed to vitamin D deficiency. Human CYP24A1, CYP3A4 and CYP27B1 catalyze the inactivation and activation of vitamin D and have been implicated in the adverse drug response. In this study, the inducibility of these enzymes and monohydroxylation of 25OHD3 were evaluated following exposure to P450 inducing drugs. With human hepatocytes, treatment with phenobarbital, hyperforin, carbamazepine and rifampin significantly increased the levels of CYP3A4 but not CYP24A1 or CYP27B1 mRNA. In addition, rifampin pretreatment resulted in an 8-fold increase in formation of the major metabolite of 25OHD3, 4β,25(OH)2D3. This inductive effect was blocked by the addition of 6′,7′-dihydroxybergamottin, a selective CYP3A4 inhibitor. With human renal proximal tubular HK-2 cells, treatment with the same inducers did not alter CYP3A4, CYP24A1 or CYP27B1 expression. 24R,25(OH)2D3 was the predominant monohydroxy metabolite produced from 25OHD3, but its formation was unaffected by the inducers. With healthy volunteers, the mean plasma concentration of 4β,25(OH)2D3 was increased 60% (p < 0.01) after short-term rifampin administration. This was accompanied by a statistically significant reduction in plasma 1α,25(OH)2D3 (−10%; p = 0.03), and a non-significant change in 24R,25(OH)2D3 (−8%; p = 0.09) levels. Further analysis revealed a negative correlation between the increase in 4β,25(OH)2D3 and decrease in 1α,25(OH)2D3 levels. Examination of the plasma monohydroxy metabolite/25OHD3 ratios indicated selective induction of the CYP3A4-dependent 4β-hydroxylation pathway of 25OHD3 elimination. These results suggest that induction of hepatic CYP3A4 may be important in the etiology of drug-induced osteomalacia. PMID:23212742

  20. The consequence of regional gradients of P-gp and CYP3A4 for drug-drug interactions by P-gp inhibitors and the P-gp/CYP3A4 interplay in the human intestine ex vivo.

    PubMed

    Li, Ming; de Graaf, Inge A M; van de Steeg, Evita; de Jager, Marina H; Groothuis, Geny M M

    2017-04-01

    Intestinal P-gp and CYP3A4 work coordinately to reduce the intracellular concentration of drugs, and drug-drug interactions (DDIs) based on this interplay are of clinical importance and require pre-clinical investigation. Using precision-cut intestinal slices (PCIS) of human jejunum, ileum and colon, we investigated the P-gp/CYP3A4 interplay and related DDIs with P-gp inhibitors at the different regions of the human intestine with quinidine (Qi), dual substrate of P-gp and CYP3A4, as probe. All the P-gp inhibitors increased the intracellular concentrations of Qi by 2.1-2.6 fold in jejunum, 2.6-3.8 fold in ileum but only 1.2-1.3 fold in colon, in line with the different P-gp expression in these intestinal regions. The selective P-gp inhibitors (CP100356 and PSC833) enhanced 3-hydroxy-quinidine (3OH-Qi) in jejunum and ileum, while dual inhibitors of P-gp and CYP3A4 (verapamil and ketoconazole) decreased the 3OH-Qi production, despite of the increased intracellular Qi concentration, due to inhibition of CYP3A4. The outcome of DDIs based on P-gp/CYP3A4 interplay, shown as remarkable changes in the intracellular concentration of both the parent drug and the metabolite, varied among the intestinal regions, probably due to the different expression of P-gp and CYP3A4, and were different from those found in rat PCIS, which may have important implications for the disposition and toxicity of drugs and their metabolites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Identification and in silico prediction of metabolites of the model compound, tebufenozide by human CYP3A4 and CYP2C19.

    PubMed

    Shirotani, Naoki; Togawa, Moe; Ikushiro, Shinichi; Sakaki, Toshiyuki; Harada, Toshiyuki; Miyagawa, Hisashi; Matsui, Masayoshi; Nagahori, Hirohisa; Mikata, Kazuki; Nishioka, Kazuhiko; Hirai, Nobuhiro; Akamatsu, Miki

    2015-10-15

    The metabolites of tebufenozide, a model compound, formed by the yeast-expressed human CYP3A4 and CYP2C19 were identified to clarify the substrate recognition mechanism of the human cytochrome P450 (CYP) isozymes. We then determined whether tebufenozide metabolites may be predicted in silico. Hydrogen abstraction energies were calculated with the density functional theory method B3LYP/6-31G(∗). A docking simulation was performed using FRED software. Several alkyl sites of tebufenozide were hydroxylated by CYP3A4 whereas only one site was modified by CYP2C19. The accessibility of each site of tebufenozide to the reaction center of CYP enzymes and the susceptibility of each hydrogen atom for metabolism by CYP enzymes were evaluated by a docking simulation and hydrogen abstraction energy estimation, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. First Analysis of the Association Between CYP3A4/5, ABCB1 Genetic Polymorphisms and Oxcarbazepine Metabolism and Transport in Chinese Epileptic Patients with Oxcarbazepine Monotherapy and Bitherapy.

    PubMed

    Wang, Ping; Yin, Tao; Ma, Hong-ying; Liu, Dan-Qi; Sheng, Yangh-ao; Zhou, Bo-Ting

    2015-01-01

    Oxcarbazepine (OXC) is widely used in anti-epileptic treatment. Cytochrome P450 3A4 (CYP3A4), cytochrome P450 3A5(CYP3A5), and ATP-binding cassette sub-family B member 1 (ABCB1) are potential genes involved in OXC metabolisms and transport in vivo. This study aims to examine the genetic effects of CYP3A4, CYP3A5, and ABCB1 on OXC metabolism and transport in Chinese epileptic patients using OXC as monotherapy and bitherapy with lamotrigine (LTG), levetiracetam (LEV), or valproic acid (VPA). Sixty-six Chinese epileptic patients were recruited from Xiangya Hospital Central South University, of whom 40 patients were receiving OXC monotherapy, 11 patients were placed in the OXC bitherapy group combined with one enzyme-inducing anti-epileptic drugs (LTG or LEV), and 15 patients were placed in the OXC bitherapy group combined with VPA. Oxcarbazepine and its main metabolite 10-hydrocarbazepine (MHD) plasma concentrations were measured using high performance liquid chromatography (HPLC)-UV method. In addition, eight single nucleotide polymorphisms (SNPs) in CYP3A4, CYP3A5, ABCB1 gene were genotyped by polymerase chain reaction-improved multiple ligase detection reaction (PCR-iMLDR). In the OXC+VPA group, ABCB1 rs2032582 and rs2032582-rs10234411-rs1045642 TAG haplotype were associated with MHD and MHD+OXC plasma concentration before permutation test. In OXC monotherapy and OXC+ LTG/LEV groups, no significant association between genetic polymorphisms in CYP3A4/5, ABCB1 gene and OXC plasma concentration parameters were observed. CYP3A4/5 and ABCB1 genetic variants might not take part in the metabolism and transport of MHD and OXC among epileptic patients using OXC monotherapy and bitherapy in combination with LEV, LTG or VPA.

  3. A Family-Based Association Study of CYP11A1 and CYP11B1 Gene Polymorphisms With Autism in Chinese Trios.

    PubMed

    Deng, Hong-Zhu; You, Cong; Xing, Yu; Chen, Kai-Yun; Zou, Xiao-Bing

    2016-05-01

    Autism spectrum disorder is a group of neurodevelopmental disorders with the higher prevalence in males. Our previous studies have indicated lower progesterone levels in the children with autism spectrum disorder, suggesting involvement of the cytochrome P-450scc gene (CYP11A1) and cytochrome P-45011beta gene (CYP11B1) as candidate genes in autism spectrum disorder. The aim of this study was to investigate the family-based genetic association between single-nucleotide polymorphisms, rs2279357 in the CYP11A1 gene and rs4534 and rs4541 in the CYP11B1 gene and autism spectrum disorder in Chinese children, which were selected according to the location in the coding region and 5' and 3' regions and minor allele frequencies of greater than 0.05 in the Chinese populations. The transmission disequilibrium test and case-control association analyses were performed in 100 Chinese Han autism spectrum disorder family trios. The genotype and allele frequency of the 3 single-nucleotide polymorphisms had no statistical difference between the children with autism spectrum disorder and their parents (P> .05). Transmission disequilibrium test analysis showed transmission disequilibrium of CYP11A1 gene rs2279357 single-nucleotide polymorphisms (χ(2)= 5.038,P< .001). Our findings provide further support for the hypothesis that a susceptibility gene for autism spectrum disorder exists within or near the CYP11A1 gene in the Han Chinese population. © The Author(s) 2015.

  4. A Novel Polymorphism in the Promoter of the CYP4A11 Gene Is Associated with Susceptibility to Coronary Artery Disease

    PubMed Central

    Sirotina, Svetlana; Ponomarenko, Irina; Kharchenko, Alexander; Bykanova, Marina; Bocharova, Anna; Vagaytseva, Kseniya; Solodilova, Maria

    2018-01-01

    Enzymes CYP4A11 and CYP4F2 are involved in biosynthesis of vasoactive 20-hydroxyeicosatetraenoic acid and may contribute to pathogenesis of coronary artery disease (CAD). We investigated whether polymorphisms of the CYP4A11 and CYP4F2 genes are associated with the risk of CAD in Russian population. DNA samples from 1323 unrelated subjects (637 angiographically confirmed CAD patients and 686 age- and sex-matched healthy individuals) were genotyped for polymorphisms rs3890011, rs9332978, and rs9333029 of CYP4A11 and rs3093098 and rs1558139 of CYP4F2 by using the Mass-ARRAY 4 system. SNPs rs3890011 and rs9332978 of CYP4A11 were associated with increased risk of CAD in women: OR = 1.26, 95% CI: 1.02–1.57, P = 0.004, and Q = 0.01 and OR = 1.45, 95% CI: 1.13–1.87, P = 0.004, and Q = 0.01, respectively. Haplotype G-C-A of CYP4A11 was associated with increased risk of CAD (adjusted OR = 1.41, 95% CI: 1.12–1.78, and P = 0.0036). Epistatic interactions were found between rs9332978 of CYP4A11 and rs1558139 of CYP4F2 (P interaction = 0.025). In silico analysis allowed identifying that SNP rs9332978 is located at a binding site for multiple transcription factors; many of them are known to regulate the pathways involved in the pathogenesis of CAD. This is the first study in Europeans that reported association between polymorphism rs9332978 of CYP4A11 and susceptibility to coronary artery disease. PMID:29484037

  5. No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, J.; Williams, J.; Asherson, P.

    1995-02-27

    It has been suggested that the cytochrome P450 mono-oxygenase, debrisoquine 4-hydroxylase, is involved in the catabolism and processing of neurotransmitters subsequent to their reuptake into target cells. It is also thought to be related to the dopamine transporter that acts to take released dopamine back up into presynaptic terminals. The present study used the association approach to test the hypothesis that mutations in the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) confer susceptibility to schizophrenia. There were no differences in allele or genotype frequencies between patients and controls in the mutations causing the poor metaboliser phenotype inmore » CYP2D6. In addition there was no association found between schizophrenia and a 48 bp repeat within the 3{prime} untranslated region of DAT. 18 refs., 2 tabs.« less

  6. Nine co-localized cytochrome P450 genes of the CYP2N, CYP2AD, and CYP2P gene families in the mangrove killifish Kryptolebias marmoratus genome: Identification and expression in response to B[α]P, BPA, OP, and NP.

    PubMed

    Puthumana, Jayesh; Kim, Bo-Mi; Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Jung, Jee-Hyun; Kim, Il-Chan; Hwang, Un-Ki; Lee, Jae-Seong

    2017-06-01

    The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of cranberry dietary supplements with different brands on human CYP3A4 enzyme

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Supaluk; Prachayasittikul, Virapong; Bernichi, Bouchra

    2012-01-01

    The use of dietary supplements has increased dramatically, making drug interactions with those supplements a major concern. Because dietary supplements are not subject to the same regulations as prescription drugs, we hypothesize that the content of their active ingredients may vary among manufacturers, potentially causing a large variation in therapeutic outcome. The current study aimed to test this hypothesis on commonly used cranberry dietary supplements. Activity of human CYP3A4 enzyme was used as a parameter to determine the effect of cranberry supplement from nine manufacturers. The content of a cranberry product, equivalent to one capsule, was extracted with methanol. Aliquots of the extract were tested for their ability to inhibit the metabolism of the human CYP3A4 substrate quinine, using an in vitro liver microsomal technique. Human liver microsomes and quinine were incubated with or without (i.e. as control) cranberry extract. Formation of quinine's metabolite 3-hydroxyquinine, generated by the CYP3A4-mediated reaction was measured by a HPLC method. Of nine cranberry products tested, eight products had little or no effect but only one brand (Nature's Herbs 600 mg) caused very strong inhibition (67.2 %) of CYP3A4. The reason for this inhibition is unknown. The effect of cranberry was varied and ranged from 4.4 % activation by Ride Aid 800 mg to 67.2 % inhibition by Nature's Herbs 600 mg. Lack of effect on human CYP3A4 activity suggests that use of cranberry dietary supplement is unlikely to cause significant interactions with drugs metabolized by CYP3A4. PMID:27366135

  8. Up-regulatation of CYP3A expression through pregnent X receptor by praeruptorin D isolated from Peucedanum praeruptorum Dunn.

    PubMed

    Huang, Ling; Huang, Min; Li, Yu-Hua; Li, Rui-Ming; Zeng, Yu; Kuang, Shao-Yi; Zhang, Li; Wang, Yi-Tao; Bi, Hui-Chang

    2013-07-09

    Qianhu, the dried roots of Peucedanum praeruptorum DUNN (Umbelliferae), is a well-known traditional Chinese medicinal herb which was officially listed in the Chinese Pharmacopoeia. Praeruptorin D (PD) is one of the major active constituents of Peucedanum praeruptorum Dunn (Qianhu). The Pregnane X receptor (PXR) is an orphan nuclear receptor and plays a pivotal role in the activation of human cytochrome P450 3A4 (CYP3A4) gene. The purpose of this study was to investigate the effect of PD on the PXR-mediated transactivation of CYP3A4, and thus to predict potential herb-drug interactions between PD, Qianhu, and the other co-administered drugs that metabolized by CYP3A4. The effect of PD on the Cyp3a11, mPXR mRNA expression in mice primary hepatocytes was measured using real-time PCR. The gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells after transfected with PXR expression plasmids were determined by real-time PCR, Western blot analysis, and LC-MS/MS based CYP3A4 substrate assay. The results revealed that the level of Cyp3a11 gene expression in mice primary hepatocytes was significantly increased by PD, but PD cannot induce the mPXR gene expression. On the other hand, CYP3A4 mRNA, protein expression and functional activity in PXR-over-expression LS174T cells were significantly increased by PD through PXR-mediated pathway; conversely, no significant change was found in the untransfected cells. These findings suggest that PD can significantly up-regulate CYP3A4 expression and activity via the PXR-mediated pathway and this should be taken into consideration to predict any potential herb-drug interactions when PD and Peucedanum praeruptorum Dunn are co-administered with other drugs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Effect of CYP3A4 genetic polymorphisms on the genotoxicity of 4,4'-methylene-bis(2-chloroaniline)-exposed workers.

    PubMed

    Wang, Chung-Ching; Chen, Wei-Liang; Hsiung, Chia-Ni; Chiang, Sheng-Ta; Wang, Ying-Chuan; Loh, Ching-Hui; Lin, I-Shen; Chen, Hong-I; Liou, Saou-Hsing

    2017-01-01

    We investigated the relationship between 4,4'-methylene-bis(2-chloroaniline) (MBOCA) exposure and micronucleus (MN) frequency, and how this association was affected by genetic polymorphism of the cytochrome P450 enzyme (CYP3A4). We divided the study population into an exposed group (n=44 with total urine MBOCA ≥20 μg/g creatinine) and a control group (n=47 with total urine MBOCA <20 μg/g creatinine). Lymphocyte MN frequency (MNF) and micronucleated cell (MNC) frequency were measured by the cytokinesis-block MN assay method. MNF reported as the number of micronuclei in binucleated cells per 1000 cells, and MNC reported as the number of binucleated cells with the presence of MN per 1000 cells. CYP3A4 alleles were measured by PCR-based restriction fragment length polymorphism (PCR-RFLP). The mean MNF (6.11 vs 4.46 MN/1000 cells, p<0.001) and MNC (5.75 vs 4.15 MN/1000 cells, p<0.001) in the exposed workers was significantly higher than that in the controls. The CYP3A4 polymorphism A/A+A/G influenced the difference in the mean MNF (5.97 vs 4.38 MN/1000 cells, p<0.001) and MNC (5.60 vs 4.15 MN/1000 cells, p<0.001) between the MBOCA-exposed and control groups. After adjusting risk factors, the MNF level in the MBOCA-exposed workers was 0.520 MN cells/1000 cells (p<0.001) higher than the control group among the CYP3A4 A/A+A/G genotype. Similarly, the MNC level in the MBOCA-exposed workers was 0.593 MN/1000 cells (p<0.001) higher than the control group among the CYP3A4 A/A+A/G genotype. However, the difference in adjusted MNF and MNC between the exposed and control groups was not significant for the CYP3A4 polymorphism with the G/G genotype. We recommend that lymphocytes MNF and MNC are good indicators to evaluate MBOCA genotoxicity. Individuals with the CYP3A4 polymorphism A/A and A/G genotypes appear to be more susceptible to MBOCA genotoxicity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  10. Genetic polymorphisms in warfarin and tacrolimus-related genes VKORC1, CYP2C9 and CYP3A5 in the Greek-Cypriot population

    PubMed Central

    2014-01-01

    Background Two variants in the gene encoding the cytochrome P450 2C9 enzyme (CYP2C9) are considered the most significant genetic risk factors associated with bleeding after warfarin prescription. A variant in the vitamin K epoxide reductase (VKORC1) has been also associated by several studies with warfarin response. Another variant in the P450 3A5 enzyme (CYP3A5) gene is known to affect the metabolism of many drugs, including tacrolimus. Findings We conducted a population genetic study in 148 unrelated healthy Greek-Cypriot volunteers (through PCR-RFLP assays), in order to determine the frequencies of the above pharmacogenetics variants and to compare allele frequencies with those in other major ethnic groups. The allele frequencies of CYP2C9*2, CYP2C9*3 and CYP3A5*3 were found to be 0.162, 0.112 and 0.943 respectively, whereas VKORC1 - 1639A was 0.534. The latter frequency differs significantly when compared with Caucasians, Asians and Africans (p < 0.001) and is still significant when compared with the geographically and culturally closely related to Greek-Cypriots, Hellenes of Greece (p = 0.01). Interestingly ~18% of our population are carriers of four or three risk alleles regarding warfarin sensitivity, therefore they have a high predisposition for bleeding after taking high or even normal warfarin doses. Conclusions Our data show no significant difference in the frequency of CYP2C9 and CYP3A5 allelic variants when compared to the Caucasian population, but differ significantly when compared with Africans and Asians (p < 0.001). Also, the frequency of variant VKORC1 - 1639A differs between Greek-Cypriots and every other population we compared. Finally, about 1/5 Greek-Cypriots carry three or four risk alleles and ~50% of them carry at least two independent risk alleles regarding warfarin sensitivity, a potentially high risk for over-anticoagulation. PMID:24593903

  11. The influence of standardized Valeriana officinalis extract on the CYP3A1 gene expression by nuclear receptors in in vivo model.

    PubMed

    Bogacz, Anna; Mrozikiewicz, Przemyslaw M; Karasiewicz, Monika; Bartkowiak-Wieczorek, Joanna; Majchrzycki, Marian; Mikolajczak, Przemyslaw L; Ozarowski, Marcin; Grzeskowiak, Edmund

    2014-01-01

    Valeriana officinalis is one of the most popular medicinal plants commonly used as a sedative and sleep aid. It is suggested that its pharmacologically active compounds derived from the root may modulate the CYP3A4 gene expression by activation of pregnane X receptor (PXR) or constitutive androstane receptor (CAR) and lead to pharmacokinetic herb-drug interactions. The aim of the study was to determine the influence of valerian on the expression level of CYP3A1 (homologue to human CYP3A4) as well as nuclear receptors PXR, CAR, RXR, GR, and HNF-4α. Male Wistar rats were given standardized valerian extract (300 mg/kg/day, p.o.) for 3 and 10 days. The expression in liver tissue was analyzed by using real-time PCR. Our result showed a decrease of CYP3A1 expression level by 35% (P = 0.248) and 37% (P < 0.001), respectively. Moreover, Valeriana exhibited statistically significant reduction in RXR (approximately 28%) only after 3-day treatment. We also demonstrated a decrease in the amount HNF-4α by 22% (P = 0.005) and 32% (P = 0.012), respectively. In case of CAR, the increase of expression level by 46% (P = 0.023) was noted. These findings suggest that Valeriana officinalis extract can decrease the CYP3A4 expression and therefore may lead to interactions with synthetic drugs metabolized by this enzyme.

  12. The Influence of Standardized Valeriana officinalis Extract on the CYP3A1 Gene Expression by Nuclear Receptors in In Vivo Model

    PubMed Central

    Mrozikiewicz, Przemyslaw M.; Karasiewicz, Monika; Mikolajczak, Przemyslaw L.; Ozarowski, Marcin; Grzeskowiak, Edmund

    2014-01-01

    Valeriana officinalis is one of the most popular medicinal plants commonly used as a sedative and sleep aid. It is suggested that its pharmacologically active compounds derived from the root may modulate the CYP3A4 gene expression by activation of pregnane X receptor (PXR) or constitutive androstane receptor (CAR) and lead to pharmacokinetic herb-drug interactions. The aim of the study was to determine the influence of valerian on the expression level of CYP3A1 (homologue to human CYP3A4) as well as nuclear receptors PXR, CAR, RXR, GR, and HNF-4α. Male Wistar rats were given standardized valerian extract (300 mg/kg/day, p.o.) for 3 and 10 days. The expression in liver tissue was analyzed by using real-time PCR. Our result showed a decrease of CYP3A1 expression level by 35% (P = 0.248) and 37% (P < 0.001), respectively. Moreover, Valeriana exhibited statistically significant reduction in RXR (approximately 28%) only after 3-day treatment. We also demonstrated a decrease in the amount HNF-4α by 22% (P = 0.005) and 32% (P = 0.012), respectively. In case of CAR, the increase of expression level by 46% (P = 0.023) was noted. These findings suggest that Valeriana officinalis extract can decrease the CYP3A4 expression and therefore may lead to interactions with synthetic drugs metabolized by this enzyme. PMID:25302309

  13. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    PubMed

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  14. Effect of Curcuma longa on CYP2D6- and CYP3A4-mediated metabolism of dextromethorphan in human liver microsomes and healthy human subjects.

    PubMed

    Al-Jenoobi, Fahad Ibrahim; Al-Thukair, Areej A; Alam, Mohd Aftab; Abbas, Fawkeya A; Al-Mohizea, Abdullah M; Alkharfy, Khalid M; Al-Suwayeh, Saleh A

    2015-03-01

    Effect of Curcuma longa rhizome powder and its ethanolic extract on CYP2D6 and CYP3A4 metabolic activity was investigated in vitro using human liver microsomes and clinically in healthy human subjects. Dextromethorphan (DEX) was used as common probe for CYP2D6 and CYP3A4 enzymes. Metabolic activity of CYP2D6 and CYP3A4 was evaluated through in vitro study; where microsomes were incubated with NADPH in presence and absence of Curcuma extract. In clinical study phase-I, six healthy human subjects received a single dose (30 mg) of DEX syrup, and in phase-II DEX syrup was administered with Curcuma powder. The enzyme CYP2D6 and CYP3A4 mediated O- and N-demethylation of dextromethorphan into dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Curcuma extract significantly inhibited the formation of DOR and 3-MM, in a dose-dependent and linear fashion. The 100 μg/ml dose of curcuma extract produced highest inhibition, which was about 70 % for DOR and 80 % for 3-MM. Curcuma significantly increases the urine metabolic ratio of DEX/DOR but the change in DEX/3-MM ratio was statistically insignificant. Present findings suggested that curcuma significantly inhibits the activity of CYP2D6 in in vitro as well as in vivo; which indicates that curcuma has potential to interact with CYP2D6 substrates.

  15. Comparison of the biotransformation of the 14C-labelled insecticide carbaryl by non-transformed and human CYP1A1-, CYP1A2-, and CYP3A4-transgenic cell cultures of Nicotiana tabacum.

    PubMed

    Schmidt, Burkhard; Faymonville, Tanja; Gembé, Eva; Joussen, Nicole; Schuphan, Ingolf

    2006-08-01

    Transgenic tobacco-cell-suspension cultures expressing separately the human cytochrome P450 monooxygenases CYP1A1, CYP1A2, and CYP3A4 were utilized to study the biotransformation of the 14C-labelled insecticide carbaryl (=naphthalen-1-yl methylcarbamate). The resulting data were compared to similar data from the corresponding non-transformed (NT) tobacco-cell culture and commercially available membrane preparations (Bactosomes) of genetically modified bacteria separately containing the same human P450s. A rapid conversion rate of carbaryl was observed with the CYP1A1 and CYP1A2 cells, where only 49.7 and 0.2% of applied carbaryl (1 mg/l), respectively, remained after 24 h, as compared to 77.7% in the non-transformed culture. Unexpectedly, the corresponding results obtained from the CYP3A4 cultures were not definite. With 25 mg/l of carbaryl and 96 h of incubation, it was proven that the insecticide is also substrate of CYP3A4. This finding was supported by GC/EI-MS analysis of the primary metabolite pattern produced by the isozyme. This consisted of naphthalene-1-ol, N-(hydroxymethyl)carbaryl, 4-hydroxycarbaryl, and 5-hydroxycarbaryl, whereas the main product in non-transformed cells was N-(hydroxymethyl)carbaryl. Data obtained from the CYP1A1, CYP1A2, or CYP3A4 Bactosomes agreed with those of the P450-transgenic tobacco cells. Problems with GC/EI-MS analysis of carbaryl and its metabolites are discussed.

  16. Ibrutinib Dosing Strategies Based on Interaction Potential of CYP3A4 Perpetrators Using Physiologically Based Pharmacokinetic Modeling.

    PubMed

    de Zwart, L; Snoeys, J; De Jong, J; Sukbuntherng, J; Mannaert, E; Monshouwer, M

    2016-11-01

    Based on ibrutinib pharmacokinetics and potential sensitivity towards CYP3A4-mediated drug-drug interactions (DDIs), a physiologically based pharmacokinetic approach was developed to mechanistically describe DDI with various CYP3A4 perpetrators in healthy men under fasting conditions. These models were verified using clinical data for ketoconazole (strong CYP3A4 inhibitor) and used to prospectively predict and confirm the inducing effect of rifampin (strong CYP3A4 inducer); DDIs with mild (fluvoxamine, azithromycin) and moderate inhibitors (diltiazem, voriconazole, clarithromycin, itraconazole, erythromycin), and moderate (efavirenz) and strong CYP3A4 inducers (carbamazepine), were also predicted. Ketoconazole increased ibrutinib area under the curve (AUC) by 24-fold, while rifampin decreased ibrutinib AUC by 10-fold; coadministration of ibrutinib with strong inhibitors or inducers should be avoided. The ibrutinib dose should be reduced to 140 mg (quarter of maximal prescribed dose) when coadministered with moderate CYP3A4 inhibitors so that exposures remain within observed ranges at therapeutic doses. Thus, dose recommendations for CYP3A4 perpetrator use during ibrutinib treatment were developed and approved for labeling. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  17. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles.

    PubMed

    Wang, Jishi; Ma, Dan; Li, Yan; Yang, Yuan; Hu, Xiaoyan; Zhang, Wei; Fang, Qin

    2014-03-01

    The aim of this study was to explore the effects of bone marrow-derived mesenchymal stem cells (BMSCs) as intermediate carriers on targeting of P450 gene recombinant adenovirus to malignant melanoma in vitro and in vivo. BMSCs were transduced with pAd5-CMV-CYP2E1 recombinant adenovirus. BMSC migration was detected by Transwell plates in vitro and by superparamagnetic iron oxide particles in vivo. Growth-inhibitory effect and apoptosis were determined by MTT and immunity fluorescence staining. Anticancer effects were examined by a human melanoma nude mouse model in vivo. BMSCs moved toward A375 cells in Transwell plates. Numerous superparamagnetic MSCs labeled with iron oxide were identified in the peripheral areas of the tumor, but were detected in primary organs by Prussian blue staining. BMSC-CYP2E1 cells mediated a bystander killing effect on CYP2E1-negative A375 cells during coculture (IC50 values for A375 cells cocultured with BMSC-EGFP and BMSC-CYP2E1 were 4.08 and 2.68 mmol/l, respectively). Intravenously injecting CYP2E1 recombinant adenovirus-loaded BMSCs in mice with established human melanoma managed to target the tumor site, and BMSCs with forced expression of CYP2E1 inhibited the growth of malignant cells in vivo by activating 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide. BMSCs may serve as a platform of P450 gene-directed enzyme prodrug therapy for the delivery of chemotherapeutic prodrugs to tumors.

  18. Multiplex pyrosequencing method to determine CYP2C9*3, VKORC1*2, and CYP4F2*3 polymorphisms simultaneously: its application to a Korean population and comparisons with other ethnic groups.

    PubMed

    Kim, Kyoung-Ah; Song, Wan-Geun; Lee, Hae-Mi; Joo, Hyun-Jin; Park, Ji-Young

    2014-11-01

    Warfarin is an anticoagulant that is difficult to administer because of the wide variation in dose requirements to achieve a therapeutic effect. CYP2C9, VKROC1, and CYP4F2 play important roles in warfarin metabolism, and their genetic polymorphisms are related to the variability in dose determination. In this study we describe a new multiplex pyrosequencing method to identify CYP2C9*3 (rs1057910), VKORC1*2 (rs9923231), and CYP4F2*3 (rs2108661) simultaneously. A multiplex pyrosequencing method to simultaneously detect CYP2C9*3, VKORC1*2, and CYP4F2*3 alleles was designed. We assessed the allele frequencies of the polymorphisms in 250 Korean subjects using the multiplex pyrosequencing method. The results showed 100 % concordance between single and multiplex pyrosequencing methods, and the polymorphisms identified by pyrosequencing were also validated with the direct sequencing method. The allele frequencies of these polymorphisms in this population were as follows: 0.040 for CYP2C9*3, 0.918 for VKORC1*2, and 0.416 for CYP4F2*3. Although the allele frequencies of the CYP2C9*3 and VKROC1*2 were comparable to those in Japanese and Chinese populations, their frequencies in this Korean population differed from those in other ethnic groups; the CYP4F2*3 frequency was the highest among other ethnic populations including Chinese and Japanese populations. The pyrosequencing methods developed were rapid and reliable for detecting CYP2C9*3, VKORC1*2, and CYP4F2*3. Large ethnic differences in the frequency of these genetic polymorphisms were noted among ethnic groups. CYP4F2*3 exhibited its highest allele frequency among other ethnic populations compared to that in a Korean population.

  19. Effects of CYP1A2 on disposition of 2,3,7, 8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,2',4,4',5,5'-hexachlorobiphenyl in CYP1A2 knockout and parental (C57BL/6N and 129/Sv) strains of mice.

    PubMed

    Diliberto, J J; Burgin, D E; Birnbaum, L S

    1999-08-15

    TCDD is the prototype and most potent member of the highly lipophilic polyhalogenated aromatic hydrocarbons (PHAHs), which are persistent and ubiquitous environmental contaminants. In both acute and subchronic animal studies, there is a specific accumulation of TCDD in liver greater than in adipose tissue. The inducible hepatic binding protein responsible for this hepatic sequestration of TCDD and its congeners has been shown by our laboratory to be CYP1A2 (J. J. Diliberto, D. Burgin, and L. S. Birnbaum, 1997, Biochem. Biophys. Res. Commun. 236, 431-433). The present study was conducted using knockout (KO) mice lacking expression of CYP1A2 (CYP1A2-/-) in order to investigate the role of CYP1A2 gene on the disposition of TCDD, 4-PeCDF (a dioxin-like PHAH), and PCB 153 (a nondioxin-like PCB) in KO (CYP1A2-/-) mice and age-matched parental mice strains (C57BL/6N: CYP1A2+/+, Ah(b/b) and 129/Sv: CYP1A2+/+, Ah(d/d)). Mice were dosed (25 microgram [(3)H]TCDD/kg, 300 microgram [(14)C]4-PeCDF/kg, or 35.8 mg [(14)C]PCB 153/kg bw in a corn oil vehicle) orally and terminated after 4 days. Residues of administered compounds in collected tissues and daily excreta were quantitated using (3)H or (14)C activity. Results demonstrated differential effects in disposition for the various treatments within the three genetically different groups of mice. In KO mice, TCDD, 4-PeCDF, and PCB 153 had very little hepatic localization of chemical, and the major depot was adipose tissue. In contrast, parental strains demonstrated hepatic sequestration of TCDD and 4-PeCDF, whereas disposition of PCB 153 in parental strains was similar to that in KO mice. Another difference between KO mice and parental strains was the enhanced urinary excretion of 4-PeCDF. This study demonstrates the importance of CYP1A2 in pharmacokinetic behavior and mechanistic issues for TCDD and related compounds. Copyright 1999 Academic Press.

  20. Isolation of CYP3A5P cDNA from human liver: a reflection of a novel cytochrome P-450 pseudogene.

    PubMed

    Schuetz, J D; Guzelian, P S

    1995-03-14

    We have isolated, from a human liver cDNA library, a 1627 bp CYP3A5 cDNA variant (CYP3A5P) that contains several large insertions, deletions, and in-frame termination codons. By comparison with the genomic structure of other CYP3A genes, the major insertions in CYP3A5P cDNA demarcate the inferred sites of several CYP3A5 exons. The segments inserted in CYP3A5P have no homology with splice donor acceptor sites. It is unlikely that CYP3A5P cDNA represents an artifact of the cloning procedures since Southern blot analysis of human genomic DNA disclosed that CYP3A5P cDNA hybridized with a DNA fragment distinct from fragments that hybridized with either CYP3A5, CYP3A3 or CYP3A4. Moreover, analysis of adult human liver RNA on Northern blots hybridized with a CYP3A5P cDNA fragment revealed the presence of an mRNA with the predicted size of CYP3A5P. We conclude that CYP3A5P cDNA was derived from a separate gene, CYP3A5P, most likely a pseudogene evolved from CYP3A5.

  1. Investigating the binding interactions of the anti-Alzheimer's drug donepezil with CYP3A4 and P-glycoprotein.

    PubMed

    McEneny-King, Alanna; Edginton, Andrea N; Rao, Praveen P N

    2015-01-15

    The anti-Alzheimer's agent donepezil is known to bind to the hepatic enzyme CYP3A4, but its relationship with the efflux transporter P-glycoprotein (P-gp) is not as well elucidated. We conducted in vitro inhibition studies of donepezil using human recombinant CYP3A4 and P-gp. These studies show that donepezil is a weak inhibitor of CYP3A4 (IC50=54.68±1.00μM) whereas the reference agent ketoconazole exhibited potent inhibition (CYP3A4 IC50=0.20±0.01μM). P-gp inhibition studies indicate that donepezil exhibits better inhibition relative to CYP3A4 (P-gp EC50=34.85±4.63μM) although it was less potent compared to ketoconazole (P-gp EC50=9.74±1.23μM). At higher concentrations, donepezil exhibited significant inhibition of CYP3A4 (69%, 84% and 87% inhibition at 100, 250 and 500μM, respectively). This indicates its potential to cause drug-drug interactions with other CYP3A4 substrates upon co-administration; however, this scenario is unlikely in vivo due to the low therapeutic concentrations of donepezil. Similarly, donepezil co-administration with P-gp substrates or inhibitors is unlikely to result in beneficial or adverse drug interactions. The molecular docking studies show that the 5,6-dimethoxyindan-1-one moiety of donepezil was oriented closer to the heme center in CYP3A4 whereas in the P-gp binding site, the protonated benzylpiperidine pharmacophore of donepezil played a major role in its binding ability. Energy parameters indicate that donepezil complex with both CYP3A4 and P-gp was less stable (CDOCKER energies=-15.05 and -4.91kcal/mol, respectively) compared to the ketoconazole-CYP3A4 and P-gp complex (CDOCKER energies=-41.89 and -20.03kcal/mol, respectively). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening

    PubMed Central

    Ji, Kai; Kai, Wenbin; Zhao, Bo; Sun, Yufei; Yuan, Bing; Dai, Shengjie; Li, Qian; Chen, Pei; Wang, Ya; Pei, Yuelin; Wang, Hongqing; Guo, Yangdong; Leng, Ping

    2014-01-01

    Abscisic acid (ABA) plays an important role in fruit development and ripening. Here, three NCED genes encoding 9-cis-epoxycarotenoid dioxygenase (NCED, a key enzyme in the ABA biosynthetic pathway) and three CYP707A genes encoding ABA 8′-hydroxylase (a key enzyme in the oxidative catabolism of ABA) were identified in tomato fruit by tobacco rattle virus-induced gene silencing (VIGS). Quantitative real-time PCR showed that VIGS-treated tomato fruits had significant reductions in target gene transcripts. In SlNCED1-RNAi-treated fruits, ripening slowed down, and the entire fruit turned to orange instead of red as in the control. In comparison, the downregulation of SlCYP707A2 expression in SlCYP707A2-silenced fruit could promote ripening; for example, colouring was quicker than in the control. Silencing SlNCED2/3 or SlCYP707A1/3 made no significant difference to fruit ripening comparing RNAi-treated fruits with control fruits. ABA accumulation and SlNCED1transcript levels in the SlNCED1-RNAi-treated fruit were downregulated to 21% and 19% of those in control fruit, respectively, but upregulated in SlCYP707A2-RNAi-treated fruit. Silencing SlNCED1 or SlCYP707A2 by VIGS significantly altered the transcripts of a set of both ABA-responsive and ripening-related genes, including ABA-signalling genes (PYL1, PP2C1, and SnRK2.2), lycopene-synthesis genes (SlBcyc, SlPSY1 and SlPDS), and cell wall-degrading genes (SlPG1, SlEXP, and SlXET) during ripening. These data indicate that SlNCED1 and SlCYP707A2 are key genes in the regulation of ABA synthesis and catabolism, and are involved in fruit ripening as positive and negative regulators, respectively. PMID:25039074

  3. Effects of alkylphenols on CYP1A and CYP3A expression in first spawning Atlantic cod (Gadus morhua).

    PubMed

    Hasselberg, Linda; Meier, Sonnich; Svardal, Asbjørn; Hegelund, Tove; Celander, Malin C

    2004-05-12

    Alkylphenols are continuously released into the ocean as a result of offshore oil production. Alkylphenols, including 4-tert-butylphenol (C4), 4n-pentylphenol (C5), 4n-hexylphenol (C6), and 4n-heptylphenol (C7), up to 237 ppb concentrations, have been detected in produced water from oil platforms. Previous studies have shown that alkylphenols induce vitellogenesis in fish. Atlantic cod (Gadus morhua) of both sexes were force-fed with various doses ranging between 0.02 and 80 ppm of a mixture of alkylphenols (C4:C5:C6:C7 ratio 1:1:1:1) or 5 ppm 17 beta-estradiol. We investigated effects on hepatic CYP1A and CYP3A protein expression in protein blots, using antibodies against scup (Stenotomus chrysops) CYP1A1 and rainbow trout (Oncorhynchus mykiss) CYP3A. There was a sexually dimorphic expression of CYP1A and CYP3A protein levels, with females expressing higher levels than males. Treatment of male Atlantic cod with 17 beta-estradiol resulted in increased CYP1A and CYP3A protein levels. Exposure to alkylphenols resulted in a dose-dependent increase of CYP1A and CYP3A protein expression in males, but not in females. However, this increase of CYP1A protein levels was not reflected on the CYP1A-mediated ethoxyresorufin-O-deethylase (EROD) activity, implying that alkylphenols inhibited the CYP1A enzyme activity in vivo. In vitro inhibition studies with pooled liver microsomes from Atlantic cod confirmed that the alkylphenols mixture efficiently inhibited the CYP1A activity (IC50=10 microM), although the inhibitory effect of each individual alkylphenol varied. The IC50 values for each individual alkylphenol on the CYP1A activity were, in a descending order of magnitude: [C7>C6>C5>C4], ranging from 12 to 300 microM with decreased length of the 4-alkyl chain. The effect of alkylphenols on the CYP3A activity in vitro in liver microsomes also was investigated, using the fluorescent 7-benzyloxy-4-[trifluoromethyl]-coumarin (BFC) as a diagnostic CYP3A substrate. The alkylphenol

  4. Molecular Population Genetics of Human CYP3A Locus: Signatures of Positive Selection and Implications for Evolutionary Environmental Medicine

    PubMed Central

    Chen, Xiaoping; Wang, Haijian; Zhou, Gangqiao; Zhang, Xiumei; Dong, Xiaojia; Zhi, Lianteng; Jin, Li; He, Fuchu

    2009-01-01

    Background The human CYP3A gene cluster codes for cytochrome P450 (CYP) subfamily enzymes that catalyze the metabolism of various exogenous and endogenous chemicals and is an obvious candidate for evolutionary and environmental genomic study. Functional variants in the CYP3A locus may have undergone a selective sweep in response to various environmental conditions. Objective The goal of this study was to profile the allelic structure across the human CYP3A locus and investigate natural selection on that locus. Methods From the CYP3A locus spanning 231 kb, we resequenced 54 genomic DNA fragments (a total of 43,675 bases) spanning four genes (CYP3A4, CYP3A5, CYP3A7, and CYP3A43) and two pseudogenes (CYP3AP1 and CYP3AP2), and randomly selected intergenic regions at the CYP3A locus in Africans (24 individuals), Caucasians (24 individuals), and Chinese (29 individuals). We comprehensively investigated the nucleotide diversity and haplotype structure and examined the possible role of natural selection in shaping the sequence variation throughout the gene cluster. Results Neutrality tests with Tajima’s D, Fu and Li’s D* and F*, and Fay and Wu’s H indicated possible roles of positive selection on the entire CYP3A locus in non-Africans. Sliding-window analyses of nucleotide diversity and frequency spectrum, as well as haplotype diversity and phylogenetically inferred haplotype structure, revealed that CYP3A4 and CYP3A7 had recently undergone or were undergoing a selective sweep in all three populations, whereas CYP3A43 and CYP3A5 were undergoing a selective sweep in non-Africans and Caucasians, respectively. Conclusion The refined allelic architecture and selection spectrum for the human CYP3A locus highlight that evolutionary dynamics of molecular adaptation may underlie the phenotypic variation of the xenobiotic disposition system and varied predisposition to complex disorders in which xenobiotics play a role. PMID:20019904

  5. Regulation of Kruppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A in ovarian granulosa cells.

    PubMed

    Natesampillai, Sekar; Kerkvliet, Jason; Leung, Peter C K; Veldhuis, Johannes D

    2008-02-01

    Kruppel-like factors (KLFs) are important Sp1-like eukaryotic transcriptional proteins. The LDLR, StAR, and CYP11A genes exhibit GC-rich Sp1-like sites, which have the potential to bind KLFs in multiprotein complexes. We now report that KLF4, KLF9, and KLF13 transcripts are expressed in and regulate ovarian cells. KLF4 and 13, but not KLF9, mRNA expression was induced and then repressed over time (P < 0.001). Combined LH and IGF-I stimulation increased KLF4 mRNA at 2 h (P < 0.01), whereas LH decreased KLF13 mRNA at 6 h (P < 0.05), and IGF-I reduced KLF13 at 24 h (P < 0.01) compared with untreated control. KLF9 was not regulated by either hormone. Transient transfection of KLF4, KLF9, and KLF13 suppressed LDLR/luc, StAR/luc, and CYP11A/luc by 80-90% (P < 0.001). Histone-deacetylase (HDAC) inhibitors stimulated LDLR/luc five- to sixfold and StAR/luc and CYP11A/luc activity twofold (P < 0.001) and partially reversed suppression by all three KLFs (P < 0.001). Deletion of the zinc finger domain of KLF13 abrogated repression of LDLR/luc. Lentiviral overexpression of the KLF13 gene suppressed LDLR mRNA (P < 0.001) and CYP11A mRNA (P = 0.003) but increased StAR mRNA (P = 0.007). Collectively, these data suggest that KLFs may recruit inhibitory complexes containing HDAC corepressors, thereby repressing LDLR and CYP11A transcription. Conversely, KLF13 may recruit unknown coactivators or stabilize StAR mRNA, thereby explaining enhancement of in situ StAR gene expression. These data introduce new potent gonadal transregulators of genes encoding proteins that mediate sterol uptake and steroid biosynthesis.

  6. Direct sequencing and comprehensive screening of genetic polymorphisms on CYP2 family genes (CYP2A6, CYP2B6, CYP2C8, and CYP2E1) in five ethnic populations.

    PubMed

    Kim, Jeong-Hyun; Cheong, Hyun Sub; Park, Byung Lae; Kim, Lyoung Hyo; Shin, Hee Jung; Na, Han Sung; Chung, Myeon Woo; Shin, Hyoung Doo

    2015-01-01

    Recently, CYP2A6, CYP2B6, CYP2C8, and CYP2E1 have been reported to play a role in the metabolic effect of pharmacological and carcinogenic compounds. Moreover, genetic variations of drug metabolism genes have been implicated in the interindividual variation in drug disposition and pharmacological response. To define the distribution of single nucleotide polymorphisms (SNPs) in these four CYP2 family genes and to discover novel SNPs across ethnic groups, 288 DNAs composed of 48 African-Americans, 48 European-Americans, 48 Japanese, 48 Han Chinese, and 96 Koreans were resequenced. A total of 143 SNPs, 26 in CYP2A6, 45 in CYP2B6, 29 in CYP2C8, and 43 in CYP2E1, were identified, including 13 novel variants. Notably, two SNPs in the regulatory regions, a promoter SNP rs2054675 and a nonsynonymous rs3745274 (p.172Q>H) in CYP2B6, showed significantly different minor allele frequencies (MAFs) among ethnic groups (minimum P = 4.30 × 10(-12)). In addition, rs2031920 in the promoter region of CYP2E1 showed a wide range of MAF between different ethnic groups, and even among other various ethnic groups based on public reports. Among 13 newly discovered SNPs in this study, 5 SNPs were estimated to have potential functions in further in silico analyses. Some differences in genetic variations and haplotypes of CYP2A6, CYP2B6, CYP2C8, and CYP2E1 were observed among populations. Our findings could be useful in further researches, such as genetic associations with drug responses.

  7. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns.

    PubMed

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Nelson, David R; Lee, Jae-Seong

    2017-09-01

    Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. New CYP1 genes in the frog Xenopus (Silurana) tropicalis: Induction patterns and effects of AHR agonists during development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, Maria E., E-mail: maria.jonsson@ebc.uu.se; Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543; Berg, Cecilia

    2011-01-15

    The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), {beta}-naphthoflavone ({beta}NF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versusmore » the control, respectively). {beta}NF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and {beta}NF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 {mu}M PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 {mu}M PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions.« less

  9. [Effects of acute exposure to high altitude on hepatic function and CYP1A2 and CYP3A4 activities in rats].

    PubMed

    Li, Wenbin; Jia, Zhengping; Xie, Hua; Zhang, Juanhong; Wang, Yanling; Hao, Ying; Wang, Rong

    2014-07-01

    To investigate the changes in hepatic functions and activities of CYP1A2 and CYP3A4 in rats after acute exposure to high altitude. Twelve healthy male Wistar rats were randomly divided into control group and exposure group for acute exposure to normal and high altitude (4010 m) environment. Blood samples were collected from the vena orbitalis posterior for detection of the hepatic function. Hepatic pathologies of the rats were examined microscopically with HE staining. Liver microsomes were extracted by differential centrifugation to assess the activities of CYP1A2 and 3A4 using P450-GloTM kit. In rats with acute exposure to high altitude, AST, ALT, and ALP all increased significantly by 48.50%, 47.90%, and 103.02%, respectively, and TP decreased significantly by 17.80% as compared with those in rats maintained in normal altitude environment (P<0.05). Pathological examination of the liver revealed edema of the central vein of the liver and hepatocyte karyopyknosis in rats after acute exposure to high altitude, which also resulted in significantly lowered activities of CYP1A2 and 3A4 in the liver (by 96.56% and 43.53%, respectively). Acute exposure to high altitude can cause obvious liver injuries and lowered activities of CYP1A2 and 3A4 in rats to severely affect drug metabolism in the liver and result in increased concentration, prolonged half-life and reduced clearance of drugs.

  10. Effects of daily ingestion of cranberry juice on the pharmacokinetics of warfarin, tizanidine, and midazolam--probes of CYP2C9, CYP1A2, and CYP3A4.

    PubMed

    Lilja, J J; Backman, J T; Neuvonen, P J

    2007-06-01

    Case reports suggest that cranberry juice can increase the anticoagulant effect of warfarin. We investigated the effects of cranberry juice on R-S-warfarin, tizanidine, and midazolam; probes of CYP2C9, CYP1A2, and CYP3A4. Ten healthy volunteers took 200 ml cranberry juice or water t.i.d. for 10 days. On day 5, they ingested 10 mg racemic R-S-warfarin, 1 mg tizanidine, and 0.5 mg midazolam, with juice or water, followed by monitoring of drug concentrations and thromboplastin time. Cranberry juice did not increase the peak plasma concentration or area under concentration-time curve (AUC) of the probe drugs or their metabolites, but slightly decreased (7%; P=0.051) the AUC of S-warfarin. Cranberry juice did not change the anticoagulant effect of warfarin. Daily ingestion of cranberry juice does not inhibit the activities of CYP2C9, CYP1A2, or CYP3A4. A pharmacokinetic mechanism for the cranberry juice-warfarin interaction seems unlikely.

  11. The Making of a CYP3A Biomarker Panel for Guiding Drug Therapy

    PubMed Central

    Wang, Danxin; Sadee, Wolfgang

    2012-01-01

    CYP3A ranks among the most abundant cytochrome P450 enzymes in the liver, playing a dominant role in metabolic elimination of clinically used drugs. A main member in CYP3A family, CYP3A4 expression and activity vary considerably among individuals, attributable to genetic and non-genetic factors, affecting drug dosage and efficacy. However, the extent of genetic influence has remained unclear. This review assesses current knowledge on the genetic factors influencing CYP3A4 activity. Coding region CYP3A4 polymorphisms are rare and account for only a small portion of inter-person variability in CYP3A metabolism. Except for the promoter allele CYP3A4*1B with ambiguous effect on expression, common CYP3A4 regulatory polymorphisms were thought to be lacking. Recent studies have identified a relatively common regulatory polymorphism, designated CYP3A4*22 with robust effects on hepatic CYP3A4 expression. Combining CYP3A4*22 with CYP3A5 alleles *1, *3 and *7 has promise as a biomarker predicting overall CYP3A activity. Also contributing to variable expression, the role of polymorphisms in transcription factors and microRNAs is discussed. PMID:24466438

  12. Polymorphisms of CYP1A1 and GSTM1 Genes and Susceptibility to Oral Cancer

    PubMed Central

    Cha, In-Ho; Park, Jong Yun; Chung, Won-Yoon; Choi, Min-Ah; Kim, Hyung-Jun

    2007-01-01

    Purpose Oral cancer is the fifth most common form of cancer in the world and comprises 6.5% of all cancer deaths. Since one of the major risk factors for oral cancer is tobacco use, we hypothesized that polymorphic genes coding for tobacco carcinogen-metabolizing enzymes may play a role in oral cancer susceptibility. Materials and Methods To investigate the association between polymorphisms of the CYP1A1 and GSTM1 genes and risks for oral squamous cell carcinoma (OSCC) in the Korean population, the prevalence of the CYP1A1 Mspl and GSTM1 null polymorphisms were examined in 72 patients with histologically confirmed primary OSCC, as well as in 221 healthy control subjects. Results A significant risk increase for oral cancer was observed among subjects with the homozygous CYP1A1 (m2/m2) genotype (OR = 3.8, 95% CI = 1.9-7.7), but not the GSTM1 null genotype (OR = 0.7, 95% CI = 0.4-1.3). Risk for oral cancer was significantly increased in subjects with the homozygous CYP1A1 (m2/m2) genotype, regardless of smoking history (smokers; OR = 4.4; 95% CI = 1.2-16.3; non-smokers OR = 4.9; 95% CI=1.9-12.5). Using the potentially most protective genotype GSTM1 (+)/CYP1A1 [(m1/m1)+(m1/m2)] as the reference group, an increased risk for oral cancer was observed among subjects with the GSTM1 (+)/ CYP1A1 (m2/m2) (OR = 2.0, 95% CI = 0.8-5.2), and GSTM1 (-)/ CYP1A1 (m2/m2) (OR=4.9, 95% CI = 1.5-15.5) genotypes (p < 0.009, (χ2 trend test). Conclusion Our results suggest that individuals with a genotype of CYP1A1 (m2/m2) and GSTM1 (-) are highly susceptible for OSCC and that the CYP1A1 (m2/m2) genotype is closely associated with increased risk of OSCC in Koreans. PMID:17461521

  13. Effects of CYP3A5, CYP2C19, and CYP2B6 on the clinical efficacy and adverse outcomes of sibutramine therapy: a crucial role for the CYP2B6*6 allele.

    PubMed

    Hwang, In Cheol; Park, Ji Young; Ahn, Hong Yup; Kim, Kyoung Kon; Suh, Heuy Sun; Ko, Ki Dong; Kim, Kyoung-Ah

    2014-01-20

    Various cytochrome P450 isoforms modulate sibutramine activity and influence sibutramine plasma levels and pharmacokinetics. However, there are no available data to demonstrate the association of these polymorphisms with the clinical outcomes of sibutramine administration. This study was a sub-investigation of a 12-week, double-blind, placebo-controlled trial examining the additive effect of orlistat on sibutramine. The final analysis was restricted to 101 women who had fulfilled the protocol. We evaluated the effects of genetic polymorphisms of CYP3A5, CYP2C19 and CYP2B6 on the % weight loss and the occurrence of adverse events. The change of pulse rate from baseline value was affected by both CYP2B6 and CYP3A5 genetic polymorphisms (P<.01 for CYP3A5 and P=.01 for CYP2B6). Both CYP2B6 and CYP3A5 showed gene-gene interactions (P<.01). After adjusting for significant variables in the backward stepwise regression model, the change of pulse rate and time-dependent weight reduction were significant only among the CYP2B6 genotypes (P=.027 and P<.01, respectively). The CYP2B6*6 allele influences the extent of weight reduction and pulse rate changes in patients undergoing sibutramine treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation.

    PubMed

    Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley

    2017-10-20

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D 3 to its hormonal form, 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1 , are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH) 2 D 3 -mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH) 2 D 3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH) 2 D 3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation

    PubMed Central

    Meyer, Mark B.; Benkusky, Nancy A.; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J. Wesley

    2017-01-01

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1. We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. PMID:28808057

  16. Estimation of the Contribution of CYP2C8 and CYP3A4 in Repaglinide Metabolism by Human Liver Microsomes Under Various Buffer Conditions.

    PubMed

    Kudo, Toshiyuki; Goda, Hitomi; Yokosuka, Yuki; Tanaka, Ryo; Komatsu, Seina; Ito, Kiyomi

    2017-09-01

    We have previously reported that the microsomal activities of CYP2C8 and CYP3A4 largely depend on the buffer condition used in in vitro metabolic studies, with different patterns observed between the 2 isozymes. In the present study, therefore, the possibility of buffer condition dependence of the fraction metabolized by CYP2C8 (fm2C8) for repaglinide, a dual substrate of CYP2C8 and CYP3A4, was estimated using human liver microsomes under various buffer conditions. Montelukast and ketoconazole showed a potent and concentration-dependent inhibition of CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α-hydroxylation, respectively, without dependence on the buffer condition. Repaglinide depletion was inhibited by both inhibitors, but the degree of inhibition depended on buffer conditions. Based on these results, the contribution of CYP2C8 in repaglinide metabolism was estimated to be larger than that of CYP3A4 under each buffer condition, and the fm2C8 value of 0.760, estimated in 50 mM phosphate buffer, was the closest to the value (0.801) estimated in our previous modeling analysis based on its concentration increase in a clinical drug interaction study. Researchers should be aware of the possibility of buffer condition affecting the estimated contribution of enzyme(s) in drug metabolism processes involving multiple enzymes. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. In vivo pharmacokinetic interaction by ethanolic extract of Gymnema sylvestre with CYP2C9 (Tolbutamide), CYP3A4 (Amlodipine) and CYP1A2 (Phenacetin) in rats.

    PubMed

    Vaghela, Madhuri; Sahu, Niteshkumar; Kharkar, Prashant; Pandita, Nancy

    2017-12-25

    Gymnema sylvestre (GS) is a medicinal herb used for diabetes mellitus (DM). Herbs are gaining popularity as medicines in DM for its safety purpose. The aim of the present study was to evaluate in vivo pharmacokinetic (PK) interaction between allopathic drugs tolbutamide (TOLBU), amlodipine (AMLO), and phenacetin (PHENA) at low (L) and high (H) doses with ethanolic extract (EL) from GS. EL was extracted and subjected to TLC, total triterpenoid content (19.76 ± 0.02 W/W) and sterol content (0.1837 ± 0.0046 W/W) estimation followed by identification of phytoconstituents using HRLC-MS and GC-MS. PK interaction study with CYP2C9, CYP3A4 and CYP1A2 enzymes were assessed using TOLBU, AMLO and PHENA respectively to index cytochrome (CYP) mediated interaction in rats after concomitant administration of EL extract (400 mg/kg) from GS for 7 days. The rats were divided into four groups for each PK study where, group I and II were positive control for low and high dose of test drugs (CYP substrates) while group II and IV were orally administered EL. The PK study result of PHENA indicated that area under the plasma concentration-time curve (AUC 0-24 ) was significantly (P < 0.0001) increased by 1.4 (L) and 1.3-fold (H), plasma concentration (C max ) was significantly (P < 0.001) increased by 1.6 (L) and 1.4-fold (H). Whereas for TOLBU; clearance rate (CL) was significantly (P < 0.0001) decreased by 2.4 (L) and 2.3-fold (H), C max, was significantly (P < 0.001) decreased by 26.5% (L) and 50.4% (H) and AUC 0-24 was significantly (P < 0.0001) decreased by 59.8% (L) and 57.5% (H). Thus, EL is seen to be interacting with CYP1A2 by inhibiting its metabolic activity. HRLC-MS and GC-MS helped identify the presence of gymnemic acid (GA), triterpenoids and steroids in EL which could be the reason for PK interaction of CYP1A2 and CYP2C9. Also, in silico structure based site of metabolism study showed Fe accessibility and intrinsic activity for GA-IV, GA-VI, GA-VII and GA

  18. Pregnane X receptor- and CYP3A4-humanized mouse models and their applications

    PubMed Central

    Cheng, Jie; Ma, Xiaochao; Gonzalez, Frank J

    2011-01-01

    Pregnane X receptor (PXR) is a pivotal nuclear receptor modulating xenobiotic metabolism primarily through its regulation of CYP3A4, the most important enzyme involved in drug metabolism in humans. Due to the marked species differences in ligand recognition by PXR, PXR-humanized (hPXR) mice, and mice expressing human PXR and CYP3A4 (Tg3A4/hPXR) were established. hPXR and Tg3A4/hPXR mice are valuable models for investigating the role of PXR in xenobiotic metabolism and toxicity, in lipid, bile acid and steroid hormone homeostasis, and in the control of inflammation. PMID:21091656

  19. Cyp2a5 Promoter-based Gene Reporter Assay: A Novel Design of Cell-based Bioassay for Toxicity Prediction.

    PubMed

    Abu-Bakar, A'edah; Hu, Hao; Lang, Matti A

    2018-05-22

    The murine cytochrome P450 2a5 (Cyp2a5) gene is regulated by complex interactions of various stress-activated transcription factors (TFs). Elevated Cyp2a5 transcription under chemical-induced stress conditions is achieved by interplay between the various TFs-including as aryl hydrocarbon receptor (AhR) and nuclear factor (erythroid-derived 2)-like 2 wild-type (Nrf2)-at the "stress-responding" cluster of response elements on the Cyp2a5 promoter, as well as through mRNA stabilisation mediated by interaction of the stress-activated heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) with the 3'UTR of the CYP2A5 mRNA. We design a unique toxicity pathway-based reporter assay to include regulatory regions from both the 5' and the 3' untranslated regions of Cyp2a5 in a luciferase reporter plasmid to reflect in vivo responses to chemical insult. Human breast cancer, MCF-7 cells were stably transfected with pGL4.38-Cyp2a5_Wt3k (wildtype) or mutants-pGL4.38-Cyp2a5-StREMut and pGL4.38-Cyp2a5-XREMut-reporter gene to monitor chemical-induced cellular response mediated by AhR and Nrf2 signalling. The recombinant cells were treated with representative of AhR agonist, polycyclic aromatic hydrocarbons, brominated flame retardant, fluorosurfactant, aromatic organic compound and metal, to determine sensitivity of the Cyp2a5 promoter-based gene reporter assays to chemical insults by measuring the LC 50 and EC 50 of the respective chemicals. The three assays are sensitive to sub-lethal cellular responses of chemicals, which is an ideal feature for toxicity pathway-based bioassay for toxicity prediction. The wildtype reporter responded well to chemicals that activate cross-talk between the AhR and Nrf2, whilst the mutant reporters effectively gauge cellular response driven by either Nrf2/StRE or AhR/XRE signalling. Thus, the three gene reporter assays could be used tandemly to determine the predominant toxicity pathway of a given compound. This article is protected by copyright. All

  20. Investigation of drug-drug interactions caused by human pregnane X receptor-mediated induction of CYP3A4 and CYP2C subfamilies in chimeric mice with a humanized liver.

    PubMed

    Hasegawa, Maki; Tahara, Harunobu; Inoue, Ryo; Kakuni, Masakazu; Tateno, Chise; Ushiki, Junko

    2012-03-01

    The induction of cytochrome P450 (P450) enzymes is one of the risk factors for drug-drug interactions (DDIs). To date, the human pregnane X receptor (PXR)-mediated CYP3A4 induction has been well studied. In addition to CYP3A4, the expression of CYP2C subfamily is also regulated by PXR, and the DDIs caused by the induction of CYP2C enzymes have been reported to have a major clinical impact. The purpose of the present study was to investigate whether chimeric mice with a humanized liver (PXB mice) can be a suitable animal model for investigating the PXR-mediated induction of CYP2C subfamily, together with CYP3A4. We evaluated the inductive effect of rifampicin (RIF), a typical human PXR ligand, on the plasma exposure to the four P450 substrate drugs (triazolam/CYP3A4, pioglitazone/CYP2C8, (S)-warfarin/CYP2C9, and (S)-(-)-mephenytoin/CYP2C19) by cassette dosing in PXB mice. The induction of several drug-metabolizing enzymes and transporters in the liver was also examined by measuring the enzyme activity and mRNA expression levels. Significant reductions in the exposure to triazolam, pioglitazone, and (S)-(-)-mephenytoin, but not to (S)-warfarin, were observed. In contrast to the in vivo results, all the four P450 isoforms, including CYP2C9, were elevated by RIF treatment. The discrepancy in the (S)-warfarin results between in vivo and in vitro studies may be attributed to the relatively small contribution of CYP2C9 to (S)-warfarin elimination in the PXB mice used in this study. In summary, PXB mice are a useful animal model to examine DDIs caused by PXR-mediated induction of CYP2C and CYP3A4.

  1. Some mutations of exon-7 in cytochrome P450 gene 3A4 and their effect on 6beta-hydroxylation of cortisol.

    PubMed

    Shchepotina, E G; Vavilin, V A; Goreva, O B; Lyakhovich, V V

    2006-06-01

    Analysis of variants of exon 7 sequences in cytochrome P450 gene 3A4 in a sample of Caucasoid persons was carried out. The effect of these variants on activity of CYP3A was assessed by the level of cortisol 6beta-hydroxylation. Alleles CYP3A4*5 and *17 were not detected: probably, these mutations are rare and consequently they have little effect on the character of polymorphic distribution of CYP3A4 activity in this population. The incidence of CYP3A4*2 was 5.26%. The 6betaOH-cortisol/cortisol ratio in an individual with CYP3A4*2/*2 genotype was 7.408, which corresponded to "slow metabolizer" phenotype in this sample.

  2. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Akira; Bainy, Afonso C.D.; Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs.more » On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share

  3. [Gene polymorphism of CYP450 2C9 and VKORC1 in Chinese population and their relationships to the maintaining dosage of warfarin].

    PubMed

    Zhang, Ya-nan; Cui, Wei; Han, Mei; Zheng, Bin; Liu, Fan; Xie, Rui-qin; Yang, Xiao-hong; Gu, Guo-qiang; Zheng, Hong-mei; Wen, Jin-kun

    2010-02-01

    To investigate the distribution of gene polymorphism of CYP450 2C9 and VKORC1-1639A/G in the Chinese population as well as the difference of genetic polymorphism between Chinese Han population and other ethnic populations. Contribution of CYP2C9 and VKORC1 genotype to the maintenance doses on warfarin was also studied. The genotype and allele frequencies were calculated and compared with those in other populations. One hundred and one patients with stable anticoagulation with warfarin under a target international normalized ratio (INR) of 2.0 to 3.0 were enrolled for studying the relationship between the CYP2C9 and VKORC1 gene polymorphism and the warfarin maintaining dosage. CYP450 2C9*3 + 1075C/A allele frequencies were:AA in 449 cases (92.2%), AC in 36 cases (7.4%) and CC in 2 cases (0.4%), respectively. VKORC1 -1639A/G allele frequencies were AA in 415 cases (85.2%), GA in 72 cases (14.8%), but GG in no case (0.0%), respectively. When linear stepwise regression analysis was used to identify factors contributing to warfarin stable dose, the final equation was: ln (D) = 0.346 + 0.017 (weight) - 0.376 (CYP450 2C9*3 + 1075C/A) + 0.148 (VKORC1-1639A/G) - 0.002 (age) (r = 0.827, P = 0.02). There existed significant gene polymorphism CYP450 2C9*3 + 1075C/A and VKORC1-1639A/G in the Chinese Han population. Both Gene polymorphisms of CYP450 2C9*3 + 1075C/A and VKORC1-1639A/G were significantly affecting the maintaining dose of warfarin in the Chinese population.

  4. Evidences for CYP3A4 autoactivation in the desulfuration of dimethoate by the human liver.

    PubMed

    Buratti, Franca M; Testai, Emanuela

    2007-11-20

    Dimethoate (DIM) is an organophosphorothionate (OPT) pesticide used worldwide as a systemic insecticide and acaricide. It is characterized by low-to-moderate acute mammalian toxicity; similarly to the other OPT pesticides, its mode of action is mediated by the inhibition of acetylcholinesterase (AChE), exerted by its toxic metabolite dimethoate-oxon or omethoate (OME), which is also used as a direct acting pesticide. Human hepatic DIM bioactivation to the toxic metabolite OME has been characterized by using c-DNA expressed human CYPs and human liver microsomes (HLM) also in the presence of CYP-specific chemical inhibitors, with a method based on AChE inhibition. The obtained kinetic parameters and AChE IC(50) have been compared with those previously obtained with other OPTs, indicating a lower efficiency in DIM desulfuration reaction and a lower potency in inhibiting AChE. Results showed that, similarly to the other OPTs tested so far, at low DIM concentration OME formation is mainly catalysed by CYP1A2, while the role of 3A4 is relevant at high DIM levels. Differently from the other OPTs, DIM desulfuration reaction showed an atypical kinetic profile, likely due to CYP3A4 autoactivation. The sigmoidicity degree of the activity curve increased with the level of CYP3A4 in HLM or disappeared in the presence of a CYP3A4 chemical inhibitor. This atypical kinetic behaviour can be considered one of the possible explanations for the recent findings that among patients hospitalized following OPT intoxication, DIM ingestion gave different symptoms and more severe poisoning (23.1% of fatal cases versus total) than chlorpyrifos (8% of deaths), which has a lower LD(50) value. Since DIM-poisoned patients poorly responded to pralidoxime, the possibility to use CYP3A4 inhibitors could be considered as a complementary treatment.

  5. Polychlorinated biphenyl (PCB) induction of CYP3A4 enzyme activity in healthy Faroese adults.

    PubMed

    Petersen, Maria Skaalum; Halling, Jónrit; Damkier, Per; Nielsen, Flemming; Grandjean, Philippe; Weihe, Pál; Brøsen, Kim

    2007-10-15

    The CYP3A4 enzyme is, along with other cytochrome P450 enzymes, involved in the metabolism of environmental pollutants and is highly inducible by these substances. A commercial polychlorinated biphenyl (PCB) mixture, 1,1,1,-trichloro-2-(o-chlorophenyl), 2-(p'-chlorophenyl)ethane (o,p'-DDT) and 1,1,-dichloro-2,2-bis (p-chlorophenyl)ethene (p,p'-DDE) are known to induce CYP3A4 activity through activation of nuclear receptors, such as the pregnane X receptor. However, this induction of CYP3A4 has not yet been investigated in humans. Thus, the aim of the study was to determine the variability of the CYP3A4 phenotype in regard to increased concentrations of PCBs and other persistent organohalogen pollutants (POPs) in healthy Faroese adults. In 310 randomly selected Faroese residents aged 18-60 years, the CYP3A4 activity was determined based on the urinary 6beta-hydroxycortisol/cortisol (6beta-OHC/FC) ratio. POP exposures were assessed by measuring their concentrations in serum lipid. The results showed a unimodal distribution of the 6beta-OHC/FC ratio with values ranging from 0.58 to 27.38. Women had a slightly higher 6beta-OHC/FC ratio than men (p=0.07). Confounder-adjusted multiple regression analysis showed significant associations between 6beta-OHC/FC ratios and summation PCB, PCB-TEQ and p,p'-DDE, o,p'-DDT and HCB, respectively, but the associations were statistically significant for men only.

  6. PRPF3-Associated Autosomal Dominant Retinitis Pigmentosa and CYP4V2-Associated Bietti's Crystalline Corneoretinal Dystrophy Coexist in a Multigenerational Chinese Family.

    PubMed

    Meng, Xiaohong; Li, Qiyou; Guo, Hong; Xu, Haiwei; Li, Shiying; Yin, Zhengqin

    2017-01-01

    To characterize the clinical and molecular genetic characteristics of a large, multigenerational Chinese family showing different phenotypes. A pedigree consisted of 56 individuals in 5 generations was recruited. Comprehensive ophthalmic examinations were performed in 16 family members affected. Mutation screening of CYP4V2 was performed by Sanger sequencing. Next-generation sequencing (NGS) was performed to capture and sequence all exons of 47 known retinal dystrophy-associated genes in two affected family members who had no mutations in CYP4V2 . The detected variants in NGS were validated by Sanger sequencing in the family members. Two compound heterozygous CYP4V2 mutations (c.802-8_810del17insGC and c.992A>C) were detected in the proband who presented typical clinical features of BCD. One missense mutation (c.1482C>T, p.T494M) in the PRPF3 gene was detected in 9 out of 22 affected family members who manifested classical clinical features of RP. Our results showed that two compound heterozygous CYP4V2 mutations caused BCD, and one missense mutation in PRPF3 was responsible for adRP in this large family. This study suggests that accurate phenotypic diagnosis, molecular diagnosis, and genetic counseling are necessary for patients with hereditary retinal degeneration in some large mutigenerational family.

  7. Oral intake of curcumin markedly activated CYP 3A4: in vivo and ex-vivo studies

    PubMed Central

    Hsieh, Yow-Wen; Huang, Ching-Ya; Yang, Shih-Ying; Peng, Yu-Hsuan; Yu, Chung-Ping; Chao, Pei-Dawn Lee; Hou, Yu-Chi

    2014-01-01

    Curcumin, a specific secondary metabolite of Curcuma species, has potentials for a variety of beneficial health effects. It is nowadays used as a dietary supplement. Everolimus (EVL) is an immunosuppressant indicated for allograft rejection and cancer therapy, but with narrow therapeutic window. EVL is a substrate of P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4). This study investigated the effect of coadministration of curcumin on the pharmacokinetics of EVL in rats and the underlying mechanisms. EVL (0.5 mg/kg) was orally administered without and with 50 and 100 mg/kg of curcumin, respectively, in rats. Blood samples were collected at specific time points and EVL concentrations in blood were determined by QMS® immunoassay. The underlying mechanisms were evaluated using cell model and recombinant CYP 3A4 isozyme. The results indicated that 50 and 100 mg/kg of curcumin significantly decreased the AUC0-540 of EVL by 70.6% and 71.5%, respectively, and both dosages reduced the Cmax of EVL by 76.7%. Mechanism studies revealed that CYP3A4 was markedly activated by curcumin metabolites, which apparently overrode the inhibition effects of curcumin on P-gp. In conclusion, oral intake of curcumin significantly decreased the bioavailability of EVL, a probe substrate of P-gp/CYP 3A4, mainly through marked activation on CYP 3A4. PMID:25300360

  8. CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions.

    PubMed

    Galetin, Aleksandra; Ito, Kiyomi; Hallifax, David; Houston, J Brian

    2005-07-01

    The complexity of in vitro kinetic phenomena observed for CYP3A4 substrates (homo- or heterotropic cooperativity) confounds the prediction of drug-drug interactions, and an evaluation of alternative and/or pragmatic approaches and substrates is needed. The current study focused on the utility of the three most commonly used CYP3A4 in vitro probes for the prediction of 26 reported in vivo interactions with azole inhibitors (increase in area under the curve ranged from 1.2 to 24, 50% in the range of potent inhibition). In addition to midazolam, testosterone, and nifedipine, quinidine was explored as a more "pragmatic" substrate due to its kinetic properties and specificity toward CYP3A4 in comparison with CYP3A5. Ki estimates obtained in human liver microsomes under standardized in vitro conditions for each of the four probes were used to determine the validity of substrate substitution in CYP3A4 drug-drug interaction prediction. Detailed inhibitor-related (microsomal binding, depletion over incubation time) and substrate-related factors (cooperativity, contribution of other metabolic pathways, or renal excretion) were incorporated in the assessment of the interaction potential. All four CYP3A4 probes predicted 69 to 81% of the interactions with azoles within 2-fold of the mean in vivo value. Comparison of simple and multisite mechanistic models and interaction prediction accuracy for each of the in vitro probes indicated that midazolam and quinidine in vitro data provided the best assessment of a potential interaction, with the lowest bias and the highest precision of the prediction. Further investigations with a wider range of inhibitors are required to substantiate these findings.

  9. Metabolism of alprazolam (a marker of CYP3A4) in hemodialysis patients with persistent inflammation.

    PubMed

    Molanaei, Hadi; Stenvinkel, Peter; Qureshi, Abdul Rashid; Carrero, Juan Jesús; Heimbürger, Olof; Lindholm, Bengt; Diczfalusy, Ulf; Odar-Cederlöf, Ingegerd; Bertilsson, Leif

    2012-05-01

    To investigate the impact of persistent inflammation in hemodialysis (HD) patients on the pharmacokinetics of alprazolam, a cytochrome P450 (CYP) 3A4 substrate, and its metabolites and the role of HD in the impact of persistent inflammation in this clinical context. The study population comprised 26 HD patients (mean age 64 years, range 27-79 years; 19 men, 7 women) who were given 1 mg of alprazolam orally in the evening before the day of HD. Unconjugated and conjugated alprazolam and its 4-hydroxy and α-hydroxy metabolites were measured by liquid chromatography-mass spectrometry at 10, 34 (start of HD) and 38 (end of HD) h after intake. C-reactive protein (CRP) was measured weekly beginning 2 months before study initiation, and alpha 1-acid glycoprotein and 4β-hydroxycholesterol were measured at baseline. CYP3A4 activity was estimated as the ratio of unconjugated alprazolam to 4-hydroxyalprazolam between 10 and 34 h following alprazolam intake. After a single dose of alprazolam, plasma concentrations of unconjugated alprazolam and its metabolites decreased gradually, and unconjugated 4-hydroxyalprazolam was eliminated more rapidly than unconjugated alprazolam by HD. In contrast, the plasma concentrations of conjugated alprazolam and its conjugated metabolites increased during the 34 h following drug intake and the subsequent HD decreased their levels by almost 80%. The ratio of unconjugated alprazolam to 4-hydroxyalprazolam was correlated with CRP levels (r(s) = 0.49, P = 0.01). There was no significant correlation between CYP3A4 activity measured by alprazolam (4-hydroxylation) and alpha 1-acid glycoprotein or 4β-hydroxycholesterol. Conjugated alprazolam was also found in the plasma. The correlation between CYP3A4 activity (assessed by alprazolam 4-hydroxylation) and CRP level suggests that inflammation may downregulate CYP3A4 activity. If confirmed, this could have major implications for drug dosing in persistently inflamed patients.

  10. CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis.

    PubMed

    Chen, X W; Yu, T J; Zhang, J; Li, Y; Chen, H L; Yang, G F; Yu, W; Liu, Y Z; Liu, X X; Duan, C F; Tang, H L; Qiu, M; Wang, C L; Zheng, H; Yue, J; Guo, A M; Yang, J

    2017-08-31

    Tumor-associated macrophages (TAMs) play an essential role in metastasis. However, what enables TAMs to have a superior capacity to establish pre-metastatic microenvironment in distant organs is unclear. Here we have begun to uncover the effects of cytochrome P450 (CYP) 4A in TAMs on lung pre-metastatic niche formation and metastasis. CYP4A + TAM infiltration was positively associated with metastasis, pre-metastatic niche formation and poor prognosis in breast cancer patients. The pharmacological inhibition of CYP4A reduced lung pre-metastatic niche formation (evidenced by a decrease in vascular endothelial growth factor receptor 1 positive (VEGFR1 + ) myeloid cell recruitment and pro-metastatic protein expression) and metastatic burden, accompanied with TAM polarization away from the M2 phenotype in spontaneous metastasis models of 4T1 breast cancer and B16F10 melanoma. Co-implantation of 4T1 cells with CYP4A10 high macrophages promoted lung pre-metastatic niche formation and metastasis. Depletion of TAMs disrupted lung pre-metastatic niches and thereby prevented metastasis. Treatment with the CM from CYP4A10 high M2 macrophages (M2) increased pre-metastatic niche formation and metastatic burden in the lungs, whereas CYP4A inhibition attenuated these effects. In vitro TAM polarization away from the M2 phenotype induced by CYP4A inhibition decreased VEGFR1 + myeloid cell migration and fibronectin expression, accompanied with downregulation of STAT3 signaling. Conversely, overexpression of CYP4A or exogenous addition of 20-hydroxyeicosatetraenoic acid promoted M2 polarization and cytokine production of macrophages and thereby enhanced migration of VEGFR1 + myeloid cells, which were reversed by siRNA or pharmacological inhibition of STAT3. Importantly, a combined blocking M2 macrophage-derived factors TGF-β, VEGF and SDF-1 abolished VEGFR1 + myeloid cell migration and fibroblast activation induced by CYP4A. In summary, CYP4A in TAMs is crucial for lung pre

  11. Linkage disequilibrium between the CYP2C19*2,*17 and CYP2C9*1 alleles and impact of VKORC1, CYP2C9, CYP2C19 gene polymorphisms and gene-gene interactions on warfarin therapy.

    PubMed

    Khalighi, Koroush; Cheng, Gang; Mirabbasi, Seyedabbas; Khalighi, Bahar; Wu, Yin; Fan, Wuqiang

    2017-01-01

    Warfarin therapy is complicated by its large inter-individual and intra-individual variability. Both genetic and non-genetic factors can affect warfarin therapy. This study aims to investigate the allele distribution of VKORC1, CYP2C9 and CYP2C19, contribution of different allele variants and possible gene-gene interaction on warfarin therapy. Four hundreds and ninety-two patients were enrolled and single nucleotide polymorphisms for vitamin K epoxide reductase complex subunit 1 (VKORC1), cytochrome P450 CYP2C9 and cytochrome P450 CYP2C19 were genotyped. CYP2C9*1 allele is in complete linkage disequilibrium with CYP2C19*2 and CYP2C19*17 (D' = 1) in our study population. Patient with VKORC1-1639 G > A, CYP2C9*2 and CYP2C9*3 genetic variants need significant lower warfarin dose than patient with wild type allele of VKORC1 1639 G or CYP2C9*1. There is no significant differences between CYP2C19 allele variants for warfarin stable dose and INR > 5 event. Because of the complete linkage disequilibrium between CYP2C19*2,*17 and CYP2C9*1, patient with CYP2C19 *2/*2, *2/*17 and *17/*17 genotypes tend to have higher warfarin dose than patient with CYP2C19*1/*1 genotype. Stepwise regression analysis showed that VKORC1, CYP2C9, body mass index (BMI), age and gender were included as a factor significantly contributing to warfarin dose, whereas CYP2C19 did not contribute to warfarin dose. No statistically significant interaction between CYP2C9 and VKORC1 on warfarin dose and INR > 5 event was detected in univariate general linear model analysis. Our study suggests that polymorphic variants of VKORC1 and CYP2C9 affect warfarin dose independently, whereas CYP2C19 did not contribute to warfarin therapy.

  12. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity.

    PubMed

    Lv, Xuan; Pan, Liumeng; Wang, Jiaying; Lu, Liping; Yan, Weilin; Zhu, Yanye; Xu, Yiwen; Guo, Ming; Zhuang, Shulin

    2017-03-01

    Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC 50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC 50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R 2 between 0.83 and 0.97, p < 0.001). Our results indicated that the risk assessment of triazole pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s. Copyright © 2016 Elsevier Ltd. All rights

  13. Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study.

    PubMed

    Ghosh, Chaitali; Hossain, Mohammad; Spriggs, Addison; Ghosh, Arnab; Grant, Gerald A; Marchi, Nicola; Perucca, Emilio; Janigro, Damir

    2015-03-01

    Drug toxicity is a hurdle to drug development and to clinical translation of basic research. Antiepileptic drugs such as carbamazepine (CBZ) and selective serotonin reuptake inhibitors such as sertraline (SRT) are commonly co-prescribed to patients with epilepsy and comorbid depression. Because SRT may interfere with cytochrome P450 (CYP) enzyme activity and CYPs have been implicated in the conversion of CBZ to reactive cytotoxic metabolites, we investigated in vitro models to determine whether SRT affects the neurotoxic potential of CBZ and the mechanisms involved. Human fetal brain-derived dopaminergic neurons, human brain microvascular endothelial cells (HBMECs), and embryonic kidney (HEK) cells were used to evaluate cytotoxicity of CBZ and SRT individually and in combination. Nitrite and glutathione (GSH) levels were measured with drug exposure. To validate the role of CYP3A4 in causing neurotoxicity, drug metabolism was compared to cell death in HEK CYP3A4 overexpressed and cells pretreated with the CYP3A4 inhibitor ketoconazole. In all cellular systems tested, exposure to CBZ (127 μM) or SRT (5 μM) alone caused negligible cytotoxicity. By contrast CBZ, tested at a much lower concentration (17 μM) in combination with SRT (5 μM), produced prominent cytotoxicity within 15 min exposure. In neurons and HBMECs, cytotoxicity was associated with increased nitrite levels, suggesting involvement of free radicals as a pathogenetic mechanism. Pretreatment of HBMECs with reduced GSH or with the GSH precursor N-acetyl-L-cysteine prevented cytotoxic response. In HEK cells, the cytotoxic response to the CBZ + SRT combination correlated with the rate of CBZ biotransformation and production of 2-hydroxy CBZ, further suggesting a causative role of reactive metabolites. In the same system, cytotoxicity was potentiated by overexpression of CYP3A4, and prevented by CYP3A4 inhibitor. These results demonstrate an unexpected neurotoxic interaction between CBZ and SRT, apparently

  14. Combination analysis in genetic polymorphisms of drug-metabolizing enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese population.

    PubMed

    Ota, Tomoko; Kamada, Yuka; Hayashida, Mariko; Iwao-Koizumi, Kyoko; Murata, Shigenori; Kinoshita, Kenji

    2015-01-01

    The Cytochrome P450 is the major enzyme involved in drug metabolism. CYP enzymes are responsible for the metabolism of most clinically used drugs. Individual variability in CYP activity is one important factor that contributes to drug therapy failure. We have developed a new straightforward TaqMan PCR genotyping assay to investigate the prevalence of the most common allelic variants of polymorphic CYP enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A5 in the Japanese population. Moreover, we focused on the combination of each genotype for clinical treatment. The genotype analysis identified a total of 139 out of 483 genotype combinations of five genes in the 1,003 Japanese subjects. According to our results, most of subjects seemed to require dose modification during clinical treatment. In the near future, modifications should be considered based on the individual patient genotype of each treatment.

  15. Optical Isomers of Atorvastatin, Rosuvastatin and Fluvastatin Enantiospecifically Activate Pregnane X Receptor PXR and Induce CYP2A6, CYP2B6 and CYP3A4 in Human Hepatocytes

    PubMed Central

    Korhonova, Martina; Doricakova, Aneta; Dvorak, Zdenek

    2015-01-01

    Atorvastatin, fluvastatin and rosuvastatin are drugs used for treatment of hypercholesterolemia. They cause numerous drug-drug interactions by inhibiting and inducing drug-metabolizing cytochromes P450. These three statins exist in four optical forms, but they are currently used as enantiopure drugs, i.e., only one single enantiomer. There are numerous evidences that efficacy, adverse effects and toxicity of drugs may be enantiospecific. Therefore, we investigated the effects of optical isomers of atorvastatin, fluvastatin and rosuvastatin on the expression of drug-metabolizing P450s in primary human hepatocytes, using western blots and RT-PCR for measurement of proteins and mRNAs, respectively. The activity of P450 transcriptional regulators, including pregnane X receptor (PXR), aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR), was assessed by gene reporter assays and EMSA. Transcriptional activity of AhR was not influenced by any statin tested. Basal transcriptional activity of GR was not affected by tested statins, but dexamethasone-inducible activity of GR was dose-dependently and enantioselectively inhibited by fluvastatin. Basal and ligand-inducible transcriptional activity of PXR was dose-dependently influenced by all tested statins, and the potency and efficacy between individual optical isomers varied depending on statin and optical isomer. The expression of CYP1A1 and CYP1A2 in human hepatocytes was not influenced by tested statins. All statins induced CYP2A6, CYP2B6 and CYP3A4, and the effects on CYP2C9 were rather modulatory. The effects varied between statins and enantiomers and induction potency decreased in order: atorvastatin (RR>RS = SR>SS) > fluvastatin (SR>RS = SS>RR) >> rosuvastatin (only RS active). The data presented here might be of toxicological and clinical importance. PMID:26366873

  16. Neurosteroid hydroxylase CYP7B: vivid reporter activity in dentate gyrus of gene-targeted mice and abolition of a widespread pathway of steroid and oxysterol hydroxylation.

    PubMed

    Rose, K; Allan, A; Gauldie, S; Stapleton, G; Dobbie, L; Dott, K; Martin, C; Wang, L; Hedlund, E; Seckl, J R; Gustafsson, J A; Lathe, R

    2001-06-29

    The major adrenal steroid dehydroepiandrosterone (DHEA) enhances memory and immune function but has no known dedicated receptor; local metabolism may govern its activity. We described a cytochrome P450 expressed in brain and other tissues, CYP7B, that catalyzes the 7alpha-hydroxylation of oxysterols and 3beta-hydroxysteroids including DHEA. We report here that CYP7B mRNA and 7alpha-hydroxylation activity are widespread in rat tissues. However, steroids related to DHEA are reported to be modified at positions other than 7alpha, exemplified by prominent 6alpha-hydroxylation of 5alpha-androstane-3beta,17beta-diol (A/anediol) in some rodent tissues including brain. To determine whether CYP7B is responsible for these and other activities we disrupted the mouse Cyp7b gene by targeted insertion of an IRES-lacZ reporter cassette, placing reporter enzyme activity (beta-galactosidase) under Cyp7b promoter control. In heterozygous mouse brain, chromogenic detection of reporter activity was strikingly restricted to the dentate gyrus. Staining did not exactly reproduce the in situ hybridization expression pattern; post-transcriptional control is inferred. Lower level staining was detected in cerebellum, liver, and kidney, and which largely paralleled mRNA distribution. Liver and kidney expression was sexually dimorphic. Mice homozygous for the insertion are viable and superficially normal, but ex vivo metabolism of DHEA to 7alpha-hydroxy-DHEA was abolished in brain, spleen, thymus, heart, lung, prostate, uterus, and mammary gland; lower abundance metabolites were also eliminated. 7alpha-Hydroxylation of 25-hydroxycholesterol and related substrates was also abolished, as was presumed 6alpha-hydroxylation of A/anediol. These different enzyme activities therefore derive from the Cyp7b gene. CYP7B is thus a major extrahepatic steroid and oxysterol hydroxylase and provides the predominant route for local metabolism of DHEA and related molecules in brain and other tissues.

  17. Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4

    PubMed Central

    Ande, Anusha; Wang, Lei; Vaidya, Naveen K.; Li, Weihua; Kumar, Santosh; Kumar, Anil

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir

  18. Influence of Genetic Ancestry on INDEL Markers of NFKβ1, CASP8, PAR1, IL4 and CYP19A1 Genes in Leprosy Patients.

    PubMed

    Pinto, Pablo; Salgado, Claudio; Santos, Ney Pereira Carneiro; Santos, Sidney; Ribeiro-dos-Santos, Ândrea

    2015-01-01

    Leprosy is an insidious infectious disease caused by the obligate intracellular bacteria Mycobacterium leprae, and host genetic factors can modulate the immune response and generate distinct categories of leprosy susceptibility that are also influenced by genetic ancestry. We investigated the possible effects of CYP19A1 [rs11575899], NFKβ1 [rs28362491], IL1α [rs3783553], CASP8 [rs3834129], UGT1A1 [rs8175347], PAR1 [rs11267092], CYP2E1 [INDEL 96pb] and IL4 [rs79071878] genes in a group of 141 leprosy patients and 180 healthy individuals. The INDELs were typed by PCR Multiplex in ABI PRISM 3130 and analyzed with GeneMapper ID v3.2. The NFKβ1, CASP8, PAR1 and IL4 INDELs were associated with leprosy susceptibility, while NFKβ1, CASP8, PAR1 and CYP19A1 were associated with the MB (Multibacilary) clinical form of leprosy. NFKβ1 [rs28362491], CASP8 [rs3834129], PAR1 [rs11267092] and IL4 [rs79071878] genes are potential markers for susceptibility to leprosy development, while the INDELs in NFKβ1, CASP8, PAR1 and CYP19A1 (rs11575899) are potential markers for the severe clinical form MB. Moreover, all of these markers are influenced by genetic ancestry, and European contribution increases the risk to leprosy development, in other hand an increase in African contribution generates protection against leprosy.

  19. Identification of a null allele of cytochrome P450 3A7: CYP3A7 polymorphism in a Korean population.

    PubMed

    Lee, Sang Seop; Jung, Hyun-Ju; Park, Jung Soon; Cha, In-June; Cho, Doo-Yeoun; Shin, Jae-Gook

    2010-01-01

    Cytochrome P450 3A7 (CYP3A7) is expressed in the human fetal liver and plays a role in the metabolism of hormones, drugs, and toxic compounds. Genetic variants of CYP3A7 are associated with serum estrone level, bone density, and hepatic CYP3A activity in adults. We analyzed the genetic variations of CYP3A7 in a Korean population. From direct sequencing of all exons and flanking regions of the CYP3A7 gene in 48 Koreans, we found five genetic variants, including three novel variants. One variant, a thymidine insertion in exon 2 (4011insT), causes premature termination of CYP3A7 translation, which may result in a null phenotype. The novel variant was assigned to the CYP3A7*3 allele by the CYP allele nomenclature committee. For further screen of this novel variant in other ethnic populations, we used pyrosequencing to analyze an additional 185 Koreans, 100 African Americans, 100 Caucasians, and 159 Vietnamese for the presence of this variant. The variant was not found in any other individuals, except for one Korean subject. The frequencies of two known functional alleles, CYP3A7*2 and CYP3A7*1C, were 26 and 0%, respectively, in Koreans. The frequencies of the functional CYP3A7 polymorphisms in Koreans were significantly different from those in Caucasians and African Americans. This is the first report of a null-type allele of the CYP3A7 gene. It also provides population-level genetic data on CYP3A7 in Koreans to reveal the wide ethnic variation in CYP3A7 polymorphism.

  20. Pathway-Targeted Pharmacogenomics of CYP1A2 in Human Liver

    PubMed Central

    Klein, Kathrin; Winter, Stefan; Turpeinen, Miia; Schwab, Matthias; Zanger, Ulrich M.

    2010-01-01

    The human drug metabolizing cytochrome P450 (CYP) 1A2, is one of the major P450 isoforms contributing by about 5–20% to the hepatic P450 pool and catalyzing oxidative biotransformation of up to 10% of clinically relevant drugs including clozapine and caffeine. CYP1A2 activity is interindividually highly variable and although twin studies have suggested a high heritability, underlying genetic factors are still unknown. Here we adopted a pathway-oriented approach using a large human liver bank (n = 150) to elucidate whether variants in candidate genes of constitutive, ligand-inducible, and pathophysiological inhibitory regulatory pathways may explain different hepatic CYP1A2 phenotypes. Samples were phenotyped for phenacetin O-deethylase activity, and the expression of CYP1A2 protein and mRNA was determined. CYP1A2 expression and function was increased in smokers and decreased in patients with inflammation and cholestasis. Of 169 SNPs in 17 candidate genes including the CYP1A locus, 136 non-redundant SNPs with minor allele frequency >5% were analyzed by univariate and multivariate methods. A total of 13 strong significant associations were identified, of which 10 SNPs in the ARNT, AhRR, HNF1α, IL1β, SRC-1, and VDR genes showed consistent changes for at least two phenotypes by univariate analysis. Multivariate linear modeling indicated that the polymorphisms and non-genetic factors together explained 42, 38, and 33% of CYP1A2 variation at activity, protein and mRNA levels, respectively. In conclusion, we identified novel trans-associations between regulatory genes and hepatic CYP1A2 function and expression, but additional genetic factors must be assumed to explain the full extent of CYP1A2 heritability. PMID:21918647

  1. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target.

    PubMed

    Jawallapersand, Poojah; Mashele, Samson Sitheni; Kovačič, Lidija; Stojan, Jure; Komel, Radovan; Pakala, Suresh Babu; Kraševec, Nada; Syed, Khajamohiddin

    2014-01-01

    Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family's role as a common alternative drug target against animal (including human) and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103) were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome-wide comparative

  2. CYP3A induction and inhibition by different antiretroviral regimens reflected by changes in plasma 4beta-hydroxycholesterol levels.

    PubMed

    Josephson, F; Bertilsson, L; Böttiger, Y; Flamholc, L; Gisslén, M; Ormaasen, V; Sönnerborg, A; Diczfalusy, U

    2008-08-01

    A member of the major human cytochrome P450 superfamily of hemoproteins, CYP3A4/5, converts cholesterol into 4beta-hydroxycholesterol. We studied plasma 4beta-hydroxycholesterol levels prior to and 4 weeks after initiating antiretroviral therapy that included efavirenz, ritonavir-boosted atazanavir or ritonavir-boosted lopinavir with the aim of exploring the usefulness of plasma 4beta-hydroxycholesterol levels as an endogenous biomarker of CYP3A activity. Efavirenz is an inducer of CYP3A, whereas the ritonavir-boosted regimens are net inhibitors of CYP3A. In patients treated with efavirenz, the median plasma 4beta-hydroxycholesterol level increased by 46 ng/mL (p = 0.004; n = 11). In contrast, patients given ritonavir-boosted atazanavir showed a median decrease in plasma 4beta-hydroxycholesterol of -9.4 ng/mL (p = 0.0003; n = 22), and those given ritonavir-boosted lopinavir showed a median change from baseline of -5.8 ng/mL (p = 0.38; n = 19). There were significant between-group differences in the effects of antiretroviral treatment on plasma 4beta-hydroxycholesterol levels (p < 0.0001). Changes in plasma 4beta-hydroxycholesterol following the initiation of efavirenz- or atazanavir/ritonavir-based antiretroviral therapy reflected the respective net increase and decrease of CYP3A activity of these regimens. The plasma 4beta-hydroxycholesterol level did not indicate a net CYP3A inhibition in the lopinavir/ritonavir arm, possibly because of concomitant enzyme induction.

  3. A new CYP3A5 variant, CYP3A5*11, is shown to be defective in nifedipine metabolism in a recombinant cDNA expression system

    PubMed Central

    Lee, Su-Jun; van der Heiden, Ilse P; Goldstein, Joyce A; van Schaik, Ron HN

    2012-01-01

    A new CYP3A5 variant, CYP3A5*11, was found in a single white European by DNA sequencing. The CYP3A5*11 allele contains a single nucleotide polymorphism (SNP) (g.3775 A>G) in exon 2 which results in a Tyr53Cys substitution and a g.6986A>G splice change, the latter SNP previously reported in the defective CYP3A5*3 allele. However, the CYP3A5*3 is not a null allele because this variant is associated with leaky splicing, resulting in small amounts of functional protein still being produced. We therefore constructed a cDNA coding for the newly identified CYP3A5.11 protein by site-directed mutagenesis, expressed it in Escherichia coli and partially purified it. While bacteria transformed with wild-type CYP3A5*1 cDNA expressed predominantly cytochrome P450, those transfected with CYP3A5*11 expressed a significant amount of denatured cytochrome P420 in addition to cytochrome P450, suggesting the protein to be unstable. CYP3A5.11 exhibited a 38% decrease in the Vmax for nifedipine metabolism, a 2.7-fold increase in the Km, and a 4.4-fold decrease in the CLint of nifedipine compared with CYP3A5.1. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) genotyping procedure was developed, and used to genotyping DNA of 500 white individuals for CYP3A5*11. No additional examples of this allele were identified. In summary, individuals carrying the rare CYP3A5*11 allele are predicted to have lower metabolism of CYP3A5 substrates than individuals expressing CYP3A5*3. PMID:17035598

  4. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation

    PubMed Central

    Gagliardi, Rosa; Llambí, Silvia

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations. PMID:25797294

  5. SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.

    PubMed

    Gagliardi, Rosa; Llambí, Silvia; Arruga, M Victoria

    2015-01-01

    The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations.

  6. A novel cytochrome P450 gene (CYP4G25) of the silkmoth Antheraea yamamai: cloning and expression pattern in pharate first instar larvae in relation to diapause.

    PubMed

    Yang, Ping; Tanaka, Hiromasa; Kuwano, Eiichi; Suzuki, Koichi

    2008-03-01

    A new cytochrome P450 gene, CYP4G25, was identified as a differentially expressed gene between the diapausing and post-diapausing pharate first instar larvae of the wild silkmoth Antheraea yamamai, using subtractive cDNA hybridization. The cDNA sequence of CYP4G25 has an open reading frame of 1674 nucleotides encoding 557 amino acid residues. Sequence analysis of the putative CYP4G25 protein disclosed the motif FXXGXRXCXG that is essential for heme binding in P450 cytochromes. Hybridization in situ demonstrated predominant expression of CYP4G25 in the integument of pharate first instar larvae. Northern blotting analysis showed an intensive signal after the initiation of diapause and no or weak expression throughout the periods of pre-diapause and post-diapause, including larval development. These results indicate that CYP4G25 is strongly associated with diapause in pharate first instar larvae.

  7. Molecular evolution and functional divergence of the cytochrome P450 3 (CYP3) Family in Actinopterygii (ray-finned fish).

    PubMed

    Yan, Jun; Cai, Zhonghua

    2010-12-10

    The cytochrome P450 (CYP) superfamily is a multifunctional hemethiolate enzyme that is widely distributed from Bacteria to Eukarya. The CYP3 family contains mainly the four subfamilies CYP3A, CYP3B, CYP3C and CYP3D in vertebrates; however, only the Actinopterygii (ray-finned fish) have all four subfamilies and detailed understanding of the evolutionary relationship of Actinopterygii CYP3 family members would be valuable. Phylogenetic relationships were constructed to trace the evolutionary history of the Actinopterygii CYP3 family genes. Selection analysis, relative rate tests and functional divergence analysis were combined to interpret the relationship of the site-specific evolution and functional divergence in the Actinopterygii CYP3 family. The results showed that the four CYP3 subfamilies in Actinopterygii might be formed by gene duplication. The first gene duplication event was responsible for divergence of the CYP3B/C clusters from ancient CYP3 before the origin of the Actinopterygii, which corresponded to the fish-specific whole genome duplication (WGD). Tandem repeat duplication in each of the homologue clusters produced stable CYP3B, CYP3C, CYP3A and CYP3D subfamilies. Acceleration of asymmetric evolutionary rates and purifying selection together were the main force for the production of new subfamilies and functional divergence in the new subset after gene duplication, whereas positive selection was detected only in the retained CYP3A subfamily. Furthermore, nearly half of the functional divergence sites appear to be related to substrate recognition, which suggests that site-specific evolution is closely related with functional divergence in the Actinopterygii CYP3 family. The split of fish-specific CYP3 subfamilies was related to the fish-specific WGD, and site-specific acceleration of asymmetric evolutionary rates and purifying selection was the main force for the origin of the new subfamilies and functional divergence in the new subset after gene

  8. Contribution of three CYP3A isoforms to metabolism of R- and S-warfarin.

    PubMed

    Jones, Drew R; Kim, So-Young; Boysen, Gunnar; Yun, Chul-Ho; Miller, Grover P

    2010-12-01

    Effective coumadin (R/S-warfarin) therapy is complicated by inter-individual variability in metabolism. Recent studies have demonstrated that CYP3A isoforms likely contribute to patient responses and clinical outcomes. Despite a significant focus on CYP3A4, little is known about CYP3A5 and CYP3A7 metabolism of warfarin. Based on our studies, recombinant CYP3A4, CYP3A5 and CYP3A7 metabolized R- and S-warfarin to 10- and 4'-hydroxywarfarin with efficiencies that depended on the individual enzymes. For R-warfarin, CYP3A4, CYP3A7, and CYP3A5 demonstrated decreasing preference for 10-hydroxylation over 4'-hydroxylation. By contrast, there was no regioselectivity toward S-warfarin. While all enzymes preferentially metabolized R-warfarin, CYP3A4 was the most efficient at metabolizing all reactions. Individuals, namely African-Americans and children, with higher relative levels of CYP3A5 and/or CYP3A7, respectively, compared to CYP3A4 may metabolize warfarin less efficiently and thus may require lower doses and be at risk for adverse drug-drug interactions related to the contributions of the respective enzymes.

  9. The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil.

    PubMed

    Bui, Peter H; Quesada, Arnulfo; Handforth, Adrian; Hankinson, Oliver

    2008-07-01

    A novel mibefradil derivative, NNC55-0396, designed to be hydrolysis-resistant, was shown to be a selective T-type Ca(2+) channel inhibitor without L-type Ca(2+) channel efficacy. However, its effects on cytochromes P450 (P450s) have not previously been examined. We investigated the inhibitory effects of NNC55-0396 toward seven major recombinant human P450s--CYP3A4, CYP2D6, CYP1A2, CYP2C9, CYP2C8, CYPC19, and CYP2E1--and compared its effects with those of mibefradil and its hydrolyzed metabolite, Ro40-5966. Our results show that CYP3A4 and CYP2D6 are the two P450s most affected by mibefradil, Ro40-5966, and NNC55-0396. Mibefradil (IC(50) = 33 +/- 3 nM, K(i) = 23 +/- 0.5 nM) and Ro40-5966 (IC(50) = 30 +/- 7.8 nM, K(i) = 21 +/- 2.8 nM) have a 9- to 10-fold greater inhibitory activity toward recombinant CYP3A4 benzyloxy-4-trifluoromethylcoumarin-O-debenzylation activity than NNC55-0396 (IC(50) = 300 +/- 30 nM, K(i) = 210 +/- 6 nM). More dramatically, mibefradil (IC(50) = 566 +/- 71 nM, K(i) = 202 +/- 39 nM) shows 19-fold higher inhibition of CYP3A-associated testosterone 6beta-hydroxylase activity in human liver microsomes compared with NNC55-0396 (IC(50) = 11 +/- 1.1 microM, K(i) = 3.9 +/- 0.4 microM). Loss of testosterone 6beta-hydroxylase activity by recombinant CYP3A4 was shown to be time- and concentration-dependent with both compounds. However, NNC55-0396 (K(I) = 3.87 microM, K(inact) = 0.061/min) is a much less potent mechanism-based inhibitor than mibefradil (K(I) = 83 nM, K(inact) = 0.048/min). In contrast, NNC55-0396 (IC(50) = 29 +/- 1.2 nM, K(i) = 2.8 +/- 0.3 nM) and Ro40-5966 (IC(50) = 46 +/- 11 nM, K(i) = 4.5 +/- 0.02 nM) have a 3- to 4-fold greater inhibitory activity toward recombinant CYP2D6 than mibefradil (IC(50) = 129 +/- 21 nM, K(i) = 12.7 +/- 0.9 nM). Our results suggest that NNC55-0396 could be a more favorable T-type Ca(2+) antagonist than its parent compound, mibefradil, which was withdrawn from the market because of strong inhibition of CYP3A4.

  10. Influence of CYP3A5 genetic variation on everolimus maintenance dosing after cardiac transplantation.

    PubMed

    Lesche, Dorothea; Sigurdardottir, Vilborg; Setoud, Raschid; Englberger, Lars; Fiedler, Georg M; Largiadèr, Carlo R; Mohacsi, Paul; Sistonen, Johanna

    2015-12-01

    Everolimus (ERL) has become an alternative to calcineurin inhibitors (CNIs) due to its renal-sparing properties, especially in heart transplant (HTx) recipients with kidney dysfunction. However, ERL dosing is challenging due to its narrow therapeutic window combined with high interindividual pharmacokinetic variability. Our aim was to evaluate the effect of clinical and genetic factors on ERL dosing in a pilot cohort of 37 HTx recipients. Variants in CYP3A5, CYP3A4, CYP2C8, POR, NR1I2, and ABCB1 were genotyped, and clinical data were retrieved from patient charts. While ERL trough concentration (C0 ) was within the targeted range for most patients, over 30-fold variability in the dose-adjusted ERL C0 was observed. Regression analysis revealed a significant effect of the non-functional CYP3A5*3 variant on the dose-adjusted ERL C0 (p = 0.031). ERL dose requirement was 0.02 mg/kg/d higher in patients with CYP3A5*1/*3 genotype compared to patients with CYP3A5*3/*3 to reach the targeted C0 (p = 0.041). ERL therapy substantially improved estimated glomerular filtration rate (28.6 ± 6.6 mL/min/1.73 m(2)) in patients with baseline kidney dysfunction. Everolimus pharmacokinetics in HTx recipients is highly variable. Our preliminary data on patients on a CNI-free therapy regimen suggest that CYP3A5 genetic variation may contribute to this variability. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Cloning and expression of SgCYP450-4 from Siraitia grosvenorii.

    PubMed

    Tu, Dongping; Ma, Xiaojun; Zhao, Huan; Mo, Changming; Tang, Qi; Wang, Liuping; Huang, Jie; Pan, Limei

    2016-11-01

    CYP450 plays an essential role in the development and growth of the fruits of Siraitia grosvenorii . However, little is known about the SgCYP450-4 gene in S. grosvenorii . Here, based on transcriptome data, a full-length cDNA sequence of SgCYP450-4 was cloned by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid-amplification of cDNA ends (RACE) strategies. SgCYP450-4 is 1677 bp in length (GenBank accession No. AEM42985.1) and contains a complete open reading frame (ORF) of 1422 bp. The deduced protein was composed of 473 amino acids, the molecular weight is 54.01 kDa, the theoretical isoelectric point (PI) is 8.8, and the protein was predicted to possess cytochrome P450 domains. SgCYP450-4 gene was highly expressed in root, diploid fruit and fruit treated with hormone and pollination. At 10 days after treatment with pollination and hormones, the expression of Sg CYP450-4 had the highest level and then decreased over time, which was consistent with the development of fruits of S. Grosvenorii . Hormonal treatment could significantly induce the expression of SgCYP450-4 . These results provide a reference for regulation of fruit development and the use of parthenocarpy to generate seedless fruit, and provide a scientific basis for the production of growth regulator application agents.

  12. Association of CYP1A1 gene polymorphism with chronic kidney disease: a case control study.

    PubMed

    Siddarth, Manushi; Datta, Sudip K; Ahmed, Rafat S; Banerjee, Basu D; Kalra, Om P; Tripathi, Ashok K

    2013-07-01

    CYP1A1 is an important xenobiotic metabolizing enzyme, present in liver and kidney. Expression of CYP1A1 enzyme increases manifold when kidney cells are exposed to nephrotoxins/chemicals leading to oxidative stress-induced cell damage. To study the association of CYP1A1 gene polymorphism in patients of chronic kidney disease with unknown etiology (CKDU), we recruited 334 CKDU patients and 334 age and sex matched healthy controls. CYP1A1*2A and *2C polymorphisms were studied by PCR-RFLP and allele specific-PCR respectively. Subjects carrying at least one mutant allele of CYP1A1*2A (TC, CC) and *2C (AG, GG) were shown to be associated with 1.4-2-fold increased risk of CKDU. Also, genotypic combinations of hetero-/homozygous mutants of CYP1A1*2A (TC, CC) with hetero-/homozygous mutant genotypes of CYP1A1*2C (AG, GG) i.e. TC/AG (p<0.01), TC/GG (p<0.05), CC/AG (p<0.05) and CC/GG (p<0.01) were associated with CKDU with an odd ratio ranging 1.8-3.3 times approximately. This study demonstrates association of CYP1A1 polymorphisms with CKDU. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Effects of gene silencing of CypB on gastric cancer cells.

    PubMed

    Guo, Feng; Zhang, Ying; Zhao, Chun-Na; Li, Lin; Guo, Yan-Jun

    2015-04-01

    To determine the effect of gene silencing of cyclophilin B (CypB) on growth and proliferation of gastric cancer cells. CypB siRNA lentivirus (LV-CypB-si) and control lentivirus (LV-si-con) were produced. CypB expression in gastric cancer cell lines was detected by Western blot. BGC823 and SGC7901 cells were chosen to be infected with LV-si-con and LV-CypB-si, and stable transfectants were isolated. The cell groups transfected with LV-CypB-siRNA, LV-siRNA-con and transfected no carrier were served as the experimental group, the implicit control group and the blank control group respectively. MTT and colony formation assays were used to examine the effect of CypB on the cell growth and proliferation in vitro. Cell cycle was analyzed with flow cytometry. The expression of VEGFR of BGC823-si and SGC7901-si was detected by Western blot. Gene silencing of CypB can inhibit gastric cancer cell growth, proliferation, cell cycle progress and tumorigenesis. CypB expression level was obviously higher in SGC7901 and BGC823 than MKN28 and GES. These two cell lines were infected with LV-si-con and LV-CypB-si respectively. MTT and cloney formation assays showed a significantly decreased rate of cell proliferation from the forth day or the fifth day in cells transfected with LV-CypB-si (P<0.05). Down-regulation of CypB resulted in slightly decreased percentage of S phase and increased percentage of G1 (P<0.05). These findings indicated that CypB could promote the G1-S transition of gastric cancer cell. In addition, the expression of VEGF of BGC823 and SGC7901 transfected with CypB siRNA was reduced in comparison with the implicit control group and the blank control group. Gene silencing of CypB decreases gastric cancer cells proliferation and in vivo tumorigenesis. These findings indiccate CypB could be a potential biomarker and therapeutic target for gastric cancer. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  14. Genome-wide identification of 31 cytochrome P450 (CYP) genes in the freshwater rotifer Brachionus calyciflorus and analysis of their benzo[α]pyrene-induced expression patterns.

    PubMed

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Kim, Hee-Jin; Declerck, Steven A J; Hagiwara, Atsushi; Lee, Jae-Seong

    2018-03-01

    While marine invertebrate cytochrome P450 (CYP) genes and their roles in detoxification mechanisms have been studied, little information is available regarding freshwater rotifer CYPs and their functions. Here, we used genomic sequences and RNA-seq databases to identify 31 CYP genes in the freshwater rotifer Brachionus calyciflorus. The 31 Bc-CYP genes with a few tandem duplications were clustered into CYP 2, 3, 4, mitochondrial, and 46 clans with two marine rotifers Brachionus plicatilis and Brachionus koreanus. To understand the molecular responses of these 31 Bc-CYP genes, we also examined their expression patterns in response to benzo[α]pyrene (B[α]P). Three Bc-CYP genes (Bc-CYP3044B3, Bc-CYP3049B4, Bc-CYP3049B6) were significantly upregulated (P<0.05) in response to B[α]P, suggesting that these CYP genes can be involved in detoxification in response to B[α]P exposure. These genes might be useful as biomarkers of B[α]P exposure in B. calyciflorus. Overall, our findings expand the repertoire of known CYPs and shed light on their potential roles in xenobiotic detoxification in rotifers. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. MDR1 haplotypes conferring an increased expression of intestinal CYP3A4 rather than MDR1 in female living-donor liver transplant patients.

    PubMed

    Hosohata, Keiko; Masuda, Satohiro; Yonezawa, Atsushi; Katsura, Toshiya; Oike, Fumitaka; Ogura, Yasuhiro; Takada, Yasutsugu; Egawa, Hiroto; Uemoto, Shinji; Inui, Ken-Ichi

    2009-07-01

    This study investigated whether haplotypes in the multidrug resistance 1 (MDR1) gene had effects on mRNA expression levels of MDR1 and cytochrome P450 (CYP) 3A4, and on the pharmacokinetics of tacrolimus in living-donor liver transplant (LDLT) patients, considering the gender difference. Haplotype analysis of MDR1 with G2677T/A and C3435T was performed in 63 de novo Japanese LDLT patients (17 to 55 years; 44.4% women). The expression levels of MDR1 and CYP3A4 mRNAs in jejunal biopsy specimens were quantified by real-time PCR. Intestinal CYP3A4 mRNA expression levels (amol/microg total RNA) showed significantly higher values in women carrying the 2677TT-3435TT haplotype (median, 10.7; range, 5.92-15.2) than those with 2677GG-3435CC (3.03; range 1.38-4.68) and 2677GT-3435CT (median, 4.31; range, 0.07-9.42) (P = 0.022), but not in men (P = 0.81). However, MDR1 haplotype did not influence mRNA expression levels of MDR1 nor the concentration/dose ratio [(ng/mL)/(mg/day)] of oral tacrolimus for the postoperative 7 days, irrespective of gender. MDR1 haplotype may have a minor association with the tacrolimus pharmacokinetics after LDLT, but could be a good predictor of the inter-individual variation of intestinal expression of CYP3A4 in women.

  16. Cytochrome P450 genes from the aquatic midge Chironomus tentans: Atrazine-induced up-regulation of CtCYP6EX3 enhanced the toxicity of chlorpyrifos.

    PubMed

    Tang, Guanghui; Yao, Jianxiu; Li, Daqi; He, Yanping; Zhu, Yu-Cheng; Zhang, Xin; Zhu, Kun Yan

    2017-11-01

    The open reading frames of 19 cytochrome P450 monooxygenase (CYP) genes were sequenced from Chironomus tentans, a commonly used freshwater invertebrate model. Phylogenetic analysis of the 19 CYPs along with a previously reported CYP (CtCYP4G33) revealed that they belong to three different clans, including 3 in CYP4, 15 in CYP3, and 2 in mitochondria clan. When third-instar larvae were exposed to atrazine at 5000 μg/L, the transcription of CtCYP6EX3, CtCYP6EV3, CtCYP9AT1 and CtCYPEX1 was significantly up-regulated. To examine whether CtCYP6EX3 played a role in oxidative activation of chlorpyrifos to chlorpyrifos-oxon, we evaluated larval susceptibility to chlorpyrifos after CtCYP6EX3 transcript was suppressed by RNAi. The larvae fed chitosan/dsCtCYP6EX3 nanoparticles showed a significantly decreased CtCYP6EX3 transcript (53.1%) as compared with the control larvae fed chitosan/dsGFP nanoparticles. When the CtCYP6EX3-silenced larvae were exposed to chlorpyrifos at 6 μg/L or its binary mixture with atrazine (chlorpyrifos at 3 μg/L and atrazine at 1000 μg/L), the larvae became less susceptible to the pesticides as their mortalities decreased by 24.1% and 20.5%, respectively. These results along with our previous findings suggested that the increased toxicity of chlorpyrifos was likely due to an enhanced oxidative process from chlorpyrifos to chlorpyrifos-oxon by CtCYP6EX3 as RNAi of CtCYP6EX3 led to decreased susceptibility of C. tentans larvae to chlorpyrifos alone and the binary mixture of atrazine and chlorpyrifos. However, further study would be necessary to validate our results by functional assays using heterologously expressed CtCYP6EX3 enzyme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Characterization of the active site properties of CYP4F12.

    PubMed

    Eksterowicz, John; Rock, Dan A; Rock, Brooke M; Wienkers, Larry C; Foti, Robert S

    2014-10-01

    Cytochrome P450 4F12 is a drug-metabolizing enzyme that is primarily expressed in the liver, kidney, colon, small intestine, and heart. The properties of CYP4F12 that may impart an increased catalytic selectivity (decreased promiscuity) were explored through in vitro metabolite elucidation, kinetic isotope effect experiments, and computational modeling of the CYP4F12 active site. By using astemizole as a probe substrate for CYP4F12 and CYP3A4, it was observed that although CYP4F12 favored astemizole O-demethylation as the primary route of metabolism, CYP3A4 was capable of metabolizing astemizole at multiple sites on the molecule. Deuteration of astemizole at the site of O-demethylation resulted in an isotope effect of 7.1 as well as an 8.3-fold decrease in the rate of clearance for astemizole by CYP4F12. Conversely, although an isotope effect of 3.8 was observed for the formation of the O-desmethyl metabolite when deuterated astemizole was metabolized by CYP3A4, there was no decrease in the clearance of astemizole. Development of a homology model of CYP4F12 based on the crystal structure of cytochrome P450 BM3 predicted an active site volume for CYP4F12 that was approximately 76% of the active site volume of CYP3A4. As predicted, multiple favorable binding orientations were available for astemizole docked into the active site of CYP3A4, but only a single binding orientation with the site of O-demethylation oriented toward the heme was identified for CYP4F12. Overall, it appears that although CYP4F12 may be capable of binding similar ligands to other cytochrome P450 enzymes such as CYP3A4, the ability to achieve catalytically favorable orientations may be inherently more difficult because of the increased steric constraints of the CYP4F12 active site. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Fluoxetine and norfluoxetine mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19 and CYP3A4

    PubMed Central

    Sager, Jennifer E; Lutz, Justin D; Foti, Robert S; Davis, Connie; Kunze, Kent L; Isoherranen, Nina

    2014-01-01

    Fluoxetine and its circulating metabolite norfluoxetine present a complex multiple inhibitor system that causes reversible or time-dependent inhibition of CYP2D6, CYP3A4, and CYP2C19 in vitro. While significant inhibition of all three enzymes in vivo is predicted, midazolam and lovastatin AUCs were unaffected by two week dosing of fluoxetine whereas dextromethorphan AUC was increased by 27-fold and omeprazole AUC by 7.1-fold. This observed discrepancy between in vitro risk assessment and in vivo DDI profile was rationalized by time-varying dynamic pharmacokinetic models that incorporated circulating concentrations of fluoxetine and norfluoxetine enantiomers, mutual inhibitor-inhibitor interactions and CYP3A4 induction. The dynamic models predicted all DDIs with less than 2-fold error. This study demonstrates that complex drug-drug interactions that involve multiple mechanisms, pathways and inhibitors with their metabolites can be predicted and rationalized via characterization of all the inhibitory species in vitro. PMID:24569517

  19. Prilocaine- and lidocaine-induced methemoglobinemia is caused by human carboxylesterase-, CYP2E1-, and CYP3A4-mediated metabolic activation.

    PubMed

    Higuchi, Ryota; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2013-06-01

    Prilocaine and lidocaine are classified as amide-type local anesthetics for which serious adverse effects include methemoglobinemia. Although the hydrolyzed metabolites of prilocaine (o-toluidine) and lidocaine (2,6-xylidine) have been suspected to induce methemoglobinemia, the metabolic enzymes that are involved remain uncharacterized. In the present study, we aimed to identify the human enzymes that are responsible for prilocaine- and lidocaine-induced methemoglobinemia. Our experiments revealed that prilocaine was hydrolyzed by recombinant human carboxylesterase (CES) 1A and CES2, whereas lidocaine was hydrolyzed by only human CES1A. When the parent compounds (prilocaine and lidocaine) were incubated with human liver microsomes (HLM), methemoglobin (Met-Hb) formation was lower than when the hydrolyzed metabolites were incubated with HLM. In addition, Met-Hb formation when prilocaine and o-toluidine were incubated with HLM was higher than that when lidocaine and 2,6-xylidine were incubated with HLM. Incubation with diisopropyl fluorophosphate and bis-(4-nitrophenyl) phosphate, which are general inhibitors of CES, significantly decreased Met-Hb formation when prilocaine and lidocaine were incubated with HLM. An anti-CYP3A4 antibody further decreased the residual formation of Met-Hb. Met-Hb formation after the incubation of o-toluidine and 2,6-xylidine with HLM was only markedly decreased by incubation with an anti-CYP2E1 antibody. o-Toluidine and 2,6-xylidine were further metabolized by CYP2E1 to 4- and 6-hydroxy-o-toluidine and 4-hydroxy-2,6-xylidine, respectively, and these metabolites were shown to more efficiently induce Met-Hb formation than the parent compounds. Collectively, we found that the metabolites produced by human CES-, CYP2E1-, and CYP3A4-mediated metabolism were involved in prilocaine- and lidocaine-induced methemoglobinemia.

  20. The 14alpha-Demethylasse(CYP51A1) Gene is Overexpressed in Venturia inaequalis Strains Resistant to Myclobutanil.

    PubMed

    Schnabel, G; Jones, A L

    2001-01-01

    ABSTRACT We identified the cytochrome P450 sterol 14alpha-demethylase (CYP51A1) gene from Venturia inaequalis and optional insertions located upstream from CYP51A1 and evaluated their potential role in conferring resistance to the sterol demethylation-inhibitor (DMI) fungicide my-clobutanil. The CYP51A1 gene was completely sequenced from one my-clobutanil sensitive (S) and two myclobutanil-resistant (R) strains. No nucleotide variation was found when the three sequences were aligned. Allele-specific polymerase chain reaction (PCR) analysis indicated that a previously described single base pair mutation that correlated with resistance to DMI fungicides in strains of other filamentous fungi was absent in 19 S and 32 R strains of V. inaequalis from Michigan and elsewhere. The sequencing results and PCR analyses suggest that resistance in these strains was not due to a mutation in the sterol demethylase target site for DMI fungicides. Expression of CYP51A1 was determined for strains from an orchard that had never been sprayed with DMI fungicides (baseline orchard), and the data provided a reference for evaluating the expression of strains collected from a research orchard and from three commercial Michigan apple orchards with a long history of DMI use and a high frequency of R strains. Overexpression of CYP51A1 was significantly higher in 9 of 11 R strains from the research orchard than in S strains from the baseline orchard. The high expression was correlated with the presence of a 553-bp insertion located upstream of CYP51A1. Overexpression of the CYP51A1 gene was also detected in eight of eight, five of nine, and nine of nine R strains from three commercial orchards, but the insertion was not detected in the majority of these strains. The results suggest that overexpression of the target-site CYP51A1 gene is an important mechanism of resistance in some field resistant strains of V. inaequalis, but other mechanisms of resistance also appear to exist.

  1. Inhibition of protein kinase CK2 reduces CYP24A1 expression and enhances 1,25-dihydroxyvitamin D3 anti-tumor activity in human prostate cancer cells

    PubMed Central

    Luo, Wei; Yu, Wei-Dong; Ma, Yingyu; Chernov, Mikhail; Trump, Donald L.; Johnson, Candace S.

    2013-01-01

    Vitamin D has broad range of physiological functions and anti-tumor effects. 24-hydroxylase, encoded by the CYP24A1 gene, is the key enzyme for degrading many forms of vitamin D including the most active form, 1,25D3. Inhibition of CYP24A1 enhances 1,25D3 anti-tumor activity. In order to isolate regulators of CYP24A1 expression in prostate cancer cells, we established a stable prostate cancer cell line PC3 with CYP24A1 promoter driving luciferase expression to screen a small molecular library for compounds that inhibit CYP24A1 promoter activity. From this screening, we identified, 4,5,6,7-tetrabromobenzimidazole (TBBz), a protein kinase CK2 selective inhibitor as a disruptor of CYP24A1 promoter activity. We show that TBBz inhibits CYP24A1 promoter activity induced by 1,25D3 in prostate cancer cells. In addition, TBBz downregulates endogenous CYP24A1 mRNA level in TBBz treated PC3 cells. Furthermore, siRNA-mediated CK2 knockdown reduces 1,25D3 induced CYP24A1 mRNA expression in PC3 cells. These results suggest that CK2 contributes to 1,25D3 mediated target gene expression. Lastly, inhibition of CK2 by TBBz or CK2 siRNA significantly enhanced 1,25D3 mediated anti-proliferative effect in vitro and in vivo in a xenograft model. In summary, our findings reveal that protein kinase CK2 is involved in the regulation of CYP24A1 expression by 1,25D3 and CK2 inhibitor enhances 1,25D3 mediated anti-tumor effect. PMID:23358686

  2. Coadministration of gemfibrozil and itraconazole has only a minor effect on the pharmacokinetics of the CYP2C9 and CYP3A4 substrate nateglinide

    PubMed Central

    Niemi, Mikko; Backman, Janne T; Juntti-Patinen, Laura; Neuvonen, Mikko; Neuvonen, Pertti J

    2005-01-01

    Background and aims Gemfibrozil, and particularly its combination with itraconazole, greatly increases the area under the plasma concentration-time curve [AUC(0, ∞)] and response to the cytochrome P450 (CYP) 2C8 and 3A4 substrate repaglinide. In vitro, gemfibrozil is a more potent inhibitor of CYP2C9 than of CYP2C8. Our aim was to investigate the effects of the gemfibrozil-itraconazole combination on the pharmacokinetics and pharmacodynamics of another meglitinide analogue, nateglinide, which is metabolized by CYP2C9 and CYP3A4. Methods In a randomized crossover study with two phases, nine healthy subjects took 600 mg gemfibrozil and 100 mg itraconazole (first dose 200 mg) twice daily or placebo for 3 days. On day 3, they ingested a single 30-mg dose of nateglinide. Plasma nateglinide and blood glucose concentrations were measured for up to 12 h. Results During the gemfibrozil-itraconazole phase, the AUC(0, ∞) and Cmax of nateglinide were 47% (range 23–74%; P < 0.0001) and 30% (range −8% to 104%; P = 0.0146) higher than during the placebo phase, respectively, but the tmax and t1/2 of nateglinide remained unchanged. The combination of gemfibrozil and itraconazole had no effect on the formation of the M7 metabolite of nateglinide but impaired its elimination. The blood glucose response to nateglinide was not significantly changed by coadministration of gemfibrozil and itraconazole. Conclusions The combination of gemfibrozil and itraconazole has only a limited influence on the pharmacokinetics of nateglinide. This is in marked contrast to the substantial effect of this combination on the pharmacokinetics of repaglinide. The findings suggest that in vivo gemfibrozil, probably due to its metabolites, is a much more potent inhibitor of CYP2C8 than of CYP2C9. PMID:16042675

  3. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity.

    PubMed

    Mazzari, Andre L D A; Milton, Flora; Frangos, Samantha; Carvalho, Ana C B; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum.

  4. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  5. The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.

    PubMed

    Finta, C; Zaphiropoulos, P G

    2000-12-30

    Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.

  6. Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes.

    PubMed

    Granvil, C P; Madan, A; Sharkawi, M; Parkinson, A; Wainer, I W

    1999-04-01

    The central nervous system toxicity of ifosfamide (IFF), a chiral antineoplastic agent, is thought to be dependent on its N-dechloroethylation by hepatic cytochrome P-450 (CYP) enzymes. The purpose of this study was to identify the human CYPs responsible for IFF-N-dechloroethylation and their corresponding regio- and enantioselectivities. IFF exists in two enantiomeric forms, (R) - and (S)-IFF, which can be dechloroethylated at either the N2 or N3 positions, producing the corresponding (R,S)-2-dechloroethyl-IFF [(R, S)-2-DCE-IFF] and (R,S)-3-dechloroethyl-IFF [(R,S)-3-DCE-IFF]. The results of the present study suggest that the production of (R)-2-DCE-IFF and (S)-3-DCE-IFF from (R)-IFF is catalyzed by different CYPs as is the production of (S)-2-DCE-IFF and (R)-3-DCE-IFF from (S)-IFF. In vitro studies with a bank of human liver microsomes revealed that the sample-to-sample variation in the production of (S)-3-DCE-IFF from (R)-IFF and (S)-2-DCE-IFF from (S)-IFF was highly correlated with the levels of (S)-mephenytoin N-demethylation (CYP2B6), whereas (R)-2-DCE-IFF production from (R)-IFF and (R)-3-DCE-IFF production from (S)-IFF were both correlated with the activity of testosterone 6beta-hydroxylation (CYP3A4/5). Experiments with cDNA-expressed P-450 and antibody and chemical inhibition studies supported the conclusion that the formation of (S)-3-DCE-IFF and (S)-2-DCE-IFF is catalyzed primarily by CYP2B6, whereas (R)-2-DCE-IFF and (R)-3-DCE-IFF are primarily the result of CYP3A4/5 activity.

  7. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications.

    PubMed

    Salnikova, Lyubov E; Smelaya, Tamara V; Golubev, Arkadiy M; Rubanovich, Alexander V; Moroz, Viktor V

    2013-11-01

    This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.

  8. Influence of Donor and Recipient CYP3A4, CYP3A5, and ABCB1 Genotypes on Clinical Outcomes and Nephrotoxicity in Liver Transplant Recipients.

    PubMed

    Debette-Gratien, Marilyne; Woillard, Jean-Baptiste; Picard, Nicolas; Sebagh, Mylène; Loustaud-Ratti, Véronique; Sautereau, Denis; Samuel, Didier; Marquet, Pierre

    2016-10-01

    This study investigated the influence of the CYP3A4*22, CYP3A5*3, and ABCB1 exons 12, 21, and 26 polymorphisms in donors and recipients on clinical outcomes and renal function in 170 liver transplant patients on cyclosporin A (CsA) or tacrolimus (Tac). Allelic discrimination assays were used for genotyping. Multivariate time-dependent Cox proportional hazard models, multiple linear regression using the generalized estimating equation and linear mixed-effect models were used for statistical analysis. Expression of CYP3A5 by either or both the donor and the recipient was significantly associated with lower Tac, but not CsA, dose-normalized trough levels. In the whole population, graft loss was only significantly associated with longer exposure to high calcineurin inhibitor (CNI) concentrations (hazard ratio, 6.93; 95% confidence interval, 2.13-22.55), P = 0.00129), whereas in the Tac subgroup, the risk of graft loss was significantly higher in recipient CYP3A5*1 expressers (hazard ratio, 3.39; 95% confidence interval, 1.52-7.58; P = 0.0028). Renal function was significantly associated with: (1) baseline modification of diet in renal disease (β = 0.51 ± 0.05; P < 0.0001); (2) duration of patient follow-up (per visit, β = -0.98 ± 0.22; P < 0.0001); and (3) CNI exposure (per quantile increase, β = -2.42 ± 0.59; P < 0.0001). No genetic factor was associated with patient survival, acute rejection, liver function test results, recurrence of viral or other initial liver disease, or renal function. This study confirms the effect of CYP3A5*3 on tacrolimus dose requirement in liver transplantation and shows unexpected associations between the type of, and exposure to, CNI and either chronic rejection or graft loss. None of the genetic polymorphisms studied had a noticeable impact on renal function degradation at 10 years.

  9. Impact of genetic factors (VKORC1, CYP2C9, CYP4F2 and EPHX1) on the anticoagulation response to fluindione

    PubMed Central

    Lacut, Karine; Ayme-Dietrich, Estelle; Gourhant, Lenaick; Poulhazan, Elise; Andro, Marion; Becquemont, Laurent; Mottier, Dominique; Le Gal, Gregoire; Verstuyft, Celine

    2012-01-01

    AIM Genetic variants of the enzyme that metabolizes warfarin, cytochrome P-450 2C9 (CYP2C9) and of a key pharmacologic target of vitamin K antagonists, vitamin K epoxide reductase (VKORC1), contribute to differences in patients' responses to coumarin derivatives. The role of these variants in fluindione response is unknown. Our aim was to assess whether genetic factors contribute to the variability in the response to fluindione. METHODS Four hundred sixty-five patients with a venous thromboembolic event treated by fluindione for at least 3 months with a target international normalized ratio (INR) of 2.0 to 3.0 were studied. VKORC1, CYP2C9, CYP4F2 and EPHX1 genotypes were assessed. INR checks, fluindione doses and bleeding events were collected. RESULTS VKORC1 genotype had a significant impact on early anticoagulation (INR value ≥2 after the first two intakes) (P < 0.0001), on the time required to reach a first INR within the therapeutic range (P < 0.0001) and on the time to obtain a first INR value > 4 (P = 0.0002). The average daily dose of fluindione during the first period of stability was significantly associated with the VKORC1 genotype: 19.8 mg (±5.5) for VKORC1 CC, 14.7 mg (±6.2) for VKORC1 CT and 8.2 mg (±2.5) for VKORC1 TT (P < 0.0001). CYP2C9, CYP4F2 and EPHX1 genotypes did not significantly influence the response to fluindione. CONCLUSIONS VKORC1 genotype strongly affected anticoagulation induced by fluindione whereas CYP2C9, CYP4F2 and EPHX1 genotypes seemed less determining. PMID:21883387

  10. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V., E-mail: amit@pandeylab.org

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizesmore » approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.« less

  11. Role of human pregnane X receptor in tamoxifen- and 4-hydroxytamoxifen-mediated CYP3A4 induction in primary human hepatocytes and LS174T cells.

    PubMed

    Sane, Rucha S; Buckley, Donna J; Buckley, Arthur R; Nallani, Srikanth C; Desai, Pankaj B

    2008-05-01

    Previously we observed that the antiestrogens tamoxifen and 4-hydroxytamoxifen (4OHT) induce CYP3A4 in primary human hepatocytes and activate human pregnane X receptor (PXR) in cell-based reporter assays. Given the complex cross-talk between nuclear receptors, tissue-specific expression of CYP3A4, and the potential for tamoxifen and 4OHT to interact with a myriad of receptors, this study was undertaken to gain mechanistic insights into the inductive effects of tamoxifen and 4OHT. First, we observed that transfection of the primary cultures of human hepatocytes with PXR-specific small interfering RNA reduced the PXR mRNA expression and the extent of CYP3A4 induction by tamoxifen and 4OHT by 50%. Second, in LS174T colon carcinoma cells, which were observed to have significantly lower PXR expression relative to human hepatocytes, neither tamoxifen nor 4OHT induced CYP3A4. Third, N-desmethyltamoxifen, which did not induce CYP3A4 in human hepatocytes, also did not activate PXR in LS174T cells. We then used cell-based reporter assay to evaluate the effects of other receptors such as glucocorticoid receptor GR alpha and estrogen receptor ER alpha on the transcriptional activation of PXR. The cotransfection of GR alpha in LS174T cells augmented PXR activation by tamoxifen and 4OHT. On the other hand, the presence of ER alpha inhibited PXR-mediated basal activation of CYP3A4 promoter, possibly via competing for common cofactors such as steroid receptor coactivator 1 and glucocorticoid receptor interacting protein 1. Collectively, our findings suggest that the CYP3A4 induction by tamoxifen and 4OHT is primarily mediated by PXR but the overall stoichiometry of other nuclear receptors and transcription cofactors also contributes to the extent of the inductive effect.

  12. The Impact of the Hepatocyte-to-Plasma pH Gradient on the Prediction of Hepatic Clearance and Drug-Drug Interactions for CYP2C9 and CYP3A4 Substrates.

    PubMed

    Rougée, Luc R A; Mohutsky, Michael A; Bedwell, David W; Ruterbories, Kenneth J; Hall, Stephen D

    2017-09-01

    Surrogate assays for drug metabolism and inhibition are traditionally performed in buffer systems at pH 7.4, despite evidence that hepatocyte intracellular pH is 7.0. This pH gradient can result in a pK a -dependent change in intracellular/extracellular concentrations for ionizable drugs that could affect predictions of clearance and P450 inhibition. The effect of microsomal incubation pH on in vitro enzyme kinetic parameters for CYP2C9 (diclofenac, (S)-warfarin) and CYP3A4 (midazolam, dextromethorphan, testosterone) substrates, enzyme specific reversible inhibitors (amiodarone, desethylamiodarone, clozapine, nicardipine, fluconazole, fluvoxamine, itraconazole) and a mechanism-based inhibitor (amiodarone) was investigated. Intrinsic clearance through CYP2C9 significantly increased (25% and 50% for diclofenac and (S)-warfarin respectively) at intracellular pH 7.0 compared with traditional pH 7.4. The CYP3A4 substrate dextromethorphan intrinsic clearance was decreased by 320% at pH 7.0, while midazolam and testosterone remained unchanged. Reversible inhibition of CYP2C9 was less potent at pH 7.0 compared with 7.4, while CYP3A4 inhibition potency was variably affected. Maximum enzyme inactivation rate of amiodarone toward CYP2C9 and CYP3A4 decreased at pH 7.0, while the irreversible inhibition constant remained unchanged for CYP2C9, but decreased for CYP3A4 at pH 7.0. Predictions of clearance and drug-drug interactions made through physiologically based pharmacokinetic models were improved with the inclusion of predicted intracellular concentrations based at pH 7.0 and in vitro parameters determined at pH 7.0. No general conclusion on the impact of pH could be made and therefore a recommendation to change buffer pH to 7.0 cannot be made at this time. It is recommended that the appropriate hepatocyte intracellular pH 7.0 be used for in vitro determinations when in vivo predictions are made. Copyright © 2017 by The American Society for Pharmacology and Experimental

  13. Molecular screening of the CYP4V2 gene in Bietti crystalline dystrophy that is associated with choroidal neovascularization

    PubMed Central

    Mamatha, Gandra; Umashankar, Vetrivel; Kasinathan, Nachiappan; Krishnan, Tandava; Sathyabaarathi, Ravichandran; Karthiyayini, Thirumalai; Amali, John; Rao, Chetan

    2011-01-01

    Purpose Bietti crystalline dystrophy (BCD) is an autosomal recessive disease characterized by intraretinal deposits of multiple small crystals, with or without associated crystal deposits in the cornea. The disease is caused by mutation in the cytochrome p450, family 4, subfamily v, polypeptide 2 (CYP4V2) gene. Choroidal neovascularization (CNV) is a rare event in BCD. We report two cases of BCD associated with CNV. CYP4V2 and exon 5 of tissue inhibitor of metalloproteinase 3 (TIMP3) were screened in both cases. A patient with BCD, but without CNV, was also screened to identify pathogenic variations. Methods Three BCD families of Asian Indian origin were recruited after a comprehensive ophthalmic examination. Genomic DNA was isolated from blood leukocytes, and coding exons and flanking introns of CYP4V2 and exon 5 of TIMP3 were amplified via polymerase chain reaction (PCR) and were sequenced. Family segregation, control screening, and bioinformatics tools were used to assess the pathogenicity of the novel variations. Results Of the three BCD patients, two had parafoveal CNV. The patient with BCD, but without CNV had novel single base-pair duplication (c.1062_1063dupA). This mutation results in a structurally defective and unstable protein with impaired protein function. Four novel benign variations (three in exons and one in an intron) were observed in the cohort. Screening of exon 5 of TIMP3 did not reveal any variation in these families. Conclusions A novel mutation was found in a patient with BCD but without CNV, while patients with BCD and CNV did not show any pathogenic variation. The modifier role of TIMP3 in the pathogenesis of CNV in BCD was partly ruled out, as no variation was observed in exon 5 of the gene. A larger BCD cohort with CNV needs to be studied and screened to understand the genetics of CNV in BCD. PMID:21850171

  14. Association of CYP2B6, CYP3A5, and CYP2C19 genetic polymorphisms with sibutramine pharmacokinetics in healthy Korean subjects.

    PubMed

    Kim, K A; Song, W K; Park, J Y

    2009-11-01

    We assessed the association of CYP2B6, CYP3A5, and CYP2C19 polymorphisms with sibutramine pharmacokinetics. Forty six healthy male subjects were enrolled, and their CYP2B6 (*4 and *6), CYP3A5 (*3), and CYP2C19 (*2, and *3) genotypes were analyzed. After a single 15-mg dose of sibutramine was administered, plasma concentrations of sibutramine and its metabolites, M1 and M2, were measured. CYP2B6 and CYP3A5 polymorphisms did not affect the pharmacokinetics of sibutramine and its metabolites. However, the CYP2C19 genotype substantially influenced plasma levels of sibutramine and its metabolites. The mean area under the curve (AUC) of sibutramine in CYP2C19 intermediate metabolizers (IMs; *1/*2 or *1/*3) and poor metabolizers (PMs; *2/*2, *2/*3)) was 18.5 and 252.2% higher, respectively, than the AUC in extensive metabolizers (EMs, *1/*1) (P < 0.001). The AUC of M1 metabolite in IMs and PMs was 22.5 and 148.0% higher, respectively, than that of EMs (P < 0.001). Our findings indicate that the CYP2C19 genotype substantially affects the pharmacokinetics of sibutramine.

  15. Monocrotophos Induces the Expression of Xenobiotic Metabolizing Cytochrome P450s (CYP2C8 and CYP3A4) and Neurotoxicity in Human Brain Cells.

    PubMed

    Tripathi, Vinay Kumar; Kumar, Vivek; Pandey, Ankita; Vatsa, Pankhi; Dhasmana, Anupam; Singh, Rajat Pratap; Appikonda, Sri Hari Chandan; Hwang, Inho; Lohani, Mohtashim

    2017-07-01

    Expression of various cytochrome P450s (CYPs) in mammalian brain cells is well documented. However, such studies are hampered in neural/glial cells of human origin due to nonavailability of human brain cells. To address this issue, we investigated the expression and inducibility of CYP2C8 and CYP3A4 and their responsiveness against cyclophosphamide (CPA) and organophosphorus pesticide monocrotophos (MCP), a known developmental neurotoxicant in human neural (SH-SY5Y) and glial (U373-MG) cell lines. CPA induced significant expression of CYP2C8 and CYP3A4 in both types of cells in a time-dependent manner. Neural cell line exhibited relatively higher constitutive and inducible expression of CYPs than the glial cell line. MCP exposure alone could not induce the significant expression of CYPs, whereas the cells preexposed to CPA showed a significant response to MCP. Similar to the case of CPA induced expressions, neural cells were found to be more vulnerable than glial cells. Our data indicate differential expressions of CYPs in cultured human neural and glial cell lines. The findings were synchronized with protein ligand docking studies, which showed a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR and PXR. Similarly, the known CYP inducer CPA has also shown significant high docking scores with the two studied CYP regulators. We also observed a significant induction in reactive oxygen species (ROS), lipid peroxides (LPO), micronucleus (MN), chromosomal aberration (CA), and reduction in reduced glutathione (GSH) and catalase following the exposure of MCP. Moreover, the expressions of apoptotic markers such as caspase-3, caspase-9, Bax, and p53 were significantly upregulated, whereas the levels of antiapoptotic marker, Bcl2, was downregulated after the exposure of MCP in both cell lines. These findings confirm the involvement of ROS-mediated oxidative stress, which subsequently triggers apoptosis pathways in both human neural (SH-SY5Y

  16. A novel polymorphic cytochrome P450 formed by splicing of CYP3A7 and the pseudogene CYP3AP1.

    PubMed

    Rodriguez-Antona, Cristina; Axelson, Magnus; Otter, Charlotta; Rane, Anders; Ingelman-Sundberg, Magnus

    2005-08-05

    The cytochrome P450 3A7 (CYP3A7) is the most abundant CYP in human liver during fetal development and first months of postnatal age, playing an important role in the metabolism of endogenous hormones, drugs, differentiation factors, and potentially toxic and teratogenic substrates. Here we describe and characterize a novel enzyme, CYP3A7.1L, encompassing the CYP3A7.1 protein with the last four carboxyl-terminal amino acids replaced by a unique sequence of 36 amino acids, generated by splicing of CYP3A7 with CYP3AP1 RNA. The corresponding CYP3A7-3AP1 mRNA had a significant expression in liver, kidney, and gastrointestinal tract, and its presence was found to be tissue-specific and dependent on the developmental stage. Heterologous expression in yeast revealed that CYP3A7.1L was a functional enzyme with a specific activity similar to that of CYP3A7.1 and, in some conditions, a different hydroxylation specificity than CYP3A7.1 using dehydroepiandrosterone as a substrate. CYP3A7.1L was found to be polymorphic due to a mutation at position -6 of the first splicing site of CYP3AP1 (CYP3A7_39256T-->A), which abrogates the pseudogene splicing. This polymorphism had pronounced interethnic differences and was in linkage disequilibrium with other functional polymorphisms described in the CYP3A locus: CYP3A7*2 and CYP3A5*1. Therefore, the resulting CYP3A haplotypes express different sets of enzymes within the population. In conclusion, a novel mechanism, consisting of the splicing of the pseudogene CYP3AP1 to CYP3A7, causes the formation of the novel CYP3A7.1L having a different tissue distribution and functional properties than the parent CYP3A7 enzyme, with possible developmental, physiological, and toxicological consequences.

  17. Implications of intercorrelation between hepatic CYP3A4-CYP2C8 enzymes for the evaluation of drug-drug interactions: a case study with repaglinide.

    PubMed

    Doki, Kosuke; Darwich, Adam S; Achour, Brahim; Tornio, Aleksi; Backman, Janne T; Rostami-Hodjegan, Amin

    2018-05-01

    Statistically significant positive correlations are reported for the abundance of hepatic drug-metabolizing enzymes. We investigate, as an example, the impact of CYP3A4-CYP2C8 intercorrelation on the predicted interindividual variabilities of clearance and drug-drug interactions (DDIs) for repaglinide using physiologically based pharmacokinetic (PBPK) modelling. PBPK modelling and simulation were employed using Simcyp Simulator (v15.1). Virtual populations were generated assuming intercorrelations between hepatic CYP3A4-CYP2C8 abundances derived from observed values in 24 human livers. A repaglinide PBPK model was used to predict PK parameters in the presence and absence of gemfibrozil in virtual populations, and the results were compared with a clinical DDI study. Coefficient of variation (CV) of oral clearance was 52.5% in the absence of intercorrelation between CYP3A4-CYP2C8 abundances, which increased to 54.2% when incorporating intercorrelation. In contrast, CV for predicted DDI (as measured by AUC ratio before and after inhibition) was reduced from 46.0% in the absence of intercorrelation between enzymes to 43.8% when incorporating intercorrelation: these CVs were associated with 5th/95th percentiles (2.48-11.29 vs. 2.49-9.69). The range of predicted DDI was larger in the absence of intercorrelation (1.55-77.06) than when incorporating intercorrelation (1.79-25.15), which was closer to clinical observations (2.6-12). The present study demonstrates via a systematic investigation that population-based PBPK modelling incorporating intercorrelation led to more consistent estimation of extreme values than those observed in interindividual variabilities of clearance and DDI. As the intercorrelations more realistically reflect enzyme abundances, virtual population studies involving PBPK and DDI should avoid using Monte Carlo assignment of enzyme abundance. © 2018 The British Pharmacological Society.

  18. Inherent Resistance to 14α-demethylation Inhibitor Fungicides in Colletotrichum truncatum is likely linked to CYP51A and/or CYP51B Gene Variants.

    PubMed

    Chen, Shuning; Wang, Yunyun; Schnabel, Guido; Peng, Congyue Annie; Lagishetty, Satyanarayana; Smith, Kerry; Luo, Chao-Xi; Yuan, Huizhu

    2018-05-24

    Anthracnose disease, caused by Colletotrichum truncatum, affects marketable yield during preharvest production and postharvest storage of fruits and vegetables worldwide. Demethylation inhibitor fungicides (DMIs) are among the very few chemical classes of single-site mode of action fungicides that are effective in controlling anthracnose disease. However, some species are inherently resistant to DMIs and more information is needed to understand this phenomenon. Isolates of C. truncatum were collected from the USA and China from peach, soybean, citrus, and begonia and sensitivity to six DMIs (difenoconazole, propiconazole, metconazole, tebuconazole, flutriafol and fenbuconazole) was determined. Compared with DMI sensitive isolates of C. fructicola, C. siamense, and C. fioriniae (EC50 value ranging from 0.03 µg/ml to 16.2 µg/ml to six DMIs), C. truncatum and C. nymphaeae were resistant to flutriafol and fenbuconazole (with EC50 value of more 50 µg/ml). Moreover, C. truncatum was resistant to tebuconazole and metconazole (with resistance factor of 27.4 and 96.0), and displayed reduced sensitivity to difenoconazole and propiconazole (with resistance factor of 5.1 and 5.2). Analysis of the Colletotrichum spp. genome revealed two potential DMI targets, CYP51A and CYP51B, that putatively encode P450 sterol 14α-demethylases. Both genes were identified and sequenced from C. truncatum and other species and no correlation between CYP51 gene expression levels and fungicide sensitivity was found. Four amino acid variations L208Y, H238R, S302A, and I366L in CYP51A, and three variations H373N, M376L, and S511T in CYP51B correlated with the DMI resistance phenotype. CYP51A structure model analysis suggested the four alteration may reduce azole affinity. Likewise, CYP51B structure analysis suggested the H373N and M376L variants may change the conformation of the DMI binding pocket, thereby causing differential sensitivity to DMI fungicides in C. truncatum.

  19. Stereoselective Inhibition of CYP2C19 and CYP3A4 by Fluoxetine and Its Metabolite: Implications for Risk Assessment of Multiple Time-Dependent Inhibitor Systems

    PubMed Central

    Lutz, Justin D.; VandenBrink, Brooke M.; Babu, Katipudi N.; Nelson, Wendel L.; Kunze, Kent L.

    2013-01-01

    Recent guidance on drug-drug interaction (DDI) testing recommends evaluation of circulating metabolites. However, there is little consensus on how to quantitatively predict and/or assess the risk of in vivo DDIs by multiple time-dependent inhibitors (TDIs) including metabolites from in vitro data. Fluoxetine was chosen as the model drug to evaluate the role of TDI metabolites in DDI prediction because it is a TDI of both CYP3A4 and CYP2C19 with a circulating N-dealkylated inhibitory metabolite, norfluoxetine. In pooled human liver microsomes, both enantiomers of fluoxetine and norfluoxetine were TDIs of CYP2C19, (S)-norfluoxetine was the most potent inhibitor with time-dependent inhibition affinity constant (KI) of 7 μM, and apparent maximum time-dependent inhibition rate (kinact,app) of 0.059 min−1. Only (S)-fluoxetine and (R)-norfluoxetine were TDIs of CYP3A4, with (R)-norfluoxetine being the most potent (KI = 8 μM, and kinact,app = 0.011 min−1). Based on in-vitro-to-in-vivo predictions, (S)-norfluoxetine plays the most important role in in vivo CYP2C19 DDIs, whereas (R)-norfluoxetine is most important in CYP3A4 DDIs. Comparison of two multiple TDI prediction models demonstrated significant differences between them in in-vitro-to-in-vitro predictions but not in in-vitro-to-in-vivo predictions. Inclusion of all four inhibitors predicted an in vivo decrease in CYP2C19 (95%) and CYP3A4 (60–62%) activity. The results of this study suggest that adequate worst-case risk assessment for in vivo DDIs by multiple TDI systems can be achieved by incorporating time-dependent inhibition by both parent and metabolite via simple addition of the in vivo time-dependent inhibition rate/cytochrome P450 degradation rate constant (λ/kdeg) values, but quantitative DDI predictions will require a more thorough understanding of TDI mechanisms. PMID:23785064

  20. Personalized tacrolimus doses determined by CYP3A5 genotype for induction and maintenance phases of kidney transplantation.

    PubMed

    Vannaprasaht, Suda; Reungjui, Sirirat; Supanya, Darika; Sirivongs, Dhavee; Pongskul, Cholatip; Avihingsanon, Yingyos; Tassaneeyakul, Wichittra

    2013-11-01

    Cytochrome P450 (CYP) 3A4 and 3A5 are major isoforms involved in the metabolism of tacrolimus, with the CYP3A5 gene being more polymorphic. It is hypothesized that individual variation in the metabolism of tacrolimus drug may result from genetic polymorphism of CYP3A5. It has been reported that the clearance of tacrolimus in patients with the CYP3A5*1 allele was ~2.5-fold greater than that in those with the CYP3A5*3/*3 genotype. Recent data have also shown that polymorphism in exon 26 (C3435T) of the multidrug resistance gene (MDR1) was correlated with the expression level and function of P-glycoprotein in the lower duodenum, making the relationship between polymorphism of MDR1 and the effective dose of tacrolimus a source of controversy. This study investigated the influence of genetic polymorphisms of CYP3A5 and MDR1 on the dose requirements for the induction and maintenance phases of tacrolimus therapy in kidney transplant recipients. Sixty-eight kidney transplant recipients were enrolled, and their clinical and laboratory data were retrospectively reviewed after 6 months of tacrolimus administration. Genotypes of CYP3A5*1 and CYP3A5*3 and exon 26 of MDR1 (C3435T) were determined by the single-nucleotide polymorphism genotyping method. The frequencies of CYP3A5*3/*3, CYP3A5*1/*3, and CYP3A5*1/*1 were 44.1%, 35.3%, and 20.6%, respectively. The mean dose of tacrolimus required for the induction phase was significantly greater in the CYP3A5*1/*1 group (0.142 [0.050] mg/kg/d) than that required in the CYP3A5*1/*3 group (0.097 [0.040] mg/kg/d; P = 0.072) and in the CYP3A5*3/*3 group (0.077 [0.020] mg/kg/d; P = 0.005). The maintenance dose of tacrolimus required in the CYP3A5*1/*1 group (0.12 [0.03] mg/kg/d) was 1.3-fold higher than that in the CYP3A5*1/*3 group (0.09 [0.03] mg/kg/d; P = 0.018) and 2.4-fold higher than in the CYP3A5*3/*3 group (0.05 [0.02] mg/kg/d; P < 0.0001). No statistically significant relationship was observed between the doses of tacrolimus

  1. Effect of chondroitin sulfate on turpentine-induced down-regulation of CYP1A2 and CYP3A6.

    PubMed

    Iovu, Mirela-Onita; Héroux, Lucie; Vergés, Josep; Montell, Eulália; Paiement, Jacques; du Souich, Patrick

    2012-07-01

    This study aimed to assess whether chronic administration of chondroitin sulfate (CS) affects baseline expression of cytochrome P450 isoforms and impedes the decrease in expression and activity of CYP1A2 and CYP3A6 in rabbits with a turpentine-induced inflammatory reaction (TIIR). Seven groups of 5 rabbits, 3 control groups and 4 receiving 20 mg/kg/day of CS for 20 and 30 days, were used. The rabbits of 1 control group and 2 groups receiving CS had a TIIR; finally, the rabbits of one of the control groups remained in the animal facilities for 30 days to assess the effect of time and environment on cytochrome P450. In control rabbits, intake of CS for 20 and 30 days did not affect CYP3A6, CYP1A2 and NADPH cytochrome P450 reductase (CPR) mRNA, protein expression and activity. Compared with control rabbits, the TIIR not only reduced mRNA, protein expression and activity of CYP3A6 and CYP1A2 but also that of CPR. In rabbits with TIIR, CS prevented the decrease of CYP3A6 expression but not the reduction in activity. CS did not impede TIIR-induced down-regulation of CYP1A2. Hepatic NO() concentrations and NF-κB nuclear translocation were increased by the TIIR, effect reversed by CS. In vitro, in hepatocytes, CS did not alter the expression and activity of CYP3A6, CYP1A2, and CPR. In conclusion, oral CS elicits a systemic effect but does not affect CYP1A2, CYP3A6, and CPR in control rabbits, although in rabbits with TIIR, CS prevents CYP3A6 protein down-regulation but not that of CYP1A2. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Tributyltin modulates 3,3',4,4',5-pentachlorobiphenyl (PCB-126)-induced hepatic CYP1A activity in channel catfish, Ictalurus punctatus.

    PubMed

    Rice, C D; Roszell, L E

    1998-10-09

    Many harbor estuaries and their tributaries are contaminated with halogenated aromatic hydrocarbons (HAHs) and polycyclic aromatic hydrocarbons (PAHs). Planar congeners of these two classes initiate their toxic effects, including reproductive, developmental, and immunological dysfunction, primarily through the cytosolic arylhydrocabon receptor (Ahr). However, only rarely are aquatic environments contaminated with Ahr-binding contaminants alone. Instead, most are impacted by a variety of pollutants in mixture. Tributyltin (TBT), a common antifouling biocide, is also found in many harbor estuaries and their tributaries. Several reports indicate that TBT inhibits the cytochrome P-4501A system of fish, at least in vitro, and our recent studies with rodents indicate that TBT potentiates PCB-induced CYP1A. However, the effects of TBT on xenobiotic-induced CYP1A activity in aquatic organisms has been virtually unexplored. To this end, channel catfish, Ictalurus punctatus, were exposed to 3,3'4,4',5-pentachlorobiphenyl (PCB-126, PeCB), TBT, or both in combination, with corn oil (CO) serving as the carrier control. Immunoreactive CYP1A protein and ethoxyresorufin O-deethylase (EROD) activity were measured after (1) a single dose of 0.01, 0. 1, or 1 mg/kg of each or both in combination, and (2) 6 injections of 0.017, 1.7, or 17 microg/kg of each (or in combination) given every 3 d over a 16-d period to yield a cumulative dose of 0.01, 0.1, or 1 mg/kg. As expected, PeCB alone, but not TBT, greatly induced these two CYP1A parameters. Low and middle doses of TBT (0.01 and 0.1 mg/kg), but not the high dose, potentiated PeCB-induced activity at these same doses. This effect of TBT was even more pronounced in the repeated exposure study. Furthermore, EROD activity did not always reflect CYP1A protein induction; enzyme activity was inhibited by TBT at doses that potentiated protein induction (0.01 and 0.1 mg/kg). In summary, TBT potentiates PeCB-induced CYP1A in channel catfish at

  3. Passive smoking, Cyp1A1 gene polymorphism and dysmenorrhea

    PubMed Central

    Liu, Hong; Yang, Fan; Li, Zhiping; Chen, Changzhong; Fang, Zhian; Wang, Lihua; Hu, Yonghua; Chen, Dafang

    2007-01-01

    Objective This study investigated whether the association between passive smoking exposure and dysmenorrhea is modified by two susceptibility genes, CYP1A1MspI and CYP1A1HincII. Methods This report includes 1645 (1124 no dysmenorrhea, 521 dysmenorrhea) nonsmoking and nondrinking newly wed female workers at Anqing, China between June 1997 and June 2000. Multiple logistic regression models were used to estimate the associations of passive smoking exposure and genetic susceptibility with dysmenorrhea, adjusting for perceived stress. Results When stratified by women genotype, the adjusted OR of dysmenorrhea was 1.6 (95%CI=1.3-2.1) for passive smoking group with Ile/Ile462 genotype, and 1.5 (95%CI=1.1-2.1) with C/C6235 genotype, compared to non passive smoking group, respectively. The data further showed that there was a significant combined effect between passive smoking and the CYP1A1 Msp1 C/C6235 and HincII Ile/Ile462 genotype (OR=2.6, 95%CI=1.3-5.2). Conclusion CYP1A1 MspI and HincII genotypes modified the association between passive smoking and dysmenorrhea. PMID:17566695

  4. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice.

    PubMed

    Kumar, Ramiya; Mota, Linda C; Litoff, Elizabeth J; Rooney, John P; Boswell, W Tyler; Courter, Elliott; Henderson, Charles M; Hernandez, Juan P; Corton, J Christopher; Moore, David D; Baldwin, William S

    2017-01-01

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and

  5. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice

    PubMed Central

    Kumar, Ramiya; Mota, Linda C.; Litoff, Elizabeth J.; Rooney, John P.; Boswell, W. Tyler; Courter, Elliott; Henderson, Charles M.; Hernandez, Juan P.; Corton, J. Christopher; Moore, David D.

    2017-01-01

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and

  6. Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice (Oryza sativa).

    PubMed

    Yoon, Dae Hwa; Lee, Sang Sook; Park, Hyun Ji; Lyu, Jae Il; Chong, Won Seog; Liu, Jang Ryol; Kim, Beom-Gi; Ahn, Jun Cheul; Cho, Hye Sun

    2016-01-01

    AtCYP19-4 (also known as CYP5) was previously identified as interacting in vitro with GNOM, a member of a large family of ARF guanine nucleotide exchange factors that is required for proper polar localization of the auxin efflux carrier PIN1. The present study demonstrated that OsCYP19-4, a gene encoding a putative homologue of AtCYP19-4, was up-regulated by several stresses and showed over 10-fold up-regulation in response to cold. The study further demonstrated that the promoter of OsCYP19-4 was activated in response to cold stress. An OsCYP19-4-GFP fusion protein was targeted to the outside of the plasma membrane via the endoplasmic reticulum as determined using brefeldin A, a vesicle trafficking inhibitor. An in vitro assay with a synthetic substrate oligomer confirmed that OsCYP19-4 had peptidyl-prolyl cis-trans isomerase activity, as was previously reported for AtCYP19-4. Rice plants overexpressing OsCYP19-4 showed cold-resistance phenotypes with significantly increased tiller and spike numbers, and consequently enhanced grain weight, compared with wild-type plants. Based on these results, the authors suggest that OsCYP19-4 is required for developmental acclimation to environmental stresses, especially cold. Furthermore, the results point to the potential of manipulating OsCYP19-4 expression to enhance cold tolerance or to increase biomass. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Characterization CYP1A2, CYP2C9, CYP2C19 and CYP2D6 polymorphisms using HRMA in Psychiatry patients with schizophrenia and bipolar disease for personalized medicine.

    PubMed

    Yenilmez, Ebru Dundar; Tamam, Lut; Karaytug, Onur; Tuli, Abdullah

    2018-06-19

    The interindividual genetic variations in drug metabolizing enzymes effects the impact and toxicity in plenty of drugs. The CYP1A2, CYP2C9, CYP2C19 and CYP2D6 gene polymorphisms characterized using high resolution melting analysis (HRMA) in follow-up patients in psychiatry clinic as a preliminary preparation for personalized medicine. Genotyping of CYP1A2*1F, CYP2C9 *2, *3, CYP2C19 *2, *3 and *17 and CYP2D6 *3, *4 was conducted in 101 patients using HRMA. Genotype and allele frequencies of the CYP variants were found to be in equilibrium with the Hardy-Weinberg equation. The frequency of the CYP1A2*1F allele in schizophrenia and bipolar disease was 0.694 and 0.255, respectively. The CYP2C9 allele frequencies were 0.087 (CYP2C9*2), and 0.549 (CYP2C9*3) for bipolar; 0.278 (CYP2C9*2) and 0.648 (CYP2C9*3) in schizophrenias. The CYP2C19*2 and *17 allele frequencies was 0.111 and 0.185 in schizophrenia and variant *2 was 0.117 and variant *17 was 0.255 in bipolar group. The frequency of the CYP2D6*3 allele was 0.027 in schizophrenias. The frequencies for the CYP2D6*4 variant was 0.092 and 0.096 in schizophrenia and bipolar groups, respectively. The knowledge in pharmacogenomics and also the developments in molecular genetics are growing rapidly. In the future this can be expected to provide new methodologies in the prediction of the activity in drug metabolizing enzymes. The HRMA is a rapid and useful technique to identify the genotypes for drug dosage adjustment before therapy in psychiatry patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The pharmacokinetic and pharmacodynamic interaction of clopidogrel and cilostazol in relation to CYP2C19 and CYP3A5 genotypes

    PubMed Central

    Kim, Ho‐Sook; Lim, Younghae; Oh, Minkyung; Ghim, Jong‐lyul; Kim, Eun‐Young; Kim, Dong‐Hyun

    2015-01-01

    Aim The primary objective of the present study was to evaluate the pharmacokinetic and pharmacodynamic interactions between clopidogrel and cilostazol in relation to the CYP2C19 and CYP3A5 genotypes. Methods In a randomized, three‐way crossover study, 27 healthy subjects were administered clopidogrel (300 mg), cilostazol (100 mg) or clopidogrel + cilostazol orally. Plasma concentrations of clopidogrel, cilostazol and their active metabolites (clopidogrel thiol metabolite, 3,4‐dehydrocilostazol and 4″‐trans‐hydroxycilostazol), and adenosine diphosphate‐induced platelet aggregation were measured for pharmacokinetic and pharmacodynamic assessment. Results The area under the plasma concentration–time curve (AUC) of the active thiol metabolite of clopidogrel was highest in the CYP2C19 extensive metabolizers (EM) and lowest in the poor metabolizers (PM). Cilostazol decreased the thiol metabolite AUC by 29% in the CYP3A5*1/*3 genotype [geometric mean ratio (GMR) 0.71; 90% confidence interval (CI) 0.58, 0.86; P = 0.020] but not in the CYP3A5*3/*3 genotype (GMR 0.93; 90% CI 0.80, 1.10; P = 0.446). Known effects of the CYP2C19 and CYP3A5 genotypes on the exposure of cilostazol and its metabolites were observed but there was no significant difference in the AUC of cilostazol and 3,4‐dehydrocilostazol between cilostazol and clopidogrel + cilostazol. The inhibition of platelet aggregation from 4 h to 24 h (IPA4–24) following the administration of clopidogrel alone was highest in the CYP2C19 EM genotype and lowest in the CYP2C19 PM genotype (59.05 ± 18.95 vs. 36.74 ± 13.26, P = 0.023). However, the IPA of the CYP2C19 PM following co‐administration of clopidogrel and cilostazol was comparable with that of the CYP2C19 EM and intermediate metabolizers (IM) only in CYP3A5*3/*3 subjects. Conclusions The additive antiplatelet effect of cilostazol plus clopidogrel is maximized in subjects with both the CYP2C19 PM and CYP3A5*3/*3 genotypes because

  9. Pharmacogenetic Variation in Over 100 Genes in Patients Receiving Acenocumarol

    PubMed Central

    Gonzalez-Covarrubias, Vanessa; Urena-Carrion, Javier; Villegas-Torres, Beatriz; Cossío-Aranda, J. Eduardo; Trevethan-Cravioto, Sergio; Izaguirre-Avila, Raul; Fiscal-López, O. Javier; Soberon, Xavier

    2017-01-01

    Coumarins are widely prescribed worldwide, and in Mexico acenocumarol is the preferred form. It is well known that despite its efficacy, coumarins show a high variability for dose requirements. We investigated the pharmacogenetic variation of 110 genes in patients receiving acenocumarol using a targeted NGS approach. We report relevant population differentiation for variants on CYP2C8, CYP2C19, CYP4F11, CYP4F2, PROS, and GGCX, VKORC1, CYP2C18, NQO1. A higher proportion of novel-to-known variants for 10 genes was identified on 41 core pharmacogenomics genes related to the PK (29), PD (3), of coumarins, and coagulation proteins (9) including, CYP1A1, CYP3A4, CYP3A5, and F8, and a low proportion of novel-to-known variants on CYP2E1, VKORC1, and SULT1A1/2. Using a Bayesian approach, we identified variants influencing acenocumarol dosing on, VKORC1 (2), SULT1A1 (1), and CYP2D8P (1) explaining 40–55% of dose variability. A collection of pharmacogenetic variation on 110 genes related to the PK/PD of coumarins is also presented. Our results offer an initial insight into the use of a targeted NGS approach in the pharmacogenomics of coumarins in Mexican Mestizos. PMID:29218011

  10. High allele frequency of CYP2C9*3 (rs1057910) in a Negrito's subtribe population in Malaysia; Aboriginal people of Jahai.

    PubMed

    Rosdi, Rasmaizatul Akma; Mohd Yusoff, Narazah; Ismail, Rusli; Soo Choon, Tan; Saleem, Mohamed; Musa, Nurfadhlina; Yusoff, Surini

    2016-09-01

    CYP2C9 gene polymorphisms modulate inter-individual variations in the human body's responses to various endogenous and exogenous drug substrates. To date, little is known about the CYP2C9 gene polymorphisms among the aboriginal populations of the world, including those in Malaysia. To characterise and compare the CYP2C9 polymorphisms (CYP2C9*2, CYP2C9*3, CYP2C9*4 and CYP2C9*5) between one of Malaysia's aboriginal populations, Jahai, with the national major ethnic, Malay. To also compare the allele frequencies from these two populations with available data of other aboriginal populations around the world. The extracted DNA of 155 Jahais and 183 Malays was genotyped for CYP2C9 polymorphisms using a nested multiplex allele-specific polymerase chain reaction technique. The results were confirmed by DNA direct sequencing. Genotyping results revealed that CYP2C9*2, CYP2C9*4 and CYP2C9*5 were absent in Jahais, while only the latter two were absent in Malays. The CYP2C9*3 allelic frequency in Jahais was 36.2%, making them the most frequent carriers of the allele thus far reported in any ethnic group from Southeast Asia. The high frequency of CYP2C9*3 and the absence of CYP2C9*2 in Jahais suggest that genetic drift may be occurring in this ethnic group. This is the first study to determine the CYP2C9 polymorphisms in an aboriginal population in Malaysia.

  11. Polymorphisms of drug-metabolizing enzymes (GST, CYP2B6 and CYP3A) affect the pharmacokinetics of thiotepa and tepa

    PubMed Central

    Ekhart, Corine; Doodeman, Valerie D; Rodenhuis, Sjoerd; Smits, Paul H M; Beijnen, Jos H; Huitema, Alwin D R

    2009-01-01

    AIMS Thiotepa is widely used in high-dose chemotherapy. Previous studies have shown relations between exposure and severe organ toxicity. Thiotepa is metabolized by cytochrome P450 and glutathione S-transferase enzymes. Polymorphisms of these enzymes may affect elimination of thiotepa and tepa, its main metabolite. The purpose of this study was to evaluate effects of known allelic variants in CYP2B6, CYP3A4, CYP3A5, GSTA1 and GSTP1 genes on pharmacokinetics of thiotepa and tepa. METHODS White patients (n = 124) received a high-dose regimen consisting of cyclophosphamide, thiotepa and carboplatin as intravenous infusions. Genomic DNA was analysed using polymerase chain reaction and sequencing. Plasma concentrations of thiotepa and tepa were determined using validated GC and LC-MS/MS methods. Relations between allelic variants and elimination pharmacokinetic parameters were evaluated using nonlinear mixed effects modelling (nonmem). RESULTS The polymorphisms CYP2B6 C1459T, CYP3A4*1B, CYP3A5*3, GSTA1 (C-69T, G-52A) and GSTP1 C341T had a significant effect on clearance of thiotepa or tepa. Although significant, most effects were generally not large. Clearance of thiotepa and tepa was predominantly affected by GSTP1 C341T polymorphism, which had a frequency of 9.3%. This polymorphism increased non-inducible thiotepa clearance by 52% [95% confidence interval (CI) 41, 64, P < 0.001] and decreased tepa clearance by 32% (95% CI 29, 35, P < 0.001) in heterozygous patients, which resulted in an increase in combined exposure to thiotepa and tepa of 45% in homozygous patients. CONCLUSIONS This study indicates that the presently evaluated variant alleles explain only a small part of the substantial interindividual variability in thiotepa and tepa pharmacokinetics. Patients homozygous for the GSTP1 C341T allele may have enhanced exposure to thiotepa and tepa. PMID:19076156

  12. Association of vdr, cyp27b1, cyp24a1 and mthfr gene polymorphisms with oral lichen planus risk.

    PubMed

    Kujundzic, Bojan; Zeljic, Katarina; Supic, Gordana; Magic, Marko; Stanimirovic, Dragan; Ilic, Vesna; Jovanovic, Barbara; Magic, Zvonko

    2016-05-01

    The current study investigated the association between VDR EcoRV (rs4516035), FokI (rs2228570), ApaI (rs7975232) and TaqI (rs731236), CYP27B1 (rs4646536), CYP24A1 (rs2296241), and MTHFR (rs1801133) gene polymorphisms and risk of oral lichen planus (OLP) occurrence. The study group consisted of 65 oral lichen planus patients and 100 healthy blood donors in the control group. Single nucleotide polymorphisms were genotyped by real time PCR or PCR-restriction fragment length polymorphism (RFLP) method. Heterozygous as well as mutated genotype of vitamin D receptor (VDR) FokI (rs2228570) polymorphism was associated with increased oral lichen planus risk in comparison with wild type genotype (odds ratio (OR) = 3.877, p = 0.017, OR = 38.153, p = 0.001, respectively). A significantly decreased OLP risk was observed for heterozygous genotype of rs2296241 polymorphism in CYP24A1 gene compared with the wild type form (OR = 0.314, p = 0.012). VDR gene polymorphisms ApaI and TaqI were in linkage disequilibrium (D' = 0.71, r(2) = 0.22). Identified haplotype AT was associated with decreased OLP risk (OR = 0.592, p = 0.047). Our results highlight the possible important role of VDR FokI (rs2228570) and CYP24A1 rs2296241 gene polymorphisms for oral lichen planus susceptibility. Identification of new molecular biomarkers could potentially contribute to determination of individuals with OLP predisposition.

  13. Genotyping and phenotyping of CYP2D6 and CYP3A isoenzymes in patients with alcohol use disorder: correlation with haloperidol plasma concentration.

    PubMed

    Sychev, Dmitry A; Zastrozhin, Mikhail S; Miroshnichenko, Igor I; Baymeeva, Natalia V; Smirnov, Valery V; Grishina, Elena A; Ryzhikova, Kristina A; Mirzaev, Karin B; Markov, Dmitry D; Skryabin, Valentin Y; Snalina, Nataliya E; Nosikova, Polina G; Savchenko, Ludmila M; Bryun, Evgeny A

    2017-09-26

    Haloperidol is used for the treatment of alcohol use disorders in patients with signs of alcohol-related psychosis. Haloperidol therapy poses a high risk of adverse drug reactions (ADR). Contradictory data, which include the effects of genetic polymorphisms in genes encoding the elements of haloperidol biotransformation system on haloperidol metabolism rate and plasma drug concentration ratio, are described in patients with different genotypes. The primary objective of this study was to investigate the effects of CYP2D6 and CYP3A5 genetic polymorphisms on haloperidol equilibrium concentration in patients with alcohol use disorder. The study included 69 male patients with alcohol use disorder. Genotyping was performed using the allele-specific real-time PCR. CYP2D6 and CYP3A were phenotyped with HPLC-MS using the concentration of endogenous substrate of the enzyme and its urinary metabolites [6-hydroxy-1,2,3,4-tetrahydro-β-carboline(6-HO-THBC) to pinoline ratio for CYP2D6 and 6-β-hydroxycortisol to cortisol ratio for CYP3A]. The equilibrium plasma concentration was determined using LC-MS-MS. Results indicated that both C/D indexes and equilibrium concentration levels depend on CYP2D6 genetic polymorphism, but only in patients receiving haloperidol intramuscular injections [0.26 (0.09; 0.48) vs. 0.54 (0.44; 0.74), p=0.037]. The study demonstrates that CYP2D6 genetic polymorphism (1846G>A) can affect haloperidol concentration levels in patients with alcohol use disorder.

  14. CYP3C1, the first member of a new cytochrome P450 subfamily found in zebrafish (Danio rerio).

    PubMed

    Corley-Smith, Graham E; Su, Hsiao-Ting; Wang-Buhler, Jun-Lan; Tseng, Hua-Pin; Hu, Chin-Hwa; Hoang, Thuy; Chung, Woon-Gye; Buhler, Donald R

    2006-02-24

    We report a new cytochrome P450 (CYP) subfamily CYP3C and the cloning through PCR from zebrafish (Danio rerio) of the first member, CYP3C1. The CYP3C1 gene is on Chromosome 3 with 13 ORF exons encoding a 505 amino acid protein which has 44-54% identities with mammalian and teleost CYP3A and CYP3B forms. As evidenced by spectral analysis, the CYP3C1 protein heterologously expressed in yeast is functional. In silico analysis identified, on the same region of the chromosome, three more genes encoding CYP3C1-like proteins that formed a clade with CYP3C1 in a phylogenetic tree. Using RT-PCR, the CYP3C1 mRNA was detected in 1-6dpf embryo/larvae and in adult fish liver and seven extrahepatic tissues. Whole-mount in situ hybridization using a riboprobe demonstrated expression in the brain during 12-120 hpf. At the 120 hpf larval stage, CYP3C1 mRNA was also detected in the pharynx and gastrointestinal tract. TCDD, dexamethasone, and rifampicin, which up-regulated CYP3A65 mRNA in zebrafish larvae, did not alter the CYP3C1 transcript levels suggesting regulatory differences between CYP3A and CYP3C enzymes in this species.

  15. Identification of CYP3A7 for Glyburide Metabolism in Human Fetal Livers

    PubMed Central

    Shuster, Diana L.; Risler, Linda J.; Prasad, Bhagwat; Calamia, Justina C.; Voellinger, Jenna L.; Kelly, Edward J.; Unadkat, Jashvant D.; Hebert, Mary F.; Shen, Danny D.; Thummel, Kenneth E.; Mao, Qingcheng

    2014-01-01

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u = 37.1, 13.0, and 8.7 ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4′-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. PMID:25450675

  16. Identification of CYP3A7 for glyburide metabolism in human fetal livers.

    PubMed

    Shuster, Diana L; Risler, Linda J; Prasad, Bhagwat; Calamia, Justina C; Voellinger, Jenna L; Kelly, Edward J; Unadkat, Jashvant D; Hebert, Mary F; Shen, Danny D; Thummel, Kenneth E; Mao, Qingcheng

    2014-12-15

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u=37.1, 13.0, and 8.7ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4'-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2

    PubMed Central

    Unterweger, Birgit; Bulach, Dieter M.; Scoble, Judith; Midgley, David J.; Greenfield, Paul; Lyras, Dena; Johanesen, Priscilla

    2016-01-01

    ABSTRACT We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8-cineole-binding proteins enabled identification of 1,8-cineole-binding P450s. The P450 enzymes were cloned, heterologously expressed (N-terminally His6 tagged) in Escherichia coli BL21(DE3), purified, and spectroscopically characterized. Recombinant whole-cell biotransformation in E. coli demonstrated that all three P450s hydroxylate 1,8-cineole using electron transport partners from E. coli to yield a product putatively identified as (1S)-2α-hydroxy-1,8-cineole or (1R)-6α-hydroxy-1,8-cineole. The new P450s belong to the CYP101 family and share 47% and 44% identity with other 1,8-cineole-hydroxylating members found in Novosphingobium aromaticivorans and Pseudomonas putida. Compared to P450cin (CYP176A1), a 1,8-cineole-hydroxylating P450 from Citrobacter braakii, these enzymes share less than 30% amino acid sequence identity and hydroxylate 1,8-cineole in a different orientation. Expansion of the enzyme toolbox for modification of 1,8-cineole creates a starting point for use of hydroxylated derivatives in a range of industrial applications. IMPORTANCE CYP101J2, CYP101J3, and CYP101J4 are cytochrome P450 monooxygenases from S. yanoikuyae B2 that hydroxylate the monoterpenoid 1,8-cineole. These enzymes not only play an important role in microbial degradation of this plant-based chemical but also provide an interesting route to synthesize oxygenated 1,8-cineole derivatives for applications as natural flavor and fragrance precursors or incorporation into polymers. The P450 cytochromes also provide an interesting basis from which to compare other enzymes with a similar function and expand the CYP101

  18. Molecular defects of the CYP21A2 gene in Greek-Cypriot patients with congenital adrenal hyperplasia.

    PubMed

    Skordis, Nicos; Kyriakou, Andreas; Tardy, Véronique; Ioannou, Yiannis S; Varvaresou, Athanasia; Dracopoulou-Vabouli, Maria; Patsalis, Philippos C; Shammas, Christos; Neocleous, Vassos; Phylactou, Leonidas A

    2011-01-01

    To determine the mutations in the CYP21A2 gene in Greek-Cypriots with congenital adrenal hyperplasia (CAH) and attempt a genotype-phenotype correlation. Molecular analysis was performed by multiplex ligation-dependent probe amplification and direct sequencing of PCR products of the CYP21A2 gene in 32 CAH patients. The most frequent genetic defect in the classic salt-wasting and simple virilizing forms was the IVS2-13A/C>G (55%) mutation, followed by Large lesion (20%) and in the non-classical form, the p.V281L (79.5%). Genotypes were categorized in 4 mutation groups (null, A, B and C). All 3 patients in the null group manifested the salt-wasting form and all 6 patients in mutation group A presented with the classical form. One patient in group B had the simple virilizing form and 22 patients in group C exhibited the non-classical form. The spectrum of mutations of the CYP21A2 gene in our population is comparable to the most common reported in similar ethnic groups. The knowledge of the ethnic specificity of the CYP21A2 mutations represents a valuable diagnostic tool for all forms of CAH. Copyright © 2010 S. Karger AG, Basel.

  19. CYP3A4-catalyzed simvastatin metabolism as a non-invasive marker of small intestinal health in celiac disease.

    PubMed

    Morón, Belén; Verma, Anil K; Das, Prasenjit; Taavela, Juha; Dafik, Laila; Diraimondo, Thomas R; Albertelli, Megan A; Kraemer, Thomas; Mäki, Markku; Khosla, Chaitan; Rogler, Gerhard; Makharia, Govind K

    2013-08-01

    Histological examination of duodenal biopsies is the gold standard for assessing intestinal damage in celiac disease (CD). A noninvasive marker of disease status is necessary, because obtaining duodenal biopsies is invasive and not suitable for routine monitoring of CD patients. As the small intestine is a major site of cytochrome P450 3A4 (CYP3A4) activity and also the location of the celiac lesion, we investigated whether patients with active CD display abnormal pharmacokinetics of an orally administered CYP3A4 substrate, simvastatin (SV), which could potentially be used for noninvasive assessment of their small intestinal health. Preclinical experiments were performed in CYP3A4-humanized mice to examine the feasibility of the test. Subsequently, a clinical trial was undertaken with 11 healthy volunteers, 18 newly diagnosed patients with CD, and 25 celiac patients who had followed a gluten-free diet (GFD) for more than 1 year. The maximum concentration (Cmax) of orally administered SV plus its major non-CYP3A4-derived metabolite SV acid (SV equivalent (SVeq)) was measured, and compared with clinical, histological, and serological parameters. In CYP3A4-humanized mice, a marked decrease in SV metabolism was observed in response to enteropathy. In the clinical setting, untreated celiac patients displayed a significantly higher SVeq Cmax (46±24 nM) compared with treated patients (21±16 nM, P<0.001) or healthy subjects (19±11 nM, P<0.005). SVeq Cmax correctly predicted the diagnosis in 16/18 untreated celiac patients, and also the recovery status of all follow-up patients that exhibited normal or near-normal biopsies (Marsh 0-2). All patients with abnormal SVeq Cmax showed a reduction in the value after 1 year of following a GFD. SVeq Cmax is a promising noninvasive marker for assessment of small intestinal health. Further studies are warranted to establish its clinical utility for assessing gut status of patients with CD.

  20. TCDD dysregulation of 13 AHR-target genes in rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, John D., E-mail: john.watson@oicr.on.ca; Prokopec, Stephenie D., E-mail: stephenie.prokopec@oicr.on.ca; Smith, Ashley B., E-mail: ashleyblaines@gmail.com

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluatedmore » doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic m

  1. CYP gene family variants as potential protective factors in drug addiction in Han Chinese.

    PubMed

    Zhang, Hongxing; Yang, Qi; Zheng, Wenkai; Ouyang, Yongri; Yang, Min; Wang, Fengjiao; Jin, Tianbo; Zhang, Ji; Wang, Zhenyuan

    2016-08-01

    There is growing evidence that genetic factors also contribute to drug addiction. The human cytochrome P450 has shown special interest because of pharmacokinetic variation in different individuals and populations, which is largely determined by the relevant genes. The present study aimed to investigate the polymorphism of the CYP/addicts relationship. We genotyped 13 tag single-nucleotide polymorphisms (tSNPs) from three genes, including 692 cases and 700 controls. Sequenom MassARRAY RS1000 (Sequenom, Inc., San Diego, CA, USA) was used for SNP genotyping. Statistical analysis of the association between tSNPs and drug addiction was performed using the chi-squared test and SNP Stats software (http://bioinfo.iconcologia.net). The T/T genotype of rs2242480 in CYP3A4 was associated with decreased risk in the recessive model (p = 0.0002). Allele frequency at rs3743484 in CYP1A2 showed significant differences between addicts and controls (p = 0.046; odds ratio = 0.80; 95% confidence interval = 0.65-1.00). In genetic model analyses, the minor C allele of rs3743484 in CYP1A2 was associated with a reduced risk of drug addiction based on analysis using codominant and additive models (p = 0.027 dominant model; p =0.038 additive model). Our findings show that at allelic and genotypic level polymorphisms in CYP3A4 and CYP1A2 are significantly associated with a reduced risk of drug addiction in X'ian Han Chinese individuals. However, this result needs to be confirmed in additional studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. An Insulin-Like Growth Factor 1 Receptor Inhibitor Induces CYP3A4 Expression through a Pregnane X Receptor-Independent, Noncanonical Constitutive Androstane Receptor-Related Mechanism

    PubMed Central

    Li, Linhao; Sinz, Michael W.; Zimmermann, Kurt

    2012-01-01

    Inhibition of insulin-like growth factor-1 receptor (IGF-1R) signaling represents an attractive therapeutic strategy for cancer treatment. A first-generation IGF-1R inhibitor (R)-4-(3-(3-chlorophenyl)-3-hydroxypropyl)-3-(4-methyl-6-morpholino-1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-one (BMS-536924), however, was associated with potent CYP3A4 induction mediated by pregnane X receptor (PXR; NR1I2) transactivation. Structural activity-based modification led to the synthesis of 4-(1-(2-(4-((2-(4-chloro-1H-pyrazol-1-yl)ethyl)amino)-2-oxo-1,2-dihydropyridin-3-yl)-4-methyl-1H-benzo[d]imidazol-6-yl)piperidin-4-yl) piperazine-1-carboxylate (BMS-665351) with no PXR activity while maintaining its ability to inhibit IGF-1R. However, BMS-665351 significantly induces CYP3A4 expression in human primary hepatocytes (HPHs). Here, we report a novel nonclassical constitutive androstane receptor (CAR; NR1I3)-related pathway of BMS-665351-mediated CYP3A4 induction. BMS-665351 treatment resulted in the significant induction of CYP3A4 in HPHs and HepG2 cells, but failed to activate either PXR or CAR in cell-based reporter assays. Moreover, BMS-665351 at concentrations that induce CYP3A4 expression was unable to translocate human CAR from the cytoplasm to the nucleus of HPHs, which represents the initial step of CAR activation. Nevertheless, quantitative polymerase chain reaction analysis demonstrated that BMS-665351 significantly enhanced the expression of CYP3A4 in CAR- but not PXR-transfected HepG2 and Huh7 cells. It is noteworthy that BMS-665351 selectively induced the expression of CAR but not PXR in all tested hepatic cell systems. Synergistic induction of CYP3A4 was observed in HPHs cotreated with BMS-665351 and prototypical activators of CAR but not PXR. In summary, our results indicate that BMS-665351-mediated induction of CYP3A4 is CAR-dependent, but BMS-665351 itself is not a typical activator of either CAR or PXR, rather it functions as a selective inducer of CAR expression and

  3. Inhibition of Cytochrome P450 (CYP3A4) Activity by Extracts from 57 Plants Used in Traditional Chinese Medicine (TCM)

    PubMed Central

    Ashour, Mohamed L; Youssef, Fadia S; Gad, Haidy A; Wink, Michael

    2017-01-01

    Background: Herbal medicine is widely used all over the world for treating various health disorders. It is employed either alone or in combination with synthetic drugs or plants to be more effective. Objective: The assessment of the effect of both water and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 in vitro for the first time. Materials and Methods: The inhibition of cytochrome P450 activity was evaluated using a luminescence assay. The principal component analysis (PCA) was used to correlate the inhibitory activity with the main secondary metabolites present in the plant extracts. Molecular modeling studies on CYP3A4 (PDB ID 4NY4) were carried out with 38 major compounds present in the most active plant extracts to validate the observed inhibitory effect. Results: Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, Areca catechu, Bupleurum marginatum, Chrysanthemum indicum, Dysosma versipellis, and Spatholobus suberectus inhibited CYP3A4 is more than 85% (at a dose of 100 μg/mL). The corresponding methanol extracts of A. catechu, A. paniculata, A. catechu, Mahonia bealei, and Sanguisorba officinalis inhibited the enzyme by more than 50%. Molecular modeling studies revealed that two polyphenols, namely hesperidin and rutin, revealed the highest fitting scores in the active sites of the CYP3A4 with binding energies equal to -74.09 and -71.34 kcal/mol, respectively. Conclusion: These results provide evidence that many TCM plants can inhibit CYP3A4, which might cause a potential interference with the metabolism of other concomitantly administered herbs or drugs. SUMMARY In this study, the inhibitory activity of the aqueous and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 was tested in vitro for the first time.Aqueous extracts of Acacia catechu, Andrographis

  4. Identification and characterisation of CYP75A31, a new flavonoid 3'5'-hydroxylase, isolated from Solanum lycopersicum

    PubMed Central

    2010-01-01

    Background Understanding the regulation of the flavonoid pathway is important for maximising the nutritional value of crop plants and possibly enhancing their resistance towards pathogens. The flavonoid 3'5'-hydroxylase (F3'5'H) enzyme functions at an important branch point between flavonol and anthocyanin synthesis, as is evident from studies in petunia (Petunia hybrida), and potato (Solanum tuberosum). The present work involves the identification and characterisation of a F3'5'H gene from tomato (Solanum lycopersicum), and the examination of its putative role in flavonoid metabolism. Results The cloned and sequenced tomato F3'5'H gene was named CYP75A31. The gene was inserted into the pYeDP60 expression vector and the corresponding protein produced in yeast for functional characterisation. Several putative substrates for F3'5'H were tested in vitro using enzyme assays on microsome preparations. The results showed that two hydroxylation steps occurred. Expression of the CYP75A31 gene was also tested in vivo, in various parts of the vegetative tomato plant, along with other key genes of the flavonoid pathway using real-time PCR. A clear response to nitrogen depletion was shown for CYP75A31 and all other genes tested. The content of rutin and kaempferol-3-rutinoside was found to increase as a response to nitrogen depletion in most parts of the plant, however the growth conditions used in this study did not lead to accumulation of anthocyanins. Conclusions CYP75A31 (NCBI accession number GQ904194), encodes a flavonoid 3'5'-hydroxylase, which accepts flavones, flavanones, dihydroflavonols and flavonols as substrates. The expression of the CYP75A31 gene was found to increase in response to nitrogen deprivation, in accordance with other genes in the phenylpropanoid pathway, as expected for a gene involved in flavonoid metabolism. PMID:20128892

  5. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wei; Chai, Hongyan; Li, Ying

    2012-10-01

    4Z1 have been studied in vitro and in vivo. ► CYP4Z1 regulates expression and production of VEGF-A and TIMP-2. ► CYP4Z1-induced angiogenesis is associated with PI3K and ERK1/2 activation. ► CYP4Z1 may be an attractive target for anti-cancer therapy.« less

  6. Effects of CYP4F2 polymorphism on response to warfarin during induction phase: a prospective, open-label, observational cohort study.

    PubMed

    Bejarano-Achache, Idit; Levy, Liran; Mlynarsky, Liat; Bialer, Meir; Muszkat, Mordechai; Caraco, Yoseph

    2012-04-01

    The cytochrome P450 (CYP) 4F2 isozyme has been reported to metabolize vitamin K(1) in vitro, and the V433M polymorphism in the CYP4F2 gene has been associated with reduced vitamin K(1) metabolism and the need for a higher maintenance dosage in patients receiving warfarin. The purpose of the present study was to evaluate the effects of V433M polymorphism on warfarin response during the induction phase. Warfarin-naive white patients in whom warfarin was scheduled to be initiated with a target INR of 2 to 3 were enrolled into the study. On enrollment, a single blood sample for the genotyping of CYP4F2, CYP2C9, and VKORC1 was drawn. The international normalized ratio (INR) was followed daily during induction and twice weekly until stable anticoagulation was reached. The relationships between several markers of warfarin response during induction and CYP4F2 polymorphism were determined. The cohort consisted of 241 patients (115 men; mean [SD] age, 55.2 [19.4] years; weight, 79.5 [18.3] kg). Most of the patients were carriers of the CYP4F2 CC genotype (112 patients) or the CT genotype (104 patients). In carriers of the TT genotype (25 patients), INR >3 was >4-fold lower compared with that in carriers of the CC or CT genotype, suggesting that patients with the TT genotype were less sensitive to warfarin during induction. Also in TT carriers, the extent of excessive anticoagulation was >10-fold lower than in the other carriers. Both of these findings had a nominal P value of <0.05. After adjustment for false discovery rate, none of the findings remained significant at a threshold q value of <0.05. Among CC carriers, the concurrent use of a statin was associated with a 1-mg/d reduction in warfarin maintenance dosage. No similar effect was noted in the CT or TT carriers, suggesting a possible genetic influence on warfarin-statin interaction. These preliminary findings suggest that among white patients treated with warfarin, CYP4F2 polymorphism had a measurable effect on

  7. Demethylation of neferine in human liver microsomes and formation of quinone methide metabolites mediated by CYP3A4 accentuates its cytotoxicity.

    PubMed

    Shen, Qi; Zuo, Minjuan; Ma, Li; Tian, Ye; Wang, Lu; Jiang, Huidi; Zhou, Quan; Zhou, Hui; Yu, Lushan; Zeng, Su

    2014-12-05

    Neferine is a bisbenzylisoquinoline alkaloid isolated from the seed embryos of Nelumbonucifera Gaertn (Lotus) with various potent pharmacological effects. Recently, neferine has attracted attention for its anti-tumor activities. Our study explored its metabolism and cytotoxicity mechanism. Approaches using chemical inhibitors and recombinant human enzymes to characterize the involved enzymes and kinetic studies indicated that the demethylation of neferine by cytochrome P450 (CYP) 2D6 and CYP3A4 fitted a biphasic kinetic profile. Glutathione (GSH) was used as a trapping agent to identify reactive metabolites of neferine, and four novel GSH conjugates were detected with [M+H](+) ions at m/z 902.4, 916.2, 916.1, and 930.4. Based on its structure containing para-methylene phenol and results from a product ion scan, GSH tends to conjugate with C9' after undergoing oxidative metabolism to form the binding site predominated by CYP3A4. Furthermore, the addition of recombinant human GSTA1, GSTT1, and GSTP1 had little effect on the production of the GSH conjugates. In a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide assay, combined with the GSH modulators l-buthionine sulfoximine or N-acetyl-l-cysteine, neferine treatment of MDCK-hCYP3A4 and HepG2 cells revealed that CYP3A4 expression and cellular GSH content could cause an EC50 shift. Metabolic activation mediated by CYP3A4 and GSH depletion significantly enhanced neferine-induced cytotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity.

    PubMed

    Sata, F; Sapone, A; Elizondo, G; Stocker, P; Miller, V P; Zheng, W; Raunio, H; Crespi, C L; Gonzalez, F J

    2000-01-01

    To determine the existence of mutant and variant CgammaP3A4 alleles in three racial groups and to assess functions of the variant alleles by complementary deoxyribonucleic acid (cDNA) expression. A bacterial artificial chromosome that contains the complete CgammaP3A4 gene was isolated and the exons and surrounding introns were directly sequenced to develop primers to polymerase chain reaction (PCR) amplify and sequence the gene from lymphocyte DNA. DNA samples from Chinese, black, and white subjects were screened. Mutating the affected amino acid in the wild-type cDNA and expressing the variant enzyme with use of the baculovirus system was used to functionally evaluate the variant allele having a missense mutation. To investigate the existence of mutant and variant CgammaP3A4 alleles in humans, all 13 exons and the 5'-flanking region of the human CgammaP3A4 gene in three racial groups were sequenced and four alleles were identified. An A-->G point mutation in the 5'-flanking region of the human CgammaP3A4 gene, designated CgammaP3A4*1B, was found in the three different racial groups. The frequency of this allele in a white population was 4.2%, whereas it was 66.7% in black subjects. The CgammaP3A4*1B allele was not found in Chinese subjects. A second variant allele, designated CgammaP3A4*2, having a Ser222Pro change, was found at a frequency of 2.7% in the white population and was absent in the black subjects and Chinese subjects analyzed. Baculovirus-directed cDNA expression revealed that the CYP3A4*2 P450 had a lower intrinsic clearance for the CYP3A4 substrate nifedipine compared with the wild-type enzyme but was not significantly different from the wild-type enzyme for testosterone 6beta-hydroxylation. Another rare allele, designated CgammaP3A4*3, was found in a single Chinese subject who had a Met445Thr change in the conserved heme-binding region of the P450. These are the first examples of potential function polymorphisms resulting from missense mutations in

  9. Human induced pluripotent stem cell line with cytochrome P450 enzyme polymorphism (CYP2C19*2/CYP3A5*3C) generated from lymphoblastoid cells.

    PubMed

    Lee, Jaehun; Woo, Dong-Hun; Park, Han-Jin; Park, Kijung; Ko, Duck Sung; Kim, Jong-Hoon

    2018-03-01

    Cytochrome P450 (CYP) comprises a superfamily of monooxygenase responsible for the metabolism of xenobiotics and approximately 75% of drugs in use today. Thus, genetic polymorphisms in CYP genes contribute to interindividual differences in hepatic metabolism of drugs, affecting on individual drug efficacy and may cause adverse effects. Here, we generated a human induced pluripotent stem cell (hiPSC) line with pharmacologically important traits (CYP2C19*2/CYP3A5*3C), which are highly polymorphic in Asian from lymphoblastoid cells. This hiPSC line could be a valuable source for predicting individual drug responses in the drug screening process that uses hiPSC-derived somatic cells, including hepatocytes. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Clinical Drug-Drug Interactions Through Cytochrome P450 3A (CYP3A) for the Selective ALK Inhibitor Alectinib.

    PubMed

    Morcos, Peter N; Cleary, Yumi; Guerini, Elena; Dall, Georgina; Bogman, Katrijn; De Petris, Luigi; Viteri, Santiago; Bordogna, Walter; Yu, Li; Martin-Facklam, Meret; Phipps, Alex

    2017-05-01

    The efficacy and safety of alectinib, a central nervous system-active and selective anaplastic lymphoma kinase (ALK) inhibitor, has been demonstrated in patients with ALK-positive (ALK+) non-small cell lung cancer (NSCLC) progressing on crizotinib. Alectinib is mainly metabolized by cytochrome P450 3A (CYP3A) to a major similarly active metabolite, M4. Alectinib and M4 show evidence of weak time-dependent inhibition and small induction of CYP3A in vitro. We present results from 3 fixed-sequence studies evaluating drug-drug interactions for alectinib through CYP3A. Studies NP28990 and NP29042 enrolled 17 and 24 healthy subjects, respectively, and investigated potent CYP3A inhibition with posaconazole and potent CYP3A induction through rifampin, respectively, on the single oral dose pharmacokinetics (PK) of alectinib. A substudy of the global phase 2 NP28673 study enrolled 15 patients with ALK+ NSCLC to determine the effect of multiple doses of alectinib on the single oral dose PK of midazolam, a sensitive substrate of CYP3A. Potent CYP3A inhibition or induction resulted in only minor effects on the combined exposure of alectinib and M4. Multiple doses of alectinib did not influence midazolam exposure. These results suggest that dose adjustments may not be needed when alectinib is coadministered with CYP3A inhibitors or inducers or for coadministered CYP3A substrates. © 2016, The American College of Clinical Pharmacology.

  11. Allosteric activation of midazolam CYP3A5 hydroxylase activity by icotinib - Enhancement by ketoconazole.

    PubMed

    Zhuang, XiaoMei; Zhang, TianHong; Yue, SiJia; Wang, Juan; Luo, Huan; Zhang, YunXia; Li, Zheng; Che, JinJing; Yang, HaiYing; Li, Hua; Zhu, MingShe; Lu, Chuang

    2016-12-01

    Icotinib (ICO), a novel small molecule and a tyrosine kinase inhibitor, was developed and approved recently in China for non-small cell lung cancer. During screening for CYP inhibition potential in human liver microsomes (HLM), heterotropic activation toward CYP3A5 was revealed. Activation by icotinib was observed with CYP3A-mediated midazolam hydroxylase activity in HLM (∼40% over the baseline) or recombinant human CYP3A5 (rhCYP3A5) (∼70% over the baseline), but not in the other major CYPs including rhCYP3A4. When co-incubated with selective CYP3A4 inhibitor CYP3cide or monoclonal human CYP3A4 inhibitory antibody in HLM, the activation was extended to ∼60%, suggesting CYP3A5 might be the isozyme involved. Further, the relative activation was enhanced to ∼270% in rhCYP3A5 in the presence of ketoconazole. The activation was substrate and pathway dependent and observed only in the formation of 1'-OH-midazolam, and not 4-OH-midazolam, 6β-OH-testosterone, or oxidized nifedipine. The activation requires the presence of cytochrome b5 and it is only observed in the liver microsomes of dogs, monkeys, and humans, but not in rats and mice. Kinetic analyses of 1'-OH-midazolam formation showed that ICO increased the V max values in HLM and rhCYP3A5 with no significant changes in K m values. By adding CYP3cide with ICO to the incubation, the V max values increased 2-fold over the CYP3cide control. Addition of ketoconazole with ICO alone or ICO plus CYP3cide resulted in an increase in V max values and decrease in K m values compared to their controls. This phenomenon may be attributed to a new mechanism of CYP3A5 heterotropic activation, which warrants further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Human Liver Cytochrome P450 3A4 Ubiquitination

    PubMed Central

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J.; Liu, Yi; Burlingame, A. L.; Correia, Maria Almira

    2015-01-01

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate

  13. Pharmacogenomics of CYP3A: considerations for HIV treatment

    PubMed Central

    Lakhman, Sukhwinder S; Ma, Qing

    2009-01-01

    The understanding of the cytochrome P450 3A SNP in antiretroviral therapy is important, because it is highly inducible, extremely polymorphic and metabolizes many of the drugs that are key components of highly active antiretroviral therapy regimens. This enzyme is prolific and promiscuous towards drug and xenobiotic substrate selection and it is also unpredictable among individuals, having a 5- to 20-fold variability in its ability to contribute to drug clearance. The importance of human CYP3A pharmacogenetics is also gaining attention in other established areas of pharmacotherapy as it may contribute to the goal of predicting efficacy and/or toxicity, specifically with the discovery of null allele CYP3A4*20. This review summarizes the current understanding, implications of genetic variation in the CYP3A enzymes, the central role of CYP3A in linking human genetics, the pharmacokinetics and resulting pharmacodynamic responses to certain antiretroviral drugs, and their eventual place in applied clinical pharmacotherapy. PMID:19663676

  14. Racial Differences in CYP3A4 Genotype and Survival Among Men Treated on Radiation Therapy Oncology Group (RTOG) 9202: A Phase III Randomized Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Mack; Silvio, Michelle de; Rebbick, Timothy

    2007-09-01

    Purpose: Inherited genotypes may explain the inferior outcomes of African American (AA) men with prostate cancer. To understand how variation in CYP3A4 correlated with outcomes, a retrospective examination of the CYP3A4*1B genotype was performed on men treated with Radiation Therapy Oncology Group (RTOG) 92-02. Methods and Materials: From 1,514 cases, we evaluated 56 (28.4%) of 197 AA and 54 (4.3%) of 1,274 European American (EA) patients. All patients received goserelin and flutamide for 2 months before and during RT (STAD-RT) {+-} 24 months of goserelin (long-term androgen deprivation plus radiation [LTAD-RT]). Events studied included overall survival and biochemical progression usingmore » American Society for Therapeutic Radiology and Oncology consensus guidelines. Results: There were no differences in outcome in patients in with or without CYP3A4 data. There was an association between race and CYP3A4 polymorphisms with 75% of EAs having the Wild Type compared to only 25% of AA men (p <0.0001). There was no association between CYP3A4 classification or race and survival or progression. Conclusions: The samples analyzed support previously reported observations about the distribution of CYP3A4*1B genotype by race, but race was not associated with poorer outcome. However, patient numbers were limited, and selection bias cannot be completely ruled out.« less

  15. The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver.

    PubMed

    Coller, Janet K; Krebsfaenger, Niels; Klein, Kathrin; Endrizzi, Karin; Wolbold, Renzo; Lang, Thomas; Nüssler, Andreas; Neuhaus, Peter; Zanger, Ulrich M; Eichelbaum, Michel; Mürdter, Thomas E

    2002-08-01

    To investigate in a large panel of 50 human liver samples the contribution of CYP2C9, CYP2D6, and CYP3A4 to the overall formation of the potent antioestrogen Z-4-hydroxy-tamoxifen, and how various genotypes affect its formation from tamoxifen. The formation of Z-4-hydroxy-tamoxifen from 10 microm tamoxifen was studied in human liver microsomes (n=50), characterized for CYP2B6, CYP2C9, CYP2D6 and CYP3A4 expression, and CYP2B6, CYP2C9 and CYP2D6 genotype. The effect of chemical and monoclonal antibody inhibitors, and the formation in supersomes expressing recombinant CYP isoforms was also investigated. Z-4-hydroxy-tamoxifen was quantified using LC-MS analysis. Z-4-hydroxy-tamoxifen was formed by supersomes expressing CYP2B6, CYP2C9, CYP2C19 and CYP2D6, but not CYP3A4. In agreement with these data, the mean formation of Z-4-hydroxy-tamoxifen was inhibited 49% by sulphaphenazole (P=0.001), 38% by quinidine (P<0.05) and 13% by monoclonal antibody against CYP2B6 (MAB-2B6, P<0.05). Furthermore, Z-4-hydroxy-tamoxifen formation significantly correlated with both CYP2C9 expression (r(s)=0.256, P<0.05) and CYP2D6 expression (r(s)=0.309, P<0.05). Genotypes of CYP2D6, CYP2B6 and CYP2C9 had an effect on metabolite formation in such a way that samples with two nonfunctional CYP2D6, or two variant CYP2C9 or CYP2B6 alleles, showed lower enzyme activity compared with those with two functional or wild-type alleles, (5.0 vs 9.9 pmol mg(-1) protein min(-1), P=0.046, 5.1 vs 9.9 pmol mg(-1) protein min(-1), P=0.053, and 6.8 vs 9.4 pmol mg(-1) protein min(-1), P=0.054, respectively). CYP2D6 and CYP2C9 contribute on average 45 and 46%, respectively, to the overall formation of Z-4-hydroxy-tamoxifen. CYP2B6, CYP2C9 and CYP2D6 genotypes all affected Z-4-hydroxy-tamoxifen formation and can predict individual ability to catalyse this reaction.

  16. A Comprehensive in vitro and in silico Analysis of Antibiotics that Activate PXR and Induce CYP3A4 in Liver and Intestine

    PubMed Central

    Yasuda, Kazuto; Ranade, Aarati; Venkataramanan, Raman; Strom, Stephen; Chupka, Jonathan; Ekins, Sean; Schuetz, Erin; Bachmann, Kenneth

    2015-01-01

    We have investigated several in silico and in vitro methods in order to improve our ability to predict potential drug interactions of antibiotics. Our focus was to identify those antibiotics that activate PXR and induce CYP3A4 in human hepatocytes and intestinal cells. Human PXR activation was screened using reporter assays in HepG2 cells, kinetic measurements of PXR activation were made in DPX-2 cells, and induction of CYP3A4 expression and activity was verified by quantitative PCR, immunoblotting and testosterone 6β-hydroxylation in primary human hepatocytes and LS180 cells. We found that in HepG2 cells CYP3A4 transcription was activated strongly (>10-fold) by rifampin and troleandomycin; moderately (> 7-fold) by dicloxacillin, tetracycline, clindamycin, griseofulvin and (> 4-fold) by erythromycin; weakly (>2.4-fold) by nafcillin, cefaclor and sulfisoxazole; and (>2-fold) by cefadroxil and penicillin V. Similar though not identical results were obtained in DPX-2 cells. CYP3A4 mRNA and protein expression were induced by these antibiotics to differing extents in both liver and intestinal cells. CYP3A4 activity was significantly increased by rifampin (9.7-fold), nafcillin and dicloxacillin (5.9-fold), and weakly induced (2-fold) by tetracycline, sufisoxazole, troleandomycin and clindamycin. Multiple pharmacophore models and docking indicated a good fit for dicloxacillin and nafcillin in PXR. These results suggest that in vitro and in silico methods can help to prioritize and identify antibiotics that are most likely to reduce exposures of medications (such as oral contraceptive agents) which interact with enzymes and transporters regulated by PXR. In summary, nafcillin, dicloxacillin, cephradine, tetracycline, sulfixoxazole, erythromycin, clindamycin, and griseofulvin exhibit a clear propensity to induce CYP3A4 and warrant further clinical investigation. PMID:18505790

  17. Gene-Environment Interaction in Parkinson's Disease: Coffee, ADORA2A, and CYP1A2.

    PubMed

    Chuang, Yu-Hsuan; Lill, Christina M; Lee, Pei-Chen; Hansen, Johnni; Lassen, Christina F; Bertram, Lars; Greene, Naomi; Sinsheimer, Janet S; Ritz, Beate

    2016-01-01

    Drinking caffeinated coffee has been reported to provide protection against Parkinson's disease (PD). Caffeine is an adenosine A2A receptor (encoded by the gene ADORA2A) antagonist that increases dopaminergic neurotransmission and Cytochrome P450 1A2 (gene: CYP1A2) metabolizes caffeine; thus, gene polymorphisms in ADORA2A and CYP1A2 may influence the effect coffee consumption has on PD risk. In a population-based case-control study (PASIDA) in Denmark (1,556 PD patients and 1,606 birth year- and gender-matched controls), we assessed interactions between lifetime coffee consumption and 3 polymorphisms in ADORA2A and CYP1A2 for all subjects, and incident and prevalent PD cases separately using logistic regression models. We also conducted a meta-analysis combining our results with those from previous studies. We estimated statistically significant interactions for ADORA2A rs5760423 and heavy vs. light coffee consumption in incident (OR interaction = 0.66 [95% CI 0.46-0.94], p = 0.02) but not prevalent PD. We did not observe interactions for CYP1A2 rs762551 and rs2472304 in incident or prevalent PD. In meta-analyses, PD associations with daily coffee consumption were strongest among carriers of variant alleles in both ADORA2A and CYP1A2. We corroborated results from a previous report that described interactions between ADORA2A and CYP1A2 polymorphisms and coffee consumption. Our results also suggest that survivor bias may affect results of studies that enroll prevalent PD cases. © 2017 S. Karger AG, Basel.

  18. The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis.

    PubMed

    Nomura, Takahito; Kushiro, Tetsuo; Yokota, Takao; Kamiya, Yuji; Bishop, Gerard J; Yamaguchi, Shinjiro

    2005-05-06

    Brassinosteroids are steroidal hormones essential for the growth and development of plants. Brassinolide, the most biologically active brassinosteroid, has a seven-membered lactone ring that is formed by a Baeyer-Villiger oxidation of its immediate precursor castasterone. Despite its potential key role in controlling plant development, brassinolide synthase has not been identified. Previous work has shown that the formation of castasterone from 6-deoxocastasterone is catalyzed by members of the CYP85A family of cytochrome P-450 monooxygenases. A null mutation in the tomato Dwarf (CYP85A1) gene, extreme dwarf (d(x)), causes severe dwarfism due to brassinosteroid deficiency, but the d(x) mutant still produces fruits. Here, we show that d(x) fruits contain brassinolide at a higher level than wild-type fruits and that a new CYP85A gene, CYP85A3, is preferentially expressed in tomato fruits. Tomato CYP85A3 catalyzed the Baeyer-Villiger oxidation to produce brassinolide from castasterone in yeast, in addition to the conversion of 6-deoxocastasterone to castasterone. We also show that Arabidopsis CYP85A2, which was initially characterized as castasterone synthase, also has brassinolide synthase activity. Exogenous application of castasterone and brassinolide to the Arabidopsis cyp85a1/cyp85a2 double mutant suggests that castasterone can function as an active brassinosteroid but that its conversion into brassinolide is necessary for normal vegetative development in Arabidopsis. We postulate that castasterone is the major active brassinosteroid during vegetative growth in tomato, whereas brassinolide may play an organ-specific role in fruit development in this species.

  19. Cross-linking mass spectrometry and mutagenesis confirm the functional importance of surface interactions between CYP3A4 and holo/apo cytochrome b(5).

    PubMed

    Zhao, Chunsheng; Gao, Qiuxia; Roberts, Arthur G; Shaffer, Scott A; Doneanu, Catalin E; Xue, Song; Goodlett, David R; Nelson, Sidney D; Atkins, William M

    2012-11-27

    Cytochrome b(5) (cyt b(5)) is one of the key components in the microsomal cytochrome P450 monooxygenase system. Consensus has not been reached about the underlying mechanism of cyt b(5) modulation of CYP catalysis. Both cyt b(5) and apo b(5) are reported to stimulate the activity of several P450 isoforms. In this study, the surface interactions of both holo and apo b(5) with CYP3A4 were investigated and compared for the first time. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions between the protein surfaces. Subsequently, the models of interaction of holo/apo b(5) with CYP3A4 were built using the identified interacting sites as constraints. Both cyt b(5) and apo b(5) were predicted to bind to the same groove on CYP3A4 with close contacts to the B-B' loop of CYP3A4, a substrate recognition site. Mutagenesis studies further confirmed that the interacting sites on CYP3A4 (Lys96, Lys127, and Lys421) are functionally important. Mutation of these residues reduced or abolished cyt b(5) binding affinity. The critical role of Arg446 on CYP3A4 in binding to cyt b(5) and/or cytochrome P450 reductase was also discovered. The results indicated that electrostatic interactions on the interface of the two proteins are functionally important. The results indicate that apo b(5) can dock with CYP3A4 in a manner analogous to that of holo b(5), so electron transfer from cyt b(5) is not required for its effects.

  20. Foetal and adult human CYP3A isoforms in the bioactivation of organophosphorothionate insecticides.

    PubMed

    Buratti, Franca M; Leoni, Claudia; Testai, Emanuela

    2006-12-15

    In humans organophosphorothionate pesticides (OPT) prenatal exposure has been demonstrated. Since OPT-induced neurodevelopmental effects may be due to in situ bioactivation by foetal enzymes, the catalytic activity of the foetal CYP3A7 toward chlorpyrifos (CPF), parathion (PAR), malathion (MAL) and fenthion (FEN) has been assessed by using recombinant enzymes. A comparison with the adult isoforms CYP3A4 and CYP3A5 has been also carried out. CYP3A7 was able to produce significant levels of oxon or sulfoxide from the four OPTs in the range of tested concentrations (0.05-200 microM). When the efficiencies of CYP3A isoforms were compared, the ranking, expressed as CLi values, were: CPF=3A4>3A5>3A7; PAR=3A4>3A7>3A5; MAL=3A4>3A7>3A5; FEN (sulfoxide formation)=3A4>3A5>3A7. The CYP3A5 efficiency appeared to be more dependent on the single insecticide than its related isozyme CYP3A4. Our results indicate that the levels of toxic metabolite formed in situ by CYP3A7 from CPF, MAL and PAR but not from FEN have the chance to inhibit acetylcholinesterase, following prenatal exposure to OPTs. However, due to the smaller weight of foetal liver, the contribution to total OPT biotransformation is relatively low. On the other hand, our results clearly indicate that at low CPF concentrations, the formation of the non-toxic metabolites is highly favoured in the foetus.

  1. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition.

    PubMed

    Igawa, Hideyuki; Takahashi, Masashi; Shirasaki, Mikio; Kakegawa, Keiko; Kina, Asato; Ikoma, Minoru; Aida, Jumpei; Yasuma, Tsuneo; Okuda, Shoki; Kawata, Yayoi; Noguchi, Toshihiro; Yamamoto, Syunsuke; Fujioka, Yasushi; Kundu, Mrinalkanti; Khamrai, Uttam; Nakayama, Masaharu; Nagisa, Yasutaka; Kasai, Shizuo; Maekawa, Tsuyoshi

    2016-06-01

    Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis.

    PubMed

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-11-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  3. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Dae-Sik; Shin, Kyung-Hoon; Lee, Yong Sung; Leung, Kenneth Mei-Yee; Lee, Su-Jae; Lee, Jae-Seong

    2014-07-01

    In this study, we investigated the effects of the water-accommodated fraction (WAF) of crude oil on the development and reproduction of the intertidal copepod Tigriopus japonicus through life-cycle experiments. Furthermore, we investigated the mechanisms underlying the toxic effects of WAF on this benthic organism by studying expression patterns of cytochrome P450 (CYP) genes. Development of T. japonicus was delayed and molting was interrupted in response to WAF exposure. Hatching rate was also significantly reduced in response to WAF exposure. Activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were increased by WAF exposure in a concentration-dependent manner. These results indicated that WAF exposure resulted in oxidative stress, which in turn was associated with dysfunctional development and reproduction. To evaluate the involvement of cytochrome P450 (CYP) genes, we cloned the entire repertoire of CYP genes in T. japonicus (n=52) and found that the CYP genes belonged to five different clans (i.e., Clans 2, 3, 4, mitochondrial, and 20). We then examined expression patterns of these 52 CYP genes in response to WAF exposure. Three TJ-CYP genes (CYP3024A2, CYP3024A3, and CYP3027C2) belonging to CYP clan 3 were significantly induced by WAF exposure in a time- and concentration-dependent manner. We identified aryl hydrocarbon responsive elements (AhRE), xenobiotic responsive elements (XREs), and metal response elements (MRE) in the promoter regions of these three CYP genes, suggesting that these genes are involved in detoxification of toxicants. Overall, our results indicate that WAF can trigger oxidative stress and thus induce dysfunctional development and reproduction in the copepod T. japonicus. Furthermore, we identified three TJ-CYP genes that represent potential biomarkers of oil pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Salman, Fadheela; Plant, Nick, E-mail: N.Plant@Surrey.ac.uk

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation ofmore » PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.« less

  5. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus.

    PubMed

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-03-01

    To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P<0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48h LD10 and LD50 were 1.35 and 1.84kJ/m 2 , and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5kJ/m 2 ) induced developmental delays, and higher doses (6-18kJ/m 2 ) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12kJ/m 2 ) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses

    PubMed Central

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  7. Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smetanina, Mariya A., E-mail: maria.smetanina@gmail.com; Laboratory of Gene Expression Control, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, prospekt Lavrentyeva 10, Novosibirsk 630090; Group of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, prospekt Lavrentyeva 8, Novosibirsk 630090

    2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepaticmore » mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car{sup -/-}) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car{sup -/-} livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor. - Highlights: > The azo dye and mouse carcinogen OAT is a very effective mCAR activator. > OAT increases mCAR transactivation in a dose-dependent manner. > OAT CAR-dependently increases the expression of a specific subset of CAR target genes. > OAT induces an unexpectedly deferred, but CAR-dependent hepatocyte proliferation.« less

  8. CYP3A isoforms in Ewing's sarcoma tumours: an immunohistochemical study with clinical correlation.

    PubMed

    Zia, Hamid; Murray, Graeme I; Vyhlidal, Carrie A; Leeder, J Steven; Anwar, Ahmed E; Bui, Marilyn M; Ahmed, Atif A

    2015-04-01

    Ewing's sarcoma is an aggressive malignancy of bone and soft tissue with high incidence of metastasis and resistance to chemotherapy. Cytochrome P450 (CYP) monooxygenases are a family of enzymes that are involved in the metabolism of exogenous and endogenous compounds, including anti-cancer drugs, and have been implicated in the aggressive behaviour of various malignancies. Tumour samples and clinical information including age, sex, tumour site, tumour size, clinical stage and survival were collected from 36 adult and paediatric patients with Ewing's sarcoma family tumours. Tissue microarrays slides were processed for immunohistochemical labelling for CYP3A4, CYP3A5 and CYP3A7 using liver sections as positive control. The intensity of staining was scored as negative, low or high expression and was analysed statistically for any association with patients' clinical information. Four cases were later excluded due to inadequate viable tissue. CYP3A4 staining was present in 26 (81%) cases with high expression noted in 13 (40%) of 32 cases. High expression was significantly associated with distant metastases (P < 0.05). CYP3A5 and CYP3A7 were expressed in 5 and 13 cases respectively (15.6%, 40.6%). There was no association between the expression of CYP3A isoforms and age, sex, tumour size, or location (pelvic or extra-pelvic). None of the biomarkers showed any correlation with overall or disease-free survival. In conclusion, expression of CYP3A isoforms is noted in Ewing's sarcoma tumours and high CYP3A4 expression may be associated with metastasis. Additional studies are needed to further investigate the role of CYP3A4 in the prognosis of these tumours. © 2015 The Authors. International Journal of Experimental Pathology © 2015 International Journal of Experimental Pathology.

  9. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations.

    PubMed

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Zumbach, Serge; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2013-04-01

    The frequently prescribed antidementia drug galantamine is extensively metabolized by the enzymes cytochrome P450 (CYP) 2D6 and CYP3A and is a substrate of the P-glycoprotein. We aimed to study the relationship between genetic variants influencing the activity of these enzymes and transporters with galantamine steady state plasma concentrations. In this naturalistic cross-sectional study, 27 older patients treated with galantamine were included. The patients were genotyped for common polymorphisms in CYP2D6, CYP3A4/5, POR, and ABCB1, and galantamine steady state plasma concentrations were determined. The CYP2D6 genotype seemed to be an important determinant of galantamine pharmacokinetics, with CYP2D6 poor metabolizers presenting 45% and 61% higher dose-adjusted galantamine plasma concentrations than heterozygous and homozygous CYP2D6 extensive metabolizers (median 2.9 versus 2.0 ng/mL · mg, P = 0.025, and 1.8 ng/mL · mg, P = 0.004), respectively. The CYP2D6 genotype significantly influenced galantamine plasma concentrations. The influence of CYP2D6 polymorphisms on the treatment efficacy and tolerability should be further investigated.

  10. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects.

    PubMed

    Li, Yannan; Ning, Jing; Wang, Yan; Wang, Chao; Sun, Chengpeng; Huo, Xiaokui; Yu, Zhenlong; Feng, Lei; Zhang, Baojing; Tian, Xiangge; Ma, Xiaochi

    2018-05-09

    The high risk of herb-drug interactions (HDIs) mediated by the herbal medicines and dietary supplements which containing abundant flavonoids had become more and more frequent in our daily life. In our study, the inhibition activities of 44 different structures of flavonoids toward human CYPs were systemically evaluated for the first time. According to our results, a remarkable structure-dependent inhibition behavior toward CYP3A4 was observed in vitro. Some flavonoids such as licoflavone (12) and irilone (30) exhibited the selective inhibition toward CYP3A4 rather than other major human CYPs. To illustrate the interaction mechanism, the inhibition kinetics of various compounds was further performed. Sophoranone (1), apigenin (10), baicalein (11), 5,4'-dihydroxy-3,6,7,8,3'-pentamethoxyflavone (15), myricetin (23) and kushenol K (38) remarkably inhibited the CYP3A4-catalyzed bufalin 5'-hydroxylation reaction, with K i values of 2.17 ± 0.29, 6.15 ± 0.39, 9.18 ± 3.40, 2.30 ± 0.36, 5.00 ± 2.77 and 1.35 ± 0.25 μM, respectively. Importantly, compounds 1, 11, 15, 23 and 38 could significantly inhibit the metabolism of some clinical drugs in vitro, and these drug-drug interactions (DDIs) of myricetin (23) or kushenol K (38) with clinical drug diazepam were further verified in human primary hepatocytes, respectively. Finally, a quantitative structure-activity relationship (QSAR) of flavonoids with their inhibitory effects toward CYP3A4 was established using computational methods. Our findings illustrated the high risk of herb-drug interactions (HDIs) caused by flavonoids and revealed the vital structures requirement of natural flavonoids for the HDIs with clinical drugs eliminated by CYP3A4. Our research provided the useful guidance to safely and rationally use herbal medicines and dietary supplements containing rich natural flavonoids components. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Association Between the Lower Extremity Deep Venous Thrombosis, the Warfarin Maintenance Dose, and CYP2C9*3, CYP2D6*10, and CYP3A5*3 Genetic Polymorphisms: A Case-Control Study.

    PubMed

    Ju, Shang; Gao, Yu; Cao, Xin; Zhang, Xiao-Fu; Yan, Cheng-Cheng; Liu, Feng-Tong

    2017-09-01

    This study explored the association between the CYP2C9*3/CYP2D6*10/CYP3A5*3 genetic polymorphisms with lower extremity deep venous thrombosis (LEDVT) and the warfarin maintenance dose. Five hundred thirty-six patients who were pathologically diagnosed with LEDVT after surgery were included in the LEDVT group. At the same time, 540 patients without LEDVT who underwent surgery were recruited as the control group. Patients were given warfarin at an initial dose of 2.5-3.0 mg. Blood samples were collected to detect the initial and stable international normalized ratio (INR) values. The warfarin maintenance dose was obtained if the INR remained within a range of 2.0-3.0 for 3 consecutive days. The genotype distribution and haplotype analysis of the CYP2C9*3/CYP2D6*10/CYP3A5*3 alleles were analyzed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) testing and SHEsis software, respectively. Logistic regression analysis was used to analyze the risk and protective factors for LEDVT. The A/G genotypes, G/G genotypes, and G allele of CYP3A5*3 in the LEDVT group were observed with increased frequency compared with the control group. The LEDVT group displayed a higher ACG haplotype frequency, and lower ACA and ATA haplotype frequencies than the control group. Age, diabetes, low-density lipoprotein, CYP3A5*3 and the ACG haplotype were independent risk factors for LEDVT. High-density lipoprotein and the ACA haplotype were independent protective factors for LEDVT. The genotype distributions of the CYP2C9*3, CYP2D6*10, and CYP3A5*3 genetic polymorphisms were associated with the warfarin maintenance dose. The CYP3A5*3 genetic polymorphism may be an important risk factor for LEDVT. Moreover, CYP2C9*3, CYP2D6*10, and CYP3A5*3 are associated with the warfarin maintenance dose.

  12. Novel drug metabolism indices for pharmacogenetic functional status based on combinatory genotyping of CYP2C9, CYP2C19 and CYP2D6 genes

    PubMed Central

    Villagra, David; Goethe, John; Schwartz, Harold I; Szarek, Bonnie; Kocherla, Mohan; Gorowski, Krystyna; Windemuth, Andreas; Ruaño, Gualberto

    2011-01-01

    Aims We aim to demonstrate clinical relevance and utility of four novel drug-metabolism indices derived from a combinatory (multigene) approach to CYP2C9, CYP2C19 and CYP2D6 allele scoring. Each index considers all three genes as complementary components of a liver enzyme drug metabolism system and uniquely benchmarks innate hepatic drug metabolism reserve or alteration through CYP450 combinatory genotype scores. Methods A total of 1199 psychiatric referrals were genotyped for polymorphisms in the CYP2C9, CYP2C19 and CYP2D6 gene loci and were scored on each of the four indices. The data were used to create distributions and rankings of innate drug metabolism capacity to which individuals can be compared. Drug-specific indices are a combination of the drug metabolism indices with substrate-specific coefficients. Results The combinatory drug metabolism indices proved useful in positioning individuals relative to a population with regard to innate drug metabolism capacity prior to pharmacotherapy. Drug-specific indices generate pharmacogenetic guidance of immediate clinical relevance, and can be further modified to incorporate covariates in particular clinical cases. Conclusions We believe that this combinatory approach represents an improvement over the current gene-by-gene reporting by providing greater scope while still allowing for the resolution of a single-gene index when needed. This method will result in novel clinical and research applications, facilitating the translation from pharmacogenomics to personalized medicine, particularly in psychiatry where many drugs are metabolized or activated by multiple CYP450 isoenzymes. PMID:21861665

  13. Variants in CYP17 and CYP19 cytochrome P450 genes are associated with onset of Alzheimer's disease in women with down syndrome.

    PubMed

    Chace, Constance; Pang, Deborah; Weng, Catherine; Temkin, Alexis; Lax, Simon; Silverman, Wayne; Zigman, Warren; Ferin, Michel; Lee, Joseph H; Tycko, Benjamin; Schupf, Nicole

    2012-01-01

    CYP17 and CYP19 are involved in the peripheral synthesis of estrogens, and polymorphisms in CYP17 and CYP19 have been associated with increased risk of estrogen-related disorders. Women with Down syndrome (DS) have early onset and high risk for Alzheimer's disease (AD). We conducted a prospective community-based cohort study to examine the relationship between SNPs in CYP17 and CYP19 and cumulative incidence of AD, hormone levels and sex hormone binding globulin in women with DS. Two hundred and thirty-five women with DS, 31 to 67 years of age and nondemented at initial examination, were assessed for cognitive and functional abilities, behavioral/psychiatric conditions, and health status at 14-20 month intervals over five assessment cycles. We genotyped these individuals for single-nucleotide polymorphisms (SNPs) in CYP17 and CYP19. Four SNPs in CYP17 were associated with a two and one half-fold increased risk of AD, independent of APOE genotype. Four SNPs in CYP19 were associated with a two-fold increased risk of AD, although three were significant only in those without an APOE ε4 allele. Further, carrying high risk alleles in both CYP17 and CYP19 was associated with an almost four-fold increased risk of AD (OR = 3.8, 95% CI, 1.6-9.5) and elevated sex hormone binding globulin in postmenopausal women. The main effect of the CYP17 and CYP19 variants was to decrease the age at onset. These findings suggest that genes contributing to estrogen bioavailability influence risk of AD in women with DS.

  14. Mutations in exons of the CYP17-II gene affect sex steroid concentration in male Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Ma, Ruiqin; He, Feng; Wen, Haishen; Li, Jifang; Shi, Bao; Shi, Dan; Liu, Miao; Mu, Weijie; Zhang, Yuanqing; Hu, Jian; Han, Weiguo; Zhang, Jianan; Wang, Qingqing; Yuan, Yuren; Liu, Qun

    2012-03-01

    As a specific gene of fish, cytochrome P450c17-II ( CYP17-II) gene plays a key role in the growth, development an reproduction level of fish. In this study, the single-stranded conformational polymorphism (SSCP) technique was used to characterize polymorphisms within the coding region of CYP17-II gene in a population of 75 male Japanese flounder ( Paralichthys olivaceus). Three single nucleotide polymorphisms (SNPs) were identified in CYP17-II gene of Japanese flounder. They were c.G594A (p.G188R), c.G939A and c.G1502A (p.G490D). SNP1 (c.G594A), located in exon 4 of CYP17-II gene, was significantly associated with gonadosomatic index (GSI). Individuals with genotype GG of SNP1 had significantly lower GSI ( P < 0.05) than those with genotype AA or AG. SNP2 (c.G939A) located at the CpG island of CYP17-II gene. The mutation changed the methylation of exon 6. Individuals with genotype AA of SNP2 had significantly lower serum testosterone (T) level and hepatosomatic index (HSI) compared to those with genotype GG. The results suggested that SNP2 could influence the reproductive endocrine of male Japanese flounder. However, the SNP3 (c.G1502A) located in exon 9 did not affect the four measured reproductive traits. This study showed that CYP17-II gene could be a potentially useful candidate gene for the research of genetic breeding and physiological aspects of Japanese flounder.

  15. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6.

    PubMed

    Bahar, Muh Akbar; Setiawan, Didik; Hak, Eelko; Wilffert, Bob

    2017-05-01

    Currently, most guidelines on drug-drug interaction (DDI) neither consider the potential effect of genetic polymorphism in the strength of the interaction nor do they account for the complex interaction caused by the combination of DDI and drug-gene interaction (DGI) where there are multiple biotransformation pathways, which is referred to as drug-drug-gene interaction (DDGI). In this systematic review, we report the impact of pharmacogenetics on DDI and DDGI in which three major drug-metabolizing enzymes - CYP2C9, CYP2C19 and CYP2D6 - are central. We observed that several DDI and DDGI are highly gene-dependent, leading to a different magnitude of interaction. Precision drug therapy should take pharmacogenetics into account when drug interactions in clinical practice are expected.

  16. Caffeine induces high expression of cyp-35A family genes and inhibits the early larval development in Caenorhabditis elegans.

    PubMed

    Min, Hyemin; Kawasaki, Ichiro; Gong, Joomi; Shim, Yhong-Hee

    2015-03-01

    Intake of caffeine during pregnancy can cause retardation of fetal development. Although the significant influence of caffeine on animal development is widely recognized, much remains unknown about its mode of action because of its pleiotropic effects on living organisms. In the present study, by using Caenorhabditis elegans as a model organism, the effects of caffeine on development were examined. Brood size, embryonic lethality, and percent larval development were investigated, and caffeine was found to inhibit the development of C. elegans at most of the stages in a dosage-dependent fashion. Upon treatment with 30 mM caffeine, the majority (86.1 ± 3.4%) of the L1 larvae were irreversibly arrested without further development. In contrast, many of the late-stage larvae survived and grew to adults when exposed to the same 30 mM caffeine. These results suggest that early-stage larvae are more susceptible to caffeine than later-stage larvae. To understand the metabolic responses to caffeine treatment, the levels of expression of cytochrome P450 (cyp) genes were examined with or without caffeine treatment using comparative micro-array, and it was found that the expression of 24 cyp genes was increased by more than 2-fold (p < 0.05). Among them, induction of the cyp-35A gene family was the most prominent. Interestingly, depletion of the cyp-35A family genes one-by-one or in combination through RNA interference resulted in partial rescue from early larval developmental arrest caused by caffeine treatment, suggesting that the high-level induction of cyp-35A family genes can be fatal to the development of early-stage larvae.

  17. Multiple night-time doses of valerian (Valeriana officinalis) had minimal effects on CYP3A4 activity and no effect on CYP2D6 activity in healthy volunteers.

    PubMed

    Donovan, Jennifer L; DeVane, C Lindsay; Chavin, Kenneth D; Wang, Jun-Sheng; Gibson, Bryan B; Gefroh, Holly A; Markowitz, John S

    2004-12-01

    Valerian (Valeriana officinalis) is a popular dietary supplement. The objective of this study was to assess the influence of a valerian extract on the activity of the drug-metabolizing enzymes cytochrome P450 2D6 (CYP2D6) and 3A4. Probe drugs dextromethorphan (30 mg; CYP2D6 activity) and alprazolam (2 mg; CYP3A4 activity) were administered orally to healthy volunteers (n = 12) at baseline and again after exposure to two 500-mg valerian tablets (1000 mg) nightly for 14 days. The valerian supplement contained a total valerenic acid content of 5.51 mg/tablet. Dextromethorphan to dextorphan metabolic ratios (DMRs) and alprazolam pharmacokinetics were determined at baseline and after valerian treatment. The DMR was 0.214 +/- 0.025 at baseline and 0.254 +/- 0.026 after valerian supplementation (p > 0.05). For alprazolam, the maximum concentration in plasma was significantly increased after treatment with valerian (25 +/- 7 ng/ml versus 31 +/- 8 ng/ml; p < 0.05). There were no significant differences in other pharmacokinetic parameters at baseline and after valerian exposure (all p values > or = 0.05; time to reach maximum concentration in plasma, 3.0 +/- 3.2 versus 3.1 +/- 2.1 h; area under the plasma concentration versus time curve, 471 +/- 183 versus 539 +/- 240 hx ng x ml(-1); half-life of elimination, 13.5 +/- 4.3 versus 12.2 +/- 5.6 h). Our results indicate that although a modest increase was observed in the alprazolam Cmax, typical doses of valerian are unlikely to produce clinically significant effects on the disposition of medications dependent on the CYP2D6 or CYP3A4 pathways of metabolism.

  18. Effect of 3,3',5-triiodothyronine and 3,5-diiodothyronine on progesterone production, cAMP synthesis, and mRNA expression of STAR, CYP11A1, and HSD3B genes in granulosa layer of chicken preovulatory follicles.

    PubMed

    Sechman, A; Pawlowska, K; Hrabia, A

    2011-10-01

    In vitro studies were performed to assess whether stimulatory effects of triiodothyronine (T3) on progesterone (P4) production in a granulosa layer (GL) of chicken preovulatory follicles are associated with 3',5'-cyclic adenosine monophosphate (cAMP) synthesis and mRNA expression of STAR protein, CYP11A1, and HSD3B. Effects of 3,5-diiodothyronine (3,5-T2) on steroidogenic function in these follicles were also investigated. The GL of F3 to F1 follicles was incubated in medium supplemented with T3 or 3,5-T2, LH, or forskolin (F), and a combination of each iodothyronine with LH or F. Levels of P4 and cAMP in culture media were determined by RIA. Expression of genes involved in P4 synthesis (ie, STAR protein, CYP11A1, and HSD3B) in the GL of F3 to F1 follicles incubated in medium with T3 or 3,5-T2 and their combination with LH was performed by real-time PCR. Triiodothyronine increased basal and LH- and F-stimulated P4 secretion by preovulatory follicles. The 3,5-T2 elevated P4 synthesis by F3, had no effect on F2 follicles, and diminished P4 production by the GL of F1 follicles. It had no effect on LH-stimulated P4 production; however, it augmented F-stimulated P4 production by F2 and F1 follicles. Although T3 did not affect basal and F-stimulated cAMP synthesis by the GL of preovulatory follicles, it increased LH-stimulated synthesis of this nucleotide. However, 3,5-T2 elevated F-stimulated cAMP synthesis in F3 and F2 follicles; it did not change basal and LH-stimulated cAMP production. Triiodothyronine decreased basal STAR and CYP11A1 mRNAs in F3 follicles, increased them in F1 follicles, and elevated HSD3B mRNA levels in F1 follicles. Triiodothyronine augmented LH-stimulated STAR, CYP11A1, and HSD3B mRNA levels in F2 and CYP11A1 in F1 follicles. However, T3 decreased LH-stimulated STAR and HSD3B mRNA levels in F1 follicles. The 3,5-T2 did not affect basal STAR and CYP11A1 mRNA expression in all investigated follicles; however, it decreased LH-stimulated STAR

  19. Bisphenol A downregulates CYP19 transcription in JEG-3 cells.

    PubMed

    Huang, Hui; Leung, Lai K

    2009-09-28

    Bisphenol A is an industrial contaminant and is considered to be an endocrine disruptor; its estrogenic property has been reported in many studies. Because of its ubiquitous existence in our environment, bisphenol A has drawn much discussion on its safety issues. Estrogen is important in the maintenance of human pregnancy, and the placenta is the major site of synthesis during this period of time. Aromatase or CYP19 catalyses the conversion of estrogen from its precursor, and is highly expressed in placental cells. In the present study, we examined the ability of the toxicant in suppressing the transcription of CYP19 in JEG-3 cells. Cells treated with bisphenol A displayed a reduced aromatase activity. Real-time PCR analysis indicated that 5muM of the compound significantly reduced the mRNA expression in these cells. As the transcriptional activity of CYP19 gene is controlled by the proximal promoter region of exon I.1 in placental cells, the promoter activity of this gene fragment and exon-I.1-spliced mRNA abundance were also evaluated. Both results indicated that bisphenol A repressed the transcriptional control of promoter I.1. The present study showed that bisphenol A potentially reduced estrogen synthesis by downregulating CYP of placental cells. This information could be useful for evaluating the exposure limit of bisphenol A.

  20. Evaluation of a Novel Renewable Hepatic Cell Model for Prediction of Clinical CYP3A4 Induction Using a Correlation-Based Relative Induction Score Approach.

    PubMed

    Zuo, Rongjun; Li, Feng; Parikh, Sweta; Cao, Li; Cooper, Kirsten L; Hong, Yulong; Liu, Jin; Faris, Ronald A; Li, Daochuan; Wang, Hongbing

    2017-02-01

    Metabolism enzyme induction-mediated drug-drug interactions need to be carefully characterized in vitro for drug candidates to predict in vivo safety risk and therapeutic efficiency. Currently, both the Food and Drug Administration and European Medicines Agency recommend using primary human hepatocytes as the gold standard in vitro test system for studying the induction potential of candidate drugs on cytochrome P450 (CYP), CYP3A4, CYP1A2, and CYP2B6. However, primary human hepatocytes are known to bear inherent limitations such as limited supply and large lot-to-lot variations, which result in an experimental burden to qualify new lots. To overcome these shortcomings, a renewable source of human hepatocytes (i.e., Corning HepatoCells) was developed from primary human hepatocytes and was evaluated for in vitro CYP3A4 induction using methods well established by the pharmaceutical industry. HepatoCells have shown mature hepatocyte-like morphology and demonstrated primary hepatocyte-like response to prototypical inducers of all three CYP enzymes with excellent consistency. Importantly, HepatoCells retain a phenobarbital-responsive nuclear translocation of human constitutive androstane receptor from the cytoplasm, characteristic to primary hepatocytes. To validate HepatoCells as a useful tool to predict potential clinical relevant CYP3A4 induction, we tested three different lots of HepatoCells with a group of clinical strong, moderate/weak CYP3A4 inducers, and noninducers. A relative induction score calibration curve-based approach was used for prediction. HepatoCells showed accurate prediction comparable to primary human hepatocytes. Together, these results demonstrate that Corning HepatoCells is a reliable in vitro model for drug-drug interaction studies during the early phase of drug testing. Copyright © 2017 by The Author(s).

  1. Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes.

    PubMed

    Huarte-Bonnet, Carla; Kumar, Suresh; Saparrat, Mario C N; Girotti, Juan R; Santana, Marianela; Hallsworth, John E; Pedrini, Nicolás

    2018-03-01

    Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.

  2. Genetic epidemiology of pharmacogenetic variations in CYP2C9, CYP4F2 and VKORC1 genes associated with warfarin dosage in the Indian population.

    PubMed

    Giri, Anil K; Khan, Nazir M; Grover, Sandeep; Kaur, Ismeet; Basu, Analabha; Tandon, Nikhil; Scaria, Vinod; Kukreti, Ritushree; Brahmachari, Samir K; Bharadwaj, Dwaipayan

    2014-07-01

    Warfarin, a widely used anticoagulant, exhibits large interindividual variability in dose requirements. CYP2C9 and VKORC1 polymorphisms in various ethnic groups have been extensively studied as genetic markers associated with variable drug response. However, allele frequencies of these variants have not been assessed in major ethnic groups in the Indian population. To study the functional variants known to affect warfarin dosing, we reanalyzed genotype microarray datasets generated as a part of genome-wide association studies as well as data from the Indian Genome Variation database. We examined data from 2680 individuals across 24 ethnically diverse Indian subpopulations. Allelic distribution of VKORC1 (-1639G>A) showed a greater degree of variation across Indian subpopulations, with frequencies as low as 6.5% in an out-group subpopulation to >70% in Tibeto-Burmans. Risk allele frequency of CYP4F2*3 (V433M) was higher in north Indians (0.30-0.44), as compared with other world populations, such as African-American (0.12), Caucasian (0.34) and Hispanic (0.23). TheVKORC1 variant (-1639A) was shown to be prevalent amongst Tibeto-Burmans, whereas CYP2C9 (R144C, I359L) and CYP4F2 (V433M) variants were observed in considerable variability amongst Indo-Europeans. The frequency of CYP2C9*3 (I359L) in north Indians was found to be higher than in most Asian populations. Furthermore, geographical distribution patterns of these variants in north India showed an increased trend of warfarin extensive metabolizers from the Himalayan to Gangetic region. Combined allele frequency (CYP2C9*3 and CYP4F2*3) data suggest that poor metabolizers varied in the range of 0.38-1.85% in Indo-Europeans. Based on genotypic distribution, the majority of the Indian subpopulation might require higher doses for stable anticoagulation, whereas careful assessment is required for Tibeto-Burmans who are expected to have intermediate dose requirement. This is the largest global genetic epidemiological

  3. Distribution of CYP2D6 and CYP2C19 Polymorphisms Associated with Poor Metabolizer Phenotype in Five Amerindian Groups and Western Mestizos from Mexico

    PubMed Central

    Salazar-Flores, Joel; Torres-Reyes, Luis A.; Martínez-Cortés, Gabriela; Rubi-Castellanos, Rodrigo; Sosa-Macías, Martha; Muñoz-Valle, José F.; González-González, César; Ramírez, Angélica; Román, Raquel; Méndez, José L.; Barrera, Andrés; Torres, Alfredo; Medina, Rafael

    2012-01-01

    Background: The distribution of polymorphisms in the CYP2D6 and CYP2C19 genes allows inferring the potential risk for specific adverse drug reactions and lack of therapeutic effects in humans. This variability shows differences among human populations. The aim of this study was to analyze single-nucleotide polymorphisms related to a poor metabolizer (PM) phenotype in nonpreviously studied Amerindian groups and Mestizos (general admixed population) from Mexico. Methods: We detected by SNaPshot® different polymorphisms located in CYP2D6 (*3, *4, *6, *7, and *8) and CYP2C19 (*2, *3, *4 and *5) in western Mestizos (n=145) and five Amerindian groups from Mexico: Tarahumaras from the North (n=88); Purépechas from the Center (n=101); and Tojolabales (n=68), Tzotziles (n=88), and Tzeltales (n=20) from the Southeast. Genotypes were observed by capillary electrophoresis. The genetic relationships among these populations were estimated based on these genes. Results and Discussion: The wild-type allele (*1) of both genes was predominant in the Mexican populations studied. The most widely observed alleles were CYP2C19*2 (range, 0%–31%) and CYP2D6*4 (range, 1.2%–7.3%), whereas CYP2D6*3 was exclusively detected in Mestizos. Conversely, CYP2C19*4 and *5, as well as CYP2D6*3, *6, *7, and *8, were not observed in the majority of the Mexican populations. The Tarahumaras presented a high frequency of the allele CYP2C19*2 (31%) and of homozygotes *2/*2 (10.7%), which represent a high frequency of potentially PM phenotypes in this Amerindian group. The genetic distances showed high differentiation of Tarahumaras (principally for CYP2C19 gene). In general, a relative proximity was observed between most of the Amerindian, Mexican-Mestizo, and Latin-American populations. Conclusion: In general, the wild-type allele (*1) predominates in Mexican populations, outlining a relatively homogeneous distribution for CYP2C19 and CYP2D6. The exception is the Tarahumara group that displays a

  4. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    PubMed

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Effect of botanical immunomodulators on human CYP3A4 inhibition: implications for concurrent use as adjuvants in cancer therapy.

    PubMed

    Patil, Dada; Gautam, Manish; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan

    2014-03-01

    Many botanical immunomodulators are used as adjuvants along with cancer chemotherapy. However, information on the impact of concurrent administration of such botanicals on pharmacokinetics of chemotherapy agents is inadequate. This study investigates inhibitory activities of 3 popular botanical adjuvants: ASPARAGUS RACEMOSU: (root aqueous extract; ARE), WITHANIA SOMNIFER: (root aqueous extract; WSE), and TINOSPORA CORDIFOLI: (stem aqueous extract, TCE) on human CYP3A4 isoenzyme, responsible for metabolism of several chemotherapy agents. . Testosterone 6-β hydroxylation was monitored using high-performance liquid chromatography as an indicator of CYP3A4 catalytic activities. Ketoconazole (positive control) and extracts were studied at their in vivo-relevant concentrations. TCE showed mild inhibition while no significant inhibitory activities were observed in WSE and ARE. TCE was further fractionated to obtain polar and nonpolar fractions. The nonpolar fraction showed significant CYP3A4 inhibition with IC50 13.06 ± 1.38 µg/mL. Major constituents of nonpolar fraction were identified using HPLC-DAD-MS profiling as berberine, jatrorrhizine, and palmatine, which showed IC50 values as 6.25 ± 0.30, 15.18 ± 1.59, and 15.53 ± 1.89 µg/mL, respectively. Our findings suggest that constituents of TCE extract especially protoberberine alkaloids have the potential to interact with cancer chemotherapy agents that are metabolized by CYP3A4 in vivo.

  6. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activitymore » toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p < 0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37 {+-} 2.15 vs. 6.24 {+-} 1.37 tail% DNA, p < 0.001). Further, the workers with CYP2D6*3 PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p < 0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. -- Highlights: Black-Right-Pointing-Pointer Role of CYP1A1, CYP3A5, CYP2C, CYP2D6 and PON1 genotypes on DNA damage. Black-Right-Pointing-Pointer Workers exposed to some OPs demonstrated increased DNA damage. Black-Right-Pointing-Pointer CYP2D6 *3 PM and PON1 (Q192R and L55M) genotypes are associated with DNA damage. Black-Right-Pointing-Pointer Concomitant presence of certain CYP2D6 and PON1 genotypes can increase DNA damage.« less

  7. Exploration of enzyme-ligand interactions in CYP2D6 & 3A4 homology models and crystal structures using a novel computational approach.

    PubMed

    Kjellander, Britta; Masimirembwa, Collen M; Zamora, Ismael

    2007-01-01

    New crystal structures of human CYP2D6 and CYP3A4 have recently been reported, and in this study, we wanted to compare them with previously used homology models with respect to predictions of site of metabolism and ligand-enzyme interactions. The data set consisted of a family of synthetic opioid analgesics with the aim to cover both CYP2D6 and CYP3A4, as most of these compounds are metabolized by both isoforms. The program MetaSite was used for the site of metabolism predictions, and the results were validated by experimental assessment of the major metabolites formed with recombinant CYP450s. This was made on a selection of 14 compounds in the data set. The prediction rates for MetaSite were 79-100% except for the CYP3A4 homology model, which picked the correct site in half of the cases. Despite differences in orientation of some important amino acids in the active sites, the MetaSite-predicted sites were the same for the different structures, with the exception of the CYP3A4 homology model. Further exploration of interactions with ligands was done by docking substrates/inhibitors in the different structures with the docking program GLUE. To address the challenge in interpreting patterns of enzyme-ligand interactions for the large number of different docking poses, a new computational tool to handle the results from the dockings was developed, in which the output highlights the relative importance of amino acids in CYP450-substrate/inhibitor interactions. The method is based on calculations of the interaction energies for each pose with the surrounding amino acids. For the CYP3A4 structures, this method was compared with consensus principal component analysis (CPCA), a commonly used method for structural comparison to evaluate the usefulness of the new method. The results from the two methods were comparable with each other, and the highlighted amino acids resemble those that were identified to have a different orientation in the compared structures. The new

  8. Future Trends in the Pharmacogenomics of Brain Disorders and Dementia: Influence of APOE and CYP2D6 Variants

    PubMed Central

    Cacabelos, Ramón; Fernández-Novoa, Lucía; Martínez-Bouza, Rocío; McKay, Adam; Carril, Juan C.; Lombardi, Valter; Corzo, Lola; Carrera, Iván; Tellado, Iván; Nebril, Laura; Alcaraz, Margarita; Rodríguez, Susana; Casas, Ángela; Couceiro, Verónica; Álvarez, Antón

    2010-01-01

    About 80% of functional genes in the human genome are expressed in the brain and over 1,200 different genes have been associated with the pathogenesis of CNS disorders and dementia. Pharmacogenetic studies of psychotropic drug response have focused on determining the relationship between variations in specific candidate genes and the positive and adverse effects of drug treatment. Approximately, 18% of neuroleptics are substrates of CYP1A2 enzymes, 40% of CYP2D6, and 23% of CYP3A4; 24% of antidepressants are substrates of CYP1A2 enzymes, 5% of CYP2B6, 38% of CYP2C19, 85% of CYP2D6, and 38% of CYP3A4; 7% of benzodiazepines are substrates of CYP2C19 enzymes, 20% of CYP2D6, and 95% of CYP3A4. 10-20% of Western populations are defective in genes of the CYP superfamily; and the pharmacogenomic response of psychotropic drugs also depends on genetic variants associated with dementia. Prospective studies with anti-dementia drugs or with multifactorial strategies have revealed that the therapeutic response to conventional drugs in Alzheimer’s disease is genotype-specific. The disease-modifying effects (cognitive performance, biomarker modification) of therapeutic intervention are APOE-dependent, with APOE-4 carriers acting as the worst responders (APOE-3/3 > APOE-3/4 > APOE-4/4). APOE-CYP2D6 interactions also influence the therapeutic outcome in patients with dementia.

  9. Disruption of Mouse Cytochrome P450 4f14 (Cyp4f14 Gene) Causes Severe Perturbations in Vitamin E Metabolism*

    PubMed Central

    Bardowell, Sabrina A.; Duan, Faping; Manor, Danny; Swanson, Joy E.; Parker, Robert S.

    2012-01-01

    Vitamin E is a family of naturally occurring and structurally related lipophilic antioxidants, one of which, α-tocopherol (α-TOH), selectively accumulates in vertebrate tissues. The ω-hydroxylase cytochrome P450–4F2 (CYP4F2) is the only human enzyme shown to metabolize vitamin E. Using cDNA cloning, cell culture expression, and activity assays, we identified Cyp4f14 as a functional murine ortholog of CYP4F2. We then investigated the effect of Cyp4f14 deletion on vitamin E metabolism and status in vivo. Cyp4f14-null mice exhibited substrate-specific reductions in liver microsomal vitamin E-ω-hydroxylase activity ranging from 93% (γ-TOH) to 48% (γ-tocotrienol). In vivo data obtained from metabolic cage studies showed whole-body reductions in metabolism of γ-TOH of 90% and of 68% for δ- and α-TOH. This metabolic deficit in Cyp4f14−/− mice was partially offset by increased fecal excretion of nonmetabolized tocopherols and of novel ω-1- and ω-2-hydroxytocopherols. 12′-OH-γ-TOH represented 41% of whole-body production of γ-TOH metabolites in Cyp4f14−/− mice fed a soybean oil diet. Despite these counterbalancing mechanisms, Cyp4f14-null mice fed this diet for 6 weeks hyper-accumulated γ-TOH (2-fold increase over wild-type littermates) in all tissues and appeared normal. We conclude that CYP4F14 is the major but not the only vitamin E-ω-hydroxylase in mice. Its disruption significantly impairs whole-body vitamin E metabolism and alters the widely conserved phenotype of preferential tissue deposition of α-TOH. This model animal and its derivatives will be valuable in determining the biological actions of specific tocopherols and tocotrienols in vivo. PMID:22665481

  10. In vitro metabolism of testosterone in the horse liver and involvement of equine CYPs 3A89, 3A94 and 3A95.

    PubMed

    Schmitz, A; Zielinski, J; Dick, B; Mevissen, M

    2014-08-01

    Testosterone (TES) 6-β-hydroxylation is a significant metabolic step in the biotransformation of TES in human liver microsomes and reflects cytochrome P450 (CYP) 3A4/5 specific metabolic activity. Several CYP3A enzymes have been annotated in the horse genome, but functional characterization is missing. This descriptive study investigates TES metabolism in the horse liver in vitro and the qualitative contribution of three CYP3A isoforms of the horse. Metabolism of TES was investigated by using equine hepatocyte primary cultures and liver microsomes. Chemical inhibitors were used to determine the CYPs involved in TES biotransformation in equine microsomes. Single CYPs 3A89, 3A94, and 3A95, recombinantly expressed in V79 hamster lung fibroblasts, were incubated with TES and the fluorescent metabolite 7-benzyloxy-4-trifluoromethylcoumarin (BFC). The effect of ketoconazole and troleandomycin was evaluated on single CYPs. Testosterone metabolites were analyzed by HPLC and confirmed by GC/MS. In hepatocyte primary cultures, the most abundant metabolite was androstenedione (AS), whereas in liver microsomes, 6-β-hydroxytestosterone showed the largest peak. Formation of 6-β-hydroxytestosterone and 11-β-hydroxytestosterone in liver microsomes was inhibited by ketoconazole, troleandomycin, and quercetin. Equine recombinant CYP3A95 catalyzed 11-β-hydroxylation of testosterone (TES). Metabolism of BFC was significantly inhibited by ketoconazole in CYP3A95, whereas troleandomycin affected the activities of CYP3A94 and CYP3A95. Both inhibitors had no significant effect on CYP3A89. Metabolic reactions and effects of inhibitors differed between the equine CYP3A isoforms investigated. This has to be considered in future in vitro studies. © 2014 John Wiley & Sons Ltd.

  11. Mapping of Gene Expression Reveals CYP27A1 as a Susceptibility Gene for Sporadic ALS

    PubMed Central

    van Rheenen, Wouter; Franke, Lude; Jansen, Ritsert C.; van Es, Michael A.; van Vught, Paul W. J.; Blauw, Hylke M.; Groen, Ewout J. N.; Horvath, Steve; Estrada, Karol; Rivadeneira, Fernando; Hofman, Albert; Uitterlinden, Andre G.; Robberecht, Wim; Andersen, Peter M.; Melki, Judith; Meininger, Vincent; Hardiman, Orla; Landers, John E.; Brown, Robert H.; Shatunov, Aleksey; Shaw, Christopher E.; Leigh, P. Nigel; Al-Chalabi, Ammar; Ophoff, Roel A.

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS) have implicated a few susceptibility loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci. Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls) were used to prioritize eQTLs identified in the first stage (162 ALS, 207 controls). These prioritized eQTLs were carried forward to the second sample with both gene-expression and genotyping data (161 ALS, 206 controls). Replicated eQTL SNPs were then tested for association in the second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest significance (lowest p = 1.27×10−51) withstood multiple-testing correction in the second stage and modulated CYP27A1 gene expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible susceptibility gene for

  12. CYP3A5*3 and ABCB1 61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation.

    PubMed

    Hu, Rong; Barratt, Daniel T; Coller, Janet K; Sallustio, Benedetta C; Somogyi, Andrew A

    2018-03-30

    Tacrolimus (TAC) is a first-line immunosuppressant used to prevent organ rejection after kidney transplantation. There is large inter-individual variability in its pharmacokinetics. Single nucleotide polymorphisms (SNPs) in genes encoding TAC metabolizing enzymes cytochromes P450 3A4/5 (CYP3A4/5), P-glycoprotein efflux transporter (ABCB1), their expression regulator pregnane X receptor (NR1I2) and CYP3A co-factor cytochrome P450 reductase (POR) have been studied for their effects on tacrolimus disposition. However, except for CYP3A5*3, controversies remain about their roles in predicting dose-adjusted trough blood TAC concentrations (C 0 /D). This study aimed to investigate the effects of ABCB1 (61A>G, 1199G>A, 1236C>T, 2677G>T and 3435C>T), CYP3A4*22, CYP3A5*3, NR1I2 (8055C>T, 63396C>T and -25385C>T) and POR*28 SNPs on TAC C 0 /D. In total, 165 kidney transplant recipients were included in this study. SNPs were genotyped by probe-based real-time polymerase chain reaction. Associations between log-transformed whole blood TAC C 0 /D (measured at 1 and 3 months post-transplant) and genotypes/haplotypes were assessed by linear mixed effects analysis, controlling for age, sex and haematocrit. It was observed that CYP3A5 expressors (*1/*1 + *1/*3) (p = 5.5 × 10 -16 ) and ABCB1 61G allele carriers (p = 0.001) had lower log-transformed TAC C 0 /D (56% and 26% lower geometric mean TAC C 0 /D, respectively) and accounted for approximately 30% and 4%, respectively, of log-transformed TAC C 0 /D variability in the first 3 months post-transplant. In conclusion, CYP3A5*3 is a major, and ABCB1 61A>G is a novel, although minor, genetic factor affecting TAC C 0 /D in kidney transplant recipients. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  13. Korean Red Ginseng Up-regulates C21-Steroid Hormone Metabolism via Cyp11a1 Gene in Senescent Rat Testes

    PubMed Central

    Kim, In-Hye; Kim, Si-Kwan; Kim, Eun-Hye; Kim, Sung-Won; Sohn, Sang-Hyun; Lee, Soo Cheol; Choi, Sangdun; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-01-01

    Ginseng (Panax ginseng Meyer) has been shown to have anti-aging effects in animal and clinical studies. However, the molecular mechanisms by which ginseng exerts these effects remain unknown. Here, the anti-aging effect of Korean red ginseng (KRG) in rat testes was examined by system biology analysis. KRG water extract prepared in feed pellets was administered orally into 12 month old rats for 4 months, and gene expression in testes was determined by microarray analysis. Microarray analysis identified 33 genes that significantly changed. Compared to the 2 month old young rats, 13 genes (Rps9, Cyp11a1, RT1-A2, LOC365778, Sv2b, RGD1565959, RGD1304748, etc.) were up-regulated and 20 genes (RT1-Db1, Cldn5, Svs5, Degs1, Vdac3, Hbb, LOC684355, Svs5, Tmem97, Orai1, Insl3, LOC497959, etc.) were down-regulated by KRG in the older rats. Ingenuity Pathway Analysis of untreated aged rats versus aged rats treated with KRG showed that the affected most was Cyp11a1, responsible for C21-steroid hormone metabolism, and the top molecular and cellular functions are organ morphology and reproductive system development and function. When genes in young rat were compared with those in the aged rat, sperm capacitation related genes were down-regulated in the old rat. However, when genes in the old rat were compared with those in the old rat treated with KRG, KRG treatment up-regulated C21-steroid hormone metabolism. Taken together, Cyp11a1 expression is decreased in the aged rat, however, it is up-regulated by KRG suggesting that KRG seems enhance testes function via Cyp11a1. PMID:23717070

  14. Increased carrier prevalence of deficient CYP2C9, CYP2C19 and CYP2D6 alleles in depressed patients referred to a tertiary psychiatric hospital.

    PubMed

    Ruaño, Gualberto; Villagra, David; Rahim, Umme Salma; Windemuth, Andreas; Kocherla, Mohan; Bower, Bruce; Szarek, Bonnie L; Goethe, John W

    2008-11-01

    This study compared the types and carrier prevalences of clinically significant DNA polymorphisms in the cytochrome P450 (CYP450) genes CYP2C9, CYP2C19 and CYP2D6 in major depressive disorder patients with a control group of nonpsychiatrically ill, medical outpatients. We conducted a case-control study using 73 psychiatric outpatients diagnosed with depression and referred to a tertiary center, The Institute of Living (Hartford, CT, USA), for treatment resistance or intolerable side-effects to psychotropic drugs. The controls were 120 cardiovascular patients from Hartford Hospital being treated for dyslipidemia but otherwise healthy and not psychiatrically ill. DNA typing to detect polymorphisms in the genes CYP2C9, CYP2C19 and CYP2D6 was accomplished with the Tag-It™ mutation detection assay and the Luminex xMAP ® system. The percentage of individuals in psychiatric versus control groups with two wild-type alleles for CYP2C9, CYP2C19 and CYP2D6 genes, were 50 versus 74% (p < 0.001), 71 versus 73% (not statistically significant) and 36 versus 43% (trend, p < 0.2), respectively. Within the psychiatric population, 57% of individuals were carriers of non-wild-type alleles for 2-3 genes, compared with 36% in the control population (p < 0.0001). The balance, 43% in the psychiatric population and 64% in the control, were carriers of non-wild-type alleles for none or one gene. These findings reveal that clinically relevant CYP2C9 polymorphisms occur more frequently in depressed psychiatric patients than in nonpsychiatric controls. The same trend was found for polymorphisms in the CYP2D6 gene. We found a significant cumulative metabolic deficiency in the psychiatric population for combinations of the CYP2C9, CYP2C19 and CYP2D6 genes. The significant enrichment of CYP2C9-deficient alleles in the psychiatric population validates a previously reported association of this gene with the risk for depression disorders. The high prevalence of carriers with deficient and null

  15. Physiologically based pharmacokinetic model of mechanism-based inhibition of CYP3A by clarithromycin.

    PubMed

    Quinney, Sara K; Zhang, Xin; Lucksiri, Aroonrut; Gorski, J Christopher; Li, Lang; Hall, Stephen D

    2010-02-01

    The prediction of clinical drug-drug interactions (DDIs) due to mechanism-based inhibitors of CYP3A is complicated when the inhibitor itself is metabolized by CYP3Aas in the case of clarithromycin. Previous attempts to predict the effects of clarithromycin on CYP3A substrates, e.g., midazolam, failed to account for nonlinear metabolism of clarithromycin. A semiphysiologically based pharmacokinetic model was developed for clarithromycin and midazolam metabolism, incorporating hepatic and intestinal metabolism by CYP3A and non-CYP3A mechanisms. CYP3A inactivation by clarithromycin occurred at both sites. K(I) and k(inact) values for clarithromycin obtained from in vitro sources were unable to accurately predict the clinical effect of clarithromycin on CYP3A activity. An iterative approach determined the optimum values to predict in vivo effects of clarithromycin on midazolam to be 5.3 microM for K(i) and 0.4 and 4 h(-1) for k(inact) in the liver and intestines, respectively. The incorporation of CYP3A-dependent metabolism of clarithromycin enabled prediction of its nonlinear pharmacokinetics. The predicted 2.6-fold change in intravenous midazolam area under the plasma concentration-time curve (AUC) after 500 mg of clarithromycin orally twice daily was consistent with clinical observations. Although the mean predicted 5.3-fold change in the AUC of oral midazolam was lower than mean observed values, it was within the range of observations. Intestinal CYP3A activity was less sensitive to changes in K(I), k(inact), and CYP3A half-life than hepatic CYP3A. This semiphysiologically based pharmacokinetic model incorporating CYP3A inactivation in the intestine and liver accurately predicts the nonlinear pharmacokinetics of clarithromycin and the DDI observed between clarithromycin and midazolam. Furthermore, this model framework can be applied to other mechanism-based inhibitors.

  16. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis

    PubMed Central

    Zhang, Xiaoyan; Li, Sha; Zhou, Yunfeng; Su, Wen; Ruan, Xiongzhong; Wang, Bing; Zheng, Feng; Warner, Margaret; Gustafsson, Jan-Åke; Guan, Youfei

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by simple hepatic steatosis (SS), nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis. Dysregulated fatty acid metabolism in the liver plays a critical role in the pathogenesis of NAFLD. Cytochrome P450 omega-hydroxylase 4A14 (CYP4A14) is a homolog of human CYP4A hydroxylase that catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid in mice. The goal of this study was to determine the role of CYP4A14 in the development and the progression of NAFLD. Here, we showed that hepatic CYP4A expression was up-regulated in the livers of patients and three murine models of NAFLD. Adenovirus-mediated overexpression of CYP4A14 in the livers of C57BL/6 mice resulted in a fatty liver phenotype with a significant increase in hepatic fatty acid translocase (FAT/CD36) expression. In contrast, CYP4A14 gene-deficient mice fed a high-fat diet or a methionine and choline-deficient (MCD) diet exhibited attenuated liver lipid accumulation and reduced hepatic FAT/CD36 expression. In addition, hepatic inflammation and fibrosis was markedly ameliorated in MCD diet-fed CYP4A14-deficient mice. Collectively, CYP4A14 plays an important role in the pathogenesis of both SS and NASH and may represent a potential therapeutic target for the treatment of NAFLD. PMID:28270609

  17. A family-based association study identified CYP17 as a candidate gene for obesity susceptibility in Caucasians.

    PubMed

    Yan, H; Guo, Y; Yang, T-L; Zhao, L-J; Deng, H-W

    2012-08-06

    The cytochrome P450c17α gene (CYP17) encodes a key biosynthesis enzyme of estrogen, which is critical in regulating adipogenesis and adipocyte development in humans. We therefore hypothesized that CYP17 is a candidate gene for predicting obesity. In order to test this hypothesis, we performed a family-based association test to investigate the relationship between the CYP17 gene and obesity phenotypes in a large sample comprising 1873 subjects from 405 Caucasian nuclear families of European origin recruited by the Osteoporosis Research Center of Creighton University, USA. Both single SNPs and haplotypes were tested for associations with obesity-related phenotypes, including body mass index (BMI) and fat mass. We identified three SNPs to be significantly associated with BMI, including rs3740397, rs6163, and rs619824. We further characterized the linkage disequilibrium structure for CYP17 and found that the whole CYP17 gene was located in a single-linkage disequilibrium block. This block was observed to be significantly associated with BMI. A major haplotype in this block was significantly associated with both BMI and fat mass. In conclusion, we suggest that the CYP17 gene has an effect on obesity in the Caucasian population. Further independent studies will be needed to confirm our findings.

  18. Modulation of CYP1A2 and CYP3A6 catalytic activities by serum from rabbits with a turpentine-induced inflammatory reaction and interleukin 6.

    PubMed

    Kourylko, Oksana; Fradette, Caroline; Arcand, Mathieu; du Souich, Patrick

    2006-01-01

    Inflammatory reactions reduce the activity of cytochrome P450 isoforms. The aim of the study was to determine the mechanisms underlying the decrease in CYP1A2 and CYP3A6 catalytic activities produced by serum from rabbits with a turpentine-induced inflammatory reaction (S(TIIR)) and interleukin 6 (IL-6). S(TIIR) and IL-6 were incubated with cultured primary hepatocytes from control rabbits (H(CONT)), and from rabbits with a turpentine-induced inflammatory reaction (H(TIIR)) in the absence or presence of pyrrolidine dithiocarbamate (PDTC), an antioxidant and inhibitor of nuclear factor kappaB transcription; 2'-amino-3'-methoxyflavone (PD98059), an inhibitor of extracellular signal-related kinase (Erk1/2); 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), an inhibitor of p38MAPK; Nomega-nitro-L-arginine methyl ester, an inhibitor of nitric-oxide synthase 2 (NOS2); the combination of PDTC, PD98059, and SB203580; and genistein, an inhibitor of Janus-associated protein tyrosine kinase (JAK). After 4 and 24 h of incubation of H(CONT) with S(TIIR) and IL-6, CYP1A2 activity was reduced without changes in expression; the reduction in activity was partially prevented by the inhibition of JAK, Erk1/2, and NOS2. In H(CONT), S(TIIR) and IL-6 did not affect CYP3A6 activity; however, PDTC reduced CYP3A6 activity by 40 and 80% after 4 and 24 h of incubation. In H(TIIR), S(TIIR) and IL-6 reduced both CYP1A2 and CYP3A6 activities; this decrease is partially prevented by inhibitors of protein tyrosine kinases, Erk1/2, and NOS2. In H(TIIR), SB203580 increased CYP3A6 activity in a dose-dependent manner without changes in protein expression. These results show that the signal transduction pathways mediating the decrease in CYP1A2 and 3A6 activity, produced by S(TIIR) and IL-6, involve JAK, Erk1/2, and NOS2.

  19. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria

    PubMed Central

    Djouaka, Rousseau F; Bakare, Adekunle A; Coulibaly, Ousmane N; Akogbeto, Martin C; Ranson, Hilary; Hemingway, Janet; Strode, Clare

    2008-01-01

    Background Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron) and an urban area (Gbedjromede), low levels of resistance in mosquito samples from an oil contaminated site (Ojoo) and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84) but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold) and Ojoo (7.4-fold) populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential resistance mechanisms

  20. Profiling deleterious non-synonymous SNPs of smoker's gene CYP1A1.

    PubMed

    Ramesh, A Sai; Khan, Imran; Farhan, Md; Thiagarajan, Padma

    2013-01-01

    CYP1A1 gene belongs to the cytochrome P450 family and is known better as smokers' gene due to its hyperactivation as a consequence of long term smoking. The expression of CYP1A1 induces polycyclic aromatic hydrocarbon production in the lungs, which when over expressed, is known to cause smoking related diseases, such as cardiovascular pathologies, cancer, and diabetes. Single nucleotide polymorphisms (SNPs) are the simplest form of genetic variations that occur at a higher frequency, and are denoted as synonymous and non-synonymous SNPs on the basis of their effects on the amino acids. This study adopts a systematic in silico approach to predict the deleterious SNPs that are associated with disease conditions. It is inferred that four SNPs are highly deleterious, among which the SNP with rs17861094 is commonly predicted to be harmful by all tools. Hydrophobic (isoleucine) to hydrophilic (serine) amino acid variation was observed in the candidate gene. Hence, this investigation aims to characterize a candidate gene from 159 SNPs of CYP1A1.

  1. Complement component 4 copy number variation and CYP21A2 genotype associations in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency.

    PubMed

    Chen, Wuyan; Xu, Zhi; Nishitani, Miki; Van Ryzin, Carol; McDonnell, Nazli B; Merke, Deborah P

    2012-12-01

    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is an autosomal recessive disorder of cortisol biosynthesis caused by CYP21A2 mutations. An increase in gene copy number variation (CNV) exists at the CYP21A2 locus. CNV of C4, a neighboring gene that encodes complement component 4, is associated with autoimmune disease susceptibility. In this study, we performed comprehensive genetic analysis of the RP-C4-CYP21-TNX (RCCX) region in 127 unrelated 21-OHD patients (100 classic, 27 nonclassic). C4 copy number was determined by Southern blot. C4 CNV and serum C4 levels were evaluated in relation to CYP21A2 mutations and relevant phenotypes. We found that the most common CYP21A2 mutation associated with the nonclassic form of CAH, V281L, was associated with high C4 copy number (p = 7.13 × 10(-16)). Large CYP21A2 deletion, a common mutation associated with the classic form of CAH, was associated with low C4 copy number (p = 1.61 × 10(-14)). Monomodular RCCX with a short C4 gene, a risk factor for autoimmune disease, was significantly less frequent in CAH patients compared to population estimates (2.8 vs. 10.6 %; p = 1.08 × 10(-4)). In conclusion, CAH patients have increased C4 CNV, with mutation-specific associations that may be protective for autoimmune disease. The study of CYP21A2 in relation to neighboring genes provides insight into the genetics of CNV hotspots, an important determinant of human health.

  2. Gene-environment interactions associated with CYP1A1 MspI and GST polymorphisms and the risk of upper aerodigestive tract cancers in an Indian population.

    PubMed

    Sam, Soya Sisy; Thomas, Vinod; Reddy, K S; Surianarayanan, Gopalakrishnan; Chandrasekaran, Adithan

    2010-06-01

    Genetic risk to tobacco related cancers are associated with polymorphisms in CYP1A1 and GST, which are involved in the metabolic activation and detoxification of carcinogens. The genetic variations in these drug-metabolizing enzymes may alter the susceptibility to UADT cancers triggered by environmental exposures. The hospital-based case-control study evaluated the impact of combined CYP1A1 MspI and GST (M1 & T1) polymorphisms among the individuals exposed to environmental risk factors as modulators in the risk of UADT cancers in Tamilians, a population of south India. The unrelated histopathologically confirmed 408 cases and 220 population-based controls matched by age and gender were genotyped for CYP1A1 MspI, GSTM1 and GSTT1 polymorphisms using PCR based methods. To investigate the potential gene-environment interactions, analyses were carried out stratifying by smoking and tobacco chewing status using SPSS software. The combination of genes and environment interactions by stratified analyses revealed significant interactions among the habitual tobacco smokers (CYP1A1 MspI & GSTM1 null: OR 14.06; 95% CI 3.90-50.68, CYP1A1 MspI & GSTT1 null: OR 33.28; 95% CI 4.24-261.19) and tobacco chewers (CYP1A1 MspI & GSTM1 null: OR 20.51; 95% CI 6.77-62.13, CYP1A1 MspI & GSTT1 null: OR 79.35; 95% CI 10.40-605.55) on the multiplicative scale. Our findings have indicated that the individuals polymorphic for CYP1A1 MspI either with GSTM1 null or with GSTT1 null genotypes revealed an increased risk for UADT cancers than that ascribed to a single susceptible gene among the tobacco users in the population [single gene risk among smokers and chewers, respectively, for CYP1A1 MspI (OR 6.43; 95% CI 3.69-11.21); (OR 10.24; 95% CI 5.95-17.60), GSTM1*0 (OR 3.77; 95% CI 1.94-7.37); (OR 7.97 95% CI 4.10-15.76) and GSTT1*0 (OR 6.95 95% CI 2.88-16.77); (OR 25.83 95% CI 7.78-85.76).

  3. Coffee inhibition of CYP3A4 in vitro was not translated to a grapefruit-like pharmacokinetic interaction clinically.

    PubMed

    Dresser, George K; Urquhart, Brad L; Proniuk, Julianne; Tieu, Alvin; Freeman, David J; Arnold, John Malcolm; Bailey, David G

    2017-10-01

    Grapefruit can augment oral medication bioavailability through irreversible (mechanism-based) inhibition of intestinal CYP3A4. Supplementary data from our recent coffee-drug interaction clinical study showed some subjects had higher area under the plasma drug concentration - time curve (AUC) and plasma peak drug concentration (Cmax) of the CYP3A4 probe felodipine compared to aqueous control. It was hypothesized that coffee might interact like grapefruit in responsive individuals. Beans from six geographical locations were consistently brewed into coffee that was separated chromatographically to a methanolic fraction for in vitro inhibition testing of CYP3A4 metabolism of felodipine at 1% coffee strength. The effect of simultaneous incubation and 10-min preincubation with coffee fractions determined whether coffee had direct and mechanism-based inhibitory activity. A subsequent five-way randomized balanced controlled crossover clinical study evaluated the clinical pharmacokinetic interaction with single-dose felodipine. Grapefruit juice, water, or three of the in vitro tested coffees were ingested at 300 mL alone 1 h before and then with felodipine. In vitro, all six coffees decreased felodipine metabolism for both simultaneous and preincubation exposure compared to corresponding control. Five coffees demonstrated mechanism-based inhibition. Grapefruit increased felodipine AUC 0-8 (25 vs. 13 ng.h/mL, P < 0.001) and Cmax (5.8 vs. 2.7 ng/mL, P < 0.001) and decreased dehydrofelodipine/felodipine AUC 0-8 ratio (0.84 vs. 1.29, P < 0.001), while the three coffees caused no change in these parameters compared to water. Despite high in vitro potency of CYP3A4 inhibition, the coffees did not cause a clinical pharmacokinetic interaction possibly from insufficient amount of inhibitor(s) in coffee reaching intestinal CYP3A4 during the absorption phase of felodipine. The results of this study highlight the need for follow-up clinical testing when in vitro results

  4. An evaluation of the CYP2D6 and CYP3A4 inhibition potential of metoprolol metabolites and their contribution to drug-drug and drug-herb interaction by LC-ESI/MS/MS.

    PubMed

    Borkar, Roshan M; Bhandi, Murali Mohan; Dubey, Ajay P; Ganga Reddy, V; Komirishetty, Prashanth; Nandekar, Prajwal P; Sangamwar, Abhay T; Kamal, Ahmed; Banerjee, Sanjay K; Srinivas, R

    2016-10-01

    The aim of the present study was to evaluate the contribution of metabolites to drug-drug interaction and drug-herb interaction using the inhibition of CYP2D6 and CYP3A4 by metoprolol (MET) and its metabolites. The peak concentrations of unbound plasma concentration of MET, α-hydroxy metoprolol (HM), O-desmethyl metoprolol (ODM) and N-desisopropyl metoprolol (DIM) were 90.37 ± 2.69, 33.32 ± 1.92, 16.93 ± 1.70 and 7.96 ± 0.94 ng/mL, respectively. The metabolites identified, HM and ODM, had a ratio of metabolic area under the concentration-time curve (AUC) to parent AUC of ≥0.25 when either total or unbound concentration of metabolite was considered. In vitro CYP2D6 and CYP3A4 inhibition by MET, HM and ODM study revealed that MET, HM and ODM were not inhibitors of CYP3A4-catalyzed midazolam metabolism and CYP2D6-catalyzed dextromethorphan metabolism. However, DIM only met the criteria of >10% of the total drug related material and <25% of the parent using unbound concentrations. If CYP inhibition testing is solely based on metabolite exposure, DIM metabolite would probably not be considered. However, the present study has demonstrated that DIM contributes significantly to in vitro drug-drug interaction. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Lack of effect of tofacitinib (CP-690,550) on the pharmacokinetics of the CYP3A4 substrate midazolam in healthy volunteers: confirmation of in vitro data

    PubMed Central

    Gupta, Pankaj; Alvey, Christine; Wang, Rong; Dowty, Martin E; Fahmi, Odette A; Walsky, Robert L; Riese, Richard J; Krishnaswami, Sriram

    2012-01-01

    AIMS To investigate inhibitive and inductive effects of tofacitinib (CP-690,550), a Janus kinase inhibitor, on CYP3A4 function via in vitro and in vivo studies. METHODS In vitro experiments were conducted to assess the inhibition and induction potential of tofacitinib for major drug metabolizing enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP3A4). A phase 1, randomized, open-label, two-way crossover study (NCT00902460) was conducted to confirm the lack of inhibitive/inductive effect on a sensitive CYP3A4 substrate, midazolam, in healthy subjects. Midazolam pharmacokinetics were assessed over 24 h following single dose 2 mg administration prior to administering tofacitinib and after twice daily dosing of tofacitinib 30 mg for 6 days. The primary endpoint was midazolam area under the concentration–time profile, from time 0 to infinity (AUC(0,∞)). RESULTS In vitro studies demonstrated low potential for CYP inhibition (IC50 estimates tofacitinib >30 µm), CYP3A4 mRNA induction (observed at tofacitinib concentrations ≥25 µm) and no effect on enzymatic activity of CYP substrates. In the human study, AUC(0,∞) adjusted geometric mean ratio for midazolam plus tofacitinib to midazolam alone was 103.97% [90% confidence interval (CI) 95.57, 113.12], wholly within the pre-specified acceptance region (80, 125). The 90% CI for the ratio of adjusted geometric means of maximum plasma concentration (Cmax) (95.98, 108.87) was also wholly within this acceptance region. CONCLUSIONS These data confirm a lack of an inhibitive or inductive effect of tofacitinib on CYP3A activity in humans and, in conjunction with in vitro data, support the conclusion that tofacitinib is unlikely to influence the CYP enzyme system as a whole. PMID:22233204

  6. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Akira, E-mail: akubota@whoi.edu; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; Stegeman, John J.

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced viamore » AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown

  7. Novel cytochrome P450 genes, CYP6EB1 and CYP6EC1, are over-expressed in acrinathrin-resistant Frankliniella occidentalis (Thysanoptera: Thripidae).

    PubMed

    Cifuentes, D; Chynoweth, R; Guillén, J; De la Rúa, P; Bielza, P

    2012-06-01

    Control of Frankliniella occidentalis (Pergande) is a serious problem for agriculture all over the world because of the limited range of insecticides that are available. Insecticide resistance in F. occidentalis has been reported for all major insecticide groups. Our previous studies showed that cytochrome P450-mediated detoxification is a major mechanism responsible for insecticide resistance in this pest. Degenerate polymerase chain reaction was used to identify P450 genes that might be involved in acrinathrin resistance, in a laboratory population of F. occidentalis. Associated sequences were classified as belonging to the CYP4 and CYP6 families. Real-time quantitative polymerase chain reaction analyses revealed that two genes, CYP6EB1 and CYP6EC1, were over-expressed in adults and L2 larvae of the resistant population, when compared with the susceptible population, suggesting their possible involvement in resistance to acrinathrin.

  8. Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1-mediated metabolism to the product 4' hydroxy tangeretin.

    PubMed

    Surichan, Somchaiya; Arroo, Randolph R; Tsatsakis, Aristidis M; Androutsopoulos, Vasilis P

    2018-04-04

    Tangeretin is a polymethoxylated flavone with multifaceted anticancer activity. In the present study, the metabolism of tangeretin was evaluated in the CYP1 expressing human breast cancer cell lines MCF7 and MDA-MB-468 and in the normal breast cell line MCF10A. Tangeretin was converted to 4' OH tangeretin by recombinant CYP1 enzymes and by CYP1 enzymes expressed in MCF7 and MDA-MB-468 cells. This metabolite was absent in MCF10A cells that did not express CYP1 enzymes. Tangeretin exhibited submicromolar IC50 (0.25 ± 0.15 μM) in MDA-MB-468 cells, whereas it was less active in MCF7 cells (39.3 ± 1.5 μM) and completely inactive in MCF10A cells (>100 μM). In MDA-MB-468 cells that were coincubated with the CYP1 inhibitor acacetin, an approximately 70-fold increase was noted in the IC50 (18 ± 1.6 μM) of tangeretin. In the presence of the CYP1 inhibitor acacetin, the conversion of tangeretin to 4' OH tangeretin was significantly reduced in MDA-MB-468 cells (2.55 ± 0.19 μM vs. 6.33 ± 0.12 μM). The mechanism of antiproliferative action involved cell cycle arrest at the G1 phase for MCF7 and MDA-MB-468 cells. Tangeretin was further shown to induce CYP1 enzyme activity and CYP1A1/CYP1B1 protein expression in MCF7 and MDA-MB-468 cells. These results suggest that tangeretin inhibits the proliferation of breast cancer cells via CYP1A1/CYP1B1-mediated metabolism to the product 4' hydroxy tangeretin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Moringa oleifera leaf extracts inhibit 6beta-hydroxylation of testosterone by CYP3A4.

    PubMed

    Monera, Tsitsi G; Wolfe, Alan R; Maponga, Charles C; Benet, Leslie Z; Guglielmo, Joseph

    2008-10-01

    Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6beta-hydroxylation of testosterone. Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs.

  10. Transfected MDCK cell line with enhanced expression of CYP3A4 and P-glycoprotein as a model to study their role in drug transport and metabolism.

    PubMed

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K

    2012-07-02

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drug of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and Western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The Vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be 10- and 3-fold lower in MMC as compared to MDCK-WT and MDCK-MDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT, indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined activities of CYP3A4 and P-gp. Transport of cortisol increased 5-fold in the presence of naringin in MMC and doubled in MDCK-MDR1. Cortisol transport in MMC was significantly lower than that in MDCK-WT in the presence of naringin. The permeability increased 3-fold in the presence of morphine, which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in the presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes toward drug-drug interactions.

  11. Population pharmacokinetic analysis of cilostazol in healthy subjects with genetic polymorphisms of CYP3A5, CYP2C19 and ABCB1

    PubMed Central

    Yoo, Hee-Doo; Cho, Hea-Young; Lee, Yong-Bok

    2010-01-01

    AIMS To investigate the influence of genetic polymorphisms in the CYP3A5, CYP2C19 and ABCB1 genes on the population pharmacokinetics of cilostazol in healthy subjects. METHODS Subjects who participated in four separate cilostazol bioequivalence studies with the same protocols were included in this retrospective analysis. One hundred and four healthy Korean volunteers were orally administered a single 50- or 100-mg dose of cilostazol. We estimated the population pharmacokinetics of cilostazol using a nonlinear mixed effects modelling (nonmem) method and explored the possible influence of genetic polymorphisms in CYP3A (CYP3A5*3), CYP2C19 (CYP2C19*2 and CYP2C19*3) and ABCB1 (C1236T, G2677T/A and C3435T) on the population pharmacokinetics of cilostazol. RESULTS A two-compartment model with a first-order absorption and lag time described the cilostazol serum concentrations well. The apparent oral clearance (CL/F) was estimated to be 12.8 l h−1. The volumes of the central and the peripheral compartment were characterized as 20.5 l and 73.1 l, respectively. Intercompartmental clearance was estimated at 5.6 l h−1. Absorption rate constant was estimated at 0.24 h−1 and lag time was predicted at 0.57 h. The genetic polymorphisms of CYP3A5 had a significant (P < 0.001) influence on the CL/F of cilostazol. When CYP2C19 was evaluated, a significant difference (P < 0.01) was observed among the three genotypes (extensive metabolizers, intermediate metabolizers and poor metabolizers) for the CL/F. In addition, a combination of CYP3A5 and CYP2C19 genotypes was found to be associated with a significant difference (P < 0.005) in the CL/F. When including these genotypes, the interindividual variability of the CL/F was reduced from 34.1% in the base model to 27.3% in the final model. However, no significant differences between the ABCB1 genotypes and cilostazol pharmacokinetic parameters were observed. CONCLUSIONS The results of the present study indicate that CYP3A5 and CYP2C19

  12. Molecular cloning and 3D model of first cytochrome P450 from CYP3A subfamily in saltwater crocodile (Crocodylus porosus).

    PubMed

    Tabassum, Rabia

    2017-10-18

    Cytochrome P450s (CYPs) play critical role in oxidative metabolism of numerous xenobiotics and endogenous compounds. The first CYP3A subfamily member in saltwater crocodile has been cloned and modelled for three-dimensional (3D) structure. The full-length cDNA was obtained employing reverse transcription polymerase chain reaction (RT-PCR) strategy and rapid amplification of cDNA ends (RACE). The cDNA sequence of 1659 nucleotides includes 132 nucleotides from 5' untranslated region (UTR), an open reading frame of 1527 nucleotides encoding 509 amino acids designated as CYP3A163. The alignment of CYP3A163 sequence with CYP3A subfamily across the lineages exhibit the loss of 1 residue in birds and 7 residues in mammals in comparison to reptiles suggesting the adaptation processes during evolution. The amino acid identity of CYP3A163 with Alligator mississippiensis CYP3A77 and Homo sapiens CYP3A4 is 91% and 62% respectively. The 3D structure of CYP3A163 modelled using human CYP3A4 structure as a template with Phyre 2 software, represents high similarity with its functionally important motifs and catalytic domain. Both sequence and structure of CYP3A163 display the common and conserved features of CYP3A subfamily. Overall, this study provides primary molecular and structural data of CYP3A163 required to investigate the xenobiotic metabolism in saltwater crocodiles. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lind, Lars; Penell, Johanna; Syvänen, Anne-Christine

    2014-08-15

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Of the investigated relationships between SNPsmore » in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003–0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005–0.05 range. Very few associations with p<0.05 were seen for PCB126, PCB169 or PCB170. Genetic variation in the CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs. - Highlights: • We studied the relationship between PCBs and the genetic variation in the CYP genes. • Cross sectional data from a cohort of elderly were analysed. • The PCB levels were evaluated versus 21 SNPs in three CYP genes. • PCB 118 was related to variation in the CYP1A1 gene.« less

  14. Nano-sized cytochrome P450 3A4 inhibitors to block hepatic metabolism of docetaxel

    PubMed Central

    Paolini, Marion; Poul, Laurence; Berjaud, Céline; Germain, Matthieu; Darmon, Audrey; Bergère, Maxime; Pottier, Agnès; Levy, Laurent; Vibert, Eric

    2017-01-01

    Most drugs are metabolized by hepatic cytochrome P450 3A4 (CYP3A4), resulting in their reduced bioavailability. In this study, we present the design and evaluation of bio-compatible nanocarriers trapping a natural CYP3A4-inhibiting compound. Our aim in using nanocarriers was to target the natural CYP3A4-inhibiting agent to hepatic CYP3A4 and leave drug-metabolizing enzymes in other organs undisturbed. In the design of such nanocarriers, we took advantage of the nonspecific accumulation of small nanoparticles in the liver. Specific targeting functionalization was added to direct nanocarriers toward hepatocytes. Nanocarriers were evaluated in vitro for their CYP3A4 inhibition capacity and in vivo for their biodistribution, and finally injected 24 hours prior to the drug docetaxel, for their ability to improve the efficiency of the drug docetaxel. Nanoparticles of poly(lactic-co-glycolic) acid (PLGA) with a hydrodynamic diameter of 63 nm, functionalized with galactosamine, showed efficient in vitro CYP3A4 inhibition and the highest accumulation in hepatocytes. When compared to docetaxel alone, in nude mice bearing the human breast cancer, MDA-MB-231 model, they significantly improved the delay in tumor growth (treated group versus docetaxel alone, percent treated versus control ratio [%T/C] of 32%) and demonstrated a major improvement in overall survival (survival rate of 67% versus 0% at day 55). PMID:28814868

  15. TRANSFECTED MDCK CELL LINE WITH ENHANCED EXPRESSION OF CYP3A4 AND P-GLYCOPROTEIN AS A MODEL TO STUDY THEIR ROLE IN DRUG TRANSPORT AND METABOLISM

    PubMed Central

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K.

    2012-01-01

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drugs of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be ten and three fold lower in MMC as compared to WT and MDCKMDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined metabolic activities of CYP3A4 and P-gp. Transport of cortisol increased fivefold in presence of naringin in MMC and doubled in MDCKMDR1. Cortisol transport in MMC was significantly lower than that in WT in presence of naringin. The permeability increased three fold in presence of morphine which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes towards drug-drug interactions. PMID:22676443

  16. Imidacloprid does not induce Cyp genes involved in insecticide resistance of a mutant Drosophila melanogaster line.

    PubMed

    Kalajdzic, Predrag; Markaki, Maria; Oehler, Stefan; Savakis, Charalambos

    2013-10-01

    Certain xenobiotics have the capacity to induce the expression of genes involved in various biological phenomena, including insecticide resistance. The induction potential of different chemicals, among them different insecticides, has been documented for a number of insect species. In this study, we have analyzed the induction potential of Imidacloprid, a widely used member of the neonicotinoid insecticide family. Genes Cyp6g1 and Cyp6a2, known to be involved in the resistance of mutant Drosophila melanogaster line MiT[W⁻]3R2 to Imidacloprid and DDT were included in the analyzed sample. We find that Imidacloprid does not induce expression of the analyzed genes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involvesmore » release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP

  18. Optimization of Clonazepam Therapy Adjusted to Patient's CYP3A Status and NAT2 Genotype.

    PubMed

    Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István; Monostory, Katalin

    2016-12-01

    The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients' CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. The patients' CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  19. MiR-285 targets P450 (CYP6N23) to regulate pyrethroid resistance in Culex pipiens pallens.

    PubMed

    Tian, Mengmeng; Liu, Bingqian; Hu, Hongxia; Li, Xixi; Guo, Qin; Zou, Feifei; Liu, Xianmiao; Hu, Mengxue; Guo, Juxin; Ma, Lei; Zhou, Dan; Sun, Yan; Shen, Bo; Zhu, Changliang

    2016-12-01

    MicroRNAs play critical roles in post-transcriptional regulation of gene expression, which participate in the modulation of almost all of the cellular processes. Although emerging evidence indicates that microRNAs are related with antineoplastic drugs resistance, whether microRNAs are responsible for insecticide resistance in mosquitos is poorly understood. In this paper, we found that miR-285 was significantly upregulated in the deltamethrin-resistant strain of Culex pipiens pallens, and overexpression miR-285 through microinjection increased mosquito survival rate against deltamethrin treatement. Using bioinformatic software, quantitative reverse transcription PCR, luciferase reporter assay and microinjection approaches, we conformed that CYP6N23 was the target of miR-285. Lower expression of CYP6N23 was observed in the deltamethrin-resistant strain. While, mosquito mortality rate was decreased after downregulating expression of CYP6N23 by dsRNA against CYP6N23 or miR-285 mimic microinjection. These findings revealed that miR-285 could target CYP6N23 to regulate pyrethroid resistance, providing new insights into mosquito insecticide resistance surveillance and control.

  20. Isolation and Expression Analysis of CYP9A11 and Cytochrome P450 Reductase Gene in the Beet Armyworm (Lepidoptera: Noctuidae)

    PubMed Central

    Zhao, Chunqing; Feng, Xiaoyun; Tang, Tao; Qiu, Lihong

    2015-01-01

    Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HaCPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system. PMID:26320261

  1. Imidacloprid is hydroxylated by Laodelphax striatellus CYP6AY3v2.

    PubMed

    Wang, R; Zhu, Y; Deng, L; Zhang, H; Wang, Q; Yin, M; Song, P; Elzaki, M E A; Han, Z; Wu, M

    2017-10-01

    Laodelphax striatellus (Fallén) is one of the most destructive pests of rice, and has developed high resistance to imidacloprid. Our previous work indicated a strong association between imidacloprid resistance and the overexpression of a cytochrome P450 gene CYP6AY3v2 in a L. striatellus imidacloprid resistant strain (Imid-R). In this study, a transgenic Drosophila melanogaster line that overexpressed the L. striatellus CYP6AY3v2 gene was established and was found to confer increased levels of imidacloprid resistance. Furthermore, CYP6AY3v2 was co-expressed with D. melanogaster cytochrome P450 reductase (CPR) in Spodoptera frugiperda 9 (SF9) cells. A carbon monoxide difference spectra analysis indicated that CYP6AY3v2 was expressed predominately in its cytochrome P450 (P450) form, which is indicative of a good-quality functional enzyme. The recombinant CYP6AY3v2 protein efficiently catalysed the model substrate P-nitroanisole to p-nitrophenol with a maximum velocity (V max ) of 60.78 ± 3.93 optical density (mOD)/min/mg protein. In addition, imidacloprid itself was metabolized by the recombinant CYP6AY3v2/nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt (NADPH) CPR microsomes in in vitro assays (catalytic constant (K cat ) = 0.34 pmol/min/pmol P450, michaelis constant (K m ) = 41.98 μM), and imidacloprid depletion and metabolite peak formation were with a time dependence. The data provided direct evidence that CYP6AY3v2 is capable of hydroxylation of imidacloprid and conferring metabolic resistance in L. striatellus. © 2017 The Royal Entomological Society.

  2. Analysis of the Functional Polymorphism in the Cytochrome P450 CYP2C8 Gene rs11572080 with Regard to Colorectal Cancer Risk

    PubMed Central

    Ladero, José M.; Agúndez, José A. G.; Martínez, Carmen; Amo, Gemma; Ayuso, Pedro; García-Martín, Elena

    2012-01-01

    In addition to the known effects on drug metabolism and response, functional polymorphisms of genes coding for xenobiotic-metabolizing enzymes (XME) play a role in cancer. Genes coding for XME act as low-penetrance genes and confer modest but consistent and significant risks for a variety of cancers related to the interaction of environmental and genetic factors. Consistent evidence supports a role for polymorphisms of the cytochrome P450 CYP2C9 gene as a protecting factor for colorectal cancer susceptibility. It has been shown that CYP2C8 and CYP2C9 overlap in substrate specificity. Because CYP2C8 has the common functional polymorphisms rs11572080 and rs10509681 (CYP2C8*3), it could be speculated that part of the findings attributed to CYP2C9 polymorphisms may actually be related to the presence of polymorphisms in the CYP2C8 gene. Nevertheless, little attention has been paid to the role of the CYP2C8 polymorphism in colorectal cancer. We analyzed the influence of the CYP2C8*3 allele in the risk of developing colorectal cancer in genomic DNA from 153 individuals suffering colorectal cancer and from 298 age- and gender-matched control subjects. Our findings do not support any effect of the CYP2C8*3 allele (OR for carriers of functional CYP2C8 alleles = 0.50 (95% CI = 0.16–1.59; p = 0.233). The absence of a relative risk related to CYP2C8*3 did not vary depending on the tumor site. We conclude that the risk of developing colorectal cancer does not seem to be related to the commonest functional genetic variation in the CYP2C8 gene. PMID:23420707

  3. Association of CYP2C19*2 and *3 Genetic Variants with Essential Hypertension in Koreans

    PubMed Central

    Shin, Dong-Jik; Kwon, Jisun; Park, Ah-Ram; Bae, Yousun; Shin, Eun-Soon; Park, Sungha

    2012-01-01

    Purpose The cytochrome P450 2C19 (CYP2C19) metabolizes arachidonic acid to produce epoxyicosanoid acids, which are involved in vascular tone and regulation of blood pressure. Recent findings suggest that CYP2C19 gene might be considered as a novel candidate gene for treatment of cardiovascular disease. The aim of the present study was to evaluate the association between two variants, CYP2C19*2 (681G>A) and CYP2C19*3 (636G>A) and the development of essential hypertension (EH) in Koreans. Materials and Methods We carried out an association study in a total of 1190 individuals (527 hypertensive subjects and 663 unrelated healthy controls). The CYP2C19 polymorphisms were genotyped using the SNaPShot™ assay. Results The distribution of alleles and genotypes of CYP2C19*3 showed significant difference between hypertensive patients and normal controls (p=0.011 and p=0.013, respectively). Logistic regression analysis indicated that the CYP2C19*3 (636A) allele carriers were significantly associated with EH [odds ratio, 0.691; 95% confidence interval (CI), 0.512-0.932, p=0.016], in comparison to wild type homozygotes (CYP2C19*1/*1). Neither genotype nor allele distribution of CYP2C19*2 polymorphism showed significant differences between hypertensive and control groups (p>0.05). Conclusion Our present findings strengthen the evidence of an association between CYP2C19 gene polymorphism and EH prevalence. In particular, the CYP2C19*3 defective allele may contribute to reduced risk for the development of EH. PMID:23074110

  4. In vitro-in vivo extrapolation of zolpidem as a perpetrator of metabolic interactions involving CYP3A.

    PubMed

    Polasek, Thomas M; Sadagopal, Janani S; Elliot, David J; Miners, John O

    2010-03-01

    To evaluate zolpidem as a mechanism-based inactivator of human CYP3A in vitro, and to assess its metabolic interaction potential with CYP3A drugs (in vitro-in vivo extrapolation; IV-IVE). A co- vs. pre-incubation strategy was used to quantify time-dependent inhibition of human liver microsomal (HLM) and recombinant CYP3A4 (rCYP3A4) by zolpidem. Experiments involving a 10-fold dilution step were employed to determine the kinetic constants of inactivation (K (I) and k (inact)) and to assess the in vitro mechanism-based inactivation (MBI) criteria. Inactivation data were entered into the Simcyp population-based ADME simulator to predict the increase in the area under the plasma concentration-time curve (AUC) for orally administered midazolam. Consistent with MBI, the inhibitory potency of zolpidem toward CYP3A was increased following pre-incubation. In HLMs, the concentration required for half maximal inactivation (K (I)) was 122 microM and the maximal rate of inactivation (k (inact)) was 0.094 min(-1). In comparison, K (I) and k (inact) values with rCYP3A4 were 50 microM and 0.229 min(-1), respectively. Zolpidem fulfilled all other in vitro MBI criteria, including irreversible inhibition. The mean oral AUC for midazolam in healthy volunteers was predicted to increase 1.1- to 1.7-fold due to the inhibition of metabolic clearance by zolpidem. Elderly subjects were more sensitive to the interaction, with mean increases in midazolam AUC of 1.2- and 2.2-fold for HLM IV-IVE and rCYP3A4 IV-IVE, respectively. Zolpidem is a relatively weak mechanism-based inactivator of human CYP3A in vitro. Zolpidem is unlikely to act as a significant perpetrator of metabolic interactions involving CYP3A.

  5. Clinical relevance of genetic polymorphism in CYP2C9 gene to pharmacodynamics and pharmacokinetics of phenytoin in epileptic patients: validatory pharmacogenomic approach to pharmacovigilance.

    PubMed

    Kousar, Shazia; Wafai, Zahoor A; Wani, Mushtaq A; Jan, Tariq R; Andrabi, Khurshid I

    2015-07-01

    Variations in drug metabolizing genes are known to have a clinical impact on AED therapy. We genotyped normal and epileptic patient cohorts of monoethnic population of Kashmir valley for CYP2C9 gene and allelic polymorphism and investigated the effect of CYP2C9*2 and *3 polymorphism on the Pharmacokinetic and therapeutic and/or adverse pharmacodynamic responses to Phenytoin in the idiopathic epilepsy patients. PCR-RFLP methods were used for genotyping of 121 normal controls and 92 idiopathic epilepsy patients for CYP2C9*2 and *3 polymorphism, the results were validated by direct sequencing. Phenytoin pharmacokinetic (PK) analysis in idiopathic epilepsy patients was done using a validated EMIT assay technique. Pharmacodynamic analysis was done by evaluating clinical response to phenytoin therapy and ADR monitoring. The respective frequencies of CYP2C9 *1, *2, and *3 alleles were 64%, 6.6%, 29.3%, and 58%, 9.8%, 32.6% in controls and idiopathic epilepsy patients from Kashmir valley. PK analysis revealed that AUC0–4 was a better surrogate biomarker of CYP2C9 metabolizer status compared to C4 and C0 concentrations alone. A comparison of “phenytoin response categories” among CYP2C9 Wild and Heterozygous groups did not reveal any significant difference between the groups (p=0.3800). CYP2C9* 3 was the most frequent mutant allele found in healthy controls and idiopathic epilepsy patients of ethnic Kashmiri population. CYP2C9 genotype based phenytoin therapy is highly relevant in Kashmiri population due to a high incidence of genetic variations associated with therapeutic and adverse responses to phenytoin. Phenytoin AUC0–4 tends to correlate better with genetic polymorphism of CYP2C9.

  6. CYP46 T/C polymorphism is not associated with Alzheimer's dementia in a population from Hungary.

    PubMed

    Juhász, Anna; Rimanóczy, Agnes; Boda, Krisztina; Vincze, Gábor; Szlávik, Gyozo; Zana, Marianna; Bjelik, Annamária; Pákáski, Magdolna; Bódi, Nikoletta; Palotás, András; Janka, Zoltán; Kálmán, János

    2005-08-01

    Multiple genetic and environmental factors regulate the susceptibility to Alzheimer's disease (AD). Recently, several independent studies have reported that a locus on chromosome 14q32.1, where a gene encoding a cholesterol degrading enzyme of the brain, called 24-hydroxylase (CYP46A1) is located, has been linked with AD. The single nucleotide polymorphism (T/C) in intron 2 of CYP46 gene has been found to confer the risk for AD. The water soluble 24(S)-hydroxysterol is the product of the CYP46A1, and elevated plasma and cerebrospinal fluid hydroxysterol concentrations have been found in AD, reflecting increased brain cholesterol turnover or cellular degradation, due to the neurodegenerative process. A case-control study was performed on 125 AD and 102 age- and gender-matched control subjects (CNT) from Hungary, to test the association of CYP46 T/C and apolipoprotein E (ApoE) gene polymorphisms in AD. The frequency of the CYP46 C allele was similar (chi2=0.647, df=1, P=0.421, exact P=0.466, OR=0.845; 95% CI: 0.561-1.274) in both groups (CNT: 27%; 95% CI: 21.3-33.4; AD 30%; 95% CI: 25.0-36.3). The ApoE varepsilon4 allele was significantly over-represented (chi2=11.029, df=2, P=0.004) in the AD population (23.2%; 95% CI: 18.2-29.0) when compared with the CNT (11.3%; 95% CI: 7.4-16.6). The presence or absence of one or two CYP46C alleles together with the ApoE varepsilon4 allele did not increase the risk of AD (OR=3.492; 95% CI: 1.401-8.707; P<0.007 and OR=3.714; 95% CI: 1.549-8.908; P<0.003, respectively). Our results indicate that the intron 2 T/C polymorphism of CYP46 gene (neither alone, nor together with the varepsilon4 allele) does not increase the susceptibility to late-onset sporadic AD in the Hungarian population.

  7. Genetic screening of non-classic CAH females with hyperandrogenemia identifies a novel CYP11B1 gene mutation.

    PubMed

    Shammas, Christos; Byrou, Stefania; Phelan, Marie M; Toumba, Meropi; Stylianou, Charilaos; Skordis, Nicos; Neocleous, Vassos; Phylactou, Leonidas A

    2016-04-01

    Congenital adrenal hyperplasia (CAH) is an endocrine autosomal recessive disorder with various symptoms of diverse severity. Mild hyperandrogenemia is the most commonclinical feature in non-classic CAH patients and 95% of the cases are identified by mutations in the CYP21A2 gene. In the present study, the second most common cause for non-classic CAH (NC-CAH), 11β-hydroxylase deficiency due to mutations in the CYP11B1 gene, is investigated. Screening of the CYP21A2 and CYP11B1 genes by direct sequencing was carried out for the detection of possible genetic defects in patients with suspected CAH. It wasobserved that CYP11B1 variants co-exist only in rare cases along with mutations in CYP21A2 in patients clinically diagnosed with CAH. A total of 23 NC-CAH female patients out of 75 were identified with only one mutation in the CYP21A2 gene. The novel CYP11B1 gene mutation, p.Val484Asp, was identified in a patient with CAH in the heterozygous state. The structural characterization of the novel p.Val484Asp was found to likely cause distortion of the surrounding beta sheet and indirect destabilization of the cavity that occurs on the opposite face of the structural elements, leading to partial impairment of the enzymatic activity. CYP21A2 gene mutations are the most frequent genetic defects in cases of NC-CAH even when these patients are in the heterozygous state. These mutations have a diverse phenotype giving rise to a variable extent of cortisol synthesis impairment; it is also clear that CYP11B1 mutants are a rare type of defects causing CAH.

  8. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis1[C][W][OPEN

    PubMed Central

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-01-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. PMID:24406793

  9. Identification and analysis of CYP450 genes from transcriptome of Lonicera japonica and expression analysis of chlorogenic acid biosynthesis related CYP450s.

    PubMed

    Qi, Xiwu; Yu, Xu; Xu, Daohua; Fang, Hailing; Dong, Ke; Li, Weilin; Liang, Chengyuan

    2017-01-01

    Lonicera japonica is an important medicinal plant that has been widely used in traditional Chinese medicine for thousands of years. The pharmacological activities of L. japonica are mainly due to its rich natural active ingredients, most of which are secondary metabolites. CYP450s are a large, complex, and widespread superfamily of proteins that participate in many endogenous and exogenous metabolic reactions, especially secondary metabolism. Here, we identified CYP450s in L. japonica transcriptome and analyzed CYP450s that may be involved in chlorogenic acid (CGA) biosynthesis. The recent availability of L. japonica transcriptome provided opportunity to identify CYP450s in this herb. BLAST based method and HMM based method were used to identify CYP450s in L. japonica transcriptome. Then, phylogenetic analysis, conserved motifs analysis, GO annotation, and KEGG annotation analyses were conducted to characterize the identified CYP450s. qRT-PCR was used to explore expression patterns of five CGA biosynthesis related CYP450s. In this study, 151 putative CYP450s with complete cytochrome P450 domain, which belonged to 10 clans, 45 families and 76 subfamilies, were identified in L. japonica transcriptome. Phylogenetic analysis classified these CYP450s into two major branches, A-type (47%) and non-A type (53%). Both types of CYP450s had conserved motifs in L. japonica . The differences of typical motif sequences between A-type and non-A type CYP450s in L. japonica were similar with other plants. GO classification indicated that non-A type CYP450s participated in more molecular functions and biological processes than A-type. KEGG pathway annotation totally assigned 47 CYP450s to 25 KEGG pathways. From these data, we cloned two LjC3Hs (CYP98A subfamily) and three LjC4Hs (CYP73A subfamily) that may be involved in biosynthesis of CGA, the major ingredient for pharmacological activities of L. japonica . qRT-PCR results indicated that two LjC3Hs exhibited oppositing expression

  10. Moringa oleifera leaf extracts inhibit 6β-hydroxylation of testosterone by CYP3A4

    PubMed Central

    Monera, Tsitsi G.; Wolfe, Alan R.; Maponga, Charles C.; Benet, Leslie Z.; Guglielmo, Joseph

    2017-01-01

    Background Moringa oleifera is a tropical tree often used as a herbal medicine, including by people who test positive for HIV. Since herbal constituents may interact with drugs via inhibition of metabolizing enzymes, we investigated the effects of extracts of M. oleifera on the CYP3A4-mediated 6ß-hydroxylation of testosterone. Methods Methanolic and aqueous leaf and root of extracts of M. oleifera with concentrations between 0.01 and 10 mg/ml were incubated with testosterone and mixed-sex human liver microsomes in the presence of NADPH. Metabolite concentrations were determined by HPLC. The cytotoxicity of the extracts was tested with HepG2 cells using the MTT formazan assay. Results Significant CYP3A4 inhibitory effects were found, with IC50 values of 0.5 and 2.5 mg/ml for leaf-methanol and leaf-water extracts, respectively. Root extracts were less active. Cytotoxicity was observed only with the leaf-water extract (IC50 = 6 mg/ml). Conclusions Further investigation is warranted to elucidate the potential of M. oleifera for clinically significant interactions with antiretroviral and other drugs. PMID:19745507

  11. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers.

    PubMed

    Yeh, Rosa F; Gaver, Vincent E; Patterson, Kristine B; Rezk, Naser L; Baxter-Meheux, Faustina; Blake, Michael J; Eron, Joseph J; Klein, Cheri E; Rublein, John C; Kashuba, Angela D M

    2006-05-01

    The effect of lopinavir/ritonavir (LPV/r) administration on cytochrome P450 (CYP) enzyme activity was quantified using a phenotyping biomarker cocktail. Changes in CYP2C9, CYP2C19, CYP3A, CYP1A2, N-acetyltransferase-2 (NAT-2), and xanthine oxidase (XO) activities were evaluated using warfarin (WARF) + vitamin K, omeprazole (OMP), intravenous (IV) and oral (PO) midazolam (MDZ), and caffeine (CAF). : Open-label, multiple-dose, pharmacokinetic study in healthy volunteers. Subjects (n = 14) simultaneously received PO WARF 10 mg, vitamin K 10 mg, OMP 40 mg, CAF 2 mg/kg, and IV MDZ 0.025 mg/kg on days (D) 1 and 14, and PO MDZ 5 mg on D2 and D15. LPV/r (400/100 mg twice daily) was administered on D4-17. CYP2C9 and CYP2C19 activities were quantified by S-WARF AUC0-inf and OMP/5-hydroxy OMP ratio, respectively. CYP1A2, NAT-2, and XO activities were quantified by urinary CAF metabolite ratios. Hepatic and intestinal + hepatic CYP3A activities were quantified by IV (CL) and PO (CL/F) MDZ clearance, respectively. After LPV/r therapy, CYP2C9, CYP2C19, and CYP1A2 activity increased by 29%, 100%, and 43% (P = 0.001, 0.046, and 0.001), respectively. No changes were seen in NAT-2 or XO activity. Hepatic and intestinal + hepatic CYP3A activity decreased by 77% (P < 0.001) and 92% (P = 0.001), respectively. LPV/r therapy results in modest induction of CYP1A2 and CYP2C9 and potent induction of CYP2C19 activity. Increasing doses of concomitant medications metabolized by these enzymes may be necessary. LPV/r inhibited intestinal CYP3A to a greater extent than hepatic CYP3A activity. Doses of concomitant CYP3A substrates should be reduced when combined with LPV/r, although intravenously administered compounds may require less of a relative dose reduction than orally administered compounds.

  12. Epigenetic Regulation of Vitamin D 24-Hydroxylase/CYP24A1 in Human Prostate Cancer

    PubMed Central

    Luo, Wei; Karpf, Adam R.; Deeb, Kristin K.; Muindi, Josephia R.; Morrison, Carl D.; Johnson, Candace S.; Trump, Donald L.

    2010-01-01

    Calcitriol, a regulator of calcium homeostasis with antitumor properties, is degraded by the product of the CYP24A1 gene which is downregulated in human prostate cancer by unknown mechanisms. We found that CYP24A1 expression is inversely correlated with promoter DNA methylation in prostate cancer cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (DAC) activates CYP24A1 expression in prostate cancer cells. In vitro methylation of the CYP24A1 promoter represses its promoter activity. Furthermore, inhibition of histone deacetylases by trichostatin A (TSA) enhances the expression of CYP24A1 in prostate cancer cells. ChIP-qPCR reveals that specific histone modifications are associated with the CYP24A1 promoter region. Treatment with TSA increases H3K9ac and H3K4me2 and simultaneously decreases H3K9me2 at the CYP24A1 promoter. ChIP-qPCR assay reveals that treatment with DAC and TSA increases the recruitment of VDR to the CYP24A1 promoter. RT-PCR analysis of paired human prostate samples reveals that CYP24A1 expression is down-regulated in prostate malignant lesions compared to adjacent histologically benign lesions. Bisulfite pyrosequencing shows that CYP24A1 gene is hypermethylated in malignant lesions compared to matched benign lesions. Our findings indicate that repression of CYP24A1 gene expression in human prostate cancer cells is mediated in part by promoter DNA methylation and repressive histone modifications. PMID:20587525

  13. Contribution of CYP2B6 alleles in explaining extreme (S)-methadone plasma levels: a CYP2B6 gene resequencing study.

    PubMed

    Dobrinas, Maria; Crettol, Séverine; Oneda, Beatrice; Lahyani, Rachel; Rotger, Margalida; Choong, Eva; Lubomirov, Rubin; Csajka, Chantal; Eap, Chin B

    2013-02-01

    (S)-Methadone, metabolized mainly by CYP2B6, shows a wide interindividual variability in its pharmacokinetics and pharmacodynamics. Resequencing of the CYP2B6 gene was performed in 12 and 35 selected individuals with high (S)-methadone plasma exposure and low (S)-methadone plasma exposure, respectively, from a previously described cohort of 276 patients undergoing methadone maintenance treatment. Selected genetic polymorphisms were then analyzed in the complete cohort. The rs35303484 (*11; c136A>G; M46V) polymorphism was overrepresented in the high (S)-methadone level group, whereas the rs3745274 (*9; c516G>T; Q172H), rs2279344 (c822+183G>A), and rs8192719 (c1294+53C>T) polymorphisms were underrepresented in the low (S)-methadone level group, suggesting an association with decreased CYP2B6 activity. Conversely, the rs3211371 (*5; c1459C>T; R487C) polymorphism was overrepresented in the low-level group, indicating an increased CYP2B6 activity. A higher allele frequency was found in the high-level group compared with the low-level group for rs3745274 (*9; c516G>T; Q172H), rs2279343 (*4; c785A>G; K262R) (together representing CYP2B6*6), rs8192719 (c1294+53C>T), and rs2279344 (c822+183G>A), suggesting their involvement in decreased CYP2B6 activity. These results should be replicated in larger independent cohorts. Known genetic polymorphisms in CYP2B6 contribute toward explaining extreme (S)-methadone plasma levels observed in a cohort of patients following methadone maintenance treatment.

  14. Association of tardive dyskinesia with variation in CYP2D6: Is there a role for active metabolites?

    PubMed Central

    Koola, Maju M; Tsapakis, Evangelia M; Wright, Padraig; Smith, Shubulade; Kerwin, Robert W(RIP); Nugent, Katie L; Aitchison, Katherine J

    2018-01-01

    Background The aim of this study was to examine whether there was an association between tardive dyskinesia (TD) and number of functional CYP2D6 genes. Methods A Caucasian sample of 70 patients was recruited in 1996–1997 from South London and Maudsley National Health Service (NHS) Foundation Trust, UK. Subjects had a DSM-IIIR diagnosis of schizophrenia and were treated with typical antipsychotics at doses equivalent to at least 100 mg chlorpromazine daily for at least 12 months prior to assessment. All patients were genotyped for CYP2D6 alleles*3–5, *41, and for amplifications of the gene. Results There were 13 patients with TD. The mean (standard deviation (SD)) years of duration of antipsychotic treatment in TD-positive was 15.8 (7.9) vs TD-negative 11.1 (7.4) (p=0.04). Increased odds of experiencing TD were associated with increased ability to metabolize CYP2D6, as measured by genotypic category (odds ratio (OR)=4.2), increasing duration in treatment (OR=1.0), and having drug-induced Parkinsonism (OR=9.7). Discussion We found a significant association between CYP2D6 genotypic category and TD with the direction of effect being an increase in the number of functional CYP2D6 genes being associated with an increased risk of TD. This is the first study to examine the association between TD and CYP2D6 in Caucasians with this number of genotypic categories. In the future, metabolomics may be utilized in the discovery of biomarkers and novel drug targets. PMID:24595968

  15. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    PubMed

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans.

    PubMed

    Ghisari, Mandana; Long, Manhai; Bonefeld-Jørgensen, Eva C

    2013-01-01

    The Indigenous Arctic population is of Asian descent, and their genetic background is different from the Caucasian populations. Relatively little is known about the specific genetic polymorphisms in genes involved in the activation and detoxification mechanisms of environmental contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), and an elucidation of gene-environment interactions in relation to health risks is needed. The aim of this study was to determine and compare the genotype and allele frequencies of the cytochrome P450 CYP1A1 Ile462Val (rs1048943), CYP1B1 Leu432Val (rs1056836) and catechol-O-methyltransferase COMT Val158Met (rs4680) in Greenlandic Inuit (n=254) and Europeans (n=262) and explore the possible relation between the genotypes and serum levels of POPs. The genotype and allele frequency distributions of the three genetic polymorphisms differed significantly between the Inuit and Europeans. For Inuit, the genotype distribution was more similar to those reported for Asian populations. We observed a significant difference in serum polychlorinated biphenyl (CB-153) and the pesticide 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p'-DDE) levels between Inuit and Europeans, and for Inuit also associations between the POP levels and genotypes for CYP1A1, CYP1B1 and COMT. Our data provide new information on gene polymorphisms in Greenlandic Inuit that might support evaluation of susceptibility to environmental contaminants and warrant further studies.

  17. Role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to organophosphate pesticides.

    PubMed

    Singh, Satyender; Kumar, Vivek; Vashisht, Kapil; Singh, Priyanka; Banerjee, Basu Dev; Rautela, Rajender Singh; Grover, Shyam Sunder; Rawat, Devendra Singh; Pasha, Syed Tazeen; Jain, Sudhir Kumar; Rai, Arvind

    2011-11-15

    Organophosphate pesticides (OPs) are primarily metabolized by several xenobiotic metabolizing enzymes (XMEs). Very few studies have explored genetic polymorphisms of XMEs and their association with DNA damage in pesticide-exposed workers. The present study was designed to determine the role of genetic polymorphisms of CYP1A1, CYP3A5, CYP2C9, CYP2D6, and PON1 in the modulation of DNA damage in workers occupationally exposed to OPs. We examined 284 subjects including 150 workers occupationally exposed to OPs and 134 normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using PCR-RFLP. The results revealed that the PONase activity toward paraoxonase and AChE activity was found significantly lowered in workers as compared to control subjects (p<0.001). Workers showed significantly higher DNA damage compared to control subjects (14.37±2.15 vs. 6.24±1.37 tail% DNA, p<0.001). Further, the workers with CYP2D6*3PM and PON1 (QQ and MM) genotypes were found to have significantly higher DNA damage when compared to other genotypes (p<0.05). In addition, significant increase in DNA damage was also observed in workers with concomitant presence of certain CYP2D6 and PON1 (Q192R and L55M) genotypes which need further extensive studies. In conclusion, the results indicate that the PON1 and CYP2D6 genotypes can modulate DNA damage elicited by some OPs possibly through gene-environment interactions. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Cytochrome P450 genes from the aquatic midge Chironomus tentans: Atrazine-induced up-regulation of CtCYP6EX3 contributing to oxidative activation of chlorpyrifos

    USDA-ARS?s Scientific Manuscript database

    The open reading frames of 19 cytochrome P450 monooxygenase (CYP) genes were sequenced from Chironomus tentans, a commonly used freshwater invertebrate model. Functional analysis of CtCYP6EX3 confirmed its atrazine-induced oxidative activation for chlorpyrifos by using a nanoparticle-based RNA inter...

  19. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species

    PubMed Central

    Koch, Aline; Kumar, Neelendra; Weber, Lennart; Keller, Harald; Imani, Jafargholi; Kogel, Karl-Heinz

    2013-01-01

    Head blight, which is caused by mycotoxin-producing fungi of the genus Fusarium, is an economically important crop disease. We assessed the potential of host-induced gene silencing targeting the fungal cytochrome P450 lanosterol C-14α-demethylase (CYP51) genes, which are essential for ergosterol biosynthesis, to restrict fungal infection. In axenic cultures of Fusarium graminearum, in vitro feeding of CYP3RNA, a 791-nt double-stranded (ds)RNA complementary to CYP51A, CYP51B, and CYP51C, resulted in growth inhibition [half-maximum growth inhibition (IC50) = 1.2 nM] as well as altered fungal morphology, similar to that observed after treatment with the azole fungicide tebuconazole, for which the CYP51 enzyme is a target. Expression of the same dsRNA in Arabidopsis and barley rendered susceptible plants highly resistant to fungal infection. Microscopic analysis revealed that mycelium formation on CYP3RNA-expressing leaves was restricted to the inoculation sites, and that inoculated barley caryopses were virtually free of fungal hyphae. This inhibition of fungal growth correlated with in planta production of siRNAs corresponding to the targeted CYP51 sequences, as well as highly efficient silencing of the fungal CYP51 genes. The high efficiency of fungal inhibition suggests that host-induced gene-silencing targeting of the CYP51 genes is an alternative to chemical treatments for the control of devastating fungal diseases. PMID:24218613

  20. Molecular cloning and characterization of amh, dax1 and cyp19a1a genes and their response to 17α-methyltestosterone in Pengze crucian carp.

    PubMed

    Li, Meng; Wang, Lihong; Wang, Houpeng; Liang, Hongwei; Zheng, Yao; Qin, Fang; Liu, Shaozhen; Zhang, Yingying; Wang, Zaizhao

    2013-05-01

    The proteins encoded by amh, dax1 and cyp19a1a play important roles in gonad differentiation. Their functions have been far less studied in teleosts. In this study, the full-length cDNAs of amh, dax1 and cyp19a1a were cloned and characterized in a triploid gynogenic fish, the Pengze crucian carp. Their expression profilings in juvenile development, adult tissues and juveniles exposed to 100 ng/L 17α-methyltestosterone (MT) were investigated. Results showed that their putative proteins shared high identities to their counterparts in cyprinid fish species, respectively. The tissue distribution results indicated that amh and cyp19a1a were predominantly expressed in the ovary and dax1 was dominantly expressed in the liver. Gene profiling in the developmental stages showed that all the three target genes had a consistent highest expression at 48 days post hatching (dph). The period of 48 dph appeared to be a key time during the process of the gonad development of Pengze crucian carp. 100 ng/L MT significantly increased the mRNA expression of amh at 2- and 4-week exposures and enhanced dax1 and cyp19a1a at 6-week exposure. The present study indicated that MT could influence the gonad development in Pengze crucian carp by disturbing sex-differentiation associated gene expression. Furthermore, the present study will be of great significance to broaden the understanding of molecular mechanisms of the physiological processes of reproduction in fish. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Optimization of Clonazepam Therapy Adjusted to Patient’s CYP3A Status and NAT2 Genotype

    PubMed Central

    Tóth, Katalin; Csukly, Gábor; Sirok, Dávid; Belic, Ales; Kiss, Ádám; Háfra, Edit; Déri, Máté; Menus, Ádám; Bitter, István

    2016-01-01

    Background: The shortcomings of clonazepam therapy include tolerance, withdrawal symptoms, and adverse effects such as drowsiness, dizziness, and confusion leading to increased risk of falls. Inter-individual variability in the incidence of adverse events in patients partly originates from the differences in clonazepam metabolism due to genetic and nongenetic factors. Methods: Since the prominent role in clonazepam nitro-reduction and acetylation of 7-amino-clonazepam is assigned to CYP3A and N-acetyl transferase 2 enzymes, respectively, the association between the patients’ CYP3A status (CYP3A5 genotype, CYP3A4 expression) or N-acetyl transferase 2 acetylator phenotype and clonazepam metabolism (plasma concentrations of clonazepam and 7-amino-clonazepam) was evaluated in 98 psychiatric patients suffering from schizophrenia or bipolar disorders. Results: The patients’ CYP3A4 expression was found to be the major determinant of clonazepam plasma concentrations normalized by the dose and bodyweight (1263.5±482.9 and 558.5±202.4ng/mL per mg/kg bodyweight in low and normal expressers, respectively, P<.0001). Consequently, the dose requirement for the therapeutic concentration of clonazepam was substantially lower in low-CYP3A4 expresser patients than in normal expressers (0.029±0.011 vs 0.058±0.024mg/kg bodyweight, P<.0001). Furthermore, significantly higher (about 2-fold) plasma concentration ratio of 7-amino-clonazepam and clonazepam was observed in the patients displaying normal CYP3A4 expression and slower N-acetylation than all the others. Conclusion: Prospective assaying of CYP3A4 expression and N-acetyl transferase 2 acetylator phenotype can better identify the patients with higher risk of adverse reactions and can facilitate the improvement of personalized clonazepam therapy and withdrawal regimen. PMID:27639091

  2. Effects of salvianolic acid B and tanshinone IIA on the pharmacokinetics of losartan in rats by regulating the activities and expression of CYP3A4 and CYP2C9.

    PubMed

    Wang, Rong; Zhang, Hai; Wang, Yujie; Yu, Xiaoyan; Yuan, Yongfang

    2016-03-02

    Losartan (LST) is a common chemical drug used to treat high blood pressure and reduce the risk of stroke in certain people with heart disease. Danshen, prepared from the dried root and rhizome of Salvia miltiorrhiza Bunge, has been widely used for prevention and treatment of various cardiovascular and cerebrovascular diseases. There are more than 35 formulations containing Danshen indexed in the 2010 Chinese Pharmacopoeia, which are often combined with LST to treat cardiovascular and cerebrovascular diseases in the clinic. The effects of the two major components of Danshen, salvianolic acid B (SA-B) and tanshinone IIA (Tan IIA), on the pharmacokinetics of losartan and its metabolite, EXP3174, in rats were investigated by liquid chromatography coupled with mass spectrometry (LC-MS). Male Sprague-Dawley rats were randomly assigned to 3 groups: LST, LST+SA-B and LST+Tan IIA, and the main pharmacokinetic parameters were estimated after oral administration of LST, LST+SA-B and LST+Tan IIA. It was found that there are significant differences in the pharmacokinetic parameters among the three groups: Cmax, t1/2, AUC, AUMC in the LST+SA-B group was smaller than those in group LST, while larger in group LST+Tan IIA. Further, the effects of SA-B and Tan IIA on the metabolism of losartan was also investigated using rat liver microsomes in vitro. The results indicated that SA-B can induce the metabolism of LST, while Tan IIA can inhibit the metabolism of LST in rat liver microsomes in vitro by regulating activities of CYP450 enzymes. In addition, the effect of SA-B and Tan IIA on CYP3A4 and CYP2C9 expression was studied in Chang liver cells by western-blotting and Real-time PCR. It was concluded that the two components of Danshen, SA-B and Tan IIA have different influences on the metabolism of LST: SA-B can obviously speed up the metabolism of LST by inducing CYP3A4/CYP2C9 activities and expression, however, Tan IIA can slow down the metabolism of LST by inhibiting CYP3A4/CYP2C

  3. Great Genotypic and Phenotypic Diversities Associated with Copy-Number Variations of Complement C4 and RP-C4-CYP21-TNX (RCCX) Modules: a Comparison of Asian Indian and European American Populations

    PubMed Central

    Saxena, Kapil; Kitzmiller, Kathryn J.; Wu, Yee Ling; Zhou, Bi; Esack, Nazreen; Hiremath, Leena; Chung, Erwin K.; Yang, Yan; Yu, C. Yung

    2009-01-01

    Inter-individual gene copy-number variations (CNVs) probably afford human populations the flexibility to respond to a variety of environmental challenges, but also lead to differential disease predispositions. We investigated gene CNVs for complement component C4 and steroid 21-hydroxylase from the RP-C4-CYP21-TNX (RCCX) modules located in the major histocompatibility complex among healthy Asian-Indian Americans (AIA) and compared them to European Americans. A combination of definitive techniques that yielded cross-confirmatory results was used. The medium gene copy-numbers for C4 and its isotypes, acidic C4A and basic C4B, were 4, 2 and 2, respectively, but their frequencies were only 53–56%. The distribution patterns for total C4 and C4A are skewed towards the high copy-number side. For example, the frequency of AIA-subjects with three copies of C4A (30.7%) was 3.92-fold of those with a single copy (7.83%). The monomodular-short haplotype with a single C4B gene and the absence of C4A, which is in linkage- disequilibrium with HLA DRB1*0301 in Europeans and a strong risk factor for autoimmune diseases, has a frequency of 0.012 in AIA but 0.106 among healthy European Americans (p=6.6×10−8). The copy-number and the size of C4 genes strongly determine the plasma C4 protein concentrations. Parallel variations in copy-numbers of CYP21A (CYP21A1P) and TNXA with total C4 were also observed. Notably, 13.1% of AIA-subjects had three copies of the functional CYP21B, which were likely generated by recombinations between monomodular and bimodular RCCX haplotypes. The high copy-numbers of C4 and the high frequency of RCCX recombinants offer important insights to the prevalence of autoimmune and genetic diseases. PMID:19135723

  4. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    PubMed

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  5. Partial cloning of CYP2C23a genes and hepatic protein expression in eight representative avian species.

    PubMed

    Watanabe, K P; Kawai, Y K; Nakayama, S M M; Ikenaka, Y; Mizukawa, H; Takaesu, N; Ito, M; Ikushiro, S-I; Sakaki, T; Ishizuka, M

    2015-04-01

    Large interspecies differences in avian xenobiotic metabolism have been revealed by microsome-based studies, but specific enzyme isoforms in different bird species have not yet been compared. We have previously shown that CYP2C23 genes are the most induced CYP isoforms in chicken liver. In this study, we collected partial CYP2C23a gene sequences from eight avian species (ostrich, blue-eared pheasant, snowy owl, great-horned owl, Chilean flamingo, peregrin falcon, Humboldt penguin, and black-crowned night heron) selected to cover the whole avian lineage: Paleognathae, Galloanserae, and Neoaves. Genetic analysis showed that CYP2C23 genes of Galloanserae species (chicken and blue-eared pheasant) had unique characteristics. We found some duplicated genes (CYP2C23a and CYP2C23b) and two missing amino acid residues in Galloanserae compared to the other two lineages. The genes have lower homology than in other avian lineages, which suggests Galloanserae-specific rapid evolutionary changes. These genetic features suggested that the Galloanserae are not the most representative avian species, considering that the Neoaves comprise more than 95% of birds. Moreover, we succeeded in synthesizing an antipeptide polyclonal antibody against the region of CYP2C23 protein conserved in avians. However, comparative quantitation of CYP2C23 proteins in livers from six species showed that expression levels of these proteins differed no more than fourfold. Further study is needed to clarify the function of avian CYP2C23 proteins. © 2014 John Wiley & Sons Ltd.

  6. A PBPK Model to Predict Disposition of CYP3A-Metabolized Drugs in Pregnant Women: Verification and Discerning the Site of CYP3A Induction

    PubMed Central

    Ke, A B; Nallani, S C; Zhao, P; Rostami-Hodjegan, A; Unadkat, J D

    2012-01-01

    Besides logistical and ethical concerns, evaluation of safety and efficacy of medications in pregnant women is complicated by marked changes in pharmacokinetics (PK) of drugs. For example, CYP3A activity is induced during the third trimester (T3). We explored whether a previously published physiologically based pharmacokinetic (PBPK) model could quantitatively predict PK profiles of CYP3A-metabolized drugs during T3, and discern the site of CYP3A induction (i.e., liver, intestine, or both). The model accounted for gestational age-dependent changes in maternal physiological function and hepatic CYP3A activity. For model verification, mean plasma area under the curve (AUC), peak plasma concentration (Cmax), and trough plasma concentration (Cmin) of midazolam (MDZ), nifedipine (NIF), and indinavir (IDV) were predicted and compared with published studies. The PBPK model successfully predicted MDZ, NIF, and IDV disposition during T3. A sensitivity analysis suggested that CYP3A induction in T3 is most likely hepatic and not intestinal. Our PBPK model is a useful tool to evaluate different dosing regimens during T3 for drugs cleared primarily via CYP3A metabolism. PMID:23835883

  7. Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients.

    PubMed

    Provenzani, Alessio; Notarbartolo, Monica; Labbozzetta, Manuela; Poma, Paola; Vizzini, Giovanni; Salis, Paola; Caccamo, Chiara; Bertani, Tullio; Palazzo, Ugo; Polidori, Piera; Gridelli, Bruno; D'Alessandro, Natale

    2011-12-01

    Tacrolimus is a substrate of cytochrome P4503A (CYP3A) enzymes as well as of the drug transporter ABCB1. We have investigated the possible influence of CYP3A5 and ABCB1 single nucleotide polymorphisms (SNPs) and other factors (e.g. albumin, hematocrit and steroids) on tacrolimus blood levels achieved in a population of Caucasian liver (n=51) and kidney (n=50) transplant recipients. At 1, 3 and 6 months after transplantation, tacrolimus doses (mg/kg/day) and trough blood levels (C0) were recorded and the weight-adjusted tacrolimus dosage (mg/kg/day) was calculated. Polymerase chain reaction followed by restriction fragment length polymorphism analysis was used for genotyping CYP3A5*1 and *3 [6986A>G] as well as ABCB1 at exons 21 [2677G>T/A] and 26 [3435C>T] in both liver transplant donors and recipients and in kidney transplant recipients. Of the 152 subjects studied, 84.9% showed a CYP3A5*3/*3 genotype. The total frequency of the allelic variant *3 was 93%. For the G2677T/A and C3435T polymorphisms the total frequencies of the allelic variants T/A and T were 44.7 and 46.7%, respectively. At 1, 3 and 6 months after transplantation the dose-adjusted C0 levels were significantly lower in patients with one copy of the *1 allele compared to those homozygous for the *3 allele. In the case of liver transplant patients the tacrolimus dose requirements were dominantly influenced by the polymorphisms of the CYP3A5 gene in the donors. With regard to the ABCB1 SNPs, in general they did not show any appreciable influence on tacrolimus dosing requirements; however, kidney transplant recipients carrying the 2677T/A allele required significantly higher daily tacrolimus doses than subjects homozygous for the wild-type allele. Identification of CYP3A5 single nucleotide polymorphisms prior to transplantation could contribute to evaluate the appropriate initial dosage of tacrolimus in the patients.

  8. Association study of ERβ, AR, and CYP19A1 genes and MtF transsexualism.

    PubMed

    Fernández, Rosa; Esteva, Isabel; Gómez-Gil, Esther; Rumbo, Teresa; Almaraz, Mari Cruz; Roda, Ester; Haro-Mora, Juan-Jesús; Guillamón, Antonio; Pásaro, Eduardo

    2014-12-01

    The etiology of male-to-female (MtF) transsexualism is unknown. Both genetic and neurological factors may play an important role. To investigate the possible influence of the genetic factor on the etiology of MtF transsexualism. We carried out a cytogenetic and molecular analysis in 442 MtFs and 473 healthy, age- and geographical origin-matched XY control males. The karyotype was investigated by G-banding and by high-density array in the transsexual group. The molecular analysis involved three tandem variable regions of genes estrogen receptor β (ERβ) (CA tandem repeats in intron 5), androgen receptor (AR) (CAG tandem repeats in exon 1), and CYP19A1 (TTTA tandem repeats in intron 4). The allele and genotype frequencies, after division into short and long alleles, were obtained. We investigated the association between genotype and transsexualism by performing a molecular analysis of three variable regions of genes ERβ, AR, and CYP19A1 in 915 individuals (442 MtFs and 473 control males). Most MtFs showed an unremarkable 46,XY karyotype (97.96%). No specific chromosome aberration was associated with MtF transsexualism, and prevalence of aneuploidy (2.04%) was slightly higher than in the general population. Molecular analyses showed no significant difference in allelic or genotypic distribution of the genes examined between MtFs and controls. Moreover, molecular findings presented no evidence of an association between the sex hormone-related genes (ERβ, AR, and CYP19A1) and MtF transsexualism. The study suggests that the analysis of karyotype provides limited information in these subjects. Variable regions analyzed from ERβ, AR, and CYP19A1 are not associated with MtF transsexualism. Nevertheless, this does not exclude other polymorphic regions not analyzed. © 2014 International Society for Sexual Medicine.

  9. Influence of ABCB1 and CYP3A5 gene polymorphisms on pharmacokinetics of apixaban in patients with atrial fibrillation and acute stroke.

    PubMed

    Kryukov, Alexander Valerevich; Sychev, Dmitry Alekseevich; Andreev, Denis Anatolevich; Ryzhikova, Kristina Anatolievna; Grishina, Elena Anatolievna; Ryabova, Anastasia Vladislavovna; Loskutnikov, Mark Alekseevich; Smirnov, Valeriy Valerevich; Konova, Olga Dmitrievna; Matsneva, Irina Andreevna; Bochkov, Pavel Olegovich

    2018-01-01

    Difficulties in non-vitamin K anticoagulant (NOAC) administration in acute stroke can be associated with changes in pharmacokinetic parameters of NOAC such as biotransformation, distribution, and excretion. Therefore, obtaining data on pharmacokinetics of NOAC and factors that affect it may help develop algorithms for personalized use of this drug class in patients with acute cardioembolic stroke. Pharmacokinetics of apixaban in patients with acute stroke was studied earlier by Kryukov et al. The present study enrolled 17 patients with cardioembolic stroke, who received 5 mg of apixaban. In order to evaluate the pharmacokinetic parameters of apixaban, venous blood samples were collected before taking 5 mg of apixaban (point 0) and 1, 2, 3, 4, 10, and 12 hours after drug intake. Blood samples were centrifuged at 3000 rpm for 15 minutes. Separate plasma was aliquoted in Eppendorf tubes and frozen at -70°C until analysis. High-performance liquid chromatography mass spectrometry analysis was used to determine apixaban plasma concentration. Genotyping was performed by real-time polymerase chain reaction. CYP3A isoenzyme group activity was evaluated by determining urinary concentration of endogenous substrate of the enzyme and its metabolite (6-β-hydroxycortisol to cortisol ratio). Statistical analysis was performed using SPSS Statistics version 20.0. The protocol of this study was reviewed and approved by the ethics committee; patients or their representatives signed an informed consent. ABCB1 ( rs1045642 and rs4148738 ) gene polymorphisms do not affect the pharmacokinetics of apixaban as well as CYP3A5 ( rs776746 ) gene polymorphisms. Apixaban pharmacokinetics in groups with different genotypes did not differ statistically significantly. Correlation analysis showed no statistically significant relationship between pharmacokinetic parameters of apixaban and the metabolic activity of CYP3A. Questions such as depending on genotyping results for apixaban dosing and

  10. Evolution of the CYP2D gene cluster in humans and four non-human primates.

    PubMed

    Yasukochi, Yoshiki; Satta, Yoko

    2011-01-01

    The human cytochrome P450 2D6 (CYP2D6) is a primary enzyme involved in the metabolism of about 25% of commonly used therapeutic drugs. CYP2D6 belongs to the CYP2D subfamily, a gene cluster located on chromosome 22, which comprises the CYP2D6 gene and pseudogenes CYP2D7P and CYP2D8P. Although the chemical and physiological properties of CYP2D6 have been extensively studied, there has been no study to date on molecular evolution of the CYP2D subfamily in the human genome. Such knowledge could greatly contribute to the understanding of drug metabolism in humans because it makes us to know when and how the current metabolic system has been constructed. The knowledge moreover can be useful to find differences in exogenous substrates in a particular metabolism between human and other animals such as experimental animals. Here, we conducted a preliminary study to investigate the evolution and gene organization of the CYP2D subfamily, focused on humans and four non-human primates (chimpanzees, orangutans, rhesus monkeys, and common marmosets). Our results indicate that CYP2D7P has been duplicated from CYP2D6 before the divergence between humans and great apes, whereas CYP2D6 and CYP2D8P have been already present in the stem lineages of New World monkeys and Catarrhini. Furthermore, the origin of the CYP2D subfamily in the human genome can be traced back to before the divergence between amniotes and amphibians. Our analyses also show that reported chimeric sequences of the CYP2D6 and CYP2D7 genes in the chimpanzee genome appear to be exchanged in its genome database.

  11. CYP2D6 gene polymorphisms in Brazilian patients with breast cancer treated with adjuvant tamoxifen and its association with disease recurrence

    PubMed Central

    De Ameida Melo, Mariella; De Vasconcelos-Valença, Rodrigo José; Neto, Fidelis Manes; Borges, Rafael Soares; Costa-Silva, Danylo Rafhael; Da Conceição Barros-Oliveira, Maria; Borges, Umbelina Soares; Alencar, Airlane Pereira; Silva, Vladimir Costa; Da Silva, Benedito Borges

    2016-01-01

    At present, there is controversy regarding the efficacy of tamoxifen in breast cancer patients who are carriers of cytochrome P450 2D6 (CYP2D6) gene polymorphisms, in terms of recurrence and overall survival. Thus, the aim of the present study was to investigate the association of the CYP2D6 *4, *10 and *17 gene polymorphisms with breast cancer recurrence in a Brazilian population. The cohort comprised 40 receptor-positive breast cancer patients without recurrence and 40 with distant recurrence. A 3-ml sample of peripheral blood was collected from each patient to determine the presence of the *4, *10 and *17 single nucleotide polymorphisms of the CYP2D6 gene by quantitative polymerase chain reaction analysis. There was no statistically significant difference between the two groups regarding the polymorphism frequency (P=0.246). The results revealed that intermediate metabolizers occurred in 5% of patients without recurrence and in 15% of those with distant recurrence. Poor metabolizers occurred in only 1 patient (2.5%) per group, and there was no significant difference between the groups (P=0.789). The present study concluded that the CYP2D6 gene polymorphism in women with hormone-sensitive breast cancer treated with tamoxifen was not associated with disease recurrence. PMID:27882219

  12. PERMANENT GENETIC RESOURCES: Consensus primers of cyp73 genes discriminate willow species and hybrids (Salix, Salicaceae).

    PubMed

    Trung, Le Quang; VAN Puyvelde, Karolien; Triest, Ludwig

    2008-03-01

    Consensus primers, based on exon sequences of the cyp73 gene family coding for cinnamate 4-hydroxylase (C4H) of the lignin biosynthesis pathway, were designed for the tetraploid willow species Salix alba and Salix fragilis. Diagnostic alleles at species level were observed among introns of three cyp73 genes and allowed unambiguous detection of the first generation and introgressed hybrids in populations. Progeny analysis of a female S. alba with a male introgressed hybrid confirmed the codominant inheritance of each intron. Sequences of the diagnostic alleles of both species were similar to those found in the hybrids. © 2007 The Authors.

  13. SH3BP4, a novel pigmentation gene, is inversely regulated by miR-125b and MITF

    PubMed Central

    Kim, Kyu-Han; Lee, Tae Ryong; Cho, Eun-Gyung

    2017-01-01

    Our previous work has identified miR-125b as a negative regulator of melanogenesis. However, the specific melanogenesis-related genes targeted by this miRNA had not been identified. In this study, we established a screening strategy involving three consecutive analytical approaches—analysis of target genes of miR-125b, expression correlation analysis between each target gene and representative pigmentary genes, and functional analysis of candidate genes related to melanogenesis—to discover melanogenesis-related genes targeted by miR-125b. Through these analyses, we identified SRC homology 3 domain-binding protein 4 (SH3BP4) as a novel pigmentation gene. In addition, by combining bioinformatics analysis and experimental validation, we demonstrated that SH3BP4 is a direct target of miR-125b. Finally, we found that SH3BP4 is transcriptionally regulated by microphthalmia-associated transcription factor as its direct target. These findings provide important insights into the roles of miRNAs and their targets in melanogenesis. PMID:28819321

  14. A PBPK Model to Predict Disposition of CYP3A-Metabolized Drugs in Pregnant Women: Verification and Discerning the Site of CYP3A Induction.

    PubMed

    Ke, A B; Nallani, S C; Zhao, P; Rostami-Hodjegan, A; Unadkat, J D

    2012-09-26

    Besides logistical and ethical concerns, evaluation of safety and efficacy of medications in pregnant women is complicated by marked changes in pharmacokinetics (PK) of drugs. For example, CYP3A activity is induced during the third trimester (T3). We explored whether a previously published physiologically based pharmacokinetic (PBPK) model could quantitatively predict PK profiles of CYP3A-metabolized drugs during T3, and discern the site of CYP3A induction (i.e., liver, intestine, or both). The model accounted for gestational age-dependent changes in maternal physiological function and hepatic CYP3A activity. For model verification, mean plasma area under the curve (AUC), peak plasma concentration (Cmax), and trough plasma concentration (Cmin) of midazolam (MDZ), nifedipine (NIF), and indinavir (IDV) were predicted and compared with published studies. The PBPK model successfully predicted MDZ, NIF, and IDV disposition during T3. A sensitivity analysis suggested that CYP3A induction in T3 is most likely hepatic and not intestinal. Our PBPK model is a useful tool to evaluate different dosing regimens during T3 for drugs cleared primarily via CYP3A metabolism.CPT: Pharmacometrics & Systems Pharmacology (2012) 1, e3; doi:10.1038/psp.2012.2; advance online publication 26 September 2012.

  15. Functional characterization of CYP52G3 from Aspergillus oryzae and its application for bioconversion and synthesis of hydroxyl flavanone and steroids.

    PubMed

    Uno, Tomohide; Yanase, Takeshi; Imaishi, Hiromasa

    2017-05-01

    Aspergillus oryzae is a fungus widely used in traditional Japanese fermentation industries. Cytochrome P450 (CYP) proteins are ubiquitously distributed in nature and display a broad range of enzymatic activities. A novel CYP52 (CYP52G3) gene was found in A. oryzae. In this study, we report the functional characterization of CYP52G3. The recombinant protein was expressed heterologously in Escherichia coli, and its membrane fraction isolated. CYP52G3 showed activities for 7-ethoxycoumarin and α-naphtoflavone. Furthermore, CYP52G3 hydroxylated flavanone at the 4' and 6 position and metabolized some hydroxyl-flavanones and steroids. Bioconversion experiments indicated that CYP52G3 could convert flavanone and testosterone in a synthetic medium. The conversion rates of flavanone and testosterone at 24 H were 50% and 70%, respectively. These results support that CYP52G3 could prove a useful enzyme for the efficient production of new compounds from flavonoids and steroids. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  16. Cyp1b1 deletion and retinol deficiency coordinately suppress mouse liver lipogenic genes and hepcidin expression during post-natal development

    PubMed Central

    Maguire, Meghan; Larsen, Michele Campaigne; Foong, Yee Hoon; Tanumihardjo, Sherry; Jefcoate, Colin R.

    2018-01-01

    Cyp1b1 deletion and gestational vitamin A deficiency (GVAD) redirect adult liver gene expression. A matched sufficient pre- and post-natal diet, which has high carbohydrate and normal iron content (LF12), increased inflammatory gene expression markers in adult livers that were suppressed by GVAD and Cyp1b1 deletion. At birth on the LF12 diet, Cyp1b1 deletion and GVAD each suppress liver expression of the iron suppressor, hepcidin (Hepc), while increasing stellate cell activation markers and suppressing post-natal increases in lipogenesis. Hepc was less suppressed in Cyp1b1−/− pups with a standard breeder diet, but was restored by iron supplementation of the LF12 diet. Conclusions The LF12 diet delivered low post-natal iron and attenuated Hepc. Hepc decreases in Cyp1b1−/− and GVAD mice resulted in stellate activation and lipogenesis suppression. Endothelial BMP6, a Hepc stimulant, is a potential coordinator and Cyp1b1 target. These neonatal changes in Cyp1b1−/− mice link to diminished adult obesity and liver inflammation. PMID:28583802

  17. Expression and inducibility of CYP1A1, 1A2, 1B1 by β-naphthoflavone and CYP2B22, CYP3As by rifampicin in heart regions and coronary arteries of pig.

    PubMed

    Messina, Andrea; Puccinelli, Emanuela; Gervasi, Pier Giovanni; Longo, Vincenzo

    2013-02-01

    In this study, the constitutive and inducible expression of the CYP genes (1A1, 1A2, 1B1, 2B22, 3A22, 3A29 and 3A46), related transcriptional factors (AhR, CAR, PXR, and Nrf2) and the antioxidant enzymes SOD, catalase, GSSH-reductase and GSH-peroxidase were investigated in the liver, heart regions and coronary arteries of control pigs and pigs treated with β-naphthoflavone (βNF) or with rifampicin (RIF). Real-time PCR experiments and enzymatic or immunoblot assays showed that CYP1A1 was predominantly enhanced by βNF in a similar manner in all the heart regions, whereas antioxidant enzyme activity was not affected. The rifampicin treatment resulted in an induction of CYP2B22 and CYP3As, at the transcriptional, activity and protein level in liver but not in heart nor in the coronary arteries, despite the expression of CAR and PXR in the cardiac tissues. These results obtained in vivo suggest that pig cardiac tissues may represent a useful model for humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The Absence of CYP3A5*3 Is a Protective Factor to Anticonvulsants Hypersensitivity Reactions: A Case-Control Study in Brazilian Subjects

    PubMed Central

    dos Santos, Bernardo; Talib, Leda Leme; Yamaguti, Célia; Rodrigues, Helcio; Gattaz, Wagner Farid; Kalil, Jorge

    2015-01-01

    Although aromatic anticonvulsants are usually well tolerated, they can cause cutaneous adverse drug reactions in up to 10% of patients. The clinical manifestations of the antiepileptics-induced hypersensitivity reactions (AHR) vary from mild skin rashes to severe cutaneous drug adverse reactions which are related to high mortality and significant morbidity. Genetic polymorphisms in cytochrome P450 genes are associated with altered enzymatic activity and may contribute to the risk of AHR. Here we present a case-control study in which we genotyped SNPs of CYP2C19, 2C9 and 3A5 of 55 individuals with varying severities of AHR, 83 tolerant, and 366 healthy control subjects from São Paulo, Brazil. Clinical characterization was based on standardized scoring systems and drug patch test. All in vivo investigation followed the ENDA (European Network of Drug Allergy) recommendations. Genotype was determined by real time PCR using peripheral blood DNA as a template. Of all 504 subjects, 65% were females, 45% self-identified as Afro-American, 38% as Caucasian and 17% as having non-African mixed ascendancy. Amongst 55 subjects with AHR, 44 had severe cutaneous drug adverse reactions. Of the 46 drug patch tests performed, 29 (63%) were positive. We found a strong association between the absence of CYP3A5*3 and tolerant subjects when compared to AHR (p = 0.0002, OR = 5.28 [CI95% 2.09–14.84]). None of our groups presented positive association with CYP2C19 and 2C9 polymorphisms, however, both SNPs contributed to separation of cases and tolerants in a Classification and Regression Tree. Our findings indicate that drug metabolism genes can contribute in the tolerability of antiepileptics. CYP3A5*3 is the most prevalent CYP3A5 allele associated with reduced enzymatic function. The current study provides evidence that normal CYP3A5 activity might be a protective factor to aromatic antiepileptics-induced hypersensitivity reactions in Brazilian subjects. PMID:26291084

  19. The Absence of CYP3A5*3 Is a Protective Factor to Anticonvulsants Hypersensitivity Reactions: A Case-Control Study in Brazilian Subjects.

    PubMed

    Tanno, Luciana Kase; Kerr, Daniel Shikanai; dos Santos, Bernardo; Talib, Leda Leme; Yamaguti, Célia; Rodrigues, Helcio; Gattaz, Wagner Farid; Kalil, Jorge

    2015-01-01

    Although aromatic anticonvulsants are usually well tolerated, they can cause cutaneous adverse drug reactions in up to 10% of patients. The clinical manifestations of the antiepileptics-induced hypersensitivity reactions (AHR) vary from mild skin rashes to severe cutaneous drug adverse reactions which are related to high mortality and significant morbidity. Genetic polymorphisms in cytochrome P450 genes are associated with altered enzymatic activity and may contribute to the risk of AHR. Here we present a case-control study in which we genotyped SNPs of CYP2C19, 2C9 and 3A5 of 55 individuals with varying severities of AHR, 83 tolerant, and 366 healthy control subjects from São Paulo, Brazil. Clinical characterization was based on standardized scoring systems and drug patch test. All in vivo investigation followed the ENDA (European Network of Drug Allergy) recommendations. Genotype was determined by real time PCR using peripheral blood DNA as a template. Of all 504 subjects, 65% were females, 45% self-identified as Afro-American, 38% as Caucasian and 17% as having non-African mixed ascendancy. Amongst 55 subjects with AHR, 44 had severe cutaneous drug adverse reactions. Of the 46 drug patch tests performed, 29 (63%) were positive. We found a strong association between the absence of CYP3A5*3 and tolerant subjects when compared to AHR (p = 0.0002, OR = 5.28 [CI95% 2.09-14.84]). None of our groups presented positive association with CYP2C19 and 2C9 polymorphisms, however, both SNPs contributed to separation of cases and tolerants in a Classification and Regression Tree. Our findings indicate that drug metabolism genes can contribute in the tolerability of antiepileptics. CYP3A5*3 is the most prevalent CYP3A5 allele associated with reduced enzymatic function. The current study provides evidence that normal CYP3A5 activity might be a protective factor to aromatic antiepileptics-induced hypersensitivity reactions in Brazilian subjects.

  20. The impacts of the interaction of genetic variation, CYP11β2 and NEDD4L, with sodium intake on pediatric obesity with gender difference: a 3-year panel study.

    PubMed

    Lee, M; Kwon, D Y; Park, J

    2017-04-01

    Backgrounds/Objectives:This panel study was to predict the incidences of pediatric obesity by the interaction of sodium (Na) intake and nine single-nucleotide polymorphisms (SNPs) of salt-sensitive genes (SSGs), ACE(angiotensin-converting enzyme), ADD1 G460W,AGT M235T,CYP11β2 (cytochrome P450 family 11-subfamily β-2, -aldosterone synthase),GNB3 C285T,GRK4(A142V)(G-protein-coupled receptor kinases type 4),GRK4 (A486V),NEDD4L (neural precursor cell expressed developmentally downregulated 4 like; rs2288774) and SLC12A3 (solute carrier family 12 (Na/Cl transporters)-member 3), selected from genome-wide association study. Non-obese (non-OB) Korean children of 9 years old were recruited from eight elementary schools in Seoul in 2007 and 2009, each. Follow-up subjects (total=798) in 2010 and 2012 were final participants. Participants were classified as OB group for those whose body mass index were over the 85th percentile using the 'Korean National Growth Charts', and others were classified as non-OB. With nine SNPs typing, the genetic interaction with the variation of Na intake for 3 years was evaluated as an obesity risk. The obesity incidence rate for non-OB children at baseline after 3 years was 10.31%. Na intake in non-OB after 3 years was significantly decreased compared with the baseline, whereas Na intake reduction was undetectable in OB. We found gender differences on association between the changes of Na intake and the obesity incidence for 3 years by the SSG variation. Odds ratio for the obesity risk was 5.75 times higher in girls having hetero/mutant types of NEDD4L with higher Na intakes (Q2+Q3+Q4 in quartiles) compared with that in the wild type with the lowest Na intake (Q1). Girls with hetero/mutant of CYP11β2 tended to increase the obesity incidence as Na intake increased (Q134, P-value trend=0.047). The other seven SNPs of SSGs had no significance over Na intake. From this panel study and the previous cross-sectional study, we found CYP11β2 as

  1. Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta.

    PubMed Central

    Schuetz, J D; Kauma, S; Guzelian, P S

    1993-01-01

    Placenta and endometrium carry out steroidogenic biotransformation reactions such as 6-beta-hydroxylation of cortisol, a reaction characteristic of the dominant family of cytochromes P450 in human liver, CYP3A. To investigate the possible role in these extrahepatic tissues of the CYP3A microsomal hemoproteins, we analyzed placental and endometrial microsomes on Western blots developed with an anti-human CYP3A antibody. We found an immunoreactive 51,500 D protein that migrated between CYP3A3 (HLp) and CYP3A5 (HLp2) identical with CYP3A7 (HFLa). CYP3A7, a form found prominently in human fetal liver microsomes, was first isolated as a liver 16-alpha-dehydroepiandrosterone-sulfate hydroxylase. Northern blot analysis of total RNA isolated from placenta or from endometrium demonstrated a single band that cross-hybridized with a CYP3A7 cDNA. Amplification of the same RNA samples with the use of primers specific for CYP3A7, produced a 552-bp segment that had the predicted size and the same DNA sequence as does liver CYP3A7 cDNA. Hybridizable endometrial CYP3A7 mRNA was detected more frequently (six of seven samples) and in higher amounts (approximately 12-fold higher) in pregnant compared with nonpregnant women (4 of 12 samples). In addition, during the secretory phase of the menstrual cycle CYP3A7 expression was sixfold higher than in the one sample from the proliferative phase that had detectable CYP3A7 mRNA. Moreover, the amounts of placental and endometrial CYP3A7 mRNA and protein increased substantially from the first to the second trimester of pregnancy. We conclude that placenta and endometrium express the same P450 as is found in fetal liver. These tissues represent a previously unrecognized and quantitatively important site for 6-beta-hydroxylation and 16-alpha-hydroxylation of specific steroid precursors, possibly for protection of the fetus from the toxic effects of endogenous steroids and foreign substrates. Images PMID:8349787

  2. Impact of CYP2C8*3 polymorphism on in vitro metabolism of imatinib to N-desmethyl imatinib.

    PubMed

    Khan, Muhammad Suleman; Barratt, Daniel T; Somogyi, Andrew A

    2016-01-01

    1. Imatinib is metabolized to N-desmethyl imatinib by CYPs 3A4 and 2C8. The effect of CYP2C8*3 genotype on N-desmethyl imatinib formation was unknown. 2. We examined imatinib N-demethylation in human liver microsomes (HLMs) genotyped for CYP2C8*3, in CYP2C8*3/*3 pooled HLMs and in recombinant CYP2C8 and CYP3A4 enzymes. Effects of CYP-selective inhibitors on N-demethylation were also determined. 3. A single-enzyme Michaelis-Menten model with autoinhibition best fitted CYP2C8*1/*1 HLM (n = 5) and recombinant CYP2C8 kinetic data (median ± SD Ki = 139 ± 61 µM and 149 µM, respectively). Recombinant CYP3A4 showed two-site enzyme kinetics with no autoinhibition. Three of four CYP2C8*1/*3 HLMs showed single-enzyme kinetics with no autoinhibition. Binding affinity was higher in CYP2C8*1/*3 than CYP2C8*1/*1 HLM (median ± SD Km = 6 ± 2 versus 11 ± 2 µM, P=0.04). CYP2C8*3/*3 (pooled HLM) also showed high binding affinity (Km = 4 µM) and single-enzyme weak autoinhibition (Ki = 449 µM) kinetics. CYP2C8 inhibitors reduced HLM N-demethylation by 47-75%, compared to 0-30% for CYP3A4 inhibitors. 4. In conclusion, CYP2C8*3 is a gain-of-function polymorphism for imatinib N-demethylation, which appears to be mainly mediated by CYP2C8 and not CYP3A4 in vitro in HLM.

  3. Identification of Polymorphisms in the 3′-Untranslated Region of the Human Pregnane X Receptor (PXR) Gene Associated with Variability in Cytochrome P450 3A (CYP3A) Metabolism

    PubMed Central

    Oleson, Lauren; von Moltke, Lisa L.; Greenblatt, David J.; Court, Michael H.

    2013-01-01

    Single nucleotide polymorphisms (SNPs) in the 3′untranslated region (3′UTR) of human pregnane X receptor (PXR) gene may contribute to interindividual variability in cytochrome P450 3A (CYP3A) activity. Genotype-phenotype associations involving PXR-3′UTR SNPs were investigated through in vitro (53 human livers from primarily white donors) and in vivo (26 white or African-American volunteers) studies using midazolam 1′-hydroxylation and midazolam apparent oral clearance (CL/F), respectively, as CYP3A-specific probes. PXR-3′UTR resequencing identified 12 SNPs, including 2 that were novel. Although none of the SNPs evaluated were associated with altered midazolam 1′-hydroxylation in the liver bank, both rs3732359 homozygotes and rs3732360 carriers showed 80% higher (P<0.05) CL/F compared with homozygous reference individuals. These differences in CL/F were even larger (100 and 120% higher, respectively; P<0.01) when only African-American subjects (n=14) were considered. Five major haplotypes were identified containing the PXR-3′UTR SNPs and previously identified intron SNPs. Although CL/F differences were not statistically significant within the entire study cohort, African-American carriers of Haplotype-1 (which includes both rs3732359 and rs3732360 variants) exhibited 70% higher median CL/F compared with African-American non-carriers (P=0.036). Our results identify rs3732359 and rs3732360 as PXR-3′UTR SNPs associated with higher CYP3A activity in vivo in African-Americans. PMID:20082578

  4. CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people

    PubMed Central

    Binnington, Matthew J.; Zhu, Andy Z.X.; Renner, Caroline C.; Lanier, Anne P.; Hatsukami, Dorothy K.; Benowitz, Neal L; Tyndale, Rachel F.

    2012-01-01

    Objectives Alaska Native people (AN) have a high prevalence of tobacco use and associated morbidity and mortality when compared to the general U.S. population. Variation in the CYP2A6 and CYP2B6 genes, encoding enzymes responsible for nicotine metabolic inactivation and procarcinogen activation, has not been characterized in AN and may contribute to the increased risk. Methods AN people (n = 400) residing in the Bristol Bay region of South Western Alaska were recruited for a cross-sectional study on tobacco use. They were genotyped for CYP2A6*1X2A, *1X2B, *1B, *2, *4, *7, *8, *9, *10, *12, *17, *35 and CYP2B6*4, *6, *9 and provided plasma and urine samples for measurement of nicotine and metabolites. Results CYP2A6 and CYP2B6 variant frequencies among the AN Yupik people (n=361) were significantly different from other ethnicities. Nicotine metabolism (as measured by the plasma and urinary ratio of metabolites trans-3’hydroxycotinine to cotinine [(3HC/COT)] was significantly associated with CYP2A6 (P< 0.001) but not CYP2B6 genotype (P = 0.95) when controlling for known covariates. Of note, plasma 3HC/COT ratios were high in the entire Yupik people, and among the Yupik CYP2A6 wild-type participants they were substantially higher than previously characterized racial/ethnic groups (P < 0.001 vs. Caucasians and African Americans). Conclusions Yupik AN people have a unique CYP2A6 genetic profile which associated strongly with in vivo nicotine metabolism. More rapid CYP2A6-mediated nicotine and nitrosamine metabolism in the Yupik people may modulate tobacco-related disease risk. PMID:22569203

  5. Polymorphisms and phenotypic analysis of cytochrome P450 3A4 in the Uygur population in northwest China.

    PubMed

    Jin, Tianbo; Yang, Hua; Zhang, Jiayi; Yunus, Zulfiya; Sun, Qiang; Geng, Tingting; Chen, Chao; Yang, Jie

    2015-01-01

    Genetic polymorphisms in CYP3A4 can change its activity to a certain degree, thus leading to differences among different populations in drug efficacy or adverse drug reactions. The study was intended to validate the genetic polymorphisms in CYP3A4 in Uygur Chinese population, we sequenced and screened for genetic variants including 5'UTR, promoters, exons, introns, and 3'UTR region of the whole CYP3A4 gene in 100 unrelated, healthy. Twenty-one genetic polymorphisms in CYP3A4, and nine of them were novel. We detected CYP3A4*8, a putative poor-metabolizer allele, with the frequency of 0.5% in Uygur population. Tfsitescan revealed that the density of transcription factor varied in the different promoter regions, among which some were key regions for transcription factor binding. our results provide basic information about CPY3A4 alleles in Uygur and suggest that the enzymatic activities of CPY3A4 may differ among the diverse ethnic populations of China.

  6. Polymorphisms and phenotypic analysis of cytochrome P450 3A4 in the Uygur population in northwest China

    PubMed Central

    Jin, Tianbo; Yang, Hua; Zhang, Jiayi; Yunus, Zulfiya; Sun, Qiang; Geng, Tingting; Chen, Chao; Yang, Jie

    2015-01-01

    Purpose: Genetic polymorphisms in CYP3A4 can change its activity to a certain degree, thus leading to differences among different populations in drug efficacy or adverse drug reactions. Methods: The study was intended to validate the genetic polymorphisms in CYP3A4 in Uygur Chinese population, we sequenced and screened for genetic variants including 5’UTR, promoters, exons, introns, and 3’UTR region of the whole CYP3A4 gene in 100 unrelated, healthy. Results: Twenty-one genetic polymorphisms in CYP3A4, and nine of them were novel. We detected CYP3A4*8, a putative poor-metabolizer allele, with the frequency of 0.5% in Uygur population. Tfsitescan revealed that the density of transcription factor varied in the different promoter regions, among which some were key regions for transcription factor binding. Conclusion: our results provide basic information about CPY3A4 alleles in Uygur and suggest that the enzymatic activities of CPY3A4 may differ among the diverse ethnic populations of China. PMID:26261601

  7. Identification and Functional Analysis of a Novel Cytochrome P450 Gene CYP9A105 Associated with Pyrethroid Detoxification in Spodoptera exigua Hübner

    PubMed Central

    Wang, Rui-Long; Liu, Shi-Wei; Baerson, Scott R.; Qin, Zhong; Ma, Zhi-Hui; Su, Yi-Juan; Zhang, Jia-En

    2018-01-01

    In insects, cytochrome P450 monooxygenases (P450s or CYPs) are known to be involved in the detoxification and metabolism of insecticides, leading to increased resistance in insect populations. Spodoptera exigua is a serious polyphagous insect pest worldwide and has developed resistance to various insecticides. In this study, a novel CYP3 clan P450 gene CYP9A105 was identified and characterized from S. exigua. The cDNAs of CYP9A105 encoded 530 amino acid proteins, respectively. Quantitative real-time PCR analyses showed that CYP9A105 was expressed at all developmental stages, with maximal expression observed in fifth instar stage larvae, and in dissected fifth instar larvae the highest transcript levels were found in midguts and fat bodies. The expression of CYP9A105 in midguts was upregulated by treatments with the insecticides α-cypermethrin, deltamethrin and fenvalerate at both LC15 concentrations (0.10, 0.20 and 5.0 mg/L, respectively) and LC50 concentrations (0.25, 0.40 and 10.00 mg/L, respectively). RNA interference (RNAi) mediated silencing of CYP9A105 led to increased mortalities of insecticide-treated 4th instar S. exigua larvae. Our results suggest that CYP9A105 might play an important role in α-cypermethrin, deltamethrin and fenvalerate detoxification in S. exigua. PMID:29510578

  8. Clinical importance of the drug interaction between statins and CYP3A4 inhibitors: a retrospective cohort study in The Health Improvement Network

    PubMed Central

    Rowan, Christopher G.; Brunelli, Steven M.; Munson, Jeffrey; Flory, James; Reese, Peter P.; Hennessy, Sean; Lewis, James; Mines, Daniel; Barrett, Jeffrey S.; Bilker, Warren; Strom, Brian L.

    2014-01-01

    Objective To compare the relative hazard of muscle toxicity, renal dysfunction, and hepatic dysfunction associated with the drug interaction between statins and concomitant medications that inhibit the CYP3A4 isoenzyme. Background Although statins provide important clinical benefits related to mitigating the risk of cardiovascular events, this class of medications also has the potential for severe adverse reactions. The risk for adverse events may be potentiated by concomitant use of medications that interfere with statin metabolism. Methods Data from The Health Improvement Network (THIN) from 1990 to 2008 were used to conduct a retrospective cohort study. Cohorts were created to evaluate each outcome (muscle toxicity, renal dysfunction, and hepatic dysfunction) independently. Each cohort included new statin initiators and compared the relative hazard of the outcome. The interaction ratio (I*R) was the primary contrast of interest. The I*R represents the relative effect of each statin type (statin 3A4 substrate vs. statin non-3A4 substrate) with a CYP3A4 inhibitor, independent of the effect of the statin type without a CYP3A4 inhibitor. We adjusted for confounding variables using the multinomial propensity score. Results The median follow-up time per cohort was 1.5 years. There were 7889 muscle toxicity events among 362 809 patients and 792 665 person-years. The adjusted muscle toxicity I*R was 1.22 (95% confidence interval [CI] = 0.90–1.66). There were 1449 renal dysfunction events among 272,099 patients and 574 584 person-years. The adjusted renal dysfunction I*R was 0.91 (95%CI = 0.58–1.44). There were 1434 hepatic dysfunction events among 367 612 patients and 815 945 person-years. The adjusted hepatic dysfunction I*R was 0.78 (95%CI = 0.45–1.31). Conclusions Overall, this study found no difference in the relative hazard of muscle toxicity, renal dysfunction, or hepatic dysfunction for patients prescribed a statin 3A4 substrate versus a statin non-3A4

  9. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM

    PubMed Central

    Amin, N; Byrne, E; Johnson, J; Chenevix-Trench, G; Walter, S; Nolte, I M; Vink, J M; Rawal, R; Mangino, M; Teumer, A; Keers, J C; Verwoert, G; Baumeister, S; Biffar, R; Petersmann, A; Dahmen, N; Doering, A; Isaacs, A; Broer, L; Wray, N R; Montgomery, G W; Levy, D; Psaty, B M; Gudnason, V; Chakravarti, A; Sulem, P; Gudbjartsson, D F; Kiemeney, L A; Thorsteinsdottir, U; Stefansson, K; van Rooij, F J A; Aulchenko, Y S; Hottenga, J J; Rivadeneira, F R; Hofman, A; Uitterlinden, A G; Hammond, C J; Shin, S-Y; Ikram, A; Witteman, J C M; Janssens, A C J W; Snieder, H; Tiemeier, H; Wolfenbuttel, B H R; Oostra, B A; Heath, A C; Wichmann, E; Spector, T D; Grabe, H J; Boomsma, D I; Martin, N G; van Duijn, C M

    2012-01-01

    Coffee consumption is a model for addictive behavior. We performed a meta-analysis of genome-wide association studies (GWASs) on coffee intake from 8 Caucasian cohorts (N=18 176) and sought replication of our top findings in a further 7929 individuals. We also performed a gene expression analysis treating different cell lines with caffeine. Genome-wide significant association was observed for two single-nucleotide polymorphisms (SNPs) in the 15q24 region. The two SNPs rs2470893 and rs2472297 (P-values=1.6 × 10−11 and 2.7 × 10−11), which were also in strong linkage disequilibrium (r2=0.7) with each other, lie in the 23-kb long commonly shared 5′ flanking region between CYP1A1 and CYP1A2 genes. CYP1A1 was found to be downregulated in lymphoblastoid cell lines treated with caffeine. CYP1A1 is known to metabolize polycyclic aromatic hydrocarbons, which are important constituents of coffee, whereas CYP1A2 is involved in the primary metabolism of caffeine. Significant evidence of association was also detected at rs382140 (P-value=3.9 × 10−09) near NRCAM—a gene implicated in vulnerability to addiction, and at another independent hit rs6495122 (P-value=7.1 × 10−09)—an SNP associated with blood pressure—in the 15q24 region near the gene ULK3, in the meta-analysis of discovery and replication cohorts. Our results from GWASs and expression analysis also strongly implicate CAB39L in coffee drinking. Pathway analysis of differentially expressed genes revealed significantly enriched ubiquitin proteasome (P-value=2.2 × 10−05) and Parkinson's disease pathways (P-value=3.6 × 10−05). PMID:21876539

  10. In vitro metabolism of alectinib, a novel potent ALK inhibitor, in human: contribution of CYP3A enzymes.

    PubMed

    Nakagawa, Toshito; Fowler, Stephen; Takanashi, Kenji; Youdim, Kuresh; Yamauchi, Tsuyoshi; Kawashima, Kosuke; Sato-Nakai, Mika; Yu, Li; Ishigai, Masaki

    2018-06-01

    1. The in vitro metabolism of alectinib, a potent and highly selective oral anaplastic lymphoma kinase inhibitor, was investigated. 2. The main metabolite (M4) in primary human hepatocytes was identified, which is produced by deethylation at the morpholine ring. Three minor metabolites (M6, M1a, and M1b) were also identified, and a minor peak of hydroxylated alectinib (M5) was detected as a possible precursor of M4, M1a, and M1b. 3. M4, an important active major metabolite, was produced and further metabolized to M6 by CYP3A, indicating that CYP3A enzymes were the principal contributors to this route. M5 is possibly produced by CYP3A and other isoforms as the primary step in metabolism, followed by oxidation to M4 mainly by CYP3A. Alternatively, M5 could be oxidized to M1a and M1b via an NAD-dependent process. None of the non-CYP3A-mediated metabolism appeared to be major. 4. In conclusion, this study suggests that involvement of multiple enzymes in the metabolism of alectinib reduces its potential for drug-drug interactions.

  11. Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish.

    PubMed

    Tchoudakova, A; Kishida, M; Wood, E; Callard, G V

    2001-11-01

    Teleost fish are characterized by exceptionally high levels of neural estrogen biosynthesis when compared with the brains of other vertebrates or to the ovaries of the same fish. Two P450arom mRNAs which derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (b>a) and ovary (a>b) and have a different developmental program (b>a) and estrogen upregulation (b only). A polymerase chain reaction (PCR)-based genomic walking strategy was used to isolate the 5'-flanking regions of the goldfish (Carassius auratus) cyp19 genes. Sequence analysis of the cyp19b gene approximately 1.8 kb upstream of the transcription start site revealed a TATA box at nucleotide (nt) -30, two estrogen responsive elements (EREs; nt -351 and -211) and a consensus binding site (NBRE) for nerve growth factor inducible-B protein (NGFI-B/Nur77) at -286, which includes another ERE half-site. Also present were a sequence at nt -399 (CCCTCCT) required for neural specificity of the zebrafish GATA-2 gene, and 16 copies of an SRY/SOX binding motif. The 5'-flanking region ( approximately 1.0 kb) of the cyp19a gene had TATA (nt -48) and CAAT (nt -71) boxes, a steroidogenic factor-1 (SF-1) binding site (nt -265), eight copies of the SRY/SOX motif, and two copies of a recognition site for binding the arylhydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) heterodimer. Both genes had elements previously identified in the brain specific exon I promoter of the mouse aromatase gene. Cyp19a- and -b/luciferase constructs showed basal promoter activity in aromatase-expressing rodent pituitary (GH3) cells, but differences (a>b) did not reflect expression in fish pituitary in vivo (b>a), implying a lack of appropriate cell factors. Consistent with the onset of cyp19b expression in zebrafish embryos, microinjection of a green fluorescent protein (GFP) reporter plasmid into fertilized eggs revealed labeling in neural tissues at 30-48 h post-fertilization (hpf), most

  12. Characterization of polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 and relationship to the alcoholism in a Colombian population.

    PubMed

    Méndez, Claudia; Rey, Mauricio

    2015-12-30

    Identify and characterize polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 in a Colombian population residing in the city of Bogotá and determine its possible relationship to the alcoholism. ADH2, ADH3, ALDH2, and CYP2E1 genotypes a population of 148 individuals with non-problematic alcohol and 65 individuals with alcoholism were determined with TaqMan probes and PCR-RFLP. DNA was obtained from peripheral blood white cells. Significant difference was found in family history of alcoholism and use of other psychoactive substances to compare alcoholics with controls. When allelic frequencies for each category (gender) were considered, frequency of A2 allele carriers in ADH2 was found higher in male patients than controls. In women, the relative frequency for c1 allele in CYP2E1 was lower in controls than alcoholics. The ALDH2 locus is monomorphic. No significant differences in allele distributions of the loci examined to compare two populations were observed, however when stratifying the same trend was found that these differences tended to be significant. This study allows us to conclude the positive association between family history of alcoholism and alcoholism suggesting that there is a favourable hereditary predisposition. Since substance dependence requires interaction of multiple genes, the combination of genotypes ADH2 * 2, CYP2E1 * 1 combined with genotype homozygous ALDH2 * 1 found in this study could be leading to the population to a potential risk to alcoholism.

  13. Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), mu-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients.

    PubMed

    Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho

    2004-01-01

    Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.

  14. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution.

    PubMed

    Marez, D; Legrand, M; Sabbagh, N; Lo Guidice, J M; Spire, C; Lafitte, J J; Meyer, U A; Broly, F

    1997-06-01

    The polymorphic cytochrome P450 CYP2D6 is involved in the metabolism of various drugs of wide therapeutic use and is a presumed susceptibility factor for certain environmentally-induced diseases. Our aim was to define the mutations and alleles of the CYP2D6 gene and to evaluate their frequencies in the European population. Using polymerase chain reaction-single strand conformation polymorphism analysis, 672 unrelated subjects were screened for mutations in the 9 exons of the gene and their exon-intron boundaries. A total of 48 point mutations were identified, of which 29 were novel. Mutations 1749 G-->C, 2938 C-->T and 4268 G-->C represented 52.6%, 34.3% and 52.9% of the mutations in the total population, respectively. Of the eight detrimental mutations detected, the 1934 G-->A, the 1795 Tdel and the 2637 Adel accounted for 65.8%, 6.2% and 4.8% respectively, within the poor metabolizer subgroup. Fifty-three different alleles were characterized from the mutation pattern and by allele-specific sequencing. They are derived from three major alleles, namely the wild-type CYP2D6*1A, the functional CYP2D6*2 and the null CYP2D6*4A. Five allelic variants (CYP2D6*1A, *2, *2B, *4A and *5) account for about 87% of all alleles, while the remaining alleles occur with a frequency of 0.1%-2.7%. These data provide a solid basis for future epidemiological, clinical as well as interethnic studies of the CYP2D6 polymorphism and highlight that the described single strand conformation polymorphism method can be successfully used in designing such studies.

  15. RNA interference of cytochrome P450 CYP6F subfamily genes affects susceptibility to different insecticides in Locusta migratoria.

    PubMed

    Guo, Yanqiong; Wu, Haihua; Zhang, Xueyao; Ma, Enbo; Guo, Yaping; Zhu, Kun Yan; Zhang, Jianzhen

    2016-11-01

    Many insect cytochrome P450s (CYPs) play critical roles in detoxification of insecticides. The CYP6 family is unique to the class Insecta, and its biochemical function has essentially been associated with the metabolism of xenobiotics. In this study, we sequenced and characterised the full-length cDNAs of five CYP genes from Locusta migratoria, a highly destructive agricultural pest worldwide. The five genes were predominantly expressed in brain, guts, fat bodies or Malpighian tubules. CYP6FE1, CYP6FF1 and CYP6FG1 were expressed at higher levels in fourth-instar nymphs than in other developmental stages. CYPFD2 is specifically expressed in adults, whereas CYP6FD1, CYP6FD2 and CYP6FE1 showed significantly lower expression in eggs than in other developmental stages. Deltamethrin suppressed CYP6FD1 expression in third-instar nymphs and upregulated the expression level of CYP6FD2, CYP6FF1 and CYP6FG1 at the dose of LD 10 . Efficient RNA interference-mediated gene silencing was established for four of the five CYP genes. Silencing of CYP6FF1 increased the nymphal mortality from 23 to 50% in response to deltamethrin. Silencing of CYP6FD2 and CYP6FE1 increased the nymphal mortality from 32 to 72 and 66%, respectively, to carbaryl. Three of the four CYP6F subfamily genes in L. migratoria were associated with the detoxification of deltamethrin or carbaryl. The role of CYPs in insecticide detoxification appears to be both gene and insecticide specific. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups.

    PubMed

    Lee, Su-Jun; Usmani, Khawja A; Chanas, Brian; Ghanayem, Burhan; Xi, Tina; Hodgson, Ernest; Mohrenweiser, Harvey W; Goldstein, Joyce A

    2003-08-01

    Genetic polymorphisms of cytochromes P450 (CYPs) are a principal reason for inter-individual variations in the metabolism of therapeutic drugs and environmental chemicals in humans. The present study identifies 34 single nucleotide polymorphisms (SNPs) of CYP3A5 including 27 previously unidentified SNPs by direct sequencing of the exons, intron-exon junctions and 5'-upstream region of CYP3A5 from 92 racially diverse individuals (24 Caucasians, 24 Africans, 24 Asians, and 20 individuals of unknown racial origin). Four new CYP3A5 SNPs produced coding changes: R28C, L82R, A337T, and F446S. CYP3A5 R28C occurred in African populations (allelic frequency of 4%). CYP3A5 A337T occurred in Asians (2% allelic frequency), CYP3A5 L82R (occurred in the racially unidentified group) and CYP3A5 F446S (identified in Caucasians with a 2% allelic frequency) were on an allele containing the splice change g.6986A>G known as CYP3A5*3. The newly identified allelic proteins were constructed by site-directed mutagenesis, expressed in Escherichia coli and purified. CYP3A5 L82R was expressed only as denatured CYP420, suggesting it may be unstable. CYP3A5*1 exhibited the highest maximal clearance for testosterone followed by CYP3A5 A337T > CYP3A5 R28C > CYP3A5 F446S. CYP3A5*1 exhibited a higher V(max) for nifedipine oxidation than CYP3A5 A337T > CYP3A5 R28C > CYP3A5 F446S. CYP3A5 A337T and CYP3A5 R28C exhibited a 42-64% lower V(max) for nifedipine oxidation than CYP3A5*1. CYP3A5 F446S exhibited a > 95% decrease in the intrinsic clearance for both 6beta-hydroxytestosterone and nifedipine oxidation. This study identifies four new potentially defective coding alleles. CYP3A5 F446S is predicted to be more catalytically defective than the splice change alone.

  17. Identification, Characterization, and Expression of a Novel P450 Gene Encoding CYP6AE25 from the Asian Corn Borer, Ostrinia furnacalis

    PubMed Central

    Zhang, Yu-liang; Kulye, Mahesh; Yang, Feng-shan; Xiao, Luo; Zhang, Yi-tong; Zeng, Hongmei; Wang, Jian-hua; Liu, Zhi-xin

    2011-01-01

    An allele of the cytochrome P450 gene, CYP6AE14, named CYP6AE25 (GenBank accession no. EU807990) was isolated from the Asian com borer, Ostrinia fumacalis (Guenée) (Lepidoptera: Pyralidae) by RT-PCR. The cDNA sequence of CYP6AE25 is 2315 bp in length and contains a 1569 nucleotides open reading frame encoding a putative protein with 523 amino acid residues and a predicted molecular weight of 59.95 kDa and a theoretical pI of 8.31. The putative protein contains the classic heme-binding sequence motif F××G×××C×G (residues 451–460) conserved among all P450 enzymes as well as other characteristic motifs of all cytochrome P450s. It shares 52% identity with the previously published sequence of CYP6AE14 (GenBank accession no. DQ986461) from Helicoverpa armigera. Phylogenetic analysis of amino acid sequences from members of various P450 families indicated that CYP6AE25 has a closer phylogenetic relationship with CYP6AE14 and CYP6B1 that are related to metabolism of plant allelochemicals, CYP6D1 which is related to pyrethroid resistance and has a more distant relationship to CYP302A1 and CYP307A1 which are related to synthesis of the insect molting hormones. The expression level of the gene in the adults and immature stages of O. furnacalis by quantitative real-time PCR revealed that CYP6AE25 was expressed in all life stages investigated. The mRNA expression level in 3rd instar larvae was 12.8- and 2.97-fold higher than those in pupae and adults, respectively. The tissue specific expression level of CYP6AE25 was in the order of midgut, malpighian tube and fatty body from high to low but was absent in ovary and brain. The analysis of the CYP6AB25 gene using bioinformatic software is discussed. PMID:21529257

  18. Involvement of CYP 3A5 In the Interaction Between Tacrolimus and Nicardipine: A Case Report.

    PubMed

    Sassi, Mouna B; Gaies, Emna; Salouage, Issam; Trabelsi, Sameh; Lakhal, Mohamed; Klouz, Anis

    2015-01-01

    Tacrolimus is a calcineurin inhibitor primarily metabolized by CYP3A4 and secondarily by CYP3A5. Several drugs can modify tacrolimus blood levels as calcium channel blockers (CCBs). Interaction with nicardipine was reported in some cases. A man with a history of malignant arterial hypertension treated with nicardipine, underwent kidney transplantation. After transplantation, he was treated with tacrolimus, mycophenolate mofetil and corticoids. Therapeutic drug monitoring of tacrolimus was done regularly showing a mean trough concentration (C0) of 24.39 ng/mL with some concentrations reaching 52 ng/mL. After changing nicardipine by prazosine, the first tacrolimus C0 after stopping nicardipine was 3.2 ng/mL. Increase of tacrolimus trough concentrations is due to the inhibition of CYP3A4. Very high levels of tacrolimus suggest the non expression of CYP3A5. Thus, because of the possible lack of the secondary pathway, therapeutic drug monitoring of tacrolimus is highly recommended at the introduction of CCBs and also at its stopping.

  19. The roles of CYP6AY1 and CYP6ER1 in imidacloprid resistance in the brown planthopper: Expression levels and detoxification efficiency.

    PubMed

    Bao, Haibo; Gao, Hongli; Zhang, Yixi; Fan, Dongzhe; Fang, Jichao; Liu, Zewen

    2016-05-01

    Two P450 monooxygenase genes, CYP6AY1 and CYP6ER1, were reported to contribute importantly to imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Although recombinant CYP6AY1 could metabolize imidacloprid efficiently, the expression levels of CYP6ER1 gene were higher in most resistant populations. In the present study, three field populations were collected from different countries, and the bioassay, RNAi and imidacloprid metabolism were performed to evaluate the importance of two P450s in imidacloprid resistance. All three populations, DOT (Dongtai) from China, CNA (Chainat) from Thailand and HCM (Ho Chi Minh) from Vietnam, showed high resistance to imidacloprid (57.0-, 102.9- and 89.0-fold). CYP6AY1 and CYP6ER1 were both over expressed in three populations, with highest ratio of 13.2-fold for CYP6ER1 in HCM population. Synergism test and RNAi analysis confirmed the roles of both P450 genes in imidacloprid resistance. However, CYP6AY1 was indicated more important in CNA population, and CYP6AY1 and CYP6ER1 were equal in HCM population, although the expression level of CYP6ER1 (13.2-fold) was much higher than that of CYP6AY1 (4.11-fold) in HCM population. Although the recombinant proteins of both P450 genes could metabolize imidacloprid efficiently, the catalytic activity of CYP6AY1 (Kcat=3.627 pmol/min/pmol P450) was significantly higher than that of CYP6ER1 (Kcat=2.785 pmol/min/pmol P450). It was supposed that both P450 proteins were important for imidacloprid resistance, in which CYP6AY1 metabolized imidacloprid more efficiently and CYP6ER1 gene could be regulated by imidacloprid to a higher level. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorrink, Sabine U.; Department of Radiation Oncology, The University of Iowa, Iowa City, IA; Severson, Paul L.

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degreesmore » of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). Exposure to 1% O{sub 2} prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. - Highlights: • Significant crosstalk exists between AhR and HIF-1α signaling. • Hypoxia perturbs PCB 126 induced Ah

  1. Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Ng, Ashley S; Goh, Wei Huang; McGinnis, Claudia; Fowler, Stephen; Carney, Tom J; Wang, Haishan; Ingham, Phillip W

    2017-03-01

    Understanding and predicting whether new drug candidates will be safe in the clinic is a critical hurdle in pharmaceutical development, that relies in part on absorption, distribution, metabolism, excretion and toxicology studies in vivo. Zebrafish is a relatively new model system for drug metabolism and toxicity studies, offering whole organism screening coupled with small size and potential for high-throughput screening. Through toxicity and absorption analyses of a number of drugs, we find that zebrafish is generally predictive of drug toxicity, although assay outcomes are influenced by drug lipophilicity which alters drug uptake. In addition, liver microsome assays reveal specific differences in metabolism of compounds between human and zebrafish livers, likely resulting from the divergence of the cytochrome P450 superfamily between species. To reflect human metabolism more accurately, we generated a transgenic "humanized" zebrafish line that expresses the major human phase I detoxifying enzyme, CYP3A4, in the liver. Here, we show that this humanized line shows an elevated metabolism of CYP3A4-specific substrates compared to wild-type zebrafish. The generation of this first described humanized zebrafish liver suggests such approaches can enhance the accuracy of the zebrafish model for toxicity prediction.

  2. A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance.

    PubMed

    Terhzaz, Selim; Cabrero, Pablo; Brinzer, Robert A; Halberg, Kenneth A; Dow, Julian A T; Davies, Shireen-A

    2015-12-01

    The exposure of insects to xenobiotics, such as insecticides, triggers a complex defence response necessary for survival. This response includes the induction of genes that encode key Cytochrome P450 monooxygenase detoxification enzymes. Drosophila melanogaster Malpighian (renal) tubules are critical organs in the detoxification and elimination of these foreign compounds, so the tubule response induced by dietary exposure to the insecticide permethrin was examined. We found that expression of the gene encoding Cytochrome P450-4e3 (Cyp4e3) is significantly up-regulated by Drosophila fed on permethrin and that manipulation of Cyp4e3 levels, specifically in the principal cells of the Malpighian tubules, impacts significantly on the survival of permethrin-fed flies. Both dietary exposure to permethrin and Cyp4e3 knockdown cause a significant elevation of oxidative stress-associated markers in the tubules, including H2O2 and lipid peroxidation byproduct, HNE (4-hydroxynonenal). Thus, Cyp4e3 may play an important role in regulating H2O2 levels in the endoplasmic reticulum (ER) where it resides, and its absence triggers a JAK/STAT and NF-κB-mediated stress response, similar to that observed in cells under ER stress. This work increases our understanding of the molecular mechanisms of insecticide detoxification and provides further evidence of the oxidative stress responses induced by permethrin metabolism. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Association of genetic polymorphisms CYP2A6*2 rs1801272 and CYP2A6*9 rs28399433 with tobacco-induced lung Cancer: case-control study in an Egyptian population.

    PubMed

    Ezzeldin, Nada; El-Lebedy, Dalia; Darwish, Amira; El Bastawisy, Ahmed; Abd Elaziz, Shereen Hamdy; Hassan, Mirhane Mohamed; Saad-Hussein, Amal

    2018-05-03

    Several studies have reported the role of CYP2A6 genetic polymorphisms in smoking and lung cancer risk with some contradictory results in different populations. The purpose of the current study is to assess the contribution of the CYP2A6*2 rs1801272 and CYP2A6*9 rs28399433 gene polymorphisms and tobacco smoking in the risk of lung cancer in an Egyptian population. A case-control study was conducted on 150 lung cancer cases and 150 controls. All subjects were subjected to blood sampling for Extraction of genomic DNA and Genotyping of the CYP2A6 gene SNPs (CYP2A6*2 (1799 T > A) rs1801272 and CYP2A6*9 (- 48 T > G) rs28399433 by Real time PCR. AC and CC genotypes were detected in CYP2A6*9; and AT genotype in CYP2A6*2. The frequency of CYP2A6*2 and CYP2A6*9 were 0.7% and 3.7% respectively in the studied Egyptian population. All cancer cases with slow metabolizer variants were NSCLC. Non-smokers represented 71.4% of the CYP2A6 variants. There was no statistical significant association between risk of lung cancer, smoking habits, heaviness of smoking and the different polymorphisms of CYP2A6 genotypes. The frequency of slow metabolizers CYP2A6*2 and CYP2A6*9 are poor in the studied Egyptian population. Our findings did not suggest any association between CYP2A6 genotypes and risk of lung cancer.

  4. Alprazolam as an in vivo probe for studying induction of CYP3A in cynomolgus monkeys.

    PubMed

    Ohtsuka, Tatsuyuki; Yoshikawa, Takahiro; Kozakai, Kazumasa; Tsuneto, Yumi; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki

    2010-10-01

    Induction of the cytochrome P450 (P450) enzyme is a major concern in the drug discovery processes. To predict the clinical significance of enzyme induction, it is helpful to investigate pharmacokinetic alterations of a coadministered drug in a suitable animal model. In this study, we focus on the induction of CYP3A, which is involved in the metabolism of approximately 50% of marketed drugs and is inducible in both the liver and intestine. As a marker substrate for CYP3A activity, alprazolam (APZ) was selected and characterized using recombinant CYP3A enzymes expressed in Escherichia coli. Both human CYP3A4 and its cynomolgus P450 ortholog predominantly catalyzed APZ 4-hydroxylation with sigmoidal kinetics. When administered intravenously and orally to cynomolgus monkeys, APZ had moderate clearance; its first-pass extraction ratio after oral dosing was estimated to be 0.09 in the liver and 0.45 in the intestine. Pretreatment with multiple doses of rifampicin (20 mg/kg p.o. for 5 days), a known CYP3A inducer, significantly decreased plasma concentrations of APZ after intravenous and oral administrations (0.5 mg/kg), and first-pass extraction ratios were increased to 0.39 in the liver and 0.63 in the intestine. The results were comparable to those obtained in clinical drug-drug interaction (DDI) reports related to CYP3A induction, although the rate of recovery of CYP3A activity seemed to be slower than rates estimated in clinical studies. In conclusion, pharmacokinetic studies using APZ as a probe in monkeys may provide useful information regarding the prediction of clinical DDIs due to CYP3A induction.

  5. Novel phacB-encoded cytochrome P450 monooxygenase from Aspergillus nidulans with 3-hydroxyphenylacetate 6-hydroxylase and 3,4-dihydroxyphenylacetate 6-hydroxylase activities.

    PubMed

    Ferrer-Sevillano, Francisco; Fernández-Cañón, José M

    2007-03-01

    Aspergillus nidulans catabolizes phenylacetate (PhAc) and 3-hydroxy-, 4-hydroxy-, and 3,4-dihydroxyphenylacetate (3-OH-PhAc, 4-OH-PhAc, and 3,4-diOH-PhAc, respectively) through the 2,5-dihydroxyphenylacetate (homogentisic acid) catabolic pathway. Using cDNA subtraction techniques, we isolated a gene, denoted phacB, which is strongly induced by PhAc (and its hydroxyderivatives) and encodes a new cytochrome P450 (CYP450). A disrupted phacB strain (delta phacB) does not grow on 3-hydroxy-, 4-hydroxy-, or 3,4-dihydroxy-PhAc. High-performance liquid chromatography and gas chromatography-mass spectrum analyses of in vitro reactions using microsomes from wild-type and several A. nidulans mutant strains confirmed that the phacB-encoded CYP450 catalyzes 3-hydroxyphenylacetate and 3,4-dihydroxyphenylacetate 6-hydroxylations to generate 2,5-dihydroxyphenylacetate and 2,4,5-trihydroxyphenylacetate, respectively. Both of these compounds are used as substrates by homogentisate dioxygenase. This cytochrome P450 protein also uses PhAc as a substrate to generate 2-OH-PhAc with a very low efficiency. The phacB gene is the first member of a new CYP450 subfamily (CYP504B).

  6. Novel phacB-Encoded Cytochrome P450 Monooxygenase from Aspergillus nidulans with 3-Hydroxyphenylacetate 6-Hydroxylase and 3,4-Dihydroxyphenylacetate 6-Hydroxylase Activities▿

    PubMed Central

    Ferrer-Sevillano, Francisco; Fernández-Cañón, José M.

    2007-01-01

    Aspergillus nidulans catabolizes phenylacetate (PhAc) and 3-hydroxy-, 4-hydroxy-, and 3,4-dihydroxyphenylacetate (3-OH-PhAc, 4-OH-PhAc, and 3,4-diOH-PhAc, respectively) through the 2,5-dihydroxyphenylacetate (homogentisic acid) catabolic pathway. Using cDNA subtraction techniques, we isolated a gene, denoted phacB, which is strongly induced by PhAc (and its hydroxyderivatives) and encodes a new cytochrome P450 (CYP450). A disrupted phacB strain (ΔphacB) does not grow on 3-hydroxy-, 4-hydroxy-, or 3,4-dihydroxy-PhAc. High-performance liquid chromatography and gas chromatography-mass spectrum analyses of in vitro reactions using microsomes from wild-type and several A. nidulans mutant strains confirmed that the phacB-encoded CYP450 catalyzes 3-hydroxyphenylacetate and 3,4-dihydroxyphenylacetate 6-hydroxylations to generate 2,5-dihydroxyphenylacetate and 2,4,5-trihydroxyphenylacetate, respectively. Both of these compounds are used as substrates by homogentisate dioxygenase. This cytochrome P450 protein also uses PhAc as a substrate to generate 2-OH-PhAc with a very low efficiency. The phacB gene is the first member of a new CYP450 subfamily (CYP504B). PMID:17189487

  7. Impact of ritonavir dose and schedule on CYP3A inhibition and venetoclax clinical pharmacokinetics.

    PubMed

    Freise, Kevin J; Hu, Beibei; Salem, Ahmed Hamed

    2018-04-01

    Venetoclax is a selective BCL-2 inhibitor indicated for the treatment of patients with chronic lymphocytic leukemia (CLL). It is predominately metabolized by cytochrome P450 (CYP) 3A. The study objective was to determine the effect of different dosage regimens of ritonavir, a strong CYP3A inhibitor, on the pharmacokinetics of venetoclax in 20 healthy subjects. In cohorts 1 and 2, subjects received single 10 mg doses of venetoclax in periods 1 and 2 and a single 50- or 100-mg dose of ritonavir in period 2. In cohort 3, subjects received 10-mg venetoclax doses on day 1 of period 1 and days 1 and 11 of period 2, and 50 mg ritonavir daily on days 1 to 14 of period 2. Single doses of 50 and 100 mg ritonavir increased the venetoclax maximum concentration (C max ) 2.3- to 2.4-fold compared to venetoclax alone and the area under the curve (AUC) 6.1- and 8.1-fold, respectively. Daily 50 mg ritonavir resulted in a 2.4- and 7.9-fold increase in venetoclax C max and AUC, respectively. Administration of 50 mg ritonavir daily saturated CYP3A inhibition and completely inhibited the formation of the major venetoclax metabolite M27. Time-dependent CYP3A inhibition with daily 50 mg ritonavir was offset by ritonavir CYP3A induction, resulting in a limited net increase in CYP3A inhibition with multiple doses. After completion of the dose ramp-up, venetoclax dose reductions of at least 75% are recommended when administered concomitantly with strong CYP3A inhibitors to maintain venetoclax exposures within the established therapeutic window for CLL treatment.

  8. The MCT4 Gene: A Novel, Potential Target for Therapy of Advanced Prostate Cancer.

    PubMed

    Choi, Stephen Yiu Chuen; Xue, Hui; Wu, Rebecca; Fazli, Ladan; Lin, Dong; Collins, Colin C; Gleave, Martin E; Gout, Peter W; Wang, Yuzhuo

    2016-06-01

    The management of castration-resistant prostate cancer (CRPC) is a major challenge in the clinic. Androgen receptor signaling-directed strategies are not curative in CRPC therapy, and new strategies targeting alternative, key cancer properties are needed. Using reprogrammed glucose metabolism (aerobic glycolysis), cancer cells typically secrete excessive amounts of lactic acid into their microenvironment, promoting cancer development, survival, and progression. Cellular lactic acid secretion is thought to be predominantly mediated by MCT4, a plasma membrane transporter protein. As such, the MCT4 gene provides a unique, potential therapeutic target for cancer. A tissue microarray of various Gleason grade human prostate cancers was stained for MCT4 protein. Specific, MCT4-targeting antisense oligonucleotides (MCT4 ASO) were designed and candidate MCT4 ASOs checked for effects on (i) MCT4 expression, lactic acid secretion/content, glucose consumption, glycolytic gene expression, and proliferation of human CRPC cells and (ii) growth of PC-3 tumors in nude mice. Elevated MCT4 expression was associated with human CRPC and an earlier time to relapse. The treatment of PC-3, DU145, and C4-2 CRPC cultures with candidate MCT4 ASOs led to marked inhibition of MCT4 expression, lactic acid secretion, to increased intracellular lactic acid levels, and markedly reduced aerobic glycolysis and cell proliferation. Treatment of PC-3 tumor-bearing nude mice with the MCT4 ASOs markedly inhibited tumor growth without inducing major host toxicity. MCT4-targeting ASOs that inhibit lactic acid secretion may be useful for therapy of CRPC and other cancers, as they can interfere with reprogrammed energy metabolism of cancers, an emerging hallmark of cancer. Clin Cancer Res; 22(11); 2721-33. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. The CYP51F1 Gene of Leptographium qinlingensis: Sequence Characteristic, Phylogeny and Transcript Levels

    PubMed Central

    Dai, Lulu; Li, Zhumei; Yu, Jiamin; Ma, Mingyuan; Zhang, Ranran; Chen, Hui; Pham, Thanh

    2015-01-01

    Leptographium qinlingensis is a fungal associate of the Chinese white pine beetle (Dendroctonus armandi) and a pathogen of the Chinese white pine (Pinus armandi) that must overcome the terpenoid oleoresin defenses of host trees. L. qinlingensis responds to monoterpene flow with abundant mechanisms that include export and the use of these compounds as a carbon source. As one of the fungal cytochrome P450 proteins (CYPs), which play important roles in general metabolism, CYP51 (lanosterol 14-α demethylase) can catalyze the biosynthesis of ergosterol and is a target for antifungal drug. We have identified an L. qinlingensis CYP51F1 gene, and the phylogenetic analysis shows the highest homology with the 14-α-demethylase sequence from Grosmannia clavigera (a fungal associate of Dendroctonus ponderosae). The transcription level of CYP51F1 following treatment with terpenes and pine phloem extracts was upregulated, while using monoterpenes as the only carbon source led to the downregulation of CYP5F1 expression. The homology modeling structure of CYP51F1 is similar to the structure of the lanosterol 14-α demethylase protein of Saccharomyces cerevisiae YJM789, which has an N-terminal membrane helix 1 (MH1) and transmembrane helix 1 (TMH1). The minimal inhibitory concentrations (MIC) of terpenoid and azole fungicides (itraconazole (ITC)) and the docking of terpenoid molecules, lanosterol and ITC in the protein structure suggested that CYP51F1 may be inhibited by terpenoid molecules by competitive binding with azole fungicides. PMID:26016505

  10. A Case of 3,4-Dimethoxyamphetamine (3,4-DMA) and 3,4-Methylenedioxymethamphetamine (MDMA) Toxicity with Possible Metabolic Interaction.

    PubMed

    Darracq, Michael A; Thornton, Stephen L; Minns, Alicia B; Gerona, Roy R

    2016-01-01

    We present a case of "ecstasy" ingestion revealing 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-dimethoxyamphetamine (3,4-DMA) and absence of cytochrome P450 (CYP)-2D6 MDMA metabolites. A 19-year-old presented following a seizure. Initial vital signs were normal. Laboratories were normal with the exception of sodium 127 mEq/L and urine drugs of abuse screen positive for amphetamines. Twelve hours later, serum sodium was 114 mEq/L and a second seizure occurred. After receiving hypertonic saline (3%), the patient had improvement in mental status and admitted to taking "ecstasy" at a rave prior to her initial presentation. Liquid chromatography-time-of-flight mass spectrometry (LC-TOF/MS) of serum and urine revealed MDMA, 3,4-DMA, and the CYP-2B6 MDMA metabolites 3,4-methylendioxyamphetamine (MDA) and 4-hydroxy-3-methoxyamphetamine (HMA). The CYP2D6 metabolites of MDMA, 3,4-dihydromethamphetamine (HHMA) and 4-hydroxy-3-methoxymethamphetamine (HMMA), were detected at very low levels. This case highlights the polypharmacy which may exist among users of psychoactive illicit substances and demonstrates that concurrent use of MDMA and 3,4-DMA may predispose patients to severe toxicity. Toxicologists and other healthcare providers should be aware of this potential toxicity.

  11. Genetic polymorphisms in CYP1A1, CYP1B1 and COMT genes in Greenlandic Inuit and Europeans

    PubMed Central

    Ghisari, Mandana; Long, Manhai; Bonefeld-Jørgensen, Eva C.

    2013-01-01

    Background The Indigenous Arctic population is of Asian descent, and their genetic background is different from the Caucasian populations. Relatively little is known about the specific genetic polymorphisms in genes involved in the activation and detoxification mechanisms of environmental contaminants in Inuit and its relation to health risk. The Greenlandic Inuit are highly exposed to legacy persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), and an elucidation of gene–environment interactions in relation to health risks is needed. Objectives The aim of this study was to determine and compare the genotype and allele frequencies of the cytochrome P450 CYP1A1 Ile462Val (rs1048943), CYP1B1 Leu432Val (rs1056836) and catechol-O-methyltransferase COMT Val158Met (rs4680) in Greenlandic Inuit (n=254) and Europeans (n=262) and explore the possible relation between the genotypes and serum levels of POPs. Results The genotype and allele frequency distributions of the three genetic polymorphisms differed significantly between the Inuit and Europeans. For Inuit, the genotype distribution was more similar to those reported for Asian populations. We observed a significant difference in serum polychlorinated biphenyl (CB-153) and the pesticide 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene (p,p′-DDE) levels between Inuit and Europeans, and for Inuit also associations between the POP levels and genotypes for CYP1A1, CYP1B1 and COMT. Conclusion Our data provide new information on gene polymorphisms in Greenlandic Inuit that might support evaluation of susceptibility to environmental contaminants and warrant further studies. PMID:23785672

  12. A physiological role of AMP-activated protein kinase in phenobarbital-mediated constitutive androstane receptor activation and CYP2B induction

    PubMed Central

    Shindo, Sawako; Numazawa, Satoshi; Yoshida, Takemi

    2006-01-01

    CAR (constitutive androstane receptor) is a nuclear receptor that regulates the transcription of target genes, including CYP (cytochrome P450) 2B and 3A. The transactivation by CAR is regulated by its subcellular localization; however, the mechanism that governs nuclear translocation has yet to be clarified. It has been reported recently that AMPK (AMP-activated protein kinase) is involved in phenobarbital-mediated CYP2B induction in a particular culture system. We therefore investigated in vivo whether AMPK is involved in the activation of CAR-dependent gene expression. Immunoblot analysis using an antibody which recognizes Thr-172-phosphorylated AMPKα1/2 revealed phenobarbital-induced AMPK activation in rat and mouse livers as well. Phenobarbital, however, failed to increase the liver phospho-AMPK level of tumour-bearing rats in which CAR nuclear translocation had been impaired. In in vivo reporter gene assays employing PBREM (phenobarbital-responsive enhancer module) from CYP2B1, an AMPK inhibitor 8-bromo-AMP abolished phenobarbital-induced transactivation. In addition, Cyp2b10 gene expression was attenuated by 8-bromo-AMP. Forced expression of a dominant-negative mutant and the wild-type of AMPKα2 in the mouse liver suppressed and further enhanced phenobarbital-induced PBREM-reporter activity respectively. Moreover, the AMPK activator AICAR (5-amino-4-imidazolecarboxamide riboside) induced PBREM transactivation and an accumulation of CAR in the nuclear fraction of the mouse liver. However, AICAR and metformin, another AMPK activator, failed to induce hepatic CYP2B in mice and rats. These observations suggest that AMPK is at least partly involved in phenobarbital-originated signalling, but the kinase activation by itself is not sufficient for CYP2B induction in vivo. PMID:17032173

  13. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area.

    PubMed

    Girolami, Flavia; Spalenza, Veronica; Carletti, Monica; Sacchi, Paola; Rasero, Roberto; Nebbia, Carlo

    2013-04-15

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor.

    PubMed

    Gräns, Johanna; Wassmur, Britt; Fernández-Santoscoy, María; Zanette, Juliano; Woodin, Bruce R; Karchner, Sibel I; Nacci, Diane E; Champlin, Denise; Jayaraman, Saro; Hahn, Mark E; Stegeman, John J; Celander, Malin C

    2015-02-01

    Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ∼400 times higher, and the levels of non-dioxin-like PCBs ∼3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of AhR2 or CYP1A in liver and gills of NBH fish. In NBH fish, but not in SC fish, there was increased mRNA expression of hepatic PXR, CYP3A and Pgp upon exposure to either of the two PCB congeners. However, basal PXR and Pgp mRNA levels in liver of NBH fish were significantly lower than in SC fish. A different pattern was seen in gills, where there were no differences in basal mRNA expression of these genes between the two

  15. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish.

    PubMed

    Callard, G V; Tchoudakova, A V; Kishida, M; Wood, E

    2001-12-01

    Teleost fish are characterized by exceptionally high levels of brain estrogen biosynthesis when compared to the brains of other vertebrates or to the ovaries of the same fish. Goldfish (Carassius auratus) and zebrafish (Danio rerio) have utility as complementary models for understanding the molecular basis and functional significance of exaggerated neural estrogen biosynthesis. Multiple cytochrome P450 aromatase (P450arom) cDNAs that derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (P450aromB>A) and ovary (P450aromA>B) and have a different developmental program (B>A) and response to estrogen upregulation (B only). As measured by increased P450aromB mRNA, a functional estrogen response system is first detected 24-48 h post-fertilization (hpf), consistent with the onset of estrogen receptor (ER) expression (alpha, beta, and gamma). The 5'-flanking region of the cyp19b gene has a TATA box, two estrogen response elements (EREs), an ERE half-site (ERE1/2), a nerve growth factor inducible-B protein (NGFI-B)/Nur77 responsive element (NBRE) binding site, and a sequence identical to the zebrafish GATA-2 gene neural specific enhancer. The cyp19a promoter region has TATA and CAAT boxes, a steroidogenic factor-1 (SF-1) binding site, and two aryl hydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) binding motifs. Both genes have multiple potential SRY/SOX binding sites (16 and 8 in cyp19b and cyp19a, respectively). Luciferase reporters have basal promoter activity in GH3 cells, but differences (a>b) are opposite to fish pituitary (b>a). When microinjected into fertilized zebrafish eggs, a cyp19b promoter-driven green fluorescent protein (GFP) reporter (but not cyp19a) is expressed in neurons of 30-48 hpf embryos, most prominently in retinal ganglion cells (RGCs) and their projections to optic tectum. Further studies are required to identify functionally relevant cis-elements and cellular factors, and to determine the

  16. Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2.

    PubMed

    Smigocki, Ann C; Wilson, Dennis

    2004-12-01

    The functional role of the Nicotiana plumbaginifolia cytochrome P450 gene CYP72A2 was investigated in transgenic plants. N. tabacum plants transformed with a sense or antisense CYP72A2 construct exhibited diminished heights, branched stems, smaller leaves and deformed flowers. Western blot analysis revealed reduced levels of a 58 kDa protein corresponding to CYP72A2, suggesting that the CYP72A2 homolog was suppressed in the sense and antisense plants. Transgenic plants had increased resistance to Manduca sexta larvae that consumed about 35 to 90 less of transgenic versus control leaves. A virulent strain of Pseudomonas syringae pv. tabaci induced a disease-limiting response followed by a delayed and decreased development of disease symptoms in the transgenics. CYP72A2 gene mediated resistance suggests that the plant-pest or -pathogen interactions may have been modified by changes in bioactive metabolite pools.

  17. Plasma pharmacokinetics and CYP3A12-dependent metabolism of c-kit inhibitor imatinib in dogs.

    PubMed

    Ishizuka, M; Nagai, S; Sakamoto, K Q; Fujita, S

    2007-05-01

    Imatinib is a highly selective tyrosine kinase inhibitor, and is used for the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumours (GISTs) in humans. The aim of this study is to determine the in vitro and in vivo pharmacokinetics of imatinib in dogs and which cytochrome P450 (CYPs) contribute to its metabolism. Imatinib was administered orally or intravenously to dogs and the time of the peak concentration (T(max)) of imatinib was 4-9 h. The mean half-life was 622 +/- 368 min, and the AUC was 1256 +/- 809 microM * min after oral administration. The range of C0 of intravenously injected dogs was 12-24 microM. The half-life and AUC after intravenous injection were 206 +/- 112 min and 1026 +/- 371 microM * min, respectively. Recombinant system of dog CYP3A12 and CYP2C21 showed that CYP3A12 contributed to the metabolism of imatinib. The inhibition of CYP3A-dependent activity using a rat anti-CYP3A antibody or ketoconazole revealed that CYP3A12 plays a major role in the metabolism of imatinib in dog liver microsomes.

  18. Isolation and characterization of cyp19a1a and cyp19a1b promoters in the protogynous hermaphrodite orange-spotted grouper (Epinephelus coioides).

    PubMed

    Zhang, Weimin; Lu, Huijie; Jiang, Haiyan; Li, Mu; Zhang, Shen; Liu, Qiongyou; Zhang, Lihong

    2012-02-01

    Aromatase (CYP19A1) catalyzes the conversion of androgens to estrogens. In teleosts, duplicated copies of cyp19a1 genes, namely cyp19a1a and cyp19a1b, were identified, however, the transcriptional regulation of these two genes remains poorly understood. In the present study, the 5'-flanking regions of the orange-spotted grouper cyp19a1a (gcyp19a1a) and cyp19a1b (gcyp19a1b) genes were isolated and characterized. The proximal promoter regions of both genes were relatively conserved when compared to those of the other teleosts. Notably, a conserved FOXO transcriptional factor binding site was firstly reported in the proximal promoter of gcyp19a1a, and deletion of the region (-112 to -60) containing this site significantly decreased the promoter activities. The deletion of the region (-246 to -112) containing the two conserved FTZ-F1 sites also dramatically decreased the transcriptional activities of gcyp19a1a promoter, and both two FTZ-F1 sites were shown to be stimulatory cis-acting elements. A FTZ-F1 homologue isolated from ricefield eel (eFTZ-F1) up-regulated gcyp19a1a promoter activities possibly via the FTZ-F1 sites, however, a previously identified orange-spotted grouper FTZ-F1 homologue (gFTZ-F1) did not activate the transcription of gcyp19a1a promoter unexpectedly. As to gcyp19a1b promoter, all the deletion constructs did not show good promoter activities in either TM4 or U251-MG cells. Estradiol (100nM) up-regulated gcyp19a1b promoter activities by about 13- and 36-fold in TM4 and U251-MG cells, respectively, via the conserved ERE motif, but did not stimulate gcyp19a1a promoter activities. These results are helpful to further elucidate the regulatory mechanisms of cyp19a1a and cyp19a1b expression in the orange-spotted grouper as well as other teleosts. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Targeting CYP51 for drug design by the contributions of molecular modeling.

    PubMed

    Rabelo, Vitor W; Santos, Taísa F; Terra, Luciana; Santana, Marcos V; Castro, Helena C; Rodrigues, Carlos R; Abreu, Paula A

    2017-02-01

    CYP51 is an enzyme of sterol biosynthesis pathway present in animals, plants, protozoa and fungi. This enzyme is described as an important drug target that is still of interest. Therefore, in this work, we reviewed the structure and function of CYP51 and explored the molecular modeling approaches for the development of new antifungal and antiprotozoans that target this enzyme. Crystallographic structures of CYP51 of some organisms have already been described in the literature, which enable the construction of homology models of other organisms' enzymes and molecular docking studies of new ligands. The binding mode and interactions of some new series of azoles with antifungal or antiprotozoan activities has been studied and showed important residues of the active site. Molecular modeling is an important tool to be explored for the discovery and optimization of CYP51 inhibitors with better activities, pharmacokinetics, and toxicological profiles. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  20. Cyp15F1: a novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Coy, Monique R; Scharf, Michael E

    2012-07-01

    Termites are eusocial insects that jointly utilize juvenile hormone (JH), pheromones, and other semiochemicals to regulate caste differentiation and achieve caste homeostasis. Prior EST sequencing from the symbiont-free gut transcriptome of Reticulitermes flavipes unexpectedly revealed a number of unique cytochrome P450 (Cyp) transcripts, including fragments of a Cyp15 family gene (Cyp15F1) with homology to other insect Cyp15s that participate in JH biosynthesis. The present study investigated the role of Cyp15F1 in termite caste polyphenism and specifically tested the hypothesis that it plays a role in JH-dependent caste differentiation. After assembling the full-length Cyp15F1 cDNA sequence, we (i) determined its mRNA tissue expression profile, (ii) investigated mRNA expression changes in response to JH and the caste-regulatory primer pheromones γ-cadinene (CAD) and γ-cadinenal (ALD), and (iii) used RNA interference (RNAi) in combination with caste differentiation bioassays to investigate gene function at the phenotype level. Cyp15F1 has ubiquitous whole-body expression (including gut tissue); is rapidly and sustainably induced from 3 h to 48 h by JH, CAD, and ALD; and functions at least in part by facilitating JH-dependent soldier caste differentiation. These findings provide the second example of a termite caste regulatory gene identified through the use of RNAi, and significantly build upon our understanding of termite caste homeostatic mechanisms. These results also reinforce the concept of environmental caste determination in termites by revealing how primer pheromones, as socioenvironmental factors, can directly influence Cyp15 expression and caste differentiation. © 2012 Wiley Periodicals, Inc.

  1. CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata.

    PubMed

    Luck, Katrin; Jia, Qidong; Huber, Meret; Handrick, Vinzenz; Wong, Gane Ka-Shu; Nelson, David R; Chen, Feng; Gershenzon, Jonathan; Köllner, Tobias G

    2017-09-01

    Conifers contain P450 enzymes from the CYP79 family that are involved in cyanogenic glycoside biosynthesis. Cyanogenic glycosides are secondary plant compounds that are widespread in the plant kingdom. Their biosynthesis starts with the conversion of aromatic or aliphatic amino acids into their respective aldoximes, catalysed by N-hydroxylating cytochrome P450 monooxygenases (CYP) of the CYP79 family. While CYP79s are well known in angiosperms, their occurrence in gymnosperms and other plant divisions containing cyanogenic glycoside-producing plants has not been reported so far. We screened the transcriptomes of 72 conifer species to identify putative CYP79 genes in this plant division. From the seven resulting full-length genes, CYP79A118 from European yew (Taxus baccata) was chosen for further characterization. Recombinant CYP79A118 produced in yeast was able to convert L-tyrosine, L-tryptophan, and L-phenylalanine into p-hydroxyphenylacetaldoxime, indole-3-acetaldoxime, and phenylacetaldoxime, respectively. However, the kinetic parameters of the enzyme and transient expression of CYP79A118 in Nicotiana benthamiana indicate that L-tyrosine is the preferred substrate in vivo. Consistent with these findings, taxiphyllin, which is derived from L-tyrosine, was the only cyanogenic glycoside found in the different organs of T. baccata. Taxiphyllin showed highest accumulation in leaves and twigs, moderate accumulation in roots, and only trace accumulation in seeds and the aril. Quantitative real-time PCR revealed that CYP79A118 was expressed in plant organs rich in taxiphyllin. Our data show that CYP79s represent an ancient family of plant P450s that evolved prior to the separation of gymnosperms and angiosperms. CYP79A118 from T. baccata has typical CYP79 properties and its substrate specificity and spatial gene expression pattern suggest that the enzyme contributes to the formation of taxiphyllin in this plant species.

  2. Elevated expression of steroidogenesis pathway genes; CYP17, GATA6 and StAR in prenatally androgenized rats.

    PubMed

    Jahromi, Marziyeh Salehi; Tehrani, Fahimeh Ramezani; Noroozzadeh, Mahsa; Zarkesh, Maryam; Ghasemi, Asghar; Zadeh-Vakili, Azita

    2016-11-15

    It is believed that excess androgen exposure of the fetus, via altered gene expression, causes hyperandrogenism a key feature of polycystic ovary syndrome (PCOS). The aim of this study was to evaluate expression of Cytochrome P450-17 (CYP17), GATA-binding protein (GAGT6) and Steroidogenic acute regulatory protein (StAR), genes of adult female rats prenatally exposed to androgen excess, closely reflect endocrine and ovarian disturbances of PCOS in women, by comparing them during different phases of estrus cycle with those of non-treated rats. Both the adult prenatally testosterone exposed and control rats (n=23, each) were divided into four groups based on their observed vaginal smear (proestrus, estrus, metestrus and diestrus) and the relative expression of CYP17, GATA6 and StAR genes was measured in ovarian theca cells using Cyber-green Real-Time PCR. Serum sex steroid hormones and gonadotropins levels were measured using the ELISA method; a comparison of these two groups showed that there was an overall increase in the studied genes (CYP17; 2.39 fold change, 95% CI: 1.23-3.55; P<0.05, GATA6; 2.08 fold change, 95% CI: 1.62-2.55; P<0.0001, and StAR; 1.4 fold change, 95% CI: 1.02-1.78; P<0.05), despite variations in different phases with maximum elevation for all genes in diestrus. The changes observed may impair the normal development of ovaries that mediate the programming of adult PCOS. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Screening for polymorphisms in the PXR gene in a Dutch population.

    PubMed

    Bosch, Tessa M; Deenen, Maarten; Pruntel, Roelof; Smits, Paul H M; Schellens, Jan H M; Beijnen, Jos H; Meijerman, Irma

    2006-05-01

    Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of over 50% of all drugs currently in use. However, CYP3A4 expression shows a large inter-individual variation that cannot only be explained by genetic polymorphisms identified in this gene. The pregnane X receptor (PXR) has been identified as a transcriptional regulator of CYP3A4. Single nucleotide polymorphisms (SNPs) in the PXR gene could influence PXR activity and thereby CYP3A4 expression. This study was therefore aimed at determining the frequencies of known SNPs and detecting yet unknown SNPs in the PXR gene in a Dutch population. Genomic DNA was isolated from blood samples obtained from 100 healthy volunteers and subjected to PCR amplification, followed by DNA sequencing. The population, of which the ethnicity was 93% Caucasian, consisted of 79 female individuals and 21 males. A total of 24 SNPs were found in the PXR gene, eight of which are previously unknown. The allelic frequencies found in this population varied from 0.5 to 73%. Most of the previously detected SNPs were located in introns. One new SNP, T8555G in exon 8, causes an amino acid change of C379G and is located in the Ligand Binding Domain of PXR. Several SNPs were detected in the PXR gene, one of which is located in the ligand binding domain (LBD). These SNPs may influence PXR-mediated CYP3A4 induction.

  4. Influence of the genetic polymorphism in the 5'-noncoding region of the CYP1A2 gene on CYP1A2 phenotype and urinary mutagenicity in smokers.

    PubMed

    Pavanello, Sofia; Pulliero, Alessandra; Lupi, Silvia; Gregorio, Pasquale; Clonfero, Erminio

    2005-11-10

    The functional significance of genetic polymorphisms on tobacco smoke-induced CYP1A2 activity was examined. The influence of three polymorphisms of the cytochrome P450 1A2 gene (CYP1A2) (-3860 G-->A (allele *1C), -2467 T-->delT (allele *1D), -163C-->A (allele *1F)), located in the 5'-noncoding promoter region of the gene, on CYP1A2 activity (measured as caffeine metabolic ratio, CMR), was studied in Caucasian current smokers (n=95). Tobacco smoke intake was calculated from the number of cigarettes/day. Also, studied was the influence of these CYP1A2 genotypes on smoking-associated urinary mutagenicity, detected in Salmonella typhimurium strain YG1024 with S9 mix, considering the urinary excretion of nicotine plus its metabolites as an internal indicator of tobacco smoke exposure. Smokers with at least one of the variant alleles CYP1A2 -3860A and -2467 delT showed a significantly increased CYP1A2 CMR (-3860 G/A versus G/G, p<0.05; -2467 delT/delT versus T/delT and T/T, p<0.01). Multiple regression analysis showed that the increase in CYP1A2 CMR (ln values) was again significantly related to the presence of CYP1A2 variants -2467delT and also to variant -163A (p<0.05), but moderately to -3860A (p=0.084). No influence of the number of cigarettes smoked per day by each subject was found. Heavy smokers (n=48, with urinary nicotine plus its metabolites>or=0.69 mg/mmol creatinine) with variant allele -2467delT or -163A had significantly increased urinary mutagenicity (p<0.01 and <0.05). CYP1A2 genetic polymorphisms are shown to influence the CYP1A2 phenotype in smokers, -2467 T-->delT having the main effect. This information is of interest for future studies assessing the possible role of tobacco smoke-inducible CYP1A2 genotypes as individual susceptibility factors in exposure to carcinogens.

  5. Aryl hydrocarbon receptor activation and CYP1A induction by cooked food-derived carcinogenic heterocyclic amines in human HepG2 cell lines.

    PubMed

    Sekimoto, Masashi; Sumi, Haruna; Hosaka, Takuomi; Umemura, Takashi; Nishikawa, Akiyoshi; Degawa, Masakuni

    2016-11-01

    The ability of nine cooked food-derived heterocyclic aromatic amines (HCAs), such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-6-methylpyrido[12-a:3',2'-d]imidazole (Glu-P-1), 2-amino-pyrido[12-a:3',2'-d]imidazole hydrochloride (Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PhIP), to activate human aryl hydrocarbon receptor (hAhR) was examined using a HepG2-A10 cell line, which has previously established from human hepatocarcinoma-derived HepG2 cells for use in hAhR-based luciferase reporter gene assays. Trp-P-1, Trp-P-2, AαC, MeAαC, IQ and MeIQx showed a definite ability to induce not only luciferase (hAhR activation) in HepG2-A10 cells but also cytochrome P450 (CYP)1A1/1A2 mRNAs in HepG2 cells, while such the ability of Glu-P-1, Glu-P-2, and PhIP was very low. In addition, all the HCAs examined, especially MeAαC and MeIQx, had a definite capacity for inhibiting the activity of ethoxyresorfin O-deethylase (CYP1As, especially CYP1A1). The present findings demonstrate that all the HCAs examined have the ability to activate hAhR and its target genes, and further confirm that these HCAs become good substrates for human CYP1A subfamily enzyme(s). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  7. Delayed de-induction of CYP2C9 compared to CYP3A after discontinuation of rifampicin: Report of two cases
.

    PubMed

    Shibata, Soichi; Takahashi, Harumi; Baba, Akiyasu; Takeshita, Kei; Atsuda, Koichiro; Matsubara, Hajime; Echizen, Hirotoshi

    2017-05-01

    Timely dose reduction of concomitant medications is important after withdrawal of rifampicin, a CYP inducer. However, little is known about the differences in the time course of deinduction for various CYP isoforms. To clarify the time courses of deinduction of CYP2C9 and -CYP3A activities after rifampicin withdrawal, we monitored these enzyme activities in 2 patients over time after discontinuing rifampicin. Two patients (aged 70 and 80 years) received warfarin and rifampicin for anticoagulation and antituberculosis therapy, respectively. Warfarin doses were increased due to rifampicin-induced CYP activity. Upon completion of antituberculosis therapy, rifampicin was discontinued and warfarin doses were titrated downward according to prothrombin time. We monitored CYP2C9 and CYP3A activities over their clinical courses by measuring the metabolic clearance of S-warfarin to S-7-hydroxywarfarin and that of cortisol to 6β-hydroxycortisol, respectively. In both patients, the time courses of CYP2C9 deinduction appeared to be delayed compared to CYP3A. Our findings suggest that a uniform dose reduction protocol for drugs metabolized by different CYP isoforms may be unsafe after rifampicin withdrawal.
.

  8. Binding mode and potency of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors targeting Trypanosoma cruzi CYP51

    DOE PAGES

    Vieira, Debora F.; Choi, Jun Yong; Calvet, Claudia M.; ...

    2014-11-13

    Chagas disease is a chronic infection in humans caused by Trypanosoma cruzi and manifested in progressive cardiomyopathy and/or gastrointestinal dysfunction. Limited therapeutic options to prevent and treat Chagas disease put 8 million people infected with T. cruzi worldwide at risk. CYP51, involved in the biosynthesis of the membrane sterol component in eukaryotes, is a promising drug target in T. cruzi. We report the structure–activity relationships (SAR) of an N-arylpiperazine series of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors designed to probe the impact of substituents in the terminal N-phenyl ring on binding mode, selectivity and potency. Depending on the substituents at C-4, two distinct ringmore » binding modes, buried and solvent-exposed, have been observed by X-ray structure analysis (resolution of 1.95–2.48 Å). Lastly, the 5-chloro-substituted analogs 9 and 10 with no substituent at C-4 demonstrated improved selectivity and potency, suppressing ≥99.8% parasitemia in mice when administered orally at 25 mg/kg, b.i.d., for 4 days.« less

  9. Functional polymorphisms in the CYP2C19 gene contribute to digestive system cancer risk: evidence from 11,042 subjects.

    PubMed

    Zhou, Bo; Song, Zhenshun; Qian, Mingping; Li, Liang; Gong, Jian; Zou, Shaowu

    2013-01-01

    CYP2C19 belongs to the cytochrome P450 superfamily of enzymes involved in activating and detoxifying many carcinogens and endogenous compounds, which has attracted considerable attention as a candidate gene for digestive system cancer. CYP2C19 has two main point mutation sites (CYP2C19*2, CYP2C19*3) leading to poor metabolizer (PM) phenotype. In the past decade, the relationship between CYP2C19 polymorphism and digestive system cancer has been reported in various ethnic groups; however, these studies have yielded contradictory results. To clarify this inconsistency, we performed this meta-analysis. Databases including Pubmed, EMBASE, Web of Science and China National Knowledge Infrastructure (CNKI) were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. In total, 18 studies with 4,414 cases and 6,628 controls were included. Overall, significantly elevated digestive system cancer risk was associated CYP2C19 PM with OR of 1.66 (95%CI: 1.31-2.10, P<10(-5)) when all studies were pooled into the meta-analysis. There was strong evidence of heterogeneity (P = 0.006), which largely disappeared after stratification by cancer type. In the stratified analyses according to cancer type, ethnicity, control source and sample size, significantly increased risks were found. In summary, our meta-analysis suggested that the PM phenotype caused by the variation on CYP2C19 gene is associated with increased risk of digestive system cancer, especially in East Asians.

  10. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    PubMed

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Interactions between Cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) Lead to Alterations in Toluene Disposition and P450 Uncoupling

    PubMed Central

    Reed, James R.; Cawley, George F.; Backes, Wayne L.

    2013-01-01

    The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450•P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450•P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450•P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771

  12. Reduced Methylprednisolone Clearance Causing Prolonged Pharmacodynamics in a Healthy Subject Was Not Associated With CYP3A5*3 Allele or a Change in Diet Composition

    PubMed Central

    Lee, Su-Jun; Jusko, William J.; Salaita, Christine G.; Calis, Karim A.; Jann, Michael W.; Spratlin, Vicky E.; Goldstein, Joyce A.; Hon, Yuen Yi

    2014-01-01

    The influence of diet and genetics was investigated in a healthy white person who had distinctly low methylprednisolone clearance. Pharmacokinetic and pharmacodynamic parameter values were similar on 2 occasions during the consumption of a low-carbohydrate diet and a Weight Watchers diet, indicating that the decreased clearance was unlikely attributable to a change in diet composition. Although the subject was found to be homozygous for CYP3A5*3, genetic findings were not significant for a number of other CYP3A4 and CYP3A5 allelic variants. Because of the high prevalence of CYP3A5*3/*3 in whites and because 5 of 7 white control subjects are also homozygous for CYP3A5*3, this genotype cannot fully explain the reduced metabolism of the drug. Other genetic or contributing factors might have been involved. New polymerase chain reaction–based genotyping methods for functionally defective CYP3A5*6, *8, *9, and *10 alleles were developed in this study. These assays will be useful for CYP3A5 genotype analysis in future clinical studies. PMID:16638735

  13. CYP1A2 and NAT2 phenotyping and 3-aminobiphenyl and 4-aminobiphenyl hemoglobin adduct levels in smokers and non-smokers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Mohamadi; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298; Stabbert, Regina

    Some aromatic amines are considered to be putative bladder carcinogens. Hemoglobin (Hb) adducts of 3-aminobiphenyl (3-ABP) and 4-aminobiphenyl (4-ABP) have been used as biomarkers of exposure to aromatic amines from cigarette smoke. One of the goals of this study was to determine intra- and inter-individual variability in 3-ABP and 4-ABP Hb adducts and to explore the predictability of ABP Hb adduct levels based on caffeine phenotyping. The study was conducted in adult smokers (S, n = 65) and non-smokers (NS, n 65). The subjects were phenotyped for CYP1A2 and NAT2 using urinary caffeine metabolites. Blood samples were collected twice withinmore » 6 weeks and adducts measured by GC/MS. The levels of 4-ABP Hb adducts were significantly (p < 0.0001) greater in S (34.5 {+-} 21.06 pg/g Hb) compared to NS (6.3 {+-} 3.02 pg/g Hb). The levels of 3-ABP Hb adducts were below the limit of quantification (BLOQ) in most (82%) of the NS and about 10-fold lower in S (3.6 {+-} 3.29 pg/g Hb) compared to 4-ABP Hb adducts. No differences were observed in the adduct levels between weeks 1 and 6 in the smokers, suggesting that a single sample would be adequate to monitor cigarette smoke exposure. The regression model developed with CYP1A2, NAT2 phenotype and number of cigarettes smoked (NCIG) accounted for 47% of the variability in 3-ABP adducts, whereas 32% variability in 4-ABP adducts was accounted by CYP1A2 and NCIG. The ratio of 4-ABP Hb adducts in adult S:NS was {approx} 5:1, whereas 3-ABP Hb adducts levels were BLOQ in some S, exhibited large interindividual variability ({approx} 91% compared to 57% for 4-ABP Hb) and poor dose response relationship. Therefore, 4-ABP Hb adduct levels may be a more useful biomarker of aminobiphenyl exposure from cigarette smoke.« less

  14. Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates

    NASA Astrophysics Data System (ADS)

    Crivori, Patrizia; Zamora, Ismael; Speed, Bill; Orrenius, Christian; Poggesi, Italo

    2004-03-01

    A number of computational approaches are being proposed for an early optimization of ADME (absorption, distribution, metabolism and excretion) properties to increase the success rate in drug discovery. The present study describes the development of an in silico model able to estimate, from the three-dimensional structure of a molecule, the stability of a compound with respect to the human cytochrome P450 (CYP) 3A4 enzyme activity. Stability data were obtained by measuring the amount of unchanged compound remaining after a standardized incubation with human cDNA-expressed CYP3A4. The computational method transforms the three-dimensional molecular interaction fields (MIFs) generated from the molecular structure into descriptors (VolSurf and Almond procedures). The descriptors were correlated to the experimental metabolic stability classes by a partial least squares discriminant procedure. The model was trained using a set of 1800 compounds from the Pharmacia collection and was validated using two test sets: the first one including 825 compounds from the Pharmacia collection and the second one consisting of 20 known drugs. This model correctly predicted 75% of the first and 85% of the second test set and showed a precision above 86% to correctly select metabolically stable compounds. The model appears a valuable tool in the design of virtual libraries to bias the selection toward more stable compounds. Abbreviations: ADME - absorption, distribution, metabolism and excretion; CYP - cytochrome P450; MIFs - molecular interaction fields; HTS - high throughput screening; DDI - drug-drug interactions; 3D - three-dimensional; PCA - principal components analysis; CPCA - consensus principal components analysis; PLS - partial least squares; PLSD - partial least squares discriminant; GRIND - grid independent descriptors; GRID - software originally created and developed by Professor Peter Goodford.

  15. Seventeen {alpha}-hydroxylase deficiency with one base pair deletion of the cytochrome P450c17 (CYP17) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshiro, Chikara; Takasu, Nobuyuki; Wakugami, Tamio

    1995-08-01

    Mutation of the cytochrome P450c17 (CYP17) gene causes 17{alpha}-hydroxylase deficiency (170HD). Recently, several researchers have elucidated the molecular basis of 170HD by gene analysis. We experienced a case of 170HD and intended to reveal the abnormality of the CYP17 gene in this Japanese female with 170HD. Leukocytes were obtained from the patient, her mother and sister, and normal control subjects. We amplified the CYP17 gene using polymerase chain reaction and performed the sequence analysis using the dideoxy terminator method and restriction enzyme analysis. We found that the patient had one base-pair deletion at the position of amino acid 438. Anmore » indentical result was obtained with restriction enzyme analysis. This G deletion altered the reading frame and resulted in a premature stop codon at position 443; the ligand of heme iron (Cys: cystine 442) was absent. This small mutation may account for the patient`s clinical manifestations of 170HD. This is the first case of 170HD with only one base pair deletion of the CYP17 gene. 18 refs., 3 figs.« less

  16. CYP2C9 Genotype-Dependent Warfarin Pharmacokinetics: Impact of CYP2C9 Genotype on R- and S-Warfarin and Their Oxidative Metabolites.

    PubMed

    Flora, Darcy R; Rettie, Allan E; Brundage, Richard C; Tracy, Timothy S

    2017-03-01

    Multiple factors can impact warfarin therapy, including genetic variations in the drug-metabolizing enzyme cytochrome P450 2C9 (CYP2C9). Compared with individuals with the wild-type allele, CYP2C9*1, carriers of the common *3 variant have significantly impaired CYP2C9 metabolism. Genetic variations in CYP2C9, the primary enzyme governing the metabolic clearance of the more potent S-enantiomer of the racemic anticoagulant warfarin, may impact warfarin-drug interactions. To establish a baseline for such studies, plasma and urine concentrations of R- and S-warfarin and 10 warfarin metabolites were monitored for up to 360 hours following a 10-mg warfarin dose in healthy subjects with 4 different CYP2C9 genotypes: CYP2C9*1/*1 (n = 8), CYP2C9*1/*3 (n = 9), CYP2C9*2/*3 (n = 3), and CYP2C9*3/*3 (n = 4). Plasma clearance of S-warfarin, but not R-warfarin, decreased multiexponentially and in a CYP2C9 gene-dependent manner: 56%, 70%, and 75% for CYP2C9*1/*3, CYP2C9*2/*3, and CYP2C9*3/*3 genotypes, respectively, compared with CYP2C9*1/*1, resulting in pronounced differences in the S:R ratio that identified warfarin-sensitive genotypes. CYP2C9 was the primary P450 enzyme contributing to S-warfarin metabolism and a minor contributor to R-warfarin metabolism. In the presence of a defective CYP2C9 allele, switching of warfarin metabolism to other oxidative pathways and P450 enzymes for the metabolic elimination of S-warfarin was not observed. The 10-hydroxywarfarin metabolites, whose detailed pharmacokinetics are reported for the first time, exhibited a prolonged half-life with no evidence of renal excretion and displayed elimination rate-limited kinetics. Understanding the impact of CYP2C9 genetics on warfarin pharmacokinetics lays the foundation for future genotype-dependent warfarin-drug interaction studies. © 2016, The American College of Clinical Pharmacology.

  17. Molecular diversity and population structure at the Cytochrome P450 3A5 gene in Africa

    PubMed Central

    2013-01-01

    Background Cytochrome P450 3A5 (CYP3A5) is an enzyme involved in the metabolism of many therapeutic drugs. CYP3A5 expression levels vary between individuals and populations, and this contributes to adverse clinical outcomes. Variable expression is largely attributed to four alleles, CYP3A5*1 (expresser allele); CYP3A5*3 (rs776746), CYP3A5*6 (rs10264272) and CYP3A5*7 (rs41303343) (low/non-expresser alleles). Little is known about CYP3A5 variability in Africa, a region with considerable genetic diversity. Here we used a multi-disciplinary approach to characterize CYP3A5 variation in geographically and ethnically diverse populations from in and around Africa, and infer the evolutionary processes that have shaped patterns of diversity in this gene. We genotyped 2538 individuals from 36 diverse populations in and around Africa for common low/non-expresser CYP3A5 alleles, and re-sequenced the CYP3A5 gene in five Ethiopian ethnic groups. We estimated the ages of low/non-expresser CYP3A5 alleles using a linked microsatellite and assuming a step-wise mutation model of evolution. Finally, we examined a hypothesis that CYP3A5 is important in salt retention adaptation by performing correlations with ecological data relating to aridity for the present day, 10,000 and 50,000 years ago. Results We estimate that ~43% of individuals within our African dataset express CYP3A5, which is lower than previous independent estimates for the region. We found significant intra-African variability in CYP3A5 expression phenotypes. Within Africa the highest frequencies of high-activity alleles were observed in equatorial and Niger-Congo speaking populations. Ethiopian allele frequencies were intermediate between those of other sub-Saharan African and non-African groups. Re-sequencing of CYP3A5 identified few additional variants likely to affect CYP3A5 expression. We estimate the ages of CYP3A5*3 as ~76,400 years and CYP3A5*6 as ~218,400 years. Finally we report that global CYP3A5 expression

  18. Multisite Phosphorylation of Human Liver Cytochrome P450 3A4 Enhances Its gp78- and CHIP-mediated Ubiquitination

    PubMed Central

    Wang, YongQiang; Guan, Shenheng; Acharya, Poulomi; Liu, Yi; Thirumaran, Ranjit K.; Brandman, Relly; Schuetz, Erin G.; Burlingame, Alma L.; Correia, Maria Almira

    2012-01-01

    CYP3A4, an integral endoplasmic reticulum (ER)-anchored protein, is the major human liver cytochrome P450 enzyme responsible for the disposition of over 50% of clinically relevant drugs. Alterations of its protein turnover can influence drug metabolism, drug-drug interactions, and the bioavailability of chemotherapeutic drugs. Such CYP3A4 turnover occurs via a classical ER-associated degradation (ERAD) process involving ubiquitination by both UBC7/gp78 and UbcH5a/CHIP E2-E3 complexes for 26 S proteasomal targeting. These E3 ligases act sequentially and cooperatively in CYP3A4 ERAD because RNA interference knockdown of each in cultured hepatocytes results in the stabilization of a functionally active enzyme. We have documented that UBC7/gp78-mediated CYP3A4 ubiquitination requires protein phosphorylation by protein kinase (PK) A and PKC and identified three residues (Ser-478, Thr-264, and Ser-420) whose phosphorylation is required for intracellular CYP3A4 ERAD. We document herein that of these, Ser-478 plays a pivotal role in UBC7/gp78-mediated CYP3A4 ubiquitination, which is accelerated and enhanced on its mutation to the phosphomimetic Asp residue but attenuated on its Ala mutation. Intriguingly, CYP3A5, a polymorphically expressed human liver CYP3A4 isoform (containing Asp-478) is ubiquitinated but not degraded to a greater extent than CYP3A4 in HepG2 cells. This suggests that although Ser-478 phosphorylation is essential for UBC7/gp78-mediated CYP3A4 ubiquitination, it is not sufficient for its ERAD. Additionally, we now report that CYP3A4 protein phosphorylation by PKA and/or PKC at sites other than Ser-478, Thr-264, and Ser-420 also enhances UbcH5a/CHIP-mediated ubiquitination. Through proteomic analyses, we identify (i) 12 additional phosphorylation sites that may be involved in CHIP-CYP3A4 interactions and (ii) 8 previously unidentified CYP3A4 ubiquitination sites within spatially associated clusters of Asp/Glu and phosphorylatable Ser/Thr residues that may

  19. A double transgenic mouse model expressing human pregnane X receptor and cytochrome P450 3A4

    PubMed Central

    Ma, Xiaochao; Cheung, Connie; Krausz, Kristopher W.; Shah, Yatrik M.; Wang, Ting; Idle, Jeffrey R.; Gonzalez, Frank J.

    2008-01-01

    Cytochrome P450 3A4 (CYP3A4), the most abundant human P450 in liver, participates in the metabolism of ∼50% of clinically used drugs. The pregnane X receptor (PXR), a member of the nuclear receptor superfamily, is the major activator of CYP3A4 transcription. However, due to species differences in response to PXR ligands, it is problematic to use rodents to assess CYP3A4 regulation and function. The generation of double transgenic mice expressing human PXR and CYP3A4 (TgCYP3A4/hPXR) would provide a means to this problem. In the current study, a TgCYP3A4/hPXR mouse model was generated by bacterial artificial chromosome transgenesis in Pxr-null mice. In TgCYP3A4/hPXR mice, CYP3A4 was strongly induced by rifampicin, a human-specific PXR ligand, but not by pregnenolone 16α-carbonitrile, a rodent-specific PXR ligand. Consistent with CYP3A expression, hepatic CYP3A activity increased ∼five-fold in TgCYP3A4/hPXR mice pretreated with rifampicin. Most anti-human immunodeficiency virus protease inhibitors are CYP3A substrates and their interactions with rifamycins are a source of major concern in patients co-infected with human immunodeficiency virus and Mycobacterium tuberculosis. By using TgCYP3A4/hPXR mice, human PXR-CYP3A4 mediated rifampicin-protease inhibitor interactions were recapitulated, as the metabolic stability of amprenavir, nelfinavir, and saquinavir decreased 52%, 53%, and 99% respectively in the liver microsomes of TgCYP3A4/hPXR mice pretreated with rifampicin. In vivo, rifampicin pretreatment resulted in ∼80% decrease in the area under serum amprenavir concentration-time curve in TgCYP3A4/hPXR mice. These results suggest that the TgCYP3A4/hPXR mouse model could serve as a useful tool for studies on CYP3A4 transcription and function in vivo. PMID:18799805

  20. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice

    PubMed Central

    Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided. PMID:26633878

  1. Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells.

    PubMed

    Šemeláková, M; Jendželovský, R; Fedoročko, P

    2016-07-01

    Our previous results have shown that the combination of hypericin-mediated photodynamic therapy (HY-PDT) at sub-optimal dose with hyperforin (HP) (compounds of Hypericum sp.), or its stable derivative aristoforin (AR) stimulates generation of reactive oxygen species (ROS) leading to antitumour activity. This enhanced oxidative stress evoked the need for an explanation for HY accumulation in colon cancer cells pretreated with HP or AR. Generally, the therapeutic efficacy of chemotherapeutics is limited by drug resistance related to the overexpression of drug efflux transporters in tumour cells. Therefore, the impact of non-activated hypericin (HY), HY-PDT, HP and AR on cell membrane transporter systems (Multidrug resistance-associated protein 1-MRP1/ABCC1, Multidrug resistance-associated protein 2-MRP2/ABCC2, Breast cancer resistance protein - BCRP/ABCG2, P-glycoprotein-P-gp/ABCC1) and cytochrome P450 3A4 (CYP3A4) was evaluated. The different effects of the three compounds on their expression, protein level and activity was determined under specific PDT light (T0+, T6+) or dark conditions (T0- T6-). We found that HP or AR treatment affected the protein levels of MRP2 and P-gp, whereas HP decreased MRP2 and P-gp expression mostly in the T0+ and T6+ conditions, while AR decreased MRP2 in T0- and T6+. Moreover, HY-PDT treatment induced the expression of MRP1. Our data demonstrate that HP or AR treatment in light or dark PDT conditions had an inhibitory effect on the activity of individual membrane transport proteins and significantly decreased CYP3A4 activity in HT-29 cells. We found that HP or AR significantly affected intracellular accumulation of HY in HT-29 colon adenocarcinoma cells. These results suggest that HY, HP and AR might affect the efficiency of anti-cancer drugs, through interaction with membrane transporters and CYP3A4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zucchi, Sara; Bluethgen, Nancy; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, CH-4056 Basel

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. Inmore » eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.« less

  3. Pharmacogenetics of CYP1A2 activity and inducibility in smokers and exsmokers.

    PubMed

    Dobrinas, Maria; Cornuz, Jacques; Eap, Chin B

    2013-05-01

    There is a high interindividual variability in cytochrome P4501A2 (CYP1A2) activity and in its inducibility by smoking, only poorly explained by known CYP1A2 polymorphisms. We aimed to study the contribution of other regulatory pathways, including transcription factors and nuclear receptors, toward this variability. CYP1A2 activity was determined by the paraxanthine/caffeine ratio in 184 smokers and in 113 of them who were abstinent for 4 weeks. Participants were genotyped for 22 polymorphisms in 12 genes. A significant influence on CYP1A2 inducibility was observed for the NR1I3 rs2502815 (P=0.0026), rs4073054 (P=0.029), NR2B1 rs3818740 (P=0.0045), rs3132297 (P=0.036), AhR rs2282885 (P=0.040), rs2066853 (P=0.019), NR1I1 rs2228570 (P=0.037), and NR1I2 rs1523130 (P=0.044) polymorphisms. Among these, the NR1I3 rs2502815 (P=0.0045), rs4073054 (P=0.048), and NR2B1 rs3818740 (P=0.031) also influenced CYP1A2 basal activity. This is the first in-vivo demonstration of the influence of genes involved in CYP1A2 regulatory pathways on its basal activity and inducibility by smoking. These results need to be confirmed by other studies.

  4. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor1

    PubMed Central

    Gräns, Johanna; Wassmur, Britt; Fernández-Santoscoy, María; Zanette, Juliano; Woodin, Bruce R.; Karchner, Sibel I.; Nacci, Diane E.; Champlin, Denise; Jayaraman, Saro; Hahn, Mark E.; Stegeman, John J.; Celander, Malin C.

    2015-01-01

    Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ~400 times higher, and the levels of non-dioxin-like PCBs ~3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of AhR2 or CYP1A in liver and gills of NBH fish. In NBH fish, but not in SC fish, there was increased mRNA expression of hepatic PXR, CYP3A and Pgp upon exposure to either of the two PCB congeners. However, basal PXR and Pgp mRNA levels in liver of NBH fish were significantly lower than in SC fish. A different pattern was seen in gills, where there were no differences in basal mRNA expression of these genes between the two populations

  5. Determination of a Degradation Constant for CYP3A4 by Direct Suppression of mRNA in a Novel Human Hepatocyte Model, HepatoPac.

    PubMed

    Ramsden, Diane; Zhou, Jin; Tweedie, Donald J

    2015-09-01

    Accurate determination of rates of de novo synthesis and degradation of cytochrome P450s (P450s) has been challenging. There is a high degree of variability in the multiple published values of turnover for specific P450s that is likely exacerbated by differences in methodologies. For CYP3A4, reported half-life values range from 10 to 140 hours. An accurate value for kdeg has been identified as a major limitation for prediction of drug interactions involving mechanism-based inhibition and/or induction. Estimation of P450 half-life from in vitro test systems, such as human hepatocytes, is complicated by differential decreased enzyme function over culture time, attenuation of the impact of enzyme loss through inclusion of glucocorticoids in media, and viability limitations over long-term culture times. HepatoPac overcomes some of these challenges by providing extended stability of enzymes (2.5 weeks in our hands). As such it is a unique tool for studying rates of enzyme degradation achieved through modulation of enzyme levels. CYP3A4 mRNA levels were rapidly depleted by >90% using either small interfering RNA or addition of interleukin-6, which allowed an estimation of the degradation rate constant for CYP3A protein over an incubation time of 96 hours. The degradation rate constant of 0.0240 ± 0.005 hour(-1) was reproducible in hepatocytes from five different human donors. These donors also reflected the overall population with respect to CYP3A5 genotype. This methodology can be applied to additional enzymes and may provide a more accurate in vitro derived kdeg value for predicting clinical drug-drug interaction outcomes. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  6. CRISPR/Cas9 Genetic Modification of CYP3A5 *3 in HuH-7 Human Hepatocyte Cell Line Leads to Cell Lines with Increased Midazolam and Tacrolimus Metabolism.

    PubMed

    Dorr, Casey R; Remmel, Rory P; Muthusamy, Amutha; Fisher, James; Moriarity, Branden S; Yasuda, Kazuto; Wu, Baolin; Guan, Weihua; Schuetz, Erin G; Oetting, William S; Jacobson, Pamala A; Israni, Ajay K

    2017-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 engineering of the CYP3A5 *3 locus (rs776746) in human liver cell line HuH-7 ( CYP3A5 *3/*3 ) has led to three CYP3A5 *1 cell lines by deletion of the exon 3B splice junction or point mutation. Cell lines CYP3A5 *1/*3 sd (single deletion), CYP3A5 *1/*1 dd (double deletion), or CYP3A5 *1/*3 pm (point mutation) expressed the CYP3A5 *1 mRNA and had elevated CYP3A5 mRNA ( P < 0.0005 for all engineered cell lines) and protein expression compared with HuH-7. In metabolism assays, HuH-7 had less tacrolimus (all P < 0.05) or midazolam (MDZ) (all P < 0.005) disappearance than all engineered cell lines. HuH-7 had less 1-OH MDZ (all P < 0.0005) or 4-OH (all P < 0.005) production in metabolism assays than all bioengineered cell lines. We confirmed CYP3A5 metabolic activity with the CYP3A4 selective inhibitor CYP3CIDE. This is the first report of genomic CYP3A5 bioengineering in human cell lines with drug metabolism analysis. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity.

    PubMed

    Hidaka, Muneaki; Fujita, Ken-ichi; Ogikubo, Tetsuya; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Arimori, Kazuhiko

    2004-06-01

    There has been very limited information on the capacities of tropical fruits to inhibit human cytochrome P450 3A (CYP3A) activity. Thus, the inhibitory effects of tropical fruits on midazolam 1'-hydroxylase activity of CYP3A in human liver microsomes were evaluated. Eight tropical fruits such as common papaw, dragon fruit, kiwi fruit, mango, passion fruit, pomegranate, rambutan, and star fruit were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and Valencia orange as controls. The juice of star fruit showed the most potent inhibition of CYP3A. The addition of a star fruit juice (5.0%, v/v) resulted in the almost complete inhibition of midazolam 1'-hydroxylase activity (residual activity of 0.1%). In the case of grape-fruit, the residual activity was 14.7%. The inhibition depended on the amount of fruit juice added to the incubation mixture (0.2-6.0%, v/v). The elongation of the preincubation period of a juice from star fruit (1.25 or 2.5%, v/v) with the microsomal fraction did not alter the CYP3A inhibition, suggesting that the star fruit did not contain a mechanism-based inhibitor. Thus, we discovered filtered extracts of star fruit juice to be inhibitors of human CYP3A activity in vitro.

  8. Involvement of CYP4F2 in the Metabolism of a Novel Monophosphate Ester Prodrug of Gemcitabine and Its Interaction Potential In Vitro.

    PubMed

    Wang, Yedong; Li, Yuan; Lu, Jia; Qi, Huixin; Cheng, Isabel; Zhang, Hongjian

    2018-05-16

    Compound- 3 is an oral monophosphate prodrug of gemcitabine. Previous data showed that Compound- 3 was more potent than gemcitabine and it was orally active in a tumor xenograft model. In the present study, the metabolism of Compound- 3 was investigated in several well-known in vitro matrices. While relatively stable in human and rat plasma, Compound- 3 demonstrated noticeable metabolism in liver and intestinal microsomes in the presence of NADPH and human hepatocytes. Compound- 3 could also be hydrolyzed by alkaline phosphatase, leading to gemcitabine formation. Metabolite identification using accurate mass- and information-based scan techniques revealed that Compound- 3 was subjected to sequential metabolism, forming alcohol, aldehyde and carboxylic acid metabolites, respectively. Results from reaction phenotyping studies indicated that cytochrome P450 4F2 (CYP4F2) was a key CYP isozyme involved in Compound- 3 metabolism. Interaction assays suggested that CYP4F2 activity could be inhibited by Compound- 3 or an antiparasitic prodrug pafuramidine. Because CYP4F2 is a key CYP isozyme involved in the metabolism of eicosanoids and therapeutic drugs, clinical relevance of drug-drug interactions mediated via CYP4F2 inhibition warrants further investigation.

  9. Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5'-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; Romijn, Johannes A; Mathôt, Ron A A

    2018-06-06

    Previous studies have shown that nutritional status can alter drug metabolism which may result in treatment failure or untoward side effects. This study assesses the effect of two nutritional conditions, short-term fasting, and a short-term high fat diet (HFD) on cytochrome P450 3A4 (CYP3A4) and uridine 5'-diphospho-glucuronosyltransferase (UGT) mediated drug metabolism by studying the pharmacokinetics of midazolam and its main metabolites. In a randomized-controlled cross-over trial, nine healthy subjects received a single intravenous administration of 0.015 mg/kg midazolam after: (1) an overnight fast (control); (2) 36 h of fasting; and (3) an overnight fast after 3 days of a HFD consisting of 500 ml of cream supplemented to their regular diet. Pharmacokinetic parameters were analyzed simultaneously using non-linear mixed-effects modeling. Short-term fasting increased CYP3A4-mediated midazolam clearance by 12% (p < 0.01) and decreased UGT-mediated metabolism apparent 1-OH-midazolam clearance by 13% (p < 0.01) by decreasing the ratio of clearance and the fraction metabolite formed (ΔCL 1-OH-MDZ /f 1-OH-MDZ ). Furthermore, short-term fasting decreased apparent clearance of 1-OH-midazolam-O-glucuronide (CL 1-OH-MDZ-glucuronide /(f 1-OH-MDZ-glucuronide  × f 1-OH-MDZ )) by 20% (p < 0.01). The HFD did not affect systemic clearance of midazolam or metabolites. Short-term fasting differentially alters midazolam metabolism by increasing CYP3A4-mediated metabolism but by decreasing UGT-mediated metabolism. In contrast, a short-term HFD did not affect systemic clearance of midazolam.

  10. Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

    PubMed Central

    Yasukochi, Yoshiki; Satta, Yoko

    2015-01-01

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902

  11. Genetic markers in CYP2C19 and CYP2B6 for prediction of cyclophosphamide's 4‐hydroxylation, efficacy and side effects in Chinese patients with systemic lupus erythematosus

    PubMed Central

    Shu, Wenying; Guan, Su; Yang, Xiuyan; Liang, Liuqin; Li, Jiali; Chen, Zhuojia; Zhang, Yu; Chen, Lingyan

    2015-01-01

    Aims The aim of the study was to investigate the combined impact of genetic polymorphisms in key pharmacokinetic genes on plasma concentrations and clinical outcomes of cyclophosphamide (CPA) in Chinese patients with systemic lupus erythematosus (SLE). Methods One hundred and eighty nine Chinese SLE patients treated with CPA induction therapy (200 mg, every other day) were recruited and adverse reactions were recorded. After 4 weeks induction therapy, 128 lupus nephritis (LN) patients continued to CPA maintenance therapy (200–600 mg week–1) for 6 months, and their clinical outcomes were recorded. Blood samples were collected for CYP2C19, CYP2B6, GST and PXR polymorphism analysis, as well as CPA and its active metabolite (4‐hydroxycyclophosphamide (4‐OH‐CPA)) plasma concentration determination. Results Multiple linear regression analysis revealed that CYP2B6 ‐750 T > C (P < 0.001), −2320 T > C (P < 0.001), 15582C > T (P = 0.017), CYP2C19*2 (P < 0.001) and PXR 66034 T > C (P = 0.028) accounted for 47% of the variation in 4‐OH‐CPA plasma concentration. Among these variants, CYP2B6 ‐750 T > C and CYP2C19*2 were selected as the combination genetic marker because these two SNPs contributed the most to the inter‐individual variability in 4‐OH‐CPA concentration, accounting for 23.6% and 21.5% of the variation, respectively. Extensive metabolizers (EMs) (CYP2B6 ‐750TT, CYP2C19*1*1) had significantly higher median 4‐OH‐CPA plasma concentrations (34.8, 11.0 and 6.6 ng ml‐1 for EMs, intermediate metabolizers (IMs) and poor metabolizers (PMs), P < 0.0001), higher risks of leukocytopenia (OR = 7.538, 95% CI 2.951, 19.256, P < 0.0001) and gastrointestinal toxicity (OR = 7.579, 95% CI 2.934, 19.578, P < 0.0001), as well as shorter median time to achieve complete remission (13.2, 18.3 and 23.3 weeks for EMs, IMs and PMs, respectively, P = 0.026) in LN patients than PMs (CYP2B6 ‐750CC, CYP2C19*2*2) and

  12. Ahr2-dependance of PCB126 effects on the swimbladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    PubMed Central

    Jönsson, Maria E.; Kubota, Akira; Timme-Laragy, Alicia; Woodin, Bruce; Stegeman, John J.

    2012-01-01

    The teleost swimbladder is assumed a homolog of the tetrapod lung. Both swimbladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR1) agonists; in zebrafish (Danio rerio) the swimbladder fails to inflate with exposure to 3,3’,4,4’,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P4501 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swimbladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependance of the effect of PCB126 on swimbladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swimbladder inflation. The effects of PCB126 were concentration-dependent with EC50 values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swimbladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swimbladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos2 failed to inflate the swimbladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swimbladder. Our results indicate that PCB126 blocks swimbladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swimbladder cells. PMID:23036320

  13. CYP3A4 activity in four different animal species liver microsomes using 7-benzyloxyquinoline and HPLC/spectrofluorometric determination.

    PubMed

    Baririan, Narine; Desager, Jean-Pierre; Petit, Martine; Horsmans, Yves

    2006-01-23

    Some microplate-based direct assays with different fluorometric substrates have been developed, among which 7-benzyloxyquinoline (BOQ) has demonstrated the highest degree of selectivity for CYP3A subfamily. In our study, we firstly developed and validated an efficient, fast and cheap HPLC/spectrofluorometric analytical method to quantify 7-hydroxyquinoline (BOQ metabolite). Secondly, BOQ oxidation rate (1.95 +/- 0.24 microM/mg protein/min) was compared to that of midazolam (MDZ) (1.4 +/- 0.21 microM/mg protein/min), an other specific CYP3A probe. However, the difference did not reach statistically significance (test of Sign; p = 0.125, two tailed). Thirdly, the potential use of BOQ in other species than the rat (mouse, dog and monkey) was studied. The highest BOQ activity was observed in rat microsomes (3.75 micromol/mg protein/min) with lower P450 content (0.3 nmol/mg protein) compared to other species. Finally, the effect of CYP3A enzymes-selective inhibitor ketoconazole on the dealkylation of BOQ in control and dexamethasone (DM)-treated rat microsomes was studied. Ketoconazole inhibition potency was greater in control (IC(50) approximately 21.6 microM) compared to DM induced (IC(50) approximately 32.3 microM) microsomes. At concentrations greater than that considered to be enzyme-selective (e.g., 10-30 microM), ketoconazole inhibitory activity did not rise significantly, and at the maximal concentration tested (1,000 microM) a nearly similar inhibition (76%) was observed than that at 50 microM concentration (68.2%).

  14. Identification of the residue in human CYP3A4 that is covalently modified by bergamottin and the reactive intermediate that contributes to the grapefruit juice effect.

    PubMed

    Lin, Hsia-Lien; Kenaan, Cesar; Hollenberg, Paul F

    2012-05-01

    Previous studies have demonstrated that bergamottin (BG), a component of grapefruit juice, is a mechanism-based inactivator of CYP3A4 and contributes, in part, to the grapefruit juice-drug interaction. Although the covalent binding of [(14)C]BG to the CYP3A4 apoprotein has been demonstrated by SDS-polyacrylamide gel electrophoresis, the identity of the modified amino acid residue and the reactive intermediate species of BG responsible for the inactivation have not been reported. In the present study, we show that inactivation of CYP3A4 by BG results in formation of a modified apoprotein-3A4 and a GSH conjugate, both exhibiting mass increases of 388 Da, which corresponds to the mass of 6',7'-dihydroxybergamottin (DHBG), a metabolite of BG, plus one oxygen atom. To identify the adducted residue, BG-inactivated 3A4 was digested with trypsin, and the digests were then analyzed by liquid chromatography-tandem mass spectrometry (MS/MS). A mass shift of 388 Da was used for the SEQUEST database search, which revealed a mass increase of 388 Da for the peptide with the sequence (272)LQLMIDSQNSK(282), and MS/MS analysis of the adducted peptide demonstrated that Gln273 is the residue modified. Mutagenesis studies showed that the Gln273 to Val mutant was resistant to inactivation by BG and DHBG and did not generate two of the major metabolites of BG formed by 3A4 wild type. In conclusion, we have determined that the reactive intermediate, oxygenated DHBG, covalently binds to Gln273 and thereby contributes to the mechanism-based inactivation of CYP3A4 by BG.

  15. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan.

    PubMed

    Rasool, Akhtar; Joußen, Nicole; Lorenz, Sybille; Ellinger, Renate; Schneider, Bernd; Khan, Sher Afzal; Ashfaq, Muhammad; Heckel, David G

    2014-10-01

    The increasing resistance level of insect pest species is a major concern to agriculture worldwide. The cotton bollworm, Helicoverpa armigera, is one of the most important pest species due to being highly polyphagous, geographically widespread, and resistant towards many chemical classes of insecticides. We previously described the mechanism of fenvalerate resistance in Australian populations conferred by the chimeric cytochrome P450 monooxygenase CYP337B3, which arose by unequal crossing-over between CYP337B1 and CYP337B2. Here, we show that this mechanism is also present in the cypermethrin-resistant FSD strain from Pakistan. The Pakistani and the Australian CYP337B3 alleles differ by 18 synonymous and three nonsynonymous SNPs and additionally in the length and sequence of the intron. Nevertheless, the activity of both CYP337B3 proteins is comparable. We demonstrate that CYP337B3 is capable of metabolizing cypermethrin (trans- and especially cis-isomers) to the main metabolite 4'-hydroxycypermethrin, which exhibits no intrinsic toxicity towards susceptible larvae. In a bioassay, CYP337B3 confers a 7-fold resistance towards cypermethrin in FSD larvae compared to susceptible larvae from the Australian TWB strain lacking CYP337B3. Linkage analysis shows that presence of CYP337B3 accounts for most of the cypermethrin resistance in the FSD strain; up-regulation of other P450s in FSD plays no detectable role in resistance. The presence or absence of CYP337B3 can be easily detected by a simple PCR screen, providing a powerful tool to rapidly distinguish resistant from susceptible individuals in the field and to determine the geographical distribution of this resistance gene. Our results suggest that CYP337B3 evolved twice independently by unequal crossing-over between CYP337B2 and two different CYP337B1 alleles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluation of organic anion-transporting polypeptide 1B1 and CYP3A4 activities in primary human hepatocytes and HepaRG cells cultured in a dynamic three-dimensional bioreactor system.

    PubMed

    Ulvestad, Maria; Darnell, Malin; Molden, Espen; Ellis, Ewa; Åsberg, Anders; Andersson, Tommy B

    2012-10-01

    The long-term stability of liver cell functions is a major challenge when studying hepatic drug transport, metabolism, and toxicity in vitro. The aim of the present study was to investigate organic anion-transporting polypeptide (OATP) 1B1 and CYP3A4 activities in fresh primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in a three-dimensional (3D) bioreactor system. OATP1B1 activity was determined by loss from media experiments of [(3)H]estradiol-17β-D-glucuronide and atorvastatin acid (ATA) for up to 7 days in culture. ATA metabolite formation was determined at days 3 to 4 to evaluate CYP3A4 activity. Overall, the results showed that freshly isolated human hepatocytes inoculated in the bioreactor retained OATP1B1 activity for at least 7 days, whereas in HepaRG cells no OATP1B1 activity was observed beyond day 2. The activity data were in agreement with immunohistochemical stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days in fresh human hepatocytes, whereas OATP1B1 was expressed markedly lower in HepaRG cells after 9 days in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in bioreactor culture, and immunohistochemical stainings supported these findings. Activity and mRNA expression of OATP1B1 and CYP3A4 in primary human hepatocytes compared with HepaRG cells in fresh suspensions were in agreement with data obtained in bioreactor culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system preserve both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug disposition and toxicity.

  17. Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29

    PubMed Central

    Mostafa, Islam; Yoo, Mi-Jeong; Zhu, Ning; Geng, Sisi; Dufresne, Craig; Abou-Hashem, Maged; El-Domiaty, Maher; Chen, Sixue

    2017-01-01

    Glucosinolates (Gls) constitute a major group of natural metabolites represented by three major classes (aliphatic, indolic and aromatic) of more than 120 chemical structures. In our previous work, soluble proteins and metabolites in Arabidopsis mutants deficient of aliphatic (myb28/29) and indolic Gls (cyp79B2B3) were analyzed. Here we focus on investigating the changes at the level of membrane proteins in these mutants. Our LC/MS-MS analyses of tandem mass tag (TMT) labeled peptides derived from the cyp79B2/B3 and myb28/29 relative to wild type resulted in the identification of 4,673 proteins, from which 2,171 are membrane proteins. Fold changes and statistical analysis showed 64 increased and 74 decreased in cyp79B2/B3, while 28 increased and 17 decreased in myb28/29. As to the shared protein changes between the mutants, one protein was increased and eight were decreased. Bioinformatics analysis of the changed proteins led to the discovery of three cytochromes in glucosinolate molecular network (GMN): cytochrome P450 86A7 (At1g63710), cytochrome P450 71B26 (At3g26290), and probable cytochrome c (At1g22840). CYP86A7 and CYP71B26 may play a role in hydroxyl-indolic Gls production. In addition, flavone 3′-O-methyltransferase 1 represents an interesting finding as it is likely to participate in the methylation process of the hydroxyl-indolic Gls to form methoxy-indolic Gls. The analysis also revealed additional new nodes in the GMN related to stress and defense activity, transport, photosynthesis, and translation processes. Gene expression and protein levels were found to be correlated in the cyp79B2/B3, but not in the myb28/29. PMID:28443122

  18. Expression and Characterization of CYP52 Genes Involved in the Biosynthesis of Sophorolipid and Alkane Metabolism from Starmerella bombicola

    PubMed Central

    Huang, Fong-Chin; Peter, Alyssa

    2014-01-01

    Three cytochrome P450 monooxygenase CYP52 gene family members were isolated from the sophorolipid-producing yeast Starmerella bombicola (former Candida bombicola), namely, CYP52E3, CYP52M1, and CYP52N1, and their open reading frames were cloned into the pYES2 vector for expression in Saccharomyces cerevisiae. The functions of the recombinant proteins were analyzed with a variety of alkane and fatty acid substrates using microsome proteins or a whole-cell system. CYP52M1 was found to oxidize C16 to C20 fatty acids preferentially. It converted oleic acid (C18:1) more efficiently than stearic acid (C18:0) and linoleic acid (C18:2) and much more effectively than α-linolenic acid (C18:3). No products were detected when C10 to C12 fatty acids were used as the substrates. Moreover, CYP52M1 hydroxylated fatty acids at their ω- and ω-1 positions. CYP52N1 oxidized C14 to C20 saturated and unsaturated fatty acids and preferentially oxidized palmitic acid, oleic acid, and linoleic acid. It only catalyzed ω-hydroxylation of fatty acids. Minor ω-hydroxylation activity against myristic acid, palmitic acid, palmitoleic acid, and oleic acid was shown for CYP52E3. Furthermore, the three P450s were coassayed with glucosyltransferase UGTA1. UGTA1 glycosylated all hydroxyl fatty acids generated by CYP52E3, CYP52M1, and CYP52N1. The transformation efficiency of fatty acids into glucolipids by CYP52M1/UGTA1 was much higher than those by CYP52N1/UGTA1 and CYP52E3/UGTA1. Taken together, CYP52M1 is demonstrated to be involved in the biosynthesis of sophorolipid, whereas CYP52E3 and CYP52N1 might be involved in alkane metabolism in S. bombicola but downstream of the initial oxidation steps. PMID:24242247

  19. Towards a Best Practice Approach in PBPK Modeling: Case Example of Developing a Unified Efavirenz Model Accounting for Induction of CYPs 3A4 and 2B6

    PubMed Central

    Ke, A; Barter, Z; Rowland‐Yeo, K

    2016-01-01

    In this study, we present efavirenz physiologically based pharmacokinetic (PBPK) model development as an example of our best practice approach that uses a stepwise approach to verify the different components of the model. First, a PBPK model for efavirenz incorporating in vitro and clinical pharmacokinetic (PK) data was developed to predict exposure following multiple dosing (600 mg q.d.). Alfentanil i.v. and p.o. drug‐drug interaction (DDI) studies were utilized to evaluate and refine the CYP3A4 induction component in the liver and gut. Next, independent DDI studies with substrates of CYP3A4 (maraviroc, atazanavir, and clarithromycin) and CYP2B6 (bupropion) verified the induction components of the model (area under the curve [AUC] ratios within 1.0–1.7‐fold of observed). Finally, the model was refined to incorporate the fractional contribution of enzymes, including CYP2B6, propagating autoinduction into the model (Racc 1.7 vs. 1.7 observed). This validated mechanistic model can now be applied in clinical pharmacology studies to prospectively assess both the victim and perpetrator DDI potential of efavirenz. PMID:27435752

  20. Effects of human blood levels of two PAH mixtures on the AHR signalling activation pathway and CYP1A1 and COMT target genes in granulosa non-tumor and granulosa tumor cell lines.

    PubMed

    Zajda, Karolina; Ptak, Anna; Rak, Agnieszka; Fiedor, Elżbieta; Grochowalski, Adam; Milewicz, Tomasz; Gregoraszczuk, Ewa L

    2017-08-15

    Epidemiological studies have shown a link between problems with offspring of couples living in a contaminated environment in comparison to those who live in an uncontaminated environment. We measured the concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in maternal and cord blood. To explore the mechanism of the effects of PAH mixtures on nonluteinized granulosa cells (HGrC1) and granulosa tumor cells (COV434), as well as cell proliferation and apoptosis, we investigated the effect of PAH mixtures on the expression of the aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT) and aryl hydrocarbon receptor repressor (AHRR) genes, as well as the expression and activity of target genes cytochrome P450 1A1 (CYP1A1) and catechol-O-methyltransferase (COMT). The cells were exposed to mixture 1 (M1), composed of all 16 priority PAHs, and mixture 2 (M2), composed of five PAHs which are not classified as human carcinogens, and which are observed in the highest amounts both in maternal and cord blood. All 16 priority PAHs were bioavailable in maternal and cord plasma, suggesting that perinatal exposure should be considered. In HGrC1 cells, M1 increased AHR and ARNT, but decreased AHRR expression, in parallel with increased CYP1A1 and COMT expression and activity. M2 decreased AHR and AHRR, and increased ARNT, with no effect on CYP1A1 expression and activity; however, it did increase COMT expression and activity. In tumor cells, M1 lowered AHR and up-regulated AHRR and ARNT expression, consequently decreasing CYP1A1 expression and COMT activity. M2 up-regulated AHR and ARNT, down-regulated AHRR, and had no effect on CYP1A1 and COMT expression, but decreased COMT activity. We hypothesise that, dependent on composition, mixtures of PAHs activate the AHR differently through varying transcription responses: in HGrC1, a canonical AHR mechanism of M1, with activation of CYP1A1 important for detoxication, while in COV434, a

  1. STAT3 or USF2 Contributes to HIF Target Gene Specificity

    PubMed Central

    Pawlus, Matthew R.; Wang, Liyi; Murakami, Aya; Dai, Guanhai; Hu, Cheng-Jun

    2013-01-01

    The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein. PMID:23991099

  2. TaCYP78A5 regulates seed size in wheat (Triticum aestivum).

    PubMed

    Ma, Meng; Zhao, Huixian; Li, Zhaojie; Hu, Shengwu; Song, Weining; Liu, Xiangli

    2016-03-01

    Seed size is an important agronomic trait and a major component of seed yield in wheat. However, little is known about the genes and mechanisms that determine the final seed size in wheat. Here, we isolated TaCYP78A5, the orthologous gene of Arabidopsis CYP78A5/KLUH in wheat, from wheat cv. Shaan 512 and demonstrated that the expression of TaCYP78A5 affects seed size. TaCYP78A5 encodes the cytochrome P450 (CYP) 78A5 protein in wheat and rescued the phenotype of the Arabidopsis deletion mutant cyp78a5. By affecting the extent of integument cell proliferation in the developing ovule and seed, TaCYP78A5 influenced the growth of the seed coat, which appears to limit seed growth. TaCYP78A5 silencing caused a 10% reduction in cell numbers in the seed coat, resulting in a 10% reduction in seed size in wheat cv. Shaan 512. By contrast, the overexpression of TaCYP78A5 increased the number of cells in the seed coat, resulting in seed enlargement of ~11-35% in Arabidopsis. TaCYP78A5 activity was positively correlated with the final seed size. However, TaCYP78A5 overexpression significantly reduced seed set in Arabidopsis, possibly due to an ovule development defect. TaCYP78A5 also influenced embryo development by promoting embryo integument cell proliferation during seed development. Accordingly, a working model of the influence of TaCYP7A5 on seed size was proposed. This study provides direct evidence that TaCYP78A5 affects seed size and is a potential target for crop improvement. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Overexpression of the CYP51A1 Gene and Repeated Elements are Associated with Differential Sensitivity to DMI Fungicides in Venturia inaequalis.

    PubMed

    Villani, Sara M; Hulvey, Jon; Hily, Jean-Michel; Cox, Kerik D

    2016-06-01

    The involvement of overexpression of the CYP51A1 gene in Venturia inaequalis was investigated for isolates exhibiting differential sensitivity to the triazole demethylation inhibitor (DMI) fungicides myclobutanil and difenoconazole. Relative expression (RE) of the CYP51A1 gene was significantly greater (P < 0.0001) for isolates with resistance to both fungicides (MRDR phenotype) or with resistance to difenoconazole only (MSDR phenotype) compared with isolates that were resistant only to myclobutanil (MRDS phenotype) or sensitive to both fungicides (MSDS phenotype). An average of 9- and 13-fold increases in CYP51A1 RE were observed in isolates resistant to difenoconazole compared with isolates with MRDS and MSDS phenotypes, respectively. Linear regression analysis between isolate relative growth on myclobutanil-amended medium and log10 RE revealed that little to no variability in sensitivity to myclobutanil could be explained by CYP51A1 overexpression (R(2) = 0.078). To investigate CYP51A1 upstream anomalies associated with CYP51A1 overexpression or resistance to difenoconazole, Illumina sequencing was conducted for three isolates with resistance to difenoconazole and one baseline isolate. A repeated element, "EL 3,1,2", with the properties of a transcriptional enhancer was identified two to four times upstream of CYP51A1 in difenoconazole-resistant isolates but was not found in isolates with the MRDS phenotype. These results suggest that different mechanisms may govern resistance to different DMI fungicides in the triazole group.

  4. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion.

    PubMed

    Yasukochi, Yoshiki; Satta, Yoko

    2015-03-25

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. The Epoxygenases CYP2J2 Activates the Nuclear Receptor PPARα In Vitro and In Vivo

    PubMed Central

    Wray, Jessica A.; Sugden, Mary C.; Zeldin, Darryl C.; Greenwood, Gemma K.; Samsuddin, Salma; Miller-Degraff, Laura; Bradbury, J. Alyce; Holness, Mark J.; Warner, Timothy D.; Bishop-Bailey, David

    2009-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) are a family of three (PPARα, -β/δ, and -γ) nuclear receptors. In particular, PPARα is involved in regulation of fatty acid metabolism, cell growth and inflammation. PPARα mediates the cardiac fasting response, increasing fatty acid metabolism, decreasing glucose utilisation, and is the target for the fibrate lipid-lowering class of drugs. However, little is known regarding the endogenous generation of PPAR ligands. CYP2J2 is a lipid metabolising cytochrome P450, which produces anti-inflammatory mediators, and is considered the major epoxygenase in the human heart. Methodology/Principal Findings Expression of CYP2J2 in vitro results in an activation of PPAR responses with a particular preference for PPARα. The CYP2J2 products 8,9- and 11-12-EET also activate PPARα. In vitro, PPARα activation by its selective ligand induces the PPARα target gene pyruvate dehydrogenase kinase (PDK)4 in cardiac tissue. In vivo, in cardiac-specific CYP2J2 transgenic mice, fasting selectively augments the expression of PDK4. Conclusions/Significance Our results establish that CYP2J2 produces PPARα ligands in vitro and in vivo, and suggests that lipid metabolising CYPs are prime candidates for the integration of global lipid changes to transcriptional signalling events. PMID:19823578

  6. 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components*

    PubMed Central

    Lee, Seong Min; Riley, Erin M.; Meyer, Mark B.; Benkusky, Nancy A.; Plum, Lori A.; DeLuca, Hector F.; Pike, J. Wesley

    2015-01-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) plays an integral role in calcium homeostasis in higher organisms through its actions in the intestine, kidney, and skeleton. Interestingly, although several intestinal genes are known to play a contributory role in calcium homeostasis, the entire caste of key components remains to be identified. To examine this issue, Cyp27b1 null mice on either a normal or a high calcium/phosphate-containing rescue diet were treated with vehicle or 1,25(OH)2D3 and evaluated 6 h later. RNA samples from the duodena were then subjected to RNA sequence analysis, and the data were analyzed bioinformatically. 1,25(OH)2D3 altered expression of large collections of genes in animals under either dietary condition. 45 genes were found common to both 1,25(OH)2D3-treated groups and were composed of genes previously linked to intestinal calcium uptake, including S100g, Trpv6, Atp2b1, and Cldn2 as well as others. An additional distinct network of 56 genes was regulated exclusively by diet. We then conducted a ChIP sequence analysis of binding sites for the vitamin D receptor (VDR) across the proximal intestine in vitamin D-sufficient normal mice treated with vehicle or 1,25(OH)2D3. The residual VDR cistrome was composed of 4617 sites, which was increased almost 4-fold following hormone treatment. Interestingly, the majority of the genes regulated by 1,25(OH)2D3 in each diet group as well as those found in common in both groups contained frequent VDR sites that likely regulated their expression. This study revealed a global network of genes in the intestine that both represent direct targets of vitamin D action in mice and are involved in calcium absorption. PMID:26041780

  7. ONTOGENIC EXPRESSION OF HUMAN CARBOXYLESTERASE-2 AND CYTOCHROME P450 3A4 IN LIVER AND DUODENUM: POSTNATAL SURGE AND ORGAN-DEPENDENT REGULATION1

    PubMed Central

    Chen, Yi-Tzai; Trzoss, Lynnie; Yang, Dongfang; Yan, Bingfang

    2015-01-01

    Human carboxylesterase-2 (CES2) and cytochrome P450 3A4 (CYP3A4) are two major drug metabolizing enzymes that play critical roles in hydrolytic and oxidative biotransformation, respectively. They share substrates but may have opposite effect on therapeutic potential such as the metabolism of the anticancer prodrug irinotecan. Both CES2 and CYP3A4 are expressed in the liver and the gastrointestinal tract. This study was conducted to determine whether CES2 and CYP3A4 are expressed under developmental regulation and whether the regulation occurs differentially between the liver and duodenum. A large number of tissues (112) were collected with majority of them from donors at 1-198 days of age. In addition, multi-sampling (liver, duodenum and jejunum) was performed in some donors. The expression was determined at mRNA and protein levels. In the liver, CES2 and CYP3A4 mRNA exhibited a postnatal surge (1 versus 2 months of age) by 2.7 and 29 fold, respectively. CYP3A4 but not CES2 mRNA in certain pediatric groups reached or even exceeded the adult level. The duodenal samples, on the other hand, showed a gene-specific expression pattern at mRNA level. CES2 mRNA increased with age but the opposite was true with CYP3A4 mRNA. The levels of CES2 and CYP3A4 protein, on the other hand, increased with age in both liver and duodenum. The multi-sampling study demonstrated significant correlation of CES2 expression between the duodenum and jejunum. However, neither duodenal nor jejunal expression correlated with hepatic expression of CES2. These findings establish that developmental regulation occurs in a gene and organ-dependent manner. PMID:25724353

  8. CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen

    PubMed Central

    2010-01-01

    Introduction Tamoxifen is one of the most effective adjuvant breast cancer therapies available. Its metabolism involves the phase I enzyme, cytochrome P4502D6 (CYP2D6), encoded by the highly polymorphic CYP2D6 gene. CYP2D6 variants resulting in poor metabolism of tamoxifen are hypothesised to reduce its efficacy. An FDA-approved pre-treatment CYP2D6 gene testing assay is available. However, evidence from published studies evaluating CYP2D6 variants as predictive factors of tamoxifen efficacy and clinical outcome are conflicting, querying the clinical utility of CYP2D6 testing. We investigated the association of CYP2D6 variants with breast cancer specific survival (BCSS) in breast cancer patients receiving tamoxifen. Methods This was a population based case-cohort study. We genotyped known functional variants (n = 7; minor allele frequency (MAF) > 0.01) and single nucleotide polymorphisms (SNPs) (n = 5; MAF > 0.05) tagging all known common variants (tagSNPs), in CYP2D6 in 6640 DNA samples from patients with invasive breast cancer from SEARCH (Studies of Epidemiology and Risk factors in Cancer Heredity); 3155 cases had received tamoxifen therapy. There were 312 deaths from breast cancer, in the tamoxifen treated patients, with over 18000 years of cumulative follow-up. The association between genotype and BCSS was evaluated using Cox proportional hazards regression analysis. Results In tamoxifen treated patients, there was weak evidence that the poor-metaboliser variant, CYP2D6*6 (MAF = 0.01), was associated with decreased BCSS (P = 0.02; HR = 1.95; 95% CI = 1.12-3.40). No other variants, including CYP2D6*4 (MAF = 0.20), previously reported to be associated with poorer clinical outcomes, were associated with differences in BCSS, in either the tamoxifen or non-tamoxifen groups. Conclusions CYP2D6*6 may affect BCSS in tamoxifen-treated patients. However, the absence of an association with survival in more frequent variants, including CYP2D6*4, questions the validity of

  9. CYP3A activity based on plasma 4β-hydroxycholesterol during the early postpartum period has an effect on the plasma disposition of amlodipine.

    PubMed

    Naito, Takafumi; Kubono, Naoko; Ishida, Takuya; Deguchi, Shuhei; Sugihara, Masahisa; Itoh, Hiroaki; Kanayama, Naohiro; Kawakami, Junichi

    2015-12-01

    This study aimed to evaluate plasma 4β-hydroxycholesterol as an endogenous marker of CYP3A4/5 activity in early postpartum women and its impact on the plasma disposition of amlodipine. Twenty-seven early postpartum women treated with amlodipine for pregnancy-induced hypertension were enrolled. The plasma concentration of 4β-hydroxycholesterol and its ratio to cholesterol in postpartum and in non-perinatal women were evaluated. The predose plasma concentration of amlodipine was determined at steady state. The medians of the plasma 4β-hydroxycholesterol concentration at day 0-3 and 8-21 after delivery were 146 and 161 ng/mL, respectively. No significant difference was observed in the plasma concentration of 4β-hydroxycholesterol between the postpartum periods. The plasma concentration of 4β-hydroxycholesterol and its ratio to cholesterol in postpartum women were significantly higher than those in non-perinatal women. A large individual variability was observed in the dose-normalized plasma concentration of amlodipine in early postpartum women. A weak negative correlation was observed between the dose-normalized plasma concentration of amlodipine and the plasma concentration of 4β-hydroxycholesterol. In conclusion, early postpartum women possessed higher CYP3A activity based on plasma 4β-hydroxycholesterol and had a large pharmacokinetic variability in amlodipine. CYP3A activity during the early postpartum period had an effect on the plasma disposition of amlodipine. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  10. The constitutive androstane receptor is a novel therapeutic target facilitating cyclophosphamide-based treatment of hematopoietic malignancies

    PubMed Central

    Wang, Duan; Li, Linhao; Yang, Hui; Ferguson, Stephen S.; Baer, Maria R.; Gartenhaus, Ronald B.

    2013-01-01

    Cyclophosphamide (CPA) is one of the most widely used chemotherapeutic prodrugs that undergoes hepatic bioactivation mediated predominantly by cytochrome P450 (CYP) 2B6. Given that the CYP2B6 gene is primarily regulated by the constitutive androstane receptor (CAR, NR1I3), we hypothesize that selective activation of CAR can enhance systemic exposure of the pharmacologically active 4-hydroxycyclophosamide (4-OH-CPA), with improved efficacy of CPA-based chemotherapy. In this study, we have developed a unique human primary hepatocyte (HPH)–leukemia cell coculture model; the chemotherapeutic effects of CPA on leukemia cells can be directly investigated in vitro in a cellular environment where hepatic metabolism was well maintained. Our results demonstrated that activation of CAR preferentially induces the expression of CYP2B6 over CYP3A4 in HPHs, although endogenous expression of these enzymes in leukemia cells remains negligible. Importantly, coadministration of CPA with a human CAR activator led to significantly enhanced cytotoxicity in leukemia cells by inducing the apoptosis pathways, without concomitant increase in the off-target hepatotoxicity. Associated with the enhanced antitumor activity, a time and concentration-dependent increase in 4-OH-CPA formation was observed in the coculture system. Together, our findings offer proof of concept that CAR as a novel molecular target can facilitate CPA-based chemotherapy by selectively promoting its bioactivation. PMID:23160467

  11. The effect of race on the CYP3A-mediated metabolism of vincristine in pediatric patients with acute lymphoblastic leukemia.

    PubMed

    Sims, Rosalyn P

    2016-02-01

    The purpose of this preliminary study was to compare racial background and CYP3A distribution in pediatric acute lymphoblastic leukemia patients as it relates to vincristine-related neurotoxicity. Patients with B-precursor acute lymphoblastic leukemia treated at Children's Hospital of Michigan were eligible to participate in this study. Determination of the CYP3A variant for each patient was done using Qiagen DNA Blood Mini Kit and polymerase chain reaction amplification. Patients were monitored during their leukemia treatment course for vincristine-related neurotoxicity. Fifty-four patients were enrolled. Twenty-nine Caucasian patients (81%) and 13 African-American patients (77%) experienced neurotoxicity. CYP3A genotyping was done for 52 patients. Two African-American and two Caucasian patients were homozygous A/A for the CYP3A5*3 polymorphism. Three of these patients (75%) experienced grade 2 neuropathy. Two Caucasian patients and one African-American patient were heterozygous A/G. Two of these patients (66.7%) experienced grade 2 or 3 neuropathy. Thirty-five patients (67.3%) were homozygous for the mutant inactive G/G allele for CYP3A5*3, eight African-American and 27 Caucasian patients. Of these, six of the African-American patients (75%) and 22 of the Caucasian patients (81.5%) experienced neuropathy. The CYP3A5*3 genotype causes very low expression of the CYP3A5 protein and hence decreased vincristine metabolism. In this study, patients who expressed CYP3A5*3 had an increased incidence of vincristine-related neurotoxicity. Overall, a greater percentage of Caucasian patients had documented incidences of neurotoxicity. A larger sample size and more detailed gene analysis are needed for future studies. © The Author(s) 2014.

  12. Relative contributions of the major human CYP450 to the metabolism of icotinib and its implication in prediction of drug-drug interaction between icotinib and CYP3A4 inhibitors/inducers using physiologically based pharmacokinetic modeling.

    PubMed

    Chen, Jia; Liu, Dongyang; Zheng, Xin; Zhao, Qian; Jiang, Ji; Hu, Pei

    2015-06-01

    Icotinib is an anticancer drug, but relative contributions of CYP450 have not been identified. This study was carried out to identify the contribution percentage of CYP450 to icotinib and use the results to develop a physiologically based pharmacokinetic (PBPK) model, which can help to predict drug-drug interaction (DDI). Human liver microsome (HLM) and supersome using relative activity factor (RAF) were employed to determine the relative contributions of the major human P450 to the net hepatic metabolism of icotinib. These values were introduced to develop a PBPK model using SimCYP. The model was validated by the observed data in a Phase I clinical trial in Chinese healthy subjects. Finally, the model was used to simulate the DDI with ketoconazole or rifampin. Final contribution of CYP450 isoforms determined by HLM showed that CYP3A4 provided major contributions to the metabolism of icotinib. The percentage contributions of the P450 to the net hepatic metabolism of icotinib were determined by HLM inhibition assay and RAF. The AUC ratio under concomitant use of ketoconazole and rifampin was 3.22 and 0.55, respectively. Percentage of contribution of CYP450 to icotinib metabolism was calculated by RAF. The model has been proven to fit the observed data and is used in predicting icotinib-ketoconazole/rifampin interaction.

  13. Effects of ACTH, dexamethasone, and adrenalectomy on 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) gene expression in the rat central nervous system

    PubMed Central

    Ye, Ping; Kenyon, Christopher J; MacKenzie, Scott M; Nichol, Katherine; Seckl, Jonathan R; Fraser, Robert; Connell, John M C; Davies, Eleanor

    2008-01-01

    Using a highly sensitive quantitative RT-PCR method for the measurement of CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) mRNAs, we previously demonstrated that CYP11B2 expression in the central nervous system (CNS) is subject to regulation by dietary sodium. We have now quantified the expression of these genes in the CNS of male Wistar Kyoto (WKY) rats in response to systemic ACTH infusion, dexamethasone infusion, and to adrenalectomy. CYP11B1 and CYP11B2 mRNA levels were measured in total RNA isolated from the adrenal gland and discrete brain regions using real-time quantitative RT-PCR. ACTH infusion (40 ng/day for 7 days, N=8) significantly increased CYP11B1 mRNA in the adrenal gland, hypothalamus, and cerebral cortex compared with animals infused with vehicle only. ACTH infusion decreased adrenal CYP11B2 expression but increased expression in all of the CNS regions except the cortex. Dexamethasone (10 μg/day for 7 days, N=8) reduced adrenal CYP11B1 mRNA compared with control animals but had no significant effect on either gene's expression in the CNS. Adrenalectomy (N=6 per group) significantly increased CYP11B1 expression in the hippocampus and hypothalamus and raised CYP11B2 expression in the cerebellum relative to sham-operated animals. This study confirms the transcription of CYP11B1 and CYP11B2 throughout the CNS and demonstrates that gene transcription is subject to differential regulation by ACTH and circulating corticosteroid levels. PMID:18252953

  14. STAT3 Target Genes Relevant to Human Cancers

    PubMed Central

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers. PMID:24743777

  15. Effect of TBT and PAHs on CYP1A, AhR and Vitellogenin Gene Expression in the Japanese Eel, Anguilla japonica.

    PubMed

    Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu

    2012-12-01

    Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10(-6)-10(-5) M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10(-9)-10(-5) M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10(-6)-10(-5) M), while having no effects at low concentrations (10(-9)-10(-7) M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β.

  16. Effect of TBT and PAHs on CYP1A, AhR and Vitellogenin Gene Expression in the Japanese Eel, Anguilla japonica

    PubMed Central

    Choi, Min Seop; Kwon, Se Ryun; Choi, Seong Hee; Kwon, Hyuk Chu

    2012-01-01

    Gene expressions of cytochrome P4501A (CYP1A), aryl hydrocarbon receptor (AhR) and vitellogenin (Vg) by endocrine disruptors, benzo[α]pyrene (B[a]P) and tributyltin (TBT) were examined in cultured eel hepatocytes which were isolated from eels treated previously with B[a]P (10 mg/kg) or estradiol-17β (20 mg/kg) in vivo, and the relationship between CYP1A, AhR and Vg genes were studied. When the cultured eel hepatocytes were treated with B[a]P (10-6-10-5 M) the gene expressions of CYP1A and AhR were enhanced in a concentration-dependent manner. However, when treated with TBT (10-9-10-5 M) the gene expressions of CYP1A and AhR were suppressed at high concentrations (10-6-10-5 M), while having no effects at low concentrations (10-9-10-7 M). Gene expression of Vg was also suppressed by TBT in a concentration-dependent manner in cultured eel hepatocytes which was previously treated in vivo with estradiol-17β. PMID:25949102

  17. Expression and Sequence Evolution of Aromatase cyp19a1 and Other Sexual Development Genes in East African Cichlid Fishes

    PubMed Central

    Böhne, Astrid; Heule, Corina; Boileau, Nicolas; Salzburger, Walter

    2013-01-01

    Sex determination mechanisms are highly variable across teleost fishes and sexual development is often plastic. Nevertheless, downstream factors establishing the two sexes are presumably conserved. Here, we study sequence evolution and gene expression of core genes of sexual development in a prime model system in evolutionary biology, the East African cichlid fishes. Using the available five cichlid genomes, we test for signs of positive selection in 28 genes including duplicates from the teleost whole-genome duplication, and examine the expression of these candidate genes in three cichlid species. We then focus on a particularly striking case, the A- and B-copies of the aromatase cyp19a1, and detect different evolutionary trajectories: cyp19a1A evolved under strong positive selection, whereas cyp19a1B remained conserved at the protein level, yet is subject to regulatory changes at its transcription start sites. Importantly, we find shifts in gene expression in both copies. Cyp19a1 is considered the most conserved ovary-factor in vertebrates, and in all teleosts investigated so far, cyp19a1A and cyp19a1B are expressed in ovaries and the brain, respectively. This is not the case in cichlids, where we find new expression patterns in two derived lineages: the A-copy gained a novel testis-function in the Ectodine lineage, whereas the B-copy is overexpressed in the testis of the speciest-richest cichlid group, the Haplochromini. This suggests that even key factors of sexual development, including the sex steroid pathway, are not conserved in fish, supporting the idea that flexibility in sexual determination and differentiation may be a driving force of speciation. PMID:23883521

  18. Identification of the Full 46 Cytochrome P450 (CYP) Complement and Modulation of CYP Expression in Response to Water-Accommodated Fractions of Crude Oil in the Cyclopoid Copepod Paracyclopina nana.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Kim, Hui-Su; Nelson, David R; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-06-02

    The 46 cytochrome P450 (CYP) gene superfamily was identified in the marine copepod Paracyclopina nana after searching an RNA-seq database and comparing it with other copepod CYP gene families. To annotate the 46 Pn-CYP genes, a phylogenetic analysis of CYP genes was performed using a Bayesian method. Pn-CYP genes were separated into five different clans: CYP2, CYP3, CYP20, CYP26, and mitochondrial. Among these, the principal Pn-CYP genes involved in detoxification were identified by comparing them with those of the copepod Tigriopus japonicus and were examined with respect to their responses to exposure to a water-accommodated fraction (WAF) of crude oil and to the alkylated forms of two polycyclic aromatic hydrocarbons (PAHs; phenanthrene and fluorene). The expression of two Pn-CYP3027 genes (CYP3027F1 and CYP3027F2) was increased in response to WAF exposure and also was upregulated in response to the two alkylated PAHs. In particular, Pn-CYP3027F2 showed the most notable increase in response to 80% WAF exposure. These two responsive CYP genes (Pn-CYP3027F1 and CYP3027F2) were also phylogenetically clustered into the same clade of the WAF- and alkylated PAH-specific CYP genes of the copepod T. japonicus, suggesting that these CYP genes would be those chiefly involved in detoxification in response to WAF exposure in copepods. In this paper, we provide information on the copepod P. nana CYP gene superfamily and also speculate on its potential role in the detoxification of PAHs in marine copepods. Despite the nonlethality of WAF, Pn-CYP3027F2 was rapidly and significantly upregulated in response to WAF that may serve as a useful biomarker of 40% or higher concentration of WAF exposure. This paper will be helpful to better understand the molecular mechanistic events underlying the metabolism of environmental toxicants in copepods.

  19. Retinoid regulation of the zebrafish cyp26a1 promoter.

    PubMed

    Hu, Ping; Tian, Miao; Bao, Jie; Xing, Guangdong; Gu, Xingxing; Gao, Xiang; Linney, Elwood; Zhao, Qingshun

    2008-12-01

    Cyp26A1 is a major enzyme that controls retinoic acid (RA) homeostasis by metabolizing RA into bio-inactive metabolites. Previous research revealed that the mouse Cyp26A1 promoter has two canonical RA response elements (RAREs) that underlie the regulation of the gene by RA. Analyzing the 2,533-base pairs (2.5 k) genomic sequence upstream of zebrafish cyp26a1 start codon, we report that the two RAREs are conserved in zebrafish cyp26a1 promoter. Mutagenesis demonstrated that the two RAREs work synergistically in RA inducibility of cyp26a1. Fusing the 2.5 k (kilobase pairs) fragment to the enhanced yellow fluorescent protein (eYFP) reporter gene, we have generated two transgenic lines of zebrafish [Tg(cyp26a1:eYFP)]. The transgenic zebrafish display expression patterns similar to that of cyp26a1 gene in vivo. Consistent with the in vitro results, the reporter activity is RA inducible in embryos. Taken together, our results demonstrate that the 2.5 k fragment underlies the regulation of the zebrafish cyp26a1 gene by RA. (c) 2008 Wiley-Liss, Inc.

  20. PYRETHROID INSECTICIDES: ISOFORM-DEPENDENT HYDROLYSIS, INDUCTION OF CYTOCHROME P450 3A4 AND EVIDENCE ON THE INVOLVEMENT OF THE PREGNANE X RECEPTOR

    PubMed Central

    Yang, Dongfang; Wang, Xiliang; Chen, Yi-tzai; Deng, Ruitang; Yan, Bingfang

    2009-01-01

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity. PMID:19249324

  1. Pyrethroid insecticides: isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor.

    PubMed

    Yang, Dongfang; Wang, Xiliang; Chen, Yi-Tzai; Deng, Ruitang; Yan, Bingfang

    2009-05-15

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.

  2. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes,more » intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.« less

  3. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carryingmore » humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.« less

  4. Insecticide-Mediated Up-Regulation of Cytochrome P450 Genes in the Red Flour Beetle (Tribolium castaneum)

    PubMed Central

    Liang, Xiao; Xiao, Da; He, Yanping; Yao, Jianxiu; Zhu, Guonian; Zhu, Kun Yan

    2015-01-01

    Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification. PMID:25607733

  5. Effect of isodillapiole on the expression of the insecticide resistance genes GSTE7 and CYP6N12 in Aedes aegypti from central Amazonia.

    PubMed

    Lima, V S; Pinto, A C; Rafael, M S

    2015-12-11

    The yellow fever mosquito Aedes (Stegomyia) aegypti is the main vector of dengue arbovirus and other arboviruses. Dengue prevention measures for the control of A. aegypti involve mainly the use of synthetic insecticides. The constant use of insecticides has caused resistance in this mosquito. Alternative studies on plant extracts and their products have been conducted with the aim of controlling the spread of the mosquito. Dillapiole is a compound found in essential oils of the plant Piper aduncum (Piperaceae) which has been effective as a biopesticide against A. aegypti. Isodillapiole is a semisynthetic substance obtained by the isomerization of dillapiole. In the present study, isodillapiole was evaluated for its potential to induce differential expression of insecticide resistance genes (GSTE7 and CYP6N12) in 3rd instar larvae of A. aegypti. These larvae were exposed to this compound at two concentrations (20 and 40 μg/mL) for 4 h during four generations (G1, G2, G3, and G4). Quantitative RT-PCR was used to assess the expression of GSTE7 and CYP6N12 genes. GSTE7 and CYP6N12 relative expression levels were higher at 20 than at 40 μg/mL and varied among generations. The decrease in GSTE7 and CYP6N12 expression levels at the highest isodillapiole concentration suggests that larvae may have suffered from metabolic stress, revealing a potential alternative product in the control of A. aegypti.

  6. Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2',5'-Tetrachlorobiphenyl.

    PubMed

    Shimada, Tsutomu; Kakimoto, Kensaku; Takenaka, Shigeo; Koga, Nobuyuki; Uehara, Shotaro; Murayama, Norie; Yamazaki, Hiroshi; Kim, Donghak; Guengerich, F Peter; Komori, Masayuki

    2016-12-01

    2,5,2',5'-Tetrachlorobiphenyl (TCB) induced type I binding spectra with cytochrome P450 (P450) 2A6 and 2A13, with K s values of 9.4 and 0.51 µM, respectively. However, CYP2A6 oxidized 2,5,2',5'-TCB to form 4-hydroxylated products at a much higher rate (∼1.0 minute -1 ) than CYP2A13 (∼0.02 minute -1 ) based on analysis by liquid chromatography-tandem mass spectrometry. Formation of 4-hydroxy-2,5,2',5'-TCB by CYP2A6 was greater than that of 3-hydroxy-2,5,2',5'-TCB and three other hydroxylated products. Several human P450 enzymes, including CYP1A1, 1A2, 1B1, 2B6, 2D6, 2E1, 2C9, and 3A4, did not show any detectable activities in oxidizing 2,5,2',5'-TCB. Cynomolgus monkey CYP2A24, which shows 95% amino acid identity to human CYP2A6, catalyzed 4-hydroxylation of 2,5,2',5'-TCB at a higher rate (∼0.3 minute -1 ) than CYP2A26 (93% identity to CYP2A6, ∼0.13 minute -1 ) and CYP2A23 (94% identity to CYP2A13, ∼0.008 minute -1 ). None of these human and monkey CYP2A enzymes were catalytically active in oxidizing other TCB congeners, such as 2,4,3',4'-, 3,4,3',4'-, and 3,5,3',5'-TCB. Molecular docking analysis suggested that there are different orientations of interaction of 2,5,2',5'-TCB with the active sites (over the heme) of human and monkey CYP2A enzymes, and that ligand interaction energies (U values) of bound protein-ligand complexes show structural relationships of interaction of TCBs and other ligands with active sites of CYP2A enzymes. Catalytic differences in human and monkey CYP2A enzymes in the oxidation of 2,5,2',5'-TCB are suggested to be due to amino acid changes at substrate recognition sites, i.e., V110L, I209S, I300F, V365M, S369G, and R372H, based on the comparison of primary sequences. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation

    PubMed Central

    Ohno, Yusuke; Nakamichi, Shota; Ohkuni, Aya; Kamiyama, Nozomi; Naoe, Ayano; Tsujimura, Hisashi; Yokose, Urara; Sugiura, Kazumitsu; Ishikawa, Junko; Akiyama, Masashi; Kihara, Akio

    2015-01-01

    A skin permeability barrier is essential for terrestrial animals, and its impairment causes several cutaneous disorders such as ichthyosis and atopic dermatitis. Although acylceramide is an important lipid for the skin permeability barrier, details of its production have yet to be determined, leaving the molecular mechanism of skin permeability barrier formation unclear. Here we identified the cytochrome P450 gene CYP4F22 (cytochrome P450, family 4, subfamily F, polypeptide 22) as the long-sought fatty acid ω-hydroxylase gene required for acylceramide production. CYP4F22 has been identified as one of the autosomal recessive congenital ichthyosis-causative genes. Ichthyosis-mutant proteins exhibited reduced enzyme activity, indicating correlation between activity and pathology. Furthermore, lipid analysis of a patient with ichthyosis showed a drastic decrease in acylceramide production. We determined that CYP4F22 was a type I membrane protein that locates in the endoplasmic reticulum (ER), suggesting that the ω-hydroxylation occurs on the cytoplasmic side of the ER. The preferred substrate of the CYP4F22 was fatty acids with a carbon chain length of 28 or more (≥C28). In conclusion, our findings demonstrate that CYP4F22 is an ultra-long-chain fatty acid ω-hydroxylase responsible for acylceramide production and provide important insights into the molecular mechanisms of skin permeability barrier formation. Furthermore, based on the results obtained here, we proposed a detailed reaction series for acylceramide production. PMID:26056268

  8. Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis

    PubMed Central

    Zhou, Xiaoli; Chen, Kai; Wang, Yongjun; Schuman, Mariano; Lei, Han

    2016-01-01

    Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate–limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/−) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency–induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/−) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency–induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis. PMID:26471128

  9. Aspartame Administration and Insulin Treatment Altered Brain Levels of CYP2E1 and CYP3A2 in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Nosti-Palacios, Rosario; Gómez-Garduño, Josefina; Molina-Ortiz, Dora; Calzada-León, Raúl; Dorado-González, Víctor Manuel; Vences-Mejía, Araceli

    2014-07-01

    This study demonstrates that aspartame consumption and insulin treatment in a juvenile diabetic rat model leads to increase in cytochrome P450 (CYP) 2E1 and CYP3A2 isozymes in brain. Diabetes mellitus was induced in postweaned 21-day-old Wistar male rat by streptozotocin. Animals were randomly assigned to one of the following groups: untreated control, diabetic (D), D-insulin, D-aspartame, or the D-insulin + aspartame-treated group. Brain and liver tissue samples were used to analyze the activity of CYP2E1 and CYP3A2 and protein levels. Our results indicate that combined treatment with insulin and aspartame in juvenile diabetic rats significantly induced CYP2E1 in the cerebrum and cerebellum without modifying it in the liver, while CYP3A2 protein activity increased both in the brain and in the liver. The induction of CYP2E1 in the brain could have important in situ toxicological effects, given that this CYP isoform is capable of bioactivating various toxic substances. Additionally, CYP3A2 induction in the liver and brain could be considered a decisive factor in the variation of drug response and toxicity. © The Author(s) 2014.

  10. Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin.

    PubMed

    Lee, Chong-Ki; Choi, Jun-Shik; Bang, Joon Seok

    2013-06-01

    The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration(IC50) of 4.1 µM and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the AUC0-∞ of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions.

  11. Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin

    PubMed Central

    Lee, Chong-Ki; Choi, Jun-Shik

    2013-01-01

    The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration(IC50) of 4.1 µM and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the AUC0-∞ of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions. PMID:23776402

  12. Analyzing the promoters of two CYP9A genes in the silkworm Bombyx mori by dual-luciferase reporter assay.

    PubMed

    Zhao, Si-Si; Zhao, Guo-Dong; Di, Tian-Yuan; Ding, Hua; Wan, Xiao-Ling; Li, Bing; Chen, Yu-Hua; Xu, Ya-Xiang; Shen, Wei-De; Wei, Zheng-Guo

    2013-02-01

    Cytochrome P450s (CYPs) are widespread proteins that interact with exogenous chemicals from the diet or the environment. CYP9A subfamily genes are important in the silkworm Bombyx mori. We previously reported transcriptional levels of two CYP9A genes in different tissues and their responses to sodium fluoride (NaF). In this study, promoter truncation analysis using a dual-luciferase reporter assay in B. mori ovary cells (BmN) showed that the regions -1,496 to -1,102 bp for CYP9A19, and -1,630 to -1,210 bp for CYP9A22 were essential for basal transcriptional activity. Sequence analysis of these regions revealed several transcriptional regulatory elements but no typical promoter elements. Promoter activities were regulated after NaF induction and with an obvious dose effect. Although the dual-luciferase assay has been widely used to determine the activity of a given promoter in cell lines, problems with it still exist. Our results indicate that both plasmid size and construct protocols affect the experimental results.

  13. Isolation and Identification of Intestinal CYP3A Inhibitors from Cranberry (Vaccinium macrocarpon) using Human Intestinal Microsomes

    PubMed Central

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N.; Brantley, Scott J.; Paine, Mary F.; Oberlies, Nicholas H.

    2010-01-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, a cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC50) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and <10 μM, respectively, using HIM as the enzyme source and was 2.8, 4.3, and <10 μM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study. PMID:20717876

  14. Heterologous expression of equine CYP3A94 and investigation of a tunable system to regulate co-expressed NADPH P450 oxidoreductase levels.

    PubMed

    Dettwiler, Ramona; Schmitz, Andrea L; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike

    2014-01-01

    The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of "Shield-1" prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94

  15. Isolation and identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using human intestinal microsomes.

    PubMed

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N; Brantley, Scott J; Paine, Mary F; Oberlies, Nicholas H

    2011-02-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC(50)) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and < 10 µM, respectively, using HIM as the enzyme source and 2.8, 4.3, and < 10 µM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes

    PubMed Central

    Ishak, Intan H.; Kamgang, Basile; Ibrahim, Sulaiman S.; Riveron, Jacob M.; Irving, Helen

    2017-01-01

    Background Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Methodology/Principal Findings Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise

  17. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes.

    PubMed

    Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2017-01-01

    Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant

  18. Analysis of TGM1, ALOX12B, ALOXE3, NIPAL4 and CYP4F22 in autosomal recessive congenital ichthyosis from Galicia (NW Spain): evidence of founder effects.

    PubMed

    Rodríguez-Pazos, L; Ginarte, M; Fachal, L; Toribio, J; Carracedo, A; Vega, A

    2011-10-01

      Mutations in six genes have been identified in autosomal recessive congenital ichthyosis (ARCI). To date, few studies have analysed the spectrum of these mutations in specific populations. We have studied the characteristics of patients with ARCI in Galicia (NW Spain). Methods  We recruited patients by contacting all dermatology departments of Galicia and the Spanish patient organization for ichthyosis. TGM1, ALOX12B, ALOXE3, NIPAL4 and CYP4F22 were analysed in the patients and their relatives. We identified 23 patients with ARCI and estimated a prevalence of 1 : 122 000. Twenty of the patients were studied. Seventeen of them were clinically categorized as having lamellar ichthyosis (LI) and three as having congenital ichthyosiform erythroderma (CIE). TGM1 and ALOXE3 mutations were identified in 12/16 (75%) probands whereas no ALOX12B, NIPAL4 and CYP4F22 mutations were found. TGM1 mutations were found in 11/13 (85%) of LI probands. ALOXE3 mutations were identified in a single patient with CIE. Remarkably, mutations p.Arg760X, p.Asp408ValfsX21 and c.984+1G>A of TGM1 were present in six, four and two families, accounting for 41%, 23% and 14% of all TGM1 mutant alleles, respectively. The high percentage of patients with the same TGM1 mutations, together with the high number of homozygous probands (64%), indicates the existence of a strong founder effect in our population. © 2011 The Authors. BJD © 2011 British Association of Dermatologists 2011.

  19. Concomitance of oncogenic HPV types, CHEK2 gene mutations, and CYP1B1 gene polymorphism as an increased risk factor for malignancy.

    PubMed

    Banaszkiewicz, Monika; Constantinou, Maria; Pietrusiński, Michał; Kępczyński, Lukasz; Jędrzejczyk, Adam; Rożniecki, Marek; Marks, Piotr; Kałużewski, Bogdan

    2013-01-01

    Urinary bladder carcinoma ranks the fourth position in malignancy incidence rates in men (6.1%) and the 17th position in women (1.6%). In general, neoplastic diseases should be approached from two perspectives: prevention with implementation of prophylactic measures and early diagnostics. Prophylactics is possible in the preclinical phase of neoplasm, being both justified and plausible in patients from high-risk groups. Thus, it is particularly important to select such groups, not only by referring to environmental carcinogenic factors (occupational and extra-occupational) but also from genetic predisposition, which may be conductive for neoplasm formation. The mutations / polymorphisms of CHEK2 and CYP1B1 genes predispose to neoplasm via multiorgan mechanisms, while the human papilloma virus (HPV) may participate in the neoplastic transformation as an environmental factor. 131 patients with diagnosed urinary bladder cancer were qualified to the study. Mutations/polymorphisms of CHEK2 (IVS2 + 1G > A gene, 1100delC, del5395, I157T) and CYP1B1- 355T/T were identified by the PCR in DNA isolated directly from the tumor and from peripheral blood. The ELISA test was used for the studies of 37 HPV genotypes in DNA, isolated tumour tissue. 11 mutations of CHEK2 gene were found, 355T/T polymorphism if CYP1B1 gene occurred in 18 patients (12.9%). Oncogenic HPV was found in 36 (29.3%), out of 123 examined patients. The concomitance of CHEK2 gene mutations or 355T/T polymorphism of CYP1B1 gene and the presence of oncogenic HPV types statistically significantly correlates with histological malignancy grades of urinary bladder carcinoma.

  20. Effect of CYP3A perpetrators on ibrutinib exposure in healthy participants.

    PubMed

    de Jong, Jan; Skee, Donna; Murphy, Joe; Sukbuntherng, Juthamas; Hellemans, Peter; Smit, Johan; de Vries, Ronald; Jiao, Juhui James; Snoeys, Jan; Mannaert, Erik

    2015-08-01

    Ibrutinib (PCI-32765), a potent covalent inhibitor of Bruton's tyrosine kinase, has shown efficacy against a variety of B-cell malignancies. Given the prominent role of CYP3A in ibrutinib metabolism, effect of coadministration of CYP3A perpetrators with ibrutinib was evaluated in healthy adults. Ibrutinib (120 mg [Study 1, fasted], 560 mg [studies 2 (fasted), and 3 (nonfasted)]) was given alone and with ketoconazole [Study 1; 400 mg q.d.], rifampin [Study 2; 600 mg q.d.], and grapefruit juice [GFJ, Study 3]. Lower doses of ibrutinib were used together with CYP3A inhibitors [Study 1: 40 mg; Study 3: 140 mg], as safety precaution. Under fasted condition, ketoconazole increased ibrutinib dose-normalized (DN) exposure [DN-AUClast: 24-fold; DN-C max: 29-fold], rifampin decreased ibrutinib exposure [C max: 13-fold; AUClast: 10-fold]. Under nonfasted condition, GFJ caused a moderate increase [DN-C max: 3.5-fold; DN-AUC: 2.2-fold], most likely through inhibition of intestinal CYP3A. Half-life was not affected by CYP perpetrators indicating the interaction was mainly on first-pass extraction. All treatments were well-tolerated.