Sample records for target her2-overexpressing breast

  1. HER2-Targeted Polyinosine/Polycytosine Therapy Inhibits Tumor Growth and Modulates the Tumor Immune Microenvironment.

    PubMed

    Zigler, Maya; Shir, Alexei; Joubran, Salim; Sagalov, Anna; Klein, Shoshana; Edinger, Nufar; Lau, Jeffrey; Yu, Shang-Fan; Mizraji, Gabriel; Globerson Levin, Anat; Sliwkowski, Mark X; Levitzki, Alexander

    2016-08-01

    The development of targeted therapies that affect multiple signaling pathways and stimulate antitumor immunity is greatly needed. About 20% of patients with breast cancer overexpress HER2. Small molecules and antibodies targeting HER2 convey some survival benefits; however, patients with advanced disease succumb to the disease under these treatment regimens, possibly because HER2 is not completely necessary for the survival of the targeted cancer cells. In the present study, we show that a polyinosine/polycytosine (pIC) HER2-homing chemical vector induced the demise of HER2-overexpressing breast cancer cells, including trastuzumab-resistant cells. Targeting pIC to the tumor evoked a number of cell-killing mechanisms, as well as strong bystander effects. These bystander mechanisms included type I IFN induction, immune cell recruitment, and activation. The HER2-targeted pIC strongly inhibited the growth of HER2-overexpressing tumors in immunocompetent mice. The data presented here could open additional avenues in the treatment of HER2-positive breast cancer. Cancer Immunol Res; 4(8); 688-97. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases.

    PubMed

    Kanojia, Deepak; Balyasnikova, Irina V; Morshed, Ramin A; Frank, Richard T; Yu, Dou; Zhang, Lingjiao; Spencer, Drew A; Kim, Julius W; Han, Yu; Yu, Dihua; Ahmed, Atique U; Aboody, Karen S; Lesniak, Maciej S

    2015-10-01

    The treatment of human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer has been revolutionized by trastuzumab. However, longer survival of these patients now predisposes them to forming HER2 positive brain metastases, as the therapeutic antibodies cannot cross the blood brain barrier. The current oncologic repertoire does not offer a rational, nontoxic targeted therapy for brain metastases. In this study, we used an established human neural stem cell line, HB1.F3 NSCs and generated a stable pool of cells secreting a high amount of functional full-length anti-HER2 antibody, equivalent to trastuzumab. Anti-HER2Ab secreted by the NSCs (HER2Ab-NSCs) specifically binds to HER2 overexpressing human breast cancer cells and inhibits PI3K-Akt signaling. This translates to HER2Ab-NSC inhibition of breast cancer cell growth in vitro. Preclinical in vivo experiments using HER2Ab overexpressing NSCs in a breast cancer brain metastases (BCBM) mouse model demonstrate that intracranial injection of HER2Ab-NSCs significantly improves survival. In effect, these NSCs provide tumor localized production of HER2Ab, minimizing any potential off-target side effects. Our results establish HER2Ab-NSCs as a novel, nontoxic, and rational therapeutic approach for the successful treatment of HER2 overexpressing BCBM, which now warrants further preclinical and clinical investigation. © 2015 AlphaMed Press.

  3. Breast cancer stem cells in HER2-negative breast cancer cells contribute to HER2-mediated radioresistance and molecular subtype conversion: clinical implications for serum HER2 in recurrent HER2-negative breast cancer.

    PubMed

    Kim, Yun Gyoung; Yoon, Yi Na; Choi, Hyang Suk; Kim, Ji-Hyun; Seol, Hyesil; Lee, Jin Kyung; Seong, Min-Ki; Park, In Chul; Kim, Kwang Il; Kim, Hyun-Ah; Kim, Jae-Sung; Noh, Woo Chul

    2018-01-19

    Although it has been proposed that the beneficial effect of HER2-targeted therapy in HER2-negative breast cancer is associated with the molecular subtype conversion, the underlying mechanism and the clinical biomarkers are unclear. Our study showed that breast cancer stem cells (BCSCs) mediated HER2 subtype conversion and radioresistance in HER2-negative breast cancer cells and evaluated serum HER2 as a clinical biomarker for HER2 subtype conversion. We found that the CD44 + /CD24 -/low BCSCs from HER2-negative breast cancer MCF7 cells overexpressed HER2 and EGFR and showed the radioresistant phenotype. In addition, we showed that trastuzumab treatment sensitized the radioresistant phenotype of the CD44 + /CD24 -/low cells with decreased levels of HER2 and EGFR, which suggested that HER2-targeted therapy in HER2-negative breast cancer could be useful for targeting BCSCs that overexpress HER2/EGFR. Importantly, our clinical data showed that serial serum HER2 measurement synchronously reflected the disease relapse and the change in tumor burden in some patients who were initially diagnosed as HER2-negative breast cancer, which indicated that serum HER2 could be a clinical biomarker for the evaluation of HER2 subtype conversion in patients with recurrent HER2-negative breast cancer. Therefore, our data have provided in vitro and in vivo evidence for the molecular subtype conversion of HER2-negative breast cancer.

  4. Comparison of HER-2 overexpression in primary breast cancer and metastatic sites and its effect on biological targeting therapy of metastatic disease

    PubMed Central

    Zidan, J; Dashkovsky, I; Stayerman, C; Basher, W; Cozacov, C; Hadary, A

    2005-01-01

    HER-2 overexpression, a predictive marker of tumour aggressiveness and responsiveness to therapy, occurs in 20–30% of breast cancer. Although breast cancer is a heterogeneous disease, HER-2 measurement is carried out in primary tumour. This study aims to evaluate HER-2 overexpression in primary and metastases and its effect on treatment decisions. Biopsies from primary breast cancer and corresponding metastases from 58 patients were studied. HER-2 overexpression was evaluated immunohistochemically in all primary and metastatic sites. Positive overexpression in primary and/or metastases was confirmed by fluorescence in situ hybridisation (FISH). Discordance in HER-2 overexpression between primary and metastatic sites was 14% (eight of 58 patients). Concordance was found in 50 (86%) of patients (95% CI: 77–95). In one patient (2%), HER-2 was negative in metastasis but positive in primary. In seven (12%) patients, HER-2 was positive in metastases and negative in primary (95% CI: 3.7–20), and three of them responded to trastuzumab. Gene amplification by FISH was found in all cases with HER-2 positive (+2 and +3) by immunohistochemistry. Our data suggest that a possible discordance of HER-2 overexpression between primary and metastases should be considered when making treatment decisions in patients with primary HER-2-negative tumours. PMID:16106267

  5. Disulfide bond disrupting agents activate the unfolded protein response in EGFR- and HER2-positive breast tumor cells

    PubMed Central

    Law, Mary E.; Davis, Bradley J.; Bartley, Ashton N.; Higgins, Paul J.; Kilberg, Michael S.; Santostefano, Katherine E.; Terada, Naohiro; Heldermon, Coy D.; Castellano, Ronald K.; Law, Brian K.

    2017-01-01

    Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus, new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors, and “Triple-Negative” Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor, Progesterone Receptor, and HER2. A significant fraction of TNBCs overexpress the HER2 family member Epidermal Growth Factor Receptor (EGFR). Thus agents that selectively kill EGFR+ and HER2+ tumors would provide new options for breast cancer therapy. We previously identified a class of compounds we termed Disulfide bond Disrupting Agents (DDAs) that selectively kill EGFR+ and HER2+ breast cancer cells in vitro and blocked the growth of HER2+ breast tumors in an animal model. DDA-dependent cytotoxicity was found to correlate with downregulation of HER1-3 and Akt dephosphorylation. Here we demonstrate that DDAs activate the Unfolded Protein Response (UPR) and that this plays a role in their ability to kill EGFR+ and HER2+ cancer cells. The use of breast cancer cell lines ectopically expressing EGFR or HER2 and pharmacological probes of UPR revealed all three DDA responses: HER1-3 downregulation, Akt dephosphorylation, and UPR activation, contribute to DDA-mediated cytotoxicity. Significantly, EGFR overexpression potentiates each of these responses. Combination studies with DDAs suggest that they may be complementary with EGFR/HER2-specific receptor tyrosine kinase inhibitors and mTORC1 inhibitors to overcome drug resistance. PMID:28423644

  6. Downregulation of GLUT4 contributes to effective intervention of estrogen receptor-negative/HER2-overexpressing early stage breast disease progression by lapatinib

    PubMed Central

    Acharya, Sunil; Xu, Jia; Wang, Xiao; Jain, Shalini; Wang, Hai; Zhang, Qingling; Chang, Chia-Chi; Bower, Joseph; Arun, Banu; Seewaldt, Victoria; Yu, Dihua

    2016-01-01

    Tamoxifen and aromatase inhibitors (AIs) have shown efficacy in prevention of estrogen receptor-positive (ER+) breast cancer; however, there exists no proven prevention strategy for estrogen receptor-negative (ER-) breast cancer. Up to 40% of ER- breast cancers have human epidermal growth factor receptor 2 overexpression (HER2+), suggesting HER2 signaling might be a good target for chemoprevention for certain ER- breast cancers. Here, we tested the feasibility of the HER2-targeting agent lapatinib in prevention and/or early intervention of an ER-/HER2+ early-stage breast disease model. We found that lapatinib treatment forestalled the progression of atypical ductal hyperplasia (ADH)-like acini to ductal carcinoma in situ (DCIS)-like acini in ER-/HER2+ human mammary epithelial cells (HMECs) in 3D culture. Mechanistically, we found that inhibition of HER2/Akt signaling by lapatinib led to downregulation of GLUT4 and a reduced glucose uptake in HER2-overexpressing cells, resulting in decreased proliferation and increased apoptosis of these cells in 3D culture. Additionally, our data suggest that HER2-driven glycolytic metabolic dysregulation in ER-/HER2+ HMECs might promote early-stage breast disease progression, which can be reversed by lapatinib treatment. Furthermore, low-dose lapatinib treatment, starting at the early stages of mammary grand transformation in the MMTV-neu* mouse model, significantly delayed mammary tumor initiation and progression, extended tumor-free survival, which corresponded to effective inhibition of HER2/Akt signaling and downregulation of GLUT4 in vivo. Taken together, our results indicate that lapatinib, through its inhibition of key signaling pathways and tumor-promoting metabolic events, is a promising agent for the prevention/early intervention of ER-/HER2+ breast cancer progression. PMID:27293993

  7. Development, Characterization and Validation of Trastuzumab-Modified Gold Nanoparticles for Molecularly Targeted Radiosensitization of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Niladri

    The overexpression of the human epidermal growth factor receptor-2 (HER-2) in 20--25% of human breast cancers was investigated as a target for development of a gold nanoparticle (AuNP) based radiosensitizer for improving the efficacy of neoadjuvant X-radiation therapy of the disease. HER-2 targeted AuNPs were developed by covalently conjugating trastuzumab, a Health Canada approved monoclonal antibody for the treatment of HER-2-overexpressing breast cancer, to 30 nm AuNPs. Trastuzumab conjugated AuNPs were efficiently internalized by HER-2-overexpressing breast cancer cells (as assessed by darkfield microscopy and transmission electron microscopy) and increased DNA damage from X-radiation in these cells by more than 5-fold. To optimize delivery of AuNPs to HER-2-overexpressing tumors, high resolution microSPECT/CT imaging was used to track the in vivo fate of 111In-labelled non-targeted and HER-2 targeted AuNPs following intravenous (i.v.) or intratumoral (i.t.) injection. For i.v. injection, the effects of GdCl3 (for deactivation of macrophages) and non-specific (anti-CD20) antibody rituximab (for blocking of Fc mediated liver and spleen uptake) were studied. It was found that HER-2 targeting via attachment of trastuzumab paradoxically decreased tumor uptake as a result of faster elimination of the targeted AuNPs from the blood while improving internalization in HER-2-positive tumor cells as compared to non-targeted AuNPs. This phenomenon could be attributed to Fc-mediated recognition and subsequent sequestration of trastuzumab conjugated AuNP by the reticuloendothelial system (RES). Blocking of the RES did not increase tumor uptake of either HER-2 targeted or non-targeted AuNPs. Following i.t. injection, our results suggest that Au-NTs redistribute over time and traffick to the liver via the ipsilateral axillary lymph node leading to comparable exposure as seen with i.v. administration. In contrast, targeted AuNPs are bound and internalized by HER-2-overexpressing tumor cells following i.t. injection, with a lower proportion of AuNPs redistributing to normal tissues. In vivo, the combination of HER-2 targeted AuNPs injected i.t. and X-radiation (11 Gy) yielded a 46% decrease in tumor size over a 4 month period in contrast to an 11.5% increase in tumor size for X-radiation treatment alone. Toxicology studies (evaluated through complete blood cell counts, by serum transaminase and creatinine measurements and by monitoring the body weight) demonstrated no apparent normal organ toxicity from the combination of HER-2 targeted AuNPs and X-radiation. These results are promising for the clinical translation of HER-2-targeted AuNPs for radiosensitization of tumors to X-radiation.

  8. Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer.

    PubMed

    Bernhard, Helga; Neudorfer, Julia; Gebhard, Kerstin; Conrad, Heinke; Hermann, Christine; Nährig, Jörg; Fend, Falko; Weber, Wolfgang; Busch, Dirk H; Peschel, Christian

    2008-02-01

    The human epidermal growth factor receptor 2 (HER2) has been targeted as a breast cancer-associated antigen by immunotherapeutical approaches based on HER2-directed monoclonal antibodies and cancer vaccines. We describe the adoptive transfer of autologous HER2-specific T-lymphocyte clones to a patient with metastatic HER2-overexpressing breast cancer. The HLA/multimer-based monitoring of the transferred T lymphocytes revealed that the T cells rapidly disappeared from the peripheral blood. The imaging studies indicated that the T cells accumulated in the bone marrow (BM) and migrated to the liver, but were unable to penetrate into the solid metastases. The disseminated tumor cells in the BM disappeared after the completion of adoptive T-cell therapy. This study suggests the therapeutic potential for HER2-specific T cells for eliminating disseminated HER2-positive tumor cells and proposes the combination of T cell-based therapies with strategies targeting the tumor stroma to improve T-cell infiltration into solid tumors.

  9. Segmentation of HER2 protein overexpression in immunohistochemically stained breast cancer images using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Pezoa, Raquel; Salinas, Luis; Torres, Claudio; Härtel, Steffen; Maureira-Fredes, Cristián; Arce, Paola

    2016-10-01

    Breast cancer is one of the most common cancers in women worldwide. Patient therapy is widely supported by analysis of immunohistochemically (IHC) stained tissue sections. In particular, the analysis of HER2 overexpression by immunohistochemistry helps to determine when patients are suitable to HER2-targeted treatment. Computational HER2 overexpression analysis is still an open problem and a challenging task principally because of the variability of immunohistochemistry tissue samples and the subjectivity of the specialists to assess the samples. In addition, the immunohistochemistry process can produce diverse artifacts that difficult the HER2 overexpression assessment. In this paper we study the segmentation of HER2 overexpression in IHC stained breast cancer tissue images using a support vector machine (SVM) classifier. We asses the SVM performance using diverse color and texture pixel-level features including the RGB, CMYK, HSV, CIE L*a*b* color spaces, color deconvolution filter and Haralick features. We measure classification performance for three datasets containing a total of 153 IHC images that were previously labeled by a pathologist.

  10. Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies.

    PubMed

    Chen, Albert C; Migliaccio, Ilenia; Rimawi, Mothaffar; Lopez-Tarruella, Sara; Creighton, Chad J; Massarweh, Suleiman; Huang, Catherine; Wang, Yen-Chao; Batra, Surinder K; Gutierrez, M Carolina; Osborne, C Kent; Schiff, Rachel

    2012-07-01

    We studied resistance to endocrine and HER2-targeted therapies using a xenograft model of estrogen receptor positive (ER)/HER2-overexpressing breast cancer. Here, we report a novel phenotype of drug resistance in this model. MCF7/HER2-18 xenografts were treated with endocrine therapy alone or in combination with lapatinib and trastuzumab (LT) to inhibit HER2. Archival tumor tissues were stained with hematoxylin and eosin and with mucicarmine. RNA extracted from tumors at early time points and late after acquired resistance were analyzed for mucin4 (MUC4) expression by microarray and quantitative reverse transcriptase-PCR. Protein expression of the MUC4, ER, and HER2 signaling pathways was measured by immunohistochemistry and western blotting. The combination of the potent anti-HER2 regimen LT with either tamoxifen (Tam + LT) or estrogen deprivation (ED + LT) can cause complete eradication of ER-positive/HER2-overexpressing tumors in mice. Tumors developing resistance to this combination, as well as those acquiring resistance to endocrine therapy alone, exhibited a distinct histological and molecular phenotype-a striking increase in mucin-filled vacuoles and upregulation of several mucins including MUC4. At the onset of resistance, MUC4 mRNA and protein were increased. These tumors also showed upregulation and reactivation of HER2 signaling, while losing ER protein and the estrogen-regulated gene progesterone receptor. Mucins are upregulated in a preclinical model of ER-positive/HER2-overexpressing breast cancer as resistance develops to the combination of endocrine and anti-HER2 therapy. These mucin-rich tumors reactivate the HER2 pathway and shift their molecular phenotype to become more ER-negative/HER2-positive.

  11. Upregulation of Mucin4 in ER-positive/HER2-Overexpressing Breast Cancer Xenografts with Acquired Resistance to Endocrine and HER2-Targeted Therapies

    PubMed Central

    Chen, Albert C.; Migliaccio, Ilenia; Rimawi, Mothaffar; Lopez-Tarruella, Sara; Creighton, Chad J.; Massarweh, Suleiman; Huang, Catherine; Wang, Yen-Chao; Batra, Surinder K.; Gutierrez, M. Carolina; Osborne, C. Kent; Schiff, Rachel

    2012-01-01

    Background We studied resistance to endocrine and HER2-targeted therapies using a xenograft model of estrogen receptor positive (ER)/HER2-overexpressing breast cancer. Here, we report a novel phenotype of drug resistance in this model. Methods MCF7/HER2-18 xenografts were treated with endocrine therapy alone or in combination with lapatinib and trastuzumab (LT) to inhibit HER2. Archival tumor tissues were stained with hematoxylin & eosin and mucicarmine. RNA extracted from tumors at early time points and late after acquired resistance were analyzed for mucin4 (MUC4) expression by microarray and quantitative reverse transcriptase-PCR. Protein expression of the MUC4, ER and HER2 signaling pathways was measured by immunohistochemistry and Western blotting. Results The combination of the potent anti-HER2 regimen LT with either tamoxifen (Tam+LT) or estrogen deprivation (ED+LT) can cause complete eradication of ER-positive/HER2-overexpressing tumors in mice. Tumors developing resistance to this combination, as well as those acquiring resistance to endocrine therapy alone, exhibited a distinct histological and molecular phenotype—a striking increase in mucin-filled vacuoles and upregulation of several mucins including MUC4. At the onset of resistance, MUC4 mRNA and protein were increased. These tumors also showed upregulation and reactivation of HER2 signaling, while losing ER protein and the estrogen-regulated gene, progesterone receptor. Conclusions Mucins are upregulated in a preclinical model of ER-positive/HER2-overexpressing breast cancer as resistance develops to the combination of endocrine and anti-HER2 therapy. These mucin-rich tumors reactivate the HER2 pathway and shift their molecular phenotype to become more ER-negative/HER2-positive. PMID:22644656

  12. TARGETING THE MUC1-C ONCOPROTEIN DOWNREGULATES HER2 ACTIVATION AND ABROGATES TRASTUZUMAB RESISTANCE IN BREAST CANCER CELLS

    PubMed Central

    Raina, Deepak; Uchida, Yasumitsu; Kharbanda, Akriti; Rajabi, Hasan; Panchamoorthy, Govind; Jin, Caining; Kharbanda, Surender; Scaltriti, Maurizio; Baselga, Jose; Kufe, Donald

    2014-01-01

    Patients with HER2 positive breast cancer often exhibit intrinsic or acquired resistance to trastuzumab treatment. The transmembrane MUC1-C oncoprotein is aberrantly overexpressed in breast cancer cells and associates with HER2. The present studies demonstrate that silencing MUC1-C in HER2-overexpressing SKBR3 and BT474 breast cancer cells results in downregulation of constitutive HER2 activation. Moreover, treatment with the MUC1-C inhibitor, GO-203, was associated with disruption of MUC1-C/HER2 complexes and decreases in tyrosine phosphorylated HER2 (p-HER2) levels. In studies of trastuzumab-resistant SKBR3R and BT474R cells, we found that the association between MUC1-C and HER2 is markedly increased (~20-fold) as compared to that in sensitive cells. Additionally, silencing MUC1-C in the trastuzumab-resistant cells or treatment with GO-203 decreased p-HER2 and AKT activation. Moreover, targeting MUC1-C was associated with downregulation of phospho-p27 and cyclin E, which confer trastuzumab resistance. Consistent with these results, targeting MUC1-C inhibited the growth and clonogenic survival of both trastuzumab-resistant cells. Our results further demonstrate that silencing MUC1-C reverses resistance to trastuzumab and that the combination of GO-203 and trastuzumab is highly synergistic. These findings indicate that MUC1-C contributes to constitutive activation of the HER2 pathway and that targeting MUC1-C represents a potential approach to abrogate trastuzumab resistance. PMID:23912457

  13. Human epidermal growth factor receptor 2 overexpression in breast cancer of patients with anti-Yo--associated paraneoplastic cerebellar degeneration.

    PubMed

    Rojas-Marcos, Iñigo; Picard, Geraldine; Chinchón, David; Gelpi, Ellen; Psimaras, Dimitri; Giometto, Bruno; Delattre, J Y; Honnorat, J; Graus, F

    2012-04-01

    Isolated case reports suggest that breast tumors from patients with paraneoplastic cerebellar degeneration (PCD) and Yo antibodies overexpress human epidermal growth factor receptor 2 (HER2). HER2 overexpression is present in 15%-25% of breast cancers and is associated with poor prognosis. We retrospectively analyzed the status of HER2 in breast tumors of 27 patients with anti-Yo-associated PCD to evaluate whether HER2 overexpression in this group of patients is higher than expected. In addition, we analyzed HER2 status of 19 breast tumors from patients with paraneoplastic neurological syndromes and Ri antibodies to see whether HER2 was specifically related to anti-Yo-associated PCD. We also assessed cdr2 expression (the onconeural antigen recognized by Yo antibodies) in 21 HER2-positive breast tumors from patients without paraneoplastic neurological syndromes. HER2 was overexpressed in 26 patients (96.3%) with anti-Yo-associated PCD but only in 2 patients (10.5%) with paraneoplastic neurological syndromes associated with Ri antibodies (P< .0001). Only 5 (23.8%) of the 21 HER2-positive breast tumors showed cdr2 immunoreactivity. This study shows a very high frequency of HER2 overexpression in breast cancers in patients with anti-Yo-associated PCD but not in those from patients with Ri antibodies. Although the expression of cdr2 onconeural antigen is not high in HER2-positive breast cancers, HER2 overexpression seems to be an important requirement to develop an anti-Yo-associated PCD.

  14. Effects of simultaneous knockdown of HER2 and PTK6 on malignancy and tumor progression in human breast cancer cells.

    PubMed

    Ludyga, Natalie; Anastasov, Natasa; Rosemann, Michael; Seiler, Jana; Lohmann, Nadine; Braselmann, Herbert; Mengele, Karin; Schmitt, Manfred; Höfler, Heinz; Aubele, Michaela

    2013-04-01

    Breast cancer is the most common malignancy in women of the Western world. One prominent feature of breast cancer is the co- and overexpression of HER2 and protein tyrosine kinase 6 (PTK6). According to the current clinical cancer therapy guidelines, HER2-overexpressing tumors are routinely treated with trastuzumab, a humanized monoclonal antibody targeting HER2. Approximately, 30% of HER2-overexpressing breast tumors at least initially respond to the anti-HER2 therapy, but a subgroup of these tumors develops resistance shortly after the administration of trastuzumab. A PTK6-targeted therapy does not yet exist. Here, we show for the first time that the simultaneous knockdown in vitro, compared with the single knockdown of HER2 and PTK6, in particular in the trastuzumab-resistant JIMT-1 cells, leads to a significantly decreased phosphorylation of crucial signaling proteins: mitogen-activated protein kinase 1/3 (MAPK 1/3, ERK 1/2) and p38 MAPK, and (phosphatase and tensin homologue deleted on chromosome ten) PTEN that are involved in tumorigenesis. In addition, dual knockdown strongly reduced the migration and invasion of the JIMT-1 cells. Moreover, the downregulation of HER2 and PTK6 led to an induction of p27, and the dual knockdown significantly diminished cell proliferation in JIMT-1 and T47D cells. In vivo experiments showed significantly reduced levels of tumor growth following HER2 or PTK6 knockdown. Our results indicate a novel strategy also for the treatment of trastuzumab resistance in tumors. Thus, the inhibition of these two signaling proteins may lead to a more effective control of breast cancer. ©2013 AACR.

  15. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer

    PubMed Central

    2014-01-01

    Background While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. Methods We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630’s regulation of mRNA, proteins and their phosphorylated forms. Results We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630’s regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells reduced cellular aggression while inhibition of miR-630 induced a more aggressive cellular phenotype. Conclusions Taken together, our findings suggest miR-630 as a key regulator of cancer cell progression in HER2 over-expressing breast cancer, through targeting of IGF1R. This study supports miR-630 as a diagnostic and a predictive biomarker for response to HER-targeted drugs and indicates that the therapeutic addition of miR-630 may enhance and improve patients’ response to HER-targeting drugs. PMID:24655723

  16. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer.

    PubMed

    Corcoran, Claire; Rani, Sweta; Breslin, Susan; Gogarty, Martina; Ghobrial, Irene M; Crown, John; O'Driscoll, Lorraine

    2014-03-24

    While the treatment of HER2 over-expressing breast cancer with recent HER-targeted drugs has been highly effective for some patients, primary (also known as innate) or acquired resistance limits the success of these drugs. microRNAs have potential as diagnostic, prognostic and predictive biomarkers, as well as replacement therapies. Here we investigated the role of microRNA-630 (miR-630) in breast cancer progression and as a predictive biomarker for response to HER-targeting drugs, ultimately yielding potential as a therapeutic approach to add value to these drugs. We investigated the levels of intra- and extracellular miR-630 in cells and conditioned media from breast cancer cell lines with either innate- or acquired- resistance to HER-targeting lapatinib and neratinib, compared to their corresponding drug sensitive cell lines, using qPCR. To support the role of miR-630 in breast cancer, we examined the clinical relevance of this miRNA in breast cancer tumours versus matched peritumours. Transfection of miR-630 mimics and inhibitors was used to manipulate the expression of miR-630 to assess effects on response to HER-targeting drugs (lapatinib, neratinib and afatinib). Other phenotypic changes associated with cellular aggressiveness were evaluated by motility, invasion and anoikis assays. TargetScan prediction software, qPCR, immunoblotting and ELISAs, were used to assess miR-630's regulation of mRNA, proteins and their phosphorylated forms. We established that introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism which we have determined to, at least partly, involve miR-630's regulation of IGF1R. Conversely, we demonstrated that blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells reduced cellular aggression while inhibition of miR-630 induced a more aggressive cellular phenotype. Taken together, our findings suggest miR-630 as a key regulator of cancer cell progression in HER2 over-expressing breast cancer, through targeting of IGF1R. This study supports miR-630 as a diagnostic and a predictive biomarker for response to HER-targeted drugs and indicates that the therapeutic addition of miR-630 may enhance and improve patients' response to HER-targeting drugs.

  17. Dual-Labeled Near-Infrared/99mTc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells

    PubMed Central

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-01-01

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m (99mTc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with 99mTc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner. PMID:27399687

  18. Dual-Labeled Near-Infrared/(99m)Tc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells.

    PubMed

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-07-07

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m ((99m)Tc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with (99m)Tc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner.

  19. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence.

    PubMed

    Segovia-Mendoza, Mariana; González-González, María E; Barrera, David; Díaz, Lorenza; García-Becerra, Rocío

    2015-01-01

    An increasing number of tumors, including breast cancer, overexpress proteins of the epidermal growth factor receptor (EGFR) family. The interaction between family members activates signaling pathways that promote tumor progression and resistance to treatment. Human epidermal growth factor receptor type II (HER2) positive breast cancer represents a clinical challenge for current therapy. It has motivated the development of novel and more effective therapeutic EGFR family target drugs, such as tyrosine kinase inhibitors (TKIs). This review focuses on the effects of three TKIs mostly studied in HER2- positive breast cancer, lapatinib, gefitinib and neratinib. Herein, we discuss the mechanism of action, therapeutic advantages and clinical applications of these TKIs. To date, TKIs seem to be promising therapeutic agents for the treatment of HER2-overexpressing breast tumors, either as monotherapy or combined with other pharmacological agents.

  20. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence

    PubMed Central

    Segovia-Mendoza, Mariana; González-González, María E; Barrera, David; Díaz, Lorenza; García-Becerra, Rocío

    2015-01-01

    An increasing number of tumors, including breast cancer, overexpress proteins of the epidermal growth factor receptor (EGFR) family. The interaction between family members activates signaling pathways that promote tumor progression and resistance to treatment. Human epidermal growth factor receptor type II (HER2) positive breast cancer represents a clinical challenge for current therapy. It has motivated the development of novel and more effective therapeutic EGFR family target drugs, such as tyrosine kinase inhibitors (TKIs). This review focuses on the effects of three TKIs mostly studied in HER2- positive breast cancer, lapatinib, gefitinib and neratinib. Herein, we discuss the mechanism of action, therapeutic advantages and clinical applications of these TKIs. To date, TKIs seem to be promising therapeutic agents for the treatment of HER2-overexpressing breast tumors, either as monotherapy or combined with other pharmacological agents. PMID:26609467

  1. In vivo examination of (188)Re(I)-tricarbonyl-labeled trastuzumab to target HER2-overexpressing breast cancer.

    PubMed

    Chen, Kuo-Ting; Lee, Te-Wei; Lo, Jem-Mau

    2009-05-01

    Trastuzumab (Herceptin), a humanized IgG1 monoclonal antibody directed against the extracellular domain of the HER2 protein, acts as an immunotherapeutic agent for HER2-overexpressing human breast cancers. Radiolabeled trastuzumab with beta- or alpha emitters can be used as radioimmunotherapeutic agent for the similar purpose but with additional radiation effect. In this study, trastuzumab was labeled with (188)Re for radioimmunotherapy of HER2/neu-positive breast cancer. (188)Re(I)-tricarbonyl ion, [(188)Re(OH(2))(3)(CO)(3)](+), was employed as a precursor for directly labeling the monoclonal antibody with (188)Re. The immunoreactivity of (188)Re(I)-trastuzumab was estimated by competition receptor-binding assay using HER2/neu-overexpressive BT-474 human breast cancer cells. The localization properties of (188)Re(I)-trastuzumab within both tumor and normal tissues of athymic mice bearing BT-474 human breast cancer xenografts (HER2/neu-overexpressive) and similar mice bearing MCF-7 human breast cancer xenografts (HER2/neu-low expressive) were investigated. When incubated with human serum albumin and histidine at 25 degrees C, (188)Re(I)-trastuzumab was found to be stable within 24 h. The IC(50) of (188)Re(I)-trastuzumab was found to be 22.63+/-4.57 nM. (188)Re(I)-trastuzumab was shown to accumulate specifically in BT-474 tumor tissue in in vivo biodistribution studies. By microSPECT/CT, the image of (188)Re localized BT-474 tumor was clearly visualized within 24 h. In contrast, (188)Re(I)-trastuzumab uptake in HER2-low-expressing MCF-7 tumor was minimal, and the (188)Re image at the localization of the tumor was dim. These results reveal that (188)Re(I)-trastuzumab could be an appropriate radioimmunotherapeutic agent for the treatment of HER2/neu-overexpressing cancers.

  2. HER2 induces expression of leptin in human breast epithelial cells.

    PubMed

    Cha, Yujin; Kang, Youjin; Moon, Aree

    2012-12-01

    A close association between the obesity hormone leptin and breast cancer progression has been suggested. The present study investigated the molecular mechanism for enhanced leptin expression in breast cancer cells and its functional significance in breast cancer aggressiveness. We examined whether leptin expression level is affected by the oncoprotein human epidermal growth factor receptor2 (HER2), which is overexpressed in ∼30% of breast tumors. Here, we report, for the first time, that HER2 induces transcriptional activation of leptin in MCF10A human breast epithelial cells. We also showed that p38 mitogen-activated protein kinase signaling was involved in leptin expression induced by HER2. We showed a crucial role of leptin in the invasiveness of HER2-MCF10A cells using an siRNA molecule targeting leptin. Taken together, the results indicate a molecular link between HER2 and leptin, providing supporting evidence that leptin represents a target for breast cancer therapy. [BMB Reports 2012; 45(12): 719-723].

  3. HER2 induces expression of leptin in human breast epithelial cells

    PubMed Central

    Cha, Yujin; Kang, Youjin; Moon, Aree

    2012-01-01

    A close association between the obesity hormone leptin and breast cancer progression has been suggested. The present study investigated the molecular mechanism for enhanced leptin expression in breast cancer cells and its functional significance in breast cancer aggressiveness. We examined whether leptin expression level is affected by the oncoprotein human epidermal growth factor receptor2 (HER2), which is overexpressed in ∼30% of breast tumors. Here, we report, for the first time, that HER2 induces transcriptional activation of leptin in MCF10A human breast epithelial cells. We also showed that p38 mitogen-activated protein kinase signaling was involved in leptin expression induced by HER2. We showed a crucial role of leptin in the invasiveness of HER2-MCF10A cells using an siRNA molecule targeting leptin. Taken together, the results indicate a molecular link between HER2 and leptin, providing supporting evidence that leptin represents a target for breast cancer therapy. [BMB Reports 2012; 45(12): 719-723] PMID:23261058

  4. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells.

    PubMed

    Li, Aifen; Xing, Jieyu; Li, Li; Zhou, Changhua; Dong, Bin; He, Ping; Li, Qing; Wang, Zhong

    2016-12-01

    Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.

  5. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells.

    PubMed

    Ma, Jui-Wen; Hung, Chao-Ming; Lin, Ying-Chao; Ho, Chi-Tang; Kao, Jung-Yie; Way, Tzong-Der

    2016-09-13

    Human epidermal growth factor receptor-2 (HER-2)-positive breast cancer tends to be aggressive, highly metastatic, and drug resistant and spreads rapidly. Studies have indicated that emodin inhibits HER-2 expression. This study compared the HER-2-inhibitory effects of two compounds extracted from rhubarb roots: aloe-emodin (AE) and rhein. Our results indicated that AE exerted the most potent inhibitory effect on HER-2 expression. Treatment of HER-2-overexpressing breast cancer cells with AE reduced tumor initiation, cell migration, and cell invasion. AE was able to suppress YB-1 expression, further suppressing downstream HER-2 expression. AE suppressed YB-1 expression through the inhibition of Twist in HER-2-overexpressing breast cancer cells. Our data also found that AE inhibited cancer metastasis and cancer stem cells through the inhibition of EMT. Interestingly, AE suppressed YB-1 expression through the downregulation of the intracellular integrin-linked kinase (ILK)/protein kinase B (Akt)/mTOR signaling pathway in HER-2-overexpressing breast cancer cells. In vivo study showed the positive result of antitumor activity of AE in nude mice injected with human HER-2-overexpressing breast cancer cells. These findings suggest the possible application of AE in the treatment of HER-2-positive breast cancer.

  6. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR.

    PubMed

    Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T

    2016-08-11

    The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492(HER2)) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492(HER2) (D492(HER2/EGFR)) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492(HER2/EGFR) xenografts grow slower than the D492(HER2) tumors, while overexpression of EGFR alone (D492(EGFR)) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492(HER2) xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can behave as a tumor suppressor, by pushing the cells towards epithelial differentiation.

  7. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR

    PubMed Central

    Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T

    2016-01-01

    The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492HER2) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492HER2 (D492HER2/EGFR) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492HER2/EGFR xenografts grow slower than the D492HER2 tumors, while overexpression of EGFR alone (D492EGFR) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492HER2 xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can behave as a tumor suppressor, by pushing the cells towards epithelial differentiation. PMID:26686087

  8. In vitro evaluation of a specific radiochemical compound based on 99mTc-labeled DARPinG3 for radionuclide imaging of tumors overexpressing Her-2/neu

    NASA Astrophysics Data System (ADS)

    Bragina, O.; Larkina, M.; Stasyuk, E.; Chernov, V.; Zelchan, R.; Medvedeva, A.; Sinilkin, I.; Yusubov, M.; Skuridin, V.; Deyev, S.; Buldakov, M.

    2017-09-01

    It is still necessary to search for new informative diagnostic methods to detect malignant tumors with overexpression of Her-2/neu, which are characterized by the aggressive course of the disease, rapid rate of tumor growth and low rates of relapse-free and overall survival. In recent years, the radioisotope techniques for detection of specific tumor targets have been developing actively. Purpose: to develop a chemically stable radiochemical compound for the targeted imaging of cells overexpressing Her-2/neu. Material and methods: The study was performed using 2 cell lines. The human breast adenocarcinoma HER2-overexpressing cell line BT-474 was chosen to detect specific binding. As a control, HER2-negative human breast adenocarcinoma MCF-7 was used. The human breast adenocarcinoma BT-474 and MCF-7 cell lines were seeded in chamber-slides at the density of 35,000 cells/ml in trypsin-EDTA (PanEco) medium and grown overnight at 37°C. After that both cell lines were washed with Phosphate buffered saline (PBS) and distributed into test tubes to 1 ml (5 millions cells in each). After adding 100 µl (70 MBq) studied complex of 99mTc-DPAH- DARPinG3 was incubated for 40 min at +4°C. Washing was performed three times with buffer PBS and 5% Bovine Serum Albumin (BSA). The characteristics of the binding specificity of the test set with the HER-2/neu receptor were determined by direct radiometric and planar scintigraphy. Nonparametric Mann-Whitney test was used to assess the differences in the quantitative characteristics between groups. Results: The output of the labeled complex was more than 91%, with a radiochemical purity of more than 94%. When carrying out a visual scintigraphic assessment much greater intensity accumulation of radiotracer was observed in the studied cell culture surface receptor overexpressing Her-2/neu. The results of direct radiometric also showed higher accumulation of the radiopharmaceutical in the adenocarcinoma cell line BT-474 human breast cancer overexpressing Her-2/neu compared to the control group. Conclusion: The preclinical studies demonstrated a high in vitro stability of the study compound, as well as its accumulation in the cell group overexpressing Her-2/neu.

  9. Blockade of a key region in the extracellular domain inhibits HER2 dimerization and signaling.

    PubMed

    Menendez, Javier A; Schroeder, Barbara; Peirce, Susan K; Vellon, Luciano; Papadimitropoulou, Adriana; Espinoza, Ingrid; Lupu, Ruth

    2015-06-01

    Several treatment strategies target the human epidermal growth factor receptor 2 (HER2) in breast carcinomas, including monoclonal antibodies directed against HER2's extracellular domain (ECD) and small molecule inhibitors of its tyrosine kinase activity. Yet, novel therapies are needed that prevent HER2 dimerization with other HER family members, because current treatments are only partially effective. To test the hypothesis that HER2 activation requires a protein sequence in the HER2-ECD that mediates HER2 homo- and heterodimerization, we introduced a series of deletion mutations in the third subdomain of HER2-ECD. These deletion mutants were retrovirally expressed in breast cancer (BC) cells that naturally overexpress HER2 and in noncancerous, HER2-negative breast epithelial cells. One-factor analysis of variance or Student's t test were used to analyze differences. All statistical tests were two-sided. The smallest deletion in the ECD domain of HER2, which removed only 16 amino acids (HER2-ECDΔ451-466), completely disrupted the oncogenic potential of HER2. In contrast to wild-type HER2, the mutant-inhibited anchorage-independent growth (mean number of colonies: mutant, 70, 95% confidence interval [CI] = 55 to 85; wild-type, 400, 95% CI = 320 to 480, P < .001) increased sensitivity to paclitaxel treatment in both transformed and nontransformed cells. Overexpression of HER2Δ451-466 efficiently inhibited activation of HER1, HER2, and HER3 in all cell lines tested. These findings reveal that an essential "activating" sequence exists in the extracellular domain of HER2. Disruption of this sequence disables the HER2 dimerization loop, blocks subsequent activation of HER2-driven oncogenic signaling, and generates a dominant-negative form of HER2. Reagents specifically against this molecular activation switch may represent a novel targeted approach for the management of HER2-overexpressing carcinomas. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Emerging treatments for HER2-positive early-stage breast cancer: focus on neratinib.

    PubMed

    Kourie, Hampig Raphael; El Rassy, Elie; Clatot, Florian; de Azambuja, Evandro; Lambertini, Matteo

    2017-01-01

    Over the last decades, a better understanding of breast cancer heterogeneity provided tools for a biologically based personalization of anticancer treatments. In particular, the overexpression of the human epidermal growth factor receptor 2 (HER2) by tumor cells provided a specific target in these HER2-positive tumors. The development of the monoclonal antibody trastuzumab, and its approval in 1998 for the treatment of patients with metastatic disease, radically changed the natural history of this aggressive subtype of breast cancer. These findings provided strong support for the continuous research in targeting the HER2 pathway and implementing the development of new anti-HER2 targeted agents. Besides trastuzumab, a series of other anti-HER2 agents have been developed and are currently being explored for the treatment of breast cancer patients, including those diagnosed with early-stage disease. Among these agents, neratinib, an oral tyrosine kinase inhibitor that irreversibly inhibits HER1, HER2, and HER4 at the intracellular level, has shown promising results, including when administered to patients previously exposed to trastuzumab-based treatment. This article aims to review the available data on the role of the HER2 pathway in breast cancer and on the different targeted agents that have been studied or are currently under development for the treatment of patients with early-stage HER2-positive disease with a particular focus on neratinib.

  11. Emerging treatments for HER2-positive early-stage breast cancer: focus on neratinib

    PubMed Central

    Kourie, Hampig Raphael; El Rassy, Elie; Clatot, Florian; de Azambuja, Evandro; Lambertini, Matteo

    2017-01-01

    Over the last decades, a better understanding of breast cancer heterogeneity provided tools for a biologically based personalization of anticancer treatments. In particular, the overexpression of the human epidermal growth factor receptor 2 (HER2) by tumor cells provided a specific target in these HER2-positive tumors. The development of the monoclonal antibody trastuzumab, and its approval in 1998 for the treatment of patients with metastatic disease, radically changed the natural history of this aggressive subtype of breast cancer. These findings provided strong support for the continuous research in targeting the HER2 pathway and implementing the development of new anti-HER2 targeted agents. Besides trastuzumab, a series of other anti-HER2 agents have been developed and are currently being explored for the treatment of breast cancer patients, including those diagnosed with early-stage disease. Among these agents, neratinib, an oral tyrosine kinase inhibitor that irreversibly inhibits HER1, HER2, and HER4 at the intracellular level, has shown promising results, including when administered to patients previously exposed to trastuzumab-based treatment. This article aims to review the available data on the role of the HER2 pathway in breast cancer and on the different targeted agents that have been studied or are currently under development for the treatment of patients with early-stage HER2-positive disease with a particular focus on neratinib. PMID:28744140

  12. Calibrating the imaging and therapy performance of magneto-fluorescent gold nanoshells for breast cancer

    NASA Astrophysics Data System (ADS)

    Dowell, Adam; Chen, Wenxue; Biswal, Nrusingh; Ayala-Orozco, Ciceron; Giuliano, Mario; Schiff, Rachel; Halas, Naomi J.; Joshi, Amit

    2012-03-01

    Gold nanoshells with NIR plasmon resonance can be modified to simultaneously enhance conjugated NIR fluorescence dyes and T2 contrast of embedded iron-oxide nanoparticles, and molecularly targeted to breast and other cancers. We calibrated the theranostic performance of magneto-fluorescent nanoshells, and contrasted the performance of molecularly targeted and untargeted nanoshells for breast cancer therapy, employing MCF-7L and their HER2 overexpressing derivative MCF-7/HER2-18 breast cancer cells as in vitro model systems. Silica core gold nanoshells with plasmon resonance on ~810 nm were doped with NIR dye ICG and ~10 nm iron-oxide nanoparticles in a ~20 nm epilayer of silica. A subset of nanoshells was conjugated to antibodies targeting HER2. Cell viability with varying laser power levels in presence and absence of bare and HER2-targeted nanoshells was assessed by calcein and propidium iodide staining. For MCF-7L cells, increasing power resulted in increased cell death (F=5.63, p=0.0018), and bare nanoshells caused more cell death than HER2-targeted nanoshells or laser treatment alone (F=30.13, p<0.001). For MCF-7/HER2-18 cells, death was greater with HER2-targeted nanoshells and was independent of laser power. This study demonstrates the capability of magneto-fluorescent nanocomplexes for imaging and therapy of breast cancer cells, and the advantages of targeting receptors unique to cancer cells.

  13. A modified Trastuzumab antibody for the immunohistochemical detection of HER-2 overexpression in breast cancer

    PubMed Central

    Bussolati, G; Montemurro, F; Righi, L; Donadio, M; Aglietta, M; Sapino, A

    2005-01-01

    The immunohistochemical determination of HER-2 to identify patients with advanced breast cancer candidates for Trastuzumab treatment proved neither accurate nor fully reliable, possibly because none of the current reagents detects the specific antigenic site target of Trastuzumab. To circumvent this problem, we conjugated the NH2 groups of Trastuzumab with biotin, and the compound obtained, designated BiotHER, was added directly to tissue sections. Biotin-labelling was revealed with horseradish peroxidase-conjugated streptavidin. Specificity and sensitivity of BiotHER immunostaining with respect to HER-2 amplification were tested on 164 breast carcinoma samples. BiotHER staining was detected on the tumour cell membrane of 12% of all specimens and in 49% specimens with gene amplification, while absent in nonamplified tumours. Predictivity of BiotHER status with respect to the clinical outcome was analysed in 54 patients with HER-2 amplified advanced breast cancer treated with Trastuzumab plus chemotherapy. BiotHER staining, detected in 50% of tumours with HER-2 amplification, was an independent predictor of clinical outcome. In fact, BiotHER positivity was independently associated with increased likelihood of tumour response and reduced risk of tumour progression and death. Biotinylated Trastuzumab can thus be used for immunohistochemical detection of HER-2 overexpression in breast cancer, and has the potential to identify patients likely to benefit from Trastuzumab treatment. PMID:15812476

  14. Targeting GPR110 in HER2-Overexpressing Breast Cancers

    DTIC Science & Technology

    2015-10-01

    lentiviral plasmids containing GPR110 cDNA using the pHAGE system, which includes the HA tag, under the control of inducible Tet-on promoter. The map of... pHAGE lentiviral plasmid is shown in Figure 3A. Using this, the BT474 and SKBR3 parental cells were stably infected with the lentiviral plasmid...in HER2+ breast cancer. Figure𔃽.’GPR110/overexpression’using’pHAGE’len:viral’mediated’infec:on’of’BT474’cells.’ A.#Map#of# pHAGE # len/viral

  15. Neratinib, A Novel HER2-Targeted Tyrosine Kinase Inhibitor.

    PubMed

    Tiwari, Shruti Rakesh; Mishra, Prasun; Abraham, Jame

    2016-10-01

    HER2 gene amplification and receptor overexpression is identified in 20% to 25% of human breast cancers. Use of targeted therapy for HER2-amplified breast cancer has led to improvements in disease-free and overall survival in this subset of patients. Neratinib is an oral pan HER inhibitor, that irreversibly inhibits the tyrosine kinase activity of epidermal growth factor receptor (EGFR or HER1), HER2, and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib is currently being tested in a number of clinical trials for its safety and efficacy in lung cancer, and colorectal, bladder, and breast cancers. In this review we discuss the available phase I, II, and III data for use of neratinib in the metastatic, adjuvant, neoadjuvant, and extended adjuvant settings along with the ongoing clinical trials of neratinib in breast cancer. We also elaborate on the side effect profile of this relatively new drug and provide guidelines for its use in clinical practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Coexistence of the loss of heterozygosity at the PTEN locus and HER2 overexpression enhances the Akt activity thus leading to a negative progesterone receptor expression in breast carcinoma.

    PubMed

    Tokunaga, Eriko; Oki, Eiji; Kimura, Yasue; Yamanaka, Takeharu; Egashira, Akinori; Nishida, Kojiro; Koga, Tadashi; Morita, Masaru; Kakeji, Yoshihiro; Maehara, Yoshihiko

    2007-03-01

    Serine/threonine kinase Akt/PKB is known to regulate divergent cellular processes, including apoptosis, proliferation, differentiation, and metabolism. Akt is activated by a variety of stimuli, through such growth factor receptors as HER2, in phosphoinositide-3-OH kinase (PI3K)-dependent manner. A loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) function also activates Akt. It has recently been shown that Akt activation is associated with a worse outcome among endocrine treated breast cancer patients and that it also inhibits the progesterone receptor (PR) expression via the PI3K/Akt pathway in breast cancer cells. Therefore, the PI3K/Akt signaling pathway has recently attracted considerable attention as a new target for effective therapeutic strategies. In the present study, we investigated the relationship between Akt activation and either HER2 overexpression or PTEN gene alteration, as well as the PR expression. We analyzed the incidence of LOH at the PTEN locus in 138 breast cancer patients, using our new system for microsatellite analysis, called high-resolution fluorescent microsatellite analysis (HRFMA). We showed Akt activation to significantly correlate with HER2 overexpression or LOH at the PTEN gene locus while inversely correlating with the PR expression. In addition, when LOH at the PTEN gene locus and HER2 overexpression occurred simultaneously, the incidence of Akt activation and reduced PR expression was significant. The association between Akt activation and PR negative expression was observed even in the ER-positive cases. Our results suggest that simultaneous PTEN LOH and HER2 overexpression enhances Akt activation and may thus lead to a negative PR expression.

  17. Breast cancer risk factors and HER2 over-expression in tumors.

    PubMed

    Swede, H; Moysich, K B; Freudenheim, J L; Quirk, J T; Muti, P C; Hurd, T C; Edge, S B; Winston, J S; Michalek, A M

    2001-01-01

    Few epidemiologic studies have investigated the potential role of HER2 in the etiology of breast cancer. We conducted a case-case study of 156 women with incident, invasive ductal carcinoma. Multivariate unconditional logistic regression was used to estimate the odds ratios for a HER2 positive tumor in relation to known and putative risk factors of breast cancer. HER2 status was detected by immunohistochemistry on archival tissue. HER2 positive breast cancers tended to be larger and were less likely to express estrogen receptors, and the incidence rate was higher in patients less than 40 years old. We observed an association between a self-reported history of benign breast disease and the occurrence of HER2 positive breast cancer (OR, 2.1;95% CI, 1.1-4.1). We did not detect associations between HER2 over-expression and family history of breast cancer, parity, late age at first birth, ever having breast fed an infant, or oral contraceptive use. Our findings merit consideration in light of recent evidence of HER2 amplification or over-expression in benign breast disease. Should the link to breast cancer be established, HER2 positive benign breast disease could potentially serve as an early marker for preventive intervention.

  18. t-Darpp overexpression in HER2-positive breast cancer confers a survival advantage in lapatinib.

    PubMed

    Christenson, Jessica L; Denny, Erin C; Kane, Susan E

    2015-10-20

    Drug resistance is a major barrier to successful cancer treatment. For patients with HER2-positive breast cancer who initially respond to therapy, the majority develop resistance within one year of treatment. Patient outcomes could improve significantly if we can find and exploit common mechanisms of acquired resistance to different targeted therapies. Overexpression of t-Darpp, a truncated form of the dual kinase/phosphatase inhibitor Darpp-32, has been linked to acquired resistance to trastuzumab, a front-line therapy for HER2-positive breast cancer. Darpp-32 reverses t-Darpp's effect on trastuzumab resistance. In this study, we examined whether t-Darpp could be involved in resistance to lapatinib, another HER2-targeted therapeutic. Lapatinib-resistant SKBR3 cells (SK/LapR) showed a marked change in the Darpp-32:t-Darpp ratio toward a predominance of t-Darpp. Overexpression of t-Darpp alone was not sufficient to confer lapatinib resistance, but cells that overexpress t-Darpp partially mimicked the molecular resistance phenotype observed in SK/LapR cells exposed to lapatinib. SK/LapR cells failed to down-regulate Survivin and failed to induce BIM accumulation in response to lapatinib; cells overexpressing t-Darpp exhibited only the failed BIM accumulation. t-Darpp knock-down reversed this phenotype. Using a fluorescence-based co-culture system, we found that cells overexpressing t-Darpp formed colonies in lapatinib within 3-4 weeks, whereas parental cells in the same co-culture did not. Overall, t-Darpp appears to mediate a survival advantage in lapatinib, possibly linked to failed lapatinib-induced BIM accumulation. t-Darpp might also be relevant to acquired resistance to other cancer drugs that rely on BIM accumulation to induce apoptosis.

  19. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells.

    PubMed

    Miller, Megan Jo; Foy, Kevin C; Overholser, Jay P; Nahta, Rita; Kaumaya, Pravin Tp

    2014-11-01

    The human epidermal growth factor receptor 3 (HER-3/ErbB3) is a unique member of the human epidermal growth factor family of receptors, because it lacks intrinsic kinase activity and ability to heterodimerize with other members. HER-3 is frequently upregulated in cancers with epidermal growth factor receptor (EGFR/HER-1/ErbB1) or human epidermal growth factor receptor 2 (HER-2/ErBB2) overexpression, and targeting HER-3 may provide a route for overcoming resistance to agents that target EGFR or HER-2. We have previously developed vaccines and peptide mimics for HER-1, HER-2 and vascular endothelial growth factor (VEGF). In this study, we extend our studies by identifying and evaluating novel HER-3 peptide epitopes encompassing residues 99-122, 140-162, 237-269 and 461-479 of the HER-3 extracellular domain as putative B-cell epitopes for active immunotherapy against HER-3 positive cancers. We show that the HER-3 vaccine antibodies and HER-3 peptide mimics induced antitumor responses: inhibition of cancer cell proliferation, inhibition of receptor phosphorylation, induction of apoptosis and antibody dependent cellular cytotoxicity (ADCC). Two of the HER-3 epitopes 237-269 (domain II) and 461-479 (domain III) significantly inhibited growth of xenografts originating from both pancreatic (BxPC3) and breast (JIMT-1) cancers. Combined therapy of HER-3 (461-471) epitope with HER-2 (266-296), HER-2 (597-626), HER-1 (418-435) and insulin-like growth factor receptor type I (IGF-1R) (56-81) vaccine antibodies and peptide mimics show enhanced antitumor effects in breast and pancreatic cancer cells. This study establishes the hypothesis that combination immunotherapy targeting different signal transduction pathways can provide effective antitumor immunity and long-term control of HER-1 and HER-2 overexpressing cancers.

  20. Irreversible pan-ErbB tyrosine kinase inhibitors and breast cancer: current status and future directions.

    PubMed

    Ocaña, Alberto; Amir, Eitan

    2009-12-01

    Aberrant activation of HER2 through overexpression has been shown to play an important role in some breast cancers. Therapies against this receptor including the monoclonal antibody, trastuzumab, or the small tyrosine kinase inhibitor, lapatinib have shown to improve the prognosis of such patients. Despite overexpressing HER2, some patients do not respond to these targeted treatments or progress after a short period of time. Irreversible tyrosine kinase inhibitors have been developed to bypass several pathways that could be involved in this resistance. In vitro, these agents have been shown to be more potent and to prolong target inhibition. Clinical development of these agents is ongoing and early results are promising. This review will describe the biologic rationale that justifies the development of these agents in breast cancer focusing on the current status and future directions.

  1. HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance

    PubMed Central

    Nami, Babak; Wang, Zhixiang

    2017-01-01

    HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs) is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs). HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2), which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT) of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab. PMID:28445439

  2. HER-2 Pulsed Dendritic Cell Vaccine Can Eliminate HER-2 Expression and Impact DCIS

    PubMed Central

    Sharma, Anupama; Koldovsky, Ursula; Xu, Shuwen; Mick, Rosemarie; Roses, Robert; Fitzpatrick, Elizabeth; Weinstein, Susan; Nisenbaum, Harvey; Levine, Bruce L; Fox, Kevin; Zhang, Paul; Koski, Gary; Czerniecki, Brian J

    2011-01-01

    Background HER-2/neu over-expression plays a critical role in breast cancer development and its expression in ductal carcinoma in situ (DCIS) is associated with development of invasive breast cancer. A vaccine targeting HER-2/neu expression in DCIS may initiate immunity against invasive cancer. Methods A HER-2/neu dendritic cell (DC) vaccine was administered to 27 patients with HER-2/neu over-expressing DCIS. The HER-2/neu vaccine was administered prior to surgical resection and pre- and post-vaccination analysis was conducted to assess clinical results. Results At surgery, 5 of 27 (18.5%) vaccinated subjects had no evidence of remaining disease, while among 22 subjects with residual DCIS, HER-2/neu expression was eradicated in 11 (50%). When comparing ERneg with ERpos DCIS lesions, vaccination was more effective in hormone-independent DCIS. Following vaccination, no residual DCIS was found in 40% of ERneg subjects compared to 5.9% in ERpos subject. Sustained HER-2/neu expression was found in 10% of ERneg subjects compared to 47.1% in ERpos subjects (p=0.04). Post-vaccination phenotypes were significantly different between ERpos and ERneg subjects (p=0.01), with 7 of 16 (43.8%) initially presenting with ERpos HER-2/neupos Luminal B phenotype finishing with the ERpos HER-2/neuneg Luminal A phenotype, and 3 of 6 (50%) with the ERneg HER-2/neupos phenotype changing to the ERneg HER-2/neuneg phenotype. Conclusions Results suggest vaccination against HER-2/neu is safe, well-tolerated and induces decline and or eradication of HER-2/neu expression. These findings warrant further exploration of HER-2/neu vaccination in estrogen-independent breast cancer and highlight the need to target additional tumor associated antigens and pathways. PMID:22252842

  3. Oncogenic HER2Δ16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors

    PubMed Central

    Cittelly, Diana M.; Das, Partha M.; Salvo, Virgilio A.; Fonseca, Juan P.; Burow, Matthew E.; Jones, Frank E.

    2010-01-01

    Tamoxifen is the most commonly prescribed therapy for patients with estrogen receptor (ER)α-positive breast tumors. Tumor resistance to tamoxifen remains a serious clinical problem especially in patients with tumors that also overexpress human epidermal growth factor receptor 2 (HER2). Current preclinical models of HER2 overexpression fail to recapitulate the clinical spectrum of endocrine resistance associated with HER2/ER-positive tumors. Here, we show that ectopic expression of a clinically important oncogenic isoform of HER2, HER2Δ16, which is expressed in >30% of ER-positive breast tumors, promotes tamoxifen resistance and estrogen independence of MCF-7 xenografts. MCF-7/HER2Δ16 cells evade tamoxifen through upregulation of BCL-2, whereas mediated suppression of BCL-2 expression or treatment of MCF-7/HER2Δ16 cells with the BCL-2 family pharmacological inhibitor ABT-737 restores tamoxifen sensitivity. Tamoxifen-resistant MCF-7/HER2Δ16 cells upregulate BCL-2 protein levels in response to suppressed ERα signaling mediated by estrogen withdrawal, tamoxifen treatment or fulvestrant treatment. In addition, HER2Δ16 expression results in suppression of BCL-2-targeting microRNAs miR-15a and miR-16. Reintroduction of miR-15a/16 reduced tamoxifen-induced BCL-2 expression and sensitized MCF-7/HER2Δ16 to tamoxifen. Conversely, inhibition of miR-15a/16 in tamoxifen-sensitive cells activated BCL-2 expression and promoted tamoxifen resistance. Our results suggest that HER2Δ16 expression promotes endocrine-resistant HER2/ERα-positive breast tumors and in contrast to wild-type HER2, preclinical models of HER2Δ16 overexpression recapitulate multiple phenotypes of endocrine-resistant human breast tumors. The mechanism of HER2Δ16 therapeutic evasion, involving tamoxifen-induced upregulation of BCL-2 and suppression of miR-15a/16, provides a template for unique therapeutic interventions combining tamoxifen with modulation of microRNAs and/or ABT-737-mediated BCL-2 inhibition and apoptosis. PMID:20876285

  4. Activation of mammalian target of rapamycin (mTOR) in triple negative feline mammary carcinomas

    PubMed Central

    2013-01-01

    Background Triple negative breast cancer (TNBC) in humans is defined by the absence of oestrogen receptor (ER), progesterone receptor (PR) and HER2 overexpression. Mammalian target of rapamycin (mTOR) is overexpressed in TNBC and it represents a potential target for the treatment of this aggressive tumour. Feline mammary carcinoma (FMC) is considered to be a model for hormone-independent human breast cancer. This study investigated mTOR and p-mTOR expression in FMC in relation to triple negative (TN) phenotype. Results The expression of mTOR, p-mTOR, ERα, PR and HER2 was evaluated in 58 FMCs by immunohistochemistry and in six FMC cell lines by Western blot analysis. 53.5% of FMC analyzed were ER, PR, HER2 negative (TN-FMC) while 56.9% and 55.2% of cases expressed mTOR and p-mTOR respectively. In this study we found that m-TOR and p-mTOR were more frequently detected in TN-FMC and in HER2 negative samples. Conclusions In this study, we demonstrate that there is also a FMC subset defined as TN FMC, which is characterised by a statistically significant association with m-TOR and p-mTOR expression as demonstrated in human breast cancer. PMID:23587222

  5. SLP-2 overexpression could serve as a prognostic factor in node positive and HER2 negative breast cancer.

    PubMed

    Cao, Wenfeng; Zhang, Bin; Li, Jin; Liu, Yanxue; Liu, Zhihua; Sun, Baocun

    2011-12-01

    This study aimed to evaluate the utility as a prognostic factor of SLP-2 on the outcome of breast cancer patients. We performed immunohistochemical analysis to examine the SLP-2 expression in a large panel of invasive breast cancer samples. Of the 496 samples, 261 showed overexpression of SLP-2. Importantly, there were significant associations between SLP-2 overexpression and tumour size (p = 0.002), lymph node/distant metastases, clinical stage (p < 0.001), HER2/neu expression (p = 0.003). In addition, there were obvious differences in levels of SLP-2 expression within four molecular subtypes of breast cancer (p = 0.011). High level SLP-2 expression was shown in tumour samples of HER2 and luminal B subtypes, and low level SLP-2 expression was shown in luminal A and triple negative subtypes, suggesting that overexpression of SLP-2 was closely correlated with HER2/neu expression, and that both SLP-2 and HER2/neu can play a role in lymph node/distant metastases of breast cancers. Thus lymph node status, HER2/neu and SLP-2 high-level expression can act as independent prognostic factors. There is an obvious link between SLP-2 and HER2/neu expression. Overexpression of SLP-2 is associated with poorer total survival, especially in lymph node positive coupled with HER2/neu negative patients.

  6. Long-term remission of a Her2/neu positive primary breast cancer under double monoclonal antibody therapy with trastuzumab and bevacizumab

    PubMed Central

    Königsberg, Robert; Maierhofer, Julia; Steininger, Tanja; Kienzer, Gabriele; Dittrich, Christian

    2014-01-01

    Background The attempt to act on several signalling pathways involved in tumour development simultaneously appears to be more attractive than attacking a single target structure alone. Vascular endothelial growth factor (VEGF) over-expression is frequently observed in human epidermal growth factor receptor 2 (Her2/neu) positive patients with breast cancer and over-expression of the proto-oncogene Her2/neu is associated with an up-regulation of VEGF. Case report The case of a Her2/neu positive patient with breast cancer who refused cytotoxic chemotherapy with its potential side effects as well as mastectomy is presented. Our patient has been receiving the combined double administration of bevacizumab and trastuzumab for more than 4 years. Conclusions This case report shows that (a) the combined double administration of bevacizumab and trastuzumab was be clinically effective. (b) The combination of bevacizumab and trastuzumab is safe and non-toxic. (c) Bevacizumab and trastuzumab can be used as a long-term application. PMID:24991208

  7. Internalization and Recycling of the HER2 Receptor on Human Breast Adenocarcinoma Cells Treated with Targeted Phototoxic Protein DARPinminiSOG

    PubMed Central

    Shilova, O. N.; Proshkina, G. M.; Lebedenko, E. N.; Deyev, S. M.

    2015-01-01

    Design and evaluation of new high-affinity protein compounds that can selectively and efficiently destroy human cancer cells are a priority research area in biomedicine. In this study we report on the ability of the recombinant phototoxic protein DARPin-miniSOG to interact with breast adenacarcinoma human cells overexpressing the extracellular domain of human epidermal growth factor receptor 2 (HER2). It was found that the targeted phototoxin DARPin-miniSOG specifically binds to the HER2 with following internalization and slow recycling back to the cell membrane. An insight into the role of DARPin-miniSOG in HER2 internalization could contribute to the treatment of HER2-positive cancer using this phototoxic protein. PMID:26483969

  8. Detection of pAkt protein in imprint cytology of invasive breast cancer: Correlation with HER2/neu, hormone receptors, and other clinicopathological variables.

    PubMed

    Vasou, Olympia; Skagias, Lazaros; Anastasia, Margariti; Paulina, Athanasiadou; Patsouris, Efstratios; Politi, Ekaterini

    2015-01-01

    Akt is a serine/threonine protein kinase and has emerged as a crucial regulator of widely divergent cellular processes, including apoptosis, proliferation, differentiation, and metabolism. Activation of Akt/protein kinase B has been positively associated with human epidermal growth-factor receptor 2 (HER2)/neu overexpression in breast carcinoma and a worse outcome among endocrine treated patients. The Akt signaling pathway currently attracts considerable attention as a new target for effective therapeutic strategies. We therefore investigated the relationship between activation of Akt and clinicopathologic variables including hormone receptor and HER2/neu status. Archival tumor tissues from 100 patients with invasive breast carcinoma were analyzed by immunocytochemistry. This study describes the results of immunocytochemical pAkt expression in breast carcinoma imprints, prepared from cut surfaces of freshly removed tumors. Both nuclear and cytoplasmic expressions were evaluated for pAkt. Nuclear and cytoplasmic positive scores of 72% (72/100) and 42% (42/100), respectively, were found. Coexistence of nuclear and cytoplasmic staining was observed in 32 cases (32/100). Nuclear positive staining correlated with HER2/neu overexpression (P = 0.043) and was significantly associated with positive involvement of axillary lymph nodes (P = 0.013). No correlation was found between cytoplasmic pAkt rate and clinicopathological parameters, estrogen receptor, progesterone receptor or HER2/neu expression. pAkt expression can be evaluated in cytological material and may add valuable information to current prognostic models for breast cancer. pAkt overexpression appears to be linked with potentially aggressive tumor phenotype in invasive breast carcinoma.

  9. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group.

    PubMed

    Shak, S

    1999-08-01

    The recombinant humanized anti-HER2 monoclonal antibody trastuzumab (Herceptin; Genentech, San Francisco, CA) was evaluated in human clinical trials for treatment of women with metastatic breast cancer who have tumors that overexpress HER2. The trastuzumab clinical program consisted of a series of phase I, phase II, and phase III clinical trials. Clinical experience with this novel biologic has been obtained in more than 1,000 women with HER2-overexpressing metastatic breast cancer. Two pivotal trials were performed to evaluate trastuzumab efficacy and safety: (1) trastuzumab in combination with chemotherapy as first-line therapy and (2) trastuzumab as a single agent in second- and third-line chemotherapy. Preliminary results of the pivotal clinical trials that have been presented at national meetings are summarized below. The data suggest that trastuzumab will be an important new treatment option for women with HER2-overexpressing metastatic breast cancer.

  10. Determination of HER2 amplification status in breast cancer cells using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bi, Xiaohong; Rexer, Brent; Arteaga, Carlos L.; Guo, Mingsheng; Li, Ming; Mahadevan-Jansen, Anita

    2010-02-01

    The overexpression of HER2 (human epidermal growth factor receptor 2) in breast cancer is associated with increased disease recurrence and worse prognosis. Current diagnosis of HER2 positive breast cancer is time consuming with an estimated 20% inaccuracy. Raman spectroscopy is a proven method for pathological diagnosis based on the molecular composition of tissues. This study aimed to determine the feasibility of Raman spectroscopy to differentially identify the amplification of HER2 in cells. Three cell lines including BT474 (HER2 overexpressing breast cancer cell), MCF-10A (human breast epithelial cell), and MCF-10A with overexpressing HER2, were investigated using a bench top confocal Raman system. A diagnostic algorithm based on generalized linear model (GLM) with elastic-net penalties was established to discriminate 318 spectra collected from the cells, and to identify the spectra regions that differentiate the cell lines. The algorithm was able to differentially identify BT474 breast cancer cells with an overall sensitivity of 100% and specificity of 99%. The results demonstrate the capability of Raman spectroscopy to determine HER2 status in cells. Raman spectroscopy shows promise for application in the diagnosis of HER2 positive breast cancer in clinical practice.

  11. HER-2/neu Overexpression as a Predictor for the Transition from In situ to Invasive Breast Cancer

    PubMed Central

    Roses, Robert E.; Paulson, E. Carter; Sharma, Anupama; Schueller, Jeanne E.; Nisenbaum, Harvey; Weinstein, Susan; Fox, Kevin R.; Zhang, Paul J.; Czerniecki, Brian J.

    2009-01-01

    The clinical implications of HER-2/neu (HER2) expression in ductal carcinoma in situ (DCIS) lesions have yet to be clearly elucidated; this despite the more frequent expression of HER2 in high-grade DCIS lesions compared with invasive cancers. We hypothesized that HER2 overexpression in DCIS is associated with more rapid progression to invasive disease. Immunohistochemical staining for estrogen receptor, progesterone receptor, and HER2 was done on DCIS specimens. Univariate analysis and a multivariate logistic regression were done to determine whether estrogen receptor, progesterone receptor, or HER2 status, comedo necrosis, nuclear grade, lesion size, or patient age predicted the presence of associated invasive disease in patients with DCIS. Invasive foci were found in association with HER2 overexpressing DCIS at a higher frequency than with DCIS that did not overexpress HER2. Although high nuclear grade, large lesion size, and HER2 overexpression were all associated with the presence of invasive disease on univariate analysis, HER2 was the only significant predictor for the presence of invasive disease after multivariate adjustment (odds ratio, 6.4; P = 0.01). These data indicate that HER2 overexpression in DCIS lesions predicts the presence of invasive foci in patients with DCIS and suggest that targeting of HER2 in an early disease setting may forestall or prevent disease progression. PMID:19383888

  12. TNFα-Induced Mucin 4 Expression Elicits Trastuzumab Resistance in HER2-Positive Breast Cancer.

    PubMed

    Mercogliano, María F; De Martino, Mara; Venturutti, Leandro; Rivas, Martín A; Proietti, Cecilia J; Inurrigarro, Gloria; Frahm, Isabel; Allemand, Daniel H; Deza, Ernesto Gil; Ares, Sandra; Gercovich, Felipe G; Guzmán, Pablo; Roa, Juan C; Elizalde, Patricia V; Schillaci, Roxana

    2017-02-01

    Although trastuzumab administration improved the outcome of HER2-positive breast cancer patients, resistance events hamper its clinical benefits. We demonstrated that TNFα stimulation in vitro induces trastuzumab resistance in HER2-positive breast cancer cell lines. Here, we explored the mechanism of TNFα-induced trastuzumab resistance and the therapeutic strategies to overcome it. Trastuzumab-sensitive breast cancer cells, genetically engineered to stably overexpress TNFα, and de novo trastuzumab-resistant tumors, were used to evaluate trastuzumab response and TNFα-blocking antibodies effectiveness respectively. Immunohistochemistry and antibody-dependent cell cytotoxicity (ADCC), together with siRNA strategy, were used to explore TNFα influence on the expression and function of its downstream target, mucin 4 (MUC4). The clinical relevance of MUC4 expression was studied in a cohort of 78 HER2-positive breast cancer patients treated with adjuvant trastuzumab. TNFα overexpression turned trastuzumab-sensitive cells and tumors into resistant ones. Histopathologic findings revealed mucin foci in TNFα-producing tumors. TNFα induced upregulation of MUC4 that reduced trastuzumab binding to its epitope and impaired ADCC. Silencing MUC4 enhanced trastuzumab binding, increased ADCC, and overcame trastuzumab and trastuzumab-emtansine antiproliferative effects in TNFα-overexpressing cells. Accordingly, administration of TNFα-blocking antibodies downregulated MUC4 and sensitized de novo trastuzumab-resistant breast cancer cells and tumors to trastuzumab. In HER2-positive breast cancer samples, MUC4 expression was found to be an independent predictor of poor disease-free survival (P = 0.008). We identified TNFα-induced MUC4 expression as a novel trastuzumab resistance mechanism. We propose MUC4 expression as a predictive biomarker of trastuzumab efficacy and a guide to combination therapy of TNFα-blocking antibodies with trastuzumab. Clin Cancer Res; 23(3); 636-48. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Response evaluation after primary systemic therapy of Her2 positive breast cancer – an observational cross-sectional study.

    PubMed

    Tőkés, Tímea; Szentmártoni, Gyöngyvér; Torgyík, László; Kajáry, Kornélia; Lengyel, Zsolt; Györke, Tamás; Molnár, Béla Á; Tőkés, Anna-Mária; Kulka, Janina; Dank, Magdolna

    2015-04-01

    To evaluate (I) trastuzumab-containing primary systemic therapy (PST) in human epidermal growth factor receptor 2 (Her2) overexpressing breast carcinomas.; (II) compare the patients who achieved and those who did not achieve pathological complete remission (pCR), and (III) analyze the accuracy of different clinical-imaging modalities in tumor response monitoring. 188 patients who received PST between 2008 and 2014 were reviewed and 43 Her2 overexpressing breast cancer patients (28 Luminal B/Her2-positive and 15 Her2-positive) were enrolled. 26 patients received mostly taxane-based PST without trastuzumab (Group 1) and 17 patients received trastuzumab-containing PST (Group 2). We compared the concordance between pCR and complete remission (CR) defined by breast-ultrasound, CR defined by standard 18F-fluoro-deoxy-glucose positron emission tomography and computerized tomography (FDG-PET/CT) criteria (Method 1) and CR defined by a novel, breast cancer specific FDG-PET/CT criteria (Method 2). Sensitivity (sens), specificity (spec), and positive (PPV) and negative predictive values (NPV) were calculated. Ten patients (38.5%) in Group 1 and eight (47%) in Group 2 achieved pCR. pCR was significantly more frequent in Her2-positive than in Luminal B/Her2-positive tumors in both Group 1: (P=0.043) and Group 2: (P=0.029). PET/CT evaluated by the breast cancer specific criteria (Method 2) differentiated pCR from non-pCR more accurately in both groups (Group 1: sens=77.8%, spec=%, PPV=100%, NPV=71.4%; Group 2: sens=87.5%, spec=62.5%, PPV=70%, NPV=83.3%) than standard PET/CT criteria (Method 1) (Group 1: sens=22.2% spec=100% PPV=100% NPV=41.7%; in Group 2: sens=37.5%, spec=87.5%, PPV=75% NPV=58.3%) or breast ultrasound (Group 1, sens=83.3% spec=25% PPV=62.5% NPV=50%; Group 2, sens=100% spec=12.5% PPV=41.6% NPV=100%). The benefit of targeted treatment with trastuzumab-containing PST in Her2 overexpressing breast cancer was defined in terms of pCR rate. Luminal B/Her2-positive subtype needs further subdivision to identify patients who would benefit from PST. Combined evaluation of tumor response by our novel, breast cancer specific FDG-PET/CT criteria accurately differentiated pCR from non-pCR patients.

  14. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer.

    PubMed

    Zeng, Leyong; Pan, Yuanwei; Zou, Ruifen; Zhang, Jinchao; Tian, Ying; Teng, Zhaogang; Wang, Shouju; Ren, Wenzhi; Xiao, Xueshan; Zhang, Jichao; Zhang, Lili; Li, Aiguo; Lu, Guangming; Wu, Aiguo

    2016-10-01

    To avoid the overheating effect of excitation light and improve the efficacy of photodynamic therapy (PDT) of upconversion nanoplatform, a novel nanoprobe based on 808 nm-excited upconversion nanocomposites (T-UCNPs@Ce6@mSiO2) with low heating effect and deep penetration has been successfully constructed for targeted upconversion luminescence, magnetic resonance imaging (MRI) and high-efficacy PDT in HER2-overexpressed breast cancer. In this nanocomposite, photosensitizers (Ce6) were covalently conjugated inside of mesoporous silica to enhance the PDT efficacy by shortening the distance of fluorescence resonance energy transfer and to decrease the cytotoxicity by preventing the undesired leakage of Ce6. Compared with UCNPs@mSiO2@Ce6, UCNPs@Ce6@mSiO2 greatly promoted the singlet oxygen generation and amplified the PDT efficacy under the excitation of 808 nm laser. Importantly, the designed nanoprobe can greatly improve the uptake of HER2-positive cells and tumors by modifying the site-specific peptide, and the in vivo experiments showed excellent MRI and PDT via intravenous injection by modeling MDA-MB-435 tumor-bearing nude mice. Our strategy may provide an effective solution for overcoming the heating effect and improving the PDT efficacy of upconversion nanoprobes, and has potential application in visualized theranostics of HER2-overexpressed breast cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. BRCA1-IRIS Overexpression Promotes Formation of Aggressive Breast Cancers

    PubMed Central

    Shimizu, Yoshiko; Luk, Hugh; Horio, David; Miron, Penelope; Griswold, Michael; Iglehart, Dirk; Hernandez, Brenda; Killeen, Jeffrey; ElShamy, Wael M.

    2012-01-01

    Introduction Women with HER2+ or triple negative/basal-like (TN/BL) breast cancers succumb to their cancer rapidly due, in part to acquired Herceptin resistance and lack of TN/BL-targeted therapies. BRCA1-IRIS is a recently discovered, 1399 residue, BRCA1 locus alternative product, which while sharing 1365 residues with the full-length product of this tumor suppressor gene, BRCA1/p220, it has oncoprotein-like properties. Here, we examine whether BRCA1-IRIS is a valuable treatment target for HER2+ and/or TN/BL tumors. Methodology/Principal Findings Immunohistochemical staining of large cohort of human breast tumor samples using new monoclonal anti-BRCA1-IRIS antibody, followed by correlation of BRCA1-IRIS expression with that of AKT1, AKT2, p-AKT, survivin and BRCA1/p220, tumor status and age at diagnosis. Generation of subcutaneous tumors in SCID mice using human mammary epithelial (HME) cells overexpressing TERT/LT/BRCA1-IRIS, followed by comparing AKT, survivin, and BRCA1/p220 expression, tumor status and aggressiveness in these tumors to that in tumors developed using TERT/LT/RasV12-overexpressing HME cells. Induction of primary and invasive rat mammary tumors using the carcinogen N-methyl-N-nitrosourea (NMU), followed by analysis of rat BRCA1-IRIS and ERα mRNA levels in these tumors. High BRCA1-IRIS expression was detected in the majority of human breast tumors analyzed, which was positively correlated with that of AKT1-, AKT2-, p-AKT-, survivin, but negatively with BRCA1/p220 expression. BRCA1-IRIS-positivity induced high-grade, early onset and metastatic HER2+ or TN/BL tumors. TERT/LT/BRCA1-IRIS overexpressing HME cells formed invasive subcutaneous tumors that express high AKT1, AKT2, p-AKT and vimentin, but no CK19, p63 or BRCA1/p220. NMU-induced primary and invasive rat breast cancers expressed high levels of rat BRCA1-IRIS mRNA but low levels of rat ERα mRNA. Conclusion/Significance BRCA1-IRIS overexpression triggers aggressive breast tumor formation, especially in patients with HER2+ or TN/BL subtypes. We propose that BRCA1-IRIS inhibition may be pursued as a novel therapeutic option to treat these aggressive breast tumor subtypes. PMID:22511931

  16. New protein kinase inhibitors in breast cancer: afatinib and neratinib.

    PubMed

    Zhang, Xiaosong; Munster, Pamela N

    2014-06-01

    Human epidermal growth factor receptor (HER) 2 is overexpressed in 20 - 25% of breast cancers, and has historically been a poor prognostic marker. The introduction of trastuzumab, the first fully humanized monoclonal antibody targeting HER2, has drastically changed the outcomes of metastatic breast cancers. However, despite initial response, most patients develop resistance. Recent data suggest that strategies targeting more than one member of HER family may circumvent trastuzumab resistance and confer synergistic effects. Following a literature search on PubMed, national meetings and clinicaltrials.gov using 'afatinib', 'neratinib', 'HER2' and 'breast cancer' as keywords, we critically analyzed the different HER2-targeted therapies for their drug development and evidence-based therapeutic strategies. Afatinib and neratinib, two second-generation tyrosine kinase inhibitors (TKIs) that irreversibly inhibit more than one HER family member, are being actively investigated in clinical trials either as monotherapy or in combination. We reviewed the efficacy and optimal use of these agents in various settings, such as systemic therapy for advanced breast cancer including brain metastases, and neoadjuvant therapy in early-stage breast cancer. HER2-targeted therapies have been widely used and greatly improved the outcome of HER2-positive breast cancer. Despite the accelerated advancement in recent years, several crucial questions remain unanswered, such as how to treat a prior resistance or affect a sanctuary site, that is, CNS metastasis. The novel next-generation TKIs, afatinib and neratinib, were rationally designed to overcome the resistance by targeting multiple HER family members and irreversibly binding the targets. In spite of the encouraging results of the afatinib and neratinib monotherapies, they have not been proven more efficacious in the combination therapies yet, even though multicenter international trials are still ongoing. The key tasks in the future are to study resistance pathways, design novel strategies to more efficiently test combinations for synergistic effects and identify biomarkers and novel imaging tools to guide individualized therapies.

  17. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells.

    PubMed

    Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2015-08-01

    In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.

  18. Molecular biology of breast cancer stem cells: potential clinical applications.

    PubMed

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  19. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    PubMed Central

    Chen, Hongwei; Wang, Liya; Yu, Qiqi; Qian, Weiping; Tiwari, Diana; Yi, Hong; Wang, Andrew Y; Huang, Jing; Yang, Lily; Mao, Hui

    2013-01-01

    Antifouling magnetic iron oxide nanoparticles (IONPs) coated with block copolymer poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS) were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv) of antibody against epidermal growth factor receptor (ScFvEGFR) to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs). The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours) in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs. PMID:24124366

  20. MUC4 Abrogation of Herceptin Responsiveness in Breast Cancer

    DTIC Science & Technology

    2001-10-01

    Muc4 is a heterodimeric glycoprotein complex consisting of a peripheral mucin subunit tightly but noncovalently linked to a transmembrane subunit... Muc4 is overexpressed on a number of human breast tumors. Overexpression of Muc4 has been shown to block cell-cell and cell-matrix interactions, protect...tumor cells from immune surveillance and promote metastasis. In addition, Muc4 has been shown to act as a ligand for ErbB2/HER2, the target of the

  1. Detection of pAkt protein in imprint cytology of invasive breast cancer: Correlation with HER2/neu, hormone receptors, and other clinicopathological variables

    PubMed Central

    Vasou, Olympia; Skagias, Lazaros; Anastasia, Margariti; Paulina, Athanasiadou; Patsouris, Efstratios; Politi, Ekaterini

    2015-01-01

    Purpose: Akt is a serine/threonine protein kinase and has emerged as a crucial regulator of widely divergent cellular processes, including apoptosis, proliferation, differentiation, and metabolism. Activation of Akt/protein kinase B has been positively associated with human epidermal growth-factor receptor 2 (HER2)/neu overexpression in breast carcinoma and a worse outcome among endocrine treated patients. The Akt signaling pathway currently attracts considerable attention as a new target for effective therapeutic strategies. We therefore investigated the relationship between activation of Akt and clinicopathologic variables including hormone receptor and HER2/neu status. Methods: Archival tumor tissues from 100 patients with invasive breast carcinoma were analyzed by immunocytochemistry. This study describes the results of immunocytochemical pAkt expression in breast carcinoma imprints, prepared from cut surfaces of freshly removed tumors. Both nuclear and cytoplasmic expressions were evaluated for pAkt. Results: Nuclear and cytoplasmic positive scores of 72% (72/100) and 42% (42/100), respectively, were found. Coexistence of nuclear and cytoplasmic staining was observed in 32 cases (32/100). Nuclear positive staining correlated with HER2/neu overexpression (P = 0.043) and was significantly associated with positive involvement of axillary lymph nodes (P = 0.013). No correlation was found between cytoplasmic pAkt rate and clinicopathological parameters, estrogen receptor, progesterone receptor or HER2/neu expression. Conclusions: pAkt expression can be evaluated in cytological material and may add valuable information to current prognostic models for breast cancer. pAkt overexpression appears to be linked with potentially aggressive tumor phenotype in invasive breast carcinoma. PMID:25838835

  2. Anti-tumor effects of retinoids combined with trastuzumab or tamoxifen in breast cancer cells: induction of apoptosis by retinoid/trastuzumab combinations.

    PubMed

    Koay, Debbie C; Zerillo, Cynthia; Narayan, Murli; Harris, Lyndsay N; DiGiovanna, Michael P

    2010-01-01

    HER2 and estrogen receptor (ER) are important in breast cancer and are therapeutic targets of trastuzumab (Herceptin) and tamoxifen, respectively. Retinoids inhibit breast cancer growth, and modulate signaling by HER2 and ER. We hypothesized that treatment with retinoids and simultaneous targeting of HER2 and/or ER may have enhanced anti-tumor effects. The effects of retinoids combined with trastuzumab or tamoxifen were examined in two human breast cancer cell lines in culture, BT474 and SKBR3. Assays of proliferation, apoptosis, differentiation, cell cycle distribution, and receptor signaling were performed. In HER2-overexpressing/ER-positive BT474 cells, combining all-trans retinoic acid (atRA) with tamoxifen or trastuzumab synergistically inhibited cell growth, and altered cell differentiation and cell cycle. Only atRA/trastuzumab-containing combinations induced apoptosis. BT474 and HER2-overexpressing/ER-negative SKBR3 cells were treated with a panel of retinoids (atRA, 9-cis-retinoic acid, 13-cis-retinoic acid, or N-(4-hydroxyphenyl) retinamide (fenretinide) (4-HPR)) combined with trastuzumab. In BT474 cells, none of the single agents except 4-HPR induced apoptosis, but again combinations of each retinoid with trastuzumab did induce apoptosis. In contrast, the single retinoid agents did cause apoptosis in SKBR3 cells; this was only modestly enhanced by addition of trastuzumab. The retinoid drug combinations altered signaling by HER2 and ER. Retinoids were inactive in trastuzumab-resistant BT474 cells. Combining retinoids with trastuzumab maximally inhibits cell growth and induces apoptosis in trastuzumab-sensitive cells. Treatment with such combinations may have benefit for breast cancer patients.

  3. Silica-gold nanoshells as potential intraoperative molecular probes for HER2-overexpression in ex vivo breast tissue using near-infrared reflectance confocal microscopy.

    PubMed

    Bickford, Lissett R; Agollah, Germaine; Drezek, Rebekah; Yu, Tse-Kuan

    2010-04-01

    Obtaining negative margins is critical for breast cancer patients undergoing conservation therapy in order to reduce the reemergence of the original cancer. Currently, breast cancer tumor margins are examined in a pathology lab either while the patient is anesthetized or after the surgical procedure has been terminated. These current methods often result in cancer cells present at the surgical resection margin due to inadequate margin assessment at the point of care. Due to such limitations evident in current diagnoses, tools for increasing the accuracy and speed of tumor margin detection directly in the operating room are still needed. We are exploring the potential of using a nano-biophotonics system to facilitate intraoperative tumor margin assessment ex vivo at the cellular level. By combining bioconjugated silica-based gold nanoshells, which scatter light in the near-infrared, with a portable FDA-approved reflectance confocal microscope, we first validate the use of gold nanoshells as effective reflectance-based imaging probes by evaluating the contrast enhancement of three different HER2-overexpressing cell lines. Additionally, we demonstrate the ability to detect HER2-overexpressing cells in human tissue sections within 5 min of incubation time. This work supports the use of targeted silica-based gold nanoshells as potential real-time molecular probes for HER2-overexpression in human tissue.

  4. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer.

    PubMed

    Nahta, Rita; Yu, Dihua; Hung, Mien-Chie; Hortobagyi, Gabriel N; Esteva, Francisco J

    2006-05-01

    Trastuzumab is a monoclonal antibody targeted against the human epidermal growth factor receptor (HER) 2 tyrosine kinase receptor, which is overexpressed in approximately 25% of invasive breast cancers. The majority of patients with metastatic breast cancer who initially respond to trastuzumab, however, demonstrate disease progression within 1 year of treatment initiation. Preclinical studies have indicated several molecular mechanisms that could contribute to the development of trastuzumab resistance. Increased signaling via the phosphatidylinositol 3-kinase/Akt pathway could contribute to trastuzumab resistance because of activation of multiple receptor pathways that include HER2-related receptors or non-HER receptors such as the insulin-like growth factor 1 receptor, which appears to be involved in a cross-talk with HER2 in resistant cells. Additionally, loss of function of the tumor suppressor PTEN gene, the negative regulator of Akt, results in heightened Akt signaling that leads to decreased sensitivity to trastuzumab. Decreased interaction between trastuzumab and its target receptor HER2, which is due to steric hindrance of HER2 by cell surface proteins such as mucin-4 (MUC4), may block the inhibitory actions of trastuzumab. Novel therapies targeted against these aberrant molecular pathways offer hope that the effectiveness and duration of response to trastuzumab can be greatly improved.

  5. Overexpression of androgen receptor and forkhead-box A1 protein in apocrine breast carcinoma.

    PubMed

    Sasahara, Manami; Matsui, Akira; Ichimura, Yoshiko; Hirakata, Yuuko; Murata, Yuuya; Marui, Eiji

    2014-03-01

    Apocrine breast carcinoma often lacks estrogen receptor (ER), progesterone receptor (PgR), and human epidermal growth factor receptor type-2 (HER2) expression. Accordingly, development of a new treatment strategy is important for this type of cancer. The growth stimulus through the androgen receptor (AR) can be a candidate for targeted treatment. Therefore, we examined the factors related to AR transcription. We immunohistochemically evaluated 54 apocrine cancer lesions for ER, PgR, AR, HER2, Ki-67, forkhead-box protein A1 (FOXA1), and prostate-specific antigen (PSA) expression. ER, PgR, and HER2 were expressed at a low level, thus 44 out of 54 (81.4%) cases were of triple-negative breast cancer. AR, PSA and FOXA1 were expressed in 100% (54/54), 48% (26/54) and 93% (50/54) of cases, respectively. Most of apocrine breast carcinomas were immunohistochemically-positive for AR and FOXA1. Anti-androgenic therapies can potentially serve as a cancer-targeting therapy for apocrine breast carcinoma.

  6. Tunicamycin enhances the antitumor activity of trastuzumab on breast cancer in vitro and in vivo

    PubMed Central

    Huang, Shengshi; Zhang, Shu; Wang, Fengshan; Shi, Yikang

    2015-01-01

    Trastuzumab, a humanized monoclonal antibody targeting HER2, has demonstrated clinical benefits for women with HER2-positive breast cancer; however, trastuzumab resistance remains the biggest clinical challenge. In this study, results showed that tunicamycin, an inhibitor of N-glycosylation, synergistically enhanced the antitumor activity of trastuzumab against HER2-overexpressing breast cancer cells through induction of cell cycle arrest and apoptosis. Combined treatment of tunicamycin with trastuzumab dramatically decreased the expression of EGFR family and its down signaling pathway in SKBR3 and MCF-7/HER2 cells. Tunicamycin dose-dependently inhibited tumor growth in both of SKBR3 xenografts and MCF-7/HER2 xenografts. Optimal tunicamycin without inducing ER stress in liver tissue significantly increased the antitumor effect of trastuzumab in MCF-7/HER2 xenografts. Combinations of trastuzumab with N-glycosylation inhibitors tunicamycin may be a promising approach for improving clinical efficacy of trastuzumab. PMID:26498681

  7. Segmentation of breast cancer cells positive 1+ and 3+ immunohistochemistry

    NASA Astrophysics Data System (ADS)

    Labellapansa, Ause; Muhimmah, Izzati; Indrayanti

    2016-03-01

    Breast cancer is a disease occurs as a result of uncontrolled cells growth. One examination method of breast cancer cells is using Immunohistochemistry (IHC) to determine status of Human Epidermal Growth Factor Receptor2 (HER2) protein. This study helps anatomic pathologist to determine HER2 scores using image processing techniques to obtain HER2 overexpression positive area percentages of 1+ and 3+ scores. This is done because the score of 0 is HER2 negative cells and 2+ scores have equivocal results, which means it could not be determined whether it is necessary to give targeted therapy or not. HER2 overexpression positive area percentage is done by dividing the area with a HER2 positive tumor area. To obtain better tumor area, repair is done by eliminating lymphocytes area which is not tumor area using morphological opening. Results of 10 images IHC scores of 1+ and 3+ and 10 IHC images testing without losing lymphocytes area in tumor area, has proven that the system has been able to provide an overall correct classification in accordance with the experts analysis. However by doing operation to remove non-tumor areas, classification can be done correctly 100% for scores of 3+ and 65% for scores of 1+.

  8. Switching addictions between HER2 and FGFR2 in HER2-positive breast tumor cells: FGFR2 as a potential target for salvage after lapatinib failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azuma, Koichi; Tsurutani, Junji, E-mail: tsurutani_j@dotd.med.kindai.ac.jp; Sakai, Kazuko

    2011-04-01

    Highlights: {yields} A lapatinib-resistant breast cancer cell line, UACC812 (UACC812/LR), was found to harbor amplification of the FGFR2 gene. {yields} Inhibition of the molecule by a specific inhibitor of FGFR dramatically induced growth inhibition accompanied by cell death. {yields} Immunohistochemical analysis of patients with HER2-positive breast cancer demonstrated an association between FGFR2 expression and poor outcome for lapatinib-containing chemotherapy. -- Abstract: Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cellsmore » (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC{sub 50} of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.« less

  9. HER2-family signalling mechanisms, clinical implications and targeting in breast cancer.

    PubMed

    Elster, N; Collins, D M; Toomey, S; Crown, J; Eustace, A J; Hennessy, B T

    2015-01-01

    Approximately 20 % of human breast cancers (BC) overexpress HER2 protein, and HER2-positivity is associated with a worse prognosis. Although HER2-targeted therapies have significantly improved outcomes for HER2-positive BC patients, resistance to trastuzumab-based therapy remains a clinical problem. In order to better understand resistance to HER2-targeted therapies in HER2-positive BC, it is necessary to examine HER family signalling as a whole. An extensive literature search was carried out to critically assess the current knowledge of HER family signalling in HER2-positive BC and response to HER2-targeted therapy. Known mechanisms of trastuzumab resistance include reduced receptor-antibody binding (MUC4, p95HER2), increased signalling through alternative HER family receptor tyrosine kinases (RTK), altered intracellular signalling involving loss of PTEN, reduced p27kip1, or increased PI3K/AKT activity and altered signalling via non-HER family RTKs such as IGF1R. Emerging strategies to circumvent resistance to HER2-targeted therapies in HER2-positive BC include co-targeting HER2/PI3K, pan-HER family inhibition, and novel therapies such as T-DM1. There is evidence that immunity plays a key role in the efficacy of HER-targeted therapy, and efforts are being made to exploit the immune system in order to improve the efficacy of current anti-HER therapies. With our rapidly expanding understanding of HER2 signalling mechanisms along with the repertoire of HER family and other targeted therapies, it is likely that the near future holds further dramatic improvements to the prognosis of women with HER2-positive BC.

  10. HER2 signaling drives DNA anabolism and proliferation through SRC-3 phosphorylation and E2F1-regulated genes

    PubMed Central

    Nikolai, Bryan C.; Lanz, Rainer B.; York, Brian; Dasgupta, Subhamoy; Mitsiades, Nicholas; Creighton, Chad J.; Tsimelzon, Anna; Hilsenbeck, Susan G.; Lonard, David M.; Smith, Carolyn L.; O’Malley, Bert W.

    2016-01-01

    Approximately 20% of early-stage breast cancers display amplification or overexpression of the ErbB2/HER2 oncogene, conferring poor prognosis and resistance to endocrine therapy. Targeting HER2+ tumors with trastuzumab or the receptor tyrosine kinase (RTK) inhibitor lapatinib significantly improves survival, yet tumor resistance and progression of metastatic disease still develop over time. While the mechanisms of cytosolic HER2 signaling are well studied, nuclear signaling components and gene regulatory networks that bestow therapeutic resistance and limitless proliferative potential are incompletely understood. Here, we use biochemical and bioinformatic approaches to identify effectors and targets of HER2 transcriptional signaling in human breast cancer. Phosphorylation and activity of the Steroid Receptor Coactivator-3 (SRC-3) is reduced upon HER2 inhibition, and recruitment of SRC-3 to regulatory elements of endogenous genes is impaired. Transcripts regulated by HER2 signaling are highly enriched with E2F1 binding sites and define a gene signature associated with proliferative breast tumor subtypes, cell cycle progression, and DNA replication. We show that HER2 signaling promotes breast cancer cell proliferation through regulation of E2F1-driven DNA metabolism and replication genes together with phosphorylation and activity of the transcriptional coactivator SRC-3. Furthermore, our analyses identified a cyclin dependent kinase (CDK) signaling node that, when targeted using the CDK4/6 inhibitor Palbociclib, defines overlap and divergence of adjuvant pharmacological targeting. Importantly, lapatinib and palbociclib strictly block de novo synthesis of DNA, mostly through disruption of E2F1 and its target genes. These results have implications for rational discovery of pharmacological combinations in pre-clinical models of adjuvant treatment and therapeutic resistance. PMID:26833126

  11. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials

    PubMed Central

    Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-01-01

    Abstract HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti‐EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK–AKT pathway activation through HER2 up‐regulation. We assessed HER2‐amplification/overexpression in stage II–III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II–III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2‐amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression‐free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II–III tumours showed HER2 protein overexpression. Of the HER2‐overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II–III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2‐overexpression was associated with KRAS/BRAF wild‐type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II–III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II–III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2‐overexpressing cases experienced recurrence, but the difference was not significant. HER2‐amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II–III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2‐targeted therapy in patients with HER2‐amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26690310

  12. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials.

    PubMed

    Richman, Susan D; Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-03-01

    HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti-EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK-AKT pathway activation through HER2 up-regulation. We assessed HER2-amplification/overexpression in stage II-III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II-III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2-amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression-free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II-III tumours showed HER2 protein overexpression. Of the HER2-overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II-III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2-overexpression was associated with KRAS/BRAF wild-type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II-III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II-III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2-overexpressing cases experienced recurrence, but the difference was not significant. HER2-amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II-III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2-targeted therapy in patients with HER2-amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  13. Modeling invasive breast cancer: growth factors propel progression of HER2-positive premalignant lesions

    PubMed Central

    Pradeep, C-R; Zeisel, A; Köstler, WJ; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y

    2013-01-01

    The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients’ lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment. PMID:22139081

  14. The Ephrin-A1/EPHA2 Signaling Axis Regulates Glutamine Metabolism in HER2-Positive Breast Cancer.

    PubMed

    Youngblood, Victoria M; Kim, Laura C; Edwards, Deanna N; Hwang, Yoonha; Santapuram, Pranav R; Stirdivant, Steven M; Lu, Pengcheng; Ye, Fei; Brantley-Sieders, Dana M; Chen, Jin

    2016-04-01

    Dysregulation of receptor tyrosine kinases (RTK) contributes to cellular transformation and cancer progression by disrupting key metabolic signaling pathways. The EPHA2 RTK is overexpressed in aggressive forms of breast cancer, including the HER2(+) subtype, and correlates with poor prognosis. However, the role of EPHA2 in tumor metabolism remains unexplored. In this study, we used in vivo and in vitro models of HER2-overexpressing breast cancer to investigate the mechanisms by which EPHA2 ligand-independent signaling promotes tumorigenesis in the absence of its prototypic ligand, ephrin-A1. We demonstrate that ephrin-A1 loss leads to upregulated glutamine metabolism and lipid accumulation that enhanced tumor growth. Global metabolic profiling of ephrin-A1-null, HER2-overexpressing mammary tumors revealed a significant increase in glutaminolysis, a critical metabolic pathway that generates intermediates for lipogenesis. Pharmacologic inhibition of glutaminase activity reduced tumor growth in both ephrin-A1-depleted and EPHA2-overexpressing tumor allografts in vivo Mechanistically, we show that the enhanced proliferation and glutaminolysis in the absence of ephrin-A1 were attributed to increased RhoA-dependent glutaminase activity. EPHA2 depletion or pharmacologic inhibition of Rho, glutaminase, or fatty acid synthase abrogated the increased lipid content and proliferative effects of ephrin-A1 knockdown. Together, these findings highlight a novel, unsuspected connection between the EPHA2/ephrin-A1 signaling axis and tumor metabolism, and suggest potential new therapeutic targets in cancer subtypes exhibiting glutamine dependency. Cancer Res; 76(7); 1825-36. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. c-Myc dependent expression of pro-apoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1.

    PubMed

    Campone, Mario; Noël, Bélinda; Couriaud, Cécile; Grau, Morgan; Guillemin, Yannis; Gautier, Fabien; Gouraud, Wilfried; Charbonnel, Catherine; Campion, Loïc; Jézéquel, Pascal; Braun, Frédérique; Barré, Benjamin; Coqueret, Olivier; Barillé-Nion, Sophie; Juin, Philippe

    2011-09-07

    Anti-apoptotic signals induced downstream of HER2 are known to contribute to the resistance to current treatments of breast cancer cells that overexpress this member of the EGFR family. Whether or not some of these signals are also involved in tumor maintenance by counteracting constitutive death signals is much less understood. To address this, we investigated what role anti- and pro-apoptotic Bcl-2 family members, key regulators of cancer cell survival, might play in the viability of HER2 overexpressing breast cancer cells. We used cell lines as an in vitro model of HER2-overexpressing cells in order to evaluate how anti-apoptotic Bcl-2, Bcl-xL and Mcl-1, and pro-apoptotic Puma and Bim impact on their survival, and to investigate how the constitutive expression of these proteins is regulated. Expression of the proteins of interest was confirmed using lysates from HER2-overexpressing tumors and through analysis of publicly available RNA expression data. We show that the depletion of Mcl-1 is sufficient to induce apoptosis in HER2-overexpressing breast cancer cells. This Mcl-1 dependence is due to Bim expression and it directly results from oncogenic signaling, as depletion of the oncoprotein c-Myc, which occupies regions of the Bim promoter as evaluated in ChIP assays, decreases Bim levels and mitigates Mcl-1 dependence. Consistently, a reduction of c-Myc expression by inhibition of mTORC1 activity abrogates occupancy of the Bim promoter by c-Myc, decreases Bim expression and promotes tolerance to Mcl-1 depletion. Western blot analysis confirms that naïve HER2-overexpressing tumors constitutively express detectable levels of Mcl-1 and Bim, while expression data hint on enrichment for Mcl-1 transcripts in these tumors. This work establishes that, in HER2-overexpressing tumors, it is necessary, and maybe sufficient, to therapeutically impact on the Mcl-1/Bim balance for efficient induction of cancer cell death.

  16. Synthesis, characterization, and biological verification of anti-HER2 indocyanine green-doxorubicin-loaded polyethyleneimine-coated perfluorocarbon double nanoemulsions for targeted photochemotherapy of breast cancer cells.

    PubMed

    Lee, Yu-Hsiang; Ma, Yun-Ting

    2017-05-18

    Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females worldwide. Among various types of breast cancer, the human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer is known to be more aggressive and often resistant to medicinal treatment, leading to an insufficient prognosis and poor susceptibility to chemotherapy and/or hormonal therapy in the current clinic. These circumstances implicate that developing an improved therapeutic strategy rather than persistently changing the anticancer drugs for trying is truly needed to successfully cure this type of breast cancer. In this study, we aimed to fabricate anti-HER2 indocyanine green (ICG)-doxorubicin (DOX)-loaded polyethyleneimine-coated perfluorocarbon double nanoemulsions (HIDPPDNEs) to explore the co-administration of phototherapy and chemotherapy for HER2-overexpressing breast cancer in vitro. The HIDPPDNE was first characterized as a sphere-like nanoparticle with surface charge of -57.1 ± 5.6 mV and size of 340.6 ± 4.5 nm, whereas the DOX release rates for the nanodroplets within 48 h in 4 and 37 °C were obtained by 8.13 ± 2.46% and 19.88 ± 2.75%, respectively. We then examined the target-ability of the nanostructure and found that the adhesion efficiency of the HIDPPDNEs onto HER2+ MDA-MB-453 cells was threefold higher than the nanodroplets without anti-HER2 antibody, indicating that the HIDPPDNEs are the product with HER2 binding specificity. In comparison to freely dissolved ICG, the HIDPPDNEs conferred an enhanced thermal stability to the entrapped ICG, and were able to provide a comparable hyperthermia effect and markedly increased production of singlet oxygen under near infrared irradiation (808 nm; 6 W/cm 2 ). Based on the viability analyses, the results showed that the HIDPPDNEs were effective on cell eradication upon near infrared irradiation (808 nm; 6 W/cm 2 ), and the resulting cell mortality was even higher than that caused by using twice amount of encapsulated DOX or ICG alone. This work demonstrates that the HIDPPDNEs are able to provide improved ICG stability, binding specificity, and enhanced anticancer efficacy as compared to equal dosage of free ICG and/or DOX, showing a high potential for use in HER2 breast cancer therapy with reduced chemotoxicity.

  17. Dual HER2 blockade in the neoadjuvant and adjuvant treatment of HER2-positive breast cancer

    PubMed Central

    Advani, Pooja; Cornell, Lauren; Chumsri, Saranya; Moreno-Aspitia, Alvaro

    2015-01-01

    Human epidermal growth factor receptor 2 (HER2) is a tyrosine kinase transmembrane receptor that is overexpressed on the surface of 15%–20% of breast tumors and has been associated with poor prognosis. Consistently improved pathologic response and survival rates have been demonstrated with use of trastuzumab in combination with standard chemotherapy in both early and advanced breast cancer. However, resistance to trastuzumab may pose a major problem in the effective treatment of HER2-positive breast cancer. Dual HER2 blockade, using agents that work in a complimentary fashion to trastuzumab, has more recently been explored to evade resistance in both the preoperative (neoadjuvant) and adjuvant settings. Increased effectiveness of dual anti-HER2 agents over single blockade has been recently reported in clinical studies. Pertuzumab in combination with trastuzumab and taxane is currently approved in the metastatic and neoadjuvant treatment of HER2-positive breast cancer. Various biomarkers have also been investigated to identify subsets of patients with HER2-positive tumors who would likely respond best to these targeted therapy combinations. In this article, available trial data regarding efficacy and toxicity of treatment with combination HER2 agents in the neoadjuvant and adjuvant setting have been reviewed, and relevant correlative biomarker data from these trials have been discussed. PMID:26451122

  18. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation

    PubMed Central

    2014-01-01

    Background Heat shock protein 90 (Hsp90) is a promising therapeutic target and inhibition of Hsp90 will presumably result in suppression of multiple signaling pathways. FW-04-806, a bis-oxazolyl macrolide compound extracted from China-native Streptomyces FIM-04-806, was reported to be identical in structure to the polyketide Conglobatin. Methods We adopted the methods of chemproteomics, computational docking, immunoprecipitation, siRNA gene knock down, Quantitative Real-time PCR and xenograft models on the research of FW-04-806 antitumor mechanism, through the HER2-overexpressing breast cancer SKBR3 and HER2-underexpressing breast cancer MCF-7 cell line. Results We have verified the direct binding of FW-04-806 to the N-terminal domain of Hsp90 and found that FW-04-806 inhibits Hsp90/cell division cycle protein 37 (Cdc37) chaperone/co-chaperone interactions, but does not affect ATP-binding capability of Hsp90, thereby leading to the degradation of multiple Hsp90 client proteins via the proteasome pathway. In breast cancer cell lines, FW-04-806 inhibits cell proliferation, caused G2/M cell cycle arrest, induced apoptosis, and downregulated Hsp90 client proteins HER2, Akt, Raf-1 and their phosphorylated forms (p-HER2, p-Akt) in a dose and time-dependent manner. Importantly, FW-04-806 displays a better anti-tumor effect in HER2-overexpressed SKBR3 tumor xenograft model than in HER2-underexpressed MCF-7 model. The result is consistent with cell proliferation assay and in vitro apoptosis assay applied for SKBR-3 and MCF-7. Furthermore, FW-04-806 has a favorable toxicity profile. Conclusions As a novel Hsp90 inhibitor, FW-04-806 binds to the N-terminal of Hsp90 and inhibits Hsp90/Cdc37 interaction, resulting in the disassociation of Hsp90/Cdc37/client complexes and the degradation of Hsp90 client proteins. FW-04-806 displays promising antitumor activity against breast cancer cells both in vitro and in vivo, especially for HER2-overexpressed breast cancer cells. PMID:24927996

  19. Cyclooxygenase-2 expression in non-metastatic triple-negative breast cancer patients.

    PubMed

    Mosalpuria, Kailash; Hall, Carolyn; Krishnamurthy, Savitri; Lodhi, Ashutosh; Hallman, D Michael; Baraniuk, Mary S; Bhattacharyya, Anirban; Lucci, Anthony

    2014-09-01

    Triple-negative breast cancer (TNBC) is characterised by lack of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor (HER)2/neu gene amplification. TNBC patients typically present at a younger age, with a larger average tumor size, higher grade and higher rates of lymph node positivity compared to patients with ER/PR-positive tumors. Cyclooxygenase (COX)-2 regulates the production of prostaglandins and is overexpressed in a variety of solid tumors. In breast cancer, the overexpression of COX-2 is associated with indicators of poor prognosis, such as lymph node metastasis, poor differentiation and large tumor size. Since both TNBC status and COX-2 overexpression are known poor prognostic markers in primary breast cancer, we hypothesized that the COX-2 protein is overexpressed in the primary tumors of TNBC patients. The purpose of this study was to determine whether there exists an association between TNBC status and COX-2 protein overexpression in primary breast cancer. We prospectively evaluated COX-2 expression levels in primary tumor samples obtained from 125 patients with stage I-III breast cancer treated between February, 2005 and October, 2007. Information on clinicopathological factors was obtained from a prospective database. Baseline tumor characteristics and patient demographics were compared between TNBC and non-TNBC patients using the Chi-square and Fisher's exact tests. In total, 60.8% of the patients were classified as having ER-positive tumors, 51.2% were PR-positive, 14.4% had HER-2/neu amplification and 28.0% were classified as TNBC. COX-2 overexpression was found in 33.0% of the patients. TNBC was associated with COX-2 overexpression (P=0.009), PR expression (P=0.048) and high tumor grade (P=0.001). After adjusting for age, menopausal status, body mass index (BMI), lymph node status and neoadjuvant chemotherapy (NACT), TNBC was an independent predictor of COX-2 overexpression (P=0.01). In conclusion, the association between TNBC and COX-2 overexpression in operable breast cancer supports further investigation into COX-2-targeted therapy for patients with TNBC.

  20. Development of chitosan graft pluronic®F127 copolymer nanoparticles containing DNA aptamer for paclitaxel delivery to treat breast cancer cells

    NASA Astrophysics Data System (ADS)

    Thach Nguyen, Kim; Le, Duc Vinh; Do, Dinh Ho; Huan Le, Quang

    2016-06-01

    HER-2/ErbB2/Neu(HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves a therapeutic target for breast cancer. In this study, we aimed to isolate DNA aptamer (Ap) that specifically bind to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. We developed a novel multifunctional composite micelle with surface modification of Ap for targeted delivery of paclitaxel. This binary mixed system consisting of Ap modified pluronic®F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Polymeric micelles had a spherical shape and were self-assemblies of block copolymers of approximately 86.22 ± 1.45 nm diameter. PTX could be loaded with high encapsulation efficiency (83.28 ± 0.13%) and loading capacity (9.12 ± 0.34%). The release profile were 29%-35% in the first 12 h and 85%-93% after 12 d at pH 7.5 of receiving media. The IC50 doses by MTT assay showed the greater activity of nanoparticles loaded paclitaxel over free paclitaxel and killed cells up to 95% after 6 h. These results demonstrated unique assembly with the capacity to function as an efficient detection and delivery vehicle in the biological living system.

  1. Targeting multiple Her-2 epitopes with monoclonal antibodies results in improved antigrowth activity of a human breast cancer cell line in vitro and in vivo.

    PubMed

    Spiridon, Camelia I; Ghetie, Maria-Ana; Uhr, Jonathan; Marches, Radu; Li, Jia-Ling; Shen, Guo-Liang; Vitetta, Ellen S

    2002-06-01

    Her-2 (p185(erbB-2)) is a transmembrane tyrosine kinase receptor, which is encoded by the Her-2/neu proto-oncogene. Her-2 is overexpressed on 30% of highly malignant breast cancers. Monoclonal antibodies (MAbs) against Her-2 inhibit the growth of Her-2-overexpressing tumor cells and this occurs by a variety of mechanisms. One such MAb, Herceptin (Trastuzumab), has been approved for human use. We have generated a panel of murine anti-Her-2 MAbs against nine different epitopes on the extracellular domain of Her-2 and have evaluated the antitumor activity of three of these MAbs alone and in combination, both in vitro and in vivo. We found that MAbs (against different epitopes) make a highly effective mixture, which was more effective than the individual MAbs in treating s.c. tumor nodules of BT474 cells in SCID mice. In vitro, the MAb mixture was also more effective than the single MAbs in inducing antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, inhibiting cell growth and inducing apoptosis, and inhibiting the secretion of vascular endothelial growth factor. Taken together, these activities might explain the superior performance of the MAb mixture in vivo.

  2. The extracellular domain of Her2 in serum as a biomarker of breast cancer.

    PubMed

    Perrier, Alexandre; Gligorov, Joseph; Lefèvre, Guillaume; Boissan, Mathieu

    2018-02-28

    Breast cancer is a major health problem worldwide. In ~15% of breast cancers, the epidermal growth factor receptor HER2, a transmembrane protein, is overexpressed. This HER2 overexpression is associated with an aggressive form of the disease and a poor clinical prognosis. The extracellular domain (ECD) of HER2 is released into the blood by a proteolytic mechanism known as "ECD shedding". This proteolytic shedding leaves a constitutively active truncated receptor in the membrane that is 10-100-fold more oncogenic than the full-length receptor and promotes the growth and survival of cancer cells. Shedding of the HER2 ECD is increased during metastasis: whereas 15% of primary breast cancer patients have elevated levels of serum HER2 ECD (sHER2 ECD), the levels reach 45% in patients with metastatic disease. Thus, sHER2 ECD has been proposed as a promising biomarker for cancer recurrence and for monitoring the disease status of patients overexpressing HER2. Nevertheless, in 2016, the American Society of Clinical Oncology advises clinicians not to use soluble HER2 levels to guide their choice of adjuvant therapy for patients with HER2-positive breast cancer, because the evidence was considered not strong enough. Currently, biomarkers such as carcinoembryonic antigen and cancer antigen 15-3 are widely used to monitor metastatic breast cancer disease even if the level of evidence of clinical impact of this monitoring is poor. In this article, we review the evidence that sHER2 ECD might be used in some situations as a biomarker for breast cancer. Although this serum biomarker will not replace the direct measurement of tumor HER2 status for diagnosis of early-stage tumors; it might be especially useful in metastatic disease for prognosis, as an indicator of cancer progression and of therapy response, particularly to anti-HER2 therapies. Owing to these data, sHER2 ECD should be considered as a promising biomarker to detect cancer recurrence and metastasis.

  3. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells.

    PubMed

    Ravacci, Graziela Rosa; Brentani, Maria Mitzi; Tortelli, Tharcisio Citrângulo; Torrinhas, Raquel Suzana M M; Santos, Jéssica Reis; Logullo, Angela Flávia; Waitzberg, Dan Linetzky

    2015-01-01

    In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36), transport (FABP4), and storage (DGAT) of exogenous fatty acids (FA), as well as increased activation of "de novo" FA synthesis (FASN). We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR) was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4) in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA.

  4. Synergistic anti-tumor activity of Nimotuzumab in combination with Trastuzumab in HER2-positive breast cancer.

    PubMed

    Yang, Yun; Guo, Rui; Tian, Xiaoting; Zhang, Ziheng; Zhang, Pengfei; Li, Changzheng; Feng, Zhiwei

    2017-08-05

    Breast cancer is characterized with poor prognosis and high recurrence. HER2 is highly expressed in breast cancer and is a target for cancer therapy and prevention. Here, we investigated the anti-tumor activity of the combination of an HER2 inhibitor, trastuzumab with an EGFR-inhibitor, nimotuzumab in HER2-overexpressing breast cancer. Our data showed that a greater anti-tumor activity from the combination of trastuzumab and nimotuzumab than any alone usage of above antibody both in vitro and in vivo. Based on the combination index value, our data demonstrated that nimotuzumab synergistically enhanced trastuzumab-induced cell growth inhibition. Furthermore, we investigated the possible mechanism of this synergistic efficacy induced by trastuzumab plus nimotuzumab. Data showed that the combination was more potent in reducing the phosphorylation of HER2 and ERK1/2. We also found that the synergistic inhibition was partly attributed to the ROS generation and repression of NRF2 pathway that is known to promote cell growth. These results support the clinical development of this two-drug regimen for the treatment of HER2-amplified breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Feedback activation of STAT3 mediates trastuzumab resistance via upregulation of MUC1 and MUC4 expression

    PubMed Central

    Li, Wei; Fan, Kexing; Qian, Weizhu; Hou, Sheng; Wang, Hao; Dai, Jianxin; Wei, Huafeng; Guo, Yajun

    2014-01-01

    Although HER2-targeting antibody trastuzumab confers a substantial benefit for patients with HER2-overexpressing breast and gastric cancer, overcoming trastuzumab resistance remains a large unmet need. In this study, we revealed a STAT3-centered positive feedback loop that mediates the resistance of trastuzumab. Mechanistically, chronic exposure of trastuzumab causes the upregulation of fibronection (FN), EGF and IL-6 in parental trastuzumab-sensitive breast and gastric cells and convergently leads to STAT3 hyperactivation. Activated STAT3 enhances the expression of FN, EGF and IL-6, thus constituting a positive feedback loop which amplifies and maintains the STAT3 signal; furthermore, hyperactivated STAT3 signal promotes the expression of MUC1 and MUC4, consequently mediating trastuzumab resistance via maintenance of persistent HER2 activation and masking of trastuzumab binding to HER2 respectively. Genetic or pharmacological inhibition of STAT3 disrupted STAT3-dependent positive feedback loop and recovered the trastuzumab sensitivity partially due to increased apoptosis induction. Combined trastuzumab with STAT3 inhibition synergistically suppressed the growth of the trastuzumab-resistant tumor xenografts in vivo. Taken together, our results suggest that feedback activation of STAT3 constitutes a key node mediating trastuzumab resistance. Combinatorial targeting on both HER2 and STAT3 may enhance the efficacy of trastuzumab or other HER2-targeting agents in HER2-positive breast and gastric cancer. PMID:25327561

  6. Feedback activation of STAT3 mediates trastuzumab resistance via upregulation of MUC1 and MUC4 expression.

    PubMed

    Li, Guangchao; Zhao, Likun; Li, Wei; Fan, Kexing; Qian, Weizhu; Hou, Sheng; Wang, Hao; Dai, Jianxin; Wei, Huafeng; Guo, Yajun

    2014-09-30

    Although HER2-targeting antibody trastuzumab confers a substantial benefit for patients with HER2-overexpressing breast and gastric cancer, overcoming trastuzumab resistance remains a large unmet need. In this study, we revealed a STAT3-centered positive feedback loop that mediates the resistance of trastuzumab. Mechanistically, chronic exposure of trastuzumab causes the upregulation of fibronection (FN), EGF and IL-6 in parental trastuzumab-sensitive breast and gastric cells and convergently leads to STAT3 hyperactivation. Activated STAT3 enhances the expression of FN, EGF and IL-6, thus constituting a positive feedback loop which amplifies and maintains the STAT3 signal; furthermore, hyperactivated STAT3 signal promotes the expression of MUC1 and MUC4, consequently mediating trastuzumab resistance via maintenance of persistent HER2 activation and masking of trastuzumab binding to HER2 respectively. Genetic or pharmacological inhibition of STAT3 disrupted STAT3-dependent positive feedback loop and recovered the trastuzumab sensitivity partially due to increased apoptosis induction. Combined trastuzumab with STAT3 inhibition synergistically suppressed the growth of the trastuzumab-resistant tumor xenografts in vivo. Taken together, our results suggest that feedback activation of STAT3 constitutes a key node mediating trastuzumab resistance. Combinatorial targeting on both HER2 and STAT3 may enhance the efficacy of trastuzumab or other HER2-targeting agents in HER2-positive breast and gastric cancer.

  7. MiR-129-5p Sensitizes the Response of Her-2 Positive Breast Cancer to Trastuzumab by Reducing Rps6.

    PubMed

    Lu, Xiangdong; Ma, Jingjing; Chu, Jiahui; Shao, Qing; Zhang, Yao; Lu, Guangping; Li, Jun; Huang, Xiang; Li, Wei; Li, Yongfei; Ling, Yang; Zhao, Tao

    2017-01-01

    Trastuzumab is an important treatment used for patients with Her-2-positive breast cancer, but an increasing incidence of trastuzumab resistance has been observed clinically during the past decade. Aberrant microRNA (miR) expression levels are correlated with prognosis and response to trastuzumab in breast cancer. MiR-129-5p is downregulated in trastuzumab-resistant human breast cancer cells (JIMT-1), but its potential function and underlying mechanism remain unclear. Quantitative RT-PCR (qRT-PCR) was used to determine the expression levels of miR-129-5p and its potential target genes. The effects of miR-129-5p on cell responses to trastuzumab were analyzed by CCK-8 and flow cytometry assays in Her-2-positive breast cancer cells (SKBR-3 and JIMT-1). Bio-informatics analyses were performed to predict target genes of miR-129-5p, and luciferase assays were carried out to confirm the binding of miR-129-5p and rpS6. MiR-129-5p, which was downregulated and predicted to target rpS6 in trastuzumab-resistant breast cancer cells, enhanced the sensitivity of breast cancer cells to trastuzumab by reducing the expression of rpS6. Moreover, the overexpression of rpS6 reversed the sensitivity of cells to trastuzumab induced by miR-129-5p. MiR-129-5p sensitized Her-2-positive breast cancer to trastuzumab by downregulating rpS6. These findings provide novel insights into the common role of rpS6 and its related molecular mechanisms in mediating trastuzumab-resistance in Her-2-positive breast cancers. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. The level of HER2 expression is a predictor of antibody-HER2 trafficking behavior in cancer cells

    PubMed Central

    Ram, Sripad; Kim, Dongyoung; Ober, Raimund J; Ward, E Sally

    2014-01-01

    The receptor tyrosine kinase HER2 is known to play a central role in mitogenic signaling, motivating the development of targeted, HER2-specific therapies. However, despite the longstanding use of antibodies to target HER2, controversies remain concerning antibody/HER2 trafficking behavior in cancer cells. Understanding this behavior has direct relevance to the mechanism of action and effective design of such antibodies. In the current study, we analyzed the intracellular dynamics of trastuzumab, a marketed HER2-targeting antibody, in a panel of breast and prostate cancer cell lines that have a wide range of HER2 expression levels. Our results reveal distinct post-endocytic trafficking behavior of antibody-HER2 complexes in cells with different HER2 expression levels. In particular, HER2-overexpressing cells exhibit efficient HER2 recycling and limited reductions in HER2 levels upon antibody treatment, and consequently display a high level of antibody persistence on their plasma membrane. By contrast, in cells with low HER2 expression, trastuzumab treatment results in rapid antibody clearance from the plasma membrane combined with substantial decreases in HER2 levels and undetectable levels of recycling. A cell line with intermediate levels of HER2 expression exhibits both antibody recycling and clearance from the cell surface. Significantly, these analyses demonstrate that HER2 expression levels, rather than cell origin (breast or prostate), is a determinant of subcellular trafficking properties. Such studies have relevance to optimizing the design of antibodies to target HER2. PMID:25517306

  9. Dual blockade of HER2 in HER2-overexpressing tumor cells does not completely eliminate HER3 function.

    PubMed

    Garrett, Joan T; Sutton, Cammie R; Kuba, María Gabriela; Cook, Rebecca S; Arteaga, Carlos L

    2013-02-01

    Dual blockade of HER2 with trastuzumab and lapatinib or with pertuzumab is a superior treatment approach compared with single-agent HER2 inhibitors. However, many HER2-overexpressing breast cancers still escape from this combinatorial approach. Inhibition of HER2 and downstream phosphoinositide 3-kinase (PI3K)/AKT causes a transcriptional and posttranslational upregulation of HER3 which, in turn, counteracts the antitumor action of the HER2-directed therapies. We hypothesized that suppression of HER3 would synergize with dual blockade of HER2 in breast cancer cells sensitive and refractory to HER2 antagonists. Inhibition of HER2/HER3 in HER2(+) breast cancer cell lines was evaluated by Western blotting. We analyzed drug-induced apoptosis and two- and three-dimensional growth in vitro. Growth inhibition of PI3K was examined in vivo in xenografts treated with combinations of trastuzumab, lapatinib, and the HER3-neutralizing monoclonal antibody U3-1287. Treatment with U3-1287 blocked the upregulation of total and phosphorylated HER3 that followed treatment with lapatinib and trastuzumab and, in turn, enhanced the antitumor action of the combination against trastuzumab-sensitive and -resistant cells. Mice bearing HER2(+) xenografts treated with lapatinib, trastuzumab, and U3-1287 exhibited fewer recurrences and better survival than mice treated with lapatinib and trastuzumab. Dual blockade of HER2 with trastuzumab and lapatinib does not eliminate the compensatory upregulation of HER3. Therapeutic inhibitors of HER3 should be considered as part of multidrug combinations aimed at completely and rapidly disabling the HER2 network in HER2-overexpressing breast cancers.

  10. Two distinct mTORC2-dependent pathways converge on Rac1 to drive breast cancer metastasis.

    PubMed

    Morrison Joly, Meghan; Williams, Michelle M; Hicks, Donna J; Jones, Bayley; Sanchez, Violeta; Young, Christian D; Sarbassov, Dos D; Muller, William J; Brantley-Sieders, Dana; Cook, Rebecca S

    2017-06-30

    The importance of the mTOR complex 2 (mTORC2) signaling complex in tumor progression is becoming increasingly recognized. HER2-amplified breast cancers use Rictor/mTORC2 signaling to drive tumor formation, tumor cell survival and resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapy. Cell motility, a key step in the metastatic process, can be activated by mTORC2 in luminal and triple negative breast cancer cell lines, but its role in promoting metastases from HER2-amplified breast cancers is not yet clear. Because Rictor is an obligate cofactor of mTORC2, we genetically engineered Rictor ablation or overexpression in mouse and human HER2-amplified breast cancer models for modulation of mTORC2 activity. Signaling through mTORC2-dependent pathways was also manipulated using pharmacological inhibitors of mTOR, Akt, and Rac. Signaling was assessed by western analysis and biochemical pull-down assays specific for Rac-GTP and for active Rac guanine nucleotide exchange factors (GEFs). Metastases were assessed from spontaneous tumors and from intravenously delivered tumor cells. Motility and invasion of cells was assessed using Matrigel-coated transwell assays. We found that Rictor ablation potently impaired, while Rictor overexpression increased, metastasis in spontaneous and intravenously seeded models of HER2-overexpressing breast cancers. Additionally, migration and invasion of HER2-amplified human breast cancer cells was diminished in the absence of Rictor, or upon pharmacological mTOR kinase inhibition. Active Rac1 was required for Rictor-dependent invasion and motility, which rescued invasion/motility in Rictor depleted cells. Rictor/mTORC2-dependent dampening of the endogenous Rac1 inhibitor RhoGDI2, a factor that correlated directly with increased overall survival in HER2-amplified breast cancer patients, promoted Rac1 activity and tumor cell invasion/migration. The mTORC2 substrate Akt did not affect RhoGDI2 dampening, but partially increased Rac1 activity through the Rac-GEF Tiam1, thus partially rescuing cell invasion/motility. The mTORC2 effector protein kinase C (PKC)α did rescue Rictor-mediated RhoGDI2 downregulation, partially rescuing Rac-guanosine triphosphate (GTP) and migration/motility. These findings suggest that mTORC2 uses two coordinated pathways to activate cell invasion/motility, both of which converge on Rac1. Akt signaling activates Rac1 through the Rac-GEF Tiam1, while PKC signaling dampens expression of the endogenous Rac1 inhibitor, RhoGDI2.

  11. Her-2/neu expression in node-negative breast cancer: direct tissue quantitation by computerized image analysis and association of overexpression with increased risk of recurrent disease.

    PubMed

    Press, M F; Pike, M C; Chazin, V R; Hung, G; Udove, J A; Markowicz, M; Danyluk, J; Godolphin, W; Sliwkowski, M; Akita, R

    1993-10-15

    The HER-2/neu proto-oncogene (also known as c-erb B-2) is homologous with, but distinct from, the epidermal growth factor receptor. Amplification of this gene in node-positive breast cancers has been shown to correlate with both earlier relapse and shorter overall survival. In node-negative breast cancer patients, the subgroup for which accurate prognostic data could make a significant contribution to treatment decisions, the prognostic utility of HER-2/neu amplification and/or overexpression has been controversial. The purpose of this report is to address the issues surrounding this controversy and to evaluate the prognostic utility of overexpression in a carefully followed group of patients using appropriately characterized reagents and methods. In this report we present data from a study of HER-2/neu expression designed specifically to test whether or not overexpression is associated with an increased risk of recurrence in node-negative breast cancers. From a cohort of 704 women with node-negative breast cancer who experienced recurrent disease (relapsed cases) 105 were matched with 105 women with no recurrence (disease-free controls) after the equivalent follow-up period. Immunohistochemistry was used to assess HER-2/neu expression in archival tissue blocks from both relapsed cases and their matched disease-free controls. Importantly, a series of molecularly characterized breast cancer specimens were used to confirm that the antibody used was of sufficient sensitivity and specificity to identify those cancers overexpressing the HER-2/neu protein in this formalin-fixed, paraffin-embedded tissue cohort. In addition, a quantitative approach was developed to more accurately assess the amount of HER-2/neu protein identified by immunostaining tumor tissue. This was done using a purified HER-2/neu protein synthesized in a bacterial expression vector and protein lysates derived from a series of cell lines, engineered to express a defined range of HER-2/neu oncoprotein levels. By using cells with defined expression levels as calibration material, computerized image analysis of immunohistochemical staining could be used to determine the amount of oncoprotein product in these cell lines as well as in human breast cancer specimens. Quantitation of the amount of HER-2/neu protein product determined by computerized image analysis of immunohistochemical assays correlated very closely with quantitative analysis of a series of molecularly characterized breast cancer cell lines and breast cancer tissue specimens.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Correlation of HER-2 over-expression with clinico-pathological parameters in Tunisian breast carcinoma.

    PubMed

    Ayadi, Lobna; Khabir, Abdelmajid; Amouri, Habib; Karray, Sondes; Dammak, Abdallah; Guermazi, Mohamed; Boudawara, Tahya

    2008-10-22

    Breast carcinoma is a disease with a tremendous heterogeneity in its clinical behavior. Newer prognostic factors and predictors of response to therapy are needed. The aim of this study was to evaluate the expression of HER-2, estrogen receptor (ER) and progesterone receptors (PR) in breast carcinoma and to compare it with other prognostic parameters such as histological type and grade, tumor size, patients' age, and lymph node metastases. This is a retrospective study conducted in the department of pathology at Sfax University Hospital. Confirmed 155 Cases of breast carcinoma were reviewed in the period between January 2000 and December 2004. We used immunohistochemistry to evaluate the expression of HER-2, ER, and PR receptor and Chi-square and Fisher exact test to correlate immunohistochemical findings with prognostic parameters for breast carcinoma such as patients' age, tumor size, histological type, histological grade and lymph node status. The mean age of patients was 51.5 years, ranging from 22 to 89 years. 80 (51.6%) of the patients were below 50 years. The percentage of expression of HER-2, ER and PR was 26, 59.4, and 52.3%, respectively. HER-2 was over-expressed (3+) in 18.1% of the cases, was inversely related to ER expression (p = 0.00) and to PR expression (p = 0.048). This over-expression was also associated with a high tumor grade with marginal significance (p = 0.072). A negative correlation was noted between ER and PR expression and SBR grade (p = 0.000) and ER and age (p = 0.002). HER-2 over-expression was observed in 18.1% of Tunisian breast carcinoma affecting female patients. This group presents apparently an aggressive form of breast carcinoma with high histological grade and negative ER.

  13. In vitro and in vivo studies of the combination of IGF1R inhibitor figitumumab (CP-751,871) with HER2 inhibitors trastuzumab and neratinib.

    PubMed

    Chakraborty, Ashok K; Zerillo, Cynthia; DiGiovanna, Michael P

    2015-08-01

    The insulin-like growth factor I receptor (IGF1R) has been linked to resistance to HER2-directed therapy with trastuzumab (Herceptin). We examined the anti-tumor activity of figitumumab (CP-751,871), a human monoclonal antibody that blocks IGF1R ligand binding, alone and in combination with the therapeutic anti-HER2 antibody trastuzumab and the pan-HER family tyrosine kinase inhibitor neratinib, using in vitro and in vivo breast cancer model systems. In vitro assays of proliferation, apoptosis, and signaling, and in vivo anti-tumor experiments were conducted in HER2-overexpressing (BT474) and HER2-normal (MCF7) models. We find single-agent activity of the HER2-targeting drugs but not figitumumab in the BT474 model, while the reverse is true in the MCF7 model. However, in both models, combining figitumumab with HER2-targeting drugs shows synergistic anti-proliferative and apoptosis-inducing effects, and optimum inhibition of downstream signaling. In murine xenograft models, synergistic anti-tumor effects were observed in the HER2-normal MCF7 model for the combination of figitumumab with trastuzumab, and, in the HER2-overexpressing BT474 model, enhanced anti-tumor effects were observed for the combination of figitumumab with either trastuzumab or neratinib. Analysis of tumor extracts from the in vivo experiments showed evidence of the most optimal inhibition of downstream signaling for the drug combinations over the single-agent therapies. These results suggest promise for such combinations in treating patients with breast cancer, and that, unlike the case for single-agent therapy, the therapeutic effects of such combinations may be independent of expression levels of the individual receptors or the single-agent activity profile.

  14. Identification of Relevant Conformational Epitopes on the HER2 Oncoprotein by Using Large Fragment Phage Display (LFPD)

    PubMed Central

    Gabrielli, Federico; Salvi, Roberto; Garulli, Chiara; Kalogris, Cristina; Arima, Serena; Tardella, Luca; Monaci, Paolo; Pupa, Serenella M.; Tagliabue, Elda; Montani, Maura; Quaglino, Elena; Stramucci, Lorenzo; Curcio, Claudia

    2013-01-01

    We developed a new phage-display based approach, the Large Fragment Phage Display (LFPD), that can be used for mapping conformational epitopes on target molecules of immunological interest. LFPD uses a simplified and more effective phage-display approach in which only a limited set of larger fragments (about 100 aa in length) are expressed on the phage surface. Using the human HER2 oncoprotein as a target, we identified novel B-cell conformational epitopes. The same homologous epitopes were also detected in rat HER2 and all corresponded to the epitopes predicted by computational analysis (PEPITO software), showing that LFPD gives reproducible and accurate results. Interestingly, these newly identified HER2 epitopes seem to be crucial for an effective immune response against HER2-overexpressing breast cancers and might help discriminating between metastatic breast cancer and early breast cancer patients. Overall, the results obtained in this study demonstrated the utility of LFPD and its potential application to the detection of conformational epitopes on many other molecules of interest, as well as, the development of new and potentially more effective B-cell conformational epitopes based vaccines. PMID:23555577

  15. Label-free LC-MS analysis of HER2+ breast cancer cell line response to HER2 inhibitor treatment.

    PubMed

    Di Luca, Alessio; Henry, Michael; Meleady, Paula; O'Connor, Robert

    2015-08-04

    Human epidermal growth-factor receptor (HER)-2 is overexpressed in 25 % of breast-cancers and is associated with an aggressive form of the disease with significantly shortened disease free and overall survival. In recent years, the use of HER2-targeted therapies, monoclonal-antibodies and small molecule tyrosine-kinase inhibitors has significantly improved the clinical outcome for HER2-positive breast-cancer patients. However, only a fraction of HER2-amplified patients will respond to therapy and the use of these treatments is often limited by tumour drug insensitivity or resistance and drug toxicities. Currently there is no way to identify likely responders or rational combinations with the potential to improve HER2-focussed treatment outcome. In order to further understand the molecular mechanisms of treatment-response with HER2-inhibitors, we used a highly-optimised and reproducible quantitative label-free LC-MS strategy to characterize the proteomes of HER2-overexpressing breast-cancer cell-lines (SKBR3, BT474 and HCC1954) in response to drug-treatment with HER2-inhibitors (lapatinib, neratinib or afatinib). Following 12 ours treatment with different HER2-inhibitors in the BT474 cell-line; compared to the untreated cells, 16 proteins changed significantly in abundance following lapatinib treatment (1 μM), 21 proteins changed significantly following neratinib treatment (150 nM) and 38 proteins changed significantly following afatinib treatment (150 nM). Whereas following 24 hours treatment with neratinib (200 nM) 46 proteins changed significantly in abundance in the HCC1954 cell-line and 23 proteins in the SKBR3 cell-line compared to the untreated cells. Analysing the data we found that, proteins like trifunctional-enzyme subunit-alpha, mitochondrial; heterogeneous nuclear ribonucleoprotein-R and lamina-associated polypeptide 2, isoform alpha were up-regulated whereas heat shock cognate 71 kDa protein was down-regulated in 3 or more comparisons. This proteomic study highlights several proteins that are closely associated with early HER2-inhibitor response and will provide a valuable resource for further investigation of ways to improve efficacy of breast-cancer treatment.

  16. Targeting HER2 in the treatment of non-small cell lung cancer.

    PubMed

    Mar, Nataliya; Vredenburgh, James J; Wasser, Jeffrey S

    2015-03-01

    Oncogenic driver mutations have emerged as major treatment targets for molecular therapies in a variety of cancers. HER2 positivity has been well-studied in breast cancer, but its importance is still being explored in non-small cell lung cancer (NSCLC). Laboratory methods for assessment of HER2 positivity in NSCLC include immunohistochemistry (IHC) for protein overexpression, fluorescent in situ hybridization (FISH) for gene amplification, and next generation sequencing (NGS) for gene mutations. The prognostic and predictive significance of these tests remain to be validated, with an emerging association between HER2 gene mutations and response to HER2 targeted therapies. Despite the assay used to determine the HER2 status of lung tumors, all patients with advanced HER2 positive lung adenocarcinoma should be evaluated for treatment with targeted agents. Several clinical approaches for inclusion of these drugs into patient treatment plans exist, but there is no defined algorithm specific to NSCLC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Overexpression of a novel cell cycle regulator ecdysoneless in breast cancer: a marker of poor prognosis in HER2/neu-overexpressing breast cancer patients.

    PubMed

    Zhao, Xiangshan; Mirza, Sameer; Alshareeda, Alaa; Zhang, Ying; Gurumurthy, Channabasavaiah Basavaraju; Bele, Aditya; Kim, Jun Hyun; Mohibi, Shakur; Goswami, Monica; Lele, Subodh M; West, William; Qiu, Fang; Ellis, Ian O; Rakha, Emad A; Green, Andrew R; Band, Hamid; Band, Vimla

    2012-07-01

    Uncontrolled proliferation is one of the hallmarks of breast cancer. We have previously identified the human Ecd protein (human ortholog of Drosophila Ecdysoneless, hereafter called Ecd) as a novel promoter of mammalian cell cycle progression, a function related to its ability to remove the repressive effects of Rb-family tumor suppressors on E2F transcription factors. Given the frequent dysregulation of cell cycle regulatory components in human cancer, we used immunohistochemistry of paraffin-embedded tissues to examine Ecd expression in normal breast tissue versus tissues representing increasing breast cancer progression. Initial studies of a smaller cohort without outcomes information showed that Ecd expression was barely detectable in normal breast tissue and in hyperplasia of breast, but high levels of Ecd were detected in benign breast hyperplasia, ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDCs) of the breast. In this cohort of 104 IDC patients, Ecd expression levels showed a positive correlation with higher grade (P=0.04). Further analyses of Ecd expression using a larger, independent cohort (954) confirmed these results, with a strong positive correlation of elevated Ecd expression with higher histological grade (P=0.013), mitotic index (P=0.032), and Nottingham Prognostic Index score (P=0.014). Ecd expression was positively associated with HER2/neu (P=0.002) overexpression, a known marker of poor prognosis in breast cancer. Significantly, increased Ecd expression showed a strong positive association with shorter breast cancer specific survival (BCSS) (P=0.008) and disease-free survival (DFS) (P=0.003) in HER2/neu overexpressing patients. Taken together, our results reveal Ecd as a novel marker for breast cancer progression and show that levels of Ecd expression predict poorer survival in Her2/neu overexpressing breast cancer patients.

  18. Pattern of HER-2 Gene Amplification and Protein Expression in Benign, Borderline, and Malignant Ovarian Serous and Mucinous Neoplasms.

    PubMed

    Mohammed, Rabab A A; Makboul, Rania; Elsers, Dalia A H; Elsaba, Tarek M A M; Thalab, Abeer M A B; Shaaban, Omar M

    2017-01-01

    Amplification of HER-2 gene and overexpression of HER-2 receptor play a significant role in the progression of a number of malignancies such as breast cancer. Trastuzumab (anti-HER-2 therapeutic agent) has been used successfully in treatment of breast cancer. The aim of this study was to assess the pattern of HER-2 gene amplification and of HER-2 receptor expression in a spectrum of serous and mucinous ovarian tumors to determine whether HER-2 is altered in these neoplasms similar to that occurring in breast cancer. Formalin-fixed paraffin-embedded microarray tissue sections from 212 specimens were stained with HER-2 antibody using immunohistochemistry and with anti-HER-2 DNA probe using chromogenic in situ hybridization. Specimens consisted of 65 benign tumors (50 serous and 15 mucinous), 26 borderline (13 serous and 13 mucinous), 73 malignant tumors (53 serous carcinoma and 20 mucinous carcinoma), 18 metastatic deposits (13 serous and 5 mucinous), in addition to 30 normal tissues (16 ovarian surface and 14 normal fallopian tube). HER-2 protein-positive expression was not detected in the normal or the benign tissues. Borderline neoplasms showed positive staining, but no overexpression. HER-2 overexpression was seen only in 4 carcinoma specimens: 1/53 (1.8%) primary serous carcinomas and 3/20 (15%) primary mucinous carcinomas. HER-2 gene amplification was seen in 4 specimens: 2 primary mucinous carcinomas and 2 malignant deposits of these 2 mucinous carcinomas. In conclusion, alteration of HER-2 was not detected in ovarian serous neoplasms; however, in mucinous carcinoma, HER-2 amplification and overexpression occur.

  19. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer.

    PubMed

    Vogel, Charles L; Cobleigh, Melody A; Tripathy, Debu; Gutheil, John C; Harris, Lyndsay N; Fehrenbacher, Louis; Slamon, Dennis J; Murphy, Maureen; Novotny, William F; Burchmore, Michael; Shak, Steven; Stewart, Stanford J; Press, Michael

    2002-02-01

    To evaluate the efficacy and safety of first-line, single-agent trastuzumab in women with HER2-overexpressing metastatic breast cancer. One hundred fourteen women with HER2-overexpressing metastatic breast cancer were randomized to receive first-line treatment with trastuzumab 4 mg/kg loading dose, followed by 2 mg/kg weekly, or a higher 8 mg/kg loading dose, followed by 4 mg/kg weekly. The objective response rate was 26% (95% confidence interval [CI], 18.2% to 34.4%), with seven complete and 23 partial responses. Response rates in 111 assessable patients with 3+ and 2+ HER2 overexpression by immunohistochemistry (IHC) were 35% (95% CI, 24.4% to 44.7%) and none (95% CI, 0% to 15.5%), respectively. The clinical benefit rates in assessable patients with 3+ and 2+ HER2 overexpression were 48% and 7%, respectively. The response rates in 108 assessable patients with and without HER2 gene amplification by fluorescence in situ hybridization (FISH) analysis were 34% (95% CI, 23.9% to 45.7%) and 7% (95% CI, 0.8% to 22.8%), respectively. Seventeen (57%) of 30 patients with an objective response and 22 (51%) of 43 patients with clinical benefit had not experienced disease progression at follow-up at 12 months or later. The most common treatment-related adverse events were chills (25% of patients), asthenia (23%), fever (22%), pain (18%), and nausea (14%). Cardiac dysfunction occurred in two patients (2%); both had histories of cardiac disease and did not require additional intervention after discontinuation of trastuzumab. There was no clear evidence of a dose-response relationship for response, survival, or adverse events. Single-agent trastuzumab is active and well tolerated as first-line treatment of women with metastatic breast cancer with HER2 3+ overexpression by IHC or gene amplification by FISH.

  20. Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression.

    PubMed

    Press, M F; Hung, G; Godolphin, W; Slamon, D J

    1994-05-15

    HER-2/neu oncogene amplification and overexpression of breast cancer tissue has been correlated with poor prognosis in women with both node-positive and node-negative disease. However, several studies have not confirmed this association. Review of these studies reveals the presence of considerable methodological variability including differences in study size, follow-up time, techniques and reagents. The majority of papers with clinical follow-up information are immunohistochemical studies using archival, paraffin-embedded breast cancers, and a variety of HER-2/neu antibodies have been used in these studies. Very little information, however, is available about the ability of the antibodies to detect overexpression following tissue processing for paraffin-embedding. Therefore, a series of antibodies, reported in the literature or commercially available, were evaluated to assess their sensitivity and specificity as immunohistochemical reagents. Paraffin-embedded samples of 187 breast cancers, previously characterized as frozen specimens for HER-2/neu amplification by Southern blot and for overexpression by Northern blot, Western blot, and immunohistochemistry, were used. Two multitumor paraffin-embedded tissue blocks were prepared from the previously analyzed breast cancers as a panel of cases to test a series of previously studied and/or commercially available anti-HER-2/neu antibodies. Immunohistochemical staining results obtained with 7 polyclonal and 21 monoclonal antibodies in sections from paraffin-embedded blocks of these breast cancers were compared. The ability of these antibodies to detect overexpression was extremely variable, providing an important explantation for the variable overexpression rate reported in the literature.

  1. Docosahexaenoic Acid Modulates a HER2-Associated Lipogenic Phenotype, Induces Apoptosis, and Increases Trastuzumab Action in HER2-Overexpressing Breast Carcinoma Cells

    PubMed Central

    Ravacci, Graziela Rosa; Brentani, Maria Mitzi; Tortelli, Tharcisio Citrângulo; Torrinhas, Raquel Suzana M. M.; Santos, Jéssica Reis; Logullo, Angela Flávia; Waitzberg, Dan Linetzky

    2015-01-01

    In breast cancer, lipid metabolic alterations have been recognized as potential oncogenic stimuli that may promote malignancy. To investigate whether the oncogenic nature of lipogenesis closely depends on the overexpression of HER2 protooncogene, the normal breast cell line, HB4a, was transfected with HER2 cDNA to obtain HER2-overexpressing HB4aC5.2 cells. Both cell lines were treated with trastuzumab and docosahexaenoic acid. HER2 overexpression was accompanied by an increase in the expression of lipogenic genes involved in uptake (CD36), transport (FABP4), and storage (DGAT) of exogenous fatty acids (FA), as well as increased activation of “de novo” FA synthesis (FASN). We further investigate whether this lipogenesis reprogramming might be regulated by mTOR/PPARγ pathway. Inhibition of the mTORC1 pathway markers, p70S6 K1, SREBP1, and LIPIN1, as well as an increase in DEPTOR expression (the main inhibitor of the mTOR) was detected in HB4aC5.2. Based on these results, a PPARγ selective antagonist, GW9662, was used to treat both cells lines, and the lipogenic genes remained overexpressed in the HB4aC5.2 but not HB4a cells. DHA treatment inhibited all lipogenic genes (except for FABP4) in both cell lines yet only induced death in the HB4aC5.2 cells, mainly when associated with trastuzumab. Neither trastuzumab nor GW9662 alone was able to induce cell death. In conclusion, oncogenic transformation of breast cells by HER2 overexpression may require a reprogramming of lipogenic genetic that is independent of mTORC1 pathway and PPARγ activity. This reprogramming was inhibited by DHA. PMID:26640797

  2. Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer

    PubMed Central

    Hergueta-Redondo, Marta; Sarrio, David; Molina-Crespo, Ángela; Vicario, Rocío; Bernadó-Morales, Cristina; Martínez, Lidia; Rojo-Sebastián, Alejandro; Serra-Musach, Jordi; Mota, Alba; Martínez-Ramírez, Ángel; Castilla, Maria Ángeles; González-Martin, Antonio; Pernas, Sonia; Cano, Amparo; Cortes, Javier; Nuciforo, Paolo G.; Peg, Vicente; Palacios, José; Pujana, Miguel Ángel; Arribas, Joaquín; Moreno-Bueno, Gema

    2016-01-01

    Around, 30–40% of HER2-positive breast cancers do not show substantial clinical benefit from the targeted therapy and, thus, the mechanisms underlying resistance remain partially unknown. Interestingly, ERBB2 is frequently co-amplified and co-expressed with neighbour genes that may play a relevant role in this cancer subtype. Here, using an in silico analysis of data from 2,096 breast tumours, we reveal a significant correlation between Gasdermin B (GSDMB) gene (located 175 kilo bases distal from ERBB2) expression and the pathological and clinical parameters of poor prognosis in HER2-positive breast cancer. Next, the analysis of three independent cohorts (totalizing 286 tumours) showed that approximately 65% of the HER2-positive cases have GSDMB gene amplification and protein over-expression. Moreover, GSDMB expression was also linked to poor therapeutic responses in terms of lower relapse free survival and pathologic complete response as well as positive lymph node status and the development of distant metastasis under neoadjuvant and adjuvant treatment settings, respectively. Importantly, GSDMB expression promotes survival to trastuzumab in different HER2-positive breast carcinoma cells, and is associated with trastuzumab resistance phenotype in vivo in Patient Derived Xenografts. In summary, our data identifies the ERBB2 co-amplified and co-expressed gene GSDMB as a critical determinant of poor prognosis and therapeutic response in HER2-positive breast cancer. PMID:27462779

  3. Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer.

    PubMed

    Hergueta-Redondo, Marta; Sarrio, David; Molina-Crespo, Ángela; Vicario, Rocío; Bernadó-Morales, Cristina; Martínez, Lidia; Rojo-Sebastián, Alejandro; Serra-Musach, Jordi; Mota, Alba; Martínez-Ramírez, Ángel; Castilla, Mª Ángeles; González-Martin, Antonio; Pernas, Sonia; Cano, Amparo; Cortes, Javier; Nuciforo, Paolo G; Peg, Vicente; Palacios, José; Pujana, Miguel Ángel; Arribas, Joaquín; Moreno-Bueno, Gema

    2016-08-30

    Around, 30-40% of HER2-positive breast cancers do not show substantial clinical benefit from the targeted therapy and, thus, the mechanisms underlying resistance remain partially unknown. Interestingly, ERBB2 is frequently co-amplified and co-expressed with neighbour genes that may play a relevant role in this cancer subtype. Here, using an in silico analysis of data from 2,096 breast tumours, we reveal a significant correlation between Gasdermin B (GSDMB) gene (located 175 kilo bases distal from ERBB2) expression and the pathological and clinical parameters of poor prognosis in HER2-positive breast cancer. Next, the analysis of three independent cohorts (totalizing 286 tumours) showed that approximately 65% of the HER2-positive cases have GSDMB gene amplification and protein over-expression. Moreover, GSDMB expression was also linked to poor therapeutic responses in terms of lower relapse free survival and pathologic complete response as well as positive lymph node status and the development of distant metastasis under neoadjuvant and adjuvant treatment settings, respectively. Importantly, GSDMB expression promotes survival to trastuzumab in different HER2-positive breast carcinoma cells, and is associated with trastuzumab resistance phenotype in vivo in Patient Derived Xenografts. In summary, our data identifies the ERBB2 co-amplified and co-expressed gene GSDMB as a critical determinant of poor prognosis and therapeutic response in HER2-positive breast cancer.

  4. PTK6 inhibition promotes apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by inducing Bim.

    PubMed

    Park, Sun Hee; Ito, Koichi; Olcott, William; Katsyv, Igor; Halstead-Nussloch, Gwyneth; Irie, Hanna Y

    2015-06-19

    Protein tyrosine kinase 6 (PTK6) is a non-receptor tyrosine kinase that is highly expressed in Human Epidermal Growth Factor 2(+) (Her2(+)) breast cancers. Overexpression of PTK6 enhances anchorage-independent survival, proliferation, and migration of breast cancer cells. We hypothesized that PTK6 inhibition is an effective strategy to inhibit growth and survival of Her2(+) breast cancer cells, including those that are relatively resistant to Lapatinib, a targeted therapy for Her2(+) breast cancer, either intrinsically or acquired after continuous drug exposure. To determine the effects of PTK6 inhibition on Lapatinib-resistant Her2(+) breast cancer cell lines (UACC893R1 and MDA-MB-453), we used short hairpin ribonucleic acid (shRNA) vectors to downregulate PTK6 expression. We determined the effects of PTK6 downregulation on growth and survival in vitro and in vivo, as well as the mechanisms responsible for these effects. Lapatinib treatment of "sensitive" Her2(+) cells induces apoptotic cell death and enhances transcript and protein levels of Bim, a pro-apoptotic Bcl2 family member. In contrast, treatment of relatively "resistant" Her2(+) cells fails to induce Bim or enhance levels of cleaved, poly-ADP ribose polymerase (PARP). Downregulation of PTK6 expression in these "resistant" cells enhances Bim expression, resulting in apoptotic cell death. PTK6 downregulation impairs growth of these cells in in vitro 3-D Matrigel(TM) cultures, and also inhibits growth of Her2(+) primary tumor xenografts. Bim expression is critical for apoptosis induced by PTK6 downregulation, as co-expression of Bim shRNA rescued these cells from PTK6 shRNA-induced death. The regulation of Bim by PTK6 is not via changes in Erk/MAPK or Akt signaling, two pathways known to regulate Bim expression. Rather, PTK6 downregulation activates p38, and pharmacological inhibition of p38 activity prevents PTK6 shRNA-induced Bim expression and partially rescues cells from apoptosis. PTK6 downregulation induces apoptosis of Lapatinib-resistant Her2(+) breast cancer cells by enhancing Bim expression via p38 activation. As Bim expression is a critical biomarker for response to many targeted therapies, PTK6 inhibition may offer a therapeutic approach to treating patients with Her2 targeted therapy-resistant breast cancers.

  5. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells

    PubMed Central

    Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.

    2014-01-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  6. Novel agents that downregulate EGFR, HER2, and HER3 in parallel

    PubMed Central

    Ferreira, Renan Barroso; Law, Mary Elizabeth; Jahn, Stephan Christopher; Davis, Bradley John; Heldermon, Coy Don; Reinhard, Mary; Castellano, Ronald Keith; Law, Brian Keith

    2015-01-01

    EGFR, HER2, and HER3 contribute to the initiation and progression of human cancers, and are therapeutic targets for monoclonal antibodies and tyrosine kinase inhibitors. An important source of resistance to these agents arises from functional redundancy among EGFR, HER2, and HER3. EGFR family members contain conserved extracellular structures that are stabilized by disulfide bonds. Compounds that disrupt extracellular disulfide bonds could inactivate EGFR, HER2, and HER3 in unison. Here we describe the identification of compounds that kill breast cancer cells that overexpress EGFR or HER2. Cell death parallels downregulation of EGFR, HER2, and HER3. These compounds disrupt disulfide bonds and are termed Disulfide Bond Disrupting Agents (DDAs). DDA RBF3 exhibits anticancer efficacy in vivo at 40 mg/kg without evidence of toxicity. DDAs may complement existing EGFR-, HER2-, and HER3-targeted agents that function through alternate mechanisms of action, and combination regimens with these existing drugs may overcome therapeutic resistance. PMID:25865227

  7. In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe

    NASA Astrophysics Data System (ADS)

    Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong

    2018-02-01

    Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.

  8. Neratinib for the treatment of breast cancer.

    PubMed

    Prové, Annemie; Dirix, Luc

    2016-10-03

    Neratinib is an orally available, pan-HER inhibitor with clinical activity in patients with HER2-amplified and HER2-mutated breast cancer. Areas Covered. A summary of publically available and relevant clinical data on neratinib. Expert Opinion. Neratinib (N) is clearly distinct from lapatinib (L), a difference based on its broad anti-HER effect, its covalent target binding and its toxicity profile. The main toxicity of neratinib is gastro-intestinal and is essentially limited to diarrhea. Although not directly compared with single agent lapatinib, skin toxicity is much less pronounced with N. The direct clinical comparison of N-capecitabine versus L-capecitabine is the subject of the ongoing NALA-trial. In patients with advanced disease, neratinib has clinically relevant activity in patients with trastuzumab(T)-pretreated and unpretreated disease. In patients having completed one year of adjuvant trastuzumab, an additional year of neratinib further reduces the risk of recurrence of invasive disease. The activity of neratinib in HER2-mutated advanced disease is subject of ongoing clinical trials but preclinical and early clinical results are promising. Neratinib is a usefull drug and a valuable addition to the different anti-HER2-drugs avalaible for patients with HER2-overexpressing and HER2-mutated breast cancer.

  9. Therapeutic options for HER-2 positive breast cancer: Perspectives and future directions

    PubMed Central

    Recondo, Gonzalo Jr; Dìaz Canton, Enrique; de la Vega, Màximo; Greco, Martin; Recondo, Gonzalo Sr; Valsecchi, Matias E

    2014-01-01

    During the last 15 years we have witnessed an unprecedented expansion in the drugs developed to target human epidermal growth factor receptor-2 (HER-2) positive breast cancer. Trastuzumab, pertuzumab, ado-trastuzumab emtansine and lapatinib are currently food and drug administration (FDA)-approved for the treatment of breast cancer patients with HER-2 over-expressed. However, given the amount of information gathered from years of uninterrupted clinical research, it is essential to have periodic updates that succinctly recapitulate what we have learnt over these last years and help us to apply that information in our daily practice. This review will pursue that objective. We will summarize the most relevant and updated information related to the state of the art management of HER-2 positive breast cancer in all the clinical scenarios including the adjuvant, neoadjuvant and metastatic settings. But we will also critically appraise that literature in order to highlight some key clinical concepts that should not be overlooked. Lastly, this review will also point out some of the most promising strategies that are currently being tested and may soon become available. PMID:25114858

  10. Establishment of H2Mab-119, an Anti-Human Epidermal Growth Factor Receptor 2 Monoclonal Antibody, Against Pancreatic Cancer.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Chang, Yao-Wen; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2017-12-01

    Human epidermal growth factor receptor 2 (HER2) is overexpressed in breast cancer and is associated with poor clinical outcomes. In addition, HER2 expression has been reported in other cancers, such as gastric, colorectal, lung, and pancreatic cancers. An anti-HER2 humanized antibody, trastuzumab, leads to significant survival benefits in patients with HER2-overexpressing breast cancers and gastric cancers. Herein, we established a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-119 (IgG 1 , kappa), and characterized its efficacy against pancreatic cancers using flow cytometry, Western blot, and immunohistochemical analyses. H 2 Mab-119 reacted with pancreatic cancer cell lines, such as KLM-1, Capan-2, and MIA PaCa-2, but did not react with PANC-1 in flow cytometry analysis. Western blot analysis also revealed a moderate signal for KLM-1 and a weak signal for MIA PaCa-2, although H 2 Mab-119 reacted strongly with LN229/HER2 cells. Finally, immunohistochemical analyses with H 2 Mab-119 revealed sensitive and specific reactions against breast and colon cancers but did not react with pancreatic cancers, indicating that H 2 Mab-119 is useful for detecting HER2 overexpression in pancreatic cancers using flow cytometry and Western blot analyses.

  11. Precision of Multiple Reaction Monitoring Mass Spectrometry Analysis of Formalin-Fixed, Paraffin-Embedded Tissue

    PubMed Central

    2012-01-01

    We compared the reproducibility of multiple reaction monitoring (MRM) mass spectrometry-based peptide quantitation in tryptic digests from formalin-fixed, paraffin-embedded (FFPE) and frozen clear cell renal cell carcinoma tissues. The analyses targeted a candidate set of 114 peptides previously identified in shotgun proteomic analyses, of which 104 were detectable in FFPE and frozen tissue. Although signal intensities for MRM of peptides from FFPE tissue were on average 66% of those in frozen tissue, median coefficients of variation (CV) for measurements in FFPE and frozen tissues were nearly identical (18–20%). Measurements of lysine C-terminal peptides and arginine C-terminal peptides from FFPE tissue were similarly reproducible (19.5% and 18.3% median CV, respectively). We further evaluated the precision of MRM-based quantitation by analysis of peptides from the Her2 receptor in FFPE and frozen tissues from a Her2 overexpressing mouse xenograft model of breast cancer and in human FFPE breast cancer specimens. We obtained equivalent MRM measurements of HER2 receptor levels in FFPE and frozen mouse xenografts derived from HER2-overexpressing BT474 cells and HER2-negative Sum159 cells. MRM analyses of 5 HER2-positive and 5 HER-negative human FFPE breast tumors confirmed the results of immunohistochemical analyses, thus demonstrating the feasibility of HER2 protein quantification in FFPE tissue specimens. The data demonstrate that MRM analyses can be performed with equal precision on FFPE and frozen tissues and that lysine-containing peptides can be selected for quantitative comparisons, despite the greater impact of formalin fixation on lysine residues. The data further illustrate the feasibility of applying MRM to quantify clinically important tissue biomarkers in FFPE specimens. PMID:22530795

  12. Grb2-SH3 ligand inhibits the growth of HER2+ cancer cells and has antitumor effects in human cancer xenografts alone and in combination with docetaxel.

    PubMed

    Gril, Brunilde; Vidal, Michel; Assayag, Franck; Poupon, Marie-France; Liu, Wang-Qing; Garbay, Christiane

    2007-07-15

    HER2 represents an important signaling pathway in breast and other cancers. Herceptin has demonstrated clinical activity, but resistance is common. Thus, new therapeutic approaches to the HER2 pathway are needed. Grb2 is an adaptor protein involved in Ras-dependent signaling induced by HER2 receptors. A specific Grb2-SH3 ligand, designed and synthesized in our laboratory, called peptidimer-c, inhibited colony formation in HER2 overexpressing SKBr3 cancer cells. Combined treatment of peptidimer-c with docetaxel further inhibited both colony formation and tumor cell survival compared to docetaxel treatment alone. Efficacy of this combined treatment was correlated with a reduction in the phosphorylation of MAPK and AKT. Finally, peptidimer-c reduced the growth of a HER2(+) human breast cancer (BK111) xenograft in nude mice and potentiated the antitumor effect of docetaxel in a HER2+ hormone-independent human prostate adenocarcinoma (PAC120 HID28) xenograft. These results validate Grb2 as a new target for the HER2 pathway. (c) 2007 Wiley-Liss, Inc.

  13. Grb2-SH3 ligand inhibits the growth of HER2+ cancer cells and has antitumor effects in human cancer xenografts alone and in combination with docetaxel

    PubMed Central

    Gril, Brunilde; Vidal, Michel; Assayag, Franck; Poupon, Marie-France; Liu, Wang-Qing; Garbay, Christiane

    2007-01-01

    HER2 represents an important signaling pathway in breast and other cancers. Herceptin has demonstrated clinical activity, but resistance is common. Thus, new therapeutic approaches to the HER2 pathway are needed. Grb2 is an adaptor protein involved in Ras-dependent signaling induced by HER2 receptors. A specific Grb2-SH3 ligand, designed and synthesized in our laboratory, called peptidimer-c, inhibited colony formation in HER2 over-expressing SKBr3 cancer cells. Combined treatment of peptidimer-c with docetaxel further inhibited both colony formation and tumor cell survival compared to docetaxel treatment alone. Efficacy of this combined treatment was correlated with a reduction in the phosphorylation of MAPK and AKT. Finally, peptidimer-c reduced the growth of a HER2+ human breast cancer (BK111) xenograft in nude mice and potentiated the anti-tumor effect of docetaxel in a HER2+ hormone-independent human prostate adenocarcinoma (PAC120 HID28) xenograft. These results validate Grb2 as a new target for the HER2 pathway. PMID:17372910

  14. 3D culture of Her2+ breast cancer cells promotes AKT to MAPK switching and a loss of therapeutic response.

    PubMed

    Gangadhara, Sharath; Smith, Chris; Barrett-Lee, Peter; Hiscox, Stephen

    2016-06-01

    The Her2 receptor is overexpressed in up to 25 % of breast cancers and is associated with a poor prognosis. Around half of Her2+ breast cancers also express the estrogen receptor and treatment for such tumours can involve both endocrine and Her2-targeted therapies. However, despite preclinical data supporting the effectiveness of these agents, responses can vary widely in the clinical setting. In light of the increasing evidence pointing to the interplay between the tumour and its extracellular microenvironment as a significant determinant of therapeutic sensitivity and response here we investigated the impact of 3D matrix culture of breast cancer cells on their therapeutic sensitivity. A 3D Matrigel-based culture system was established and optimized for the growth of ER+/Her2+ breast cancer cell models. Growth of cells in response to trastuzumab and endocrine agents in 3D culture versus routine monolayer culture were assessed using cell counting and Ki67 staining. Endogenous and trastuzumab-modulated signalling pathway activity in 2D and 3D cultures were assessed using Western blotting. Breast cancer cells in 3D culture displayed an attenuated response to both endocrine agents and trastuzumab compared with cells cultured in traditional 2D monolayers. Underlying this phenomenon was an apparent matrix-induced shift from AKT to MAPK signalling; consequently, suppression of MAPK in 3D cultures restores therapeutic response. These data suggest that breast cancer cells in 3D culture display a reduced sensitivity to therapeutic agents which may be mediated by internal MAPK-mediated signalling. Targeting of adaptive pathways that maintain growth in 3D culture may represent an effective strategy to improve therapeutic response clinically.

  15. The HER2 Signaling Network in Breast Cancer--Like a Spider in its Web.

    PubMed

    Dittrich, A; Gautrey, H; Browell, D; Tyson-Capper, A

    2014-12-01

    The human epidermal growth factor receptor 2 (HER2) is a major player in the survival and proliferation of tumour cells and is overexpressed in up to 30 % of breast cancer cases. A considerable amount of work has been undertaken to unravel the activity and function of HER2 to try and develop effective therapies that impede its action in HER2 positive breast tumours. Research has focused on exploring the HER2 activated phosphoinositide-3-kinase (PI3K)/AKT and rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathways for therapies. Despite the advances, cases of drug resistance and recurrence of disease still remain a challenge to overcome. An important aspect for drug resistance is the complexity of the HER2 signaling network. This includes the crosstalk between HER2 and hormone receptors; its function as a transcription factor; the regulation of HER2 by protein-tyrosine phosphatases and a complex network of positive and negative feedback-loops. This review summarises the current knowledge of many different HER2 interactions to illustrate the complexity of the HER2 network from the transcription of HER2 to the effect of its downstream targets. Exploring the novel avenues of the HER2 signaling could yield a better understanding of treatment resistance and give rise to developing new and more effective therapies.

  16. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate.

    PubMed

    Oraki Kohshour, Mojtaba; Mirzaie, Sako; Zeinali, Majid; Amin, Mansour; Said Hakhamaneshi, Mohammad; Jalili, Ali; Mosaveri, Nader; Jamalan, Mostafa

    2014-03-01

    Trastuzumab (Herceptin(®) ) is a monoclonal antibody (mAb) for specific ablation of HER2-overexpressing malignant breast cancer cells. Intensification of antiproliferative activity of trastuzumab through construction of immunotoxins and nano-immunoconjugates is a promising approach for treatment of cancer. In this study, trastuzumab was directly conjugated to diphtheria toxin (DT). Also, conjugates of trastuzumab and multiwalled carbon nanotubes (MWCNT) were constructed by covalent immobilization of trastuzumab onto MWCNTs. Then, antiproliferative activity of the fusion constructs against HER2-overexpressing SK-BR-3 and also HER2-negative MCF-7 cancer cell lines were examined. Cells treated with trastuzumab-MWCNT conjugates were irradiated with near-infrared (NIR) light. Efficient absorption of NIR radiation and its conversion to heat by MWCNTs can be resulted to thermal ablation of cancerous cells. Our results strongly showed that both trastuzumab-MWCNT and trastuzumab-DT conjugates were significantly efficient in the specific killing of SK-BR-3 cells. Targeting of MWCNTs to cancerous cells using trastuzumab followed by exposure of cells to NIR radiation was more efficient in repression of cell proliferation than treatment for cancer cells with trastuzumab-DT. Our results also showed that conjugation linkers can significantly affect the cytotoxicity of MWCNT-immunoconjugates. In conclusion, our data demonstrated that trastuzumab-MWCNT is a promising nano-immunoconjugate for killing of HER2-overexpressing cancerous cells. © 2013 John Wiley & Sons A/S.

  17. Correlation of HER-2 over-expression with clinico-pathological parameters in Tunisian breast carcinoma

    PubMed Central

    Ayadi, Lobna; Khabir, Abdelmajid; Amouri, Habib; Karray, Sondes; Dammak, Abdallah; Guermazi, Mohamed; Boudawara, Tahya

    2008-01-01

    Background Breast carcinoma is a disease with a tremendous heterogeneity in its clinical behavior. Newer prognostic factors and predictors of response to therapy are needed. The aim of this study was to evaluate the expression of HER-2, estrogen receptor (ER) and progesterone receptors (PR) in breast carcinoma and to compare it with other prognostic parameters such as histological type and grade, tumor size, patients' age, and lymph node metastases. Patients and methods This is a retrospective study conducted in the department of pathology at Sfax University Hospital. Confirmed 155 Cases of breast carcinoma were reviewed in the period between January 2000 and December 2004. We used immunohistochemistry to evaluate the expression of HER-2, ER, and PR receptor and Chi-square and Fisher exact test to correlate immunohistochemical findings with prognostic parameters for breast carcinoma such as patients' age, tumor size, histological type, histological grade and lymph node status. Results The mean age of patients was 51.5 years, ranging from 22 to 89 years. 80 (51.6%) of the patients were below 50 years. The percentage of expression of HER-2, ER and PR was 26, 59.4, and 52.3%, respectively. HER-2 was over-expressed (3+) in 18.1% of the cases, was inversely related to ER expression (p = 0.00) and to PR expression (p = 0.048). This over-expression was also associated with a high tumor grade with marginal significance (p = 0.072). A negative correlation was noted between ER and PR expression and SBR grade (p = 0.000) and ER and age (p = 0.002). Conclusion HER-2 over-expression was observed in 18.1% of Tunisian breast carcinoma affecting female patients. This group presents apparently an aggressive form of breast carcinoma with high histological grade and negative ER. PMID:18945339

  18. Characterization of the paclitaxel loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer targeting HER-2 overexpressing breast cancer cells

    NASA Astrophysics Data System (ADS)

    Thach Nguyen, Kim; Nguyen, Thu Ha; Do, Dinh Ho; Huan Le, Quang

    2017-03-01

    In this work we report the isolation of DNA aptamer that is specifically bound to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. Paclitaxel (PTX) loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer was synthesized and its structure was confirmed by TEM image. This binary mixed system consisting of DNA aptamer modified Pluronic F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Morphology images confirmed the existence of PTX micelles, with an average size of approximately 86.22 ± 1.45 nm diameters. Drug release profile showed that the PTX conjugate maintained a sustained PTX release. From in vitro cell experiment it was shown that 89%-93%, 50%-58%, 55%-62%, 24%-28% and 2%-7% of the SK-BR-3, NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31, respectively, were dead after 6-48 h. These results demonstrated a novel DNA aptamer-micelle assembly for efficient detection and a system for the delivery of PTX targeting specific HER-2 overexpressing. We have also successfully cultivated cancer tissues of explants from Vietnamese patients on a type I collagen substrate. The NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31cell lines were used as cellular model sources for the study of chemotherapy drug in cancer.

  19. Brk/PTK6 cooperates with HER2 and Src in regulating breast cancer cell survival and epithelial-to-mesenchymal transition

    PubMed Central

    Ai, Midan; Liang, Ke; Lu, Yang; Qiu, Songbo; Fan, Zhen

    2013-01-01

    Breast tumor kinase (Brk)/protein tyrosine kinase-6 (PTK-6) is a nonreceptor PTK commonly expressed at high levels in breast cancer. Brk interacts closely with members of the human epidermal growth factor receptor (HER) family in breast cancer but the functional role of this interaction remains to be determined. Here, we provide novel mechanistic insights into the role of Brk in regulating cell survival and epithelial-to-mesenchymal transition (EMT) in the context of HER2-positive breast cancer cells. Overexpression of HER2 in MCF7 breast cancer cells (MCF7HER2) led to a higher level of Brk protein and concomitantly reduced Src Y416-phosphorylation, and the cells became mesenchymal in morphology. An in vivo selection of MCF7HER2 cells in nude mice resulted in a subline, termed EMT1, that exhibited not only mesenchymal morphology but also enhanced migration potential. Compared with MCF7HER2 cells, EMT1 cells maintained a similar level of HER2 protein but had much higher level of activated HER2, and the increase in Brk protein and the decrease in Src Y416-phosphorylation were less in EMT1 cells. EMT1 cells exhibited increased sensitivity to both pharmacological inhibition of HER2 and knockdown of Brk than did MCF7HER2 cells. Knockdown of Brk induced apoptosis and partially reversed the EMT phenotype in EMT1 cells. Overexpression of a constitutively active STAT3, a known substrate of Brk, overcame Brk knockdown-induced effects in EMT1 cells. Together, our findings support a new paradigm wherein Brk plays both a complementary and a counterbalancing role in cooperating with HER2 and Src to regulate breast cancer cell survival and EMT. PMID:23291984

  20. Essential medicines for breast cancer in low and middle income countries.

    PubMed

    Bazargani, Y T; de Boer, A; Schellens, J H M; Leufkens, H G M; Mantel-Teeuwisse, Aukje K

    2015-08-18

    Breast cancer is the most common type of cancer among women worldwide. In low and middle-income countries (LMICs), appropriate selection of medicines on national essential medicines lists (NEMLs) is a first step towards adequate access to treatment. We studied selection of systemic treatments for breast cancer on NEMLs and assessed its alignment with treatment guidelines for different types of early and advanced breast cancer. Furthermore, influence of country characteristics on the selection was investigated. NEMLs from 75 LMICs were studied for inclusion of all components of therapy in each stage of breast cancer according to international consensus guidelines. The results were then grouped by income level, WHO region and the NEMLs' release date. Non parametric tests were used for statistical analysis. Unlike HER2-targeted therapies (<10%), aromatase inhibitors (12%) and taxanes (28%); tamoxifen and first generation chemotherapeutic regimens (e.g., anthracycline-based regimens) were frequently found in the NEMLs (71-78%). Consequently, all components of treatment for "Luminal A" early breast cancer and non HER2 overexpressed advanced breast cancer were found on the NEMLs of over 70% of countries. However, 40% of the low income countries did not have all the components of therapy for any type of early breast cancer in their NEMLs, and adequate treatment of HER2 overexpressed breast cancer was hardly possible with the current selections. Recent NEMLs were more aligned with the guidelines (p < 0.05). Eastern Mediterranean and African regions less frequently incorporated all components of breast cancer treatment in their NEMLs. Alignment of selection with guidelines' recommendations was inconsistent for different types of early and advanced breast cancer in NEMLs. Regular updates and more attention to clinical guidelines is therefore recommended.

  1. Cyclophosphamide or Denileukin Diftitox Followed By Expanding a Patient's Own T Cells in the Laboratory in Treating Patients With HER-2/Neu Overexpressing Metastatic Breast Cancer, Ovarian Cancer, or Non-Small Cell Lung Cancer Previously Treated With HER-2/Neu Vaccine

    ClinicalTrials.gov

    2014-11-07

    HER2-positive Breast Cancer; Recurrent Breast Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Stage IV Breast Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Ovarian Germ Cell Tumor

  2. Phosphatidylcholine-specific phospholipase C inhibition reduces HER2-overexpression, cell proliferation and in vivo tumor growth in a highly tumorigenic ovarian cancer model

    PubMed Central

    Spadaro, Francesca; Abalsamo, Laura; Pisanu, Maria Elena; Ricci, Alessandro; Cecchetti, Serena; Altabella, Luisa; Buoncervello, Maria; Lozneanu, Ludmila; Bagnoli, Marina; Ramoni, Carlo; Canevari, Silvana; Mezzanzanica, Delia

    2017-01-01

    Antagonizing the oncogenic effects of human epidermal growth factor receptor 2 (HER2) with current anti-HER2 agents has not yet yielded major progress in the treatment of advanced HER2-positive epithelial ovarian cancer (EOC). Using preclinical models to explore alternative molecular mechanisms affecting HER2 overexpression and oncogenicity may lead to new strategies for EOC patient treatment. We previously reported that phosphatidylcholine-specific phospholipase C (PC-PLC) exerts a pivotal role in regulating HER2 overexpression in breast cancer cells. The present study, conducted on two human HER2-overexpressing EOC cell lines - SKOV3 and its in vivo-passaged SKOV3.ip cell variant characterized by enhanced in vivo tumorigenicity - and on SKOV3.ip xenografts implanted in SCID mice, showed: a) about 2-fold higher PC-PLC and HER2 protein expression levels in SKOV3.ip compared to SKOV3 cells; b) physical association of PC-PLC with HER2 in non-raft domains; c) HER2 internalization and ca. 50% reduction of HER2 mRNA and protein expression levels in SKOV3.ip cells exposed to the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609); d) differential effects of D609 and trastuzumab on HER2 protein expression and cell proliferation; e) decreased in vivo tumor growth in SKOV3.ip xenografts during in vivo treatment with D609; f) potential use of in vivo magnetic resonance spectroscopy (MRS) and imaging (MRI) parameters as biomarkers of EOC response to PC-PLC inhibition. Overall, these findings support the view that PC-PLC inhibition may represent an effective means to target the tumorigenic effects of HER2 overexpression in EOC and that in vivo MR approaches can efficiently monitor its effects. PMID:28903399

  3. Identification of breast cancer cell subtypes sensitive to ATG4B inhibition.

    PubMed

    Bortnik, Svetlana; Choutka, Courtney; Horlings, Hugo M; Leung, Samuel; Baker, Jennifer H; Lebovitz, Chandra; Dragowska, Wieslawa H; Go, Nancy E; Bally, Marcel B; Minchinton, Andrew I; Gelmon, Karen A; Gorski, Sharon M

    2016-10-11

    Autophagy, a lysosome-mediated degradation and recycling process, functions in advanced malignancies to promote cancer cell survival and contribute to cancer progression and drug resistance. While various autophagy inhibition strategies are under investigation for cancer treatment, corresponding patient selection criteria for these autophagy inhibitors need to be developed. Due to its central roles in the autophagy process, the cysteine protease ATG4B is one of the autophagy proteins being pursued as a potential therapeutic target. In this study, we investigated the expression of ATG4B in breast cancer, a heterogeneous disease comprised of several molecular subtypes. We examined a panel of breast cancer cell lines, xenograft tumors, and breast cancer patient specimens for the protein expression of ATG4B, and found a positive association between HER2 and ATG4B protein expression. We showed that HER2-positive cells, but not HER2-negative breast cancer cells, require ATG4B to survive under stress. In HER2-positive cells, cytoprotective autophagy was dependent on ATG4B under both starvation and HER2 inhibition conditions. Combined knockdown of ATG4B and HER2 by siRNA resulted in a significant decrease in cell viability, and the combination of ATG4B knockdown with trastuzumab resulted in a greater reduction in cell viability compared to trastuzumab treatment alone, in both trastuzumab-sensitive and -resistant HER2 overexpressing breast cancer cells. Together these results demonstrate a novel association of ATG4B positive expression with HER2 positive breast cancers and indicate that this subtype is suitable for emerging ATG4B inhibition strategies.

  4. Automated Image Analysis of HER2 Fluorescence In Situ Hybridization to Refine Definitions of Genetic Heterogeneity in Breast Cancer Tissue

    PubMed Central

    Radziuviene, Gedmante; Rasmusson, Allan; Augulis, Renaldas; Lesciute-Krilaviciene, Daiva; Laurinaviciene, Aida; Clim, Eduard

    2017-01-01

    Human epidermal growth factor receptor 2 gene- (HER2-) targeted therapy for breast cancer relies primarily on HER2 overexpression established by immunohistochemistry (IHC) with borderline cases being further tested for amplification by fluorescence in situ hybridization (FISH). Manual interpretation of HER2 FISH is based on a limited number of cells and rather complex definitions of equivocal, polysomic, and genetically heterogeneous (GH) cases. Image analysis (IA) can extract high-capacity data and potentially improve HER2 testing in borderline cases. We investigated statistically derived indicators of HER2 heterogeneity in HER2 FISH data obtained by automated IA of 50 IHC borderline (2+) cases of invasive ductal breast carcinoma. Overall, IA significantly underestimated the conventional HER2, CEP17 counts, and HER2/CEP17 ratio; however, it collected more amplified cells in some cases below the lower limit of GH definition by manual procedure. Indicators for amplification, polysomy, and bimodality were extracted by factor analysis and allowed clustering of the tumors into amplified, nonamplified, and equivocal/polysomy categories. The bimodality indicator provided independent cell diversity characteristics for all clusters. Tumors classified as bimodal only partially coincided with the conventional GH heterogeneity category. We conclude that automated high-capacity nonselective tumor cell assay can generate evidence-based HER2 intratumor heterogeneity indicators to refine GH definitions. PMID:28752092

  5. Automated Image Analysis of HER2 Fluorescence In Situ Hybridization to Refine Definitions of Genetic Heterogeneity in Breast Cancer Tissue.

    PubMed

    Radziuviene, Gedmante; Rasmusson, Allan; Augulis, Renaldas; Lesciute-Krilaviciene, Daiva; Laurinaviciene, Aida; Clim, Eduard; Laurinavicius, Arvydas

    2017-01-01

    Human epidermal growth factor receptor 2 gene- (HER2-) targeted therapy for breast cancer relies primarily on HER2 overexpression established by immunohistochemistry (IHC) with borderline cases being further tested for amplification by fluorescence in situ hybridization (FISH). Manual interpretation of HER2 FISH is based on a limited number of cells and rather complex definitions of equivocal, polysomic, and genetically heterogeneous (GH) cases. Image analysis (IA) can extract high-capacity data and potentially improve HER2 testing in borderline cases. We investigated statistically derived indicators of HER2 heterogeneity in HER2 FISH data obtained by automated IA of 50 IHC borderline (2+) cases of invasive ductal breast carcinoma. Overall, IA significantly underestimated the conventional HER2, CEP17 counts, and HER2/CEP17 ratio; however, it collected more amplified cells in some cases below the lower limit of GH definition by manual procedure. Indicators for amplification, polysomy, and bimodality were extracted by factor analysis and allowed clustering of the tumors into amplified, nonamplified, and equivocal/polysomy categories. The bimodality indicator provided independent cell diversity characteristics for all clusters. Tumors classified as bimodal only partially coincided with the conventional GH heterogeneity category. We conclude that automated high-capacity nonselective tumor cell assay can generate evidence-based HER2 intratumor heterogeneity indicators to refine GH definitions.

  6. Discovery of a Potential HER2 Inhibitor from Natural Products for the Treatment of HER2-Positive Breast Cancer

    PubMed Central

    Li, Jianzong; Wang, Haiyang; Li, Junjie; Bao, Jinku; Wu, Chuanfang

    2016-01-01

    Breast cancer is one of the most lethal types of cancer in women worldwide due to the late stage detection and resistance to traditional chemotherapy. The human epidermal growth factor receptor 2 (HER2) is considered as a validated target in breast cancer therapy. Even though a substantial effort has been made to develop HER2 inhibitors, only lapatinib has been approved by the U.S. Food and Drug Administration (FDA). Side effects were observed in a majority of the patients within one year of treatment initiation. Here, we took advantage of bioinformatics tools to identify novel effective HER2 inhibitors. The structure-based virtual screening combined with ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction was explored. In total, 11,247 natural compounds were screened. The top hits were evaluated by an in vitro HER2 kinase inhibition assay. The cell proliferation inhibition effect of identified inhibitors was evaluated in HER2-overexpressing SKBR3 and BT474 cell lines. We found that ZINC15122021 showed favorable ADMET properties and attained high binding affinity against HER2. Moreover, ZINC15122021 showed high kinase inhibition activity against HER2 and presented outstanding cell proliferation inhibition activity against both SKBR3 and BT474 cell lines. Results reveal that ZINC15122021 can be a potential HER2 inhibitor. PMID:27376283

  7. 64Cu-DOTA-trastuzumab PET Imaging in Women with HER2 Overexpressing Breast Cancer

    DTIC Science & Technology

    2011-10-01

    AD_________________ Award Number: W81XWH-10-1-0824 TITLE: 64Cu- DOTA -trastuzumab PET imaging in...September 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 64Cu- DOTA -trastuzumab PET imaging in women with HER2 overexpressing breast cancer 5b...synthesized 64Cu- DOTA -trastuzumab and tested it in model systems. Relative to the 111In-labeled antibody, positron emission tomography (PET) with 64Cu

  8. Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells

    PubMed Central

    Velmurugan, Ramraj; Challa, Dilip K.; Ram, Sripad; Ober, Raimund J.; Ward, E. Sally

    2016-01-01

    Understanding the complex behavior of effector cells such as monocytes or macrophages in regulating cancerous growth is of central importance for cancer immunotherapy. Earlier studies using CD20-specific antibodies have demonstrated that the Fcγ receptor (FcγR)-mediated transfer of the targeted receptors from tumor cells to these effector cells through trogocytosis can enable escape from antibody therapy, leading to the viewpoint that this process is pro-tumorigenic. In the current study we demonstrate that persistent trogocytic attack results in the killing of HER2-overexpressing breast cancer cells. Further, antibody engineering to increase FcγR interactions enhances this tumoricidal activity. These studies extend the complex repertoire of activities of macrophages to trogocytic-mediated cell death of HER2-overexpressing target cells and have implications for the development of effective antibody-based therapies. PMID:27226489

  9. Breast Cancer: Current Molecular Therapeutic Targets and New Players.

    PubMed

    Nagini, Siddavaram

    2017-01-01

    Breast cancer is the most common cancer and the most frequent cause of cancer death among women worldwide. Breast cancer is a complex, heterogeneous disease classified into hormone-receptor-positive, human epidermal growth factor receptor-2 overexpressing (HER2+) and triple-negative breast cancer (TNBC) based on histological features. Endocrine therapy, the mainstay of treatment for hormone-responsive breast cancer involves use of selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs) and aromatase inhibitors (AIs). Agents that target estrogen receptor (ER) and HER2 such as tamoxifen and trastuzumab have been the most extensively used therapeutics for breast cancer. Crosstalk between ER and other signalling networks as well as epigenetic mechanisms have been envisaged to contribute to endocrine therapy resistance. TNBC, a complex, heterogeneous, aggressive form of breast cancer in which the cells do not express ER, progesterone receptor or HER2 is refractory to therapy. Several molecular targets are being explored to target TNBC including androgen receptor, epidermal growth factor receptor (EGFR), poly(ADP-ribose) polymerase (PARP), and vascular endothelial growth factor (VEGF). Receptors, protein tyrosine kinases, phosphatases, proteases, PI3K/Akt signalling pathway, microRNAs (miRs) and long noncoding RNAs (lncRNAs) are potential therapeutic targets. miR-based therapeutic approaches include inhibition of oncomiRs by antisense oligonucleotides, restoration of tumour suppressors using miR mimics, and chemical modification of miRs. The lnRNAs HOTAIR, SPRY4-IT1, GAS5, and PANDAR, new players in tumour development and prognosis may have theranostic applications in breast cancer. Several novel classes of mechanism-based drugs have been designed and synthesised for treatment of breast cancer. Integration of nucleic acid sequencing studies with mass spectrometry-based peptide sequencing and posttranslational modifications as well as rational drug design will provide a more comprehensive understanding of the pathophysiology of breast cancer and help in evolving therapeutic strategies.

  10. Renal toxicity of anticancer agents targeting HER2 and EGFR.

    PubMed

    Cosmai, Laura; Gallieni, Maurizio; Porta, Camillo

    2015-12-01

    EGFR and HER2 are found overexpressed and/or activated in many different human malignancies (e.g. breast and colon cancer), and a number of drugs specifically targeting these two tyrosine kinases have been developed over the years as anticancer agents. In the present review, the renal safety profile of presently available agents targeting either HER2 or EGFR will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, even though renal toxicity is not so common with these agents, it may nevertheless happen, especially when these agents are combined with traditional chemotherapeutic agents. As a whole, kidney impairment or dialysis should not be regarded per se as reasons not to administer or to stop an active anti-HER or anti-EGFR anticancer treatment, especially given the possibility of significantly improving the life expectancy of many cancer patients with the use of these agents.

  11. Predictive value of quantitative HER2, HER3 and p95HER2 levels in HER2-positive advanced breast cancer patients treated with lapatinib following progression on trastuzumab.

    PubMed

    Duchnowska, Renata; Sperinde, Jeff; Czartoryska-Arłukowicz, Bogumiła; Myśliwiec, Paulina; Winslow, John; Radecka, Barbara; Petropoulos, Christos; Demlova, Regina; Orlikowska, Marlena; Kowalczyk, Anna; Lang, Istvan; Ziółkowska, Barbara; Dębska-Szmich, Sylwia; Merdalska, Monika; Grela-Wojewoda, Aleksandra; Żawrocki, Anton; Biernat, Wojciech; Huang, Weidong; Jassem, Jacek

    2017-11-28

    Lapatinib is a HER1 and HER2 tyrosine kinase inhibitor (TKI) approved in second line treatment of advanced or metastatic breast cancer following progression on trastuzumab-containing therapy. Biomarkers for activity of lapatinib and other TKIs are lacking. Formalin-fixed, paraffin-embedded primary tumor samples were obtained from 189 HER2-positive patients treated with lapatinib plus capecitabine following progression on trastuzumab. The HERmark ® Breast Cancer Assay was used to quantify HER2 protein expression. HER3 and p95HER2 protein expression was quantified using the VeraTag ® technology. Overall survival (OS) was inversely correlated with HER2 (HR = 1.9/log; P = 0.009) for patients with tumors above the cut-off positivity level by the HERmark assay. OS was significantly shorter for those with above median HER2 levels (HR = 1.7; P = 0.015) and trended shorter for those below the cut-off level of positivity by the HERmark assay (HR = 1.7; P = 0.057) compared to cases with moderate HER2 overexpression. The relationship between HER2 protein expression and OS was best captured with a U-shaped parabolic function (P = 0.004), with the best prognosis at moderate levels of HER2 protein overexpression. In a multivariate model including HER2, increasing p95HER2 expression was associated with longer OS (HR = 0.35/log; P = 0.027). Continuous HER3 did not significantly correlate with OS. Patients with moderately overexpressed HER2 levels and high p95HER2 expression may have best outcomes while receiving lapatinib following progression on trastuzumab. Further study is warranted to explore the predictive utility of quantitative HER2 and p95HER2 in guiding HER2-directed therapies.

  12. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.

    PubMed

    Slamon, D J; Leyland-Jones, B; Shak, S; Fuchs, H; Paton, V; Bajamonde, A; Fleming, T; Eiermann, W; Wolter, J; Pegram, M; Baselga, J; Norton, L

    2001-03-15

    The HER2 gene, which encodes the growth factor receptor HER2, is amplified and HER2 is overexpressed in 25 to 30 percent of breast cancers, increasing the aggressiveness of the tumor. We evaluated the efficacy and safety of trastuzumab, a recombinant monoclonal antibody against HER2, in women with metastatic breast cancer that overexpressed HER2. We randomly assigned 234 patients to receive standard chemotherapy alone and 235 patients to receive standard chemotherapy plus trastuzumab. Patients who had not previously received adjuvant (postoperative) therapy with an anthracycline were treated with doxorubicin (or epirubicin in the case of 36 women) and cyclophosphamide alone (138 women) or with trastuzumab (143 women). Patients who had previously received adjuvant anthracycline were treated with paclitaxel alone (96 women) or paclitaxel with trastuzumab (92 women). The addition of trastuzumab to chemotherapy was associated with a longer time to disease progression (median, 7.4 vs. 4.6 months; P<0.001), a higher rate of objective response (50 percent vs. 32 percent, P<0.001), a longer duration of response (median, 9.1 vs. 6.1 months; P<0.001), a lower rate of death at 1 year (22 percent vs. 33 percent, P=0.008), longer survival (median survival, 25.1 vs. 20.3 months; P=0.01), and a 20 percent reduction in the risk of death. The most important adverse event was cardiac dysfunction of New York Heart Association class III or IV, which occurred in 27 percent of the group given an anthracycline, cyclophosphamide, and trastuzumab; 8 percent of the group given an anthracycline and cyclophosphamide alone; 13 percent of the group given paclitaxel and trastuzumab; and 1 percent of the group given paclitaxel alone. Although the cardiotoxicity was potentially severe and, in some cases, life-threatening, the symptoms generally improved with standard medical management. Trastuzumab increases the clinical benefit of first-line chemotherapy in metastatic breast cancer that overexpresses HER2.

  13. A Comprehensive Outline of Trastuzumab Resistance Biomarkers in HER2 Overexpressing Breast Cancer.

    PubMed

    Menyhárt, Otília; Santarpia, Libero; Győrffy, Balázs

    2015-01-01

    The introduction of trastuzumab for anti-HER2 therapy dramatically changed the clinical outcome for HER2 (ERBB2, neu) positive breast cancer patients. Today, patients eligible for trastuzumab are selected using HER2 expression/amplification status of the primary tumor. However, acquired and inherent resistance to anti-HER2 therapy in these patients poses a significant challenge, and better patient stratification will be needed to improve clinical response. Here, we provide a wide-ranging overview of potential biomarkers capable of stratifying patients regarding their response to trastuzumab. These include HER2 amplification, impaired access to the binding site (p95HER2, Δ16HER-2, MUC4), augmented signaling through other ERBB family receptors (HER1, HER3, HER4) and their ligands, activation of HER2 targets by alternate heterodimers (EphA2, IGF-1R, GDF15, MUC1*), signaling triggered by downstream members (PIK3CA, PTEN, SRC, mTOR), altered expression of cell cycle and apoptotic regulators (CDKs, p27(kip1), Bcl-2), hormone receptor status, resistance to antibody-dependent cellular cytotoxicity (FcγR), and altered miRNA expression signatures. Multigenic molecular profile analyses have revealed further genes not directly associated with classical oncogenic pathways. Although numerous biomarkers have shown promise in pre-clinical studies, many have delivered controversial results when evaluated in clinical trials. One of the keys for targeting ERBB2 will be to consider the entire ERBB family and downstream associated pathways responsible for the malignant transformation. The heterogeneity of the disease is likely to represent a significant obstacle to accurately predicting the course of resistance. The future most probably involves the incorporation of multiple biomarkers into a unified predictor enabling selection of patients for superior targeted drug administration.

  14. HER receptor signaling confers resistance to the insulin-like growth factor 1 receptor inhibitor, BMS-536924

    PubMed Central

    Haluska, Paul; Carboni, Joan M.; Eyck, Cynthia Ten; Attar, Ricardo M.; Hou, Xiaonan; Yu, Chunrong; Sagar, Malvika; Wong, Tai W.; Gottardis, Marco M.; Erlichman, Charles

    2008-01-01

    We have previously reported the activity of the IGF-1R/InsR inhibitor, BMS-554417, in breast and ovarian cancer cell lines. Further studies indicated treatment of OV202 ovarian cancer cells with BMS-554417 increased phosphorylation of HER2. In addition, treatment with the panHER inhibitor, BMS-599626, resulted in increased phosphorylation of IGF1-R, suggesting a reciprocal crosstalk mechanism. In a panel of five ovarian cancer cell lines simultaneous treatment with the IGF-1R/InsR inhibitor, BMS-536924 and BMS-599626 resulted in a synergistic antiproliferative effect. Furthermore, combination therapy decreased AKT and ERK activation and increased biochemical and nuclear morphological changes consistent with apoptosis as compared to either agent alone. In response to treatment with BMS-536924, increased expression and activation of various members of the HER family of receptors were seen in all five ovarian cancer cell lines, suggesting inhibition of IGF-1R/InsR results in adaptive upregulation of the HER pathway. Using MCF-7 breast cancer cell variants that overexpressed HER1 or HER2, we then tested the hypothesis that HER receptor expression is sufficient to confer resistance to IGF-1R targeted therapy. In the presence of activating ligands EGF or heregulin, respectively, MCF-7 cells expressing HER1 or HER2 were resistant to BMS-536924 as determined in a proliferation and clonogenic assay. These data suggested that simultaneous treatment with inhibitors of the IGF-1 and HER family of receptors may be an effective strategy for clinical investigations of IGF-1R inhibitors in breast and ovarian cancer and that targeting HER1 and HER2 may overcome clinical resistance to IGF-1R inhibitors. PMID:18765823

  15. Activation of Phosphatidylcholine-Specific Phospholipase C in Breast and Ovarian Cancer: Impact on MRS-Detected Choline Metabolic Profile and Perspectives for Targeted Therapy

    PubMed Central

    Podo, Franca; Paris, Luisa; Cecchetti, Serena; Spadaro, Francesca; Abalsamo, Laura; Ramoni, Carlo; Ricci, Alessandro; Pisanu, Maria Elena; Sardanelli, Francesco; Canese, Rossella; Iorio, Egidio

    2016-01-01

    Elucidation of molecular mechanisms underlying the aberrant phosphatidylcholine cycle in cancer cells plays in favor of the use of metabolic imaging in oncology and opens the way for designing new targeted therapies. The anomalous choline metabolic profile detected in cancer by magnetic resonance spectroscopy and spectroscopic imaging provides molecular signatures of tumor progression and response to therapy. The increased level of intracellular phosphocholine (PCho) typically detected in cancer cells is mainly attributed to upregulation of choline kinase, responsible for choline phosphorylation in the biosynthetic Kennedy pathway, but can also be partly produced by activation of phosphatidylcholine-specific phospholipase C (PC-PLC). This hydrolytic enzyme, known for implications in bacterial infection and in plant survival to hostile environmental conditions, is reported to be activated in mitogen- and oncogene-induced phosphatidylcholine cycles in mammalian cells, with effects on cell signaling, cell cycle regulation, and cell proliferation. Recent investigations showed that PC-PLC activation could account for 20–50% of the intracellular PCho production in ovarian and breast cancer cells of different subtypes. Enzyme activation was associated with PC-PLC protein overexpression and subcellular redistribution in these cancer cells compared with non-tumoral counterparts. Moreover, PC-PLC coimmunoprecipitated with the human epidermal growth factor receptor-2 (HER2) and EGFR in HER2-overexpressing breast and ovarian cancer cells, while pharmacological PC-PLC inhibition resulted into long-lasting HER2 downregulation, retarded receptor re-expression on plasma membrane and antiproliferative effects. This body of evidence points to PC-PLC as a potential target for newly designed therapies, whose effects can be preclinically and clinically monitored by metabolic imaging methods. PMID:27532027

  16. Development of an Anti-HER2 Monoclonal Antibody H2Mab-139 Against Colon Cancer.

    PubMed

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Kato, Yukinari

    2018-02-01

    Human epidermal growth factor receptor 2 (HER2) expression has been reported in several cancers, such as breast, gastric, lung, pancreatic, and colorectal cancers. HER2 is overexpressed in those cancers and is associated with poor clinical outcomes. Trastuzumab, a humanized anti-HER2 antibody, provides significant survival benefits for patients with HER2-overexpressing breast cancers and gastric cancers. In this study, we developed a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-139 (IgG 1 , kappa) and investigated it against colon cancers using flow cytometry, western blot, and immunohistochemical analyses. Flow cytometry analysis revealed that H 2 Mab-139 reacted with colon cancer cell lines, such as Caco-2, HCT-116, HCT-15, HT-29, LS 174T, COLO 201, COLO 205, HCT-8, SW1116, and DLD-1. Although H 2 Mab-139 strongly reacted with LN229/HER2 cells on the western blot, we did not observe a specific signal for HER2 in colon cancer cell lines. Immunohistochemical analyses revealed sensitive and specific reactions of H 2 Mab-139 against colon cancers, indicating that H 2 Mab-139 is useful in detecting HER2 overexpression in colon cancers using flow cytometry and immunohistochemical analyses.

  17. A Molecularly Targeted Theranostic Probe for Ovarian Cancer

    PubMed Central

    Chen, Wenxue; Bardhan, Rizia; Bartels, Marc; Perez-Torres, Carlos; Pautler, Robia G.; Halas, Naomi J.; Joshi, Amit

    2014-01-01

    Overexpression of the human epidermal growth factor receptor (HER) family has been implicated in ovarian cancer because of its participation in signaling pathway regulating cellular proliferation, differentiation, motility, and survival. Currently, effective diagnostic and therapeutic schemes are lacking for treating ovarian cancer and consequently ovarian cancer has a high mortality rate. While HER2 receptor expression does not usually affect the survival rates of ovarian cancer to the same extent as in breast cancer, it can be employed as a docking site for directed nanotherapies in cases with de novo or acquired chemotherapy resistance. In this study, we have exploited a novel gold nanoshell-based complex (nanocomplex) for targeting, dual modal imaging, and photothermal therapy of HER2 overexpressing and drug resistant ovarian cancer OVCAR3 cells in vitro. The nanocomplexes are engineered to simultaneously provide contrast as fluorescence optical imaging probe and a magnetic resonance imaging (MRI) agent. Both immunofluorescence staining and MRI successfully demonstrate that nanocomplex-anti-HER2 conjugates specifically bind to OVCAR3 cells as opposed to the control, MDA-MB-231 cells, which have low HER2 expression. In addition, nanocomplexes targeted to OVCAR3 cells, when irradiated with near infrared (NIR) laser result in selective destruction of cancer cells through photothermal ablation. We also demonstrate that NIR light therapy and the nanocomplexes by themselves are non-cytotoxic in vitro. To the best of our knowledge, this is the first demonstration of a successful integration of dual modal bioimaging with photothermal cancer therapy for treatment of ovarian cancer. Based on their efficacy in vitro, these nanocomplexes are highly promising for image guided photo-thermal therapy of ovarian cancer as well as other HER2 overexpressing cancers. PMID:20371708

  18. Dissecting GRB7-mediated signals for proliferation and migration in HER2 overexpressing breast tumor cells: GTP-ase rules.

    PubMed

    Pradip, De; Bouzyk, Mark; Dey, Nandini; Leyland-Jones, Brian

    2013-01-01

    Amplification of human Her2 and its aberrant signaling in 20-30% of early breast cancer patients is responsible for highly aggressive tumors with poor outcome. Grb7 is reported to be co-amplified with Her2. We report a concurrent high expression of mRNA (from FFPE tumor samples; mRNA correlation, Pearson r(2)= 0.806), and high levels of GRB7 protein (immunoblot) in HER2+ breast cancer cell lines. We demonstrated the signaling mechanism of HER2 and downstream effectors that contributes to proliferation and migration. Using HER2+ and trastuzumab-resistant breast cancer cell lines, we identified the interaction between GRB7 and HER2 in the control of HER2+ cell proliferation. Our co-IP data show that GRB7 recruits SHC into the HER2-GRB7 signaling complex. This complex formation leads to activation of RAS-GTP. We also observed that following integrin engagement, GRB7 is phosphorylated at tyrosine in a p-FAK (Y397) dependent manner. This FAK-GRB7 complex leads to downstream activation of RAC1-GTP (responsible for migration) probably through the recruitment of VAV2. Our CO-IP data demonstrate that GRB7 directly binds with VAV2 following fibronectin engagement in HER2+ cells. To address whether GRB7 could serve as a pathway specific therapeutic target, we used siRNA to suppress GRB7 expression. Knockdown of GRB7 expression in the HER2+ breast cancer cell lines decreases RAS activation, cell proliferation, 2D and 3D colony formation and also blocked integrin-mediated RAC1 activation along with integrin-directed cell migration. These findings dissected the HER2-mediated signaling cascade into (1) HER2+ cell proliferation (HER2-GRB7-SHC-RAS) and (2) HER2+ cell migration (alpha5 beta1/alpha4 beta1-FAK-GRB7-VAV2-RAC1). Our data clearly demonstrate that a coupling of GRB7 with HER2 is required for the proliferative and migratory signals in HER2+ breast tumor cells.

  19. Distinct apoptotic blocks mediate resistance to panHER inhibitors in HER2+ breast cancer cells.

    PubMed

    Karakas, Bahriye; Ozmay, Yeliz; Basaga, Huveyda; Gul, Ozgur; Kutuk, Ozgur

    2018-05-04

    Despite the development of novel targeted therapies, de novo or acquired chemoresistance remains a significant factor for treatment failure in breast cancer therapeutics. Neratinib and dacomitinib are irreversible panHER inhibitors, which block their autophosphorylation and downstream signaling. Moreover, neratinib and dacomitinib have been shown to activate cell death in HER2-overexpressing cell lines. Here we showed that increased MCL1 and decreased BIM and PUMA mediated resistance to neratinib in ZR-75-30 and SKBR3 cells while increased BCL-XL and BCL-2 and decreased BIM and PUMA promoted neratinib resistance in BT474 cells. Cells were also cross-resistant to dacomitinib. BH3 profiles of HER2+ breast cancer cells efficiently predicted antiapoptotic protein dependence and development of resistance to panHER inhibitors. Reactivation of ERK1/2 was primarily responsible for acquired resistance in SKBR3 and ZR-75-30 cells. Adding specific ERK1/2 inhibitor SCH772984 to neratinib or dacomitinib led to increased apoptotic response in neratinib-resistant SKBR3 and ZR-75-30 cells, but we did not detect a similar response in neratinib-resistant BT474 cells. Accordingly, suppression of BCL-2/BCL-XL by ABT-737 was required in addition to ERK1/2 inhibition for neratinib- or dacomitinib-induced apoptosis in neratinib-resistant BT474 cells. Our results showed that different mitochondrial apoptotic blocks mediated acquired panHER inhibitor resistance in HER2+ breast cancer cell lines as well as highlighted the potential of BH3 profiling assay in prediction of panHER inhibitor resistance in breast cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Basal/HER2 breast carcinomas

    PubMed Central

    Martin-Castillo, Begoña; Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cufí, Silvia; Moreno, José Manuel; Corominas-Faja, Bruna; Urruticoechea, Ander; Martín, Ángel G.; López-Bonet, Eugeni; Menendez, Javier A.

    2013-01-01

    High rates of inherent primary resistance to the humanized monoclonal antibody trastuzumab (Herceptin) are frequent among HER2 gene-amplified breast carcinomas in both metastatic and adjuvant settings. The clinical efficacy of trastuzumab is highly correlated with its ability to specifically and efficiently target HER2-driven populations of breast cancer stem cells (CSCs). Intriguingly, many of the possible mechanisms by which cancer cells escape trastuzumab involve many of the same biomarkers that have been implicated in the biology of CS-like tumor-initiating cells. In the traditional, one-way hierarchy of CSCs in which all cancer cells descend from special self-renewing CSCs, HER2-positive CSCs can occur solely by self-renewal. Therefore, by targeting CSC self-renewal and resistance, trastuzumab is expected to induce tumor shrinkage and further reduce breast cancer recurrence rates when used alongside traditional therapies. In a new, alternate model, more differentiated non-stem cancer cells can revert to trastuzumab-refractory, CS-like cells via the activation of intrinsic or microenvironmental paths-to-stemness, such as the epithelial-to-mesenchymal transition (EMT). Alternatively, stochastic transitions of trastuzumab-responsive CSCs might also give rise to non-CSC cellular states that lack major attributes of CSCs and, therefore, can remain “hidden” from trastuzumab activity. Here, we hypothesize that a better understanding of the CSC/non-CSC social structure within HER2-overexpressing breast carcinomas is critical for trastuzumab-based treatment decisions in the clinic. First, we decipher the biological significance of CSC features and the EMT on the molecular effects and efficacy of trastuzumab in HER2-positive breast cancer cells. Second, we reinterpret the genetic heterogeneity that differentiates trastuzumab-responders from non-responders in terms of CSC cellular states. Finally, we propose that novel predictive approaches aimed at better forecasting early tumor responses to trastuzumab should identify biological determinants that causally underlie the intrinsic flexibility of HER2-positive CSCs to “enter” into or “exit” from trastuzumab-sensitive states. An accurate integration of CSC cellular states and EMT-related biomarkers with the currently available breast cancer molecular taxonomy may significantly improve our ability to make a priori decisions about whether patients belonging to HER2 subtypes differentially enriched with a “mesenchymal transition signature” (e.g., luminal/HER2 vs. basal/HER2) would distinctly benefit from trastuzumab-based therapy ab initio. PMID:23255137

  1. miRNA-205 affects infiltration and metastasis of breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhouquan; Department of Tumor, SenGong Hospital of Shaanxi, Xi’an 710300; Liao, Hehe

    2013-11-08

    Highlights: •We detected expression of miR-205 in breast cancer cell lines and tissue samples. •We suggest miR-205 is downregulated in human breast cancer tissues and MCF7 cells. •We suggest the lower expression of miR-205 play a role in breast cancer onset. •These data suggest that miR-205 directly targets HER3 in human breast cancer. -- Abstract: Background: An increasing number of studies have shown that miRNAs are commonly deregulated in human malignancies, but little is known about the function of miRNA-205 (miR-205) in human breast cancer. The present study investigated the influence of miR-205 on breast cancer malignancy. Methods: The expressionmore » level of miR-205 in the MCF7 breast cancer cell line was determined by quantitative (q)RT-PCR. We then analyzed the expression of miR-205 in breast cancer and paired non-tumor tissues. Finally, the roles of miR-205 in regulating tumor proliferation, apoptosis, migration, and target gene expression were studied by MTT assay, flow cytometry, qRT-PCR, Western blotting and luciferase assay. Results: miR-205 was downregulated in breast cancer cells or tissues compared with normal breast cell lines or non-tumor tissues. Overexpression of miR-205 reduced the growth and colony-formation capacity of MCF7 cells by inducing apoptosis. Overexpression of miR-205 inhibited MCF7 cell migration and invasiveness. By bioinformation analysis, miR-205 was predicted to bind to the 3′ untranslated regions of human epidermal growth factor receptor (HER)3 mRNA, and upregulation of miR-205 reduced HER3 protein expression. Conclusion: miR-205 is a tumor suppressor in human breast cancer by post-transcriptional inhibition of HER3 expression.« less

  2. Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer.

    PubMed

    Mukohara, Toru

    2011-01-01

    Approximately 20% of breast cancers are characterized by overexpression of human epidermal growth factor receptor 2 (HER2) protein and associated gene amplification, and the receptor tyrosine kinase is believed to play a critical role in the pathogenesis of these tumors. The development and implementation of trastuzumab, a humanized monoclonal antibody against the extracellular domain of HER2 protein, has significantly improved treatment outcomes in patients with HER2-overexpressing breast cancer. However, despite this clinical usefulness, unmet needs for better prediction of trastuzumab's response and overcoming primary and acquired resistance remain. In this review, we discuss several potential mechanisms of resistance to trastuzumab that have been closely studied over the last decade. Briefly, these mechanisms include: impaired access of trastuzumab to HER2 by expression of extracellular domain-truncated HER2 (p95 HER2) or overexpression of MUC4; alternative signaling from insulin-like growth factor-1 receptor, other epidermal growth factor receptor family members, or MET; aberrant downstream signaling caused by loss of phosphatase and tensin homologs deleted from chromosome 10 (PTEN), PIK3CA mutation, or downregulation of p27; or FCGR3A polymorphisms. In addition, we discuss potential strategies for overcoming resistance to trastuzumab. Specifically, the epidermal growth factor receptor/HER2 tyrosine kinase inhibitor lapatinib partially overcame trastuzumab resistance in a clinical setting, so its efficacy results and limited data regarding potential mechanisms of resistance to the drug are also discussed. © 2010 Japanese Cancer Association.

  3. Ibrutinib Inhibits ERBB Receptor Tyrosine Kinases and HER2-Amplified Breast Cancer Cell Growth.

    PubMed

    Chen, Jun; Kinoshita, Taisei; Sukbuntherng, Juthamas; Chang, Betty Y; Elias, Laurence

    2016-12-01

    Ibrutinib is a potent, small-molecule Bruton tyrosine kinase (BTK) inhibitor developed for the treatment of B-cell malignancies. Ibrutinib covalently binds to Cys481 in the ATP-binding domain of BTK. This cysteine residue is conserved among 9 other tyrosine kinases, including HER2 and EGFR, which can be targeted. Screening large panels of cell lines demonstrated that ibrutinib was growth inhibitory against some solid tumor cells, including those inhibited by other HER2/EGFR inhibitors. Among sensitive cell lines, breast cancer lines with HER2 overexpression were most potently inhibited by ibrutinib (<100 nmol/L); in addition, the IC 50 s were lower than that of lapatinib and dacomitinib. Inhibition of cell growth by ibrutinib coincided with downregulation of phosphorylation on HER2 and EGFR and their downstream targets, AKT and ERK. Irreversible inhibition of HER2 and EGFR in breast cancer cells was established after 30-minute incubation above 100 nmol/L or following 2-hour incubation at lower concentrations. Furthermore, ibrutinib inhibited recombinant HER2 and EGFR activity that was resistant to dialysis and rapid dilution, suggesting an irreversible interaction. The dual activity toward TEC family (BTK and ITK) and ERBB family kinases was unique to ibrutinib, as ERBB inhibitors do not inhibit or covalently bind BTK or ITK. Xenograft studies with HER2 + MDA-MB-453 and BT-474 cells in mice in conjunction with determination of pharmacokinetics demonstrated significant exposure-dependent inhibition of growth and key signaling molecules at levels that are clinically achievable. Ibrutinib's unique dual spectrum of activity against both TEC family and ERBB kinases suggests broader applications of ibrutinib in oncology. Mol Cancer Ther; 15(12); 2835-44. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Trastuzumab induces gastrointestinal side effects in HER2-overexpressing breast cancer patients.

    PubMed

    Al-Dasooqi, Noor; Bowen, Joanne M; Gibson, Rachel J; Sullivan, Thomas; Lees, Jude; Keefe, Dorothy M

    2009-04-01

    To characterise the gastrointestinal toxicities associated with Trastuzumab administration in HER2-overexpressing breast cancer patients. All patients (n = 46) who received Trastuzumab as a single agent or in conjunction with conventional anti-cancer treatment within the Royal Adelaide Hospital Cancer Centre from 2002-2007 were included in this study. A retrospective analysis of case-notes was conducted to investigate the toxicities associated with Trastuzumab. Trastuzumab as a single agent induced toxicities following 22% of administrations. Gastrointestinal toxicities were observed following 12% of administrations and included nausea and vomiting, diarrhoea, abdominal pain and bloating. However, other prominent toxicities that were not related to the gastrointestinal tract were also observed including fatigue and lung symptoms (10.4%). Elderly patients (> or =60 years) and those with metastatic disease experienced the highest frequency of toxicity. Trastuzumab induces a range of gastrointestinal toxicities in HER2-overexpressing breast cancer patients. These toxicities are separate to those caused by concurrent chemotherapy and/or radiotherapy.

  5. Trastuzumab- and Fab' fragment-modified curcumin PEG-PLGA nanoparticles: preparation and evaluation in vitro and in vivo.

    PubMed

    Duan, Dongyu; Wang, Aiping; Ni, Ling; Zhang, Liping; Yan, Xiuju; Jiang, Ying; Mu, Hongjie; Wu, Zimei; Sun, Kaoxiang; Li, Youxin

    2018-01-01

    Nanoparticles (NPs) modified with bio-ligands represent a promising strategy for active targeted drug delivery to tumour. However, many targeted ligands, such as trastuzumab (TMAB), have high molecular weight, limiting their application for targeting. In this study, we prepared Fab' (antigen-binding fragments cut from TMAB)-modified NPs (Fab'-NPs) with curcumin (Cur) as a model drug for more effective targeting of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu), which is overexpressed on breast cancer cells. The release kinetics was conducted by dialysis bags. The ability to kill HER2-overexpressing BT-474 cells of Fab'-Cur-NPs compared with TMAB-Cur-NPs was conducted by cytotoxicity experiments. Qualitative and quantitative cell uptake studies using coumarin-6 (fluorescent probe)-loaded NPs were performed by fluorescence microscopy and flow cytometry. Pharmacokinetics and biodistribution experiments in vivo were assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The release kinetics showed that both Fab'-Cur-NPs and TMAB-Cur-NPs provided continuous, slow release of curcumin for 72 h, with no significant difference. In vitro cytotoxicity experiments showed that Fab'-Cur-NPs manifested prominent ability to kill HER2-overexpressing BT-474 cells compared with TMAB-Cur-NPs. Qualitative and quantitative cell uptake studies indicated that the accumulation of Fab'-NPs was greater than that of TMAB-NPs in BT-474 (HER2+) cells; However, there was no significant difference in MDA-MB-231 (HER2-) cells. Pharmacokinetics and biodistribution experiments in vivo demonstrated that the half-life (t1/2) and area under the blood concentration-time curve (AUC0-t) of Fab'-Cur-NPs increased 5.30-fold and 1.76-fold relative to those of TMAB-Cur-NPs, respectively. Furthermore, the tumor accumulation of Fab'-Cur-NPs was higher than that of TMAB-Cur-NPs. Fab' fragment has greater capacity than the intact antibody to achieve tumor targeting through NP-based delivery.

  6. Multiepitope HER2 targeting enhances photoimmunotherapy of HER2-overexpressing cancer cells with pyropheophorbide-a immunoconjugates.

    PubMed

    Savellano, Mark D; Pogue, Brian W; Hoopes, P Jack; Vitetta, Ellen S; Paulsen, Keith D

    2005-07-15

    Multi-targeting strategies improve the efficacy of antibody and immunotoxin therapies but have not yet been thoroughly explored for HER2-based cancer treatments. We investigated multi-epitope HER2 targeting to boost photosensitizer immunoconjugate uptake as a way of enhancing photoimmunotherapy. Photoimmunotherapy may allow targeted photodynamic destruction of malignancies and may also potentiate anticancer antibodies. However, one obstacle preventing its clinical use is the delivery of enough photosensitizer immunoconjugates to target cells. Anti-HER2 photosensitizer immunoconjugates were constructed from two monoclonal antibodies (mAb), HER50 and HER66, using a novel method originally developed to label photosensitizer immunoconjugates with the photosensitizer, benzoporphyrin derivative verteporfin. Photosensitizer immunoconjugates were labeled instead with a promising alternative photosensitizer, pyropheophorbide-a (PPa), which required only minor changes to the conjugation procedure. Uptake and phototoxicity experiments using human cancer cells were conducted with the photosensitizer immunoconjugates and, for comparison, with free PPa. SK-BR-3 and SK-OV-3 cells served as HER2-overexpressing target cells. MDA-MB-468 cells served as HER2-nonexpressing control cells. Photosensitizer immunoconjugates with PPa/mAb molar ratios up to approximately 10 specifically targeted and photodynamically killed HER2-overexpressing cells. On a per mole basis, photosensitizer immunoconjugates were less phototoxic than free PPa, but photosensitizer immunoconjugates were selective for target cells whereas free PPa was not. Multiepitope targeted photoimmunotherapy with a HER50 and HER66 photosensitizer immunoconjugate mixture was significantly more effective than single-epitope targeted photoimmunotherapy with a single anti-HER2 photosensitizer immunoconjugate, provided photosensitizer immunoconjugate binding was saturated. This study shows that multiepitope targeting enhances HER2-targeted photoimmunotherapy and maintains a high degree of specificity. Consequently, it seems that multitargeted photoimmunotherapy should also be useful against cancers that overexpress other receptors.

  7. A critical role for HER3 in HER2-amplified and non-amplified breast cancers: function of a kinase-dead RTK

    PubMed Central

    Dey, Nandini; Williams, Casey; Leyland-Jones, Brain; De, Pradip

    2015-01-01

    ERBB3/HER3 is the most intriguing RTK by virtue of its ability to transduce multiple cytosolic signals for the proliferation and growth of tumor cells in spite of being a “kinase dead” receptor that binds to its true ligand, heregulin. Although other members of the HER3 family like EGFR and HER2 have long been recognized to be associated with breast tumorigenesis and studied because of their predictive and prognostic value, the significance of HER3 as an irrefutable component of HER family signalosome is a relatively new development. The recent understanding of signals originating from the oncogenic partnership of HER3 with HER2 in the context of HER2 amplification/overexpression showed the critical clinical value for the treatment of HER2+BC. The downstream signaling cascade (included but not limited to the PI3K signaling) associated with signals originating from HER2:HER3 dimers play a vital role in the tumorigenesis, drug-resistance and tumor progression of HER2+BC. The upregulation of HER3 activity provides an alternate “escape route” via which tumor cells bypass either the inhibition of the HER family RTKs or the inhibition of the downstream PI3K-AKT-mTOR signaling pathway. By understanding the signaling that provides this “escape route” for these tumor cells treated with a targeted therapy (HER2 inhibitors or inhibitors of downstream PI3K-AKT-mTOR signaling pathway), we are just beginning to appreciate the prognostic value of HER3 in breast cancer. In this review, we will discuss the relevance of HER3 signaling in the context of, (1) downstream oncogenic signals and (2) therapeutic options in HER2 amplified BC. PMID:26064441

  8. Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2-positive breast cancer cells in vitro and in vivo.

    PubMed

    Liu, Weihua; Xu, Jinmei; Liu, Yilun; Yu, Xiaoping; Tang, Xi; Wang, Zhi; Li, Xin

    2014-10-01

    Human epidermal growth factor receptor 2 (HER2) has been found to be overexpressed in ~25% of invasive breast cancer and is significantly associated with a poor prognosis in breast cancer patients. The anthocyanins cyanidin-3-glucoside (C3G) and peonidin-3-glucoside have been identified as potential drugs for the therapy of HER2‑positive breast cancer. They have been used as supplements in targeted therapeutics and chemotherapeutics in Asia, however, the underlying mechanism remains to be elucidated. The aim of the present study was to investigate the synergism between C3G and trastuzumab (Trast). To address this question, the response to C3G, Trast and a combination of the two drugs, in three representative HER2‑positive cell lines was evaluated. The combination treatments induced apoptosis, inhibited cell growth and affected HER2 and its downstream signaling pathway in MDA‑MB‑453, BT474 and HCC1569 cells, and the effects were synergistic. The combination of 3CG and Trast inhibited tumor growth in an in vivo xenograft model. The data from the present study suggested that C3G exhibits potent antitumor activity when combined with Trast under the investigated conditions.

  9. Integrating molecular mechanisms and clinical evidence in the management of trastuzumab resistant or refractory HER-2⁺ metastatic breast cancer.

    PubMed

    Wong, Hilda; Leung, Roland; Kwong, Ava; Chiu, Joanne; Liang, Raymond; Swanton, Charles; Yau, Thomas

    2011-01-01

    Human epidermal growth factor receptor (HER)-2(+) breast cancer is a distinct molecular and clinical entity, the prognosis of which is improved by trastuzumab. However, primary resistance to trastuzumab is observed in >50% of patients with HER-2(+) advanced breast cancer, and the majority of patients who initially respond to treatment eventually develop disease progression. To facilitate crosstrial comparisons and the understanding of resistance mechanisms, we propose a unifying definition of trastuzumab resistance as progression at first radiological reassessment at 8-12 weeks or within 3 months after first-line trastuzumab in the metastatic setting or new recurrences diagnosed during or within 12 months after adjuvant trastuzumab. In contrast, we define trastuzumab-refractory breast cancer as disease progression after two or more lines of trastuzumab-containing regimens that initially achieved disease response or stabilization at first radiological assessment. We review mechanisms of trastuzumab resistance mediated by p95HER-2 overexpression, phosphoinositide 3-kinase pathway activation, and signaling pathway activation driven by HER-3, epidermal growth factor receptor, and insulin-like growth factor 1 receptor. We distinguish in vitro from in vivo evidence, highlighting that most data describing trastuzumab resistance are derived from preclinical studies or small retrospective patient cohorts, and discuss targeted therapeutic approaches to overcome resistance. Prospective analysis through clinical trials with robust tissue collection procedures, prior to and following acquisition of resistance, integrated with next-generation tumor genome sequencing technologies, is identified as a priority area for development. The identification of predictive biomarkers is of paramount importance to optimize health economic costs and enhance stratification of anti-HER-2 targeted therapies.

  10. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer.

    PubMed

    Slamon, D J; Godolphin, W; Jones, L A; Holt, J A; Wong, S G; Keith, D E; Levin, W J; Stuart, S G; Udove, J; Ullrich, A

    1989-05-12

    Carcinoma of the breast and ovary account for one-third of all cancers occurring in women and together are responsible for approximately one-quarter of cancer-related deaths in females. The HER-2/neu proto-oncogene is amplified in 25 to 30 percent of human primary breast cancers and this alteration is associated with disease behavior. In this report, several similarities were found in the biology of HER-2/neu in breast and ovarian cancer, including a similar incidence of amplification, a direct correlation between amplification and over-expression, evidence of tumors in which overexpression occurs without amplification, and the association between gene alteration and clinical outcome. A comprehensive study of the gene and its products (RNA and protein) was simultaneously performed on a large number of both tumor types. This analysis identified several potential shortcomings of the various methods used to evaluate HER-2/neu in these diseases (Southern, Northern, and Western blots, and immunohistochemistry) and provided information regarding considerations that should be addressed when studying a gene or gene product in human tissue. The data presented further support the concept that the HER-2/neu gene may be involved in the pathogenesis of some human cancers.

  11. Probing HER2-PUMA and EGFR-PUMA Crosstalks in Aggressive Breast Cancer

    DTIC Science & Technology

    2013-09-01

    malignant biology and drug-resistant phenotype of EGFR- and/or HER2-overexpressing breast cancer and to use the acquired knowledge for the development...with PUMA, we first assessed whether HER2 can physically interact with PUMA using immunoprecipitation/western blotting (IP/WB). We used SK-BR3 and BT...activate HER2. We subjected the cell lysates to IP/WB using a PUMA antibody for IP and immunoblotted with anti-phospho-tyrosine antibodies. As shown

  12. Prognostic Value of PD-L1 in Breast Cancer: A Meta-Analysis.

    PubMed

    Wang, Changjun; Zhu, Hanjiang; Zhou, Yidong; Mao, Feng; Lin, Yan; Pan, Bo; Zhang, Xiaohui; Xu, Qianqian; Huang, Xin; Sun, Qiang

    2017-07-01

    Programmed cell death 1 ligand 1 (PD-L1) is a promising therapeutic target for cancer immunotherapy. However, the correlation between PD-L1 and breast cancer survival remains unclear. Here, we present the first meta-analysis to investigate the prognostic value of PD-L1 in breast cancer. We searched Pubmed, Embase, and Cochrane Central Register of Controlled Trials databases for relevant studies evaluating PD-L1 expression and breast cancer survival. Fixed- and random-effect meta-analyses were conducted based on heterogeneity of included studies. Publication bias was evaluated by funnel plot and Begg's test. Overall, nine relevant studies with 8583 patients were included. PD-L1 overexpression was found in 25.8% of breast cancer patients. PD-L1 (+) associated with several high-risk prognostic indicators, such as ductal cancer (p = 0.037), high tumor grade (p = 0.000), ER negativity (p = 0.000), PR negativity (p = 0.000), HER2 positivity (p = 0.001) and aggressive molecular subtypes (HER2-rich and Basal-like p = 0.000). PD-L1 overexpression had no significant impact on metastasis-free survival (HR 0.924, 95% CI = 0.747-1.141, p = 0.462), disease-free survival (HR 1.122, 95% CI = 0.878-1.434, p = 0.357) and overall specific survival (HR 0.837, 95% CI = 0.640-1.093, p = 0.191), but significantly correlated with shortened overall survival (HR 1.573, 95% CI = 1.010-2.451, p = 0.045). PD-L1 overexpression in breast cancer associates with multiple clinicopathological parameters that indicated poor outcome, and may increase the risk for mortality. Further standardization of PD-L1 assessment assay and well-controlled clinical trials are warranted to clarify its prognostic and therapeutic value. © 2017 Wiley Periodicals, Inc.

  13. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy.

    PubMed

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone-releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer.

  14. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy

    PubMed Central

    He, Yingna; Zhang, Linhua; Zhu, Dunwan; Song, Cunxian

    2014-01-01

    Tumor-targeting multifunctional liposomes simultaneously loaded with magnetic iron oxide nanoparticles (MIONs) as a magnetic resonance imaging (MRI) contrast agent and anticancer drug, mitoxantrone (Mit), were developed for targeted cancer therapy and ultrasensitive MRI. The gonadorelin-functionalized MION/Mit-loaded liposome (Mit-GML) showed significantly increased uptake in luteinizing hormone–releasing hormone (LHRH) receptor overexpressing MCF-7 (Michigan Cancer Foundation-7) breast cancer cells over a gonadorelin-free MION/Mit-loaded liposome (Mit-ML) control, as well as in an LHRH receptor low-expressing Sloan-Kettering HER2 3+ Ovarian Cancer (SK-OV-3) cell control, thereby leading to high cytotoxicity against the MCF-7 human breast tumor cell line. The Mit-GML formulation was more effective and less toxic than equimolar doses of free Mit or Mit-ML in the treatment of LHRH receptors overexpressing MCF-7 breast cancer xenografts in mice. Furthermore, the Mit-GML demonstrated much higher T2 enhancement than did Mit-ML controls in vivo. Collectively, the study indicates that the integrated diagnostic and therapeutic design of Mit-GML nanomedicine potentially allows for the image-guided, target-specific treatment of cancer. PMID:25187709

  15. HER2-positive breast cancer, how far away from the cure?-on the current situation of anti-HER2 therapy in breast cancer treatment and survival of patients.

    PubMed

    Liao, Ning

    2016-06-01

    With the diagnosis and treatment of tumor enter into the area of precision medical, based on selected targeted molecular typing of patients with individualized diagnosis and treatment play an important role. HER gene encoded epidermal growth factor receptor 2 (HER2) leading to increased early distant metastasis of breast cancer in patients and poor prognosis. However, a number of clinical studies provided evidence-based anti-HER2 targeted therapy and confirmed the benefit of anti-HER2 targeted therapy in patient survival. In recent years, through the tireless efforts of scholars in the field of breast cancer in our country, the whole diagnosis and treatment of breast cancer has accomplished an international standard. But based on a variety of factors, the anti-HER2 targeted therapy between China and the developed countries, and between different areas in China still exists certain gaps, is now a problem need to be solved. This article will analyzing the diagnostic and treatment on HER2-positive breast cancer in the United States and China, exploring reasons and looking for answers to narrow down the gap in the treatment of HER2-positive breast cancer between China and the United States. Improve the anti-HER2 targeted therapy in our country, let the patients get maximum benefit from anti-HER2 targeted therapy.

  16. Diagnostic evaluation of HER-2 as a molecular target: an assessment of accuracy and reproducibility of laboratory testing in large, prospective, randomized clinical trials.

    PubMed

    Press, Michael F; Sauter, Guido; Bernstein, Leslie; Villalobos, Ivonne E; Mirlacher, Martina; Zhou, Jian-Yuan; Wardeh, Rooba; Li, Yong-Tian; Guzman, Roberta; Ma, Yanling; Sullivan-Halley, Jane; Santiago, Angela; Park, Jinha M; Riva, Alessandro; Slamon, Dennis J

    2005-09-15

    To critically assess the accuracy and reproducibility of human epidermal growth factor receptor type 2 (HER-2) testing in outside/local community-based hospitals versus two centralized reference laboratories and its effect on selection of women for trastuzumab (Herceptin)-based clinical trials. Breast cancer specimens from 2,600 women were prospectively evaluated by fluorescence in situ hybridization (FISH) for entry into Breast Cancer International Research Group (BCIRG) clinical trials for HER-2-directed therapies. HER-2 gene amplification by FISH was observed in 657 of the 2,502 (26%) breast cancers successfully analyzed. Among 2,243 breast cancers with central laboratory immunohistochemistry (10H8-IHC) analysis, 504 (22.54%) showed overexpression (2+ or 3+). Outside/local laboratories assessed HER-2 status by immunohistochemistry in 1,536 of these cases and by FISH in 131 cases. Overall, the HER-2 alteration status determined by outside/local immunohistochemistry showed a 79% agreement rate [kappa statistic, 0.56; 95% confidence interval (95% CI), 0.52-0.60], with FISH done by the central laboratories. The agreement rate comparing BCIRG central laboratory 10H8-IHC and outside/local laboratory immunohistochemistry was 77.5% (kappa statistic, 0.51; 95% CI, 0.46-0.55). Finally, HER-2 status, determined by unspecified FISH assay methods at outside/local laboratories, showed a 92% agreement rate (kappa statistic, 0.83; 95% CI, 0.73-0.93), with FISH done at the BCIRG central laboratories. Compared with the HER-2 status determined at centralized BCIRG reference laboratories, these results indicate superiority of FISH to accurately and reproducibly assess tumors for the HER-2 alteration at outside/local laboratories for entry to clinical trials.

  17. Affibody Molecules for In vivo Characterization of HER2-Positive Tumors by Near-Infrared Imaging

    PubMed Central

    Lee, Sang Bong; Hassan, Moinuddin; Fisher, Robert; Chertov, Oleg; Chernomordik, Victor; Kramer-Marek, Gabriela; Gandjbakhche, Amir; Capala, Jacek

    2012-01-01

    Purpose HER2 overexpression has been associated with a poor prognosis and resistance to therapy in breast cancer patients. We are developing molecular probes for in vivo quantitative imaging of HER2 receptors using near-infrared optical imaging. The goal is to provide probes that will minimally interfere with the studied system, i.e., whose binding does not interfere with the binding of the therapeutic agents, and whose effect on the target cells is minimal. Experimental Design We used three different types of HER2-specific Affibody molecules [monomer ZHER2:342, dimer (ZHER2:477)2, and albumin-binding domain-fused-(ZHER2:342)2] as targeting agents, and labeled them with Alexa Fluor dyes. Trastuzumab was also conjugated, using commercially available kits, as a standard control. The resulting conjugates were characterized in vitro by toxicity assays, Biacore affinity measurements, flow cytometry, and confocal microscopy. Semi-uantitative in vivo near-infrared optical imaging studies were carried out using mice with subcutaneous xenografts of HER2-positive tumors. Results The HER2-specific Affibody molecules were not toxic to HER2-overexpressing cells and their binding to HER2 did interfere with neither binding nor effectives of trastuzumab. The binding affinities and specificities of the Affibody-Alexa Fluor fluorescent conjugates to HER2 were unchanged or minimally affected by the modifications. Pharmacokinetics and biodistribution studies showed the albumin-binding domain-fused-(ZHER2:342)2-Alexa Fluor 750 conjugate to be an optimal probe for optical imaging of HER2 in vivo. Conclusion Our results suggest that Affibody-Alexa Fluor conjugates may be used as a specific near-infrared probe for the non-invasive semi-quantitative imaging of HER2 expression in vivo. PMID:18559604

  18. Paraneoplastic cerebellar degeneration with anti-Yo antibody in a patient with HER2/neu overexpressing breast cancer: a case report with a current literature review.

    PubMed

    Ogita, Shin; Llaguna, Omar H; Feldman, Sheldon M; Blum, Ronald

    2008-01-01

    Paraneoplastic cerebellar degeneration (PCD) is a rare paraneoplastic syndrome, occurring in <1% of breast cancers. We describe a 32-year-old female presenting with ataxia subsequently diagnosed with poorly differentiated breast cancer. She was serum anti-Yo antibody positive, with estrogen/progesterone receptor negative and HER2/neu receptor positive breast cancer. Neurological symptoms progressed despite modified radical mastectomy, supraclavicular lymphadenectomy, intravenous immunoglobulin, corticosteroids, transtuzumab, and combination chemotherapy. We performed a literature search, which found a possible association between anti-Yo positive PCD and HER2/neu-expressing breast cancer.

  19. HER2 Amplification and HER2 Mutation Are Distinct Molecular Targets in Lung Cancers.

    PubMed

    Li, Bob T; Ross, Dara S; Aisner, Dara L; Chaft, Jamie E; Hsu, Meier; Kako, Severine L; Kris, Mark G; Varella-Garcia, Marileila; Arcila, Maria E

    2016-03-01

    Human epidermal growth factor receptor 2 gene (HER2 [also known as ERBB2]) alterations have been identified as oncogenic drivers and potential therapeutic targets in lung cancers. The molecular associations of HER2 gene amplification, mutation, and HER2 protein overexpression in lung cancers have not been distinctly defined. To explore these associations, Memorial Sloan Kettering Cancer Center and the University of Colorado combined their data on HER2 alterations in lung cancers. Tumor specimens from 175 patients with lung adenocarcinomas and no prior targeted therapy were evaluated for the presence of HER2 amplification and mutation and HER2 protein overexpression. Amplification was assessed by fluorescence in situ hybridization (FISH) and defined as an HER2-to-chromosome enumeration probe 17 ratio of at least 2.0. Mutation was assessed by fragment analysis, mass spectrometry genotyping, and Sanger sequencing. Overexpression was assessed by immunohistochemical (IHC) staining. The frequencies of HER2 amplification and mutation and HER2 overexpression were calculated and their overlap examined. HER2 amplification was detected by FISH in 5 of 175 cases (3%). HER2 mutation was detected in 4 of 148 specimens (3%), including three identical 12-base pair insertions (p.A775_G776insYVMA) and a 9-base pair insertion, all in exon 20. None of the HER2-mutant cases was amplified. HER2 overexpression (2+ or 3+) on IHC staining was not detected in the 25 specimens available for testing, and negative IHC staining correlated with the negative results according to FISH. HER2 mutations are not associated with HER2 amplification, thus suggesting a distinct entity and therapeutic target. HER2-positive lung cancer may not be an adequate term, and patient cohorts for the study of HER2-targeted agents should be defined by the specific HER2 alteration present. Copyright © 2015 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  20. Recombinant nanocomposites by the clinical drugs of Abraxane® and Herceptin® as sequentially dual-targeting therapeutics for breast cancer.

    PubMed

    Ding, Shuang; Xiong, Jian; Lei, Dan; Zhu, Xiao-Li; Zhang, Hai-Jun

    2018-01-01

    Breast cancer greatly threatens the health of women all over the word despite of several effective drugs. Targeted therapy for breast cancer is limited to human epidermal growth factor receptor 2 (HER2). Herceptin ® , monoclonal antibody against HER2, is now widely used in HER2(+) breast cancer. Abraxane ® , the current gold standard for paclitaxel (PTX) delivery, has shown superiority in breast cancer based on nanoparticle albumin bound technology. Despite these advances, further novel targeted therapy with more improved anti-tumor efficacy for breast cancer is still urgently needed. Here, we report the recombinant nanocomposites (NPs) composed of the above two clinical drugs of Abraxane ® and Herceptin ® (Abra/anti-HER2), which at first migrates to the tumor region through the unique targeting mechanism of human serum albumin (HSA) of Abraxane ® , and sequentially further precisely recognize the HER2(+) breast cancer cells due to Herceptin ® . The Abra/anti-HER2 NPs were fabricated by a "one-step" synthesis using EDC/NHS. In vitro analysis of cell viability, apoptosis and cell cycle revealed that Abra/anti-HER2 NPs showed more anti-tumor efficacy against HER2(+) SK-BR-3 cells than Abraxane ® at equivalent PTX concentration. In addition, in HER2(+) breast cancer xenograft model, Abra/anti-HER2 NPs significantly inhibited tumor growth with less side effects. Moreover, the properties of more precise target and delayed release of PTX were proved by NIRF imaging. Thus, our results indicate that Abra/anti-HER2 NPs could represent a next-generation sequentially dual-targeting therapeutic agent for HER2(+) breast cancer.

  1. Patritumab plus trastuzumab and paclitaxel in human epidermal growth factor receptor 2-overexpressing metastatic breast cancer.

    PubMed

    Mukai, Hirofumi; Saeki, Toshiaki; Aogi, Kenjiro; Naito, Yoichi; Matsubara, Nobuaki; Shigekawa, Takashi; Ueda, Shigeto; Takashima, Seiki; Hara, Fumikata; Yamashita, Tomonari; Ohwada, Shoichi; Sasaki, Yasutsuna

    2016-10-01

    Human epidermal growth factor receptor 3 (HER3) expression in lung and breast cancers has a negative impact on survival. Patritumab, a human anti-HER3 mAb, has shown anticancer activity in preclinical models. This study examined the safety and pharmacokinetics of patritumab in combination with trastuzumab and paclitaxel in patients with HER2-overexpressing metastatic breast cancer. In this open-label, multicenter, dose-escalation, phase Ib study, patients received patritumab 9 or 18 mg/kg plus trastuzumab and paclitaxel at known tolerated doses. Safety and tolerability were assessed based on dose-limiting toxicities and other non-life threatening adverse events. The pharmacokinetic profile for patritumab was determined based on the target trough level. Clinical efficacy was evaluated based on the overall response rate and progression-free survival. Six patients received patritumab 9 mg/kg and 12 received 18 mg/kg. The most common adverse events were diarrhea, alopecia, leukopenia, neutropenia, and maculopapular rash. No dose-limiting toxicities were observed. The target trough serum concentration was achieved in all patients at a dose of 18 mg/kg. Overall response rate was 38.9% and median progression-free survival was 274 days. In conclusion, patritumab plus trastuzumab and paclitaxel was tolerable and efficacious at both doses. We recommend the dose level of 18 mg/kg for future phase II studies. (Clinical trial registration: JapicCTI-121772.). © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Topoisomerase expression and amplification in solid tumours: Analysis of 24,262 patients

    PubMed Central

    Heestand, Gregory M.; Schwaederle, Maria; Gatalica, Zoran; Arguello, David; Kurzrock, Razelle

    2017-01-01

    Background Topoisomerase I (TOPO1) and topoisomerase IIα (TOP2A) are specific targets of multiple chemotherapy drugs. Increased expression of TOPO1 protein and amplification of the TOP2A gene have been associated with treatment response in colorectal and breast cancers, respectively. TOPO1 and TOP2A may be potential therapeutic targets in other malignancies as well. Summary of methods We analysed TOPO1 protein expression and TOP2A gene amplification in patients (n = 24,262 specimens) with diverse cancers. Since HER2 and TOP2A co-amplification have been investigated for predictive value regarding anthracycline benefit, we analysed specimens for HER2 amplification as well. Results Overexpressed TOPO1 protein was present in 51% of the tumours. Four percent of the tumours had TOP2A amplification, with gallbladder tumours and gastroesophageal/oesophageal tumours having rates over 10%. Overall, 4903 specimens were assessed for both TOP2A and HER2 amplification; 129 (2.6%) had co-amplification. High rates (>40%) of HER2 amplification were seen in patients with TOP2A amplification in breast, ovarian, gastroesophageal/oesophageal and pancreatic cancer. Conclusion Our data indicate that increased TOPO1 expression and TOP2A amplification, as well as HER2 co-alterations, are present in multiple malignancies. The implications of these observations regarding sensitivity to chemotherapy not traditionally administered to these tumour types merits investigation. PMID:28728050

  3. C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells.

    PubMed

    Li, Wei; Xu, Ling; Che, Xiaofang; Li, Haizhou; Zhang, Ye; Song, Na; Wen, Ti; Hou, Kezuo; Yang, Yi; Zhou, Lu; Xin, Xing; Xu, Lu; Zeng, Xue; Shi, Sha; Liu, Yunpeng; Qu, Xiujuan; Teng, Yuee

    2018-05-02

    Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Our results suggested that c-Cbl can reverse tamoxifen resistance in HER2-overexpressing breast cancer cells by inhibiting the formation of the ER-c-Src-HER2 complex.

  4. Objective, domain-specific HER2 measurement in uterine and ovarian serous carcinomas and its clinical significance.

    PubMed

    Carvajal-Hausdorf, Daniel E; Schalper, Kurt A; Bai, Yalai; Black, Jonathan; Santin, Alessandro D; Rimm, David L

    2017-04-01

    HER2 overexpression/amplification is identified in up to 40% of uterine serous carcinomas (USC) and 10% of ovarian serous carcinomas (OSC). However, clinical trials using various HER2-targeted agents failed to show significant responses. FDA-approved HER2 assays target only the protein's intracellular domain (ICD) and not the extracellular domain (ECD). Previous quantitative studies in breast cancer by our group have shown that ICD of HER2 is expressed in some cases that do not express the HER2 ECD. We measured HER2 ICD and ECD in USC and OSC samples, and determined their relationship with clinico-pathologic characteristics and survival. We measured HER2 ICD and ECD levels in 2 cohorts of USC and OSC comprising 102 and 175 patients, respectively. HER2 antibodies targeting ICD (CB11) and ECD (SP3) were validated and standardized using the AQUA® method of quantitative immunofluorescence (QIF) and a previously reported HER2 standardization tissue microarray (TMA). Objective, population-based cut-points were used to stratify patients according to HER2 ICD/ECD status. In USC, 8% of patients with high HER2 ICD had low ECD levels (6/75 patients). In OSC, 42% of patients with high HER2 ICD had low ECD levels (29/69 patients). HER2 ICD/ECD status in USC and OSC was not significantly associated with major clinico-pathological features or survival. Using objective, domain-specific HER2 measurement, 8% of USC and 42% of OSC patients with high HER2 ICD levels do not show uniform overexpression of the ECD. This may be related to the presence of p95 HER2, an oncogenic fragment generated by full protein cleavage or alternative initiation of translation. These observations raise the possibility that USC/OSCs expressing low ECD despite being HER2-positive by ICD measurement, may benefit from therapies directed against the intracellular domain (e.g. lapatinib or afatinib) alone or in combination with extracellular domain-directed drugs (e.g. trastuzumab, pertuzumab, T-DM1). Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Near-infrared quantum dots for HER2 localization and imaging of cancer cells.

    PubMed

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.

  6. Association Between Imaging Characteristics and Different Molecular Subtypes of Breast Cancer.

    PubMed

    Wu, Mingxiang; Ma, Jie

    2017-04-01

    Breast cancer can be divided into four major molecular subtypes based on the expression of hormone receptor (estrogen receptor and progesterone receptor), human epidermal growth factor receptor 2, HER2 status, and molecular proliferation rate (Ki67). In this study, we sought to investigate the association between breast cancer subtype and radiological findings in the Chinese population. Medical records of 300 consecutive invasive breast cancer patients were reviewed from the database: the Breast Imaging Reporting and Data System. The imaging characteristics of the lesions were evaluated. The molecular subtypes of breast cancer were classified into four types: luminal A, luminal B, HER2 overexpressed (HER2), and basal-like breast cancer (BLBC). Univariate and multivariate logistic regression analyses were performed to assess the association between the subtype (dependent variable) and mammography or 15 magnetic resonance imaging (MRI) indicators (independent variables). Luminal A and B subtypes were commonly associated with "clustered calcification distribution," "nipple invasion," or "skin invasion" (P <0.05). The BLBC subtype was more commonly associated with "rim enhancement" and persistent inflow type enhancement in delayed phase (P <0.05). HER2 overexpressed cancers showed association with persistent enhancement in the delayed phase on MRI and "clustered calcification distribution" on mammography (P <0.05). Certain radiological features are strongly associated with the molecular subtype and hormone receptor status of breast tumor, which are potentially useful tools in the diagnosis and subtyping of breast cancer. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  7. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor.

    PubMed

    Witters, Lois; Scherle, Peggy; Friedman, Steven; Fridman, Jordan; Caulder, Eian; Newton, Robert; Lipton, Allan

    2008-09-01

    The ErbB family of receptors is overexpressed in numerous human tumors. Overexpression correlates with poor prognosis and resistance to therapy. Use of ErbB-specific antibodies to the receptors (Herceptin or Erbitux) or ErbB-specific small-molecule inhibitors of the receptor tyrosine kinase activity (Iressa or Tarceva) has shown clinical efficacy in several solid tumors. An alternative method of affecting ErbB-initiated tumor growth and survival is to block sheddase activity. Sheddase activity is responsible for cleavage of multiple ErbB ligands and receptors, a necessary step in availability of the soluble, active form of the ligand and a constitutively activated ligand-independent receptor. This sheddase activity is attributed to the ADAM (a disintegrin and metalloprotease) family of proteins. ADAM 10 is the main sheddase of epidermal growth factor (EGF) and HER-2/neu cleavage, whereas ADAM17 is required for cleavage of additional EGF receptor (EGFR) ligands (transforming growth factor-alpha, amphiregulin, heregulin, heparin binding EGF-like ligand). This study has shown that addition of INCB3619, a potent inhibitor of ADAM10 and ADAM17, reduces in vitro HER-2/neu and amphiregulin shedding, confirming that it interferes with both HER-2/neu and EGFR ligand cleavage. Combining INCB3619 with a lapatinib-like dual inhibitor of EGFR and HER-2/neu kinases resulted in synergistic growth inhibition in MCF-7 and HER-2/neu-transfected MCF-7 human breast cancer cells. Combining the INCB7839 second-generation sheddase inhibitor with lapatinib prevented the growth of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo. These results suggest that there may be an additional clinical benefit of combining agents that target the ErbB pathways at multiple points.

  8. Evaluation of HER-2/neu gene amplification and overexpression: comparison of frequently used assay methods in a molecularly characterized cohort of breast cancer specimens.

    PubMed

    Press, Michael F; Slamon, Dennis J; Flom, Kerry J; Park, Jinha; Zhou, Jian-Yuan; Bernstein, Leslie

    2002-07-15

    To compare and evaluate HER-2/neu clinical assay methods. One hundred seventeen breast cancer specimens with known HER-2/neu amplification and overexpression status were assayed with four different immunohistochemical assays and two different fluorescence in situ hybridization (FISH) assays. The accuracy of the FISH assays for HER-2/neu gene amplification was high, 97.4% for the Vysis PathVision assay (Vysis, Inc, Downers Grove, IL) and 95.7% for the the Ventana INFORM assay (Ventana, Medical Systems, Inc, Tucson, AZ). The immunohistochemical assay with the highest accuracy for HER-2/neu overexpression was obtained with R60 polyclonal antibody (96.6%), followed by immunohistochemical assays performed with 10H8 monoclonal antibody (95.7%), the Ventana CB11 monoclonal antibody (89.7%), and the DAKO HercepTest (88.9%; Dako, Corp, Carpinteria, CA). Only the sensitivities, and therefore, overall accuracy, of the DAKO Herceptest and Ventana CB11 immunohistochemical assays were significantly different from the more sensitive FISH assay. Based on these findings, the FISH assays were highly accurate, with immunohistochemical assays performed with R60 and 10H8 nearly as accurate. The DAKO HercepTest and the Ventana CB11 immunohistochemical assay were statistically significantly different from the Vysis FISH assay in evaluating these previously molecularly characterized breast cancer specimens.

  9. Overexpression of HER2 signaling to WAVE2-Arp2/3 complex activates MMP-independent migration in breast cancer.

    PubMed

    Yokotsuka, Mayumi; Iwaya, Keiichi; Saito, Tsuyoshi; Pandiella, Atanasio; Tsuboi, Ryoji; Kohno, Norio; Matsubara, Osamu; Mukai, Kiyoshi

    2011-04-01

    The final signal for triggering the formation of lamellipodia that initiate directional migration of mammalian cells is binding of the Wiskott-Aldrich syndrome (WASP)/WASP family verproline-homologous protein 2 (WAVE2) to the actin-related protein 2 and 3 (Arp2/3) complex. This WAVE2-Arp2/3 signal is suggested to be enhanced in some breast cancers, facilitating invasion, and/or metastasis. Here, we demonstrated one cause of the enhanced signal using four breast cancer cell lines (SKBR3, AU565, MCF7, and MDA-MB-231). The WAVE2-Arp2/3 signal was estimated semi-quantitatively by counting the number of lamellipodia expressing both WAVE2 and Arp2 using high-power confocal laser microscopy. Higher expression of the WAVE2-Arp2/3 signal was detected in SKBR3 and AU565, which have HER2 gene amplification, than in the other two cell lines that lack HER2 gene amplification. Trastuzumab suppressed both the formation of lamellipodia and migration in a Boyden chamber experiment in SKBR3 and AU565. When the HER2 gene was transfected into MCF7, the number of both lamellipodia and migrated cells was increased. This enhancement of migration did not occur in the presence of extracellular matrix, and zymographic analysis showed no clear difference between HER2 gene-transfected cells and MCF7 cells. Immunohistochemical analysis of 115 cases of breast cancer revealed that coexpression of WAVE2 and Arp2 was significantly correlated with HER2-overexpression (P < 0.0001). These data indicate that an abnormal signal resulting from HER2 gene amplification activates lamellipodia formation in breast cancer cells, which initiates their metalloproteinase-independent migration.

  10. Preoperative serum HER2 extracellular domain levels in primary invasive breast cancer.

    PubMed

    Lee, Sae Byul; Lee, Jong Won; Yu, Jong Han; Ko, Beom Seok; Kim, Hee Jeong; Son, Byung Ho; Gong, Gyungyub; Lee, Hee Jin; Kim, Sung-Bae; Jung, Kyung Hae; Ahn, Jin-Hee; Lee, Woochang; Sung, Joohon; Ahn, Sei-Hyun

    2014-12-10

    Despite the preclinical outcomes and biologic significance of the presence of the human epidermal growth factor receptor-2 (HER2) extracellular domain (ECD), there is little evidence supporting the measurement of ECD levels in any clinical setting. The aim of this study was to determine the prevalence of elevated serum HER2 ECD levels, the association between these levels and tissue HER2 overexpression, and the potential clinical prognostic value of HER2 ECD in primary invasive breast cancer. Serum HER2 ECD levels were examined preoperatively in 2,862 consecutive stage I-III primary breast cancer patients between 2007 and 2009. Serum HER2 ECD levels were measured by chemiluminescence immunoassay (ADVIA Centaur), and the tissue HER2 status was assessed by immunohistochemistry and fluorescence in situ hybridization. The cutoff value for the serum level of HER2 ECD was set at 15.2 ng/ml. Among the 2,862 patients, 126 (4.4%) had elevated serum HER2 ECD levels, and HER2 was overexpressed in the tumor tissue of 692 patients (24.2%), with a concordance of 78.7%. Multivariate analysis revealed that elevated serum HER2 ECD was a significant independent prognostic factor for worse distant-metastasis-free survival [DMFS; hazard ratio (HR) = 2.50, 95% confidence interval (CI) = 1.5-4.3, P = 0.001] and breast-cancer-specific survival (BCSS; HR = 2.0, 95% CI = 1.1-3.8, P = 0.036), which were much stronger in patients with tissue HER2-positive tumors (DMFS: HR = 3.8, 95% CI = 2.0-7.0, P < 0.001; BCSS: HR = 2.6, 95% CI = 1.2-5.3, P = 0.012). Given the prevalence of HER2 expression, its measurement as an independent prognostic factor can be clinically useful, particularly in patients with tissue HER2-positive tumors.

  11. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization.

    PubMed

    Pauletti, G; Godolphin, W; Press, M F; Slamon, D J

    1996-07-04

    Amplification and overexpression of the HER-2/neu gene occurs in 25-30% of human breast cancers. This genetic alteration is associated with a poor clinical prognosis in women with either node negative or node positive breast cancers. The initial studies testing this association were somewhat controversial and this controversy was due in large part to significant heterogeneity in both the methods and/or reagents used in testing archival material for the presence of the alteration. These methods included a number of solid matrix blotting techniques for DNA, RNA and protein as well as immunohistochemistry. Fluorescence in situ hybridization (FISH) represents the newest methodologic approach for testing for this genetic alteration. In this study, FISH is compared to Southern, Northern and Western blot analyses as well as immunohistochemistry in a large cohort of archival human breast cancer specimens. FISH was found to be superior to all other methodologies tested in assessing formalin fixed, paraffin embedded material for HER-2/neu amplification. The results from this study also confirm that overexpression of HER-2/neu rarely occurs in the absence of gene amplification in breast cancer (approximately 3% of cases). This method of analysis is rapid, reproducible and extremely reliable in detecting presence of HER-2/neu gene amplification and should have clinical utility.

  12. Hunting for Novel X-Linked Breast Cancer Suppressor Genes in Mouse and Human

    DTIC Science & Technology

    2007-03-01

    display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 01/03/07 2 . REPORT TYPE...and correlated significantly with HER- 2 over-expression, regardless of the status of HER- 2 amplification. In toto, the data demonstrate that FOXP3...is an X-linked breast cancer suppressor gene and an important regulator of the HER- 2 /ErbB2 oncogene. 15. SUBJECT TERMS No subject terms provided 16

  13. H2Mab-77 is a Sensitive and Specific Anti-HER2 Monoclonal Antibody Against Breast Cancer.

    PubMed

    Itai, Shunsuke; Fujii, Yuki; Kaneko, Mika K; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Chang, Yao-Wen; Handa, Saori; Takahashi, Maki; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-08-01

    Human epidermal growth factor receptor 2 (HER2) plays a critical role in the progression of breast cancers, and HER2 overexpression is associated with poor clinical outcomes. Trastuzumab is an anti-HER2 humanized antibody that leads to significant survival benefits in patients with HER2-positive metastatic breast cancers. In this study, we developed novel anti-HER2 monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. Initially, we expressed the full length or ectodomain of HER2 in LN229 glioblastoma cells and then immunized mice with ectodomain of HER2 or LN229/HER2, and performed the first screening by enzyme-linked immunosorbent assays using ectodomain of HER2. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical analyses (fourth screening). Among 100 mAb clones, only three mAbs reacted with HER2 in Western blot, and clone H 2 Mab-77 (IgG 1 , kappa) was selected. Finally, immunohistochemical analyses with H 2 Mab-77 showed sensitive and specific reactions against breast cancer cells, warranting the use of H 2 Mab-77 to detect HER2 in pathological analyses of breast cancers.

  14. The metabolic regulator ERRα, a downstream target of HER2/IGF-1, as a therapeutic target in breast cancer

    PubMed Central

    Chang, Ching-yi; Kazmin, Dmitri; Jasper, Jeff S.; Kunder, Rebecca; Zuercher, William J.; McDonnell, Donald P.

    2011-01-01

    Summary A genomic signature designed to assess the activity of the estrogen-related receptor alpha (ERRα) was used to profile more than eight hundred breast tumors, revealing a shorter disease-free survival in patients with tumors exhibiting elevated receptor activity. Importantly, this signature also predicted the ability of an ERRα antagonist, XCT790, to inhibit proliferation in cellular models of breast cancer. Using a chemical genomic approach, it was determined that activation of the Her2/IGF-1 signaling pathways and subsequent C-MYC stabilization upregulate the expression of peroxisome proliferator-activated receptor gamma coactivator-1 beta (PGC-1β), an obligate cofactor for ERRα activity. PGC-1β knockdown in breast cancer cells impaired ERRα signaling and reduced cell proliferation, implicating a functional role for PGC1β/ERRα in the pathogenesis of breast cancers. Significance Overexpression of ERRα has been correlated with progression of breast and ovarian cancers in several small studies. Using a genomic approach, we defined specific aspects of the activity of this receptor that track with shorter disease-free survival in multiple cohorts of breast cancer patients. Importantly, cellular models of breast cancer exhibiting high ERRα activity are more sensitive to growth inhibition by an ERRα antagonist. This finding highlights a promising treatment strategy for those aggressive tumors that currently have limited therapeutic options. PMID:22014575

  15. Human Epidermal Growth Factor Receptor 2 (HER-2/neu)-Directed Therapy for Rare Metastatic Epithelial Tumors with HER-2 Amplification

    PubMed Central

    Shin, Daniel Sanghoon; Sherry, Timothy; Kallen, Michael E.; Wong, Steven; Drakaki, Alexandra

    2016-01-01

    Case 1 A 67-year-old Asian female was diagnosed with locally advanced high-grade salivary duct carcinoma in June 2011. Molecular analysis revealed human epidermal growth factor receptor 2 (HER-2) amplification. She received adjuvant therapy with carboplatin/paclitaxel/ trastuzumab and maintenance of trastuzumab. Upon disease progression, trastuzumab could not be continued due to lack of financial coverage. Instead, she was treated with compassionate use of lapatinib from April 2013 and standard 5-fluorouracil. Her disease ultimately progressed and she expired later in 2013. Case 2 A 68-year-old Asian male was diagnosed with extramammary Paget's disease of the scrotum with HER-2 amplification in May 2011. He received 6 cycles of adjuvant trastuzumab/docetaxel/carboplatin followed by maintenance trastuzumab, which was changed to compassionate use of lapatinib as his insurance did not cover further administration of trastuzumab. He showed clinical benefits from single-agent lapatinib and a combination of lapatinib/capecitabine upon progression to the single-agent lapatinib. Ultimately, he was started on ado-trastuzumab emtansine, which was approved at that time by the FDA for HER-2-positive breast cancer progressed on trastuzumab. He is having clinical and radiographic complete response based on current imaging and normalization of his tumor markers. Conclusion HER-2-targeted therapy should be considered for tumors with HER-2 amplification. In our case series, we would like to emphasize this approach in other rare histologies. Specifically, our patient with extramammary Paget's disease of the scrotum represents the first reported case of a non-breast, non-gastric tumor with HER-2 overexpression with complete clinical and radiographic response to HER-2-targeted therapy PMID:27403128

  16. Hormone Receptor Status in Breast Cancer and its Relation to Age and Other Prognostic Factors

    PubMed Central

    Pourzand, Ali; Fakhree, M. Bassir A.; Hashemzadeh, Shahryar; Halimi, Monireh; Daryani, Amir

    2011-01-01

    Background: Increasing evidence shows the importance of young age, estrogen receptor (ER), progesterone receptor (PR) status, and HER-2 expression in patients with breast cancers. Patients and methods: We organized an analytic cross-sectional study of 105 women diagnosed with breast cancer who have been operated on between 2008 to 2010. We evaluated age, size, hormone receptor status, HER-2 and P53 expression as possible indicator of lymph node involvement. Results: There is a direct correlation between positive progesterone receptor status and being younger than 40 (P < 0.05). Also, compared with older women, young women had tumors that were more likely to be large in size and have higher stages (P < 0.05). Furthermore patients with negative progesterone receptor status were more likely to have HER-2 overexpression (P < 0.05). The differences in propensity to lymph node metastasis between hormone receptor statuses were not statically significant. Conclusions: Although negative progesterone receptor tumors were more likely to have HER-2 overexpression, it is possible that higher stage and larger size breast cancer in younger women is related to positive progesterone receptor status. PMID:21695095

  17. Importance of confirming HER2 overexpression of recurrence lesion in breast cancer patients.

    PubMed

    Nakamura, Rikiya; Yamamoto, Naohito; Onai, Yasuhide; Watanabe, Yoshihiro; Kawana, Hidetada; Miyazaki, Masaru

    2013-10-01

    The systemic management of metastatic breast cancer (MBC) is usually based on ER or HER2 status of the primary tumor. However, the hormonal status or the overexpression of human epidermal growth factor 2 (HER2) may change in every metastatic site because of the effects of the long-term treatment of metastatic cancer with endocrine therapy, chemotherapy, or biological agents. The purpose of this study was to investigate the frequency of change in HER2 expression in primary and distant metastatic tumors in breast cancer patients. Another objective of the study was to examine the effect of the clinical therapy on the basis of HER2 expression in a metastatic tumor. In our hospital between 1991 to December 2010, retrospectively, 156 patients had biopsy or surgical resection of their metastatic site. All sample were analyzed pathologically to confirm metastatic disease and, second, to evaluate HER2 status by immunohistochemistry or by FISH. The recurrence lesions were resected from the breast or lymph node (n = 67, local lesion), brain (n = 27), lung (n = 16), liver (n = 20), bone (n = 16), and from the stomach, intestine, ovary, and uterus (n = 10). Loss, increase, or no change in HER2 overexpression was observed in 3, 5, and 92%, respectively. Positive changes of HER2 in metastatic sites were 3 (4%) local lesion, 3 (11%) brain, 1 (7%) lung, 0 (0%) liver, 2 (17%) bone, and 0 (0%) others. In 3 of these 8 patients, trastuzumab was administered. In 2 of 3 patients, trastuzumab achieved long stable disease. The negative conversion rate of HER2 expression in metastatic lesions was 37% in patients treated with trastuzumab and 6% in those not treated with trastuzumab, a significant difference between the two groups (P < 0.05). The results of this study emphasize the significance of confirming HER2 expression in a recurrence lesion. For patients with positive conversion of HER2 status, more treatment options may be available. On the other hand, the rate of loss of HER2 expression was high in patients treated with trastuzumab, suggesting that the results of biopsy may provide an opportunity to reconsider treatment strategies for these patients.

  18. Trastuzumab- and Fab′ fragment-modified curcumin PEG-PLGA nanoparticles: preparation and evaluation in vitro and in vivo

    PubMed Central

    Ni, Ling; Zhang, Liping; Yan, Xiuju; Jiang, Ying; Mu, Hongjie; Wu, Zimei; Sun, Kaoxiang; Li, Youxin

    2018-01-01

    Introduction Nanoparticles (NPs) modified with bio-ligands represent a promising strategy for active targeted drug delivery to tumour. However, many targeted ligands, such as trastuzumab (TMAB), have high molecular weight, limiting their application for targeting. In this study, we prepared Fab’ (antigen-binding fragments cut from TMAB)-modified NPs (Fab′-NPs) with curcumin (Cur) as a model drug for more effective targeting of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu), which is overexpressed on breast cancer cells. Material and methods The release kinetics was conducted by dialysis bags. The ability to kill HER2-overexpressing BT-474 cells of Fab′-Cur-NPs compared with TMAB-Cur-NPs was conducted by cytotoxicity experiments. Qualitative and quantitative cell uptake studies using coumarin-6 (fluorescent probe)-loaded NPs were performed by fluorescence microscopy and flow cytometry. Pharmacokinetics and biodistribution experiments in vivo were assessed by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Results The release kinetics showed that both Fab′-Cur-NPs and TMAB-Cur-NPs provided continuous, slow release of curcumin for 72 h, with no significant difference. In vitro cytotoxicity experiments showed that Fab′-Cur-NPs manifested prominent ability to kill HER2-overexpressing BT-474 cells compared with TMAB-Cur-NPs. Qualitative and quantitative cell uptake studies indicated that the accumulation of Fab′-NPs was greater than that of TMAB-NPs in BT-474 (HER2+) cells; However, there was no significant difference in MDA-MB-231 (HER2−) cells. Pharmacokinetics and biodistribution experiments in vivo demonstrated that the half-life (t1/2) and area under the blood concentration-time curve (AUC0-t) of Fab′-Cur-NPs increased 5.30-fold and 1.76-fold relative to those of TMAB-Cur-NPs, respectively. Furthermore, the tumor accumulation of Fab′-Cur-NPs was higher than that of TMAB-Cur-NPs. Conclusion Fab′ fragment has greater capacity than the intact antibody to achieve tumor targeting through NP-based delivery. PMID:29606874

  19. Systematic Review of the Side Effects Associated With Anti-HER2-Targeted Therapies Used in the Treatment of Breast Cancer, on Behalf of the EORTC Quality of Life Group.

    PubMed

    Sodergren, Samantha C; Copson, Ellen; White, Alice; Efficace, Fabio; Sprangers, Mirjam; Fitzsimmons, Deborah; Bottomley, Andrew; Johnson, Colin D

    2016-06-01

    Targeted therapies (TTs), notably trastuzumab, have improved outcomes for breast cancer characterised by overexpression of human epidermal growth factor receptors including HER2. Compared with chemotherapy treatments, TTs are more specific in their targets and are delivered over longer periods of time, thus presenting different side-effect profiles. The objective of this paper is to systematically review and describe the side effects associated with TTs used in the adjuvant and metastatic settings for HER2+ breast cancer. The MEDLINE, EMBASE, CINAHL, Web of Science and Cochrane Library databases were searched from January 2007 to March 2015 to identify clinical trials and prospective studies reporting toxicities associated with TTs (mainly trastuzumab and lapatinib) used without other therapies in the treatment of HER2-positive breast cancer. Two independent reviewers selected papers based on their titles and abstracts. All papers selected by either reviewer were included. A third reviewer extracted and tabulated the relevant data using a data extraction form. We identified 5478 papers, of which 299 were reviewed and 18 trials identified involving 6980 patients. A total of 66 side effects were identified, including 46 "patient-based" symptoms and 20 "medically defined" outcomes. Side effects were more common for patients treated with therapies other than trastuzumab or with dual-HER2 regimens and for patients with metastatic disease. Diarrhoea and skin rash were the most prevalent symptoms, experienced by 29 % and 22 % of patients overall, respectively. There were 119 (2 %) cardiac events reported, and these were not exclusive to trastuzumab-treated patients. The majority of side effects (n = 52) were experienced by 1 % or less of patients and were predominantly of grade 1/2 toxicity. This systematic review provides a detailed analysis of side effects of HER2+ therapies in a large number of patients included in trials, enabling an accurate estimate of prevalence and a complete understanding of the patients' experience. This will help clinicians and patients in treatment planning.

  20. Assessing the New American Society of Clinical Oncology/College of American Pathologists Guidelines for HER2 Testing by Fluorescence In Situ Hybridization: Experience of an Academic Consultation Practice.

    PubMed

    Press, Michael F; Villalobos, Ivonne; Santiago, Angela; Guzman, Roberta; Cervantes, Monica; Gasparyan, Armen; Campeau, Anaamika; Ma, Yanling; Tsao-Wei, Denice D; Groshen, Susan

    2016-04-15

    Context .- Evaluation of HER2 gene amplification by fluorescence in situ hybridization (FISH) was changed by recent American Society of Clinical Oncology/College of American Pathologists (ASCO-CAP) guidelines. Objective . -To determine frequencies and assess patterns of HER2 protein expression for each ASCO-CAP guideline FISH category among 7526 breast cancers accrued to our consultation practice. Design .- We retrospectively reevaluated the HER2 FISH status of breast cancers in our consultation practice according to ASCO-CAP FISH guidelines, and documented HER2 protein levels in each category. Results . -According to new guidelines, 17.7% of our consultation breast cancers were "ISH-positive" with HER2:CEP17 FISH ratios ≥2.0 and average HER2 gene copies per cell ≥4.0 (group 1); 0.4% were "ISH-positive" with ratios ≥2.0 and average copies <4.0 (group 2); 0.6% were "ISH-positive" with ratios <2.0 and average copies ≥6.0 (group 3); 4.6% were "ISH-equivocal" with ratios <2.0 and average copies ≥4.0 and <6.0 (group 4); and 76.7% were "ISH-negative" with ratios <2.0 and average copies <4.0 (group 5). However, only groups 1 (HER2 amplified) and 5 (HER2 not amplified) agreed with our previously reported status, and only these groups demonstrated the expected immunohistochemistry status, overexpression and low expression, respectively. Groups 2 and 4 breast cancers lacked overexpression, whereas group 3 was not significantly associated with either increased or decreased HER2 expression. Conclusions .- Although the status of approximately 95% of our cases (groups 1 and 5) is not affected by the new guidelines, those of the other 5% (groups 2-4) conflict with previous HER2 gene amplification status and with HER2 status by immunohistochemistry.

  1. Trastuzumab-Resistant Luminal B Breast Cancer Cells Show Basal-Like Cell Growth Features Through NF-κB-Activation

    PubMed Central

    Kanzaki, Hirotaka; Mukhopadhya, Nishit K.; Cui, Xiaojiang; Ramanujan, V. Krishnan

    2016-01-01

    A major clinical problem in the treatment of breast cancer is mortality due to metastasis. Understanding the molecular mechanisms associated with metastasis should aid in designing new therapeutic approaches for breast cancer. Trastuzumab is the main therapeutic option for HER2+ breast cancer patients; however, the molecular basis for trastuzumab resistance (TZR) and subsequent metastasis is not known. Earlier, we found expression of basal-like molecular markers in TZR tissues from patients with invasive breast cancer.(1) The basal-like phenotype is a particularly aggressive form of breast cancer. This observation suggests that TZR might contribute to an aggressive phenotype. To understand if resistance to TZR can lead to basal-like phenotype, we generated a trastuzumab-resistant human breast cancer cell line (BT-474-R) that maintained human epidermal growth factor receptor 2 (HER2) overexpression and HER2 mediated signaling. Analysis showed that nuclear factor-kappa B (NF-κB) was constitutively activated in the BT-474-R cells, a feature similar to the basal-like tumor phenotype. Pharmacologic inhibition of NF-κB improved sensitivity of BT-474-R cells to trastuzumab. Interestingly, activation of HER2 independent NF-κB is not shown in luminal B breast cancer cells. Our study suggests that by activating the NF-κB pathway, luminal B cells may acquire a HER2+ basal-like phenotype in which NF-κB is constitutively activated; this notion is consistent with the recently proposed “progression through grade” or “evolution of resistance” hypothesis. Furthermore, we identified IKK-α/IKK-β and nuclear accumulation of RelA/p65 as the major determinants in the resistant cells. Thus our study additionally suggests that the nuclear accumulation of p65 may be a useful marker for identifying metastasis-initiating tumor cells and targeting RelA/p65 may limit metastasis of breast and other cancers associated with NF-κB activation. PMID:26871511

  2. Could HER2 Heterogeneity Open New Therapeutic Options in Patients with HER2-Primary Breast Cancer

    DTIC Science & Technology

    2015-10-01

    purpose of this study is to determine if targeted imaging with a HER2 targeting PET tracer can detect HER2-positive metastases in patients with HER2... PET /CT. Two of five patients with suspicious foci had biopsy proven HER2-positive metastases. In this early stage clinical trial, 89 Zr-trastuzumab... PET /CT may detect HER2-positive metastases in patients with HER2-negtive primary breast cancer. This is an initial proof-of-concept that targeted

  3. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer.

    PubMed

    Merkin, Ross D; Vanner, Elizabeth A; Romeiser, Jamie L; Shroyer, A Laurie W; Escobar-Hoyos, Luisa F; Li, Jinyu; Powers, Robert S; Burke, Stephanie; Shroyer, Kenneth R

    2017-04-01

    Clinicopathological features of breast cancer have limited accuracy to predict survival. By immunohistochemistry (IHC), keratin 17 (K17) expression has been correlated with triple-negative status (estrogen receptor [ER]/progesterone receptor/human epidermal growth factor receptor-2 [HER2] negative) and decreased survival, but K17 messenger RNA (mRNA) expression has not been evaluated in breast cancer. K17 is a potential prognostic cancer biomarker, targeting p27, and driving cell cycle progression. This study compared K17 protein and mRNA expression to ER/progesterone receptor/HER2 receptor status and event-free survival. K17 IHC was performed on 164 invasive breast cancers and K17 mRNA was evaluated in 1097 breast cancers. The mRNA status of other keratins (16/14/9) was evaluated in 113 ER - /HER2 - ductal carcinomas. IHC demonstrated intense cytoplasmic and membranous K17 localization in myoepithelial cells of benign ducts and lobules and tumor cells of ductal carcinoma in situ. In ductal carcinomas, K17 protein was detected in most triple-negative tumors (28/34, 82%), some non-triple-negative tumors (52/112, 46%), but never in lobular carcinomas (0/15). In ductal carcinomas, high K17 mRNA was associated with reduced 5-year event-free survival in advanced tumor stage (n = 149, hazard ratio [HR] = 3.68, P = .018), and large (n = 73, HR = 3.95, P = .047), triple-negative (n = 103, HR = 2.73, P = .073), and ER - /HER2 - (n = 113, HR = 2.99, P = .049) tumors. There were significant correlations among keratins 17, 16, 14, and 9 mRNA levels suggesting these keratins (all encoded on chromosome 17) could be coordinately expressed in breast cancer. Thus, K17 is expressed in a subset of triple-negative breast cancers, and is a marker of poor prognosis in patients with advanced stage and ER - /HER2 - breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Is the skin a sanctuary for breast cancer cells during treatment with anti-HER2 antibodies?

    PubMed

    Graziano, Vincenzo; Scognamiglio, Maria Teresa; Zilli, Marinella; Giampietro, Jamara; Vici, Patrizia; Natoli, Clara; Grassadonia, Antonino

    2015-01-01

    The occurrence of skin metastases is a common event in patients affected by advanced breast cancer, usually associated with systemic disease progression. Here we describe 2 cases of diffuse cutaneous metastases from HER2-overexpressing breast cancer occurring despite a dramatic response in liver and bone, respectively, during treatment with anti-HER2 antibodies Trastuzumab and Pertuzumab. We discuss the reasons for this discrepancy and suggest a possible implication of impaired immune response in the skin. Future research should provide strategies to overcome the induction of immune privilege in the skin in order to avoid discontinuation of effective treatments.

  5. E2F activators signal and maintain centrosome amplification in breast cancer cells.

    PubMed

    Lee, Mi-Young; Moreno, Carlos S; Saavedra, Harold I

    2014-07-01

    Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2(+) cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2(+) cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2(+) breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2.

  6. Stability of the recombinant anti‑erbB2 scFv‑Fc‑interleukin‑2 fusion protein and its inhibition of HER2‑overexpressing tumor cells.

    PubMed

    Du, Yu-Jia; Lin, Ze-Min; Zhao, Ying-Hua; Feng, Xiu-Ping; Wang, Chang-Qing; Wang, Gang; Wang, Chun-Di; Shi, Wei; Zuo, Jian-Ping; Li, Fan; Wang, Cheng-Zhong

    2013-02-01

    The anti‑erbB2 scFv‑Fc‑IL‑2 fusion protein (HFI) is the basis for development of a novel targeted anticancer drug, in particular for the treatment of HER2‑positive cancer patients. HFI was fused with the anti‑erbB2 antibody and human IL‑2 by genetic engineering technology and by antibody targeting characteristics of HFI. IL‑2 was recruited to target cells to block HER2 signaling, inhibit or kill tumor cells, improve the immune capacity, reduce the dose of antibody and IL‑2 synergy. In order to analyse HFI drug ability, HFI plasmid stability was verified by HFI expression of the trend of volume changes. Additionally, HFI could easily precipitate and had progressive characteristics and thus, the buffer system of the additive phosphate‑citric acid buffer, arginine, Triton X‑100 or Tween‑80, the establishment of a microfiltration, ion exchange, affinity chromatography and gel filtration chromatography‑based purification process were explored. HFI samples were obtained according to the requirements of purity, activity and homogeneity. In vivo, HFI significantly delayed HER2 overexpression of non‑small cell lung cancer (Calu‑3) in human non‑small cell lung cancer xenografts in nude mice, and the inhibition rate was more than 60% (P<0.05) in the group treated with 1 mg/kg the HFI dose; HFI significantly inhibited HER2 expression of breast cancer (FVB/neu) transgenic mouse tumor growth in 1 mg/kg of the HFI dose group, and in the following treatment the 400 mm3 tumors disappeared completely. Combined with other HFI test data analysis, HFI not only has good prospects, but also laid the foundation for the development of antibody‑cytokine fusion protein‑like drugs.

  7. Prime-boost vaccination with plasmid and adenovirus gene vaccines control HER2/neu+ metastatic breast cancer in mice.

    PubMed

    Wang, Xiaoyan; Wang, Jian-Ping; Rao, Xiao-Mei; Price, Janet E; Zhou, Heshan S; Lachman, Lawrence B

    2005-01-01

    Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.

  8. Mesoporous silica nanoparticles as a breast cancer targeting contrast agent for ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Milgroom, Andrew Carson

    Current clinical use of ultrasound for breast cancer diagnostics is strictly limited to a role as a supplementary detection method to other modalities, such as mammography or MRI. A major reason for ultrasound’s role as a secondary method is its inability to discern between cancerous and non-cancerous bodies of similar density, like dense calcifications or benign fibroadenomas. Its detection capabilities are further diminished by the variable density of the surrounding breast tissue with the progression of age. Preliminary studies suggest that mesoporous silica nanoparticles (MSNs) are a good candidate as an in situ contrast agent for ultrasound. By tagging the silica particle surface with the cancer-targeting antibody trastuzumab (Herceptin), suspect regions of interest can be better identified in real time with standard ultrasound equipment. Once the silica-antibody conjugate is injected into the bloodstream and enters the cancerous growth’s vasculature, the antibody arm will bind to HER2, a cell surface receptor known to be dysfunctional or overexpressed in certain types of breast cancer. As more particles aggregate at the cell surface, backscatter of the ultrasonic waves increases as a result of the higher porous silica concentration. This translates to an increased contrast around the lesion boundary. Tumor detection through ultrasound contrast enhancement provides a tremendous advantage over current cancer diagnostics because is it significantly cheaper and can be monitored in real time. Characterization of MCM-41 type MSNs suggests that these particles have sufficient stability and particle size distribution to penetrate through fenestrated tumor vasculature and accumulate in HER2+ breast cancer cells through the enhanced permeation and retention (EPR) effect. A study of acoustic properties showed that particle concentration is linearly correlated to image contrast in clinical frequency-range ultrasound, although less pronounced than typical microbubble-type contrast agents. In vitro studies using cells with varied levels of HER2 expression demonstrated the selectivity of the MSN-Herceptin conjugate to cells with HER2 overexpression. Fluorescence imaging suggest these images remain surface-bound and are not incorporated into the cell body. This study demonstrates the potential of MSNs as a stable, safe, and effective imaging contrast agent for ultrasound-based cancer diagnostics. Ultimately this work will contribute towards the improvement of diagnostic alternatives to conventional ionizing radiation-intensive imaging—such as MRI or X-ray—without compromising the specificity of the test.

  9. From bench to bedside: What do we know about hormone receptor-positive and human epidermal growth factor receptor 2-positive breast cancer?

    PubMed

    Wu, Victoria Shang; Kanaya, Noriko; Lo, Chiao; Mortimer, Joanne; Chen, Shiuan

    2015-09-01

    Breast cancer is a heterogeneous disease. Thanks to extensive efforts from research scientists and clinicians, treatment for breast cancer has advanced into the era of targeted medicine. With the use of several well-established biomarkers, such as hormone receptors (HRs) (i.e., estrogen receptor [ER] and progesterone receptor [PgR]) and human epidermal growth factor receptor-2 (HER2), breast cancer patients can be categorized into multiple subgroups with specific targeted treatment strategies. Although therapeutic strategies for HR-positive (HR+) HER2-negative (HER2-) breast cancer and HR-negative (HR-) HER2-positive (HER2+) breast cancer are well-defined, HR+ HER2+ breast cancer is still an overlooked subgroup without tailored therapeutic options. In this review, we have summarized the molecular characteristics, etiology, preclinical tools and therapeutic options for HR+ HER2+ breast cancer. We hope to raise the attention of both the research and the medical community on HR+ HER2+ breast cancer, and to advance patient care for this subtype of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The Immunoexpression of Glucocorticoid Receptors in Breast Carcinomas, Lactational Change, and Normal Breast Epithelium and Its Possible Role in Mammary Carcinogenesis

    PubMed Central

    Wazir, Javed Fayyaz; Brahmi, Urmil Prabha; Fakhro, Abdul Rahman

    2017-01-01

    The role of estrogen and progesterone receptors in breast cancer biology is well established. In contrast, other steroid hormones are less well studied. Glucocorticoids (GCs) are known to play a role in mammary development and differentiation; thus, it is of interest to attempt to delineate their immunoexpression across a spectrum of mammary epithelia. Aim. To delineate the distribution pattern of glucocorticoid receptors (GRs) in malignant versus nonmalignant epithelium with particular emphasis on lactational epithelium. Materials and Methods. Immunohistochemistry (IHC) for GRs was performed on archival formalin-fixed paraffin-embedded tissue blocks of 96 cases comprising 52 invasive carcinomas, 21 cases with lactational change, and 23 cases showing normal mammary tissue histology. Results. Results reveal an overexpression of GRs in mammary malignant epithelium as compared to both normal and lactational groups individually and combined. GR overexpression is significantly more pronounced in HER-2-negative cancers. Discussion. This is the first study to compare GR expression in human lactating epithelium versus malignant and normal epithelium. The article discusses the literature related to the pathobiology of GCs in the breast with special emphasis on breast cancer. Conclusion. The lactational epithelium did not show overexpression of GR, while GR was overexpressed in mammary NST (ductal) carcinoma, particularly HER-2-negative cancers. PMID:29348941

  11. Clinical Usefulness of a One-Tube Nested Reverse Transcription Quantitative Polymerase Chain Reaction Assay for Evaluating Human Epidermal Growth Factor Receptor 2 mRNA Overexpression in Formalin-Fixed and Paraffin-Embedded Breast Cancer Tissue Samples.

    PubMed

    Wang, Hye-Young; Ahn, Sungwoo; Park, Sunyoung; Kim, SeungIl; Lee, Hyeyoung

    2017-01-01

    Currently, the two main methods used to analyze human epidermal growth factor receptor 2 (HER2) amplification or overexpression have a limited accuracy and high costs. These limitations can be overcome by the development of complementary quantitative methods. In this study, we analyzed HER2 mRNA expression in clinical formalin-fixed and paraffin-embedded (FFPE) samples using a one-tube nested reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. We measured expression relative to 3 reference genes and compared the results to those obtained by conventional immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays with 226 FFPE breast cancer tissue samples. The one-tube nested RT-qPCR assay proved to be highly sensitive and specific based on comparisons with IHC (96.9 and 97.7%, respectively) and FISH (92.4 and 92.9%, respectively) obtained with the validation set. Comparisons with clinicopathological data revealed significant associations between HER2 overexpression and TNM stage (p < 0.01), histological type (p < 0.01), ER status (p < 0.001), PR status (p < 0.05), HER2 status (p < 0.001), and molecular subtypes (p < 0.001). Based on these findings, our one-tube nested RT-qPCR assay is a potentially useful and complementary screening tool for the detection of HER2 mRNA overexpression. © 2016 S. Karger AG, Basel.

  12. Synthesis and characterization of Her2-NLP peptide conjugates targeting circulating breast cancer cells: cellular uptake and localization by fluorescent microscopic imaging.

    PubMed

    Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu

    2015-01-01

    To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron emitting radionuclide.

  13. Remarkable response with pembrolizumab plus albumin-bound paclitaxel in 2 cases of HER2-positive metastatic breast cancer who have failed to multi-anti-HER2 targeted therapy.

    PubMed

    Li, Bian; Tao, Wang; Shao-Hua, Zhang; Ze-Rui, Qu; Fu-Quan, Jin; Fan, Li; Ze-Fei, Jiang

    2018-04-03

    In clinical practice, one subgroup patients of breast cancer might have developed resistance to multi-anti-HER2 targeted drugs(trastuzumab, lapatinib and/or T-DM1) and can not benefit from the anti-HER2 targeted therapy continuously. We attempt to change the next therapic way for these patients. Two patients with metastatic breast cancer who have failed to multi-anti-HER2 targeted therapy were treated with pembrolizumab (2 mg/Kg, day1) plus albumin-bound paclitaxel (125 mg/m 2 , day1,8) every 3 weeks. CT evaluation and HER2 ECD test were performed every 2 cycles. Both of the two patients achieved remarkable response with Partial Remission (PR), meanwhile serum HER2 ECD levels (the upper normal limit is 15 ng/ml) showed a remarkable decreases(compared to the base line decreases 75% and 60% respectively). The results indicate that regimen of pembrolizumab combination with albumin-bound paclitaxel might produce response in patients with HER2-positive metastatic breast cancer who have failed to multi-anti-HER2 targeted therapy.

  14. Synthesis, Characterization, and Biological Evaluation of Anti-HER2 Indocyanine Green-Encapsulated PEG-Coated PLGA Nanoparticles for Targeted Phototherapy of Breast Cancer Cells.

    PubMed

    Lee, Yu-Hsiang; Lai, Yun-Han

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2)-overexpressed breast cancer is known to be more aggressive and resistant to medicinal treatment and therefore to whom an alternative therapeutics is needed. Indocyanine green (ICG) has been widely exploited in breast cancer phototherapy. However, drawbacks of accelerated degradation and short half-life (2-4 min) in blood seriously hamper its use in the clinic. To overcome these challenges, an anti-HER2 ICG-encapsulated polyethylene glycol-coated poly(lactic-co-glycolic acid) nanoparticles (HIPPNPs) were developed in this study. Through the analyses of degradation rate coefficients of ICG with and without polymeric encapsulation, the photostability of HIPPNP-entrapped ICG significantly enhanced 4 folds (P < 0.05) while its thermal stabilities at 4 and 37°C significantly enhanced 5 and 3 (P < 0.05 for each) folds, respectively, under equal lighting and/or heating treatment for 48 h. The target specificity of HIPPNPs to HER2-positive cells was demonstrated based on a 6-fold (P < 0.05) enhancement of uptake efficiency of HIPPNPs in MDA-MB-453/HER2(+) cells within 4 h as compared with that in MCF7/HER2(-) cells. Moreover, the HIPPNPs with ≤ 25 μM ICG equivalent were nontoxic to cells in the absence of light illumination, and enabled to generate similar amount of singlet oxygen and hyperthermia effect as compared with that used by free ICG upon NIR irradiation. After 808 nm-laser irradiation with intensity of 6 W/cm2 for 5 min, the viability of MDA-MB-453 cells pre-treated by HIPPNPs with ≥ 5 μM ICG equivalent for 4 h significantly reduced as compared with that treated by equal concentration of free ICG (P < 0.05) and > 90% of the cells were eradicated while the dose of HIPPNPs was increased to 25 μM ICG equivalent. In summary, the developed HIPPNPs are anticipated as a feasible tool for use in phototherapy of breast cancer cells with HER2 expression.

  15. Application of NIR fluorescent markers to quantify expression level of HER2 receptors in carcinomas in vivo

    NASA Astrophysics Data System (ADS)

    Chernomordik, Victor; Hassan, Moinuddin; Lee, Sang Bong; Zielinski, Rafal; Capala, Jacek; Gandjbakhche, Amir

    2010-02-01

    HER2 overexpression has been associated with a poor prognosis and resistance to therapy in breast cancer patients. However, quantitative estimates of this important characteristic have been limited to ex vivo ELISA essays of tissue biopsies and/or PET. We develop a novel approach in optical imaging, involving specific probes, not interfering with the binding of the therapeutic agents, thus, excluding competition between therapy and imaging. Affibody-based molecular probes seem to be ideal for in vivo analysis of HER2 receptors using near-infrared optical imaging. Fluorescence intensity distributions, originating from specific markers in the tumor area, can reveal the corresponding fluorophore concentration. We use temporal changes of the signal from a contrast agent, conjugated with HER2-specific Affibody as a signature to monitor in vivo the receptors status in mice with different HER2 over-expressed tumor models. Kinetic model, incorporating saturation of the bound ligands in the tumor area due to HER2 receptor concentration, is suggested to analyze relationship between tumor cell characteristics, i.e., HER2 overexpression, obtained by traditional ("golden standard") ex vivo methods (ELISA), and parameters, estimated from the series of images in vivo. Observed correlation between these parameters and HER2 overexpression substantiates application of our approach to quantify HER2 concentration in vivo.

  16. Clearance and Biodistribution of Liposomally Encapsulated Nitroxides: A Model for Targeted Delivery of Electron Paramagnetic Resonance Imaging Probes to Tumors

    PubMed Central

    Burks, Scott R.; Legenzov, Eric A.; Rosen, Gerald M.

    2011-01-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as molecular probes is potentially a powerful tool for the detection and physiological characterization of micrometastatic lesions. Encapsulating nitroxides in anti-HER2 immunoliposomes at high concentrations to take advantage of the “self-quenching” phenomenon of nitroxides allows generation of robust EPR signals in HER2-overexpressing breast tumor cells with minimal background from indifferent tissues or circulating liposomes. We investigated the in vivo pharmacological properties of nitroxides encapsulated in sterically stabilized liposomes designed for long circulation times. We show that circulation times of nitroxides can be extended from hours to days; this increases the proportion of liposomes in circulation to enhance tumor targeting. Furthermore, nitroxides encapsulated in sterically stabilized anti-HER2 immunoliposomes can be delivered to HER2-overexpressing tumors at micromolar concentrations, which should be imageable by EPR. Lastly, after in vivo administration, liposomally encapsulated nitroxide signal also appears in the liver, spleen, and kidneys. Although these organs are spatially distinct and would not hinder tumor imaging in our model, understanding nitroxide signal retention in these organs is essential for further improvements in EPR imaging contrast between tumors and other tissues. These results lay the foundation to use liposomally delivered nitroxides and EPR imaging to visualize tumor cells in vivo. PMID:21737567

  17. HER2 over-expressing high grade endometrial cancer expresses high levels of p95HER2 variant.

    PubMed

    Growdon, Whitfield B; Groeneweg, Jolijn; Byron, Virginia; DiGloria, Celeste; Borger, Darrell R; Tambouret, Rosemary; Foster, Rosemary; Chenna, Ahmed; Sperinde, Jeff; Winslow, John; Rueda, Bo R

    2015-04-01

    Subsets of high grade endometrial cancer (EnCa) over-express HER2 (ERBB2), yet clinical trials have failed to demonstrate any anti-tumor activity utilizing trastuzumab, an approved platform for HER2 positive breast cancer (BrCa). A truncated p95HER2 variant lacking the trastuzumab binding site may confer resistance. The objective of this investigation was to characterize the expression of the p95HER2 truncated variant in EnCa. With institutional approval, 86 high grade EnCa tumors were identified with tumor specimens from surgeries performed between 2000 and 2011. Clinical data were collected and all specimens underwent tumor genotyping, HER2 immunohistochemistry (IHC, HercepTest®), HER2 fluorescent in situ hybridization (FISH), along with total HER2 (H2T) and p95HER2 assessment with VeraTag® testing. Regression models were used to compare a cohort of 86 breast tumors selected for equivalent HER2 protein expression. We identified 44 high grade endometrioid and 42 uterine serous carcinomas (USC). IHC identified high HER2 expression (2+ or 3+) in 59% of the tumors. HER2 gene amplification was observed in 16 tumors (12 USC, 4 endometrioid). Both HER2 gene amplification and protein expression correlated with H2T values. High p95HER2 expression above 2.8RF/mm2 was observed in 53% (n=54) with significant correlation with H2T levels. When matched to a cohort of 107 breast tumors based on HercepTest HER2 expression, high grade EnCa presented with higher p95 levels (p<0.001). These data demonstrate that compared to BrCa, high grade EnCa expresses higher levels of p95HER2 possibly providing rationale for the trastuzumab resistance observed in EnCa. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Interplay between Natural Killer Cells and Anti-HER2 Antibodies: Perspectives for Breast Cancer Immunotherapy

    PubMed Central

    Muntasell, Aura; Cabo, Mariona; Servitja, Sonia; Tusquets, Ignasi; Martínez-García, María; Rovira, Ana; Rojo, Federico; Albanell, Joan; López-Botet, Miguel

    2017-01-01

    Overexpression of the human epidermal growth factor receptor 2 (HER2) defines a subgroup of breast tumors with aggressive behavior. The addition of HER2-targeted antibodies (i.e., trastuzumab, pertuzumab) to chemotherapy significantly improves relapse-free and overall survival in patients with early-stage and advanced disease. Nonetheless, considerable proportions of patients develop resistance to treatment, highlighting the need for additional and co-adjuvant therapeutic strategies. HER2-specific antibodies can trigger natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity and indirectly enhance the development of tumor-specific T cell immunity; both mechanisms contributing to their antitumor efficacy in preclinical models. Antibody-dependent NK cell activation results in the release of cytotoxic granules as well as the secretion of pro-inflammatory cytokines (i.e., IFNγ and TNFα) and chemokines. Hence, NK cell tumor suppressive functions include direct cytolytic killing of tumor cells as well as the regulation of subsequent antitumor adaptive immunity. Albeit tumors with gene expression signatures associated to the presence of cytotoxic lymphocyte infiltrates benefit from trastuzumab-based treatment, NK cell-related biomarkers of response/resistance to HER2-specific therapeutic antibodies in breast cancer patients remain elusive. Several variables, including (i) the configuration of the patient NK cell repertoire; (ii) tumor molecular features (i.e., estrogen receptor expression); (iii) concomitant therapeutic regimens (i.e., chemotherapeutic agents, tyrosine kinase inhibitors); and (iv) evasion mechanisms developed by progressive breast tumors, have been shown to quantitatively and qualitatively influence antibody-triggered NK cell responses. In this review, we discuss possible interventions for restoring/enhancing the therapeutic activity of HER2 therapeutic antibodies by harnessing NK cell antitumor potential through combinatorial approaches, including immune checkpoint blocking/stimulatory antibodies, cytokines and toll-like receptor agonists. PMID:29181007

  19. Effect of the tyrosine kinase inhibitor lapatinib on CUB-domain containing protein (CDCP1)-mediated breast cancer cell survival and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidel, Jeanette; Kunc, Klaudia; Possinger, Kurt

    2011-10-14

    Highlights: {yields} CDCP1 downregulation reduces anchorage free survival of breast cancer cells. {yields} Anoikis of CDCP1-positive breast cancer cells is increased after CDCP1 downregulation. {yields} CDCP1 knockdown decreases migration and extensively reduces invasiveness in vitro. {yields} Proliferation rate does not correlate with CDCP1 expression. {yields} Lapatinib does not influence tyrosine kinases of CDCP1 signal transduction. -- Abstract: The surface receptor CUB domain-containing protein 1 (CDCP1) is highly expressed in several adenocarcinomas and speculated to participate in anchorage-independent cell survival and cell motility. Tyrosine kinase phosphorylation seems to be crucial for intracellular signaling of CDCP1. Lapatinib, a tyrosine kinase inhibitor (TKI),more » is approved for treatment of HER-2/neu overexpressing metastatic breast cancer and functions by preventing autophosphorylation following HER-2/neu receptor activation. This study aimed to investigate the effect of CDCP1 expression on anchorage-independent growth and cell motility of breast cancer cells. Moreover, studies were performed to examine if lapatinib provided any beneficial effect on HER-2/neu{sup (+)/-}/CDCP1{sup +} breast cancer cell lines. In our studies, we affirmed that CDCP1 prevents cells from undergoing apoptosis when cultured in the absence of cell-substratum anchorage and that migratory and invasive properties of these cells were decreased when CDCP1 was down-regulated. However, only HER-2/neu{sup +}, but not HER-2/neu{sup (+)/-} cells showed decreased proliferation and invasion and an enhanced level of apoptosis towards loss of anchorage when treated with lapatinib. Therefore, we conclude that CDCP1 might be involved in regulating adhesion and motility of breast cancer cells but that lapatinib has no effect on tyrosine kinases regulating CDCP1. Nonetheless, other TKIs might offer therapeutic approaches for CDCP1-targeted breast cancer therapy and should be studied considering this aspect.« less

  20. TET1-mediated hypomethylation activates oncogenic signaling in triple-negative breast cancer.

    PubMed

    Good, Charly Ryan; Panjarian, Shoghag; Kelly, Andrew D; Madzo, Jozef; Patel, Bela; Jelinek, Jaroslav; Issa, Jean-Pierre J

    2018-06-11

    Both gains and losses of DNA methylation are common in cancer, but the factors controlling this balance of methylation remain unclear. Triple-negative breast cancer (TNBC), a subtype that does not overexpress hormone receptors or HER2/NEU, is one of the most hypomethylated cancers observed. Here we discovered that the TET1 DNA demethylase is specifically overexpressed in about 40% of patients with TNBC, where it is associated with hypomethylation of up to 10% of queried CpG sites and a worse overall survival. Through bioinformatic analyses in both breast and ovarian cancer cell line panels, we uncovered an intricate network connecting TET1 to hypomethylation and activation of cancer-specific oncogenic pathways including PI3K, EGFR, and PDGF. TET1 expression correlated with sensitivity to drugs targeting the PI3K-mTOR pathway, and CRISPR-mediated deletion of TET1 in two independent TNBC cell lines resulted in reduced expression of PI3K pathway genes, upregulation of immune response genes, and substantially reduced cellular proliferation, suggesting dependence of oncogenic pathways on TET1 overexpression. Our work establishes TET1 as a potential oncogene that contributes to aberrant hypomethylation in cancer and suggests that TET1 could serve as a druggable target for therapeutic intervention. Copyright ©2018, American Association for Cancer Research.

  1. RGS16 inhibits breast cancer cell growth by mitigating phosphatidylinositol 3-kinase signaling.

    PubMed

    Liang, Genqing; Bansal, Geetanjali; Xie, Zhihui; Druey, Kirk M

    2009-08-07

    Aberrant activity of the phosphatidylinositol 3-kinase (PI3K) pathway supports growth of many tumors including those of breast, lung, and prostate. Resistance of breast cancer cells to targeted chemotherapies including tyrosine kinase inhibitors (TKI) has been linked to persistent PI3K activity, which may in part be due to increased membrane expression of epidermal growth factor (EGF) receptors (HER2 and HER3). Recently we found that proteins of the RGS (regulator of G protein signaling) family suppress PI3K activity downstream of the receptor by sequestering its p85alpha subunit from signaling complexes. Because a substantial percentage of breast tumors have RGS16 mutations and reduced RGS16 protein expression, we investigated the link between regulation of PI3K activity by RGS16 and breast cancer cell growth. RGS16 overexpression in MCF7 breast cancer cells inhibited EGF-induced proliferation and Akt phosphorylation, whereas shRNA-mediated extinction of RGS16 augmented cell growth and resistance to TKI treatment. Exposure to TKI also reduced RGS16 expression in MCF7 and BT474 cell lines. RGS16 bound the amino-terminal SH2 and inter-SH2 domains of p85alpha and inhibited its interaction with the EGF receptor-associated adapter protein Gab1. These results suggest that the loss of RGS16 in some breast tumors enhances PI3K signaling elicited by growth factors and thereby promotes proliferation and TKI evasion downstream of HER activation.

  2. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance.

    PubMed

    Takegawa, Naoki; Nonagase, Yoshikane; Yonesaka, Kimio; Sakai, Kazuko; Maenishi, Osamu; Ogitani, Yusuke; Tamura, Takao; Nishio, Kazuto; Nakagawa, Kazuhiko; Tsurutani, Junji

    2017-10-15

    Anti-HER2 therapies are beneficial for patients with HER2-positive breast or gastric cancer. T-DM1 is a HER2-targeting antibody-drug conjugate (ADC) comprising the antibody trastuzumab, a linker, and the tubulin inhibitor DM1. Although effective in treating advanced breast cancer, all patients eventually develop T-DM1 resistance. DS-8201a is a new ADC incorporating an anti-HER2 antibody, a newly developed, enzymatically cleavable peptide linker, and a novel, potent, exatecan-derivative topoisomerase I inhibitor (DXd). DS-8201a has a drug-to-antibody-ratio (DAR) of 8, which is higher than that of T-DM1 (3.5). Owing to these unique characteristics and unlike T-DM1, DS-8201a is effective against cancers with low-HER2 expression. In the present work, T-DM1-resistant cells (N87-TDMR), established using the HER2-positive gastric cancer line NCI-N87 and continuous T-DM1 exposure, were shown to be susceptible to DS-8201a. The ATP-binding cassette (ABC) transporters ABCC2 and ABCG2 were upregulated in N87-TDMR cells, but HER2 overexpression was retained. Furthermore, inhibition of ABCC2 and ABCG2 by MK571 restored T-DM1 sensitivity. Therefore, resistance to T-DM1 is caused by efflux of its payload DM1, due to aberrant expression of ABC transporters. In contrast to DM1, DXd payload of DS-8201a inhibited the growth of N87-TDMR cells in vitro. This suggests that either DXd may be a poor substrate of ABCC2 and ABCG2 in comparison to DM1, or the high DAR of DS-8201a relative to T-DM1 compensates for increased efflux. Notably, N87-TDMR xenograft tumor growth was prevented by DS-8201a. In conclusion, the efficacy of DS-8201a as a treatment for patients with T-DM1-resistant breast or gastric cancer merits investigation. © 2017 UICC.

  3. Targeting CXCR1/2 Significantly Reduces Breast Cancer Stem Cell Activity and Increases the Efficacy of Inhibiting HER2 via HER2-dependent and -independent Mechanisms

    PubMed Central

    Singh, Jagdeep K.; Farnie, Gillian; Bundred, Nigel J.; Simões, Bruno M; Shergill, Amrita; Landberg, Göran; Howell, Sacha; Clarke, Robert B.

    2012-01-01

    Purpose Breast cancer stem-like cells (CSCs) are an important therapeutic target as they are predicted to be responsible for tumour initiation, maintenance and metastases. Interleukin-8 (IL-8) is upregulated in breast cancer and associated with poor prognosis. Breast cancer cell line studies indicate that IL-8 via its cognate receptors, CXCR1 and CXCR2, is important in regulating breast CSC activity. We investigated the role of IL-8 in the regulation of CSC activity using patient-derived breast cancers and determined the potential benefit of combining CXCR1/2 inhibition with HER2-targeted therapy. Experimental design CSC activity of metastatic and invasive human breast cancers (n=19) was assessed ex vivo using the mammosphere colony forming assay. Results Metastatic fluid IL-8 level correlated directly with mammosphere formation (r=0.652; P<0.05; n=10). Recombinant IL-8 directly increased mammosphere formation/self-renewal in metastatic and invasive breast cancers (n=17). IL-8 induced activation of EGFR/HER2 and downstream signalling pathways and effects were abrogated by inhibition of SRC, EGFR/HER2, PI3K or MEK. Furthermore, lapatinib inhibited the mammosphere-promoting effect of IL-8 in both HER2-positive and negative patient-derived cancers. CXCR1/2 inhibition also blocked the effect of IL-8 on mammosphere formation and added to the efficacy of lapatinib in HER2-positive cancers. Conclusions These studies establish a role for IL-8 in the regulation of patient-derived breast CSC activity and demonstrate that IL-8/CXCR1/2 signalling is partly mediated via a novel SRC and EGFR/HER2-dependent pathway. Combining CXCR1/2 inhibitors with current HER2-targeted therapies has potential as an effective therapeutic strategy to reduce CSC activity in breast cancer and improve the survival of HER2-positive patients. PMID:23149820

  4. Body mass index and risk of luminal, HER2-overexpressing, and triple negative breast cancer.

    PubMed

    Chen, Lu; Cook, Linda S; Tang, Mei-Tzu C; Porter, Peggy L; Hill, Deirdre A; Wiggins, Charles L; Li, Christopher I

    2016-06-01

    Triple negative (TN, tumors that do not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER2)) and HER2-overexpressing (H2E, ER-/HER2+) tumors are two particularly aggressive subtypes of breast cancer. There is a lack of knowledge regarding the etiologies of these cancers and in particular how anthropometric factors are related to risk. We conducted a population-based case-case study consisting of 2659 women aged 20-69 years diagnosed with invasive breast cancer from 2004 to 2012. Four case groups defined based on joint ER/PR/HER2 status were included: TN, H2E, luminal A (ER+/HER2-), and luminal B (ER+/HER2+). Polytomous logistic regression was used to estimate odds ratios (ORs) and associated 95 % confidence intervals (CIs) where luminal A patients served as the reference group. Obese premenopausal women [body mass index (BMI) ≥30 kg/m(2)] had an 82 % (95 % CI 1.32-2.51) increased risk of TN breast cancer compared to women whose BMI <25 kg/m(2), and those in the highest weight quartile (quartiles were categorized based on the distribution among luminal A patients) had a 79 % (95 % CI 1.23-2.64) increased risk of TN disease compared to those in the lowest quartile. Among postmenopausal women obesity was associated with reduced risks of both TN (OR = 0.74, 95 % CI 0.54-1.00) and H2E (OR = 0.47, 95 % CI 0.32-0.69) cancers. Our results suggest obesity has divergent impacts on risk of aggressive subtypes of breast cancer in premenopausal versus postmenopausal women, which may contribute to the higher incidence rates of TN cancers observed among younger African American and Hispanic women.

  5. SU-E-I-81: Targeting of HER2-Expressing Tumors with Dual PET-MR Imaging Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, P; Peng, Y; Sun, M

    2015-06-15

    Purpose: The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Trastuzumab, effective in about 15 % of women with breast cancer, downregulates signalling through the Akt/PI3K and MAPK pathways.These pathways modulate metabolism which can be monitored by positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: The relationship between response of HER2 overexpressing tumours and changes in imaging PET or SPECT and MRI willmore » be examined by a integrated bimodal imaging probe.Small (7 kDa) high-affinity anti-HER2 Affibody molecules and KCCYSL targeting peptide may be suitable tracers for visualization of HER2-expressing tumors. Peptide-conjugated iron oxide nanoparticles (Fe3O4 NPs) as MRI imaging and CB-TE2A as PET imaging are integrated into a single synthetic molecule in the HER2 positive cancer. Results: One of targeted contrast bimodal imaging probe agents was synthesized and evaluated to target HER2-expressing tumors in a HER2 positive rat model. We will report the newest results regarding the development of bimodal imaging probes. Conclusion: The preliminary results of the bimodal imaging probe presents high correlation of MRI signal and PET imaging intensity in vivo. This unique feature can hardly be obtained by single model contrast agents. It is envisioned that this bimodal agents can hold great potential for accurate detection of HER2-expressing tumors which are critical for clinical management of the disease.« less

  6. E2F Activators Signal and Maintain Centrosome Amplification in Breast Cancer Cells

    PubMed Central

    Lee, Mi-Young; Moreno, Carlos S.

    2014-01-01

    Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2+ cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2+ cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2+ breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2. PMID:24797070

  7. The Effect of Coexistence of a Pair of Mutated Oncogenes on the Survival Rate of Invasive Breast Carcinoma Patients

    NASA Astrophysics Data System (ADS)

    Nair, D. R.

    2017-12-01

    The purpose of this project was to determine the effect of two mutated oncogenes on the survival rate from invasive breast carcinoma when in comparison to the mutation of a single oncogene on the survival rate. An oncogene is defined as a gene, that when mutated, can lead to cancer. The two oncogenes used in this project were human epidermal growth factor receptor 2 (HER2) and c-myc (MYC). HER2 and MYC are both oncogenes that contribute to the formation of cancer. HER2 proteins are receptors on breast cells, and when the HER2 gene is mutated, there is an overexpression of HER2 protein on the breast cell. This makes the breast cells proliferate uncontrollably. MYC is a gene that codes for a transcription factor that plays a role in cell cycle progression. The overexpression of MYC also leads to the proliferation of cells. I hypothesized that if there is a mutation in both the MYC and HER2 genes, then the survival rate of invasive breast carcinoma patients will be lower compared to patients with the mutations of only MYC or HER2. To test this hypothesis, we conducted individual gene searches in CBioPortal for HER2 in the datasets from the studies titled TCGA Nature 2012, TCGA Cell 2015, and TCGA Provisional. We conducted individual gene searches in CBioPortal for MYC in the same datasets. The survival rate data was then exported and analyzed for patients with mutations of either HER2 or MYC and with mutations of both genes. To determine the cases that had both HER2 and MYC mutations, we found the overlapping cases in both HER2 and MYC groups for all three datasets. We calculated the median of the survival data for cases where either HER2 or MYC was mutated and cases where both MYC and HER2 were mutated. From the first dataset, the median of MYC data was 95.53, HER2 data was 95.83, and both HER2 and MYC data was 91.24. In the second dataset, the median of MYC data was 92.17 , HER2 data was 93.5, and both HER2 and MYC data was 87.95 . In the third dataset, the median of MYC data was 92.18, HER2 data was 94.22, and both HER2 and MYC data was 89.45. The median survival rates all showed that cases with mutations in both genes had a lower survival rate than those with single mutations. My hypothesis was supported. Some sources of error are the fewer number of cases in the TCGA Nature 2012 dataset, making this data statistically insignificant.

  8. Anticancer activity of celastrol in combination with ErbB2-targeted therapeutics for treatment of ErbB2-overexpressing breast cancers

    PubMed Central

    Clubb, Robert J; Ortega-Cava, Cesar; Williams, Stetson H; Bailey, Tameka A; Duan, Lei; Zhao, Xiangshan; Reddi, Alagarasamy L; Nyong, Abijah M; Natarajan, Amarnath; Band, Vimla

    2011-01-01

    The receptor tyrosine kinase ErbB2 is overexpressed in up to a third of breast cancers, allowing targeted therapy with ErbB2-directed humanized antibodies such as Trastuzumab. Concurrent targeting of ErbB2 stability with HSP90 inhibitors is synergistic with Trastuzumab, suggesting that pharmacological agents that can inhibit HSP90 as well as signaling pathways activated by ErbB2 could be useful against ErbB2-overexpressing breast cancers. The triterpene natural product Celastrol inhibits HSP90 and several pathways relevant to ErbB2-dependent oncogenesis including the NFκB pathway and the proteasome, and has shown promising activity in other cancer models. Here, we demonstrate that Celastrol exhibits in vitro antitumor activity against a panel of human breast cancer cell lines with selectivity towards those overexpressing ErbB2. Celastrol strongly synergized with ErbB2-targeted therapeutics Trastuzumab and Lapatinib, producing higher cytotoxicity with substantially lower doses of Celastrol. Celastrol significantly retarded the rate of growth of ErbB2-overexpressing human breast cancer cells in a mouse xenograft model with only minor systemic toxicity. Mechanistically, Celastrol not only induced the expected ubiquitinylation and degradation of ErbB2 and other HSP90 client proteins, but it also increased the levels of reactive oxygen species (ROS). Our studies show that the Michael Acceptor functionality in Celastrol is important for its ability to destabilize ErbB2 and exert its bioactivity against ErbB2-overexpressing breast cancer cells. These studies suggest the potential use of Michael acceptor-containing molecules as novel therapeutic modalities against ErbB2-driven breast cancer by targeting multiple biological attributes of the driver oncogene. PMID:21088503

  9. Phase I study of nanoparticle albumin-bound paclitaxel, carboplatin and trastuzumab in women with human epidermal growth factor receptor 2-overexpressing breast cancer

    PubMed Central

    Tezuka, Kenji; Takashima, Tsutomu; Kashiwagi, Shinichiro; Kawajiri, Hidemi; Tokunaga, Shinya; Tei, Seika; Nishimura, Shigehiko; Yamagata, Shigehito; Noda, Satoru; Nishimori, Takeo; Mizuyama, Yoko; Sunami, Takeshi; Ikeda, Katsumi; Ogawa, Yoshinari; Onoda, Naoyoshi; Ishikawa, Tetsuro; Kudoh, Shinzoh; Takada, Minoru; Hirakawa, Kosei

    2017-01-01

    Although the concurrent use of anthracycline-containing chemotherapy and taxane with trastuzumab are considered the treatment of choice for the primary systemic therapy of human epidermal growth factor receptor 2 (HER2)-overexpressing early breast cancer, non-anthracycline regimens, such as concurrent administration of docetaxel and carboplatin with trastuzumab, exhibited similar efficacies in a previous study. In addition, tri-weekly treatment with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) resulted in significantly higher response rates and a favorable safety profile compared with standard paclitaxel for metastatic breast cancer patients in another phase III study. Based on these results, a phase I study of combination therapy with nab-paclitaxel, carboplatin and trastuzumab was planned, in order to estimate its efficacy and safety for HER2-overexpressing locally advanced breast cancer. The present study was designed to determine the dose-limiting toxicity (DLT), maximum tolerated dose and recommended dose of this combination treatment in women with HER2-overexpressing locally advanced breast cancer. The starting dose of nab-paclitaxel was 220 mg/m2 (level 1), and the dose was escalated to 260 mg/m2 (level 2). Nab-paclitaxel was administered with carboplatin (area under the curve, 6 mg/ml/min) and trastuzumab tri-weekly. A total of 6 patients were enrolled. Although no DLT was observed during the first cycle, 4 patients developed grade 4 thrombocytopenia, 2 had grade 4 neutropenia and 3 exhibited a grade 4 decrease in hemoglobin levels. In the present phase I study, although no patients experienced DLTs, this regimen was associated with severe hematological toxicities and it was not well tolerated. However, considering the high efficacy and lower risk of cardiotoxicity and secondary carcinogenesis with taxane, platinum and trastuzumab combination therapy, further evaluation of another regimen including weekly administration or a more accurate dose setting should be conducted. PMID:28413662

  10. Specific Visualization of Tumor Cells Using Upconversion Nanophosphors

    PubMed Central

    Grebenik, E. A.; Generalova, A. N.; Nechaev, A. V.; Khaydukov, E.V.; Mironova, K. E.; Stremovskiy, O. A.; Lebedenko, E.N.; Zvyagin, A. V.; Deyev, S. M.

    2014-01-01

    The development of targeted constructs on the basis of photoluminescent nanoparticles with a high photo- and chemical stability and absorption/emission spectra in the “transparency window” of biological tissues is an important focus area of present-day medical diagnostics. In this work, a targeted two-component construct on the basis of upconversion nanophosphors (UCNPs) and anti-tumor 4D5 scFv was developed for selective labeling of tumor cells overexpressing the HER2 tumor marker characteristic of a number of human malignant tumors. A high affinity barnase : barstar (Bn : Bs) protein pair, which exhibits high stability in a wide range of pH and temperatures, was exploited as a molecular adapter providing self-assembly of the two-component construct. High selectivity for the binding of the two-component 4D5 scFv-Bn : UCNP-Bs construct to human breast adenocarcinoma SK-BR-3 cells overexpressing HER2 was demonstrated. This approach provides an opportunity to produce similar constructs for the visualization of different specific markers in pathogenic tissues, including malignant tumors. PMID:25558394

  11. EGFR and HER2 signaling in breast cancer brain metastasis

    PubMed Central

    Sirkisoon, Sherona R.; Carpenter, Richard L.; Rimkus, Tadas; Miller, Lance; Metheny-Barlow, Linda; Lo, Hui-Wen

    2016-01-01

    Breast cancer occurs in approximately 1 in 8 women and 1 in 37 women with breast cancer succumbed to the disease. Over the past decades, new diagnostic tools and treatments have substantially improved the prognosis of women with local diseases. However, women with metastatic disease still have a dismal prognosis without effective treatments. Among different molecular subtypes of breast cancer, the HER2-enriched and basal-like subtypes typically have higher rates of metastasis to the brain. Basal-like metastatic breast tumors frequently express EGFR. Consequently, HER2- and EGFR-targeted therapies are being used in the clinic and/or evaluated in clinical trials for treating breast cancer patients with brain metastases. In this review, we will first provide an overview of the HER2 and EGFR signaling pathways. The roles that EGFR and HER2 play in breast cancer metastasis to the brain will then be discussed. Finally, we will summarize the preclinical and clinical effects of EGFR- and HER2-targeted therapies on breast cancer metastasis. PMID:26709660

  12. BMP9 Inhibits Proliferation and Metastasis of HER2-Positive SK-BR-3 Breast Cancer Cells through ERK1/2 and PI3K/AKT Pathways

    PubMed Central

    Ren, Wei; Liu, Yuehong; Wan, Shaoheng; Fei, Chang; Wang, Wei; Chen, Yingying; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Zhou, Lan; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-01-01

    Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer. PMID:24805814

  13. BMP9 inhibits proliferation and metastasis of HER2-positive SK-BR-3 breast cancer cells through ERK1/2 and PI3K/AKT pathways.

    PubMed

    Ren, Wei; Liu, Yuehong; Wan, Shaoheng; Fei, Chang; Wang, Wei; Chen, Yingying; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Zhou, Lan; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-01-01

    Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer.

  14. Pertuzumab: a new targeted therapy for HER2-positive metastatic breast cancer.

    PubMed

    Malenfant, Stephanie J; Eckmann, Karen R; Barnett, Chad M

    2014-01-01

    Trastuzumab, a humanized monoclonal antibody, has become an important targeted therapy for patients with all stages of human epidermal growth factor receptor-2 (HER2)-positive breast cancer. However, primary and acquired resistance to trastuzumab remains a significant problem. Pertuzumab, a humanized monoclonal antibody that binds to a domain of the HER2 receptor separate from trastuzumab, may have the potential to overcome trastuzumab resistance. Clinical trials have shown that pertuzumab can be effectively combined with other biologic therapy or chemotherapy in patients with metastatic HER2-positive breast cancer. Pertuzumab is relatively well tolerated with minimal increases in hematologic and cardiac toxicity observed when added to trastuzumab and/or docetaxel. In addition to becoming the standard of care in combination with docetaxel and trastuzumab in patients with newly diagnosed HER2-positive metastatic breast cancer, clinical trials continue to evaluate pertuzumab in combination with other targeted therapy, chemotherapy, and in patients with early stage breast cancer. These trials will help to further determine the role of pertuzumab in the treatment of HER2-positive breast cancer. © 2013 Pharmacotherapy Publications, Inc.

  15. Positive prognostic value of HER2-HER3 co-expression and p-mTOR in gastric cancer patients.

    PubMed

    Cao, Guo-Dong; Chen, Ke; Chen, Bo; Xiong, Mao-Ming

    2017-12-12

    The HER2-HER3 heterodimer significantly decreases survival in breast cancer patients. However, the prognostic value of HER2-HER3 overexpression remains unknown in gastric cancer (GC). The expression levels of HER2, HER3, Akt, p-Akt, mTOR and p-mTOR were examined in specimens from 120 GC patients by immunohistochemistry and quantitative reverse transcription-PCR. The associations of HER proteins, PI3K/Akt/mTOR pathway-related proteins, clinicopathological features of GC, and overall survival (OS) were assessed. To comprehensively evaluate the prognostic values of pathway-related proteins, meta-analyses were conducted with STATA 11.0. HER2 overexpression was significantly associated with HER3 levels (P = 0.02). HER3 was highly expressed in gastric cancer tissues. High HER2 and HER3 levels were associated with elevated p-Akt and p-mTOR amounts (P < 0.05). Furthermore, HER2-HER3 co-expression was associated with high p-Akt and p-mTOR (P < 0.05) levels. Meanwhile, p-mTOR overexpression was tightly associated with differentiation, depth of invasion, lymph node metastasis, TNM stage and OS (P < 0.05). By meta-analyses, Akt, p-Akt, and mTOR levels were unrelated to clinicopathological characters. HER3 overexpression was associated with depth of invasion (OR = 2.39, 95%CI 1.62-3.54, P < 0.001) and lymph node metastasis (OR = 2.35, 95%CI 1.34-4.11, P = 0.003). Further, p-mTOR overexpression was associated with patient age, tumor location, depth of invasion (OR = 1.63, 95%CI 1.08-2.45, P = 0.02) and TNM stage (OR = 1.73, 95%CI 1.29-2.32, P < 0.001). In addition, HER2-HER3 overexpression corresponded to gradually shortened 5-year OS (P < 0.05), and significant relationships were shown among HER3, p-mTOR overexpression, and 1-, 3-, 5-year OS (P < 0.05). HER2-HER3 co-expression may potentially enhance mTOR phosphorylation. HER2-HER3 co-expression and p-mTOR are both related to the prognosis of GC patients.

  16. Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells

    PubMed Central

    Kang, Jeffrey C; Poovassery, Jayakumar S; Bansal, Pankaj; You, Sungyong; Manjarres, Isabel M; Ober, Raimund J; Ward, E Sally

    2014-01-01

    The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of “second generation” antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert. PMID:24492289

  17. The voltage gated Ca(2+)-channel Cav3.2 and therapeutic responses in breast cancer.

    PubMed

    Pera, Elena; Kaemmerer, Elke; Milevskiy, Michael J G; Yapa, Kunsala T D S; O'Donnell, Jake S; Brown, Melissa A; Simpson, Fiona; Peters, Amelia A; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2016-01-01

    Understanding the cause of therapeutic resistance and identifying new biomarkers in breast cancer to predict therapeutic responses will help optimise patient care. Calcium (Ca(2+))-signalling is important in a variety of processes associated with tumour progression, including breast cancer cell migration and proliferation. Ca(2+)-signalling is also linked to the acquisition of multidrug resistance. This study aimed to assess the expression level of proteins involved in Ca(2+)-signalling in an in vitro model of trastuzumab-resistance and to assess the ability of identified targets to reverse resistance and/or act as potential biomarkers for prognosis or therapy outcome. Expression levels of a panel of Ca(2+)-pumps, channels and channel regulators were assessed using RT-qPCR in resistant and sensitive age-matched SKBR3 breast cancer cells, established through continuous culture in the absence or presence of trastuzumab. The role of Cav3.2 in the acquisition of trastuzumab-resistance was assessed through pharmacological inhibition and induced overexpression. Levels of Cav3.2 were assessed in a panel of non-malignant and malignant breast cell lines using RT-qPCR and in patient samples representing different molecular subtypes (PAM50 cohort). Patient survival was also assessed in samples stratified by Cav3.2 expression (METABRIC and KM-Plotter cohort). Increased mRNA of Cav3.2 was a feature of both acquired and intrinsic trastuzumab-resistant SKBR3 cells. However, pharmacological inhibition of Cav3.2 did not restore trastuzumab-sensitivity nor did Cav3.2 overexpression induce the expression of markers associated with resistance, suggesting that Cav3.2 is not a driver of trastuzumab-resistance. Cav3.2 levels were significantly higher in luminal A, luminal B and HER2-enriched subtypes compared to the basal subtype. High levels of Cav3.2 were associated with poor outcome in patients with oestrogen receptor positive (ER+) breast cancers, whereas Cav3.2 levels were correlated positively with patient survival after chemotherapy in patients with HER2-positive breast cancers. Our study identified elevated levels of Cav3.2 in trastuzumab-resistant SKBR3 cell lines. Although not a regulator of trastuzumab-resistance in HER2-positive breast cancer cells, Cav3.2 may be a potential differential biomarker for survival and treatment response in specific breast cancer subtypes. These studies add to the complex and diverse role of Ca(2+)-signalling in breast cancer progression and treatment.

  18. HER-2 as a Progression Factor and Therapeutic Target in Breast Cancer.

    DTIC Science & Technology

    1999-06-01

    used gene specific targeting of HER-2 with hammerhead - ribozyme expression constructs, a technology which we have applied successfully in the...2 in MCF-7 cells by ribozyme -targeting estradiol lost its ability to induce anchorage- independent colony formation in soft agar of the tumor cells...between estrogen and HER-2 signal transduction is ongoing. 14. SUBJECT TERMS Breast Cancer HER-2, estradiol, ribozymes , apoptosis, cell cycle, cDNA

  19. Fluence compensated photoacoustic tomography in small animals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hussain, Altaf; Pool, Martin; Daoudi, Khalid; de Vries, Liesbeth G.; Steenbergen, Wiendelt

    2017-03-01

    Light fluence inside turbid media can be experimentally mapped by measuring ultrasonically modulated light (Acousto-optics). To demonstrate the feasibility of fluence corrected Photoacoustic (PA) imaging, we have realized a tri-modality (i.e. photoacoustic, acousto-optic and ultrasound) tomographic small animal imaging system. Wherein PA imaging provides high resolution map of absorbed optical energy density, Acousto-optics yields the fluence distribution map in the corresponding PA imaging plane and Ultrasound provides morphological information. Further, normalization of the PA image with the acousto-optically measured fluence map results in an image that directly represents the optical absorption. Human epidermal growth factor receptor 2 (HER2) is commonly found overexpressed in human cancers, among which breast cancers, resulting in a more aggressive tumor phenotype. Identification of HER2-expression is clinically relevant, because cancers overexpressing this marker are amenable to HER2-directed therapies, among which antibodies trastuzumab and pertuzumab. Here, we investigate the feasibility and advantage of acousto-optically assisted fluence compensated PA imaging over PA imaging alone in visualizing and quantifying HER2 expression. For this experiment, nude mice were xenografted with human breast cancer cell lines SKBR3 and BT474 (both HER2 overexpressing), as well as HER2-negative MDA-MB-231. To visualize HER2 expression in these mice, HER2 monoclonal antibody pertuzumab (Perjeta®, Roche), was conjugated to near-infrared dye IRDye 800CW (800CW, LICOR Biosciences) at a ratio of 1∶2 antibody to 800CW. When xenograft tumors measured ≥ 100 mm3, mice received 100 µg 800CW-pertuzumab intravenously. Three days post injection, mice were scanned for fluorescence signal with an IVIS scanner. After fluorescence scans, mice were euthanized and imaged in our PA tomographic imaging system.

  20. Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance.

    PubMed

    Saunus, Jodi M; Quinn, Michael C J; Patch, Ann-Marie; Pearson, John V; Bailey, Peter J; Nones, Katia; McCart Reed, Amy E; Miller, David; Wilson, Peter J; Al-Ejeh, Fares; Mariasegaram, Mythily; Lau, Queenie; Withers, Teresa; Jeffree, Rosalind L; Reid, Lynne E; Da Silva, Leonard; Matsika, Admire; Niland, Colleen M; Cummings, Margaret C; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Wani, Shivangi; Anderson, Matthew J; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Taylor, Darrin; Waddell, Nick; Wood, Scott; Xu, Qinying; Kassahn, Karin S; Narayanan, Vairavan; Taib, Nur Aishah; Teo, Soo-Hwang; Chow, Yock Ping; kConFab; Jat, Parmjit S; Brandner, Sebastian; Flanagan, Adrienne M; Khanna, Kum Kum; Chenevix-Trench, Georgia; Grimmond, Sean M; Simpson, Peter T; Waddell, Nicola; Lakhani, Sunil R

    2015-11-01

    Treatment options for patients with brain metastases (BMs) have limited efficacy and the mortality rate is virtually 100%. Targeted therapy is critically under-utilized, and our understanding of mechanisms underpinning metastatic outgrowth in the brain is limited. To address these deficiencies, we investigated the genomic and transcriptomic landscapes of 36 BMs from breast, lung, melanoma and oesophageal cancers, using DNA copy-number analysis and exome- and RNA-sequencing. The key findings were as follows. (a) Identification of novel candidates with possible roles in BM development, including the significantly mutated genes DSC2, ST7, PIK3R1 and SMC5, and the DNA repair, ERBB-HER signalling, axon guidance and protein kinase-A signalling pathways. (b) Mutational signature analysis was applied to successfully identify the primary cancer type for two BMs with unknown origins. (c) Actionable genomic alterations were identified in 31/36 BMs (86%); in one case we retrospectively identified ERBB2 amplification representing apparent HER2 status conversion, then confirmed progressive enrichment for HER2-positivity across four consecutive metastatic deposits by IHC and SISH, resulting in the deployment of HER2-targeted therapy for the patient. (d) In the ERBB/HER pathway, ERBB2 expression correlated with ERBB3 (r(2)  = 0.496; p < 0.0001) and HER3 and HER4 were frequently activated in an independent cohort of 167 archival BM from seven primary cancer types: 57.6% and 52.6% of cases were phospho-HER3(Y1222) or phospho-HER4(Y1162) membrane-positive, respectively. The HER3 ligands NRG1/2 were barely detectable by RNAseq, with NRG1 (8p12) genomic loss in 63.6% breast cancer-BMs, suggesting a microenvironmental source of ligand. In summary, this is the first study to characterize the genomic landscapes of BM. The data revealed novel candidates, potential clinical applications for genomic profiling of resectable BMs, and highlighted the possibility of therapeutically targeting HER3, which is broadly over-expressed and activated in BMs, independent of primary site and systemic therapy. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  1. Preparation and Imaging Investigation of Dual-targeted C3F8-filled PLGA Nanobubbles as a Novel Ultrasound Contrast Agent for Breast Cancer.

    PubMed

    Du, Jing; Li, Xiao-Yu; Hu, He; Xu, Li; Yang, Shi-Ping; Li, Feng-Hua

    2018-03-01

    Molecularly-targeted contrast enhanced ultrasound (US) imaging is a promising imaging strategy with large potential for improving diagnostic accuracy of conventional US imaging in breast cancer detection. Therefore, we constructed a novel dual-targeted nanosized US contrast agent (UCA) directed at both vascular endothelial growth factor receptor 2 (VEGFR2) and human epidermal growth factor receptor 2 (HER2) based on perfluoropropane (C 3 F 8 )-filled poly(lactic-co-glycolic acid) (PLGA) (NBs) for breast cancer detection. In vitro, single- or dual-targeted PLGA NBs showed high target specificities and better effects of target enhancement in VEGFR2 or HER2-positive cells. In vivo, US imaging signal in the murine breast cancer model was significantly higher (P < 0.01) for dual-targeted NBs than single-targeted and non-targeted NBs. Small animal fluorescence imaging further confirmed the special affinity of the dual-targeted nanosized contrast agent to both VEGFR2 and HER2. Immunofluorescence and immunohistochemistry staining confirmed the expressions of VEGFR2 and HER2 on tumor neovasculature and tumor cells of breast cancer. In conclusions, the feasibility of using dual-targeted PLGA NBs to enhance ultrasonic images is demonstrated in vitro and in vivo. This may be a promising approach to target biomarkers of breast cancer for two site-specific US molecular imaging.

  2. Antibody-mediated targeting of replication-competent retroviral vectors.

    PubMed

    Tai, Chien-Kuo; Logg, Christopher R; Park, Jinha M; Anderson, W French; Press, Michael F; Kasahara, Noriyuki

    2003-05-20

    Replication-competent murine leukemia virus (MLV) vectors can be engineered to achieve high efficiency gene transfer to solid tumors in vivo and tumor-restricted replication, however their safety can be further enhanced by redirecting tropism of the virus envelope. We have therefore tested the targeting capability and replicative stability of ecotropic and amphotropic replication-competent retrovirus (RCR) vectors containing two tandem repeats from the immunoglobulin G-binding domain of Staphylococcal protein A inserted into the proline-rich "hinge" region of the envelope, which enables modular use of antibodies of various specificities for vector targeting. The modified envelopes were efficiently expressed and incorporated into virions, were capable of capturing monoclonal anti-HER2 antibodies, and mediated efficient binding of the virus-antibody complex to HER2-positive target cells. While infectivity was markedly reduced by pseudotyping with targeted envelopes alone, coexpression of wild-type envelope rescued efficient cellular entry. Both ecotropic and amphotropic RCR vector/anti-HER2 antibody complexes achieved significant enhancement of transduction on murine target cells overexpressing HER2, which could be competed by preincubation with excess free antibodies. Interestingly, HER2-expressing human breast cancer cells did not show enhancement of transduction despite efficient antibody-mediated cell surface binding, suggesting that target cell-specific parameters markedly affect the efficiency of post-binding entry processes. Serial replication of targeted vectors resulted in selection of Z domain deletion variants, but reduction of the overall size of the vector genome enhanced its stability. Application of antibody-mediated targeting to the initial localization of replication-competent virus vectors to tumor sites will thus require optimized target selection and vector design.

  3. Combinatorial Effects of Lapatinib and Rapamycin in Triple-Negative Breast Cancer Cells

    PubMed Central

    Liu, Tongrui; Yacoub, Rami; Taliaferro-Smith, LaTonia D.; Sun, Shi-Yong; Graham, Tisheeka R.; Dolan, Ryan; Lobo, Christine; Tighiouart, Mourad; Yang, Lily; Adams, Amy; O'Regan, Ruth M.

    2016-01-01

    Triple-negative breast cancers, which lack estrogen receptor, progesterone receptor, and HER2/neu overexpression, account for approximately 15% of breast cancers, but occur more commonly in African Americans. The poor survival outcomes seen with triple-negative breast cancers patients are, in part, due to a lack of therapeutic targets. Epidermal growth factor receptor (EGFR) is overexpressed in 50% of triple-negative breast cancers, but EGFR inhibitors have not been effective in patients with metastatic breast cancers. However, mTOR inhibition has been shown to reverse resistance to EGFR inhibitors. We examined the combination effects of mTOR inhibition with EGFR inhibition in triple-negative breast cancer in vitro and in vivo. The combination of EGFR inhibition by using lapatinib and mTOR inhibition with rapamycin resulted in significantly greater cytotoxicity than the single agents alone and these effects were synergistic in vitro. The combination of rapamycin and lapatinib significantly decreased growth of triple-negative breast cancers in vivo compared with either agent alone. EGFR inhibition abrogated the expression of rapamycin-induced activated Akt in triple-negative breast cancer cells in vitro. The combination of EGFR and mTOR inhibition resulted in increased apoptosis in some, but not all, triple-negative cell lines, and these apoptotic effects correlated with a decrease in activated eukaryotic translation initiation factor (eIF4E). These results suggest that mTOR inhibitors could sensitize a subset of triple-negative breast cancers to EGFR inhibitors. Given the paucity of effective targeted agents in triple-negative breast cancers, these results warrant further evaluation. PMID:21690228

  4. MicroRNA-139 suppresses proliferation in luminal type breast cancer cells by targeting Topoisomerase II alpha

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Wei; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi'an; Sa, Ke-Di

    The classification of molecular subtypes of breast cancer improves the prognostic accuracy and therapeutic benefits in clinic. However, because of the complexity of breast cancer, more biomarkers and functional molecules need to be explored. Here, analyzing the data in a huge cohort of breast cancer patients, we found that Topoisomerase II alpha (TOP2a), an important target of chemotherapy is a biomarker for prognosis in luminal type breast cancer patients, but not in basal like or HER2 positive breast cancer patients. We identified that miR-139, a previous reported anti-metastatic microRNA targets 3’-untranslated region (3′UTR) of TOP2a mRNA. Further more, we revealedmore » that the forced expression of miR-139 reduces the TOP2a expression at both mRNA and protein levels. And our functional experiments showed that the ectopic expression of miR-139 remarkably inhibits proliferation in luminal type breast cancer cells, while exogenous TOP2a expression could rescue inhibition of cell proliferation mediated by miR-139. Collectively, our present study demonstrates the miR-139-TOP2a regulatory axis is important for proliferation in luminal type breast cancer cells. This functional link may help us to further understand the specificity of subtypes of breast cancer and optimize the strategy of cancer treatment. - Highlights: • High levels of TOP2a expression are closely associated with poor prognosis in luminal type breast cancer patients. • TOP2a is a novel target of miR-139. • Overexpression of miR-139 inhibits proliferation in luminal type breast cancer cells. • TOP2a is essential for miR-139-induced growth arrest in luminal type breast cancer cells.« less

  5. A phase I open-label dose-escalation study of the anti-HER3 monoclonal antibody LJM716 in patients with advanced squamous cell carcinoma of the esophagus or head and neck and HER2-overexpressing breast or gastric cancer.

    PubMed

    Reynolds, Kerry Lynn; Bedard, Philippe L; Lee, Se-Hoon; Lin, Chia-Chi; Tabernero, Josep; Alsina, Maria; Cohen, Ezra; Baselga, José; Blumenschein, George; Graham, Donna M; Garrido-Laguna, Ignacio; Juric, Dejan; Sharma, Sunil; Salgia, Ravi; Seroutou, Abdelkader; Tian, Xianbin; Fernandez, Rose; Morozov, Alex; Sheng, Qing; Ramkumar, Thiruvamoor; Zubel, Angela; Bang, Yung-Jue

    2017-09-12

    Human epidermal growth factor receptor 3 (HER3) is important in maintaining epidermal growth factor receptor-driven cancers and mediating resistance to targeted therapy. A phase I study of anti-HER3 monoclonal antibody LJM716 was conducted with the primary objective to identify the maximum tolerated dose (MTD) and/or recommended dose for expansion (RDE), and dosing schedule. Secondary objectives were to characterize safety/tolerability, pharmacokinetics, pharmacodynamics, and preliminary antitumor activity. This open-label, dose-finding study comprised dose escalation, followed by expansion in patients with squamous cell carcinoma of the head and neck or esophagus, and HER2-overexpressing metastatic breast cancer or gastric cancer. During dose escalation, patients received LJM716 intravenous once weekly (QW) or every two weeks (Q2W), in 28-day cycles. An adaptive Bayesian logistic regression model was used to guide dose escalation and establish the RDE. Exploratory pharmacodynamic tumor studies evaluated modulation of HER3 signaling. Patients received LJM716 3-40 mg/kg QW and 20 mg/kg Q2W (54 patients; 36 patients at 40 mg/kg QW). No dose-limiting toxicities (DLTs) were reported during dose-escalation. One patient experienced two DLTs (diarrhea, hypokalemia [both grade 3]) in the expansion phase. The RDE was 40 mg/kg QW, providing drug levels above the preclinical minimum effective concentration. One patient with gastric cancer had an unconfirmed partial response; 17/54 patients had stable disease, two lasting >30 weeks. Down-modulation of phospho-HER3 was observed in paired tumor samples. LJM716 was well tolerated; the MTD was not reached, and the RDE was 40 mg/kg QW. Further development of LJM716 is ongoing. Clinicaltrials.gov registry number NCT01598077 (registered on 4 May, 2012).

  6. PE38KDEL-loaded anti-HER2 nanoparticles inhibit breast tumor progression with reduced toxicity and immunogenicity.

    PubMed

    Gao, Jie; Kou, Geng; Wang, Hao; Chen, Huaiwen; Li, Bohua; Lu, Ying; Zhang, Dapeng; Wang, Shuhui; Hou, Sheng; Qian, Weizhu; Dai, Jianxin; Zhao, Jian; Zhong, Yanqiang; Guo, Yajun

    2009-05-01

    The clinical use of Pseudomonas exotoxin A (PE)-based immunotoxins is limited by the toxicity and immunogenicity of PE. To overcome the limitations, we have developed PE38KDEL-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles conjugated with Fab' fragments of a humanized anti-HER2 monoclonal antibody (rhuMAbHER2). The PE38KDEL-loaded nanoparticles-anti-HER2 Fab' bioconjugates (PE-NP-HER) were constructed modularly with Fab' fragments of rhuMAbHER2 covalently linked to PLGA nanoparticles containing PE38KDEL. Compared with nontargeted nanoparticles that lack anti-HER2 Fab', PE-NP-HER specifically bound to and were sequentially internalized into HER2 overexpressing breast cancer cells, which result in significant cytotoxicity in vitro. In HER2 overexpressing tumor xenograft model system, administration of PE-NP-HER showed a superior efficacy in inhibiting tumor growth compared with PE-HER referring to PE38KDEL conjugated directly to rhuMAbHER2. Moreover, PE-NP-HER was well tolerated in mice with a higher LD(50) (LD(50) of 6.86 +/- 0.47 mg/kg vs. 2.21 +/- 0.32 mg/kg for PE-NP-HER vs. PE-HER (mean +/- SD); n = 3), and had no influence on the plasma level of plasma alanine aminotransferase (ALT) of animals when injected at a dose of 1 mg/kg where PE-HER caused significant increase of serum ALT in the treated mice. Notably, PE-NP-HER was of low immunogenicity in development of anti-PE38KDEL neutralizing antibodies and was less susceptible to inactivation by anti-PE38KDEL antibodies compared with PE-HER. This novel bioconjugate, PE-NP-HER, may represent a useful strategy for cancer treatment.

  7. Expression of Hormone Receptors and HER-2 in Benign and Malignant Salivary Gland Tumors.

    PubMed

    Can, Nhu Thuy; Lingen, Mark W; Mashek, Heather; McElherne, James; Briese, Renee; Fitzpatrick, Carrie; van Zante, Annemieke; Cipriani, Nicole A

    2018-03-01

    With the advent of targeted therapies, expression of sex hormone receptors and HER-2 in salivary gland tumors (SGTs) is of clinical interest. Previous reports of estrogen (ER) and progesterone (PR) receptor expression have varied. Androgen receptor (AR) and HER-2 overexpression are frequently reported in salivary duct carcinoma (SDC), but have not been studied systematically in other SGTs. This study examines ER, PR, AR, and HER-2 expression in SGTs. Immunohistochemistry for ER, PR, AR, and HER-2 was performed on 254 SGTs (134 malignant). ER, PR, and AR expression was scored using Allred system. HER-2 expression was scored using Dako HercepTest guidelines. FISH for HER-2 amplification was performed on select cases with HER-2 overexpression (2-3+). No SGT demonstrated strong expression of ER or PR. Combined strong AR and HER-2 expression was seen in 22 carcinomas: 14/25 SDC, 3/16 poorly differentiated, two oncocytic, and one each carcinoma ex pleomorphic adenoma, squamous cell, and intraductal carcinoma. Eighteen additional high grade carcinomas had HER-2 overexpression with absent, weak, or moderate AR expression; eight high grade carcinomas had isolated strong AR expression with 0-1+ HER-2 staining. Of 15 tested cases, six demonstrated HER-2 amplification by FISH, all of which had 3+ immunoreactivity. Neither benign nor malignant SGTs had strong expression of ER or PR. None of the benign SGTs overexpressed AR or HER-2. Coexpression of AR and HER-2 should not define SDC, but immunostaining should be considered in high grade salivary carcinomas, as some show overexpression and may benefit from targeted therapy.

  8. GROα overexpression drives cell migration and invasion in triple negative breast cancer cells.

    PubMed

    Bhat, Kruttika; Sarkissyan, Marianna; Wu, Yanyuan; Vadgama, Jaydutt V

    2017-07-01

    Triple negative breast cancer (TNBC) is a subtype of highly aggressive breast cancer with poor prognosis. The main characteristic feature of TNBC is its lack of expression of ER, PR and HER2 receptors that are targets for treatments. Hence, it is imperative to identify novel therapeutic strategies to target TNBC. Our aim was to examine whether GROα is a specific marker for TNBC metastasis. For this we performed qPCR, ELISA, migration/invasion assays, western blotting, and siRNA transfections. Evaluation of baseline GROα expression in different breast cancer (BC) subtypes showed that it is significantly upregulated in breast tumor cells, specifically in TNBC cell line. On further evaluation in additional 17 TNBC cell lines we found that baseline GROα expression was significantly elevated in >50% of the cell lines validating GROα overexpression specifically in TNBC cells. Moreover, GROα-stimulation in MCF7 and SKBR3 cells and GROα‑knockdown in MDA-MB‑231 and HCC1937 cells elicited dramatic changes in migration and invasion abilities in vitro. Corresponding changes in EMT markers were also observed in phenotypically modified BC cells. Furthermore, mechanistic studies identified GROα regulating EMT markers and migration/invasion via MAPK pathway and specific inhibition using PD98059 resulted in the reversal of effects induced by GROα on BC cells. In conclusion, our study provides strong evidence to suggest that GROα is a critical modulator of TNBC migration/invasion and proposes GROα as a potential therapeutic target for treatment of TNBC metastasis.

  9. YSA-conjugated mesoporous silica nanoparticles effectively target EphA2-overexpressing breast cancer cells.

    PubMed

    Liu, Zhi; Tao, Zijian; Zhang, Qing; Wan, Song; Zhang, Fenglin; Zhang, Yan; Wu, Guanyu; Wang, Jiandong

    2018-04-01

    Neoadjuvant chemotherapy is commonly used to treat patients with locally advanced breast cancer and a common option for primary operable disease. However, systemic toxicity including cardiotoxicity and inefficient delivery are significant challenges form any chemotherapeutics. The development of targeted treatments that lower the risk of toxicity has, therefore, become an active area of research in the field of novel cancer therapeutics. Mesoporous silica nanoparticles (MSNs) have attracted significant attention as efficient drug delivery carriers, due to their high surface area and tailorable mesoporous structures. Eph receptors are the largest receptor tyrosine kinase family, which are divided into the A- and the B-type. Eph receptors play critical roles in embryonic development and human diseases including cancer. EphA2 is expressed in breast cancer cells and has roles in carcinogenesis, progression and prognosis of breast cancer. A homing peptide with the sequence YSAYPDSVPMMSK (YSA) that binds specifically to EphA2 was used to functionalize MSN. We focus on a novel EphA2-targeted delivery MSN system for breast cancer cells. We show that the EphA2 receptor is differentially expressed in breast cancer cells and highly expressed in the HER2-negative breast cancer cell line MCF7. Our results suggest that EphA2-targeted MSN for doxorubicin delivery (MSN-YSA-DOX) are more effective than MSN-DOX in treating breast cancer cell lines in vitro. Our preliminary observations suggest that the EphA2-targeted MSN delivery system may provide a strategy for enhancing delivery of therapeutic agents to breast cancer cells expressing EphA2, and potentially reduce toxicity while enhancing therapeutic efficacy.

  10. Phospho-TCTP as a therapeutic target of dihydroartemisinin for aggressive breast cancer cells

    PubMed Central

    Lucibello, Maria; Adanti, Sara; Antelmi, Ester; Dezi, Dario; Ciafrè, Stefania; Carcangiu, Maria Luisa; Zonfrillo, Manuela; Nicotera, Giuseppe; Sica, Lorenzo; De Braud, Filippo; Pierimarchi, Pasquale

    2015-01-01

    Upregulation of Translationally Controlled Tumor Protein (TCTP) is associated with poorly differentiated aggressive tumors, including breast cancer, but the underlying mechanism(s) are still debated. Here, we show that in breast cancer cell lines TCTP is primarily localized in the nucleus, mostly in the phosphorylated form. The effects of Dihydroartemisinin (DHA), an anti-malaria agent that binds TCTP, were tested on breast cancer cells. DHA decreases cell proliferation and induces apoptotic cell death by targeting the phosphorylated form of TCTP. Remarkably, DHA enhances the anti-tumor effects of Doxorubicin in triple negative breast cancer cells resulting in an increased level of apoptosis. DHA also synergizes with Trastuzumab, used to treat HER2/neu positive breast cancers, to induce apoptosis of tumor cells. Finally, we present new clinical data that nuclear phospho-TCTP overexpression in primary breast cancer tissue is associated with high histological grade, increase expression of Ki-67 and with ER-negative breast cancer subtypes. Notably, phospho-TCTP expression levels increase in trastuzumab-resistant breast tumors, suggesting a possible role of phospho-TCTP as a new prognostic marker. In conclusion, the anti-tumor effect of DHA in vitro with conventional chemotherapeutics suggests a novel therapeutic strategy and identifies phospho-TCTP as a new promising target for advanced breast cancer. PMID:25779659

  11. Lack of HER-2 gene amplification and association with pathological and clinical characteristics of differentiated thyroid cancer.

    PubMed

    Mdah, Wahid; Mzalbat, Raneen; Gilbey, Peter; Stein, Moshe; Sharabi, Adi; Zidan, Jamal

    2014-11-01

    Human epidermal growth factor receptor 2 (HER-2) is a well recognized prognostic and predictive factor in breast cancer. However, the role of HER-2 in thyroid cancer remains controversial. The aim of this study was to evaluate HER-2 expression in differentiated thyroid cancer (DTC) and determine whether there is an association with other clinical and pathological characteristics. A total of 69 patients with DTC were investigated, 58 of whom had papillary and 11 follicular carcinomas. HER-2 was detected by immunohistochemical examination on sections from formalin-fixed, paraffin-embedded tumor tissues. Tumors with HER-2 expression classed as +1 and +2 were retested with chromogenic in situ hybridization. Clinicopathological data were retrieved from the hospital records of the patients. HER-2 overexpression was found in 4 (6.9%) of the 58 patients with papillary carcinoma, whereas there was no HER-2 overexpression in any of the 11 cases of follicular carcinoma. There was no association of HER-2 expression with tumor size, pathological grade and cervical lymph node metastasis. In conclusion, there were no HER-2 positive cases of follicular carcinoma and the incidence of HER-2 overexpression in papillary carcinoma was very low. Thus, HER-2 cannot be used routinely as a prognostic or predictive factor in DTC. The expression of other epidermal growth factor receptors in DTC merits further investigation.

  12. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells.

    PubMed

    González-Vallinas, Margarita; Molina, Susana; Vicente, Gonzalo; Sánchez-Martínez, Ruth; Vargas, Teodoro; García-Risco, Mónica R; Fornari, Tiziana; Reglero, Guillermo; Ramírez de Molina, Ana

    2014-06-01

    Breast cancer is the leading cause of cancer-related mortality among females worldwide, and therefore the development of new therapeutic approaches is still needed. Rosemary (Rosmarinus officinalis L.) extract possesses antitumor properties against tumor cells from several organs, including breast. However, in order to apply it as a complementary therapeutic agent in breast cancer, more information is needed regarding the sensitivity of the different breast tumor subtypes and its effect in combination with the currently used chemotherapy. Here, we analyzed the antitumor activities of a supercritical fluid rosemary extract (SFRE) in different breast cancer cells, and used a genomic approach to explore its effect on the modulation of ER-α and HER2 signaling pathways, the most important mitogen pathways related to breast cancer progression. We found that SFRE exerts antitumor activity against breast cancer cells from different tumor subtypes and the downregulation of ER-α and HER2 receptors by SFRE might be involved in its antitumor effect against estrogen-dependent (ER+) and HER2 overexpressing (HER2+) breast cancer subtypes. Moreover, SFRE significantly enhanced the effect of breast cancer chemotherapy (tamoxifen, trastuzumab, and paclitaxel). Overall, our results support the potential utility of SFRE as a complementary approach in breast cancer therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. HER2-targeted liposomal doxorubicin displays enhanced anti-tumorigenic effects without associated cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Joseph G.; Geretti, Elena; Hendriks, Bart S.

    2012-07-01

    Anthracycline-based regimens are a mainstay of early breast cancer therapy, however their use is limited by cardiac toxicity. The potential for cardiotoxicity is a major consideration in the design and development of combinatorial therapies incorporating anthracyclines and agents that target the HER2-mediated signaling pathway, such as trastuzumab. In this regard, HER2-targeted liposomal doxorubicin was developed to provide clinical benefit by both reducing the cardiotoxicity observed with anthracyclines and enhancing the therapeutic potential of HER2-based therapies that are currently available for HER2-overexpressing cancers. While documenting the enhanced therapeutic potential of HER2-targeted liposomal doxorubicin can be done with existing models, there hasmore » been no validated human cardiac cell-based assay system to rigorously assess the cardiotoxicity of anthracyclines. To understand if HER2-targeting of liposomal doxorubicin is possible with a favorable cardiac safety profile, we applied a human stem cell-derived cardiomyocyte platform to evaluate the doxorubicin exposure of human cardiac cells to HER2-targeted liposomal doxorubicin. To the best of our knowledge, this is the first known application of a stem cell-derived system for evaluating preclinical cardiotoxicity of an investigational agent. We demonstrate that HER2-targeted liposomal doxorubicin has little or no uptake into human cardiomyocytes, does not inhibit HER2-mediated signaling, results in little or no evidence of cardiomyocyte cell death or dysfunction, and retains the low penetration into heart tissue of liposomal doxorubicin. Taken together, this data ultimately led to the clinical decision to advance this drug to Phase I clinical testing, which is now ongoing as a single agent in HER2-expressing cancers. -- Highlights: ► Novel approach using stem cell-derived cardiomyocytes to assess preclinical safety. ► HER2-targeted liposomal doxorubicin has improved safety profile vs free doxorubicin. ► Mechanistic data identifying differences with free doxorubicin in cardiomyocytes. ► Preclinical safety results support decision to proceed with Phase I clinical trials. ► Suggests platform may be amenable to assay preclinical toxicity of other therapies.« less

  14. Comparison of HER2 gene amplification and KRAS alteration in eyelid sebaceous carcinomas with that in other eyelid tumors.

    PubMed

    Kwon, Mi Jung; Shin, Hyung Sik; Nam, Eun Sook; Cho, Seong Jin; Lee, Min Joung; Lee, Samuel; Park, Hye-Rim

    2015-05-01

    Eyelid sebaceous carcinoma (SC) represents a highly aggressive malignancy. Despite the poor prognosis, genetic alterations as potential molecular targets are not available. KRAS mutation and HER2 gene amplification may be candidates related to their genetic alterations. We examined the HER2 and KRAS alteration status in eyelid SCs and compared it with that in other eyelid tumors. The controversial topics of the human papillomavirus (HPV) and p16 expression were also investigated. HER2 amplification was determined by silver in situ hybridization, while immunohistochemistry was performed to study protein expressions in 14 SCs and controls, including 23 other eyelid malignancies and 14 benign tumors. Peptide nucleic acid-mediated PCR clamping and direct sequencing were used to detect KRAS mutations. HER2 protein overexpression was observed in 85.7% (12/14) of the SCs, of which two-thirds showed HER2 gene amplification. HER2 protein overexpression and HER2 amplification were found more frequently in eyelid SCs than in other eyelid tumors. All SCs harbored wild type KRAS genes. No HPV infections were identified in the SCs. Nevertheless, p16 overexpression was found in 71.4% (10/14) of SCs, irrespective of the status of HPV infection. Furthermore, p16 overexpression in eyelid SCs was also significantly higher than that in other eyelid tumors. HER2 protein overexpression, HER2 gene amplifications, and wild type KRAS genes are common in eyelid SCs. HER2 gene amplification may represent potential therapeutic targets for the treatment of eyelid SCs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Identification of the Mechanisms Underlying Antiestrogen Resistance: Breast Cancer Research Partnership between FIU-UM Braman Family Breast Cancer Institute

    DTIC Science & Technology

    2009-06-01

    glutathione modifiers or overexpressing GSH restoring enzymes; and (c) raised or restored levels of Trx by thioredoxin modifiers or overexpressing Trxn. To...the challenge by hiring a Post-Doc (Dr. Alok Deoraj) in place of her. Research • Showed that overexpression of ROS modifiers Trx , Catalase

  16. Dysregulation of metabolic-associated pathways in muscle of breast cancer patients: preclinical evaluation of interleukin-15 targeting fatigue.

    PubMed

    Bohlen, Joseph; McLaughlin, Sarah L; Hazard-Jenkins, Hannah; Infante, Aniello M; Montgomery, Cortney; Davis, Mary; Pistilli, Emidio E

    2018-03-26

    Breast cancer patients report a perception of increased muscle fatigue, which can persist following surgery and standardized therapies. In a clinical experiment, we tested the hypothesis that pathways regulating skeletal muscle fatigue are down-regulated in skeletal muscle of breast cancer patients and that different muscle gene expression patterns exist between breast tumour subtypes. In a preclinical study, we tested the hypothesis that mammary tumour growth in mice induces skeletal muscle fatigue and that overexpression of the cytokine interleukin-15 (IL-15) can attenuate mammary tumour-induced muscle fatigue. Early stage non-metastatic female breast cancer patients (n = 14) and female non-cancer patients (n = 6) provided a muscle biopsy of the pectoralis major muscle during mastectomy, lumpectomy, or breast reconstruction surgeries. The breast cancer patients were diagnosed with either luminal (ER + /PR + , n = 6), triple positive (ER + /PR + /Her2/neu + , n = 5), or triple negative (ER - /PR - /Her2/neu - , n = 3) breast tumours and were being treated with curative intent either with neoadjuvant chemotherapy followed by surgery or surgery followed by standard post-operative therapy. Biopsies were used for RNA-sequencing to compare the skeletal muscle gene expression patterns between breast cancer patients and non-cancer patients. The C57BL/6 mouse syngeneic mammary tumour cell line, E0771, was used to induce mammary tumours in immunocompetent mice, and isometric muscle contractile properties and fatigue properties were analysed following 4 weeks of tumour growth. RNA-sequencing and subsequent bioinformatics analyses revealed a dysregulation of canonical pathways involved in oxidative phosphorylation, mitochondrial dysfunction, peroxisome proliferator-activated receptor signalling and activation, and IL-15 signalling and production. In a preclinical mouse model of breast cancer, the rate of muscle fatigue was greater in mice exposed to mammary tumour growth for 4 weeks, and this greater muscle fatigue was attenuated in transgenic mice that overexpressed the cytokine IL-15. Our data identify novel genes and pathways dysregulated in the muscles of breast cancer patients with early stage non-metastatic disease, with particularly aberrant expression among genes that would predispose these patients to greater muscle fatigue. Furthermore, we demonstrate that IL-15 overexpression can attenuate muscle fatigue associated with mammary tumour growth in a preclinical mouse model of breast cancer. Therefore, we propose that skeletal muscle fatigue is an inherent consequence of breast tumour growth, and this greater fatigue can be targeted therapeutically. © 2018 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  17. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    PubMed

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  18. [Primary safety analysis of trastuzumab after adjuvant chemotherapy in 30 Chinese Her2-positive early breast cancer patients].

    PubMed

    Zhou, Ning-Ning; Teng, Xiao-Yu; Liu, Dong-Geng; Xu, Ran; Guan, Zhong-Zhen

    2008-12-01

    It has been proved that trastuzumab has clinical activity in early and advanced breast cancer with Her2-overexpression. This study was to analyze the safety of trastuzumab after adjuvant chemotherapy in 30 Chinese Her2-positive early breast cancer patients. Trastuzumab was administrated after adjuvant chemotherapy every 21 days. The initial dose was 8 mg/kg, and the subsequent dose was 6 mg/kg, for four to 35 cycles (medium 18 cycles). The side effects of these patients, especially cardiotoxicity, were analyzed. Thirty patients with Her2-positive early breast cancer were entered into the study. The average treatment period was one year (range nine weeks to two years). Two patients had shivering and fever during the first infusion with trastuzumab. Left ventricular ejection fraction (LVEF) level dropped in 18 cases after treatment with trastuzumab, half of which decreased more then 10%û however, no cardiac failure was observed. The post-surgical treatment of trastuzumab in Chinese patients with Her2-positive early breast cancer shows a satisfactory safety profile. However, the potential cardiotoxicity of trastuzumab should be carefully monitored during therapy.

  19. Molecular dynamic simulation of Trastuzumab F(ab’)2 structure in corporation with HER2 as a theranostic agent of breast cancer

    NASA Astrophysics Data System (ADS)

    Hermanto, S.; Yusuf, M.; Mutalib, A.; Hudiyono, S.

    2017-05-01

    Trastuzumab as intact IgG are well researched for theranostic agent in HER2 overexpressed breast cancer. However, due to the relatively large of molecules it is slowly moved and weak penetration of the target cells. Fragmentation of trastzumab has been developed by pepsin cleavages to get the F(ab’)2 fragments. To observe the stability and accessibility of F(ab’)2 structure in corporation with HER2 (human epidermal growth factor receptor-2), the structure of antibody modeling had been developed with 1IGT as a template. Molecular dynamics (MD) of the F(ab’)2 structure simulation has been done in the aqueous phase with AMBER trajectories for 20 ns. Computational visualization by VMD (Visual Molecular Dynamics) were applied to identify binding site interaction details between trastuzumab F(ab’)2 and HER2 receptor. The results of MD simulations indicated that the fragmentation of trastuzumab F(ab’)2 did not change the structure and conformation of F(ab’)2 as a whole, especially in the CDR (Complementarity Determining Region) area. SASA (solvent accessibility surface area) analysis on lysine residues showed that formation of conjugate DOTA-F(ab’)2 predicted occur on outside of the CDR regions so its not interfered with binding affinity for the HER2 receptor. The molecular dynamic simulation of DOTA-F(ab’)2 with HER2 receptor in aqueous system generated ΔGbinding more highly (15.5066 kkal/mol) than positive control HER2-Fab (-45.1446 kkal/mol).

  20. Dual targeting and enhanced cytotoxicity to HER2-overexpressing tumors by immunoapoptotin-armored mesenchymal stem cells.

    PubMed

    Cai, Yanhui; Xi, Yujing; Cao, Zhongyuan; Xiang, Geng; Ni, Qingrong; Zhang, Rui; Chang, Jing; Du, Xiao; Yang, Angang; Yan, Bo; Zhao, Jing

    2016-10-10

    Mesenchymal stem cells (MSCs) are promising vehicles for the delivery of anticancer agents in cancer therapy. However, the tumor targeting of loaded therapeutics is essential. Here, we explored a dual-targeting strategy to incorporate tumor-tropic MSC delivery with HER2-specific killing by the immunoapoptotin e23sFv-Fdt-tBid generated in our previous studies. The MSC engineering allowed simultaneous immunoapoptotin secretion and bioluminescence detection of the modified MSCs. Systemic administration of the immunoapoptotin-engineered MSCs was investigated in human HER2-reconstituted syngeneic mouse models of orthotopic and metastatic breast cancer, as well as in a xenograft nude mouse model of orthotopic gastric cancer. In vivo dual tumor targeting was confirmed by local accumulation of the bioluminescence-imaged MSCs and persistence of His-immunostained immunoapoptotins in tumor sites. The added tumor preference of MSC-secreted immunoapoptotins resulted in a significantly stronger antitumor effect compared with purified immunoapoptotins and Jurkat-delivered immunoapoptotins. This immunoapoptotin-armored MSC strategy provides a rationale for its use in extended malignancies by combining MSC mobility with redirected immunoapoptotins against a given tumor antigen. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. αB-crystallin: a Novel Regulator of Breast Cancer Metastasis to the Brain

    PubMed Central

    Malin, Dmitry; Strekalova, Elena; Petrovic, Vladimir; Deal, Allison M.; Ahmad, Abraham Al; Adamo, Barbara; Miller, C. Ryan; Ugolkov, Andrey; Livasy, Chad; Fritchie, Karen; Hamilton, Erika; Blackwell, Kimberly; Geradts, Joseph; Ewend, Matt; Carey, Lisa; Shusta, Eric V.; Anders, Carey K.; Cryns, Vincent L.

    2013-01-01

    Purpose Basal-like breast tumors are typically (ER/PR/HER2) triple-negative and are associated with a high incidence of brain metastases and poor clinical outcomes. The molecular chaperone αB-crystallin is predominantly expressed in triple-negative breast cancer (TNBC) and contributes to an aggressive tumor phenotype in preclinical models. We investigated the potential role of αB-crystallin in brain metastasis in TNBC. Experimental Design αB-crystallin expression in primary breast carcinomas and brain metastases was analyzed by immunohistochemistry among breast cancer patients with brain metastases. αB-crystallin was overexpressed or silenced in two different TNBC cell lines. The effects on cell adhesion to human brain microvascular endothelial cells (HBMECs) or extracellular matrix proteins, transendothelial migration, and transmigration across a HBMEC/astrocyte co-culture blood-brain barrier (BBB) model were examined. Additionally, the effects of overexpressing or silencing αB-crystallin on brain metastasis in vivo were investigated using orthotopic TNBC models. Results In a cohort of women with breast cancer brain metastasis, αB-crystallin expression in primary breast carcinomas was associated with poor overall survival and poor survival after brain metastasis, even among TNBC patients. Stable overexpression of αB-crystallin in TNBC cells enhanced adhesion to HBMECs, transendothelial migration, and BBB transmigration in vitro, while silencing αB-crystallin inhibited these events. αB-crystallin promoted adhesion of TNBC cells to HBMECs at least in part through an α3β1 integrin-dependent mechanism. αB-crystallin overexpression promoted brain metastasis, while silencing αB-crystallin inhibited brain metastasis in orthotopic TNBC models. Conclusion αB-crystallin is a novel regulator of brain metastasis in TNBC and represents a potential biomarker and drug target for this aggressive disease. PMID:24132917

  2. αB-crystallin: a novel regulator of breast cancer metastasis to the brain.

    PubMed

    Malin, Dmitry; Strekalova, Elena; Petrovic, Vladimir; Deal, Allison M; Al Ahmad, Abraham; Adamo, Barbara; Miller, C Ryan; Ugolkov, Andrey; Livasy, Chad; Fritchie, Karen; Hamilton, Erika; Blackwell, Kimberly; Geradts, Joseph; Ewend, Matt; Carey, Lisa; Shusta, Eric V; Anders, Carey K; Cryns, Vincent L

    2014-01-01

    Basal-like breast tumors are typically (ER/PR/HER2) triple-negative and are associated with a high incidence of brain metastases and poor clinical outcomes. The molecular chaperone αB-crystallin is predominantly expressed in triple-negative breast cancer (TNBC) and contributes to an aggressive tumor phenotype in preclinical models. We investigated the potential role of αB-crystallin in brain metastasis in TNBCs. αB-crystallin expression in primary breast carcinomas and brain metastases was analyzed by immunohistochemistry among patients with breast cancer with brain metastases. αB-crystallin was overexpressed or silenced in two different TNBC cell lines. The effects on cell adhesion to human brain microvascular endothelial cells (HBMEC) or extracellular matrix proteins, transendothelial migration, and transmigration across a HBMEC/astrocyte coculture blood-brain barrier (BBB) model were examined. In addition, the effects of overexpressing or silencing αB-crystallin on brain metastasis in vivo were investigated using orthotopic TNBC models. In a cohort of women with breast cancer brain metastasis, αB-crystallin expression in primary breast carcinomas was associated with poor overall survival and poor survival after brain metastasis, even among patients with TNBC. Stable overexpression of αB-crystallin in TNBC cells enhanced adhesion to HBMECs, transendothelial migration, and BBB transmigration in vitro, whereas silencing αB-crystallin inhibited these events. αB-crystallin promoted adhesion of TNBC cells to HBMECs, at least in part, through an α3β1 integrin-dependent mechanism. αB-crystallin overexpression promoted brain metastasis, whereas silencing αB-crystallin inhibited brain metastasis in orthotopic TNBC models. αB-crystallin is a novel regulator of brain metastasis in TNBC and represents a potential biomarker and drug target for this aggressive disease.

  3. WE-FG-BRA-11: Theranostic Platinum Nanoparticle for Radiation Sensitization in Breast Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Y; Wagner, S; Medina-Kauwe, L

    Purpose: We have developed a novel receptor-targeted theranostic platinum nanoparticle (HER-PtNP) for enhanced radiation sensitization in HER2-positive breast cancer radiation treatment. This study aims to evaluate receptor-targeting specificity, and radiation sensitization of the nanoparticle. Methods: The platinum nanoparticle (PtNP) was synthesized with the diameter of 2nm, and capped with cysteine. The nanoparticle was tagged with a fluorescent dye (cy5) for the fluoresence detection, and conjuated with HER2/3 targeted protein (HerPBK10) for HER2-targeting specificity. We evaluated the theranostic features using in vitro breast cancer cell models: HER2-positive BT-474, and HER2-negative MDA-MB-231. The HER2-targeting specificity was evaluated using immunofluorescence and confocal microscopy.more » For each cell line, three sets of samples, including non-stained control, fluorescence stained PtNP-cy5 treated, and HER-PtNP treated, were imaged by confocal microscopy. Two breast cancer cell lineages were incubated with PtNP and HER-PtNP at 10 µg/mL, and then irradiated with X-rays for 2 Gy dose at 50 kVp. A colonogenic assay was used to determine cellular survival fractions by immediately reseeding 300 cells after irradiation in growth media and allowing colonies to grow for 2 weeks. Results: The results of confocal images show that no apparent nanoparticle cellular uptake was observed in the HER2-(MDA-MB-231) cells with 1% for PtNP-cy5 and 0.5% for HER-PtNP. Similarly no apparent PtNP-cy5 uptake (<1%) for BT474 cells was observed. However, there was significant HER-PtNP uptake (73%) for the HER2+(BT474) cells. The clonogenic assay showed that BT474 cells treated with HER-PtNP had significantly lower survival compared to those treated with PtNP (32% vs 81%, p=0.01). However, no significant radiosensitivity enhancement was observed for MDA-MB-231 cell treated with PtNP and HER-PtNP (89% vs 92%, p=0.78). Conclusion: Our studies suggest that the HER2-targeted platinum nanoparticle has excellent receptor targeting specificity and enhanced radiation sensitization compared to nanoparticle alone, suggesting potential for clinical applications in breast cancer radiotherapy.« less

  4. [Advanced luminal breast cancer (hormone receptor-positive, HER2 negative): New therapeutic options in 2015].

    PubMed

    Vanacker, Hélène; Bally, Olivia; Kassem, Loay; Tredan, Olivier; Heudel, Pierre; Bachelot, Thomas

    2015-06-01

    Despite improvements in early detection, surgery and systemic therapy, metastatic breast cancer remains a major cause of death. Luminal type breast cancers expressing hormone estrogen receptor (ER) or progesterone (PR) and without HER2 overexpression are generally sensitive to endocrine therapy, but raise the issue of the occurrence of resistance to treatment, particularly at metastatic stage. A better understanding of hormone resistance may guide the development of new therapeutics. New strategies aim at enhancing and prolonging of endocrine sensitivity, by optimizing existing schemes, or by combining an endocrine therapy with a targeted therapies specific to hormone resistance pathways: ER signaling, PI3K/AKT/mTOR and Cyclin Dependent Kinase (CDK). Key corners of 2014 include confirmation of benefit of high dose fulvestrant, and commercialization of everolimus as the first mTOR inhibitor in this indication. Other strategies are being tested dealing with new endocrine therapies or new molecular targets such as PI3K inhibitors, insulin-like growth factor receptor (IGF-R) and histone deacetylase (HDAC) inhibitors. Coming years may be fruitful and might radically change our way to treat these patients. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.

  5. Gastric cancer with brain metastasis and the role of human epidermal growth factor 2 status.

    PubMed

    Cavanna, Luigi; Seghini, Pietro; Di Nunzio, Camilla; Orlandi, Elena; Michieletti, Emanuele; Stroppa, Elisa Maria; Mordenti, Patrizia; Citterio, Chiara; Vecchia, Stefano; Zangrandi, Adriano

    2018-04-01

    Central nervous system (CNS) metastases from cancers of the gastrointestinal tract (GIT) are rare, and occur in 0.16-0.69% of patients with gastric or gastro-esophageal (GE) junction cancer. Overexpression of the human epidermal growth factor 2 (HER-2) is associated with poor prognosis in the absence of HER-2-targeted therapy, and with an increased incidence of CNS metastases in patients with breast cancer. The role of HER-2 overexpression in CNS metastases is not well known in gastric adenocarcinoma. The purpose of the present retrospective study was to assess the incidence of CNS metastases and to evaluate the associations between the CNS and HER-2 status in a series of consecutive patients with gastric or GE junction cancer. Between 2007 and 2013, 300 patients with gastric cancer (GC) or gastroesophageal junction, were admitted to Piacenza General Hospital, Italy. These cases were retrospectively analyzed to evaluate CNS metastases. The metastases were diagnosed with imaging techniques performed on symptomatic patients. Gastric histological samples of patients with CNS metastases were reviewed and tested for HER-2. A total of 7 of the 300 patients (2.33%) with GC were observed to have CNS metastases and 6 (85.71%) had HER-2 positive disease. These patients exhibited a poor prognosis with a median overall survival rate of 4.1 months (range, 2.1-6.6 months). These results suggested there may be CNS recurrence susceptibility in patients with HER-2 positive GC. To the best of our knowledge, this is the first report that associates CNS metastases and HER-2 status in gastric or GE junction cancer.

  6. Intrathecal trastuzumab (Herceptin) and methotrexate for meningeal carcinomatosis in HER2-overexpressing metastatic breast cancer: a case report.

    PubMed

    Stemmler, Hans-Joachim; Mengele, Karin; Schmitt, Manfred; Harbeck, Nadia; Laessig, Dorit; Herrmann, Karin A; Schaffer, Pamela; Heinemann, Volker

    2008-09-01

    Leptomeningeal carcinomatosis represents a rare manifestation of metastatic breast cancer (MBC). We herewith report on a patient suffering from HER2 overexpressing MBC who received intrathecal methotrexate and trastuzumab for meningeal carcinomatosis. A 48-year-old woman was diagnosed with breast cancer in December 2002. Following surgery, six cycles of adjuvant FE100C plus irradiation and, subsequently for 1 year, trastuzumab were given. As a result of disseminated metastatic spread in October 2005, the patient received whole-brain radiotherapy for symptomatic central nervous system involvement, and was put on several trastuzumab-based combination regimens (capecitabine, vinorelbine, paclitaxel). In June 2006, the patient developed clinical signs of terminal cone involvement with overflow incontinence and paraparesis of the legs. Immediate radiation led to partial relief from clinical symptoms. Subsequently, the patient was put on the tyrosine kinase inhibitor lapatinib and capecitabine (August to October 2007), but on November 6th the patient suffered again from overflow incontinence and weakness of the legs. Failing to respond to lapatinib, the patient received gemcitabine/cisplatin and, additionally, was recommenced on intravenous trastuzumab. Owing to progressive leptomeningeal disease, the patient received repeated doses of intrathecal methotrexate and trastuzumab. Within 2 weeks and four intrathecal treatments, cerebrospinal fluid cytology showed the absence of tumor cells. Moreover, a striking clinical improvement with resolution of the paraparesis of the legs and overflow incontinence was observed. This case report gives details regarding the clinical course of a breast cancer patient who received intrathecal trastuzumab and methotrexate via lumbar puncture for meningeal carcinomatosis of HER2-overexpressing MBC.

  7. HER-2 gene amplification, HER-2 and epidermal growth factor receptor mRNA and protein expression, and lapatinib efficacy in women with metastatic breast cancer.

    PubMed

    Press, Michael F; Finn, Richard S; Cameron, David; Di Leo, Angelo; Geyer, Charles E; Villalobos, Ivonne E; Santiago, Angela; Guzman, Roberta; Gasparyan, Armen; Ma, Yanling; Danenberg, Kathy; Martin, Anne Marie; Williams, Lisa; Oliva, Cristina; Stein, Steven; Gagnon, Robert; Arbushites, Michael; Koehler, Maria T

    2008-12-01

    Biomarkers from two randomized phase III trials were analyzed to optimize selection of patients for lapatinib therapy. In available breast cancer tissue from EGF30001 (paclitaxel +/- lapatinib in HER-2-negative/unknown metastatic breast cancer, n = 579) and EGF100151 (capecitabine +/- lapatinib in HER-2-positive metastatic breast cancer, n = 399), HER-2 gene amplification by fluorescence in situ hybridization (FISH), HER-2 mRNA by reverse transcription-PCR (RT-PCR), HER-2 protein expression by HercepTest immunohistochemistry (IHC), epidermal growth factor receptor (EGFR) mRNA level by RT-PCR, and EGFR protein by IHC were analyzed and compared with clinical outcome. HER-2 was determined by FISH in an academic reference/research laboratory and in a large, high-volume commercial reference laboratory. The HER-2 gene was amplified in 47% (344 of 733) and IHC was 3+ in 35% (279 of 798), with significant correlation (P < 0.01) between FISH and IHC. Positive EGFR immunostaining (IHC 1+, 2+, or 3+) in 28% (213 of 761) correlated with EGFR mRNA levels by RT-PCR (r = 0.59; P < 0.01). HER-2 gene amplification/overexpression was associated with improved clinical outcomes (progression-free survival; P < 0.001) in both trials. A significant improvement in outcome was seen in FISH-positive and IHC 0, 1+, or 2+ patients. HER-2 mRNA expression correlated with HER-2 FISH (r = 0.83) and IHC status (r = 0.72; n = 138). No correlation was found between EGFR expression (IHC or mRNA) and responsiveness to lapatinib regardless of HER-2 status. Although a significant correlation with lapatinib responsiveness was observed among "HER-2-negative" breast cancer patients in the large, high-volume commercial reference laboratory, this was not confirmed in the academic reference/research laboratory. Women with HER-2-positive metastatic breast cancer benefit from lapatinib, whereas women with HER-2-negative metastatic breast cancer derive no incremental benefit from lapatinib.

  8. Epstein Barr virus and invasive mammary carcinomas: EBNA, EBERs and molecular profile in a population of West Algeria.

    PubMed

    Yahia, Radia; Zaoui, Chahinez; Derbale, Wafaa; Boudi, Hafsa; Chebloune, Yahia; Sahraoui, Tewfik; Elkebir, Fatima Zohra

    2018-01-01

    Breast cancer is the common malignancy that affects women worldwide, but conventional risk factors account for only a small proportion of these cases. A possible viral etiology for breast cancer has been proposed and Epstein-Barr virus (EBV) is a widely studied candidate virus. The objective of this study is to determine the association of EBV infection with infiltrating ductal carcinomas (IDC). This descriptive study was carried out in the laboratory of developmental biology and differentiation, from 2012 to 2014. Of 39 cases, we determined the clinicopathological characteristics of the population. Of the 23 cases of IDC, we implemented the techniques Elisa, immunohistochemistry and in situ hybridization. To determine the serological profile, overexpression of onco-proteins EBNA-1, HER2, the mitotic index Ki67 and detection of the presence of the viral genome. The mean age is 57.40±4, SBR II predominates with 70%, pN+ (27%), RE+ (58%), RP+ (52%), HER2 (81%), Luminal A (34%), Luminal B (14%), HER2 (24%), and triple negative (28%). The serological profile of IgG VCA + in IgG EBNA-1 (87%), EBNA-1 P79 (82%) with a positive relationship between the IgG EBNA-1 and EBNA-1 P79 serology profile (p=0.001), HER2 (p=0.003) and with the molecular profile (p=0.051), EBNA-1 overexpression in (13%). The viral genome (EBER) is found in the tumors 43% representing an inverse relationship with the overexpression of Ki67 and a positive relationship with the overexpression of HER2. In our study we found an association with the presence of the EBV virus and the IDC studied.

  9. Could HER2 heterogeneity open new therapeutic options in patients with HER2- primary breast cancer

    DTIC Science & Technology

    is an initial proof-of-concept that targeted imaging may help identify patients eligible for targeted therapies. However, six of nine patients have...needed. A first-in-human trial of 89Zr-pertuzumab PET/CT was performed in six patients with HER2-positive metastatic breast cancer, demonstrating

  10. Neoadjuvant trials in ER+ breast cancer: A tool for acceleration of drug development and discovery

    PubMed Central

    Guerrero-Zotano, Angel L.; Arteaga, Carlos L.

    2017-01-01

    Neoadjuvant therapy trials offer an excellent strategy for drug development and discovery in breast cancer, particularly in triple negative and HER2-overexpressing subtypes, where pathologic complete response is a good surrogate of long term patient benefit. For estrogen receptor (ER)-positive breast cancers, however, use of this strategy has been challenging because of the lack of validated surrogates of long term efficacy and the overall good prognosis of the majority of patients with this cancer subtype. We review below the clinical benefits of neodjuvant endocrine therapy for ER+/HER2-negative breast cancer, its use and limitations for drug development, prioritization of adjuvant and metastatic trials, and biomarker discovery. PMID:28495849

  11. Correlation between hormone receptor status and age, and its prognostic implications in breast cancer patients in Bahrain

    PubMed Central

    AlZaman, Aysha S.; Mughal, Saad A.; AlZaman, Yahya S.; AlZaman, Entisar S.

    2016-01-01

    Objectives: To assess the correlation between hormone receptor status (HRS) and age, and its significance as a predictor of outcome in patients with breast cancer (BC). Methods: This retrospective review was conducted on 109 patients diagnosed with BC at Salmaniya Medical Complex, Manama, Bahrain from 2010-2013. Patients were divided into 2 age groups; under and over 40 years, and were analyzed for tumor histology, lymph node status, stage, and HRS. Results: Younger patients with BC were more likely to be of higher stage, grade, and of larger size. Older women were more likely to be estrogen receptor (ER) positive (72.6% versus 55.3%), and progesterone receptor (PR) positive (71% versus 53.2%) (p=0.03). The human epidermal growth factor receptor (HER)-2 over-expression was seen more in younger women (51% versus 40%) (p=0.2). Younger patients had higher lymph node metastases (88.6% versus 56.1%) (p=0.0004), and higher distant metastases (26.7% versus 6.8%) (p=0.005). The HER-2 over-expression strongly correlated with lymph node status. A total of 63.4% of lymph node positive patients had HER-2 over-expression compared with only 13.3% of lymph node negative patients (p<0.00001). Conclusion: Breast cancer is more aggressive and advanced in younger women, a fact that can be significantly attributed to under expression of ER and PR, and over expression of HER-2, which also correlates well with lymph node status, as a measure of aggressiveness. Further studies should evaluate the genetic profile of BC in such population to improve their outcomes. PMID:26739972

  12. Recent Advances in Antibody-Drug Conjugates for Breast Cancer Treatment.

    PubMed

    Deng, Shanshan; Lin, Zongtao; Li, Wei

    2017-01-01

    Breast cancer is the most common cancer in women, with roughly half a million deaths per year worldwide. Among various approaches for breast cancer treatment, chemotherapy is predominantly used for patients at stages II-IV, and monoclonal antibody (mAb) therapy is used for patients with human epidermal growth factor receptor 2 (HER2) overexpression. Integrating the tumor specificity provided by unique mAbs and cytotoxicity of small molecule drugs, antibody-drug conjugates (ADCs) are a series of smart chemotherapeutics that have recently shown great promise in treating a number of cancer types. ADCs are designed to selectively attack and kill cancer cells with minimal toxicity to normal tissues. Ado-Trastuzumab emtansine (T-DM1) was the first and only ADC approved by the US Food and Drug Administration for HER2-positive breast cancer. Following the success of T-DM1, many novel ADCs have been developed, and their anticancer efficacies are currently undergoing preclinical or clinical investigation. The development of ADCs is a rapidly progressing field, and this review aims to summarize the most recent advances in ADCs targeting breast cancer over the past five years (2011-2016). The review highlights compositions and mechanisms of action of these newly developed ADCs and discusses current challenges and future directions of developing new ADCs for improved treatment of breast cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Viral transduction of the HER2-extracellular domain expands trastuzumab-based photoimmunotherapy for HER2-negative breast cancer cells.

    PubMed

    Shimoyama, Kyoko; Kagawa, Shunsuke; Ishida, Michihiro; Watanabe, Shinichiro; Noma, Kazuhiro; Takehara, Kiyoto; Tazawa, Hiroshi; Hashimoto, Yuuri; Tanabe, Shunsuke; Matsuoka, Junji; Kobayashi, Hisataka; Fujiwara, Toshiyoshi

    2015-02-01

    The prognosis of HER2-positive breast cancer has been improved by trastuzumab therapy, which features high specificity and limited side effects. However, trastuzumab-based therapy has shortcomings. Firstly, HER2-targeted therapy is only applicable to HER2-expressing tumors, which comprise only 20-25% of primary breast cancers. Secondly, many patients who initially respond to trastuzumab ultimately develop disease progression. To overcome these problems, we employed virus-mediated HER2 transduction and photoimmunotherapy (PIT) which involves trastuzumab conjugated with a photosensitizer, trastuzumab-IR700, and irradiation of near-infrared light. We hypothesized that the gene transduction technique together with PIT would expand the range of tumor entities suitable for trastuzumab-based therapy and improve its antitumor activity. The HER2-extracellular domain (ECD) was transduced by the adenoviral vector, Ad-HER2-ECD, and PIT with trastuzumab-IR700 was applied in the HER2-negative cancer cells. Ad-HER2-ECD can efficiently transduce HER2-ECD into HER2-negative human cancer cells. PIT with trastuzumab-IR700 induced direct cell membrane destruction of Ad-HER2-ECD-transduced HER2-negative cancer cells. Novel combination of viral transduction of a target antigen and an antibody-based PIT would expand and potentiate molecular-targeted therapy even for target-negative or attenuated cancer cells.

  14. HER-2 and HER-3 expression in liver metastases of patients with colorectal cancer.

    PubMed

    Styczen, Hanna; Nagelmeier, Iris; Beissbarth, Tim; Nietert, Manuel; Homayounfar, Kia; Sprenger, Thilo; Boczek, Ute; Stanek, Kathrin; Kitz, Julia; Wolff, Hendrik A; Ghadimi, B Michael; Middel, Peter; Liersch, Torsten; Rüschoff, Josef; Conradi, Lena-Christin

    2015-06-20

    In this study, we evaluate the frequency of HER-2 and HER-3 expression in liver metastases from patients with colorectal cancer (CRLM). We analyzed the potential of HER-2 and HER-3 as therapeutic targets and evaluated their prognostic value. Overall 208 patients with CRLM were enrolled. HER-2 and HER-3 expression were determined in metastatic tissue of diagnostic punch biopsies (n = 29) or resection specimens (n = 179). The results of immunohistochemistry (IHC) scoring and In-situ-hybridization (ISH)-amplification were correlated with clinical parameters and for the 179 resected patients with cancer-specific (CSS) and overall survival (OS). The mean follow-up time was 56.7 months. Positivity of HER-2 status (IHC score 2+/ISH+ and IHC 3+) was found in 8.2% of CRLM. High expression of HER-3 (IHC score 2+ and IHC 3+) was detected in 75.0% of liver metastases. CSS after liver surgery was determined and was independent from the HER-2 status (p = 0.963); however HER-3 was prognostic with a favorable course for patients showing an overexpression of HER-3 (p = 0.037). HER-2 overexpression occurs in only 8% of patients with CRLM but with 75% of cases HER-3 is frequently overexpressed in CRLM. Therefore, HER-2 and particularly HER-3 could serve as novel targets to be addressed within multimodal treatment approaches.

  15. HER2-targeted recombinant protein immuno-caspase-6 effectively induces apoptosis in HER2-overexpressing GBM cells in vitro and in vivo.

    PubMed

    Zhang, Leiming; Ren, Junlin; Zhang, Hangyu; Cheng, Gang; Xu, Yanming; Yang, Shuangwu; Dong, Chao; Fang, Dandong; Zhang, Jianning; Yang, Angang

    2016-11-01

    Glioblastoma multiforme (GBM), which is associated with a high rate of morbidity and mortality, is among the most malignant and treatment-refractory neoplasms in human adults. As GBM is highly resistant to conventional therapies, immunotherapies are a promising treatment candidate. HER2 is an attractive target for GBM immunotherapy, as its expression is highly associated with various types of GBM. We previously reported that a novel HER2-targeted recombinant protein e23sFv-Fdt-casp6 has an antitumor effect on HER2-positive gastric cancer cells. In this study, we established a genetically modified Chinese hamster ovary cell line, which produced and secreted e23sFv-Fdt-casp6 proteins. Following specific binding to and internalization into HER2-overexpressing tumor cells, the e23sFv-Fdt-casp6 protein induced tumor cell apoptosis and inhibited the proliferation of HER2-overexpressing A172 and U251MG cells in vitro, but not in U87MG cells with undetectable HER2. The e23sFv-Fdt-casp6 gene was introduced into severe combined immunodeficient mice bearing human glioblastoma xenografts by using intramuscular injections of a liposome-encapsulated vector. The recombinant protein e23sFv-Fdt-casp6 specifically targeted tumor cells and induced apoptosis, thereby leading to potent inhibition of tumor growth and prolonged the survival time of tumor-bearing mice. We concluded that e23sFv‑Fdt‑casp6 represents a promising HER2-targeted treatment option for human gliomas.

  16. A hybrid of B and T lymphoblastic cell line could potentially substitute dendritic cells to efficiently expand out Her-2/neu-specific cytotoxic T lymphocytes from advanced breast cancer patients in vitro.

    PubMed

    Chen, Sheng; Gu, Feifei; Li, Kang; Zhang, Kai; Liu, Yangyang; Liang, Jinyan; Gao, Wei; Wu, Gang; Liu, Li

    2017-02-28

    Adoptive transfer of cytotoxic T lymphocytes (CTLs) holds promises to cure cancer. However, this treatment is hindered by lacking a robust way to specifically expand out CTLs. Here, we developed a hybrid of B lymphoblastic cell line and T lymphoblastic cell line (T2 cells) as a substitute of dendritic cells, together with irradiated autologous peripheral blood mononuclear cell (PBMC) as feeder cells and rhIL-2, to activate and expand Her-2/neu-specific CD8 + T cells from human epidermal growth factor receptor 2 (Her-2/neu) and human leukocyte antigen (HLA)-A2 double positive advanced breast cancer patients in vitro. These Her-2/neu-loaded T2 cells reproducibly activated and expanded out Her-2/neu-specific CD8 + T cells to 10 7 in 8 weeks. Furthermore, these Her-2/neu-specific CD8 + T cells had good sensitivity of recognition and killing Her-2/neu-overexpressed breast cancer cell line SK.BR.3. This technique gives us another insight on how to rapidly obtain sufficient CTLs for adoptive cancer immunotherapy.

  17. Growth Factor Receptor-Directed Therapy in Human Breast Cancer

    DTIC Science & Technology

    1997-12-01

    related more to acquired rather than to intrinsic drug resistance. 3) To define the role of HER-2 and heregulin gene expression in antiestrogen... treatment strategies in affected patients. 3) Role of HER-2 and heregulin gene expression in antiestrogen resistance. The hypothesis that heregulins may be a...native amplification/overexpression of the HER-2/neu gene and sion. Finally, to avoid the possibility that any observed are shown as positive controls

  18. Silencing of E2F3 suppresses tumor growth of Her2+ breast cancer cells by restricting mitosis.

    PubMed

    Lee, Miyoung; Oprea-Ilies, Gabriela; Saavedra, Harold I

    2015-11-10

    The E2F transcriptional activators E2F1, E2F2 and E2F3a regulate many important cellular processes, including DNA replication, apoptosis and centrosome duplication. Previously, we demonstrated that silencing E2F1 or E2F3 suppresses centrosome amplification (CA) and chromosome instability (CIN) in Her2+ breast cancer cells without markedly altering proliferation. However, it is unknown whether and how silencing a single E2F activator, E2F3, affects malignancy of human breast cancer cells. Thus, we injected HCC1954 Her2+ breast cancer cells silenced for E2F3 into mammary fat pads of immunodeficient mice and demonstrated that loss of E2F3 retards tumor growth. Surprisingly, silencing of E2F3 led to significant reductions in mitotic indices relative to vector controls, while the percentage of cells undergoing S phase were not affected. Nek2 is a mitotic kinase commonly upregulated in breast cancers and a critical regulator of Cdk4- or E2F-mediated CA. In this report, we found that Nek2 overexpression rescued back the CA caused by silencing of shE2F3. However, the effects of Nek2 overexpression in affecting tumor growth rates of shE2F3 and shE2F3; GFP cells were inconclusive. Taken together, our results indicate that E2F3 silencing decreases mammary tumor growth by reducing percentage of cells undergoing mitosis.

  19. Neratinib induces ErbB2 ubiquitylation and endocytic degradation via HSP90 dissociation in breast cancer cells.

    PubMed

    Zhang, Yingqiu; Zhang, Jinrui; Liu, Congcong; Du, Sha; Feng, Lu; Luan, Xuelin; Zhang, Yayun; Shi, Yulin; Wang, Taishu; Wu, Yue; Cheng, Wei; Meng, Songshu; Li, Man; Liu, Han

    2016-11-28

    Receptor tyrosine kinase ErbB2/HER2 is frequently observed to be overexpressed in human cancers, leading to over activation of downstream signaling modules. HER2 positive is a major type of breast cancer for which ErbB2 targeting is already proving to be an effective therapeutic strategy. Apart from antibodies against ErbB2, the small molecule tyrosine kinase inhibitor lapatinib has had successful clinical outcomes, and other inhibitors such as neratinib are currently undergoing clinical investigations. In this study we report the effects of lapatinib and neratinib on the mRNA and protein levels of the ErbB2 receptor. We provide evidence that neratinib-induced down regulation of ErbB2 occurs through ubiquitin-mediated endocytic sorting and lysosomal degradation. At the mechanistic level, neratinib treatment leads to HSP90 release from ErbB2 and its subsequent ubiquitylation and endocytic degradation. Our findings provide novel insights into the mechanism of ErbB2 inhibition by neratinib. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Reduced risk of breast cancer associated with recreational physical activity varies by HER2 status

    PubMed Central

    Ma, Huiyan; Xu, Xinxin; Ursin, Giske; Simon, Michael S; Marchbanks, Polly A; Malone, Kathleen E; Lu, Yani; McDonald, Jill A; Folger, Suzanne G; Weiss, Linda K; Sullivan-Halley, Jane; Deapen, Dennis M; Press, Michael F; Bernstein, Leslie

    2015-01-01

    Convincing epidemiologic evidence indicates that physical activity is inversely associated with breast cancer risk. Whether this association varies by the tumor protein expression status of the estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), or p53 is unclear. We evaluated the effects of recreational physical activity on risk of invasive breast cancer classified by the four biomarkers, fitting multivariable unconditional logistic regression models to data from 1195 case and 2012 control participants in the population-based Women’s Contraceptive and Reproductive Experiences Study. Self-reported recreational physical activity at different life periods was measured as average annual metabolic equivalents of energy expenditure [MET]-hours per week. Our biomarker-specific analyses showed that lifetime recreational physical activity was negatively associated with the risks of ER-positive (ER+) and of HER2-negative (HER2−) subtypes (both Ptrend ≤ 0.04), but not with other subtypes (all Ptrend > 0.10). Analyses using combinations of biomarkers indicated that risk of invasive breast cancer varied only by HER2 status. Risk of HER2–breast cancer decreased with increasing number of MET-hours of recreational physical activity in each specific life period examined, although some trend tests were only marginally statistically significant (all Ptrend ≤ 0.06). The test for homogeneity of trends (HER2– vs. HER2+ ) reached statistical significance only when evaluating physical activity during the first 10 years after menarche (Phomogeneity = 0.03). Our data suggest that physical activity reduces risk of invasive breast cancers that lack HER2 overexpression, increasing our understanding of the biological mechanisms by which physical activity acts. PMID:25924995

  1. Selection of Optimal Adjuvant Chemotherapy and Targeted Therapy for Early Breast Cancer: ASCO Clinical Practice Guideline Focused Update.

    PubMed

    Denduluri, Neelima; Chavez-MacGregor, Mariana; Telli, Melinda L; Eisen, Andrea; Graff, Stephanie L; Hassett, Michael J; Holloway, Jamie N; Hurria, Arti; King, Tari A; Lyman, Gary H; Partridge, Ann H; Somerfield, Mark R; Trudeau, Maureen E; Wolff, Antonio C; Giordano, Sharon H

    2018-05-22

    Purpose To update key recommendations of the ASCO guideline adaptation of the Cancer Care Ontario guideline on the selection of optimal adjuvant chemotherapy regimens for early breast cancer and adjuvant targeted therapy for breast cancer. Methods An Expert Panel conducted targeted systematic literature reviews guided by a signals approach to identify new, potentially practice-changing data that might translate to revised practice recommendations. Results The Expert Panel reviewed phase III trials that evaluated adjuvant capecitabine after completion of standard preoperative anthracycline- and taxane-based combination chemotherapy by patients with early-stage breast cancer HER2-negative breast cancer with residual invasive disease at surgery; the addition of 1 year of adjuvant pertuzumab to combination chemotherapy and trastuzumab for patients with early-stage, HER2-positive breast cancer; and the use of neratinib as extended adjuvant therapy for patients after combination chemotherapy and trastuzumab-based adjuvant therapy with early-stage, HER2-positive breast cancer. Recommendations Patients with early-stage HER2-negative breast cancer with pathologic, invasive residual disease at surgery following standard anthracycline- and taxane-based preoperative therapy may be offered up to six to eight cycles of adjuvant capecitabine. Clinicians may add 1 year of adjuvant pertuzumab to trastuzumab-based combination chemotherapy in patients with high-risk, early-stage, HER2-positive breast cancer. Clinicians may use extended adjuvant therapy with neratinib to follow trastuzumab in patients with early-stage, HER2-positive breast cancer. Neratinib causes substantial diarrhea, and diarrhea prophylaxis must be used. Additional information can be found at www.asco.org/breast-cancer-guidelines .

  2. N-Acetylcysteine breaks resistance to trastuzumab caused by MUC4 overexpression in human HER2 positive BC-bearing nude mice monitored by 89Zr-Trastuzumab and 18F-FDG PET imaging

    PubMed Central

    Wimana, Zéna; Gebhart, Geraldine; Guiot, Thomas; Vanderlinden, Bruno; Larsimont, Denis; Doumont, Gilles; Van Simaeys, Gaetan; Goldman, Serge; Flamen, Patrick; Ghanem, Ghanem

    2017-01-01

    Trastuzumab remains an important drug in the management of human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer (BC). Several studies reported resistance mechanisms to trastuzumab, including impaired HER2-accessibility caused by mucin 4 (MUC4). Previously, we demonstrated an increase of Zirconium-89-radiolabeled-trastuzumab (89Zr-Trastuzumab) accumulation when MUC4-overexpressing BC-cells were challenged with the mucolytic drug N-Acetylcysteine (NAC). Hereby, using the same approach we investigated whether tumor exposure to NAC would also enhance trastuzumab-efficacy. Dual SKBr3 (HER2+/MUC4-, sensitive to trastuzumab) and JIMT1 (HER2+/MUC4+, resistant to trastuzumab) HER2-BC-bearing-xenografts were treated with trastuzumab and NAC. Treatment was monitored by molecular imaging evaluating HER2-accessibility/activity (89Zr-Trastuzumab HER2-immunoPET) and glucose metabolism (18F-FDG-PET/CT), as well as tumor volume and the expression of key proteins. In the MUC4-positive JIMT1-tumors, the NAC-trastuzumab combination resulted in improved tumor-growth control compared to trastuzumab alone; with smaller tumor volume/weight, lower 18F-FDG uptake, lower %Ki67 and pAkt-expression. NAC reduced MUC4-expression, but did not affect HER2-expression or the trastuzumab-sensitivity of the MUC4-negative SKBr3-tumors. These findings suggest that improving HER2-accessibility by reducing MUC4-masking with the mucolytic drug NAC, results in a higher anti-tumor effect of trastuzumab. This provides a rationale for the potential benefit of this approach to possibly treat a subset of HER2-positive BC overexpressing MUC4. PMID:28915583

  3. N-Acetylcysteine breaks resistance to trastuzumab caused by MUC4 overexpression in human HER2 positive BC-bearing nude mice monitored by 89Zr-Trastuzumab and 18F-FDG PET imaging.

    PubMed

    Wimana, Zéna; Gebhart, Geraldine; Guiot, Thomas; Vanderlinden, Bruno; Larsimont, Denis; Doumont, Gilles; Van Simaeys, Gaetan; Goldman, Serge; Flamen, Patrick; Ghanem, Ghanem

    2017-08-22

    Trastuzumab remains an important drug in the management of human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer (BC). Several studies reported resistance mechanisms to trastuzumab, including impaired HER2-accessibility caused by mucin 4 (MUC4). Previously, we demonstrated an increase of Zirconium-89-radiolabeled-trastuzumab ( 89 Zr-Trastuzumab) accumulation when MUC4-overexpressing BC-cells were challenged with the mucolytic drug N-Acetylcysteine (NAC). Hereby, using the same approach we investigated whether tumor exposure to NAC would also enhance trastuzumab-efficacy. Dual SKBr3 (HER2+/MUC4-, sensitive to trastuzumab) and JIMT1 (HER2+/MUC4+, resistant to trastuzumab) HER2-BC-bearing-xenografts were treated with trastuzumab and NAC. Treatment was monitored by molecular imaging evaluating HER2-accessibility/activity ( 89 Zr-Trastuzumab HER2-immunoPET) and glucose metabolism ( 18 F-FDG-PET/CT), as well as tumor volume and the expression of key proteins. In the MUC4-positive JIMT1-tumors, the NAC-trastuzumab combination resulted in improved tumor-growth control compared to trastuzumab alone; with smaller tumor volume/weight, lower 18F-FDG uptake, lower %Ki67 and pAkt-expression. NAC reduced MUC4-expression, but did not affect HER2-expression or the trastuzumab-sensitivity of the MUC4-negative SKBr3-tumors. These findings suggest that improving HER2-accessibility by reducing MUC4-masking with the mucolytic drug NAC, results in a higher anti-tumor effect of trastuzumab. This provides a rationale for the potential benefit of this approach to possibly treat a subset of HER2-positive BC overexpressing MUC4.

  4. Breast cancer: updates and advances in 2016.

    PubMed

    Giordano, Sara B; Gradishar, William

    2017-02-01

    Approximately 1 in 8 US women (12%) will develop invasive breast cancer over the course of her lifetime. In 2016, an estimated 246,660 new cases of invasive breast cancer are expected to be diagnosed and approximately 40,450 would die as a result of it. The global burden of breast cancer exceeds all other cancers and the incidence is increasing. The heterogeneity of breast cancer makes it a challenging solid tumor to diagnose and treat. This review focuses on the recent advances in breast cancer therapy including hormonal treatment of metastatic breast cancer, targeting cyclin-dependent kinases (CDK) 4/6 in breast cancer, updates in targeting human epidermal growth factor receptor 2 (HER2) positive breast cancer, adaptive randomization trial design and cancer genetic risk assessment. Breast cancer is a heterogeneous disease and targeted therapy is improving the outcomes of women. The use of cyclin-dependent kinase inhibitors (CDK) 4/6 have demonstrated a substantial improvement in progression-free survival in the first line setting of metastatic hormone receptor positive breast cancer. And newer agents directed at HER2 continue to revolutionize HER2-positive breast cancer treatment. This review highlights the recent updates in breast cancer treatment, new concepts in clinical trial design and provides a current overview of cancer genetic risk assessment.

  5. Targeted Therapy for Breast Cancer Prevention

    PubMed Central

    den Hollander, Petra; Savage, Michelle I.; Brown, Powel H.

    2013-01-01

    With a better understanding of the etiology of breast cancer, molecularly targeted drugs have been developed and are being testing for the treatment and prevention of breast cancer. Targeted drugs that inhibit the estrogen receptor (ER) or estrogen-activated pathways include the selective ER modulators (tamoxifen, raloxifene, and lasofoxifene) and aromatase inhibitors (AIs) (anastrozole, letrozole, and exemestane) have been tested in preclinical and clinical studies. Tamoxifen and raloxifene have been shown to reduce the risk of breast cancer and promising results of AIs in breast cancer trials, suggest that AIs might be even more effective in the prevention of ER-positive breast cancer. However, these agents only prevent ER-positive breast cancer. Therefore, current research is focused on identifying preventive therapies for other forms of breast cancer such as human epidermal growth factor receptor 2 (HER2)-positive and triple-negative breast cancer (TNBC, breast cancer that does express ER, progesterone receptor, or HER2). HER2-positive breast cancers are currently treated with anti-HER2 therapies including trastuzumab and lapatinib, and preclinical and clinical studies are now being conducted to test these drugs for the prevention of HER2-positive breast cancers. Several promising agents currently being tested in cancer prevention trials for the prevention of TNBC include poly(ADP-ribose) polymerase inhibitors, vitamin D, and rexinoids, both of which activate nuclear hormone receptors (the vitamin D and retinoid X receptors). This review discusses currently used breast cancer preventive drugs, and describes the progress of research striving to identify and develop more effective preventive agents for all forms of breast cancer. PMID:24069582

  6. Coamplification of miR-4728 protects HER2-amplified breast cancers from targeted therapy

    PubMed Central

    Floros, Konstantinos V.; Hu, Bin; Monterrubio, Carles; Hughes, Mark T.; Wells, Jason D.; Morales, Cristina Bernadó; Ghotra, Maninderjit S.; Costa, Carlotta; Souers, Andrew J.; Boikos, Sosipatros A.; Leverson, Joel D.; Tan, Ming; Serra, Violeta; Koblinski, Jennifer E.; Arribas, Joaquin; Prat, Aleix; Paré, Laia; Miller, Todd W.; Harada, Hisashi; Windle, Brad E.; Scaltriti, Maurizio; Faber, Anthony C.

    2018-01-01

    HER2 (ERBB2) amplification is a driving oncogenic event in breast cancer. Clinical trials have consistently shown the benefit of HER2 inhibitors (HER2i) in treating patients with both local and advanced HER2+ breast cancer. Despite this benefit, their efficacy as single agents is limited, unlike the robust responses to other receptor tyrosine kinase inhibitors like EGFR inhibitors in EGFR-mutant lung cancer. Interestingly, the lack of HER2i efficacy occurs despite sufficient intracellular signaling shutdown following HER2i treatment. Exploring possible intrinsic causes for this lack of response, we uncovered remarkably depressed levels of NOXA, an endogenous inhibitor of the antiapoptotic MCL-1, in HER2-amplified breast cancer. Upon investigation of the mechanism leading to low NOXA, we identified a micro-RNA encoded in an intron of HER2, termed miR-4728, that targets the mRNA of the Estrogen Receptor α (ESR1). Reduced ESR1 expression in turn prevents ERα-mediated transcription of NOXA, mitigating apoptosis following treatment with the HER2i lapatinib. Importantly, resistance can be overcome with pharmacological inhibition of MCL-1. More generally, while many cancers like EGFR-mutant lung cancer are driven by activated kinases that when drugged lead to robust monotherapeutic responses, we demonstrate that the efficacy of targeted therapies directed against oncogenes active through focal amplification may be mitigated by coamplified genes. PMID:29476008

  7. Role of TGR-B1-Mediated Down Regulation of NF-kB/Rel Activity During Growth Arrest of Breast Cancer Cells

    DTIC Science & Technology

    2001-05-01

    gallate ( EGCG ), which has been shown to inhibit the induction of NF-KB and growth of breast cancer cell lines in vitro. EGCG reduced NF-KB levels in the...demonstrated activation of NF-KB is induced upon over-expression of Her-2/neu. Thus, studies were initiated with green tea pholyphenol, epigallocatechin -3...NF639 cell line derived from an MMTV-Her-2/neu mouse tumor. NF639 clonal isolates resistant to EGCG appear to display elevated levels of NF-KB. Overall

  8. EGFR and AKT1 overexpression are mutually exclusive and associated with a poor survival in resected gastric adenocarcinomas.

    PubMed

    Petrini, Iacopo; Lencioni, Monica; Vasile, Enrico; Fornaro, Lorenzo; Belluomini, Lorenzo; Pasquini, Giulia; Ginocchi, Laura; Caparello, Chiara; Musettini, Gianna; Vivaldi, Caterina; Caponi, Sara; Ricci, Sergio; Proietti, Agenese; Fontanini, Gabriella; Naccarato, Antonio Giuseppe; Nardini, Vincenzo; Santi, Stefano; Falcone, Alfredo

    2018-02-14

    The evaluation of molecular targets in gastric cancer has demonstrated the predictive role of HER2 amplification for trastuzumab treatment in metastatic gastric cancer. Besides HER2, other molecular targets are under evaluation in metastatic gastric tumors. However, very little is known about their role in resected tumors. We evaluated the expression of HER2, EGFR, MET, AKT1 and phospho-mTOR in resected stage II-III adenocarcinomas. Ninety-two patients with resected stomach (63%) or gastro-esophageal adenocarcinomas (27%) were evaluated. Antibodies anti-HER2, EGFR, MET, AKT1 and phospho-mTOR were used for immunostaining of formalin-fixed paraffin-embedded slides. Using FISH, HER2 amplification was evaluated in cases with an intermediate (+2) staining. EGFR overexpression (11%) was a poor prognostic factor for overall survival (3-year OS: 47% vs 77%; Log-Rank p= 0.033). MET overexpression (36%) was associated with a trend for a worse survival (3-year OS: 65% vs 77%; Log-Rank p= 0.084). HER2 amplification/overexpression and mTOR hyper-phosphorylation were observed in 13% and 48% of tumors, respectively. AKT1 overexpression (8%) was not a prognostic factor by itself (p= 0.234). AKT1 and EGFR overexpression was mutually exclusive and patients with EGFR or AKT1 overexpression experienced a poor prognosis (3-year OS: 52% vs. 79%, Log-Rank p= 0.005). EGFR is confirmed a poor prognostic factor in resected gastric cancers. We firstly describe a mutually exclusive overexpression of EGFR and AKT1 with potential prognostic implications, suggesting the relevance of this pathway for the growth of gastric cancers.

  9. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing

    PubMed Central

    Radovich, Milan; Clare, Susan E.; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A.; Solzak, Jeffrey P.; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V.; Rufenbarger, Connie; Lillemoe, Heather A.; Blosser, Rachel J.; Choi, Mi Ran; Sauder, Candice A.; Doxey, Diane; Henry, Jill E.; Hilligoss, Eric E.; Sakarya, Onur; Hyland, Fiona C.; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W.; Schneider, Bryan P.

    2014-01-01

    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER−,PR−,HER2−). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90% of TNBCs revealing an over-expressed central network. In conclusion, Use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos. PMID:24292813

  10. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing.

    PubMed

    Radovich, Milan; Clare, Susan E; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A; Solzak, Jeffrey P; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V; Rufenbarger, Connie; Lillemoe, Heather A; Blosser, Rachel J; Choi, Mi Ran; Sauder, Candice A; Doxey, Diane; Henry, Jill E; Hilligoss, Eric E; Sakarya, Onur; Hyland, Fiona C; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W; Schneider, Bryan P

    2014-01-01

    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.

  11. The receptor tyrosine kinase EphA2 promotes glutamine metabolism in tumors by activating the transcriptional coactivators YAP and TAZ.

    PubMed

    Edwards, Deanna N; Ngwa, Verra M; Wang, Shan; Shiuan, Eileen; Brantley-Sieders, Dana M; Kim, Laura C; Reynolds, Albert B; Chen, Jin

    2017-12-05

    Malignant tumors reprogram cellular metabolism to support cancer cell proliferation and survival. Although most cancers depend on a high rate of aerobic glycolysis, many cancer cells also display addiction to glutamine. Glutamine transporters and glutaminase activity are critical for glutamine metabolism in tumor cells. We found that the receptor tyrosine kinase EphA2 activated the TEAD family transcriptional coactivators YAP and TAZ (YAP/TAZ), likely in a ligand-independent manner, to promote glutamine metabolism in cells and mouse models of HER2-positive breast cancer. Overexpression of EphA2 induced the nuclear accumulation of YAP and TAZ and increased the expression of YAP/TAZ target genes. Inhibition of the GTPase Rho or the kinase ROCK abolished EphA2-dependent YAP/TAZ nuclear localization. Silencing YAP or TAZ substantially reduced the amount of intracellular glutamate through decreased expression of SLC1A5 and GLS , respectively, genes that encode proteins that promote glutamine uptake and metabolism. The regulatory DNA elements of both SLC1A5 and GLS contain TEAD binding sites and were bound by TEAD4 in an EphA2-dependent manner. In patient breast cancer tissues, EphA2 expression positively correlated with that of YAP and TAZ , as well as that of GLS and SLC1A5 Although high expression of EphA2 predicted enhanced metastatic potential and poor patient survival, it also rendered HER2-positive breast cancer cells more sensitive to glutaminase inhibition. The findings define a previously unknown mechanism of EphA2-mediated glutaminolysis through YAP/TAZ activation in HER2-positive breast cancer and identify potential therapeutic targets in patients. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Correlation between HER2 gene amplification and protein overexpression through fluorescence in situ hybridization and immunohistochemistry in breast carcinoma patients.

    PubMed

    Makroo, R N; Chowdhry, Mohit; Kumar, Manoj; Srivastava, Priyanka; Tyagi, Richa; Bhadauria, Preeti; Kaul, Sumaid; Sarin, Ramesh; Das, P K; Dua, Harsh

    2012-01-01

    In India, the incidence of breast cancer has increased in the urban population, with 1 in every 22 women diagnosed with breast cancer. It is important to know the HER2/neu gene status for a better prognostication of these patients. The aim of this study was to compare the efficacy of fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) for determining HER2/neu alteration in breast carcinoma. A total of 188 histologically proven breast carcinoma cases between the years 2007 and 2011 were retrospectively analyzed on the paraffin tissue sections by both IHC and FISH techniques. FISH for HER2/neu gene amplification was performed on cases where the IHC status was already known and the results were compared. A total of 64 (30%) patients were found to be amplified and the remaining 124 (65.9%) cases were found to be unamplified through FISH. Patients observed with 3+ reading on IHC were later confirmed as unamplified in 29.5% cases through FISH. It has been confirmed with the present study that IHC is a prudent first-step technique to screen tissue samples for HER2/neu gene status, but should be supplemented with the FISH technique especially in equivocal cases.

  13. Peptide probes derived from pertuzumab by molecular dynamics modeling for HER2 positive tumor imaging.

    PubMed

    Yang, Xiaoliang; Wang, Zihua; Xiang, Zhichu; Li, Dan; Hu, Zhiyuan; Cui, Wei; Geng, Lingling; Fang, Qiaojun

    2017-04-01

    A high level of HER2 expression in breast cancer correlates with a higher tumor growth rate, high metastatic potential, and a poor long-term patient survival rate. Pertuzumab, a human monoclonal antibody, can reduce the effect of HER2 overexpression by preventing HER2 dimerization. In this study, a combination protocol of molecular dynamics modeling and MM/GBSA binding free energy calculations was applied to design peptides that interact with HER2 based on the HER2/pertuzumab crystal structure. Based on a β hairpin in pertuzumab from Glu46 to Lys65-which plays a key role in interacting with HER2-mutations were carried out in silico to improve the binding free energy of the hairpin that interacts with the Phe256-Lys314 of the HER2 protein. Combined the use of one-bead-one-compound library screening, among all the mutations, a peptide (58F63Y) with the lowest binding free energy was confirmed experimentally to have the highest affinity, and it may be used as a new probe in diagnosing and treating HER2-positive breast cancer.

  14. Mutations in the Kinase Domain of the HER2/ERBB2 Gene Identified in a Wide Variety of Human Cancers.

    PubMed

    Wen, Wenhsiang; Chen, Wangjuh Sting; Xiao, Nick; Bender, Ryan; Ghazalpour, Anatole; Tan, Zheng; Swensen, Jeffrey; Millis, Sherri Z; Basu, Gargi; Gatalica, Zoran; Press, Michael F

    2015-09-01

    The HER2 (official name ERBB2) gene encodes a membrane receptor in the epidermal growth factor receptor family amplified and overexpressed in adenocarcinoma. Activating mutations also occur in several cancers. We report mutation analyses of the HER2 kinase domain in 7497 histologically diverse cancers. Forty-five genes, including the kinase domain of HER2 with HER2 IHC and dual in situ hybridization, were analyzed in tumors from 7497 patients with cancer, including 850 breast, 770 colorectal, 910 non-small cell lung, 823 uterine or cervical, 1372 ovarian, and 297 pancreatic cancers, as well as 323 melanomas and 2152 other solid tumors. Sixty-nine HER2 kinase domain mutations were identified in tumors from 68 patients (approximately 1% of all cases, ranging from absent in sarcomas to 4% in urothelial cancers), which included previously published activating mutations and 13 novel mutations. Fourteen cases with coexisting HER2 mutation and amplification and/or overexpression were identified. Fifty-two of 68 patients had additional mutations in other analyzed genes, whereas 16 patients (23%) had HER2 mutations identified as the sole driver mutation. HER2 mutations coexisted with HER2 gene amplification and overexpression and with mutations in other functionally important genes. HER2 mutations were identified as the only driver mutation in a significant proportion of solid cancers. Evaluation of anti-HER2 therapies in nonamplified, HER2-mutated cancers is warranted. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  15. Regional Delivery of Chimeric Antigen Receptor-Engineered T Cells Effectively Targets HER2+ Breast Cancer Metastasis to the Brain.

    PubMed

    Priceman, Saul J; Tilakawardane, Dileshni; Jeang, Brook; Aguilar, Brenda; Murad, John P; Park, Anthony K; Chang, Wen-Chung; Ostberg, Julie R; Neman, Josh; Jandial, Rahul; Portnow, Jana; Forman, Stephen J; Brown, Christine E

    2018-01-01

    Purpose: Metastasis to the brain from breast cancer remains a significant clinical challenge, and may be targeted with CAR-based immunotherapy. CAR design optimization for solid tumors is crucial due to the absence of truly restricted antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we have optimized HER2-CAR T cells for the treatment of breast to brain metastases, and determined optimal second-generation CAR design and route of administration for xenograft mouse models of breast metastatic brain tumors, including multifocal and leptomeningeal disease. Experimental Design: HER2-CAR constructs containing either CD28 or 4-1BB intracellular costimulatory signaling domains were compared for functional activity in vitro by measuring cytokine production, T-cell proliferation, and tumor killing capacity. We also evaluated HER2-CAR T cells delivered by intravenous, local intratumoral, or regional intraventricular routes of administration using in vivo human xenograft models of breast cancer that have metastasized to the brain. Results: Here, we have shown that HER2-CARs containing the 4-1BB costimulatory domain confer improved tumor targeting with reduced T-cell exhaustion phenotype and enhanced proliferative capacity compared with HER2-CARs containing the CD28 costimulatory domain. Local intracranial delivery of HER2-CARs showed potent in vivo antitumor activity in orthotopic xenograft models. Importantly, we demonstrated robust antitumor efficacy following regional intraventricular delivery of HER2-CAR T cells for the treatment of multifocal brain metastases and leptomeningeal disease. Conclusions: Our study shows the importance of CAR design in defining an optimized CAR T cell, and highlights intraventricular delivery of HER2-CAR T cells for treating multifocal brain metastases. Clin Cancer Res; 24(1); 95-105. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity.

    PubMed

    McMullin, Ryan P; Wittner, Ben S; Yang, Chuanwei; Denton-Schneider, Benjamin R; Hicks, Daniel; Singavarapu, Raj; Moulis, Sharon; Lee, Jeongeun; Akbari, Mohammad R; Narod, Steven A; Aldape, Kenneth D; Steeg, Patricia S; Ramaswamy, Sridhar; Sgroi, Dennis C

    2014-03-14

    There is an unmet clinical need for biomarkers to identify breast cancer patients at an increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with human epidermal growth factor receptor 2-positive (HER2+) brain metastasis. We combined laser capture microdissection and gene expression microarrays to analyze malignant epithelium from HER2+ breast cancer brain metastases with that from HER2+ nonmetastatic primary tumors. Differential gene expression was performed including gene set enrichment analysis (GSEA) using publicly available breast cancer gene expression data sets. In a cohort of HER2+ breast cancer brain metastases, we identified a gene expression signature that anti-correlates with overexpression of BRCA1. Sequence analysis of the HER2+ brain metastases revealed no pathogenic mutations of BRCA1, and therefore the aforementioned signature was designated BRCA1 Deficient-Like (BD-L). Evaluation of an independent cohort of breast cancer metastases demonstrated that BD-L values are significantly higher in brain metastases as compared to other metastatic sites. Although the BD-L signature is present in all subtypes of breast cancer, it is significantly higher in BRCA1 mutant primary tumors as compared with sporadic breast tumors. Additionally, BD-L signature values are significantly higher in HER2-/ER- primary tumors as compared with HER2+/ER + and HER2-/ER + tumors. The BD-L signature correlates with breast cancer cell line pharmacologic response to a combination of poly (ADP-ribose) polymerase (PARP) inhibitor and temozolomide, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. A BD-L signature is enriched in HER2+ breast cancer brain metastases without pathogenic BRCA1 mutations. Unexpectedly, elevated BD-L values are found in a subset of primary tumors across all breast cancer subtypes. Evaluation of pharmacological sensitivity in breast cancer cell lines representing all breast cancer subtypes suggests the BD-L signature may serve as a biomarker to identify sporadic breast cancer patients who might benefit from a therapeutic combination of PARP inhibitor and temozolomide and may be indicative of a dysfunctional BRCA1-associated pathway.

  17. A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity

    PubMed Central

    2014-01-01

    Introduction There is an unmet clinical need for biomarkers to identify breast cancer patients at an increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with human epidermal growth factor receptor 2-positive (HER2+) brain metastasis. Methods We combined laser capture microdissection and gene expression microarrays to analyze malignant epithelium from HER2+ breast cancer brain metastases with that from HER2+ nonmetastatic primary tumors. Differential gene expression was performed including gene set enrichment analysis (GSEA) using publicly available breast cancer gene expression data sets. Results In a cohort of HER2+ breast cancer brain metastases, we identified a gene expression signature that anti-correlates with overexpression of BRCA1. Sequence analysis of the HER2+ brain metastases revealed no pathogenic mutations of BRCA1, and therefore the aforementioned signature was designated BRCA1 Deficient-Like (BD-L). Evaluation of an independent cohort of breast cancer metastases demonstrated that BD-L values are significantly higher in brain metastases as compared to other metastatic sites. Although the BD-L signature is present in all subtypes of breast cancer, it is significantly higher in BRCA1 mutant primary tumors as compared with sporadic breast tumors. Additionally, BD-L signature values are significantly higher in HER2-/ER- primary tumors as compared with HER2+/ER + and HER2-/ER + tumors. The BD-L signature correlates with breast cancer cell line pharmacologic response to a combination of poly (ADP-ribose) polymerase (PARP) inhibitor and temozolomide, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. Conclusions A BD-L signature is enriched in HER2+ breast cancer brain metastases without pathogenic BRCA1 mutations. Unexpectedly, elevated BD-L values are found in a subset of primary tumors across all breast cancer subtypes. Evaluation of pharmacological sensitivity in breast cancer cell lines representing all breast cancer subtypes suggests the BD-L signature may serve as a biomarker to identify sporadic breast cancer patients who might benefit from a therapeutic combination of PARP inhibitor and temozolomide and may be indicative of a dysfunctional BRCA1-associated pathway. PMID:24625110

  18. Improved Detection of HER2 by a Quasi-Targeted Proteomics Approach Using Aptamer-Peptide Probe and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Zhou, Weixian; Xu, Feifei; Li, Danni; Chen, Yun

    2018-03-01

    Human epidermal growth factor receptor 2 (HER2)-positive breast cancer is a particularly aggressive type of the disease. To date, much evidence has indicated that accurate HER2 status detection is crucial for prognosis and treatment strategy selection. Thus, bioanalytical techniques for early and accurate detection of HER2 have the potential to improve patient care. Currently, the widely used immunohistochemical staining normally has problems with reproducibility and lack of standardization, resulting in poor concordance between laboratories. Aptamers are a good alternative, but the extent of their use in quantitative analysis of HER2 is limited because of the lack of effective detection methods. We developed a quasi-targeted proteomics assay and converted the HER2 signal into the mass response of reporter peptide by a combination of aptamer-peptide probe and LC-MS/MS. The selected aptamer-peptide probe consisted of aptamer HB5 and the substrate peptide GDKAVLGVDPFR that contained the reporter peptide AVLGVDPFR. After characterization of this newly synthesized probe (e.g., conjugation efficiency, stability, binding affinity, specificity, and digestion efficiency), probe binding and trypsin shaving conditions were optimized. The resulting limit of quantification for HER2 was 25 pmol/L. Then, the quasi-targeted proteomics assay was applied to determine the HER2 concentrations in the HER2-positive breast cancer cells BT474 and SK-BR-3, the HER2-negative breast cancer cells MDA-MB-231 and MCF-7, and 36 pairs of human breast primary tumors and adjacent normal tissue samples. The results were highly concordant with those obtained by immunohistochemistry with reflex testing by fluorescent in situ hybridization. Quasi-targeted proteomics can be a quantitative alternative for HER2 detection. © 2017 American Association for Clinical Chemistry.

  19. An improved 99mTc-HYNIC-(Ser)3-LTVSPWY peptide with EDDA/tricine as co-ligands for targeting and imaging of HER2 overexpression tumor.

    PubMed

    Khodadust, Fatemeh; Ahmadpour, Sajjad; Aligholikhamseh, Nazan; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2018-01-20

    Overexpression of human epidermal receptor 2 (HER2) has given the opportunity for targeting and delivering of imaging radiotracers. The aim of this study was to evaluate the 99m Tc-HYNIC-(EDDA/tricine)-(Ser) 3 -LTVSPWY peptide for tumor targeting and imaging of tumor with overexpression of HER2. The HYNIC-(Ser) 3 -LTVSPWY was labeled with 99m Tc in presence of EDDA/tricine mixture as co-ligands. The in vitro and in vivo studies of this radiolabeled peptide were performed for cellular specific binding and tumor targeting. The high radiochemical purity of 99m Tc-HYNIC (EDDA/tricine)-(Ser) 3 -LTVSPWY was obtained to be 99%. It exhibited high stability in normal saline and human serum. In HER2 binding affinity study, a significant reduction in uptake of radiolabeled peptide (7.7 fold) was observed by blocking SKOV-3 cells receptors with unlabeled peptide. The K D and B max values for this radiolabeled peptide were determined as 3.3 ± 1.0 nM and 2.9 ± 0.3 × 10 6 CPM/pMol, respectively. Biodistribution study revealed tumor to blood and tumor to muscle ratios about 6.9 and 4 respectively after 4 h. Tumor imaging by gamma camera demonstrated considerable high contrast tumor uptake. This developed 99m Tc-HYNIC-(Ser) 3 -LTVSPWY peptide selectively targeted on HER2 tumor and exhibited a high target uptake combined with acceptable low background activity for tumor imaging in mice. The results of this study and its comparison with another study showed that 99m Tc-HYNIC-(EDDA/tricine)-(Ser) 3 -LTVSPWY is much better than previously reported radiolabeled peptide as 99m Tc-CSSS-LTVSPWY for HER2 overexpression tumor targeting and imaging. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. HER2 loss in HER2-positive gastric or gastroesophageal cancer after trastuzumab therapy: Implication for further clinical research.

    PubMed

    Pietrantonio, F; Caporale, M; Morano, F; Scartozzi, M; Gloghini, A; De Vita, F; Giommoni, E; Fornaro, L; Aprile, G; Melisi, D; Berenato, R; Mennitto, A; Volpi, C C; Laterza, M M; Pusceddu, V; Antonuzzo, L; Vasile, E; Ongaro, E; Simionato, F; de Braud, F; Torri, V; Di Bartolomeo, M

    2016-12-15

    Mechanisms of acquired resistance to trastuzumab-based treatment in gastric cancer are largely unknown. In this study, we analyzed 22 pairs of tumor samples taken at baseline and post-progression in patients receiving chemotherapy and trastuzumab for advanced HER2-positive [immunohistochemistry (IHC) 3+ or 2+ with in-situ hybridization (ISH) amplification] gastric or gastroesophageal cancers. Strict clinical criteria for defining acquired trastuzumab resistance were adopted. Loss of HER2 positivity and loss of HER2 over-expression were defined as post-trastuzumab IHC score <3+ and absence of ISH amplification, and IHC "downscoring" from 2+/3+ to 0/1+, respectively. HER2 IHC was always performed, while ISH was missing in 3 post-progression samples. Patients with initial HER2 IHC score 3+ and 2+ were 14 (64%) and 8 (36%), respectively. Loss of HER2 positivity and HER2 over-expression was observed in 32 and 32% samples, respectively. The chance of HER2 loss was not associated with any of the baseline clinicopathological variables. The only exception was in patients with initial IHC score 2+ versus 3+, for both endpoints of HER2 positivity (80 vs. 14%; p = 0.008) and HER2 over-expression (63 vs. 14%; p = 0.025). As already shown in breast cancer, loss of HER2 may be observed also in gastric cancers patients treated with trastuzumab-based chemotherapy in the clinical practice. This phenomenon may be one of the biological reasons explaining the failure of anti-HER2 second-line strategies in initially HER2-positive disease. © 2016 UICC.

  1. The role of neratinib in HER2-driven breast cancer.

    PubMed

    Cherian, Mathew A; Ma, Cynthia X

    2017-06-30

    Up to 25% of patients with early-stage HER2+ breast cancer relapse despite adjuvant trastuzumab-based regimens and virtually all patients with metastatic disease eventually die from resistance to existing treatment options. In addition, recent studies indicate that activating HER2 mutations without gene amplification could drive tumor growth in a subset of HER2-ve breast cancer that is not currently eligible for HER2-targeted agents. Neratinib is an irreversible HER kinase inhibitor with activity as extended adjuvant therapy following standard trastuzumab-based adjuvant treatment in a Phase III trial. Phase II trials of neratinib demonstrate promising activity in combination with cytotoxic agents in trastuzumab resistant metastatic HER2+ breast cancer, and either as monotherapy or in combination with fulvestrant for HER2-mutated breast cancers. We anticipate a potential role for neratinib in the therapy of these patient populations.

  2. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells

    PubMed Central

    Palanca-Wessels, Maria C.; Booth, Garrett C.; Convertine, Anthony J.; Lundy, Brittany B.; Berguig, Geoffrey Y.; Press, Michael F.; Stayton, Patrick S.; Press, Oliver W.

    2016-01-01

    The therapeutic potential of RNA interference (RNAi) has been limited by inefficient delivery of short interfering RNA (siRNA). Tumor-specific recognition can be effectively achieved by antibodies directed against highly expressed cancer cell surface receptors. We investigated the utility of linking an internalizing streptavidin-conjugated HER2 antibody to an endosome-disruptive biotinylated polymeric nanocarrier to improve the functional cytoplasmic delivery of siRNA in breast and ovarian cancer cells in vitro and in an intraperitoneal ovarian cancer xenograft model in vivo, yielding an 80% reduction of target mRNA and protein levels with sustained repression for at least 96 hours. RNAi-mediated site specific cleavage of target mRNA was demonstrated using the 5′ RLM-RACE (RNA ligase mediated-rapid amplification of cDNA ends) assay. Mice bearing intraperitoneal human ovarian tumor xenografts demonstrated increased tumor accumulation of Cy5.5 fluorescently labeled siRNA and 70% target gene suppression after treatment with HER2 antibody-directed siRNA nanocarriers. Detection of the expected mRNA cleavage product by 5′ RLM-RACE assay confirmed that suppression occurs via the expected RNAi pathway. Delivery of siRNA via antibody-directed endosomolytic nanoparticles may be a promising strategy for cancer therapy. PMID:26840082

  3. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells.

    PubMed

    Palanca-Wessels, Maria C; Booth, Garrett C; Convertine, Anthony J; Lundy, Brittany B; Berguig, Geoffrey Y; Press, Michael F; Stayton, Patrick S; Press, Oliver W

    2016-02-23

    The therapeutic potential of RNA interference (RNAi) has been limited by inefficient delivery of short interfering RNA (siRNA). Tumor-specific recognition can be effectively achieved by antibodies directed against highly expressed cancer cell surface receptors. We investigated the utility of linking an internalizing streptavidin-conjugated HER2 antibody to an endosome-disruptive biotinylated polymeric nanocarrier to improve the functional cytoplasmic delivery of siRNA in breast and ovarian cancer cells in vitro and in an intraperitoneal ovarian cancer xenograft model in vivo, yielding an 80% reduction of target mRNA and protein levels with sustained repression for at least 96 hours. RNAi-mediated site specific cleavage of target mRNA was demonstrated using the 5' RLM-RACE (RNA ligase mediated-rapid amplification of cDNA ends) assay. Mice bearing intraperitoneal human ovarian tumor xenografts demonstrated increased tumor accumulation of Cy5.5 fluorescently labeled siRNA and 70% target gene suppression after treatment with HER2 antibody-directed siRNA nanocarriers. Detection of the expected mRNA cleavage product by 5' RLM-RACE assay confirmed that suppression occurs via the expected RNAi pathway. Delivery of siRNA via antibody-directed endosomolytic nanoparticles may be a promising strategy for cancer therapy.

  4. Therapeutic effects of autologous lymphocytes activated with trastuzumab for xenograft mouse models of human breast cancer.

    PubMed

    Nakagawa, Shinichiro; Matsuoka, Yusuke; Ichihara, Hideaki; Yoshida, Hitoji; Yoshida, Kenshi; Ueoka, Ryuichi

    2013-01-01

    Trastuzumab (TTZ) is molecular targeted drug used for metastatic breast cancer patients overexpressing human epidermal growth factor receptor 2 (HER2). Therapeutic effects of lymphocytes activated with TTZ (TTZ-LAK) using xenograft mouse models of human breast cancer (MDA-MB-453) cells were examined in vivo. Remarkable reduction of tumor volume in a xenograft mouse models intravenously treated with TTZ-LAK cells after the subcutaneously inoculated of MDA-MB-453 cells was verified in vivo. The migration of TTZ-LAK cells in tumor of mouse models subcutaneously inoculated MDA-MB-453 cells was observed on the basis of histological analysis using immunostaining with CD-3. Induction of apoptosis in tumor of xenograft mice treated with TTZ-LAK cells was observed in micrographs using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) method. It was noteworthy that the therapeutic effects of TTZ-LAK cells along with apoptosis were obtained for xenograft mouse models of human breast tumor in vivo.

  5. Comparative study between quantitative digital image analysis and fluorescence in situ hybridization of breast cancer equivocal human epidermal growth factor receptors 2 score 2(+) cases.

    PubMed

    Ayad, Essam; Mansy, Mina; Elwi, Dalal; Salem, Mostafa; Salama, Mohamed; Kayser, Klaus

    2015-01-01

    Optimization of workflow for breast cancer samples with equivocal human epidermal growth factor receptors 2 (HER2)/neu score 2(+) results in routine practice, remains to be a central focus of the on-going efforts to assess HER2 status. According to the College of American Pathologists/American Society of Clinical Oncology guidelines equivocal HER2/neu score 2(+) cases are subject for further testing, usually by fluorescence in situ hybridization (FISH) investigations. It still remains on open question, whether quantitative digital image analysis of HER2 immunohistochemistry (IHC) stained slides can assist in further refining the HER2 score 2(+). To assess utility of quantitative digital analysis of IHC stained slides and compare its performance to FISH in cases of breast cancer with equivocal HER2 score 2(+). Fifteen specimens (previously diagnosed as breast cancer and was evaluated as HER 2(-) score 2(+)) represented the study population. Contemporary new cuts were prepared for re-evaluation of HER2 immunohistochemical studies and FISH examination. All the cases were digitally scanned by iScan (Produced by BioImagene [Now Roche-Ventana]). The IHC signals of HER2 were measured using an automated image analyzing system (MECES, www.Diagnomx.eu/meces). Finally, a comparative study was done between the results of the FISH and the quantitative analysis of the virtual slides. Three out of the 15 cases with equivocal HER2 score 2(+), turned out to be positive (3(+)) by quantitative digital analysis, and 12 were found to be negative in FISH too. Two of these three positive cases proved to be positive with FISH, and only one was negative. Quantitative digital analysis is highly sensitive and relatively specific when compared to FISH in detecting HER2/neu overexpression. Therefore, it represents a potential reliable substitute for FISH in breast cancer cases, which desire further refinement of equivocal IHC results.

  6. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer

    PubMed Central

    Wolff, Antonio C.; Hammond, M. Elizabeth H.; Hicks, David G.; Dowsett, Mitch; McShane, Lisa M.; Allison, Kimberly H.; Allred, Donald C.; Bartlett, John M.S.; Bilous, Michael; Fitzgibbons, Patrick; Hanna, Wedad; Jenkins, Robert B.; Mangu, Pamela B.; Paik, Soonmyung; Perez, Edith A.; Press, Michael F.; Spears, Patricia A.; Vance, Gail H.; Viale, Giuseppe; Hayes, Daniel F.

    2014-01-01

    Purpose To update the American Society of Clinical Oncology (ASCO)/College of American Pathologists (CAP) guideline recommendations for human epidermal growth factor receptor 2 (HER2) testing in breast cancer to improve the accuracy of HER2 testing and its utility as a predictive marker in invasive breast cancer. Methods ASCO/CAP convened an Update Committee that included coauthors of the 2007 guideline to conduct a systematic literature review and update recommendations for optimal HER2 testing. Results The Update Committee identified criteria and areas requiring clarification to improve the accuracy of HER2 testing by immunohistochemistry (IHC) or in situ hybridization (ISH). The guideline was reviewed and approved by both organizations. Recommendations The Update Committee recommends that HER2 status (HER2 negative or positive) be determined in all patients with invasive (early stage or recurrence) breast cancer on the basis of one or more HER2 test results (negative, equivocal, or positive). Testing criteria define HER2-positive status when (on observing within an area of tumor that amounts to >10% of contiguous and homogeneous tumor cells) there is evidence of protein overexpression (IHC) or gene amplification (HER2 copy number or HER2/CEP17 ratio by ISH based on counting at least 20 cells within the area). If results are equivocal (revised criteria), reflex testing should be performed using an alternative assay (IHC or ISH). Repeat testing should be considered if results seem discordant with other histopathologic findings. Laboratories should demonstrate high concordance with a validated HER2 test on a sufficiently large and representative set of specimens. Testing must be performed in a laboratory accredited by CAP or another accrediting entity. The Update Committee urges providers and health systems to cooperate to ensure the highest quality testing. PMID:24099077

  7. The clinicopathological parameters and prognostic significance of HER2 expression in gastric cancer patients: a meta-analysis of literature.

    PubMed

    Lei, Yu-Ying; Huang, Jin-Yu; Zhao, Qiong-Rui; Jiang, Nan; Xu, Hui-Mian; Wang, Zhen-Ning; Li, Hai-Qing; Zhang, Shi-Bo; Sun, Zhe

    2017-03-21

    Human epidermal growth factor receptor-2 (HER2) is regarded as an important and promising target in the treatment of HER2-positive breast cancers. However, the correlation of clinicopathological characteristics and prognostic significance of HER2 overexpression in gastric cancer patients remains unclear. Our aim was to clarify this issue. Embase, PubMed, and the Cochrane Library were searched for relevant articles published up to May 2016. Outcomes of interest contained sex, age, tumor size, tumor site, tumor node metastasis (TNM) stage, distant metastasis, lymph node metastasis, Lauren's classification, differentiation grade, lymphovascular invasion, neural invasion, and multivariate analysis data for overall survival. A total of 41 studies of 17,494 gastric cancer patients were identified with HER2 test. HER2 positive rate was 19.07% (95% CI = 9.16, 28.98). There existed statistical significance between HER2 overexpression and patients' prognosis (RR = 1.47, 95% CI = 1.09, 1.98). Male patients (OR = 1.48, 95% CI = 1.34, 1.65), proximal tumors (OR = 1.25, 95% CI = 1.07, 1.47), intestinal-type tumors (OR = 3.37, 95% CI = 2.54, 4.47), advanced stage cancers (OR = 1.35, 95% CI = 1.10, 1.66), lymph node metastasis (OR = 1.26, 95% CI = 1.14, 1.41), well-differentiated cancers (OR = 1.79, 95% CI = 1.15, 2.76), and distant metastasis (OR = 1.91, 95% CI = 1.08, 3.38) were correlated with higher HER2 expression rates. However, no statistical differences existed in age, tumor size, lymphovascular invasion, or neural invasion. Subgroup analysis revealed that HER2 expression rates reported in articles from Asian (19.52%) countries were quantitatively higher than those from European (16.91%) areas. Results were consistent with those reports that define HER2 status according to trastuzumab for gastric cancer (ToGA) criteria. This study showed that HER2 overexpression was associated with poor prognosis in gastric cancer patients. HER2 positive rates may be associated with sex, tumor site, TNM staging system, distant metastasis, lymph node metastasis, Lauren's classification, and differentiation grade in gastric cancer patients. The HER2 expression rate in Asians may be higher than that in Europeans. This study offers a convenient way for doctors to select patients for relevant HER2 detection and following treatment.

  8. Prostate derived Ets transcription factor and Carcinoembryonic antigen related cell adhesion molecule 6 constitute a highly active oncogenic axis in breast cancer

    PubMed Central

    Mukhopadhyay, Alka; Khoury, Thaer; Stein, Leighton; Shrikant, Protul; Sood, Ashwani K

    2013-01-01

    We previously reported overexpression of Prostate derived Ets transcriptionfactor (PDEF) in breast cancer and its role in breast cancer progression, supportingPDEF as an attractive target in this cancer. The goal of this research was to identifyspecific PDEF induced molecules that, like PDEF, show overexpression in breast tumorsand a role in breast tumor progression. PDEF expression was down regulated byshRNA in MCF-7 human breast tumor cell line, and probes from PDEF down-regulatedand control MCF-7 cells were used to screen the HG-U133A human gene chips. Theseanalyses identified 1318 genes that were induced two-fold or higher by PDEF in MCF-7 cells. Further analysis of three of these genes, namely CEACAM6, S100A7 and B7-H4, in relation to PDEF in primary breast tumors showed that in 82% of ER+, 67%of Her2 overexpressing and 24% of triple-negative breast tumors both PDEF andCEACAM6 expression was elevated 10-fold or higher in comparison to normal breasttissue. Overall, 72% (94 of 131) of the primary breast tumors showed 10-fold orhigher expression of both PDEF and CEACAM6. In contrast, S100A7 and B7-H4 failedto show concordant elevated expression with PDEF in primary tumors. To determinethe significance of elevated PDEF and CEACAM6 expression to tumor phenotype, theirexpression was down regulated by specific siRNAs in human breast tumor cell lines. This resulted in the loss of viability of tumor cells in vitro, supporting an oncogenicrole for both PDEF and CEACAM6 in breast cancer. Together, these findings show thatPDEF-CEACAM6 is a highly active oncogenic axis in breast cancer and suggest thattargeting of these molecules should provide novel treatments for most breast cancerpatients. PMID:23592399

  9. HER2 Targeted Breast Cancer Therapy with Switchable "Off/On" Multifunctional "Smart" Magnetic Polymer Core-Shell Nanocomposites.

    PubMed

    Vivek, Raju; Thangam, Ramar; Kumar, Selvaraj Rajesh; Rejeeth, Chandrababu; Kumar, Gopal Senthil; Sivasubramanian, Srinivasan; Vincent, Savariar; Gopi, Dhanaraj; Kannan, Soundarapandian

    2016-01-27

    Multifunctional magnetic polymer nanocombinations are gaining importance in cancer nanotheranostics due to their safety and their potential in delivering targeted functions. Herein, we report a novel multifunctional core-shell magnetic polymer therapeutic nanocomposites (NCs) exhibiting pH dependent "Off-On" release of drug against breast cancer cells. The NCs are intact in blood circulation ("Off" state), i.e., at physiological pH, whereas activated ("On" state) at intracellular acidic pH environment of the targeted breast cancer cells. The NCs are prepared by coating the cannonball (iron nanocore) with hydrophobic nanopockets of pH-responsive poly(d,l-lactic-co-glycolic acid) (PLGA) polymer nanoshell that allows efficient loading of therapeutics. Further, the nanocore-polymer shell is stabilized by poly(vinylpyrrolidone) (PVP) and functionalized with a targeting HER2 ligand. The prepared Her-Fe3O4@PLGA-PVP nanocomposites facilitate packing of anticancer drug (Tamoxifen) without premature release in the bloodstream, recognizing the target cells through binding of Herceptin antibody to HER2, a cell surface receptor expressed by breast cancer cells to promote HER2 receptor mediated endocytosis and finally releasing the drug at the intracellular site of tumor cells ("On" state) to induce apoptosis. The therapeutic efficiency of hemo/cytocompatible NCs drug delivery system (DDS) in terms of targeted delivery and sustained release of therapeutic agent against breast cancer cells was substantiated by in vitro and in vivo studies. The multifunctional properties of Her-Tam-Fe3O4@PLGA-PVP NCs may open up new avenues in cancer therapy through overcoming the limitations of conventional cancer therapy.

  10. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer.

    PubMed

    Taskar, Kunal S; Rudraraju, Vinay; Mittapalli, Rajendar K; Samala, Ramakrishna; Thorsheim, Helen R; Lockman, Julie; Gril, Brunilde; Hua, Emily; Palmieri, Diane; Polli, Joseph W; Castellino, Stephen; Rubin, Stephen D; Lockman, Paul R; Steeg, Patricia S; Smith, Quentin R

    2012-03-01

    Lapatinib, a small molecule EGFR/HER2 inhibitor, partially inhibits the outgrowth of HER2+ brain metastases in preclinical models and in a subset of CNS lesions in clinical trials of HER2+ breast cancer. We investigated the ability of lapatinib to reach therapeutic concentrations in the CNS following (14)C-lapatinib administration (100 mg/kg p.o. or 10 mg/kg, i.v.) to mice with MDA-MD-231-BR-HER2 brain metastases of breast cancer. Drug concentrations were determined at differing times after administration by quantitative autoradiography and chromatography. (14)C-Lapatinib concentration varied among brain metastases and correlated with altered blood-tumor barrier permeability. On average, brain metastasis concentration was 7-9-fold greater than surrounding brain tissue at 2 and 12 h after oral administration. However, average lapatinib concentration in brain metastases was still only 10-20% of those in peripheral metastases. Only in a subset of brain lesions (17%) did lapatinib concentration approach that of systemic metastases. No evidence was found of lapatinib resistance in tumor cells cultured ex vivo from treated brains. Results show that lapatinib distribution to brain metastases of breast cancer is partially restricted and blood-tumor barrier permeability is a key component of lapatinib therapeutic efficacy which varies between tumors.

  11. Role of TP53 mutations in triple negative and HER2-positive breast cancer treated with neoadjuvant anthracycline/taxane-based chemotherapy.

    PubMed

    Darb-Esfahani, Silvia; Denkert, Carsten; Stenzinger, Albrecht; Salat, Christoph; Sinn, Bruno; Schem, Christian; Endris, Volker; Klare, Peter; Schmitt, Wolfgang; Blohmer, Jens-Uwe; Weichert, Wilko; Möbs, Markus; Tesch, Hans; Kümmel, Sherko; Sinn, Peter; Jackisch, Christian; Dietel, Manfred; Reimer, Toralf; Loi, Sherene; Untch, Michael; von Minckwitz, Gunter; Nekljudova, Valentina; Loibl, Sibylle

    2016-10-18

    TP53 mutations are frequent in breast cancer, however their clinical relevance in terms of response to chemotherapy is controversial. 450 pre-therapeutic, formalin-fixed, paraffin-embedded core biopsies from the phase II neoadjuvant GeparSixto trial that included HER2-positive and triple negative breast cancer (TNBC) were subjected to Sanger sequencing of exons 5-8 of the TP53 gene. TP53 status was correlated to response to neoadjuvant anthracycline/taxane-based chemotherapy with or without carboplatin and trastuzumab/lapatinib in HER2-positive and bevacizumab in TNBC. p53 protein expression was evaluated by immunohistochemistry in the TNBC subgroup. Of 450 breast cancer samples 297 (66.0%) were TP53 mutant. Mutations were significantly more frequent in TNBC (74.8%) compared to HER2-positive cancers (55.4%, P < 0.0001). Neither mutations nor different mutation types and effects were associated with pCR neither in the whole study group nor in molecular subtypes (P > 0.05 each). Missense mutations tended to be associated with a better survival compared to all other types of mutations in TNBC (P = 0.093) and in HER2-positive cancers (P = 0.071). In TNBC, missense mutations were also linked to higher numbers of tumor-infiltrating lymphocytes (TILs, P = 0.028). p53 protein overexpression was also linked with imporved survival (P = 0.019). Our study confirms high TP53 mutation rates in TNBC and HER2-positive breast cancer. Mutations did not predict the response to an intense neoadjuvant chemotherapy in these two molecular breast cancer subtypes.

  12. Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas

    PubMed Central

    Moreno-Bueno, Gema; Salvador, Fernando; Martín, Alberto; Floristán, Alfredo; Cuevas, Eva P; Santos, Vanesa; Montes, Amalia; Morales, Saleta; Castilla, Maria Angeles; Rojo-Sebastián, Alejandro; Martínez, Alejandra; Hardisson, David; Csiszar, Katalin; Portillo, Francisco; Peinado, Héctor; Palacios, José; Cano, Amparo

    2011-01-01

    Basal-like breast carcinoma is characterized by the expression of basal/myoepithelial markers, undifferentiated phenotype, highly aggressive behaviour and frequent triple negative status (ESR−, PR−, Her2neu−). We have previously shown that epithelial–mesenchymal transition (EMT) occurs in basal-like breast tumours and identified Lysyl-oxidase-like 2 (LOXL2) as an EMT player and poor prognosis marker in squamous cell carcinomas. We now show that LOXL2 mRNA is overexpressed in basal-like human breast carcinomas. Breast carcinoma cell lines with basal-like phenotype show a specific cytoplasmic/perinuclear LOXL2 expression, and this subcellular distribution is significantly associated with distant metastatic incidence in basal-like breast carcinomas. LOXL2 silencing in basal-like carcinoma cells induces a mesenchymal-epithelial transition (MET) associated with a decrease of tumourigenicity and suppression of metastatic potential. Mechanistic studies indicate that LOXL2 maintains the mesenchymal phenotype of basal-like carcinoma cells by a novel mechanism involving transcriptional downregulation of Lgl2 and claudin1 and disorganization of cell polarity and tight junction complexes. Therefore, intracellular LOXL2 is a new candidate marker of basal-like carcinomas and a target to block metastatic dissemination of this aggressive breast tumour subtype. PMID:21732535

  13. Pharmacodynamics, pharmacokinetics and clinical efficacy of neratinib in HER2-positive breast cancer and breast cancer with HER2 mutations.

    PubMed

    Kourie, Hampig Raphael; Chaix, Marie; Gombos, Andrea; Aftimos, Phillippe; Awada, Ahmad

    2016-08-01

    Despite the availability of several potent HER2-directed targeted agents, primary and acquired resistance continues to influence patient outcomes in HER2-positive breast cancer. Neratinib is an irreversible pan-HER tyrosine kinase inhibitor in late-phase clinical development. This review article focuses on neratinib in the treatment of HER2-positive breast cancer - early and metastatic stage - and HER2-mutant breast cancer, with particular emphasis on the pharmacokinetics and pharmacodynamics of the drug. The phase III ExteNET trial shows that neratinib improves 2-year invasive disease-free survival after trastuzumab-based adjuvant therapy in early-stage HER2-positive breast cancer, and in particular HER2+/HR+ tumors. Survival data are awaited. The investigational role of neratinib in high-risk patients or conversely in de-escalation dual regimens with other anti-HER2 therapies and without chemotherapy are of interest. Phase II trials show that neratinib has efficacy, either as monotherapy or in combination with other chemotherapeutic or endocrine agents, in patients with HER2-positive metastatic breast cancer and in tumors harboring HER2 mutations. The role of neratinib in therapeutic algorithms of HER2-positive patients, as well as delaying CNS events, awaits the results of ongoing trials such as NALA. Diarrhea, the main toxicity of neratinib, can be effectively managed with early loperamide prophylaxis.

  14. 64Cu-DOTA-Trastuzumab PET Imaging in Women with HER2-Overexpressing Breast Cancer

    DTIC Science & Technology

    2013-10-01

    3 4 HER2 IHC31 2 5 7 IHC21/FISH positive 1 1 Sites of metastatic disease Bone 2 4 6 Lymph nodes 2 5 7 Liver 2 2 4 Lung 1 1 2 Pleural effusion 1 1...and were seen in bone, lymph nodes, liver, lung, pleural effusions , and breast. Detection sensitivity was 77% on day 1 and 89% on day 2 (Table 2...Liver 8 of 10 (80%) 1 of 3 (33%) 8 of 8 (100%) Lung 5 of 5 (100%) 4 of 4 (100%) 4 of 5 (80%) Pleural effusion 2 of 2 (100%) 0 of 2 (0%) 1 of 2 (50

  15. Regulation of anti-apoptotic signaling by Kruppel-like factors 4 and 5 mediates lapatinib resistance in breast cancer

    PubMed Central

    Farrugia, M K; Sharma, S B; Lin, C-C; McLaughlin, S L; Vanderbilt, D B; Ammer, A G; Salkeni, M A; Stoilov, P; Agazie, Y M; Creighton, C J; Ruppert, J M

    2015-01-01

    The Kruppel-like transcription factors (KLFs) 4 and 5 (KLF4/5) are coexpressed in mouse embryonic stem cells, where they function redundantly to maintain pluripotency. In mammary carcinoma, KLF4/5 can each impact the malignant phenotype, but potential linkages to drug resistance remain unclear. In primary human breast cancers, we observed a positive correlation between KLF4/5 transcript abundance, particularly in the human epidermal growth factor receptor 2 (HER2)-enriched subtype. Furthermore, KLF4/5 protein was rapidly upregulated in human breast cancer cells following treatment with the HER2/epidermal growth factor receptor inhibitor, lapatinib. In addition, we observed a positive correlation between these factors in the primary tumors of genetically engineered mouse models (GEMMs). In particular, the levels of both factors were enriched in the basal-like tumors of the C3(1) TAg (SV40 large T antigen transgenic mice under control of the C3(1)/prostatein promoter) GEMM. Using tumor cells derived from this model as well as human breast cancer cells, suppression of KLF4 and/or KLF5 sensitized HER2-overexpressing cells to lapatinib. Indicating cooperativity, greater effects were observed when both genes were depleted. KLF4/5-deficient cells had reduced basal mRNA and protein levels of the anti-apoptotic factors myeloid cell leukemia 1 (MCL1) and B-cell lymphoma-extra large (BCL-XL). Moreover, MCL1 was upregulated by lapatinib in a KLF4/5-dependent manner, and enforced expression of MCL1 in KLF4/5-deficient cells restored drug resistance. In addition, combined suppression of KLF4/5 in cultured tumor cells additively inhibited anchorage-independent growth, resistance to anoikis and tumor formation in immunocompromised mice. Consistent with their cooperative role in drug resistance and other malignant properties, KLF4/5 levels selectively stratified human HER2-enriched breast cancer by distant metastasis-free survival. These results identify KLF4 and KLF5 as cooperating protumorigenic factors and critical participants in resistance to lapatinib, furthering the rationale for combining anti-MCL1/BCL-XL inhibitors with conventional HER2-targeted therapies. PMID:25789974

  16. Evaluation of HER-2/neu status in breast cancer specimens using immunohistochemistry (IHC) & fluorescence in-situ hybridization (FISH) assay.

    PubMed

    Goud, Kalal Iravathy; Dayakar, Seetha; Vijayalaxmi, Kolanupaka; Babu, Saidam Jangu; Reddy, P Vijay Anand

    2012-03-01

    Fluorescence in situ hybridization (FISH) is increasingly being recognized as the most accurate and predictive test for HER 2/neu gene amplification and response to therapy in breast cancer. In the present study we investigated HER-2/neu gene amplification by FISH in breast carcinoma tissue specimens and compared the results with that of immunohistochemical (IHC) analysis. A total of 90 breast carcinoma tissue samples were used for immunohistochemical (IHC) and FISH analysis. IHC was performed by using mouse monoclonal antibody to the intracellular domain of HER-2/neu protein. Each slide was scored in a blinded fashion by two pathologists according to the manufacturer's recommended criteria. FISH analysis was performed on paraffin embedded breast tumour tissue sections. The polysomy for centromere 17 (Spec green signal) was read as green signals less than 4 as moderate polysomy, and more than 4 as highly polysomy. Thirty of the 90 patients had negative results by IHC and FISH. Of the 28 patients with the score of 2+ by IHC, 20 were FISH positive for HER-2/neu gene amplification, three were FISH negative and five patients showed equivocal (1.8-2.2) results by FISH. These five cases were retested for IHC and FISH on different paraffin embedded tissue blocks, and all five were found positive for HER-2/neu gene amplification. Twenty five patients with the score of 3+ by IHC were FISH positive for HER-2/neu gene amplification (>2.2). Seven cases with the score of 3+ by IHC were FISH negative for HER-2/neu gene amplification (>2.2), and showed polysomy of chromosome number 17 high polysomy > 4. Our results indicated that HER-2/neu status by FISH should be performed in all cases of breast tumour with a 2+ score by IHC. Cases demonstrating a 3+ score by IHC may be subjected to FISH to rule out polysomy of chromosome 17 which could be falsely interpreted as HER-2/neu overexpression by IHC analysis. There is also a need for establishing a clinically validated cut-off value for HER-2/neu FISH amplification against IHC which may be further compared and calibrated.

  17. Exosomal pMHC-I complex targets T cell-based vaccine to directly stimulate CTL responses leading to antitumor immunity in transgenic FVBneuN and HLA-A2/HER2 mice and eradicating trastuzumab-resistant tumor in athymic nude mice.

    PubMed

    Wang, Lu; Xie, Yufeng; Ahmed, Khawaja Ashfaque; Ahmed, Shahid; Sami, Amer; Chibbar, Rajni; Xu, Qingyong; Kane, Susan E; Hao, Siguo; Mulligan, Sean J; Xiang, Jim

    2013-07-01

    One of the major obstacles in human epidermal growth factor receptor 2 (HER2)-specific trastuzumab antibody immunotherapy of HER2-positive breast cancer is the development of trastuzumab resistance, warranting the search for other therapeutic strategies. Using mouse models, we previously demonstrated that ovalbumin (OVA)-specific dendritic cell (DC)-released exosome (EXOOVA)-targeted CD4(+) T cell-based (OVA-TEXO) vaccine stimulates efficient cytotoxic T lymphocyte (CTL) responses via exosomal peptide/major histocompatibility complex (pMHC)-I, exosomal CD80 and endogenous IL-2 signaling; and long-term CTL memory by means of via endogenous CD40L signaling. In this study, using two-photon microscopy, we provide the first visual evidence on targeting OVA-TEXO to cognate CD8(+) T cells in vivo via exosomal pMHC-I complex. We prepared HER2/neu-specific Neu-TEXO and HER2-TEXO vaccines using adenoviral vector (AdVneu and AdVHER2)-transfected DC (DCneu and DCHER2)-released EXOs (EXOneu and EXOHER2), and assessed their stimulatory effects on HER2/neu-specific CTL responses and antitumor immunity. We demonstrate that Neu-TEXO vaccine is capable of stimulating efficient neu-specific CTL responses, leading to protective immunity against neu-expressing Tg1-1 breast cancer in all 6/6 transgenic (Tg) FVBneuN mice with neu-specific self-immune tolerance. We also demonstrate that HER2-TEXO vaccine is capable of inducing HER2-specific CTL responses and protective immunity against transgene HLA-A2(+)HER2(+) BL6-10A2/HER2 B16 melanoma in 2/8 double Tg HLA-A2/HER2 mice with HER2-specific self-immune tolerance. The remaining 6/8 mice had significantly prolonged survival. Furthermore, we demonstrate that HER2-TEXO vaccine stimulates responses of CD8(+) T cells capable of not only inducing killing activity to HLA-A2(+)HER2(+) BL6-10A2/HER2 melanoma and trastuzumab-resistant BT474A2 breast cancer cells in vitro but also eradicating 6-day palpable HER2(+) BT474A2 breast cancer (3-4 mm in diameter) in athymic nude mice. Therefore, the novel T cell-based HER2-TEXO vaccine may provide a new therapeutic alternative for women with HER2(+) breast cancer, especially for trastuzumab-resistant HER2(+) breast cancer patients.

  18. Evaluation of the TRPM2 channel as a biomarker in breast cancer using public databases analysis.

    PubMed

    Sumoza-Toledo, Adriana; Espinoza-Gabriel, Mario Iván; Montiel-Condado, Dvorak

    Breast cancer is one of the most common malignancies affecting women. Recent investigations have revealed a major role of ion channels in cancer. The transient receptor potential melastatin-2 (TRPM2) is a plasma membrane and lysosomal channel with important roles in cell migration and cell death in immune cells and tumor cells. In this study, we investigated the prognostic value of TRPM2 channel in breast cancer, analyzing public databases compiled in Oncomine™ (Thermo Fisher, Ann Arbor, MI) and online Kaplan-Meier Plotter platforms. The results revealed that TRPM2 mRNA overexpression is significant in situ and invasive breast carcinoma compared to normal breast tissue. Furthermore, multi-gene validation using Oncomine™ showed that this channel is coexpressed with proteins related to cellular migration, transformation, and apoptosis. On the other hand, Kaplan-Meier analysis exhibited that low expression of TRPM2 could be used to predict poor outcome in ER- and HER2+ breast carcinoma patients. TRPM2 is a promising biomarker for aggressiveness of breast cancer, and a potential target for the development of new therapies. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  19. ER and HER2 expression are positively correlated in HER2 non-overexpressing breast cancer.

    PubMed

    Pinhel, Isabel; Hills, Margaret; Drury, Suzanne; Salter, Janine; Sumo, Georges; A'Hern, Roger; Bliss, Judith M; Sestak, Ivana; Cuzick, Jack; Barrett-Lee, Peter; Harris, Adrian; Dowsett, Mitch

    2012-03-14

    Estrogen receptor-α (ER) and human epidermal growth factor receptor 2 (HER2) positivity are inversely correlated by standard criteria. However, we investigated the quantitative relation between ER and HER2 expression at both RNA and protein levels in HER2+ve and HER2-ve breast carcinomas. ER and HER2 levels were assessed with immunohistochemistry (IHC) and (for HER2) fluorescent in situ hybridization (FISH) and by quantitative reverse transcription-polymerase chain reaction (q-RT-PCR) in formalin-fixed primary breast cancers from 448 patients in the National Cancer Research Institute (NCRI) Adjuvant Breast Cancer Trial (ABC) tamoxifen-only arm. Relations at the RNA level were assessed in 1,139 TransATAC tumors. ER and HER2 RNA levels were negatively correlated as expected in HER2+ve (IHC 3+ and/or FISH-amplified) tumors (r = -0.45; P = 0.0028). However, in HER2-ve tumors (ER+ve and ER-ve combined), a significant positive correlation was found (r = 0.43; P < 0.0001), HER2 RNA levels being 1.74-fold higher in ER+ve versus ER-ve tumors. This correlation was maintained in the ER+veHER2-ve subgroup (r = 0.24; P = 0.0023) and confirmed in this subgroup in 1,139 TransATAC tumours (r = 0.25; P < 0.0001). The positive relation extended to IHC-detected ER in ABC: mean ± 95% confidence interval (CI) H-scores were 90 ± 19 and 134 ± 19 for 0 and 1+ HER2 IHC categories, respectively (P = 0.0013). A trend toward lower relapse-free survival (RFS) was observed in patients with the lowest levels of ER and HER2 RNA levels within the ER+veHER2-ve subgroup both for ABC and TransATAC cohorts. ER and HER2 expression is positively correlated in HER2-ve tumors. The distinction between HER2+ve and HER2-ve is greater in ER-ve than in ER+ve tumors. These findings are important to consider in clinical trials of anti-HER2 and anti-endocrine therapy in HER2-ve disease. Clinical trial identifier: ISRCTN31514446.

  20. Effect of neoadjuvant chemotherapy on HER-2 expression in surgically treated gastric and oesophagogastric junction carcinoma: a multicentre Italian study.

    PubMed

    Chiari, Damiano; Orsenigo, Elena; Guarneri, Giovanni; Baiocchi, Gian Luca; Mazza, Elena; Albarello, Luca; Bissolati, Massimiliano; Molfino, Sarah; Staudacher, Carlo

    2017-03-01

    Predictors of response to neoadjuvant chemotherapy are not available for gastric and oesophago-gastric junction carcinoma. HER-2 over-expression in breast cancer correlates with poor prognosis and high incidence of recurrence. First aim of this study was to evaluate if the HER-2 expression/amplification is predictive of response to neoadjuvant chemotherapy in terms of pathologic regression. Secondary aim was to evaluate if HER-2 expression varies after neoadjuvant treatment. Thirty-five patients with locally advanced gastric or oesophago-gastric junction carcinoma underwent preoperative chemotherapy and surgical resection at San Raffaele Scientific Institute and Spedali Civili of Brescia. HER-2 expression/amplification was evaluated on every biopsy at diagnosis time and on every surgical sample after neoadjuvant chemotherapy. Pathologic response to chemotherapy was evaluated according to TNM classification (ypT status and ypN status) and Mandard's tumour regression grade classification. In our series 10 patients (28.6%) showed a reduction in HER-2 overexpression and in 6 of them (17.1%) HER-2 expression completely disappeared. Only three of the six patients with HER-2 disappearance had a complete pathological response to neoadjuvant chemotherapy. There was a strong correlation between HER-2 negativity on biopsy and absence of lymph node metastasis in surgical samples after neoadjuvant chemotherapy, irrespective of nodal status before chemotherapy. A direct correlation between HER-2 reduction after neoadjuvant chemotherapy and pathologic regression (primary tumour and lymph nodes) in surgical samples was found. HER-2 negativity may represent a predictor of pathologic response to neoadjuvant chemotherapy for gastric and oesophago-gastric junction adenocarcinoma. Neoadjuvant treatment can reduce HER-2 overexpression.

  1. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells.

    PubMed

    Seo, Hye-Sook; Jo, Jae Kyung; Ku, Jin Mo; Choi, Han-Seok; Choi, Youn Kyung; Woo, Jong-Kyu; Kim, Hyo In; Kang, Soo-Yeon; Lee, Kang Min; Nam, Koong Won; Park, Namkyu; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-10-23

    Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase (PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3 and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity in BT-474 cells. Apigenin inhibited CoCl2-induced VEGF secretion and decreased the nuclear translocation of STAT3. Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer. © 2015 Authors.

  2. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells

    PubMed Central

    Seo, Hye-Sook; Jo, Jae Kyung; Ku, Jin Mo; Choi, Han-Seok; Choi, Youn Kyung; Woo, Jong-Kyu; in Kim, Hyo; Kang, Soo-yeon; Lee, Kang min; Nam, Koong Won; Park, Namkyu; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2015-01-01

    Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase (PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3 and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity in BT-474 cells. Apigenin inhibited CoCl2-induced VEGF secretion and decreased the nuclear translocation of STAT3. Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer. PMID:26500281

  3. Comparison of central HER2 testing with quantitative total HER2 expression and HER2 homodimer measurements using a novel proximity-based assay.

    PubMed

    Huang, Weidong; Reinholz, Monica; Weidler, Jodi; Yolanda, Lie; Paquet, Agnes; Whitcomb, Jeannette; Lingle, Wilma; Jenkins, Robert B; Chen, Beiyun; Larson, Jeffrey S; Tan, Yuping; Sherwood, Thomas; Bates, Michael; Perez, Edith A

    2010-08-01

    The accuracy and reliability of immunohistochemical analysis and in situ hybridization for the assessment of HER2 status remains a subject of debate. We developed a novel assay (HERmark Breast Cancer Assay, Monogram Biosciences, South San Francisco, CA) that provides precise quantification of total HER2 protein expression (H2T) and HER2 homodimers (H2D) in formalin-fixed, paraffin-embedded tissue specimens. H2T and H2D results of 237 breast cancers were compared with those of immunohistochemical studies and fluorescence in situ hybridization (FISH) centrally performed at the Mayo Clinic, Rochester, MN. H2T described a continuum across a wide dynamic range ( approximately 2.5 log). Excluding the equivocal cases, HERmark showed 98% concordance with immunohistochemical studies for positive and negative assay values. For the 94 immunohistochemically equivocal cases, 67% and 39% concordance values were observed between HERmark and FISH for positive and negative assay values, respectively. Polysomy 17 in the absence of HER2 gene amplification did not result in HER2 overexpression as evaluated quantitatively using the HERmark assay.

  4. Characterization of hormonal receptors and human epidermal growth factor receptor-2 in tissues of women with breast cancer at Muhimbili National Hospital, Dar es salaam, Tanzania.

    PubMed

    Mwakigonja, Amos Rodger; Lushina, Nyanda Elias; Mwanga, Ally

    2017-01-01

    Breast cancer is a leading cause of morbidity and deaths among women worldwide. In Tanzania there is no published data on human epidermal growth receptor-2 (HER2/neu) expression in breast carcinoma. Hormonal receptors and HER2/neu status reportedly influence post-mastectomy adjuvant therapy and predict treatment outcome and prognosis. Here we evaluate hormonal receptors and HER-2 status in biopsies of women with breast cancer at Muhimbili National Hospital (MNH). A cross-sectional study of female breast post-modified radical mastectomy (MRM)/incisional biopsies confirmed to be carcinoma at the Histopathology Unit (January-December 2013). Tissue blocks having poor morphology, without tumor, secondary tumors, cases outside the study period and male patients were excluded. Routine staining was done followed by immunohistochemistry for estrogen (ER), and progesterone (PgR) receptors and HER2. Data analyzed using Statistical Package for Social Sciences (SPSS). A total of 218 cases were confirmed to be carcinoma including 70 meeting inclusion criteria. Age at diagnosis ranged 18-75 years and mean age was 48.36 years. Majority (64.3%) were in the 36-55 years age-group. Histologically, most (88.6%) women had invasive ductal carcinoma including 43.1% of intermediate grade. A great majority (78%) were stage three. Due to logistical constrains, 75.7% ( n  = 53/70) cases where immunostained for hormones including 43.4% (ER+), 26.4% (PgR+), and 28% (ER+/PgR+). Furthermore, 65.7% ( n  = 46/70) cases were immunostained for HER-2 and 15.2% ( n  = 7/46) were positive, 45.6% were triple negative (ER-,PgR-,HER2-), 23.9% (ER+,PgR+,HER2-) or luminal B, 2.2% (ER+,PgR-,HER2+),13% (ER-,PgR-,HER2+) and 15% (ER+,PgR-,HER2-) with none being triple positive. Hormonal receptors and HER2 expression at MNH appears to be comparable to previous Africans/African Americans reports but not with studies among Caucasians and the current proportion of triple negative breast carcinomas (TNBC) is higher than in a previous Tanzanian report and majority are luminal. HER2 over-expression is relatively common. It is strongly recommended that receptor status assessment be made routine for breast cancer patients at MNH.

  5. Prognostic and clinical significance of histone deacetylase 1 expression in breast cancer: A meta-analysis.

    PubMed

    Qiao, Weiqiang; Liu, Heyang; Liu, Ruidong; Liu, Qipeng; Zhang, Ting; Guo, Wanying; Li, Peng; Deng, Miao

    2018-05-05

    There are conflicting reports about the role of histone deacetylase 1 (HDAC1) in breast cancer prognosis. Here, we conducted a meta-analysis to investigate the prognostic significance of HDAC1 in breast cancer. We searched different databases to identify studies evaluating the association between HDAC1 expression and its prognostic value in breast cancer. The pooled hazard ratios (HRs) and odds radios (ORs) with 95% confidence intervals (95% CIs) were calculated from these studies to assess specific correlation. Our meta-analysis of four databases identified 7 eligible studies with 1429 total patients. We found that HDAC1 over-expression did not correlate with disease-free survival (DFS) and overall survival (OS) in breast cancer. Subgroup analysis indicated an association between up-regulated HDAC1 expression and better OS (HR = 0.47, 95% CI: 0.23-0.97; P = 0.04) in Asian breast cancer patients. However, false-positive report probability (FPRP) analysis and trial sequential analysis (TSA) indicated that the results need further validation. Furthermore, HDAC1 over-expression was associated with positive estrogen receptor (ER) expression (OR, 3.30; 95% CI, 1.11-9.83; P = 0.03) and negative human epidermal growth factor receptor 2 (HER2) expression (OR, 1.79; 95% CI, 1.22-2.61; P = 0.003), but there were no significant differences between patients based on age, tumor size, lymph node metastasis, nuclear grade, or progesterone receptor (PR) expression. Overall, our meta-analysis demonstrated an association between increased HDAC1 expression and better OS in Asian breast cancer patients. In addition, HDAC1 over-expression correlated with positive ER and negative HER2 expression in breast cancer. However, researches in large patients' randomised controlled trials (RCTs) are needed to confirm the results. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Melatonin Represses Metastasis in Her2-postive Human Breast Cancer Cells by Suppressing RSK2 Expression

    PubMed Central

    Mao, Lulu; Summers, Whitney; Xiang, Shulin; Yuan, Lin; Dauchy, Robert T.; Reynolds, Amberly; Wren-Dail, Melissa A.; Pointer, David; Frasch, Tripp; Blask, David E.; Hill, Steven M.

    2016-01-01

    The importance of the circadian/melatonin signal in suppressing the metastatic progression of breast and other cancers has been reported by numerous laboratories including our own. Currently, the mechanisms underlying the anti-metastatic actions of melatonin have not been well established. In the present study, the anti-metastatic actions of melatonin were evaluated and compared on the ERα-negative, Her2-positive SKBR-3 breast tumor cell line and ERα-positive MCF-7 cells overexpressing a constitutively active HER2.1 construct (MCF-7Her2.1 cells). Activation of Her2 is reported to induce the expression and/or phosphorylation-dependent activation of numerous kinases and transcription factors that drive drug resistance and metastasis in breast cancer. A key signaling node activated by the Her2/Mapk/Erk pathway is Rsk2, which has been shown to induce numerous signaling pathways associated with the development of epithelial-to-mesenchymal transition (EMT) and metastasis including: Creb, Stat3, cSrc, Fak, Pax, Fascin, and actin polymerization. The data demonstrate that melatonin (both endogenous and exogenous) significantly represses this invasive/metastatic phenotype through a mechanism that involves the suppression of EMT, either by promoting mesenchymal-to-epithelial transition (MET), and/or by inhibiting key signaling pathways involved in later stages of metastasis. These data, combined with our earlier in vitro studies, support the concept that maintenance of elevated and extended duration of nocturnal melatonin levels plays a critical role in repressing the metastatic progression of breast cancer. PMID:27535706

  7. Recent advances in systemic therapy: Advances in systemic therapy for HER2-positive metastatic breast cancer.

    PubMed

    Morrow, Phuong Khanh H; Zambrana, Francisco; Esteva, Francisco J

    2009-01-01

    Human epidermal growth factor receptor (HER)2 over-expression is associated with a shortened disease-free interval and poor survival. Although the addition of trastuzumab to chemotherapy in the first-line setting has improved response rates, progression-free survival, and overall survival, response rates declined when trastuzumab was used beyond the first-line setting because of multiple mechanisms of resistance. Studies have demonstrated the clinical utility of continuing trastuzumab beyond progression, and further trials to explore this concept are ongoing. New tyrosine kinase inhibitors, monoclonal antibodies, PTEN (phosphatase and tensin homolog) pathway regulators, HER2 antibody-drug conjugates, and inhibitors of heat shock protein-90 are being evaluated to determine whether they may have a role to play in treating trastuzumab-resistant metastatic breast cancer.

  8. Proteomic Signatures of Acquired Letrozole Resistance in Breast Cancer: Suppressed Estrogen Signaling and Increased Cell Motility and Invasiveness*

    PubMed Central

    Tilghman, Syreeta L.; Townley, Ian; Zhong, Qiu; Carriere, Patrick P.; Zou, Jin; Llopis, Shawn D.; Preyan, Lynez C.; Williams, Christopher C.; Skripnikova, Elena; Bratton, Melyssa R.; Zhang, Qiang; Wang, Guangdi

    2013-01-01

    Aromatase inhibitors, such as letrozole, have become the first-line treatment for postmenopausal women with estrogen-dependent breast cancer. However, acquired resistance remains a major clinical obstacle. Previous studies demonstrated constitutive activation of the MAPK signaling, overexpression of HER2, and down-regulation of aromatase and ERα in letrozole-resistant breast cancer cells. Given the complex signaling network involved in letrozole-refractory breast cancer and the lack of effective treatment for hormone resistance, further investigation of aromatase inhibitor resistance by a novel systems biology approach may reveal previously unconsidered molecular changes that could be utilized as therapeutic targets. This study was undertaken to characterize for the first time global proteomic alterations occurring in a letrozole-resistant cell line. A quantitative proteomic analysis of the whole cell lysates of LTLT-Ca (resistant) versus AC-1 cells (sensitive) was performed to identify significant protein expression changes. A total of 1743 proteins were identified and quantified, of which 411 were significantly up-regulated and 452 significantly down-regulated (p < 0.05, fold change > 1.20). Bioinformatics analysis revealed that acquired letrozole resistance is associated with a hormone-independent, more aggressive phenotype. LTLT-Ca cells exhibited 84% and 138% increase in migration and invasion compared with the control cells. The ROCK inhibitor partially abrogated the enhanced migration and invasion of the letrozole-resistant cells. Flow cytometric analyses also demonstrated an increase in vimentin and twist expression in letrozole-resistance cells, suggesting an onset of epithelial to mesenchymal transition (EMT). Moreover, targeted gene expression arrays confirmed a 28-fold and sixfold up-regulation of EGFR and HER2, respectively, whereas ERα and pS2 were dramatically reduced by 28-fold and 1100-fold, respectively. Taken together, our study revealed global proteomic signatures of a letrozole-resistant cell line associated with hormone independence, enhanced cell motility, EMT and the potential values of several altered proteins as novel prognostic markers or therapeutic targets for letrozole resistant breast cancer. PMID:23704778

  9. Selective Inhibition of HER2-Positive Breast Cancer Cells by the HIV Protease Inhibitor Nelfinavir

    PubMed Central

    2012-01-01

    Background Human epidermal growth factor receptor 2 (HER2)–positive breast cancer is highly aggressive and has higher risk of recurrence than HER2-negative cancer. With few treatment options available, new drug targets specific for HER2-positive breast cancer are needed. Methods We conducted a pharmacological profiling of seven genotypically distinct breast cancer cell lines using a subset of inhibitors of breast cancer cells from a screen of the Johns Hopkins Drug Library. To identify molecular targets of nelfinavir, identified in the screen as a selective inhibitor of HER2-positive cells, we conducted a genome-wide screen of a haploinsufficiency yeast mutant collection. We evaluated antitumor activity of nelfinavir with xenografts in athymic nude mouse models (n = 4–6 per group) of human breast cancer and repeated mixed-effects regression analysis. All statistical tests were two-sided. Results Pharmacological profiling showed that nelfinavir, an anti-HIV drug, selectively inhibited the growth of HER2-positive breast cancer cells in vitro. A genome-wide screening of haploinsufficiency yeast mutants revealed that nelfinavir inhibited heat shock protein 90 (HSP90) function. Further characterization using proteolytic footprinting experiments indicated that nelfinavir inhibited HSP90 in breast cancer cells through a novel mechanism. In vivo, nelfinavir selectively inhibited the growth of HER2-positive breast cancer cells (tumor volume index of HCC1954 cells on day 29, vehicle vs nelfinavir, mean = 14.42 vs 5.16, difference = 9.25, 95% confidence interval [CI] = 5.93 to 12.56, P < .001; tumor volume index of BT474 cells on day 26, vehicle vs nelfinavir, mean = 2.21 vs 0.90, difference = 1.31, 95% CI = 0.83 to 1.78, P < .001). Moreover, nelfinavir inhibited the growth of trastuzumab- and/or lapatinib-resistant, HER2-positive breast cancer cells in vitro at clinically achievable concentrations. Conclusion Nelfinavir was found to be a new class of HSP90 inhibitor and can be brought to HER2-breast cancer treatment trials with the same dosage regimen as that used among HIV patients. PMID:23042933

  10. Fluorescent immunolabeling of cancer cells by quantum dots and antibody scFv fragment.

    PubMed

    Zdobnova, Tatiana A; Dorofeev, Sergey G; Tananaev, Piter N; Vasiliev, Roman B; Balandin, Taras G; Edelweiss, Eveline F; Stremovskiy, Oleg A; Balalaeva, Irina V; Turchin, Ilya V; Lebedenko, Ekaterina N; Zlomanov, Vladimir P; Deyev, Sergey M

    2009-01-01

    Semiconductor quantum dots (QDs) coupled with cancer-specific targeting ligands are new promising agents for fluorescent visualization of cancer cells. Human epidermal growth factor receptor 2/neu (HER2/neu), overexpressed on the surface of many cancer cells, is an important target for cancer diagnostics. Antibody scFv fragments as a targeting agent for direct delivery of fluorophores offer significant advantages over full-size antibodies due to their small size, lower cross-reactivity, and immunogenicity. We have used quantum dots linked to anti-HER2/neu 4D5 scFv antibody to label HER2/neu-overexpressing live cells. Labeling of target cells was shown to have high brightness, photostability, and specificity. The results indicate that construction based on quantum dots and scFv antibody can be successfully used for cancer cell visualization.

  11. Cooperation of neurotrophin receptor TrkB and Her2 in breast cancer cells facilitates brain metastases.

    PubMed

    Choy, Cecilia; Ansari, Khairul I; Neman, Josh; Hsu, Sarah; Duenas, Matthew J; Li, Hubert; Vaidehi, Nagarajan; Jandial, Rahul

    2017-04-26

    Patients with primary breast cancer that is positive for human epidermal growth factor receptor 2 (Her2+) have a high risk of developing metastases in the brain. Despite gains with systemic control of Her2+ disease using molecular therapies, brain metastases remain recalcitrant to therapeutic discovery. The clinical predilection of Her2+ breast cancer cells to colonize the brain likely relies on paracrine mechanisms. The neural niche poses unique selection pressures, and neoplastic cells that utilize the brain microenvironment may have a survival advantage. Tropomyosin-related kinase B (TrkB), Her2, and downstream targets were analyzed in primary breast cancer, breast-to-brain metastasis (BBM) tissues, and tumor-derived cell lines using quantitative real-time PCR, western blot, and immunohistochemical assessment. TrkB function on BBM was confirmed with intracranial, intracardiac, or mammary fat pad xenografts in non-obese diabetic/severe combined immunodeficiency mice. The function of brain-derived neurotrophic factor (BDNF) on cell proliferation and TrkB/Her2 signaling and interactions were confirmed using selective shRNA knockdown and selective inhibitors. The physical interaction of Her2-TrkB was analyzed using electron microscopy, co-immunoprecipitation, and in silico analysis. Dual targeting of Her2 and TrkB was analyzed using clinically utilized treatments. We observed that patient tissues and cell lines derived from Her2+ human BBM displayed increased activation of TrkB, a neurotrophin receptor. BDNF, an extracellular neurotrophin, with roles in neuronal maturation and homeostasis, specifically binds to TrkB. TrkB knockdown in breast cancer cells led to decreased frequency and growth of brain metastasis in animal models, suggesting that circulating breast cancer cells entering the brain may take advantage of paracrine BDNF-TrkB signaling for colonization. In addition, we investigated a possible interaction between TrkB and Her2 receptors on brain metastatic breast cancer cells, and found that BDNF phosphorylated both its cognate TrkB receptor and the Her2 receptor in brain metastatic breast cancer cells. Collectively, our findings suggest that heterodimerization of Her2 and TrkB receptors gives breast cancer cells a survival advantage in the brain and that dual inhibition of these receptors may hold therapeutic potential.

  12. Development of 99mTc-radiolabeled nanosilica for targeted detection of HER2-positive breast cancer

    PubMed Central

    Rainone, Paolo; Riva, Benedetta; Belloli, Sara; Sudati, Francesco; Ripamonti, Marilena; Verderio, Paolo; Colombo, Miriam; Colzani, Barbara; Gilardi, Maria Carla; Moresco, Rosa Maria; Prosperi, Davide

    2017-01-01

    The human epidermal growth factor receptor 2 (HER2) is normally associated with a highly aggressive and infiltrating phenotype in breast cancer lesions with propensity to spread into metastases. In clinic, the detection of HER2 in primary tumors and in their metastases is currently based on invasive methods. Recently, nuclear molecular imaging techniques, including positron emission tomography and single photon emission computed tomography (SPECT), allowed the detection of HER2 lesions in vivo. We have developed a 99mTc-radiolabeled nanosilica system, functionalized with a trastuzumab half-chain, able to act as drug carrier and SPECT radiotracer for the identification of HER2-positive breast cancer cells. To this aim, nanoparticles functionalized or not with trastuzumab half-chain, were radiolabeled using the 99mTc-tricarbonyl approach and evaluated in HER2 positive and negative breast cancer models. Cell uptake experiments, combined with flow cytometry and fluorescence imaging, suggested that active targeting provides higher efficiency and selectivity in tumor detection compared to passive diffusion, indicating that our radiolabeling strategy did not affect the nanoconjugate binding efficiency. Ex vivo biodistribution of 99mTc-nanosilica in a SK-BR-3 (HER2+) tumor xenograft at 4 h postinjection was higher in targeted compared to nontargeted nanosilica, confirming the in vitro data. In addition, viability and toxicity tests provided evidence on nanoparticle safety in cell cultures. Our results encourage further assessment of silica 99mTc-nanoconjugates to validate a safe and versatile nanoreporter system for both diagnosis and treatment of aggressive breast cancer. PMID:28496321

  13. A novel dendritic cell-based immunization approach for the induction of durable Th1-polarized anti-HER-2/neu responses in women with early breast cancer

    PubMed Central

    Koski, Gary K.; Koldovsky, Ursula; Xu, Shuwen; Mick, Rosemarie; Sharma, Anupama; Fitzpatrick, Elizabeth; Weinstein, Susan; Nisenbaum, Harvey; Levine, Bruce L; Fox, Kevin; Zhang, Paul; Czerniecki, Brian J

    2011-01-01

    Twenty-seven subjects with HER-2/neu over-expressing ductal carcinoma in situ of the breast were enrolled in a neoadjuvant immunization trial for safety and immunogenicity of DC1-polarized dendritic cells (DC1) pulsed with six HER-2/neu promiscuous MHC class II-binding peptides, plus two additional HLA-A2.1 class I-binding peptides. DC1 were generated with IFN-γ plus a special clinical-grade bacterial endotoxin (LPS) and administered directly into groin lymph nodes four times at weekly intervals prior to scheduled surgical resection of DCIS. Subjects were monitored for the induction of new or enhanced anti-peptide reactivity by IFN-γ ELIspot and ELISA assays performed on Th cells obtained from peripheral blood or excised sentinel lymph nodes. Responses by CTL against HLA-A2.1-binding peptides were measured using peptide-pulsed T2 target cells or HER-2/neu-expressing or non-expressing tumor cell lines. DC1 showed surface phenotype indistinct from “gold standard” inflammatory cocktail-activated DC, but displayed a number of distinguishing functional characteristics including the secretion of soluble factors and enhanced “killer DC” capacity against tumor cells in vitro. Post-immunization, we observed sensitization of Th cells to at least 1 class II peptide in 22 of 25 (88%, 95% exact CI 68.8 – 97.5%) evaluable subjects, while eleven of 13 (84.6%, 95% exact CI 64 – 99.8%) HLA-A2.1 subjects were successfully sensitized to class I peptides. Perhaps most importantly, anti-HER-2/neu peptide responses were observed up to 52 months post-immunization. These data show even in the presence of early breast cancer such DC1 are potent inducers of durable type I-polarized immunity, suggesting potential clinical value for development of cancer immunotherapy. PMID:22130160

  14. ADAM10 mediates trastuzumab resistance and is correlated with survival in HER2 positive breast cancer

    PubMed Central

    Feldinger, Katharina; Generali, Daniele; Kramer-Marek, Gabriela; Gijsen, Merel; Ng, Tzi Bun; Wong, Jack Ho; Strina, Carla; Cappelletti, Mariarosa; Andreis, Daniele; Li, Ji-Liang; Bridges, Esther; Turley, Helen; Leek, Russell; Roxanis, Ioannis; Capala, Jacek; Murphy, Gillian; Harris, Adrian L.; Kong, Anthony

    2014-01-01

    Trastuzumab prolongs survival in HER2 positive breast cancer patients. However, resistance remains a challenge. We have previously shown that ADAM17 plays a key role in maintaining HER2 phosphorylation during trastuzumab treatment. Beside ADAM17, ADAM10 is the other well characterized ADAM protease responsible for HER ligand shedding. Therefore, we studied the role of ADAM10 in relation to trastuzumab treatment and resistance in HER2 positive breast cancer. ADAM10 expression was assessed in HER2 positive breast cancer cell lines and xenograft mice treated with trastuzumab. Trastuzumab treatment increased ADAM10 levels in HER2 positive breast cancer cells (p≤0.001 in BT474; p≤0.01 in SKBR3) and in vivo (p≤0.0001) compared to control, correlating with a decrease in PKB phosphorylation. ADAM10 inhibition or knockdown enhanced trastuzumab response in naïve and trastuzumab resistant breast cancer cells. Trastuzumab monotherapy upregulated ADAM10 (p≤0.05); and higher pre-treatment ADAM10 levels correlated with decreased clinical response (p≤0.05) at day 21 in HER2 positive breast cancer patients undergoing a trastuzumab treatment window study. Higher ADAM10 levels correlated with poorer relapse-free survival (p≤0.01) in a cohort of HER2 positive breast cancer patients. Our studies implicate a role of ADAM10 in acquired resistance to trastuzumab and establish ADAM10 as a therapeutic target and a potential biomarker for HER2 positive breast cancer patients. PMID:24952873

  15. Preparation and Identification of HER2 Radioactive Ligands and Imaging Study of Breast Cancer-Bearing Nude Mice.

    PubMed

    Zhang, Meng-Zhi; Guan, Yan-Xing; Zhong, Jin-Xiu; Chen, Xue-Zhong

    2017-08-01

    A micro-molecule peptide TP1623 of 99m Tc-human epithelial growth factor receptor 2 (HER2) was prepared and the feasibility of using it as a HER2-positive molecular imaging agent for breast cancer was evaluated. TP1623 was chemically synthesized and labeled with 99m Tc. The labeling ratio and stability were detected. HER2 expression levels of breast cancer cells (SKBR3 and MDA-MB-231) and cell binding activity were measured. Biodistribution of 99m TC-TP1623 in normal mice was detected. SKBR3/MDA-MB-231-bearing nude mice models with high/low expressions of HER2 were established. Tumor tissues were stained with hematoxylin-eosin (HE) and measured by immunohistochemistry to confirm the formation of tumors and HER2 expression. SPECT imaging was conducted for HER2-overexpressing SKBR3-bearing nude mice. The T/NT ratio was calculated and compared with that of MDA-MB-231-bearing nude mice with low HER2 expression. The competitive inhibition image was used to discuss the specific binding of 99m Tc- TP1623 and the tumor. The labeling ratio of 99m Tc-TP1623, specific activity, and radiochemical purity (RCP) after 6 h at room temperature were (97.39 ± 0.23)%, (24.61 ± 0.06) TBq/mmol, and (93.25 ± 0.06)%, respectively. HER2 of SKBR3 and MDA-MB-231 cells showed high and low expression levels by immunohistochemistry, respectively. The in vitro receptor assays indicated that specific binding of TP1623 and HER2 was retained. Radioactivity in the brain was always at the lowest level, while the clearance rate of blood and the excretion rate of the kidneys were fast. HE staining showed that tumor cells were observed in SKBR3- and MDA-MB-231-bearing nude mice, with significant heteromorphism and increased mitotic count. The imaging of mice showed that targeted images could be made of 99m Tc-TP1623 in high HER2-expressing tumors, while no obvious development was shown in tumors in low HER2-expressing nude mice. No development was visible in tumors in competitive inhibition of imaging, which indicates the combination of 99m Tc-TP1623 and tumor was mediated by HER2. High labeling ratio and specific activity of 99m Tc-TP1623 is successfully prepared; it is a molecular imaging agent for HER2-positive tumors that has potential applicative value. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Liquid-phase electron microscopy of molecular drug response in breast cancer cells reveals irresponsive cell subpopulations related to lack of HER2 homodimers.

    PubMed

    Peckys, Diana B; Korf, Ulrike; Wiemann, Stefan; de Jonge, Niels

    2017-08-09

    The development of drug resistance in cancer poses a major clinical problem. An example is human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer often treated with anti-HER2 antibody therapies, such as trastuzumab. Since drug resistance is rooted mainly in tumor cell heterogeneity, we examined the drug effect in different subpopulations of SKBR3 breast cancer cells, and compared the results with a drug resistant cell line, HCC1954. Correlative light microscopy and liquid-phase scanning transmission electron microscopy (STEM) were used to quantitatively analyze HER2 responses upon drug binding, whereby many tens of whole cells were imaged. Trastuzumab was found to selectively cross-link and down regulate HER2 homodimers from the plasma membranes of bulk cancer cells. In contrast, HER2 resided mainly as monomers in rare subpopulations of resting- and cancer stem cells (CSCs), and these monomers were not internalized after drug binding. The HER2 distribution was hardly influenced by trastuzumab for the HCC1954 cells. These findings show that resting cells and CSCs are irresponsive to the drug, and thus point towards a molecular explanation behind the origin of drug resistance. This analytical method is broadly applicable to study membrane protein interactions in the intact plasma membrane, while accounting for cell heterogeneity. © 2017 by The American Society for Cell Biology.

  17. Tumor Metabolism and Blood Flow as Assessed by PET Varies by Tumor Subtype in Locally Advanced Breast Cancer

    PubMed Central

    Specht, Jennifer M.; Kurland, Brenda F.; Montgomery, Susan K.; Dunnwald, Lisa K.; Doot, Robert K.; Gralow, Julie R.; Ellis, Georgina K.; Linden, Hannah M.; Livingston, Robert B.; Allison, Kimberly H.; Schubert, Erin K.; Mankoff, David A.

    2010-01-01

    Purpose Dynamic PET imaging can identify patterns of breast cancer metabolism and perfusion in patients receiving neoadjuvant chemotherapy (NC) that are predictive of response. This analysis examines tumor metabolism and perfusion by tumor subtype. Experimental Design Tumor subtype was defined by immunohistochemistry (IHC) in 71 patients with LABC undergoing NC. Subtype was defined as luminal (ER/PR positive), triple-negative (TN; ER/PR negative, HER2 negative) and HER2 (ER/PR negative, HER2 over-expressing). Metabolic rate (MRFDG) and blood flow (BF) were calculated from PET imaging prior to NC. Pathologic complete response (pCR) to NC was classified as pCR versus other. Results Twenty-five (35%) of 71 patients had TN tumors, 6 (8%) were HER2 and 40 (56%) were luminal. MRFDG for TN tumors was on average 67% greater than for luminal tumors (95% CI 9% – 156%), and average MRFDG/BF ratio was 53% greater in TN compared to luminal tumors (95% CI 9% – 114%) (p < 0.05 for both). Average blood flow levels did not differ by subtype (p = 0.73). Most luminal tumors showed relatively low MRFDG and BF (and did not achieve pCR); high MRFDG was generally matched with high BF in luminal tumors, and predicted pCR. This was not true in TN tumors. Conclusions The relationship between breast tumor metabolism and perfusion differed by subtype. The high MRFDG/BF ratio that predicts poor response to NC was more common in TN tumors. Metabolism and perfusion measures may identify subsets of tumors susceptible and resistant to NC and may help direct targeted therapy. PMID:20460489

  18. Role of TP53 mutations in triple negative and HER2-positive breast cancer treated with neoadjuvant anthracycline/taxane-based chemotherapy

    PubMed Central

    Darb-Esfahani, Silvia; Denkert, Carsten; Stenzinger, Albrecht; Salat, Christoph; Sinn, Bruno; Schem, Christian; Endris, Volker; Klare, Peter; Schmitt, Wolfgang; Blohmer, Jens-Uwe; Weichert, Wilko; Möbs, Markus; Tesch, Hans; Kümmel, Sherko; Sinn, Peter; Jackisch, Christian; Dietel, Manfred; Reimer, Toralf; Loi, Sherene; Untch, Michael; von Minckwitz, Gunter; Nekljudova, Valentina; Loibl, Sibylle

    2016-01-01

    Background TP53 mutations are frequent in breast cancer, however their clinical relevance in terms of response to chemotherapy is controversial. Methods 450 pre-therapeutic, formalin-fixed, paraffin-embedded core biopsies from the phase II neoadjuvant GeparSixto trial that included HER2-positive and triple negative breast cancer (TNBC) were subjected to Sanger sequencing of exons 5-8 of the TP53 gene. TP53 status was correlated to response to neoadjuvant anthracycline/taxane-based chemotherapy with or without carboplatin and trastuzumab/lapatinib in HER2-positive and bevacizumab in TNBC. p53 protein expression was evaluated by immunohistochemistry in the TNBC subgroup. Results Of 450 breast cancer samples 297 (66.0%) were TP53 mutant. Mutations were significantly more frequent in TNBC (74.8%) compared to HER2-positive cancers (55.4%, P < 0.0001). Neither mutations nor different mutation types and effects were associated with pCR neither in the whole study group nor in molecular subtypes (P > 0.05 each). Missense mutations tended to be associated with a better survival compared to all other types of mutations in TNBC (P = 0.093) and in HER2-positive cancers (P = 0.071). In TNBC, missense mutations were also linked to higher numbers of tumor-infiltrating lymphocytes (TILs, P = 0.028). p53 protein overexpression was also linked with imporved survival (P = 0.019). Conclusions Our study confirms high TP53 mutation rates in TNBC and HER2-positive breast cancer. Mutations did not predict the response to an intense neoadjuvant chemotherapy in these two molecular breast cancer subtypes. PMID:27611952

  19. Invasive micropapillary carcinoma of the breast overexpresses MUC4 and is associated with poor outcome to adjuvant trastuzumab in HER2-positive breast cancer.

    PubMed

    Mercogliano, María F; Inurrigarro, Gloria; De Martino, Mara; Venturutti, Leandro; Rivas, Martín A; Cordo-Russo, Rosalía; Proietti, Cecilia J; Fernández, Elmer A; Frahm, Isabel; Barchuk, Sabrina; Allemand, Daniel H; Figurelli, Silvina; Deza, Ernesto Gil; Ares, Sandra; Gercovich, Felipe G; Cortese, Eduardo; Amasino, Matías; Guzmán, Pablo; Roa, Juan C; Elizalde, Patricia V; Schillaci, Roxana

    2017-12-28

    Invasive micropapillary carcinoma of the breast (IMPC) is a histological tumor variant that occurs with low frequency characterized by an inside-out formation of tumor clusters with a pseudopapillary arrangement. IMPC is an aggressive tumor with poor clinical outcome. In addition, this histological subtype usually expresses human epidermal growth factor receptor 2 (HER2) which also correlates with a more aggressive tumor. In this work we studied the clinical significance of IMPC in HER2-positive breast cancer patients treated with adjuvant trastuzumab. We also analyzed mucin 4 (MUC4) expression as a novel biomarker to identify IMPC. We retrospectively studied 86 HER2-positive breast cancer patients treated with trastuzumab and chemotherapy in the adjuvant setting. We explored the association of the IMPC component with clinicopathological parameters at diagnosis and its prognostic value. We compared MUC4 expression in IMPC with respect to other histological breast cancer subtypes by immunohistochemistry. IMPC, either as a pure entity or associated with invasive ductal carcinoma (IDC), was present in 18.6% of HER2-positive cases. It was positively correlated with estrogen receptor expression and tumor size and inversely correlated with patient's age. Disease-free survival was significantly lower in patients with IMPC (hazard ratio = 2.6; 95%, confidence interval 1.1-6.1, P = 0.0340). MUC4, a glycoprotein associated with metastasis, was strongly expressed in all IMPC cases tested. IMPC appeared as the histological breast cancer subtype with the highest MUC4 expression compared to IDC, lobular and mucinous carcinoma. In HER2-positive breast cancer, the presence of IMPC should be carefully examined. As it is often not informed, because it is relatively difficult to identify or altogether overlooked, we propose MUC4 expression as a useful biomarker to highlight IMPC presence. Patients with MUC4-positive tumors with IMPC component should be more frequently monitored and/or receive additional therapies.

  20. HER2 mutated breast cancer responds to treatment with single agent neratinib, a second generation HER2/EGFR tyrosine kinase inhibitor

    PubMed Central

    Ben–Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M.; Ma, Cynthia X.; Ellis, Matthew J.

    2015-01-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2 targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. In this case report, we describe a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second generation HER2/EGFR tyrosine kinase inhibitor, neratinib, resulted in partial response and dramatic improvement in the patient’s function status. This partial response lasted 11 months and when the patient’s cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2 amplified breast cancer after disease progression. This case is the first report, to our knowledge, of successful single agent treatment of HER2 mutated breast cancer. Two clinical trials of neratinib for HER2 mutated, metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancer, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2 mutated solid tumors is warranted. PMID:26358790

  1. Update on HER2 testing for breast and upper gastrointestinal tract cancers.

    PubMed

    Ross, Jeffrey S

    2011-06-01

    With the regulatory approvals in Europe and the USA of trastuzumab-based anti-HER2 targeted therapy for upper gastrointestinal cancers in 2010, HER2 testing has now become universal for newly diagnosed cases of both breast cancer and adenocarcinomas of esophagus, stomach and gastroesophageal origin. In the 12 years or more since the approval of trastuzumab for breast cancer, general refinements in approaches to HER2 testing, including a greater understanding of the implications of preanalytic factors impacting the test results and the application of standardization of reporting of HER2 test results, have taken place. There has also been continuing development in breast cancer with the introduction of new HER2 tests, including non-FISH tests, dimerization assays, phosphorylated HER2 receptor tests, mRNA-based tests, HER2 gene sequencing tests and the application of HER2 testing to circulating tumor cells. Most recently, the introduction of HER2 testing for upper gastrointentinal malignancies has emphasized the need for performing and interpreting slide-based assays in a manner unique to these specimens and not to apply the breast cancer testing protocols to esophageal and gastric adenocarcinomas.

  2. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers

    PubMed Central

    Ghosh, Ritwik; Narasanna, Archana; Wang, Shizhen Emily; Liu, Shuying; Chakrabarty, Anindita; Balko, Justin M.; González-Angulo, Ana María; Mills, Gordon B.; Penuel, Elicia; Winslow, John; Sperinde, Jeff; Dua, Rajiv; Pidaparthi, Sailaja; Mukherjee, Ali; Leitzel, Kim; Kostler, Wolfgang J.; Lipton, Allan; Bates, Michael; Arteaga, Carlos L.

    2011-01-01

    In breast cancer cells with HER2 gene amplification, HER2 receptors exist on the cell surface as monomers, homodimers and heterodimers with EGFR/HER3. The therapeutic antibody trastuzumab, an approved therapy for HER2+ breast cancer, cannot block ligand-induced HER2 heterodimers, suggesting it cannot effectively inhibit HER2 signaling. Hence, HER2 oligomeric states may predict the odds of a clinical response to trastuzumab in HER2-driven tumors. To test this hypothesis, we generated non-transformed human MCF10A mammary epithelial cells stably expressing a chimeric HER2-FKBP molecule that could be conditionally induced to homodimerize by adding the FKBP ligand AP1510, or instead induced to heterodimerize with EGFR or HER3 by adding the heterodimer ligands EGF/TGFα or heregulin. AP1510, EGF, and heregulin each induced growth of MCF10A cells expressing HER2-FKBP. As expected, trastuzumab inhibited homodimer-mediated but not heterodimer-mediated cell growth. In contrast, the HER2 antibody pertuzumab, which blocks HER2 heterodimerization, inhibited growth induced by heregulin but not AP1510. Lastly, HER2/EGFR tyrosine kinase inhibitor lapatinib blocked both homodimer- and heterodimer-induced growth. AP1510 triggered phosphorylation of Erk1/2 but not AKT, whereas trastuzumab inhibited AP1510-induced Erk1/2 phosphorylation and Shc-HER2 homodimer binding, but not TGFα-induced AKT phosphorylation. Consistent with these observations, high levels of HER2 homodimers correlated with longer time to progression following trastuzumab therapy in a cohort of HER2-overexpressing patients. Together, our findings corroborate the hypothesis that HER2 oligomeric states regulate HER2 signaling, also arguing that trastuzumab sensitivity of homodimers reflects an inability to activate the PI3K/AKT pathway. One of the most important clinical implications of our results is that high levels of HER2 homodimers may predict a positive response to trastuzumab. PMID:21324925

  3. Prolonged Response to Trastuzumab in a Patient With HER2-Nonamplified Breast Cancer With Elevated HER2 Dimerization Harboring an ERBB2 S310F Mutation.

    PubMed

    Chumsri, Saranya; Weidler, Jodi; Ali, Siraj; Balasubramanian, Sohail; Wallweber, Gerald; DeFazio-Eli, Lisa; Chenna, Ahmed; Huang, Weidong; DeRidder, Angela; Goicocheal, Lindsay; Perez, Edith A

    2015-09-01

    In the current genomic era, increasing evidence demonstrates that approximately 2% of HER2-negative breast cancers, by current standard testings, harbor activating mutations of ERBB2. However, whether patients with HER2-negative breast cancer with activating mutations of ERBB2 also experience response to anti-HER2 therapies remains unclear. This case report describes a patient with HER2-nonamplified heavily pretreated breast cancer who experienced prolonged response to trastuzumab in combination with pertuzumab and fulvestrant. Further molecular analysis demonstrated that her tumors had an elevated HER2 dimerization that corresponded to ERBB2 S310F mutation. Located in the extracellular domain of the HER2 protein, this mutation was reported to promote noncovalent dimerization that results in the activation of the downstream signaling pathways. This case highlights the fact that HER2-targeted therapy may be valuable in patients harboring an ERBB2 S310F mutation. Copyright © 2015 by the National Comprehensive Cancer Network.

  4. DNA vaccines targeting the encoded antigens to dendritic cells induce potent antitumor immunity in mice.

    PubMed

    Cao, Jun; Jin, Yiqi; Li, Wei; Zhang, Bin; He, Yang; Liu, Hongqiang; Xia, Ning; Wei, Huafeng; Yan, Jian

    2013-08-14

    Although DNA vaccine holds a great potential for cancer immunotherapy, effective long-lasting antitumoral immunity sufficient to induce durable responses in cancer patients remains to be achieved. Considering the pivotal role of dendritic cells (DC) in the antigen processing and presentation, we prepared DC-targeting DNA vaccines by fusing tumor-associated antigen HER2/neu ectodomain to single chain antibody fragment (scFv) from NLDC-145 antibody specific for DC-restricted surface molecule DEC-205 (scFvNLDC-145), and explored its antitumoral efficacy and underlying mechanisms in mouse breast cancer models. In vivo targeting assay demonstrated that scFvNLDC-145 specifically delivered DNA vaccine-encoded antigen to DC. Compared with untargeted HER2/neu DNA vaccines, vaccination with scFvNLDC-145-HER2/neu markedly promoted the HER2/neu-specific cellular and humoral immune responses with long-lasting immune memory, resulting in effective protection against challenge of HER2/neu-positive D2F2/E2 breast tumor while ineffective in parental HER2/neu-negative D2F2 breast tumor. More importantly, in combination with temporary depletion of regulatory T cells (Treg) by low-dose cyclophosphamide, vaccination with scFvNLDC-145-HER2/neu induced the regression of established D2F2/E2 breast tumor and significantly retarded the development of spontaneous mammary carcinomas in transgenic BALB-neuT mice. Our findings demonstrate that DC-targeted DNA vaccines for in vivo direct delivery of tumor antigens to DC could induce potent antigen-specific cellular and humoral immune responses and, if additional combination with systemic Treg depletion, was able to elicit an impressively therapeutic antitumoral activity, providing a rationale for further development of this approach for cancer treatment.

  5. Her2 Ile655Val polymorphism and its association with breast cancer risk: an updated meta-analysis of case-control studies.

    PubMed

    Krishna, B Madhu; Chaudhary, Sanjib; Panda, Aditya K; Mishra, Dipti Ranjan; Mishra, Sandip K

    2018-05-09

    Breast cancer (BC) is one of the most common types of cancer in women worldwide. Several factors including genetic and environmental have been linked with susceptibility to development of BC. Her2 is a transmembrane protein with tyrosine kinase activity, overexpressed in several cancers including BC. Various studies in different populations have shown association of Her2 variants with susceptibility to BC, however these results were inconsistent, inconclusive and controversial. To obtain a common conclusive finding, we performed meta-analysis of 35 case-control studies reported earlier including 19, 220 cases and 22, 306 controls. We observed significant association of Her2 Ile 655 Val polymorphism with susceptibility to development of breast cancer (Overall allele Val vs Ile: OR = 1.130, 95% CI = 1.051-1.216, p = 0.001; Ile-Val vs Ile-Ile: OR = 1.100, 95% CI = 1.016-1.192, p = 0.019; Val-Val+Ile-Val vs Ile-Ile: OR = 1.127, 95% CI = 1.038-1.223, p = 0.004). Subgroup analysis indicated a significant association with susceptibility to breast cancer in African and Asian populations. However, such association was not observed in other ethnic groups. Our findings suggested that Her2 Ile 655 Val polymorphism is associated with breast cancer risk in overall, Asian and African populations, and can be used as diagnostic marker for BC.

  6. Profiling the HER3/PI3K Pathway in Breast Tumors Using Proximity-Directed Assays Identifies Correlations between Protein Complexes and Phosphoproteins

    PubMed Central

    Mukherjee, Ali; Badal, Youssouf; Nguyen, Xuan-Thao; Miller, Johanna; Chenna, Ahmed; Tahir, Hasan; Newton, Alicia; Parry, Gordon; Williams, Stephen

    2011-01-01

    Background The identification of patients for targeted antineoplastic therapies requires accurate measurement of therapeutic targets and associated signaling complexes. HER3 signaling through heterodimerization is an important growth-promoting mechanism in several tumor types and may be a principal resistance mechanism by which EGFR and HER2 expressing tumors elude targeted therapies. Current methods that can study these interactions are inadequate for formalin-fixed, paraffin-embedded (FFPE) tumor samples. Methodology and Principal Findings Herein, we describe a panel of proximity-directed assays capable of measuring protein-interactions and phosphorylation in FFPE samples in the HER3/PI3K/Akt pathway and examine the capability of these assays to inform on the functional state of the pathway. We used FFPE breast cancer cell line and tumor models for this study. In breast cancer cell lines we observe both ligand-dependent and independent activation of the pathway and strong correlations between measured activation of key analytes. When selected cell lines are treated with HER2 inhibitors, we not only observe the expected molecular effects based on mechanism of action knowledge, but also novel effects of HER2 inhibition on key targets in the HER receptor pathway. Significantly, in a xenograft model of delayed tumor fixation, HER3 phosphorylation is unstable, while alternate measures of pathway activation, such as formation of the HER3PI3K complex is preserved. Measurements in breast tumor samples showed correlations between HER3 phosphorylation and receptor interactions, obviating the need to use phosphorylation as a surrogate for HER3 activation. Significance This assay system is capable of quantitatively measuring therapeutically relevant responses and enables molecular profiling of receptor networks in both preclinical and tumor models. PMID:21297994

  7. Polymeric micelles as a diagnostic tool for image-guided drug delivery and radiotherapy of HER2 overexpressing breast cancer

    NASA Astrophysics Data System (ADS)

    Hoang, Nu Bryan

    Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to microvessel density. Ultimately, the 111In-micelles could be used for such diverse applications as detection of malignancies, molecular characterization of tumors, improved therapy guidance and targeted anti-cancer treatment.

  8. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    PubMed Central

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  9. Expression of p27 and c-Myc by immunohistochemistry in breast ductal cancers in African American women.

    PubMed

    Khan, Farhan; Ricks-Santi, Luisel J; Zafar, Rabia; Kanaan, Yasmine; Naab, Tammey

    2018-06-01

    Proteins p27 and c-Myc are both key players in the cell cycle. While p27, a tumor suppressor, inhibits progression from G1 to S phase, c-Myc, a proto-oncogene, plays a key role in cell cycle regulation and apoptosis. The objective of our study was to determine the association between expression of c-Myc and the loss of p27 by immunohistochemistry (IHC) in the four major subtypes of breast cancer (BC) (Luminal A, Luminal B, HER2, and Triple Negative) and with other clinicopathological factors in a population of 202 African-American (AA) women. Tissue microarrays (TMAs) were constructed from FFPE tumor blocks from primary ductal breast carcinomas in 202 AA women. Five micrometer sections were stained with a mouse monoclonal antibody against p27 and a rabbit monoclonal antibody against c-Myc. The sections were evaluated for intensity of nuclear reactivity (1-3) and percentage of reactive cells; an H-score was derived from the product of these measurements. Loss of p27 expression and c-Myc overexpression showed statistical significance with ER negative (p < 0.0001), PR negative (p < 0.0001), triple negative (TN) (p < 0.0001), grade 3 (p = 0.038), and overall survival (p = 0.047). There was no statistical significant association between c-Myc expression/p27 loss and luminal A/B and Her2 overexpressing subtypes. In our study, a statistically significant association between c-Myc expression and p27 loss and the triple negative breast cancers (TNBC) was found in AA women. A recent study found that constitutive c-Myc expression is associated with inactivation of the axin 1 tumor suppressor gene. p27 inhibits cyclin dependent kinase2/cyclin A/E complex formation. Axin 1 and CDK inhibitors may represent possible therapeutic targets for TNBC. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  11. Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts

    PubMed Central

    Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A

    2017-01-01

    Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials. PMID:28404880

  12. Serotonergic system antagonists target breast tumor initiating cells and synergize with chemotherapy to shrink human breast tumor xenografts.

    PubMed

    Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A

    2017-05-09

    Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials.

  13. Is red cell distribution width a novel biomarker of breast cancer activity? Data from a pilot study.

    PubMed

    Seretis, Charalampos; Seretis, Fotios; Lagoudianakis, Emmanouil; Gemenetzis, George; Salemis, Nikolaos S

    2013-04-01

    Red cell distribution width (RDW) is a parameter of the standard full blood count tests, measuring the size variability of erythrocytes. Recently, its elevation has been proven to reliably reflect the extent systematic inflammation, mainly in cardiometabolic diseases. Up to date, its association with solid malignancies has been scarcely investigated. We performed a retrospective study, in order to examine if RDW values comparing elevation is correlated with the histopathological parameters of breast cancer (tumor size, grade, lymphatic spread, overexpression of hormonal receptors and HER2 protein), as well as to assess the existence of any differences in RDW comparing two age-matched groups of patients with benign and malignant breast lesions respectively. RDW was significantly higher in patients with breast cancer, when compared to the enrolled patients with fibroadenomas. Moreover, in the breast cancer group, RDW elevation was significantly correlated with larger primary tumors, higher number of infiltrated axillary lymph nodes and HER2 overexpression, while it was inversely associated with the tumor grade. Our pilot study demonstrated tha Red cell distribution width may be a novel biomarker of the activity of breast cancer. Although our preliminary findings need to be evaluated by studies with larger samples of patients, based on commonly accepted pathophysiological principles, we presume that they will be applicable not only in breast cancer, but also in other types of solid cancers, providing a simple and cost-effective biomarker of cancer surveillance.

  14. Is Red Cell Distribution Width a Novel Biomarker of Breast Cancer Activity? Data From a Pilot Study

    PubMed Central

    Seretis, Charalampos; Seretis, Fotios; Lagoudianakis, Emmanouil; Gemenetzis, George; Salemis, Nikolaos S.

    2013-01-01

    Background Red cell distribution width (RDW) is a parameter of the standard full blood count tests, measuring the size variability of erythrocytes. Recently, its elevation has been proven to reliably reflect the extent systematic inflammation, mainly in cardiometabolic diseases. Up to date, its association with solid malignancies has been scarcely investigated. Methods We performed a retrospective study, in order to examine if RDW values comparing elevation is correlated with the histopathological parameters of breast cancer (tumor size, grade, lymphatic spread, overexpression of hormonal receptors and HER2 protein), as well as to assess the existence of any differences in RDW comparing two age-matched groups of patients with benign and malignant breast lesions respectively. Results RDW was significantly higher in patients with breast cancer, when compared to the enrolled patients with fibroadenomas. Moreover, in the breast cancer group, RDW elevation was significantly correlated with larger primary tumors, higher number of infiltrated axillary lymph nodes and HER2 overexpression, while it was inversely associated with the tumor grade. Conclusions Our pilot study demonstrated tha Red cell distribution width may be a novel biomarker of the activity of breast cancer. Although our preliminary findings need to be evaluated by studies with larger samples of patients, based on commonly accepted pathophysiological principles, we presume that they will be applicable not only in breast cancer, but also in other types of solid cancers, providing a simple and cost-effective biomarker of cancer surveillance. PMID:23518817

  15. Evaluation of HER-2/neu status in breast cancer specimens using immunohistochemistry (IHC) & fluorescence in-situ hybridization (FISH) assay

    PubMed Central

    Goud, Kalal Iravathy; Dayakar, Seetha; Vijayalaxmi, Kolanupaka; Babu, Saidam Jangu; Vijay, Anand Reddy P.

    2012-01-01

    Background & objectives: Fluorescence in situ hybridization (FISH) is increasingly being recognized as the most accurate and predictive test for HER2/neu gene amplification and response to therapy in breast cancer. In the present study we investigated HER-2/neu gene amplification by FISH in breast carcinoma tissue specimens and compared the results with that of immunohistochemical (IHC) analysis. Methods: A total of 90 breast carcinoma tissue samples were used for immunohistochemical (IHC) and FISH analysis. IHC was performed by using mouse monoclonal antibody to the intracellular domain of HER-2/neu protein. Each slide was scored in a blinded fashion by two pathologists according to the manufacturer's recommended criteria. FISH analysis was performed on paraffin embedded breast tumour tissue sections. The polysomy for centromere 17 (Spec green signal) was read as green signals less than 4 as moderate polysomy, and more than 4 as highly polysomy. Results: Thirty of the 90 patients had negative results by IHC and FISH. Of the 28 patients with the score of 2+ by IHC, 20 were FISH positive for HER-2/neu gene amplification, three were FISH negative and five patients showed equivocal (1.8-2.2) results by FISH. These five cases were retested for IHC and FISH on different paraffin embedded tissue blocks, and all five were found positive for HER-2/neu gene amplification. Twenty five patients with the score of 3+ by IHC were FISH positive for HER-2/neu gene amplification (>2.2). Seven cases with the score of 3+ by IHC were FISH negative for HER-2/neu gene amplification (>2.2), and showed polysomy of chromosome number 17 high polysomy > 4. Interpretation & conclusions: Our results indicated that HER-2/neu status by FISH should be performed in all cases of breast tumour with a 2+ score by IHC. Cases demonstrating a 3+ score by IHC may be subjected to FISH to rule out polysomy of chromosome 17 which could be falsely interpreted as HER-2/neu overexpression by IHC analysis. There is also a need for establishing a clinically validated cut-off value for HER-2/neu FISH amplification against IHC which may be further compared and calibrated. PMID:22561616

  16. Chemotherapy Less Toxic to the Heart May Be Option for Some Women with HER2-Positive Breast Cancer

    Cancer.gov

    A nonanthracycline-containing chemotherapy regimen combined with the targeted therapy trastuzumab may be an option for some women with HER2-positive breast cancer, according to results from the BCIRG-006 trial.

  17. HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor.

    PubMed

    Ben-Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M; Ma, Cynthia X; Ellis, Matthew J

    2015-09-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2-targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. This case report describes a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second-generation HER2/EGFR tyrosine kinase inhibitor neratinib resulted in partial response and dramatic improvement in the patient's functional status. This partial response lasted 11 months, and when the patient's cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2-amplified breast cancer after disease progression. This case represents the first report, to our knowledge, of successful single-agent treatment of HER2-mutated breast cancer. Two clinical trials of neratinib for HER2-mutated metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancers, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2-mutated solid tumors is warranted. Copyright © 2015 by the National Comprehensive Cancer Network.

  18. Profile of neratinib and its potential in the treatment of breast cancer

    PubMed Central

    Feldinger, Katharina; Kong, Anthony

    2015-01-01

    The HER (ErbB) receptor tyrosine kinase receptors are implicated in many cancers and several anti-HER treatments are now approved. In recent years, a new group of compounds that bind irreversibly to the adenosine triphosphate binding pocket of HER receptors have been developed. One of these compounds, neratinib, has passed preclinical phases and is currently undergoing various clinical trials. This manuscript reviews the preclinical as well as clinical data on neratinib. As a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib has been shown to be effective against HER2-overexpressing or mutant tumors in vitro and in vivo. Neratinib is currently being investigated in various clinical trials in breast cancers and other solid tumors, including those with HER2 mutation. Earlier studies have already shown promising clinical activity for neratinib. However, more translational research is required to investigate biomarkers that could help to predict response and resistance for selection of appropriate patients for treatment with neratinib, either as monotherapy or in combination with other drug(s). PMID:26089701

  19. Profile of neratinib and its potential in the treatment of breast cancer.

    PubMed

    Feldinger, Katharina; Kong, Anthony

    2015-01-01

    The HER (ErbB) receptor tyrosine kinase receptors are implicated in many cancers and several anti-HER treatments are now approved. In recent years, a new group of compounds that bind irreversibly to the adenosine triphosphate binding pocket of HER receptors have been developed. One of these compounds, neratinib, has passed preclinical phases and is currently undergoing various clinical trials. This manuscript reviews the preclinical as well as clinical data on neratinib. As a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib has been shown to be effective against HER2-overexpressing or mutant tumors in vitro and in vivo. Neratinib is currently being investigated in various clinical trials in breast cancers and other solid tumors, including those with HER2 mutation. Earlier studies have already shown promising clinical activity for neratinib. However, more translational research is required to investigate biomarkers that could help to predict response and resistance for selection of appropriate patients for treatment with neratinib, either as monotherapy or in combination with other drug(s).

  20. Effect of Lapatinib on the Outgrowth of Metastatic Breast Cancer Cells to the Brain

    PubMed Central

    Gril, Brunilde; Palmieri, Diane; Bronder, Julie L.; Herring, Jeanne M.; Vega-Valle, Eleazar; Feigenbaum, Lionel; Liewehr, David J.; Steinberg, Seth M.; Merino, Maria J.; Rubin, Stephen D.

    2008-01-01

    Background The brain is increasingly being recognized as a sanctuary site for metastatic tumor cells in women with HER2-overexpressing breast cancer who receive trastuzumab therapy. There are no approved or widely accepted treatments for brain metastases other than steroids, cranial radiotherapy, and surgical resection. We examined the efficacy of lapatinib, an inhibitor of the epidermal growth factor receptor (EGFR) and HER2 kinases, for preventing the outgrowth of breast cancer cells in the brain in a mouse xenograft model of brain metastasis. Methods EGFR-overexpressing MDA-MB-231-BR (231-BR) brain-seeking breast cancer cells were transfected with an expression vector that contained or lacked the HER2 cDNA and used to examine the effect of lapatinib on the activation (ie, phosphorylation) of cell signaling proteins by immunoblotting, on cell growth by the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and on cell migration using a Boyden chamber assay. The outgrowth of large (ie, >50 μm2) and micrometastases was counted in brain sections from nude mice that had been injected into the left cardiac ventricle with 231-BR cells and, beginning 5 days later, treated by oral gavage with lapatinib or vehicle (n = 22–26 mice per treatment group). All statistical tests were two-sided. Results In vitro, lapatinib inhibited the phosphorylation of EGFR, HER2, and downstream signaling proteins; cell proliferation; and migration in 231-BR cells (both with and without HER2). Among mice injected with 231-BR-vector cells, those treated with 100 mg lapatinib/kg body weight had 54% fewer large metastases 24 days after starting treatment than those treated with vehicle (mean number of large metastases per brain section: 1.56 vs 3.36, difference = 1.80, 95% confidence interval [CI] = 0.92 to 2.68, P < .001), whereas treatment with 30 mg lapatinib/kg body weight had no effect. Among mice injected with 231-BR-HER2 cells, those treated with either dose of lapatinib had 50%–53% fewer large metastases than those treated with vehicle (mean number of large metastases per brain section, 30 mg/kg vs vehicle: 3.21 vs 6.83, difference = 3.62, 95% CI = 2.30 to 4.94, P < .001; 100 mg/kg vs vehicle: 3.44 vs 6.83, difference = 3.39, 95% CI = 2.08 to 4.70, P < .001). Immunohistochemical analysis revealed reduced phosphorylation of HER2 in 231-BR-HER2 cell–derived brain metastases from mice treated with the higher dose of lapatinib compared with 231-BR-HER2 cell–derived brain metastases from vehicle-treated mice (P < .001). Conclusions Lapatinib is the first HER2-directed drug to be validated in a preclinical model for activity against brain metastases of breast cancer. PMID:18664652

  1. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain.

    PubMed

    Gril, Brunilde; Palmieri, Diane; Bronder, Julie L; Herring, Jeanne M; Vega-Valle, Eleazar; Feigenbaum, Lionel; Liewehr, David J; Steinberg, Seth M; Merino, Maria J; Rubin, Stephen D; Steeg, Patricia S

    2008-08-06

    The brain is increasingly being recognized as a sanctuary site for metastatic tumor cells in women with HER2-overexpressing breast cancer who receive trastuzumab therapy. There are no approved or widely accepted treatments for brain metastases other than steroids, cranial radiotherapy, and surgical resection. We examined the efficacy of lapatinib, an inhibitor of the epidermal growth factor receptor (EGFR) and HER2 kinases, for preventing the outgrowth of breast cancer cells in the brain in a mouse xenograft model of brain metastasis. EGFR-overexpressing MDA-MB-231-BR (231-BR) brain-seeking breast cancer cells were transfected with an expression vector that contained or lacked the HER2 cDNA and used to examine the effect of lapatinib on the activation (ie, phosphorylation) of cell signaling proteins by immunoblotting, on cell growth by the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and on cell migration using a Boyden chamber assay. The outgrowth of large (ie, >50 microm(2)) and micrometastases was counted in brain sections from nude mice that had been injected into the left cardiac ventricle with 231-BR cells and, beginning 5 days later, treated by oral gavage with lapatinib or vehicle (n = 22-26 mice per treatment group). All statistical tests were two-sided. In vitro, lapatinib inhibited the phosphorylation of EGFR, HER2, and downstream signaling proteins; cell proliferation; and migration in 231-BR cells (both with and without HER2). Among mice injected with 231-BR-vector cells, those treated with 100 mg lapatinib/kg body weight had 54% fewer large metastases 24 days after starting treatment than those treated with vehicle (mean number of large metastases per brain section: 1.56 vs 3.36, difference = 1.80, 95% confidence interval [CI] = 0.92 to 2.68, P < .001), whereas treatment with 30 mg lapatinib/kg body weight had no effect. Among mice injected with 231-BR-HER2 cells, those treated with either dose of lapatinib had 50%-53% fewer large metastases than those treated with vehicle (mean number of large metastases per brain section, 30 mg/kg vs vehicle: 3.21 vs 6.83, difference = 3.62, 95% CI = 2.30 to 4.94, P < .001; 100 mg/kg vs vehicle: 3.44 vs 6.83, difference = 3.39, 95% CI = 2.08 to 4.70, P < .001). Immunohistochemical analysis revealed reduced phosphorylation of HER2 in 231-BR-HER2 cell-derived brain metastases from mice treated with the higher dose of lapatinib compared with 231-BR-HER2 cell-derived brain metastases from vehicle-treated mice (P < .001). Lapatinib is the first HER2-directed drug to be validated in a preclinical model for activity against brain metastases of breast cancer.

  2. First-in-Human Human Epidermal Growth Factor Receptor 2-Targeted Imaging Using 89Zr-Pertuzumab PET/CT: Dosimetry and Clinical Application in Patients with Breast Cancer.

    PubMed

    Ulaner, Gary A; Lyashchenko, Serge K; Riedl, Christopher; Ruan, Shutian; Zanzonico, Pat B; Lake, Diana; Jhaveri, Komal; Zeglis, Brian; Lewis, Jason S; O'Donoghue, Joseph A

    2018-06-01

    In what we believe to be a first-in-human study, we evaluated the safety and dosimetry of 89 Zr-pertuzumab PET/CT for human epidermal growth factor receptor 2 (HER2)-targeted imaging in patients with HER2-positive breast cancer. Methods: Patients with HER2-positive breast cancer and evidence of distant metastases were enrolled in an institutional review board-approved prospective clinical trial. Pertuzumab was conjugated with deferoxamine and radiolabeled with 89 Zr. Patients underwent PET/CT with 74 MBq of 89 Zr-pertuzumab in a total antibody mass of 20-50 mg of pertuzumab. PET/CT, whole-body probe counts, and blood drawing were performed over 8 d to assess pharmacokinetics, biodistribution, and dosimetry. PET/CT images were evaluated for the ability to visualize HER2-positive metastases. Results: Six patients with HER2-positive metastatic breast cancer were enrolled and administered 89 Zr-pertuzumab. No toxicities occurred. Dosimetry estimates from OLINDA demonstrated that the organs receiving the highest doses (mean ± SD) were the liver (1.75 ± 0.21 mGy/MBq), the kidneys (1.27 ± 0.28 mGy/MBq), and the heart wall (1.22 ± 0.16 mGy/MBq), with an average effective dose of 0.54 ± 0.07 mSv/MBq. PET/CT demonstrated optimal imaging 5-8 d after administration. 89 Zr-pertuzumab was able to image multiple sites of malignancy and suggested that they were HER2-positive. In 2 patients with both known HER2-positive and HER2-negative primary breast cancers and brain metastases, 89 Zr-pertuzumab PET/CT suggested that the brain metastases were HER2-positive. In 1 of the 2 patients, subsequent resection of a brain metastasis proved HER2-positive disease, confirming that the 89 Zr-pertuzumab avidity was a true-positive result for HER2-positive malignancy. Conclusion: This first-in-human study demonstrated safety, dosimetry, biodistribution, and successful HER2-targeted imaging with 89 Zr-pertuzumab PET/CT. Potential clinical applications include assessment of the HER2 status of lesions that may not be accessible to biopsy and assessment of HER2 heterogeneity. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  3. miR-141-Mediated Regulation of Brain Metastasis From Breast Cancer

    PubMed Central

    Lacerda, Lara; Anfossi, Simone; Diagaradjane, Parmeswaran; Chu, Khoi; Bambhroliya, Arvind; Huo, Lei; Wei, Caimiao; Larson, Richard A.; Wolfe, Adam R.; Xu, Wei; Smith, Daniel L.; Li, Li; Ivan, Cristina; Allen, Pamela K.; Wu, Wenhui; Calin, George A.; Krishnamurthy, Savitri; Zhang, Xiang H.; Buchholz, Thomas A.; Ueno, Naoto T.; Reuben, James M.

    2016-01-01

    Background: Brain metastasis poses a major treatment challenge and remains an unmet clinical need. Finding novel therapies to prevent and treat brain metastases requires an understanding of the biology and molecular basis of the process, which currently is constrained by a dearth of experimental models and specific therapeutic targets. Methods: Green Fluorescent Protein (GFP)-labeled breast cancer cells were injected via tail vein into SCID/Beige mice (n = 10-15 per group), and metastatic colonization to the brain and lung was evaluated eight weeks later. Knockdown and overexpression of miR-141 were achieved with lentiviral vectors. Serum levels of miR-141 were measured from breast cancer patients (n = 105), and the association with clinical outcome was determined by Kaplan-Meier method. All statistical tests were two-sided. Results: Novel brain metastasis mouse models were developed via tail vein injection of parental triple-negative and human epidermal growth factor receptor 2 (HER2)–overexpressing inflammatory breast cancer lines. Knockdown of miR-141 inhibited metastatic colonization to brain (miR-141 knockdown vs control: SUM149, 0/8 mice vs 6/9 mice, P = .009; MDA-IBC3, 2/14 mice vs 10/15 mice, P = .007). Ectopic expression of miR-141 in nonexpressing MDA-MB-231 enhanced brain metastatic colonization (5/9 mice vs 0/10 mice, P = .02). Furthermore, high miR-141 serum levels were associated with shorter brain metastasis–free survival (P = .04) and were an independent predictor of progression-free survival (hazard ratio [HR] = 4.77, 95% confidence interval [CI] = 2.61 to 8.71, P < .001) and overall survival (HR = 7.22, 95% CI = 3.46 to 15.06, P < .001). Conclusions: Our study suggests miR-141 is a regulator of brain metastasis from breast cancer and should be examined as a biomarker and potential target to prevent and treat brain metastases. PMID:27075851

  4. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening.

    PubMed

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong

    2016-01-01

    Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential "new use" drugs. Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential "new use" drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2, FDA: Food and Drug Administration, PDB: Protein Database Bank, RMSDs: Root mean square deviations, SPC: Single point charge, PME: Particle mesh Ewald, NVT: Constant volume, NPT: Constant pressure, RMSF: Root-mean-square fluctuation.

  5. HER2 expression identifies dynamic functional states within circulating breast cancer cells.

    PubMed

    Jordan, Nicole Vincent; Bardia, Aditya; Wittner, Ben S; Benes, Cyril; Ligorio, Matteo; Zheng, Yu; Yu, Min; Sundaresan, Tilak K; Licausi, Joseph A; Desai, Rushil; O'Keefe, Ryan M; Ebright, Richard Y; Boukhali, Myriam; Sil, Srinjoy; Onozato, Maristela L; Iafrate, Anthony J; Kapur, Ravi; Sgroi, Dennis; Ting, David T; Toner, Mehmet; Ramaswamy, Sridhar; Haas, Wilhelm; Maheswaran, Shyamala; Haber, Daniel A

    2016-09-01

    Circulating tumour cells in women with advanced oestrogen-receptor (ER)-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer acquire a HER2-positive subpopulation after multiple courses of therapy. In contrast to HER2-amplified primary breast cancer, which is highly sensitive to HER2-targeted therapy, the clinical significance of acquired HER2 heterogeneity during the evolution of metastatic breast cancer is unknown. Here we analyse circulating tumour cells from 19 women with ER + /HER2 - primary tumours, 84% of whom had acquired circulating tumour cells expressing HER2. Cultured circulating tumour cells maintain discrete HER2 + and HER2 - subpopulations: HER2 + circulating tumour cells are more proliferative but not addicted to HER2, consistent with activation of multiple signalling pathways; HER2 - circulating tumour cells show activation of Notch and DNA damage pathways, exhibiting resistance to cytotoxic chemotherapy, but sensitivity to Notch inhibition. HER2 + and HER2 - circulating tumour cells interconvert spontaneously, with cells of one phenotype producing daughters of the opposite within four cell doublings. Although HER2 + and HER2 - circulating tumour cells have comparable tumour initiating potential, differential proliferation favours the HER2 + state, while oxidative stress or cytotoxic chemotherapy enhances transition to the HER2 - phenotype. Simultaneous treatment with paclitaxel and Notch inhibitors achieves sustained suppression of tumorigenesis in orthotopic circulating tumour cell-derived tumour models. Together, these results point to distinct yet interconverting phenotypes within patient-derived circulating tumour cells, contributing to progression of breast cancer and acquisition of drug resistance.

  6. Enhancement of the p27Kip1-mediated antiproliferative effect of trastuzumab (Herceptin) on HER2-overexpressing tumor cells.

    PubMed

    Marches, Radu; Uhr, Jonathan W

    2004-11-10

    The oncogenic activity of the overexpressed HER2 tyrosine kinase receptor requires its localization in the plasma membrane. The antitumor effect of anti-HER2 antibodies (Abs) is mainly dependent on receptor downregulation and comprises p27Kip1-mediated G1 cell cycle arrest. However, one major limitation of anti-HER2 therapy is the reversibility of tumor growth inhibition after discontinuation of treatment caused by the mitogenic signaling associated with cell surface receptor re-expression. We found that the level of p27Kip1 upregulation, inhibition of Cdk2 activity and magnitude of G1 arrest induced by the humanized Ab trastuzumab (Herceptin, HCT) on BT474 and SKBr3 HER2-overexpressing breast cancer cells correlates with the level of cell surface receptor. Thus, continuous exposure of cells to HCT for 72 hr results in downregulation of the cell surface receptor and a concurrent increase in the level of p27Kip1 protein. Discontinuation of Ab exposure after the first 8 hr results in failure to upregulate p27Kip1 and arrest of cell cycle progression. We show that the lysosomotropic amine chloroquine (CQ) augments receptor internalization in HER2-overexpressing cells either pretreated or continuously treated with HCT and leads to an increased and sustained inhibitory effect. The enhanced CQ-dependent loss of functional HER2 from the cell surface resulted in sustained inactivation of the serine/threonine kinase Akt, upregulation of p27Kip1 protein and inhibition of cyclin E/Cdk2 activity. Potentiation of the inhibitory effect of HCT by CQ was directly related to loss of HER2 from the plasma membrane since prevention of Ab-mediated receptor endocytosis by engagement of the receptor with immobilized HCT abrogated the effect of CQ.

  7. Impact of breast cancer subtypes and patterns of metastasis on outcome.

    PubMed

    Kast, Karin; Link, Theresa; Friedrich, Katrin; Petzold, Andrea; Niedostatek, Antje; Schoffer, Olaf; Werner, Carmen; Klug, Stefanie J; Werner, Andreas; Gatzweiler, Axel; Richter, Barbara; Baretton, Gustavo; Wimberger, Pauline

    2015-04-01

    Clinical outcome of patients with stage IV breast cancer is dependent on tumor biology, extent, and localization of metastases. Routine imaging diagnostics for distant metastasis is not recommended by the national guidelines for breast cancer follow-up. In this study, we evaluated different patterns of metastases of cancer subtypes in order to generate hypotheses on individualization of follow-up after breast cancer in the adjuvant setting. Patients of the Regional Breast Cancer Center Dresden diagnosed within the years 2006-2011 were classified into the five intrinsic subtypes luminal A (ER+, Her2-, G1/2), luminal B/Her2 negative (ER+, Her2-, G3), triple positive (ER+, PR+, Her2+), Her2-enriched (ER-, Her2+), and triple negative (ER-, PR-, Her2-) and with a median follow-up of 45 months. Tumor stage at time of first diagnosis of breast cancer as well as time and site of metastasis at first diagnosis of distant metastatic disease was analyzed. Tumor specimen of 2284 female patients with primary breast cancer was classified into five subtypes. Distant recurrence-free survival at 3 years was most unfavorable in Her2-enriched (66.8 %), triple negative (75.9 %), and triple-positive breast cancer (81.7 %). The same subtypes most frequently presented with visceral metastases only at first presentation: Her2-enriched 46.9 %, triple negative 45.5 %, and triple-positive breast cancer 37.5 %. Longest median survival of 2.3 years was seen in luminal A and in Her2-enriched metastatic disease, respectively. Median survival was significantly better in the luminal A, Her2-enriched, and triple-positive subtype compared to triple-negative breast cancer (p < 0.005). Differences in time to metastatic disease, first localization of metastases, and overall survival after diagnosis of metastatic disease were shown. Considering new targeted therapies and the option of surgery of oligometastases, screening for visceral metastases might be reasonable after diagnosis of Her2-positive subtypes.

  8. Clinical Practice Patterns and Cost-Effectiveness of HER2 Testing Strategies in Breast Cancer Patients

    PubMed Central

    Phillips, Kathryn A.; Marshall, Deborah A.; Haas, Jennifer S.; Elkin, Elena B.; Liang, Su-Ying; Hassett, Michael J.; Ferrusi, Ilia; Brock, Jane E.; Van Bebber, Stephanie L

    2009-01-01

    Background Testing technologies are increasingly used to target cancer therapies. Human epidermal growth factor receptor 2 (HER2) testing to target trastuzumab for patients with breast cancer provides insights into the evidence needed for emerging testing technologies. Methods We reviewed literature on HER2 test utilization and cost-effectiveness of HER2 testing for patients with breast cancer. We examined available evidence on: percentage of eligible patients tested for HER2; test methods used; concordance of test results between community and central/reference laboratories; use of trastuzumab by HER2 test result; and cost-effectiveness of testing strategies. Results Little evidence is available to determine whether all eligible patients are tested; how many are retested to confirm results; and how many with negative HER2 test results still receive trastuzumab. Studies suggest that up to 66% of eligible patients had no documentation of testing in claims records; up to 20% of patients receiving trastuzumab were not tested or had no documentation of a positive test; and 20% of HER2 results may be incorrect. Few cost-effectiveness analyses of trastuzumab explicitly considered the economic implications of various testing strategies. Conclusions There is little information about the actual use of HER2 testing in clinical practice, but evidence suggests important variations in testing practices and key gaps in knowledge exist. Given the increasing use of targeted therapies, it is critical to build an evidence base that supports informed decision-making on emerging testing technologies in cancer care. PMID:19753618

  9. Overexpression of HER-2 via immunohistochemistry in canine urinary bladder transitional cell carcinoma - A marker of malignancy and possible therapeutic target.

    PubMed

    Millanta, F; Impellizeri, J; McSherry, L; Rocchigiani, G; Aurisicchio, L; Lubas, G

    2018-06-01

    Transitional cell carcinoma (TCC) is the most commonly diagnosed neoplasm in the urinary bladder. Distant metastases to the regional lymph nodes, lungs, abdominal organs or bones are noted in up to 50% of dogs at time of death. Surgical excision is often not practical as TCC typically involve the trigone of the bladder and/or occurs multifocally throughout the bladder with field cancerization. Therapeutic approaches are very challenging and the requirement to evaluate alternative therapeutic protocols that may prolong survival times in dogs bearing these tumours is compelling. We assessed the immunohistochemical expression of HER-2 in 23 cases of canine TCCs of the urinary bladder and compare it with non-neoplastic urothelium in order to evaluate a rationale for targeted therapies and gene-based vaccines. HER-2 positivity was recorded in 13/23 (56%) neoplastic lesions. The receptor was significantly overexpressed in neoplastic than in non-neoplastic samples (P = .015). According to our preliminary results, it would be of interest to further evaluate the role of HER-2 in canine TCCs as a marker of malignancy and a therapeutic target for cancer vaccine and antibodies. Moreover, the significantly different overexpression of HER-2 in TCCs than in non-neoplastic urothelium further supports to investigate its role in the progression toward malignancy of non-neoplastic lesions. © 2017 John Wiley & Sons Ltd.

  10. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells.

    PubMed

    Ponnusamy, Moorthy P; Seshacharyulu, Parthasarathy; Vaz, Arokiapriyanka; Dey, Parama; Batra, Surinder K

    2011-04-26

    Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be helpful for MUC4-directed therapy for the ovarian cancer stem cell population.

  11. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells

    PubMed Central

    2011-01-01

    Background Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. Methods MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. Results MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. Conclusion These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be helpful for MUC4-directed therapy for the ovarian cancer stem cell population. PMID:21521521

  12. Design and development of PEGylated liposomal formulation of HER2 blocker Lapatinib for enhanced anticancer activity and diminshed cardiotoxicity.

    PubMed

    Shrivastava, Richa; Trivedi, Shruti; Singh, Pankaj Kumar; Asif, Mohammad; Chourasia, Manish Kumar; Khanna, Amit; Bhadauria, Smrati

    2018-06-13

    Breast cancer is most frequently diagnosed cancer and fifth leading cause of death in women. About 20-30% of all breast cancers overexpress HER2/neu receptors. Lapatinib is a dual tyrosin kinase inhibitor of EGFR and HER2. It exhibits its anticancer effect via blocking intracellular domain of HER2 receptor in breast cancer. Lapatinib belongs to class II of BSC classification due to its poor solubility restricting its clinical application. Due to presence of HER2 receptor on cardiomyocytes, it is associated with generation of cardiotoxicity. The present study was aimed to design a PEGylated liposomal formulation of Lapatinib and evaluate its anticancer potential. Lapatinib liposomes were prepared using lipid layer hydration method and its characterization was done by determining its particle size, zeta potential, entrapment efficiency and in vitro release profiling. The anti-tumor activity of PEGylated liposomal formulation was evaluated in xenografted tumor induced by MDA-MB-453 breast cancer cells in chick embryos. The anti-tumor effect of lapatinib was enhanced by its PEGylated liposomal preparation as it led to the reduction in tumor size to a greater extent compared to the embryos treated with free lapatinib. Flowcytometric analysis and immunofluroscence study using cleaved PARP antibody demonstrated the enhaced apoptotic potential of PEGylated liposomes of lapatonib. SGOT levels, marker for cardiotoxicity and hepatotoxicity, significantly decreased in serum of embryos treated with PEGylated liposmes of lapatinib compared to free drug treated embryos. Hence, the PEGylated liposomal formulation of lapatininb can be used as a therapeutic strategy against HER2 positive breast cancer either alone or in combination with conventional anticancer agents and hormonal therapies. Copyright © 2018. Published by Elsevier Inc.

  13. Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2.

    PubMed

    Tu, Min; Lu, Cheng; Lv, Nan; Wei, Jishu; Lu, Zipeng; Xi, Chunhua; Chen, Jianmin; Guo, Feng; Jiang, Kuirong; Li, Qiang; Wu, Junli; Song, Guoxin; Wang, Shui; Gao, Wentao; Miao, Yi

    2016-12-28

    Vasohibin 2 (VASH2) is an angiogenic factor and cancer-related protein that acts via paracrine mechanisms. Here, we investigated the angiogenic function and mechanism of action of VASH2 in 200 human breast cancer tissues by performing immunohistochemical staining, western blot, indirect sandwich enzyme-linked immunosorbent assay (ELISA), and a semi-quantitative sandwich-based antibody array. Breast cancer cells stably overexpressing VASH2 or with knocked-down VASH2 were established and used for in vivo and in vitro models. In human luminal tissue, but not in HER2-positive or basal-like breast cancer tissues, VASH2 was positively correlated with CD31-positive microvascular density, induced angiogenesis in xenograft tumors, and promoted human umbilical vein endothelial cell tube formation in vitro. VASH2 expression was absent in the concentrated conditioned medium collected from knocked-down VASH2 and VASH2-overexpressing luminal breast cancer cells. Further, VASH2 regulated the expression of fibroblast growth factor 2 (FGF2) in human luminal breast cancer cells, and the pro-angiogenic effect induced by VASH2 overexpression was blocked by FGF2 neutralization in vitro. Additionally, dual luciferase reporter assay and Chromatin immunoprecipitation analysis results showed that FGF2 promoter was transcriptionally activated by VASH2 via histone modifications. In conclusion, VASH2 expression is positively correlated with FGF2 expression and promotes angiogenesis in human luminal breast cancer by transcriptional activation of fibroblast growth factor 2 through non-paracrine mechanisms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Stimulating CTL Towards HER2/neu Overexpressing Breast Cancer

    DTIC Science & Technology

    1998-10-01

    296. 9. Jardetzky, T.S., W.S. Lane, R.A. Robinson, D.R. Madden, and D.C. Wiley, Identification of self peptides bound to purified HLA - B27 . Nature...neu (HN654-662) has been shown to bind to HLA -A2.1 and stimulate cytotoxic T lymphocytes (CTL) that lyse primary tumors from ovarian or breast cancer...demonstrating HN654-662 is an extremely poor HLA -A2.1 binding peptide. In a novel approach, we will make use of biophysical techniques that have recently

  15. Structural Model for the Interaction of a Designed Ankyrin Repeat Protein with the Human Epidermal Growth Factor Receptor 2

    PubMed Central

    Epa, V. Chandana; Dolezal, Olan; Doughty, Larissa; Xiao, Xiaowen; Jost, Christian; Plückthun, Andreas; Adams, Timothy E.

    2013-01-01

    Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2). HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84–1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions. PMID:23527120

  16. Development of a Targeted anti-HER2 scFv Chimeric Peptide for Gene Delivery into HER2-Positive Breast Cancer Cells.

    PubMed

    Cheraghi, Roya; Nazari, Mahboobeh; Alipour, Mohsen; Majidi, Asia; Hosseinkhani, Saman

    2016-12-30

    Chimeric polymers are known as suitable carriers for gene delivery. Certain properties are critical for a polymer to be used as a gene delivery vector. A new polymer was designed for the targeted delivery of genes into breast cancer cell lines, based on MPG peptide. It is composed of different functional domains, including HIV gp41, nuclear localization sequence of SV40 T-antigen, two C-terminus repeats of histone H1, and the scFv of anti-HER2 antibody. The results demonstrated that the vector can effectively condense plasmid DNA into nanoparticles with an average size of 250nm. Moreover, fusion of the scFv portion to the carrier brought about the specific recognition of HER2. Overall, the transfection efficiency of the vector demonstrated that it could deliver the desired gene into BT-474 HER2-positive breast cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Hormonally up-regulated neu-associated kinase: A novel target for breast cancer progression.

    PubMed

    Zambrano, Joelle N; Neely, Benjamin A; Yeh, Elizabeth S

    2017-05-01

    Hormonally up-regulated neu-associated Kinase (Hunk) is a protein kinase that was originally identified in the murine mammary gland and has been shown to be highly expressed in Human Epidermal Growth Factor Receptor 2 positive (HER2 + /ErbB2 + ) breast cancer cell lines as well as MMTV-neu derived mammary tumor cell lines. However, the physiological role of Hunk has been largely elusive since its identification. Though Hunk is predicted to be a Serine/Threonine (Ser/Thr) protein kinase with homology to the SNF1/AMPK family of protein kinases, there are no known Hunk substrates that have been identified to date. Recent work demonstrates a role for Hunk in HER2 + /ErbB2 + breast cancer progression, including drug resistance to HER2/ErbB2 inhibitors, with Hunk potentially acting downstream of HER2/ErbB2 and the PI3K/Akt pathway. These studies have collectively shown that Hunk plays a vital role in promoting mammary tumorigenesis, as Hunk knockdown via shRNA in xenograft tumor models or crossing MMTV-neu or Pten-deficient genetically engineered mouse models into a Hunk knockout (Hunk-/-) background impairs mammary tumor growth in vivo. Because the majority of HER2 + /ErbB2 + breast cancer patients acquire drug resistance to HER2/ErbB2 inhibitors, the characterization of novel drug targets like Hunk that have the potential to simultaneously suppress tumorigenesis and potentially enhance efficacy of current therapeutics is an important facet of drug development. Therefore, work aimed at uncovering specific regulatory functions for Hunk that could contribute to this protein kinase's role in both tumorigenesis and drug resistance will be informative. This review focuses on what is currently known about this under-studied protein kinase, and how targeting Hunk may prove to be a potential therapeutic target for the treatment of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Correlation Between PARP1 and BRCA1 in AR Positive Triple-negative Breast Cancer.

    PubMed

    Luo, Jiayan; Jin, Juan; Yang, Fang; Sun, Zijia; Zhang, Wenwen; Shi, Yaqin; Xu, Jing; Guan, Xiaoxiang

    2016-01-01

    Triple-negative breast cancer (TNBC) lacks estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) expression and thus cannot benefit from conventional hormonal or anti-HER2 targeted therapies. Anti-androgen therapy has shown a certain effect on androgen receptor (AR) positive TNBC. The emerging researches have proved that poly (ADP-ribose) polymerase (PARP) inhibitor is effective in BRCA1-deficient breast cancers. We demonstrated that combination of AR antagonist (bicalutamide) and PARP inhibitor (ABT-888) could inhibit cell viability and induce cell apoptosis significantly whatever in vitro or in vivo setting in AR-positive TNBC. Previous studies have proved that both BRCA1 and PARP1 have close connections with AR in prostate cancer. We explored the correlation among AR, PARP1 and BRCA1 in TNBC for the first time. After BRCA1 overexpression, the expression of AR and PARP1 were decreased in mRNA and protein levels. Additionally, AR positively regulated PARP1 while PARP1 also up-regulated AR expression in vitro. We also confirmed BRCA1 expression was negatively correlated with AR and PARP1 in TNBC patients using a tissue microarray with TNBC patient samples. These results suggest that the combination of bicalutamide and PARP inhibitor may be a potential strategy for TNBC patients and merits further evaluation.

  19. BRUTON’S TYROSINE KINASE INHIBITORS PREVENT THERAPEUTIC ESCAPE IN BREAST CANCER CELLS

    PubMed Central

    Wang, Xianhui; Wong, Jason; Sevinsky, Christopher J; Kokabee, Leila; Khan, Faiza; Sun, Yan; Conklin, Douglas S.

    2016-01-01

    We have reported that a novel isoform of BTK (BTK-C) expressed in breast cancer protects these cells from apoptosis. In this study, we show that recently developed inhibitors of BTK, such as ibrutinib (PCI-32765), AVL-292 and CGI-1746, reduce breast cancer cell survival and prevent drug resistant clones from arising. Ibrutinib treatment impacts HER2+ breast cancer cell viability at lower concentrations than the established breast cancer therapeutic lapatinib. In addition to inhibiting BTK, ibrutinib, but not AVL-292 and CGI-1746, efficiently blocks the activation of EGFR, HER2, ErbB3, and ErbB4. Consequently, the activation of AKT and ERK signaling pathways are also blocked leading to a G1/S cell cycle delay and increased apoptosis. Importantly, inhibition of BTK prevents activation of the AKT signaling pathway by NRG or EGF that has been shown to promote growth factor-driven lapatinib resistance in HER2+ breast cancer cells. HER2+ breast cancer cell proliferation is blocked by ibrutinib even in the presence of these factors. AVL-292, which has no effect on EGFR family activation, prevents NRG- and EGF-dependent growth factor-driven resistance to lapatinib in HER2+ breast cancer cells. In vivo, ibrutinib inhibits HER2+ xenograft tumor growth. Consistent with this, immunofluorescence analysis of xenograft tumors shows that ibrutinib reduces the phosphorylation of HER2, BTK, Akt and Erk and histone H3 and increases cleaved caspase-3 signals. Since BTK-C and HER2 are often co-expressed in human breast cancers, these observations indicate that BTK-C is a potential therapeutic target and that ibrutinib could be an effective drug especially for HER2+ breast cancer. PMID:27256378

  20. Co-targeting the HER and IGF/insulin receptor axis in breast cancer, with triple targeting with endocrine therapy for hormone-sensitive disease.

    PubMed

    Chakraborty, Ashok; Hatzis, Christos; DiGiovanna, Michael P

    2017-05-01

    Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor). Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models. Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling. Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER- cells.

  1. Perspectives of HER2-targeting in gastric and esophageal cancer.

    PubMed

    Gerson, James N; Skariah, Sam; Denlinger, Crystal S; Astsaturov, Igor

    2017-05-01

    The blockade of HER2 signaling has significantly improved the outlook for esophagogastric cancer patients. However, targeting HER2 still remains challenging due to complex biology of this receptor in gastric and esophageal cancers. Areas covered: Here, we review complex HER2 biology, current methods of HER2 testing and tumor heterogeneity of gastroesophageal cancer. Ongoing and completed clinical research data are discussed. Expert opinion: HER2 overexpression is a validated target in gastroesophageal cancer, with therapeutic implications resulting in prolonged survival when inhibited in the front-line setting. With standardized HER2 testing in gastro-esophageal cancer, the ongoing trials are testing newer agents and combinations including combination of anti-HER2 antibodies with immunotherapy. Clonal heterogeneity and emergence of resistance will challenge our approach to treating these patients beyond the frontline settings.

  2. Increased Expression of HER2, HER3, and HER2:HER3 Heterodimers in HPV-Positive HNSCC Using a Novel Proximity-Based Assay: Implications for Targeted Therapies.

    PubMed

    Pollock, Netanya I; Wang, Lin; Wallweber, Gerald; Gooding, William E; Huang, Weidong; Chenna, Ahmed; Winslow, John; Sen, Malabika; DeGrave, Kara A; Li, Hua; Zeng, Yan; Grandis, Jennifer R

    2015-10-15

    In other cancer types, HPV infection has been reported to coincide with overexpression of HER2 (ERBB2) and HER3 (ERBB3); however, the association between HER2 or HER3 expression and dimer formation in HNSCC has not been reported. Overexpression of HER2 and HER3 may contribute to resistance to EGFR inhibitors, including cetuximab, although the contribution of HPV in modulating cetuximab response remains unknown. Determination of heterodimerization of HER receptors is challenging and has not been reported in HNSCC. The present study aimed to determine the expression of HER proteins in HPV(+) versus HPV(-) HNSCC tumors using a proximity-based protein expression assay (VeraTag), and to determine the efficacy of HER-targeting agents in HPV(+) and HPV(-) HNSCC cell lines. Expression of total HER1, HER2, and HER3, p95HER2, p-HER3, HER1:HER1 homodimers, HER2:HER3 heterodimers, and the HER3-PI3K complex in 88 HNSCC was determined using VeraTag, including 33 baseline tumors from individuals treated in a trial including cetuximab. Inhibition of cell growth and protein activation with cetuximab and afatinib was compared in HPV(+) and HPV(-) cetuximab-resistant cell lines. Expression of total HER2, total HER3, HER2:HER3 heterodimers, and the HER3:PI3K complex were significantly elevated in HPV(+) HNSCC. Total EGFR was significantly increased in HPV(-) HNSCC where VeraTag assay results correlated with IHC. Afatinib significantly inhibited cell growth when compared with cetuximab in the HPV(+) and HPV(-) cetuximab-resistant HNSCC cell lines. These findings suggest that agents targeting multiple HER proteins may be effective in the setting of HPV(+) HNSCC and/or cetuximab resistance. ©2015 American Association for Cancer Research.

  3. Prognostic factors of HER2-positive breast cancer patients who develop brain metastasis: a multicenter retrospective analysis.

    PubMed

    Hayashi, Naoki; Niikura, Naoki; Masuda, Norikazu; Takashima, Seiki; Nakamura, Rikiya; Watanabe, Ken-ichi; Kanbayashi, Chizuko; Ishida, Mayumi; Hozumi, Yasuo; Tsuneizumi, Michiko; Kondo, Naoto; Naito, Yoichi; Honda, Yayoi; Matsui, Akira; Fujisawa, Tomomi; Oshitanai, Risa; Yasojima, Hiroyuki; Yamauchi, Hideko; Saji, Shigehira; Iwata, Hiroji

    2015-01-01

    The clinical course and prognostic factors of HER2-positive breast cancer patients with brain metastases are not well known because of the relatively small population. The aim of this study was to determine prognostic factors associated with HER2-positive patients who develop brain metastases. This retrospective study assessed the largest dataset to date of 432 HER2-positive patients who were diagnosed with brain metastases from 24 institutions of the Japan Clinical Oncology Group, Breast Cancer Study Group. The median age of the 432 patients was 54 years (range, 20-86 years). Of the patients, 162 patients (37.5 %) had ER-positive/HER2-positive (ER+HER2+) breast cancer, and 270 (62.5 %) had ER-negative/HER2-positive (ER-HER2+) breast cancer. The median brain metastasis-free survival period from primary breast cancer was 33.5 months in both groups. The median survival after developing brain metastasis was 16.5 and 11.5 months in the ER+HER2+ and ER-HER2+ groups, respectively, (p = 0.117). Patients with >3 brain metastases had significantly shorter overall survival in both ER+HER2+ (p < 0.001) and ER-HER2+ (p = 0.018) groups. Treatment with trastuzumab before developing brain metastases was not associated with survival duration after developing brain metastases (p = 0.571). However, patients treated with both trastuzumab and lapatinib after developing metastasis had significantly longer survival than patients treated with trastuzumab alone, lapatinib alone, or no HER2-targeting agent (p < 0.001). For HER2-positive patients with brain metastases, regardless of the use of trastuzumab before developing brain metastasis, treatment with both trastuzumab and lapatinib might improve survival.

  4. A FISH-based method for assessment of HER-2 amplification status in breast cancer circulating tumor cells following CellSearch isolation.

    PubMed

    Frithiof, Henrik; Aaltonen, Kristina; Rydén, Lisa

    2016-01-01

    Amplification of the HER-2/neu ( HER-2 ) proto-oncogene occurs in 10%-15% of primary breast cancer, leading to an activated HER-2 receptor, augmenting growth of cancer cells. Tumor classification is determined in primary tumor tissue and metastatic biopsies. However, malignant cells tend to alter their phenotype during disease progression. Circulating tumor cell (CTC) analysis may serve as an alternative to repeated biopsies. The Food and Drug Administration-approved CellSearch system allows determination of the HER-2 protein, but not of the HER-2 gene. The aim of this study was to optimize a fluorescence in situ hybridization (FISH)-based method to quantitatively determine HER-2 amplification in breast cancer CTCs following CellSearch-based isolation and verify the method in patient samples. Using healthy donor blood spiked with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer cell lines, SKBr-3 and BT-474, and a corresponding negative control (the HER-2-negative MCF-7 cell line), an in vitro CTC model system was designed. Following isolation in the CellSearch system, CTC samples were further enriched and fixed on microscope slides. Immunocytochemical staining with cytokeratin and 4',6-diamidino-2'-phenylindole dihydrochloride identified CTCs under a fluorescence microscope. A FISH-based procedure was optimized by applying the HER2 IQFISH pharmDx assay for assessment of HER-2 amplification status in breast cancer CTCs. A method for defining the presence of HER-2 amplification in single breast cancer CTCs after CellSearch isolation was established using cell lines as positive and negative controls. The method was validated in blood from breast cancer patients showing that one out of six patients acquired CTC HER-2 amplification during treatment against metastatic disease. HER-2 amplification status of CTCs can be determined following CellSearch isolation and further enrichment. FISH is superior to protein assessment of HER-2 status in predicting response to HER-2-targeted immunotherapy in breast cancer patients. This assay has the potential of identifying patients with a shift in HER-2 status who may benefit from treatment adjustments.

  5. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction.

    PubMed

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. © 2013.

  6. Targeting Sirna Missiles to Her2+ Breast Cancer

    DTIC Science & Technology

    2008-06-01

    intact and appears to be protected from serum nucleases (Fig. 1) . T7 -transcribed siRNA induces higher breast cancer cell cytotoxicity than synthetic...cytotoxicity of T7 transcribed vs s y n t h e t i c anti-HER2 siRNA on HER2+ cells. We acquired a 21 nucleotide (nt) s y n t h e t i c anti-HER2...ErbB2) siRNA and also produced a T7 -transcribed molecule (Silencer Principal Investigator: Medina-Kauwe, Lali K. 2 siRNA construction kit; Ambion) using

  7. Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells

    PubMed Central

    Oberg, Hans H.; Kellner, Christian; Gonnermann, Daniel; Sebens, Susanne; Bauerschlag, Dirk; Gramatzki, Martin; Kabelitz, Dieter; Peipp, Matthias; Wesch, Daniela

    2018-01-01

    An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2)2xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2)2xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2)2xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2)2xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2)2xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2)2xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of refractory hematological malignancies is given by their HLA-independent killing and a reduced graft-versus-host disease. PMID:29725336

  8. Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing γδ T Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells.

    PubMed

    Oberg, Hans H; Kellner, Christian; Gonnermann, Daniel; Sebens, Susanne; Bauerschlag, Dirk; Gramatzki, Martin; Kabelitz, Dieter; Peipp, Matthias; Wesch, Daniela

    2018-01-01

    An enhanced expression of human epidermal growth factor receptor 2 (HER2, ErbB2) often occurs in an advanced stage of breast, ovarian, gastric or esophageal cancer, and pancreatic ductal adenocarcinoma (PDAC). Commonly, HER2 expression is associated with poor clinical outcome or chemoresistance in ovarian and breast cancer patients. Treatment with humanized anti-HER2 monoclonal antibodies, such as trastuzumab or pertuzumab, has improved the outcome of patients with HER2-positive metastatic gastric or breast cancer, but not all patients benefit. In this study, the bispecific antibody [(HER2) 2 xCD16] in the tribody format was employed to re-direct CD16-expressing γδ T lymphocytes as well as natural killer (NK) cells to the tumor-associated cell surface antigen HER2 to enhance their cytotoxic anti-tumor activity. Tribody [(HER2) 2 xCD16] comprises two HER2-specific single chain fragment variable fused to a fragment antigen binding directed to the CD16 (FcγRIII) antigen expressed on γδ T cells and NK cells. Our results revealed the superiority of tribody [(HER2) 2 xCD16] compared to trastuzumab in triggering γδ T cell and NK cell-mediated lysis of HER2-expressing tumor cells, such as PDAC, breast cancer, and autologous primary ovarian tumors. The increased efficacy of [(HER2) 2 xCD16] can be explained by an enhanced degranulation of immune cells. Although CD16 expression was decreased on γδ T cells in several PDAC patients and the number of tumor-infiltrating NK cells and γδ T cells was impaired in ovarian cancer patients, [(HER2) 2 xCD16] selectively enhanced cytotoxicity of cells from these patients. Here, unique anti-tumor properties of tribody [(HER2) 2 xCD16] are identified which beyond addressing HER2 overexpressing solid tumors may allow to treat with similar immunoconstructs combined with the adoptive transfer of γδ T cells and NK cells refractory hematological malignancies. A major advantage of γδ T cells and NK cells in the transplant situation of refractory hematological malignancies is given by their HLA-independent killing and a reduced graft- versus -host disease.

  9. Cardiotoxicity of novel HER2-targeted therapies.

    PubMed

    Sendur, Mehmet A N; Aksoy, Sercan; Altundag, Kadri

    2013-08-01

    Trastuzumab, an anti-HER2 humanized monoclonal antibody, is the standard treatment for both early and metastatic HER2-positive breast cancer. In addition to other chemotherapeutic agents, trastuzumab significantly improves response rate and survival in HER2-positive early and metastatic breast cancer. Although it is well known that trastuzumab therapy is closely associated with both symptomatic and asymptomatic cardiotoxicity, less is known about novel HER2-targeted therapies. The aim of this review is to discuss the cardiac safety data from recent studies of novel anti-HER2 drugs other than trastuzumab. Novel HER2-targeted therapies showed favorable results in HER2 positive metastatic breast cancer patients. Pubmed database, ASCO and San Antonio Breast Cancer Symposium Meeting abstracts were searched until January 2013 using the following search keywords; 'trastuzumab, trastuzumab cardiotoxicity, HER-2 targeted therapies, lapatinib, pertuzumab, trastuzumab emtansine, afatinib and neratinib'; papers which were considered relevant for the aim of this review were selected by the authors. Lapatinib, pertuzumab, T-DM1, neratinib and afatinib molecules are evaluated in the study. In a comprehensive analysis, 3689 lapatinib treated patients enrolled in 49 trials; asymptomatic cardiac events were reported in 53 patients (1.4%) and symptomatic grade III and IV systolic dysfunction was observed only in 7 patients (0.2%) treated with lapatinib. In phase I-III trials of pertuzumab, cardiac dysfunction was seen in 4.5-14.5% of patients with pertuzumab treatment and cardiac dysfunction was usually grade I and II. Cardiotoxicity of pertuzumab was usually reported with the trastuzumab combination and no additive cardiotoxicity was reported with addition of pertuzumab to trastuzumab. T-DM1 had a better safety profile compared to trastuzumab, no significant cardiotoxicity was observed with T-DM1 in heavily pre-treated patients. In the EMILIA study, only in 1.7% of patients in the T-DM1 group experienced reduction of left ventricular ejection fraction (LVEF) and grade III LVEF reduction developed only in one patient (0.2%) in the T-DM1 group compared to the lapatinib plus capacitabine group. In phase I-II trials with neratinib no cardiotoxicity was reported whereas cardiotoxicity was seen between 0-5.3% with afatinib treatment. Although cardiac toxicity has been reported as an adverse event for novel HER2-targeted therapies, cardiac dysfunction rate of the novel HER2-targeted therapies is significantly lower than the trastuzumab and combination of these agents with trastuzumab did not significantly increase the cardiac adverse events.

  10. Irreversible multitargeted ErbB family inhibitors for therapy of lung and breast cancer.

    PubMed

    Subramaniam, Deepa; He, Aiwu Ruth; Hwang, Jimmy; Deeken, John; Pishvaian, Michael; Hartley, Marion L; Marshall, John L

    2015-01-01

    Overactivation of the ErbB protein family, which is comprised of 4 receptor tyrosine kinase members (ErbB1/epidermal growth factor receptor [EGFR]/HER1, ErbB2/HER2, ErbB3/HER3, and ErbB4/HER4), can drive the development and progression of a wide variety of malignancies, including colorectal, head and neck, and certain non-small cell lung cancers (NSCLCs). As a result, agents that target a specific member of the ErbB family have been developed for the treatment of cancer. These agents include the reversible EGFR tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib; the EGFR-targeting monoclonal antibodies cetuximab and panitumumab; and the HER2-targeting monoclonal antibody trastuzumab. Lapatinib is a dual TKI that targets both EGFR and HER2. In addition, TKIs that inhibit multiple members of the ErbB family and also bind their targets irreversibly are under evaluation for the treatment of cancer. Three such compounds have progressed into clinical studies: the EGFR, HER2, and HER4 inhibitors afatinib, dacomitinib, and neratinib. Phase I studies of these agents have shown clinical activity in NSCLC, breast cancer, and other malignancies. Currently, afatinib is approved for EGFR mutation-positive NSCLC and is in development for squamous NSCLC, and dacomitinib is in phase III of clinical development for NSCLC, neratinib is in phase III of clinical development for the treatment of breast cancer, and afatinib is also in phase III development in head and neck cancer. Final results from clinical trials may lead to the potential approval of these agents in a variety of solid tumor malignancies.

  11. Knocking down cyclin D1b inhibits breast cancer cell growth and suppresses tumor development in a breast cancer model.

    PubMed

    Wei, Min; Zhu, Li; Li, Yafen; Chen, Weiguo; Han, Baosan; Wang, Zhiwei; He, Jianrong; Yao, Hongliang; Yang, Zhongyin; Zhang, Qing; Liu, Bingya; Gu, Qinlong; Zhu, Zhenggang; Shen, Kunwei

    2011-08-01

    Cyclin D1 is aberrantly expressed in many types of cancers, including breast cancer. High levels of cyclin D1b, the truncated isoform of cyclin D1, have been reported to be associated with a poor prognosis for breast cancer patients. In the present study, we used siRNA to target cyclin D1b overexpression and assessed its ability to suppress breast cancer growth in nude mice. Cyclin D1b siRNA effectively inhibited overexpression of cyclin D1b. Depletion of cyclin D1b promoted apoptosis of cyclin D1b-overexpressing cells and blocked their proliferation and transformation phenotypes. Notably, cyclin D1b overexpression is correlated with triple-negative basal-like breast cancers, which lack specific therapeutic targets. Administration of cyclin D1b siRNA inhibited breast tumor growth in nude mice and cyclin D1b siRNA synergistically enhanced the cell killing effects of doxorubicin in cell culture, with this combination significantly suppressing tumor growth in the mouse model. In conclusion, the results indicate that cyclin D1b, which is overexpressed in breast cancer, may serve as a novel and effective therapeutic target. More importantly, the present study clearly demonstrated a very promising therapeutic potential for cyclin D1b siRNA in the treatment of cyclin D1b-overexpressing breast cancers, including the very malignant triple-negative breast cancers. © 2011 Japanese Cancer Association.

  12. Anthracycline Use for Early Stage Breast Cancer in the Modern Era: a Review.

    PubMed

    Jasra, Sakshi; Anampa, Jesus

    2018-05-11

    Anthracycline-based regimens have been an important treatment component for patients with breast cancer. As demonstrated in the last Early Breast Cancer Trialists' Collaborative Group (EBCTCG) meta-analysis, anthracycline-based regimens decrease breast cancer mortality by 20-30%. Anthracycline toxicities include the rare-but potential morbid-cardiotoxicity or leukemogenic effect, and the almost universal-but very distressing-alopecia. Due to potential toxicities, and large number of patients being exposed, several worldwide trials have re-examined the role of anthracycline-based regimens in the management of breast cancer. Current literature supports that anthracyclines are not required for all patients with breast cancer and should be avoided in those with high cardiac risk. Recent results from the ABC trials suggest that anthracyclines should not be spared for patients with triple negative breast cancer (regardless of axillary node involvement) or HER2-/ER+ with significant node involvement. Based on current literature, for HER2-negative patients with low-risk breast cancer, anthracyclines could be spared with regimens such as cyclophosphamide, methotrexate, and fluorouracil (CMF) or docetaxel and cyclophosphamide (TC). Patients with intermediate or high-risk breast cancer should be considered for anthracycline-based regimens based on other factors such as age, comorbidities, tumor grade, lymphovascular invasion, and genomic profiling. Patients with HER2-positive breast cancer with low risk could be treated with paclitaxel and trastuzumab. For the remaining patients with HER2 overexpression, while docetaxel, carboplatin, and trastuzumab (TCH) has demonstrated to improve disease-free survival (DFS), anthracycline-containing regimens should be discussed, especially for those with very high-risk breast cancer. Although several biomarkers, such as topoisomerase II (TOP2A) and chromosome 17 centromeric duplication (Ch17CEP) have been proposed to predict benefit from anthracycline regimens, further research is required to delineate their proper utility in the clinical setting.

  13. Triple-negative breast cancer: treatment challenges and solutions

    PubMed Central

    Collignon, Joëlle; Lousberg, Laurence; Schroeder, Hélène; Jerusalem, Guy

    2016-01-01

    Triple-negative breast cancers (TNBCs) are defined by the absence of estrogen and progesterone receptors and the absence of HER2 overexpression. These cancers represent a heterogeneous breast cancer subtype with a poor prognosis. Few systemic treatment options exist besides the use of chemotherapy (CT). The heterogeneity of the disease has limited the successful development of targeted therapy in unselected patient populations. Currently, there are no approved targeted therapies for TNBC. However, intense research is ongoing to identify specific targets and develop additional and better systemic treatment options. Standard adjuvant and neoadjuvant regimens include anthracyclines, cyclophosphamide, and taxanes. Platinum-based CT has been proposed as another CT option of interest in TNBC. We review the role of this therapy in general, and particularly in patients carrying BRCA germ-line mutations. Available data concerning the role of platinum-based CT in TNBC were acquired primarily in the neoadjuvant setting. The routine use of platinum-based CT is not yet recommended by available guidelines. Many studies have reported the molecular characterization of TNBCs. Several actionable targets have been identified. Novel therapeutic strategies are currently being tested in clinical trials based on promising results observed in preclinical studies. These targets include androgen receptor, EGFR, PARP, FGFR, and the angiogenic pathway. We review the recent data on experimental drugs in this field. We also discuss the recent data concerning immunologic checkpoint inhibitors. PMID:27284266

  14. Clinical relevance of ErbB-2/HER2 nuclear expression in breast cancer.

    PubMed

    Schillaci, Roxana; Guzmán, Pablo; Cayrol, Florencia; Beguelin, Wendy; Díaz Flaqué, María C; Proietti, Cecilia J; Pineda, Viviana; Palazzi, Jorge; Frahm, Isabel; Charreau, Eduardo H; Maronna, Esteban; Roa, Juan C; Elizalde, Patricia V

    2012-02-22

    The biological relevance of nuclear ErbB-2/HER2 (NuclErbB-2) presence in breast tumors remains unexplored. In this study we assessed the clinical significance of ErbB-2 nuclear localization in primary invasive breast cancer. The reporting recommendations for tumor marker prognostic studies (REMARK) guidelines were used as reference. Tissue microarrays from a cohort of 273 primary invasive breast carcinomas from women living in Chile, a Latin American country, were examined for membrane (MembErbB-2) and NuclErbB-2 expression by an immunofluorescence (IF) protocol we developed. ErbB-2 expression was also evaluated by immunohistochemistry (IHC) with a series of antibodies. Correlation between NuclErbB-2 and MembErbB-2, and between NuclErbB-2 and clinicopathological characteristics of tumors was studied. The prognostic value of NuclErbB-2 in overall survival (OS) was evaluated using Kaplan-Meier method, and Cox model was used to explore NuclErbB-2 as independent prognostic factor for OS. The IF protocol we developed showed significantly higher sensitivity for detection of NuclErbB-2 than IHC procedures, while its specificity and sensitivity to detect MembErbB-2 were comparable to those of IHC procedures. We found 33.6% NuclErbB-2 positivity, 14.2% MembErbB-2 overexpression by IF, and 13.0% MembErbB-2 prevalence by IHC in our cohort. We identified NuclErbB-2 positivity as a significant independent predictor of worse OS in patients with MembErbB-2 overexpression. NuclErbB-2 was also a biomarker of lower OS in tumors that overexpress MembErbB-2 and lack steroid hormone receptors. We revealed a novel role for NuclErbB-2 as an independent prognostic factor of poor clinical outcome in MembErbB-2-positive breast tumors. Our work indicates that patients presenting NuclErbB-2 may need new therapeutic strategies involving specific blockage of ErbB-2 nuclear migration.

  15. Targeting siRNA Missiles to Her2+ Breast Cancer

    DTIC Science & Technology

    2009-06-01

    that HerPBK10 protects siRNA from serum nuclease-mediated degradation, T7 transcribed siRNA is more cytotoxic than synthetic siRNA when delivered to...nuclease-mediated degradation, T7 transcribed siRNA is more cytotoxic than synthetic siRNA when delivered to HER2+ breast cancer cells by HerPBK10...produced either synthetically by a commercial vendor (Dharmacon), or from a T7 transcription kit (Ambion), and shRNA, which is reportedly a more effective

  16. [Tykerb for breast cancer].

    PubMed

    Suzuki, Yasuhiro; Saito, Yuki; Okamura, Takuho; Tokuda, Yutaka

    2011-06-01

    There are four members of the ErbB family: the epidermal growth factor(EGF)receptor(also called HER1 or EGFR), HER2, HER3 and HER4. Dimerization is the process whereby two HER receptor molecules associate to form a noncovalent complex. HER dimers are the active receptor forms required for transmission of external stimuli to the interior of the cell. HER dimerization occurs upon ligand binding and both HER homodimers and heterodimers can be formed in the process. However, HER2 appears to be the preferred dimerization partner of the other HER family members. Fifteen∼20% of all breast cancers are HER2 positive and have a poor prognosis. Trastuzumab is an excellent, rationally-designed targeted cancer treatment. It is a recombinant, humanized, anti-HER2 monoclonal antibody that specifically binds to the extracellular area of HER2. However, the overall trastuzumab response rate is low, and the causes of trastuzumab resistance are poorly understood. Thus, there is a need for alternative anti-HER2 strategies for trastuzumab-resistant disease. Lapatinib is an orally administered small-molecule, reversible inhibitor of both EGFR and HER2 tyrosine kinase, and its activities include subsequent inhibition of its down- stream MAPK-ERK1/2, and the AKT signaling pathway. Lapatinib is more active when used in combination with capecitabine. For women with trastuzumab pre-treated HER2-positive breast cancer, Here, I will review the basics of EGFR and HER, and the treatment strategy for HER2-positive breast cancer with lapatinib.

  17. Overexpression of HER2 in the pancreas promotes development of intraductal papillary mucinous neoplasms in mice.

    PubMed

    Shibata, Wataru; Kinoshita, Hiroto; Hikiba, Yohko; Sato, Takeshi; Ishii, Yasuaki; Sue, Soichiro; Sugimori, Makoto; Suzuki, Nobumi; Sakitani, Kosuke; Ijichi, Hideaki; Mori, Ryutaro; Endo, Itaru; Maeda, Shin

    2018-04-18

    Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5% and is the sixth leading cause of cancer death. Although KRAS mutations are one of the major driver mutations in PDA, KRAS mutation alone is not sufficient to induce invasive pancreatic cancer in mice model. HER2, also known as ERBB2, is a receptor tyrosine kinase, and overexpression of HER2 is associated with poor clinical outcomes in pancreatic cancer. However, no report has shown whether HER2 and its downstream signaling contributes to the pancreatic cancer development. By immunohistochemical analysis in human cases, HER2 protein expression was detected in 40% of PDAs and 29% of intraductal papillary mucinous carcinomas, another type of pancreatic cancer. In a mouse model, we showed overexpression of activated HER2 (HER2 NT ) in the pancreas, in which cystic neoplastic lesions resembling intraductal papillary mucinous neoplasm-like lesions in humans had developed. We also found that HER2 NT cooperated with oncogenic Kras to accelerate the development of pancreatic intraepithelial neoplasms. In addition, using pancreatic organoids in 3D cultures, we found that organoids cultured from HER2 NT /Kras double transgenic mice showed proliferative potential and tumorigenic ability cooperatively. HER2-signaling inhibition was suggested to be an new therapeutic target in some types of PDAs.

  18. Production and characterization of a novel long-acting Herceptin-targeted nanobubble contrast agent specific for Her-2-positive breast cancers.

    PubMed

    Jiang, Qiongchao; Hao, Shaoyun; Xiao, Xiaoyun; Yao, Jiyi; Ou, Bing; Zhao, Zizhuo; Liu, Fengtao; Pan, Xin; Luo, Baoming; Zhi, Hui

    2016-05-01

    There is an unmet need for specific and sensitive imaging techniques to assess the efficacy of breast cancer therapy, particularly Her-2-expressing cancers. Ultrasonic microbubbles are being developed for use as diagnostic and therapeutic tools. However, nanobubbles circulate longer, are smaller, and diffuse into extravascular tissue to specifically bind target molecules. Here, we characterize a novel Herceptin-conjugated nanobubble for use against Her-2-expressing tumors. Phospholipid-shelled nanobubbles conjugated with Herceptin (NBs-Her) were fabricated using a thin-film hydration method and characterized in vitro in breast cancer cell lines and in vivo in a mouse model. The average size of the unconjugated nanobubbles (NBs-Blank) and NBs-Her was 447.1 ± 18.4 and 613.0 ± 25.4 nm, respectively. In cell culture, the NBs-Her adhered to Her-2-positive cells significantly better than to Her-2-negative cells (p < 0.05). In vivo, the peak intensity and the half-time to washout of the NBs-Her were significantly greater than those of the NBs-Blank (p < 0.05). In addition, contrast-enhanced ultrasound imaging quality was improved through the use of the NBs-Her. The nanobubbles were able to penetrate into tumor tissue to allow extravascular imaging, but did not penetrate normal skeletal muscle. The Herceptin-conjugated nanobubble had many properties that made it useful for in vivo imaging, including longer circulation time and better tumor selectivity. This platform may be able to provide targeted delivery of therapeutic drugs or genes.

  19. In breast cancer subtypes steroid sulfatase (STS) is associated with less aggressive tumour characteristics.

    PubMed

    McNamara, Keely M; Guestini, Fouzia; Sauer, Torill; Touma, Joel; Bukholm, Ida Rashida; Lindstrøm, Jonas C; Sasano, Hironobu; Geisler, Jürgen

    2018-05-01

    The majority of breast cancer cases are steroid dependent neoplasms, with hormonal manipulation of either CYP19/aromatase or oestrogen receptor alpha axis being the most common therapy. Alternate pathways of steroid actions are documented, but their interconnections and correlations to BC subtypes and clinical outcome could be further explored. We evaluated selected steroid receptors (Androgen Receptor, Oestrogen Receptor alpha and Beta, Glucocorticoid Receptor) and oestrogen pathways (steroid sulfatase (STS), 17β-hydroxysteroid dehydrogenase 2 (17βHSD2) and aromatase) in a cohort of 139 BC cases from Norway. Using logistic and cox regression analysis, we examined interactions between these and clinical outcomes such as distant metastasis, local relapse and survival. Our principal finding is an impact of STS expression on the risk for distant metastasis (p<0.001) and local relapses (p <0.001), HER2 subtype (p<0.015), and survival (p<0.001). The suggestion of a beneficial effect of alternative oestrogen synthesis pathways was strengthened by inverted, but non-significant findings for 17βHSD2. Increased intratumoural metabolism of oestrogens through STS is associated with significantly lower incidence of relapse and/or distant metastasis and correspondingly improved prognosis. The enrichment of STS in the HER2 overexpressing subtype is intriguing, especially given the possible role of HER-2 over-expression in endocrine resistance.

  20. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial

    PubMed Central

    Baselga, José; Bradbury, Ian; Eidtmann, Holger; Di Cosimo, Serena; de Azambuja, Evandro; Aura, Claudia; Gómez, Henry; Dinh, Phuong; Fauria, Karine; Van Dooren, Veerle; Aktan, Gursel; Goldhirsch, Aron; Chang, Tsai-Wang; Horváth, Zsolt; Coccia-Portugal, Maria; Domont, Julien; Tseng, Ling-Min; Kunz, Georg; Sohn, Joo Hyuk; Semiglazov, Vladimir; Lerzo, Guillermo; Palacova, Marketa; Probachai, Volodymyr; Pusztai, Lajos; Untch, Michael; Gelber, Richard D; Piccart-Gebhart, Martine

    2017-01-01

    Summary Background The anti-HER2 monoclonal antibody trastuzumab and the tyrosine kinase inhibitor lapatinib have complementary mechanisms of action and synergistic antitumour activity in models of HER2-overexpressing breast cancer. We argue that the two anti-HER2 agents given together would be better than single-agent therapy. Methods In this parallel groups, randomised, open-label, phase 3 study undertaken between Jan 5, 2008, and May 27, 2010, women from 23 countries with HER2-positive primary breast cancer with tumours greater than 2 cm in diameter were randomly assigned to oral lapatinib (1500 mg), intravenous trastuzumab (loading dose 4 mg/kg, subsequent doses 2 mg/kg), or lapatinib (1000 mg) plus trastuzumab. Treatment allocation was by stratified, permuted blocks randomisation, with four stratification factors. Anti-HER2 therapy alone was given for the first 6 weeks; weekly paclitaxel (80 mg/m2) was then added to the regimen for a further 12 weeks, before definitive surgery was undertaken. After surgery, patients received adjuvant chemotherapy followed by the same targeted therapy as in the neoadjuvant phase to 52 weeks. The primary endpoint was the rate of pathological complete response (pCR), analysed by intention to treat. This trial is registered with ClinicalTrials.gov, NCT00553358. Findings 154 patients received lapatinib, 149 trastuzumab, and 152 the combination. pCR rate was significantly higher in the group given lapatinib and trastuzumab (78 of 152 patients [51·3%; 95% CI 43·1–59·5]) than in the group given trastuzumab alone (44 of 149 patients [29·5%; 22·4–37·5]; difference 21·1%, 9·1–34·2, p=0·0001). We recorded no significant difference in pCR between the lapatinib (38 of 154 patients [24·7%, 18·1–32·3]) and the trastuzumab (difference −4·8%, −17·6 to 8·2, p=0·34) groups. No major cardiac dysfunctions occurred. Frequency of grade 3 diarrhoea was higher with lapatinib (36 patients [23·4%]) and lapatinib plus trastuzumab (32 [21·1%]) than with trastuzumab (three [2·0%]). Similarly, grade 3 liver-enzyme alterations were more frequent with lapatinib (27 [17·5%]) and lapatinib plus trastuzumab (15 [9·9%]) than with trastuzumab (11 [7·4%]). Interpretation Dual inhibition of HER2 might be a valid approach to treatment of HER2-positive breast cancer in the neoadjuvant setting. Funding GlaxoSmithKline. PMID:22257673

  1. Use of mTOR inhibitors in the treatment of breast cancer: an evaluation of factors that influence patient outcomes

    PubMed Central

    Jerusalem, Guy; Rorive, Andree; Collignon, Joelle

    2014-01-01

    Many systemic treatment options are available for advanced breast cancer, including endocrine therapy, chemotherapy, anti-human epidermal growth factor receptor 2 (HER2) therapy, and other targeted agents. Recently, everolimus, a mammalian target of rapamycin (mTOR) inhibitor, combined with exemestane, an aromatase inhibitor, has been approved in Europe and the USA for patients suffering from estrogen receptor-positive, HER2-negative advanced breast cancer previously treated by a nonsteroidal aromatase inhibitor, based on the results of BOLERO-2 (Breast cancer trials of OraL EveROlimus). This study showed a statistically significant and clinically meaningful improvement in median progression-free survival. Results concerning the impact on overall survival are expected in the near future. This clinically oriented review focuses on the use of mTOR inhibitors in breast cancer. Results reported with first-generation mTOR inhibitors (ridaforolimus, temsirolimus, everolimus) are discussed. The current and potential role of mTOR inhibitors is reported according to breast cancer subtype (estrogen receptor-positive HER2-negative, triple-negative, and HER2-positive ER-positive/negative disease). Everolimus is currently being evaluated in the adjuvant setting in high-risk estrogen receptor-positive, HER2-negative early breast cancer. Continuing mTOR inhibition or alternatively administering other drugs targeting the phosphatidylinositol-3-kinase/protein kinase B-mTOR pathway after progression on treatments including an mTOR inhibitor is under evaluation. Potential biomarkers to select patients showing a more pronounced benefit are reviewed, but we are not currently using these biomarkers in routine practice. Subgroup analysis of BOLERO 2 has shown that the benefit is consistent in all subgroups and that it is impossible to select patients not benefiting from addition of everolimus to exemestane. Side effects and impact on quality of life are other important issues discussed in this review. Second-generation mTOR inhibitors and dual mTOR-phosphatidylinositol-3-kinase inhibitors are currently being evaluated in clinical trials. PMID:24833916

  2. microRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival.

    PubMed

    Jin, Tiefeng; Suk Kim, Hoe; Ki Choi, Sul; Hye Hwang, Eun; Woo, Jisu; Suk Ryu, Han; Kim, Kwangsoo; Moon, Aree; Kyung Moon, Woo

    2017-05-16

    The microRNA-200 (miR-200) family is associated with tumor metastasis and poor patient prognosis. We found that miR-200c/141 cluster overexpression upregulated SerpinB2 in the MDA-MB-231 triple-negative (TN) breast cancer cell line. We observed transcription factor (c-Jun, c-Fos, and FosB) upregulation, nuclear localization of c-Jun, and increased SerpinB2 promoter-directed chloramphenicol acetyltransferase activity in miR-200c/141 cluster-overexpressing cells relative to controls. Additionally, miR-124a and miR-26b, which directly target SepinB2, were downregulated compared to controls. In mouse xenograft models, miR-200c/141 cluster overexpression promoted lymph node and lung metastasis, and siRNA-mediated SerpinB2 knockdown decreased lung metastasis, suggesting that SerpinB2 mediates miR-200c/141-induced lung metastasis. We also explored the clinical significance of SerpinB2 protein status through analysis of primary breast tumor samples and The Cancer Genome Atlas (TCGA) data. High SerpinB2 levels were associated with reduced survival and increased lymph node metastasis in breast cancer patients. SerpinB2 was overexpressed in the TN breast cancer subtype as compared to the luminal subtype. The present study demonstrates that SerpinB2 promotes miR-200c/141 cluster overexpression-induced breast cancer cell metastasis, and SerpinB2 overexpression correlates with increased metastatic potential and unfavorable outcomes in breast cancer patients. SerpinB2 may be a useful biomarker for assessing metastasis risk in breast cancer patients.

  3. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes.

    PubMed

    Watson, Spencer S; Dane, Mark; Chin, Koei; Tatarova, Zuzana; Liu, Moqing; Liby, Tiera; Thompson, Wallace; Smith, Rebecca; Nederlof, Michel; Bucher, Elmar; Kilburn, David; Whitman, Matthew; Sudar, Damir; Mills, Gordon B; Heiser, Laura M; Jonas, Oliver; Gray, Joe W; Korkola, James E

    2018-03-28

    Extrinsic signals are implicated in breast cancer resistance to HER2-targeted tyrosine kinase inhibitors (TKIs). To examine how microenvironmental signals influence resistance, we monitored TKI-treated breast cancer cell lines grown on microenvironment microarrays composed of printed extracellular matrix proteins supplemented with soluble proteins. We tested ∼2,500 combinations of 56 soluble and 46 matrix microenvironmental proteins on basal-like HER2+ (HER2E) or luminal-like HER2+ (L-HER2+) cells treated with the TKIs lapatinib or neratinib. In HER2E cells, hepatocyte growth factor, a ligand for MET, induced resistance that could be reversed with crizotinib, an inhibitor of MET. In L-HER2+ cells, neuregulin1-β1 (NRG1β), a ligand for HER3, induced resistance that could be reversed with pertuzumab, an inhibitor of HER2-HER3 heterodimerization. The subtype-specific responses were also observed in 3D cultures and murine xenografts. These results, along with bioinformatic pathway analysis and siRNA knockdown experiments, suggest different mechanisms of resistance specific to each HER2+ subtype: MET signaling for HER2E and HER2-HER3 heterodimerization for L-HER2+ cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Anti-Tumor Effects of Peptide Therapeutic and Peptide Vaccine Antibody Co-targeting HER-1 and HER-2 in Esophageal Cancer (EC) and HER-1 and IGF-1R in Triple-Negative Breast Cancer (TNBC).

    PubMed

    Overholser, Jay; Ambegaokar, Kristen Henkins; Eze, Siobhan M; Sanabria-Figueroa, Eduardo; Nahta, Rita; Bekaii-Saab, Tanios; Kaumaya, Pravin T P

    2015-07-06

    Despite the promise of targeted therapies, there remains an urgent need for effective treatment for esophageal cancer (EC) and triple-negative breast cancer (TNBC). Current FDA-approved drugs have significant problems of toxicity, safety, selectivity, efficacy and development of resistance. In this manuscript, we demonstrate that rationally designed peptide vaccines/mimics are a viable therapeutic strategy for blocking aberrant molecular signaling pathways with high affinity, specificity, potency and safety. Specifically, we postulate that novel combination treatments targeting members of the EGFR family and IGF-1R will yield significant anti-tumor effects in in vitro models of EC and TNBC possibly overcoming mechanisms of resistance. We show that the combination of HER-1 and HER-2 or HER-1 and IGF-1R peptide mimics/vaccine antibodies exhibited enhanced antitumor properties with significant inhibition of tumorigenesis in OE19 EC and MDA-MB-231 TNBC cell lines. Our work elucidates the mechanisms of HER-1/IGF-1R and HER-1/HER-2 signaling in these cancer cell lines, and the promising results support the rationale for dual targeting with HER-1 and HER-2 or IGF-1R as an improved treatment regimen for advanced therapy tailored to difference types of cancer.

  5. Imaging biomarkers to predict response to anti-HER2 (ErbB2) therapy in preclinical models of breast cancer

    PubMed Central

    Shah, Chirayu; Miller, Todd W.; Wyatt, Shelby K.; McKinley, Eliot T.; Olivares, Maria Graciela; Sanchez, Violeta; Nolting, Donald D.; Buck, Jason R.; Zhao, Ping; Ansari, M. Sib; Baldwin, Ronald M.; Gore, John C.; Schiff, Rachel; Arteaga, Carlos L.; Manning, H. Charles

    2010-01-01

    Purpose To evaluate non-invasive imaging methods as predictive biomarkers of response to trastuzumab in mouse models of HER2-overexpressing breast cancer. The correlation between tumor regression and molecular imaging of apoptosis, glucose metabolism, and cellular proliferation was evaluated longitudinally in responding and non-responding tumor-bearing cohorts. Experimental Design Mammary tumors from MMTV/HER2 transgenic female mice were transplanted into syngeneic female mice. BT474 human breast carcinoma cell line xenografts were grown in athymic nude mice. Tumor cell apoptosis (NIR700-Annexin-V accumulation), glucose metabolism ([18F]FDG-PET), and proliferation ([18F]FLT-PET) were evaluated throughout a bi-weekly trastuzumab regimen. Imaging metrics were validated by direct measurement of tumor size and immunohistochemical (IHC) analysis of cleaved caspase-3, phosphorylated AKT (p-AKT) and Ki67. Results NIR700-Annexin-V accumulated significantly in trastuzumab-treated MMTV/HER2 and BT474 tumors that ultimately regressed, but not in non-responding or vehicle-treated tumors. Uptake of [18F]FDG was not affected by trastuzumab treatment in MMTV/HER2 or BT474 tumors. [18F]FLT PET imaging predicted trastuzumab response in BT474 tumors but not in MMTV/HER2 tumors, which exhibited modest uptake of [18F]FLT. Close agreement was observed between imaging metrics and IHC analysis. Conclusions Molecular imaging of apoptosis accurately predicts trastuzumab-induced regression of HER2(+) tumors and may warrant clinical exploration to predict early response to neoadjuvant trastuzumab. Trastuzumab does not appear to alter glucose metabolism substantially enough to afford [18F]FDG-PET significant predictive value in this setting. Although promising in one preclinical model, further studies are required to determine the overall value of [18F]FLT-PET as a biomarker of response to trastuzumab in HER2+ breast cancer. PMID:19584166

  6. Lapatinib Distribution in HER2 Overexpressing Experimental Brain Metastases of Breast Cancer

    PubMed Central

    Taskar, Kunal S.; Rudraraju, Vinay; Mittapalli, Rajendar K.; Samala, Ramakrishna; R. Thorsheim, Helen; Lockman, Julie; Gril, Brunilde; Hua, Emily; Palmieri, Diane; Polli, Joseph W.; Castellino, Stephen; Rubin, Stephen D.; Lockman, Paul R.; Steeg, Patricia S.; Smith, Quentin R.

    2012-01-01

    Purpose Lapatinib, a small molecule EGFR/HER2 inhibitor, has limited effect on outgrowth of HER2+ brain metastases in preclinical and clinical trials. We investigated the ability of lapatinib to reach therapeutic concentrations in the CNS following 14C-lapatinib administration (100 mg/kg p.o. or 10 mg/kg, i.v.) to mice with MDA-MD-231-BR-HER2 brain metastases of breast cancer. Methods Drug concentrations were determined at differing times after administration by quantitative autoradiography and chromatography. Results 14C-Lapatinib concentration varied among brain metastases and correlated with altered blood-tumor barrier permeability. On average, brain metastasis concentration was 7–9-fold greater than surrounding brain tissue at 2 and 12 hours after oral administration. However, average lapatinib concentration in brain metastases was still only 10–20% of those in peripheral metastases. Only in a subset of brain lesions (17%) did lapatinib concentration approach that of systemic metastases. No evidence was found of lapatinib resistance in tumor cells remaining in brain after lapatinib treatment. Conclusions Results show that lapatinib distribution to brain metastases of breast cancer is restricted and blood-tumor barrier permeability is a key component of lapatinib therapeutic efficacy which varies within and between tumors. PMID:22011930

  7. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention

    PubMed Central

    Davis, Nicole M.; Sokolosky, Melissa; Stadelman, Kristin; Abrams, Stephen L.; Libra, Massimo; Candido, Saverio; Nicoletti, Ferdinando; Polesel, Jerry; Maestro, Roberta; D’Assoro, Antonino; Drobot, Lyudmyla; Rakus, Dariusz; Gizak, Agnieszka; Laidler, Piotr; Dulińska-Litewka, Joanna; Basecke, Joerg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Montalto, Giuseppe; Cervello, Melchiorre; Fitzgerald, Timothy L.; Demidenko, Zoya N.; Martelli, Alberto M.; Cocco, Lucio; Steelman, Linda S.; McCubrey, James A.

    2014-01-01

    The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway. PMID:25051360

  8. Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast cancer: possibilities for therapeutic intervention.

    PubMed

    Davis, Nicole M; Sokolosky, Melissa; Stadelman, Kristin; Abrams, Steve L; Libra, Massimo; Candido, Saverio; Nicoletti, Ferdinando; Polesel, Jerry; Maestro, Roberta; D'Assoro, Antonino; Drobot, Lyudmyla; Rakus, Dariusz; Gizak, Agnieszka; Laidler, Piotr; Dulińska-Litewka, Joanna; Basecke, Joerg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Montalto, Giuseppe; Cervello, Melchiorre; Fitzgerald, Timothy L; Demidenko, Zoya; Martelli, Alberto M; Cocco, Lucio; Steelman, Linda S; McCubrey, James A

    2014-07-15

    The EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance and metastasis. The expression of this pathway is frequently altered in breast cancer due to mutations at or aberrant expression of: HER2, ERalpha, BRCA1, BRCA2, EGFR1, PIK3CA, PTEN, TP53, RB as well as other oncogenes and tumor suppressor genes. In some breast cancer cases, mutations at certain components of this pathway (e.g., PIK3CA) are associated with a better prognosis than breast cancers lacking these mutations. The expression of this pathway and upstream HER2 has been associated with breast cancer initiating cells (CICs) and in some cases resistance to treatment. The anti-diabetes drug metformin can suppress the growth of breast CICs and herceptin-resistant HER2+ cells. This review will discuss the importance of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway primarily in breast cancer but will also include relevant examples from other cancer types. The targeting of this pathway will be discussed as well as clinical trials with novel small molecule inhibitors. The targeting of the hormone receptor, HER2 and EGFR1 in breast cancer will be reviewed in association with suppression of the EGFR/PI3K/PTEN/Akt/mTORC1/GSK-3 pathway.

  9. Evolving landscape of human epidermal growth factor receptor 2-positive breast cancer treatment and the future of biosimilars.

    PubMed

    Jackisch, Christian; Lammers, Philip; Jacobs, Ira

    2017-04-01

    Human epidermal growth factor receptor 2-positive (HER2+) breast cancer comprises approximately 15%-20% of all breast cancers and is associated with a poor prognosis. The introduction of anti-HER2 therapy has significantly improved clinical outcomes for patients with HER2+ breast cancer, and multiple HER2-directed agents (ie, trastuzumab, pertuzumab, lapatinib, and ado-trastuzumab emtansine [T-DM1]) are approved for clinical use in various settings. The treatment landscape for patients with HER2+ breast cancer is continuing to evolve. While novel agents and therapeutic strategies are emerging, biologic therapies, particularly trastuzumab, are likely to remain a mainstay of treatment. However, access issues create barriers to the use of biologics, and there is evidence for underuse of trastuzumab worldwide. A biosimilar is a biologic product that is highly similar to a licensed biologic in terms of product safety and effectiveness. Biosimilars of trastuzumab are in development and may soon become available. The introduction of biosimilars may improve access to anti-HER2 therapies by providing additional treatment options and lower-cost alternatives. Because HER2-targeted drugs may be administered for extended periods of time and in combination with other systemic therapies, biosimilars have the potential to result in significant savings for healthcare systems. Herein we review current and emerging treatment options for, and discuss the possible role of biosimilars in, treating patients with HER2+ breast cancer. Copyright © 2017 Authors, Pfizer Inc. Published by Elsevier Ltd.. All rights reserved.

  10. [PD-L1 expression and PD-1/PD-L1 inhibitors in breast cancer].

    PubMed

    Monneur, Audrey; Gonçalves, Anthony; Bertucci, François

    2018-03-01

    The development of immune checkpoints inhibitors represents one of the major recent advances in oncology. Monoclonal antibodies directed against the programmed cell death protein 1 (PD-1) or its ligand (PD-L1) provides durable disease control, particularly in melanoma, lung, kidney, bladder and head and neck cancers. The purpose of this review is to synthesize current data on the expression of PD-L1 in breast cancer and on the preliminary clinical results of PD-1/PD-L1 inhibitors in breast cancer patients. In breast cancer, PD-L1 expression is heterogeneous and is generally associated with the presence of tumor-infiltrating lymphocytes as well as the presence of poor-prognosis factors, such as young age, high grade, ER-negativity, PR-negativity, and HER-2 overexpression, high proliferative index, and aggressive molecular subtypes (triple negative, basal-like, HER-2-overexpressing). Its prognostic value remains controversial when assessed with immunohistochemistry, whereas it seems favorable in triple-negative cancers when assessed at the mRNA level. Early clinical trials with PD-1/PD-L1 inhibitors in breast cancer have shown efficacy in terms of tumor response and/or disease control in refractory metastatic breast cancers, notably in the triple-negative subtype. Many trials are currently underway, both in the metastatic and neo-adjuvant setting. A crucial issue is identification of biomarkers predictive of response to PD-1/PD-L1 inhibitors. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  11. Potential use of COX-2–aromatase inhibitor combinations in breast cancer

    PubMed Central

    Bundred, N J; Barnes, N L P

    2005-01-01

    Cyclooxygenase-2 (COX-2) is overexpressed in several epithelial tumours, including breast cancer. Cyclooxygenase-2-positive tumours tend to be larger, higher grade, node-positive and HER-2/neu-positive. High COX-2 expression is associated with poor prognosis. Cyclooxygenase-2 inhibition reduces the incidence of tumours in animal models, inhibits the development of invasive cancer in colorectal cancer and reduces the frequency of polyps in familial adenomatous polyposis (FAP). These effects may be as a result of increased apoptosis, reduced angiogenesis and/or proliferation. Studies of COX-2 inhibitors in breast cancer are underway both alone and in combination with other agents. There is evidence to suggest that combining COX-2 inhibitors with aromatase inhibitors, growth factor receptor blockers, or chemo- or radiotherapy may be particularly effective. Preliminary results from combination therapy with celecoxib and exemestane in postmenopausal women with advanced breast cancer showed that the combination increased the time to recurrence. Up to 80% of ductal carcinomas in situ (DCISs) express COX-2, therefore COX-2 inhibition may be of particular use in this situation. Cyclooxygenase-2 expression correlates strongly with expression of HER-2/neu. As aromatase inhibitors appear particularly effective in patients with HER-2/neu-positive tumours, the combination of aromatase inhibitors and COX-2 inhibitors may be particularly useful in both DCIS and invasive cancer. PMID:16100520

  12. Surgery of primary tumour has survival benefit in metastatic breast cancer with single-organ metastasis, especially bone.

    PubMed

    Rhu, Jinsoo; Lee, Se Kyung; Kil, Won Ho; Lee, Jeong Eon; Nam, Seok Jin

    2015-04-01

    Surgery for the primary breast tumour is usually not recommended in metastatic breast cancer (MBC); however, some reports have suggested a benefit of locoregional treatment. We designed this study to evaluate the efficacy of locoregional surgery in MBC. Data for patients diagnosed with MBC at Samsung Medical Center between 1995 and 2011 were retrospectively collected. We compared the survival benefit of all treatment modalities using Cox regression analysis. Subgroup analyses based on number of metastases were performed to delineate the indication for each treatment. Among 262 patients, 40 (15.3%) underwent surgery. Other treatments included chemotherapy (n = 213, 81.3%), radiotherapy (n = 138, 52.7%), hormone therapy (n = 118, 45.0%) and HER2/neu receptor (HER2)-targeted therapy (n = 37, 14.1%). Cox regression analysis showed that surgery (hazard ratios (HR) = 0.51, P < 0.01), hormone therapy (HR = 0.31, P < 0.01) and HER2-targeted therapy (HR = 0.33, P < 0.01) were associated with improved survival, whereas presence of three or more metastatic organs (HR = 1.62, P = 0.03) was associated with poor survival. In patients with metastasis to a single organ, surgery (HR = 0.43, P < 0.01), chemotherapy (HR = 0.62, P = 0.05), hormone therapy (HR = 0.39, P < 0.01) and HER2-targeted therapy (HR = 0.39, P = 0.02) had a survival benefit. Furthermore, for patients with bone-only metastasis, surgery (HR = 0.37, P = 0.02), chemotherapy (HR = 0.42, P < 0.01), hormone therapy (HR = 0.22, P < 0.01) and HER2-targeted therapy (HR = 0.09, P = 0.02) showed a survival benefit. However, only hormone therapy and HER2-targeted therapy had a survival benefit in MBC with metastasis to multiple organs. Surgical control of the primary breast tumour should be considered as a locoregional therapy in combination with systemic therapy in MBC with metastasis to a single organ, especially bone-only metastasis.

  13. Anti-tumor immunity induced by an anti-idiotype antibody mimicking human Her-2/neu.

    PubMed

    Mohanty, Kartik; Saha, Asim; Pal, Smarajit; Mallick, Palash; Chatterjee, Sunil K; Foon, Kenneth A; Bhattacharya-Chatterjee, Malaya

    2007-07-01

    Our goal is to apply an anti-idiotype (Id) antibody based vaccine approach for the treatment of Her-2/neu-positive human cancer. Amplification and/or over-expression of Her-2/neu occur in multiple human malignancies and are associated with poor prognosis. Her-2/neu proto-oncogene is a suitable target for cancer immunotherapy. We have developed and characterized a murine monoclonal anti-Id antibody, 6D12 that mimics a specific epitope of Her-2/neu and can be used as a surrogate antigen for Her-2/neu. In this study, the efficacy of 6D12 as a tumor vaccine was evaluated in a murine tumor model. Immunization of immunocompetent C57BL/6 mice with 6D12 conjugated to keyhole limpet hemocyanin and mixed with Freund's adjuvant or 6D12 combined with the adjuvant QS21 induced anti-6D12 as well as anti-Her-2/neu immunity. Her-2/neu-positive human breast carcinoma cells, SK-BR-3 reacted with immunized mice sera as determined by ELISA and flow cytometry. Flow cytometry analysis also demonstrated strong reactivity of immunized mice sera with human Her-2/neu transfected EL4 cells (EL4-Her-2), but no reactivity with nontransfected parental EL4 cells. Antibody dependent cellular cytotoxicity against EL4-Her-2 cells was also observed in presence of immune sera. Mice immunized with 6D12 were protected against a challenge with lethal doses of EL4-Her-2 cells, whereas no protection was observed against parental EL4 cells or when mice were immunized with an unrelated anti-Id antibody and challenged with EL4-Her-2 cells. These data suggest that anti-Id 6D12 vaccine can induce protective Her-2/neu specific antitumor immunity and may serve as a potential network antigen for the treatment of patients with Her-2/neu-positive tumors.

  14. Trastuzumab emtansine: first global approval.

    PubMed

    Ballantyne, Anita; Dhillon, Sohita

    2013-05-01

    Genentech and ImmunoGen are collaborating on the development of trastuzumab emtansine, a HER2 antibody-drug conjugate that comprises Genentech's trastuzumab antibody linked to ImmunoGen's anti-mitotic agent, mertansine (a maytansine derivative; also known as DM1). The conjugate combines two strategies: the anti-HER2 activity of trastuzumab, and the targeted intracellular delivery of mertansine, a tubulin polymerisation inhibitor which interferes with mitosis and promotes apoptosis. The linker in trastuzumab emtansine is a non-reducible thioether linker, N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC, designated MCC after conjugation). Trastuzumab emtansine (Kadcyla™) has been launched in the USA as second-line monotherapy for HER2-positive metastatic breast cancer, and has been filed for approval in the EU and Japan in this indication. Trastuzumab emtansine is in phase III development as first-line combination therapy or monotherapy for metastatic HER2-positive breast cancer, and as third-line monotherapy for metastatic HER2-positive breast cancer. Phase II development is underway for early-stage breast cancer and phase II/III development is underway in patients with HER2-positive gastric cancer. This article summarizes the milestones in the development of trastuzumab emtansine leading to this first approval for the treatment of patients with HER2-positive, metastatic breast cancer who previously received trastuzumab and a taxane, separately or in combination.

  15. Clinical Characteristics and Prognosis of Pregnancy-Associated Breast Cancer: Poor Survival of Luminal B Subtype.

    PubMed

    Bae, Soo Youn; Jung, Seung Pil; Jung, Eun Sung; Park, Sung Min; Lee, Se Kyung; Yu, Jong Han; Lee, Jeong Eon; Kim, Seok Won; Nam, Seok Jin

    2018-06-18

    Pregnancy-associated breast cancer (PABC) is rare and is generally defined as breast cancer diagnosed during pregnancy or within 1 year of delivery. The average ages of marriage and childbearing are increasing, and PABC is expected to also increase. This study is intended to increase understanding of the characteristics of PABC. A database of 2,810 patients with breast cancer diagnosed when they were less than 40 years of age was reviewed. The clinicopathological factors and survival of PABC (40 patients) were compared to those of patients with young breast cancer (YBC, non-pregnant or over 12 months after delivery; 2,770 patients). PABC had significantly lower estrogen receptor (ER) and progesterone receptor (PR) expression (ER-positive 50.0%, PR-positive 45.0%) and higher HER2 overexpression (38.5%) than YBC. The most common subtype of PABC was triple-negative breast cancer (TNBC; 35.9%), and luminal A subtype represented only 7.7% of cases. In univariate analysis, PABC had significantly worse disease-free survival (DFS) and breast cancer-specific survival (BCSS) compared to YBC. In multivariate analysis, PABC was associated with worse BCSS (HR 4.0, 95% CI 1.2-12.9, p = 0.019) and survival, but there was no difference in DFS between PABC and YBC. In subgroup analysis by subtype, luminal B subtype of PABC showed worse DFS (HR 3.5; 95% CI 1.1-11.2, p = 0.039) and BCSS (HR 10.2, 95% CI 1.2-87.1, p = 0.035), especially with high Ki67. However, no differences were demonstrated in other subtypes. In this study, PABC showed lower expression of ER/PR, higher overexpression of HER2, fewer luminal A subtype, and more TNBC subtype compared to YBC. PABC had worse BCSS, especially luminal B subtype, compared to YBC. © 2018 S. Karger AG, Basel.

  16. Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer

    NASA Astrophysics Data System (ADS)

    Vandenberghe, Michel E.; Scott, Marietta L. J.; Scorer, Paul W.; Söderberg, Magnus; Balcerzak, Denis; Barker, Craig

    2017-04-01

    Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in the interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have the potential to supplement pathologist expertise to ensure constant diagnostic accuracy. We developed a computational approach based on deep learning that automatically scores HER2, a biomarker that defines patient eligibility for anti-HER2 targeted therapies in breast cancer. In a cohort of 71 breast tumour resection samples, automated scoring showed a concordance of 83% with a pathologist. The twelve discordant cases were then independently reviewed, leading to a modification of diagnosis from initial pathologist assessment for eight cases. Diagnostic discordance was found to be largely caused by perceptual differences in assessing HER2 expression due to high HER2 staining heterogeneity. This study provides evidence that deep learning aided diagnosis can facilitate clinical decision making in breast cancer by identifying cases at high risk of misdiagnosis.

  17. High-level SLP-2 expression and HER-2/neu protein expression are associated with decreased breast cancer patient survival.

    PubMed

    Cao, Wenfeng; Zhang, Bin; Liu, Yanxue; Li, Hongtao; Zhang, Shiwu; Fu, Li; Niu, Yun; Ning, Liansheng; Cao, Xuchen; Liu, Zhihua; Sun, Baocun

    2007-09-01

    There is sufficient evidence that human stomatin-like protein 2 (SLP-2) is a novel cancer-related gene. Its protein is overexpressed in many human cancers. SLP-2 can contribute to the promotion of cell growth, cell adhesion, and tumorigenesis in esophageal squamous cell carcinoma and lymph node metastasis in laryngeal squamous cell carcinoma. Immunohistochemical detection of SLP-2, estrogen and progesterone receptors, and HER-2/neu were performed on 263 cases of primary invasive breast cancer with a tissue microarray. Of 263 cases, 138 (52.5%) showed high expression of SLP-2 protein, and 125 (47.5%) showed low or absent expression. In addition, there were significant positive associations between tumor stage and size (P = .020), lymph node metastasis (P < .001), clinical stage (P < .001), distant metastasis (P = .002), and HER-2/neu protein expression (P = .037) and high-level SLP-2 expression. High-level SLP-2 expression was associated with decreased overall survival (P = .011) and was more often found in patients with tumors larger than 20 mm, lymph node metastasis, advanced clinical stage, distant metastasis, and HER-2/neu protein-positive expression. More important, lymph node metastasis, HER-2/neu-positive expression, and high-level SLP-2 expression were associated with significantly decreased survival.

  18. Increased risk of brain metastases in women with breast cancer and p16 expression in metastatic lymph-nodes.

    PubMed

    Furet, Elise; El Bouchtaoui, Morad; Feugeas, Jean-Paul; Miquel, Catherine; Leboeuf, Christophe; Beytout, Clémentine; Bertheau, Philippe; Le Rhun, Emilie; Bonneterre, Jacques; Janin, Anne; Bousquet, Guilhem

    2017-06-06

    Metastatic breast cancer is a leading cause of mortality in women, partly on account of brain metastases. However, the mechanisms by which cancer cells cross the blood-brain barrier remain undeciphered. Most molecular studies predicting metastatic risk have been performed on primary breast cancer samples. Here we studied metastatic lymph-nodes from patients with breast cancers to identify markers associated with the occurrence of brain metastases. Transcriptomic analyses identified CDKN2A/p16 as a gene potentially associated with brain metastases. Fifty-two patients with HER2-overexpressing or triple-negative breast carcinoma with lymph nodes and distant metastases were included in this study. Transcriptomic analyses were performed on laser-microdissected tumor cells from 28 metastatic lymph-nodes. Supervised analyses compared the transcriptomic profiles of women who developed brain metastases and those who did not. As a validation series, we studied metastatic lymph-nodes from 24 other patients.Immunohistochemistry investigations showed that p16 mean scores were significantly higher in patients with brain metastases than in patients without (7.4 vs. 1.7 respectively, p < 0.01). This result was confirmed on the validation series. Multivariate analyses showed that the p16 score was the only variable positively associated with the risk of brain metastases (p = 0.01).With the same threshold of 5 for p16 scores using a Cox model, overall survival was shorter in women with a p16 score over 5 in both series. The risk of brain metastases in women with HER2-overexpressing or triple-negative breast cancer could be better assessed by studying p16 protein expression on surgically removed axillary lymph-nodes.

  19. Effects of Csk Homologous Kinase Overexpression on HER2/Neu-Mediated Signal Transduction Pathways in Breast Cancer Cells

    DTIC Science & Technology

    2005-04-01

    several SH2 domains. The 5112 domains of CHE, Csk, Src, Lck, Shc, and phospholipase Cyl (PLCy1) were aligned using the T- COFFEE program (available at...iSC-Double-labeled protein samples or 15N_ acrylamide gel and then transferred onto Immobilon-PM membranes. bacteria in Bound proteins were

  20. Alteration of topoisomerase II-alpha gene in human breast cancer: association with responsiveness to anthracycline-based chemotherapy.

    PubMed

    Press, Michael F; Sauter, Guido; Buyse, Marc; Bernstein, Leslie; Guzman, Roberta; Santiago, Angela; Villalobos, Ivonne E; Eiermann, Wolfgang; Pienkowski, Tadeusz; Martin, Miguel; Robert, Nicholas; Crown, John; Bee, Valerie; Taupin, Henry; Flom, Kerry J; Tabah-Fisch, Isabelle; Pauletti, Giovanni; Lindsay, Mary-Ann; Riva, Alessandro; Slamon, Dennis J

    2011-03-01

    Approximately 35% of HER2-amplified breast cancers have coamplification of the topoisomerase II-alpha (TOP2A) gene encoding an enzyme that is a major target of anthracyclines. This study was designed to evaluate whether TOP2A gene alterations may predict incremental responsiveness to anthracyclines in some breast cancers. A total of 4,943 breast cancers were analyzed for alterations in TOP2A and HER2. Primary tumor tissues from patients with metastatic breast cancer treated in a trial of chemotherapy plus/minus trastuzumab were studied for amplification/deletion of TOP2A and HER2 as a test set followed by evaluation of malignancies from two separate, large trials for changes in these same genes as a validation set. Association between these alterations and clinical outcomes was determined. Test set cases containing HER2 amplification treated with doxorubicin and cyclophosphamide (AC) plus trastuzumab, demonstrated longer progression-free survival compared to those treated with AC alone (P = .0002). However, patients treated with AC alone whose tumors contain HER2/TOP2A coamplification experienced a similar improvement in survival (P = .004). Conversely, for patients treated with paclitaxel, HER2/TOP2A coamplification was not associated with improved outcomes. These observations were confirmed in a larger validation set, where HER2/TOP2A coamplification was again associated with longer survival when only anthracycline-containing chemotherapy was used for treatment compared with outcome in HER2-positive cancers lacking TOP2A coamplification. In a study involving nearly 5,000 breast malignancies, both test set and validation set demonstrate that TOP2A coamplification, not HER2 amplification, is the clinically useful predictive marker of an incremental response to anthracycline-based chemotherapy. Absence of HER2/TOP2A coamplification may indicate a more restricted efficacy advantage for breast cancers than previously thought.

  1. Alteration of Topoisomerase II–Alpha Gene in Human Breast Cancer: Association With Responsiveness to Anthracycline-Based Chemotherapy

    PubMed Central

    Press, Michael F.; Sauter, Guido; Buyse, Marc; Bernstein, Leslie; Guzman, Roberta; Santiago, Angela; Villalobos, Ivonne E.; Eiermann, Wolfgang; Pienkowski, Tadeusz; Martin, Miguel; Robert, Nicholas; Crown, John; Bee, Valerie; Taupin, Henry; Flom, Kerry J.; Tabah-Fisch, Isabelle; Pauletti, Giovanni; Lindsay, Mary-Ann; Riva, Alessandro; Slamon, Dennis J.

    2011-01-01

    Purpose Approximately 35% of HER2-amplified breast cancers have coamplification of the topoisomerase II-alpha (TOP2A) gene encoding an enzyme that is a major target of anthracyclines. This study was designed to evaluate whether TOP2A gene alterations may predict incremental responsiveness to anthracyclines in some breast cancers. Methods A total of 4,943 breast cancers were analyzed for alterations in TOP2A and HER2. Primary tumor tissues from patients with metastatic breast cancer treated in a trial of chemotherapy plus/minus trastuzumab were studied for amplification/deletion of TOP2A and HER2 as a test set followed by evaluation of malignancies from two separate, large trials for changes in these same genes as a validation set. Association between these alterations and clinical outcomes was determined. Results Test set cases containing HER2 amplification treated with doxorubicin and cyclophosphamide (AC) plus trastuzumab, demonstrated longer progression-free survival compared to those treated with AC alone (P = .0002). However, patients treated with AC alone whose tumors contain HER2/TOP2A coamplification experienced a similar improvement in survival (P = .004). Conversely, for patients treated with paclitaxel, HER2/TOP2A coamplification was not associated with improved outcomes. These observations were confirmed in a larger validation set, where HER2/TOP2A coamplification was again associated with longer survival when only anthracycline-containing chemotherapy was used for treatment compared with outcome in HER2-positive cancers lacking TOP2A coamplification. Conclusion In a study involving nearly 5,000 breast malignancies, both test set and validation set demonstrate that TOP2A coamplification, not HER2 amplification, is the clinically useful predictive marker of an incremental response to anthracycline-based chemotherapy. Absence of HER2/TOP2A coamplification may indicate a more restricted efficacy advantage for breast cancers than previously thought. PMID:21189395

  2. Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer

    DTIC Science & Technology

    2012-03-01

    patients with early stage ErbB2-overexpressing biopsies and ER- atypia . 13 REFERENCES: 1. Jordan VC. Tamoxifen for breast cancer prevention. Proc Soc...Summary01-03-2012 Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer Shalini Jain University of Texas M.D. Anderson Cancer Center Houston...SUBTITLE “Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer” 5a. CONTRACT NUMBER W81XWH-11-1-0004 5b. GRANT NUMBER

  3. ABP 980: promising trastuzumab biosimilar for HER2-positive breast cancer.

    PubMed

    Paplomata, Elisavet; Nahta, Rita

    2018-03-01

    Approval of the HER2-targeted antibody trastuzumab dramatically improved outcomes for patients with HER2-positive breast cancer. Multiple trastuzumab biosimilars, including ABP 980, are in clinical development. Biosimilars are not identical to the reference biologic, but exhibit equivalence and safety in analytical and clinical studies. Areas covered: A brief introduction to trastuzumab, overview of trastuzumab biosimilars, and detailed review of ABP 980 preclinical and clinical studies are included. We searched PubMed and 2016-2017 ASCO and ESMO conference proceedings for 'ABP 980' or 'trastuzumab biosimilar'. 'ABP 980 and breast cancer' or 'trastuzumab biosimilar and breast cancer' were used to search clinicaltrials.gov for phase III trials. Analytical studies of ABP 980 pharmacokinetics (PK) or pharmacodynamics (PD), phase I studies of ABP 980 safety and PK/PD, and phase III studies of clinical efficacy vs trastuzumab are included. Expert opinion: Questions remain regarding long-term impact of biosimilars on overall healthcare costs, insurance coverage of multiple approved biosimilars, and extensive clinical safety and efficacy follow-up. By producing a competitive market, trastuzumab biosimilars are anticipated to improve access to standard of care therapies, although real-world evidence remains to be obtained. Increased global access to HER2-targeted therapy may eventually alter the landscape of breast cancer and survival rates.

  4. Current data of targeted therapies for the treatment of triple-negative advanced breast cancer: empiricism or evidence-based?

    PubMed

    Petrelli, Fausto; Cabiddu, Mary; Ghilardi, Mara; Barni, Sandro

    2009-10-01

    Approximately 10 - 15% of breast carcinomas (BCs) are known to be 'triple-negative (TN) receptor' (i.e., not expressing ER or PR and not exhibiting overexpression and/or gene amplification of HER2-neu). Triple-negative BCs comprise approximately 85% of all basal-type tumours. Classically, basal-like BCs have been characterised by low expression of ER, PR, and HER2 neu and high expression of CK5, CK14, caveolin-1, CAIX, p63, and EGFR (HER1), which reflects the mammary gland basal/myoepithelial cell component. Although there is no standard first-line chemotherapy regimen for metastatic TN BCs, anthracycline- and taxane-containing regimens are acceptable treatments. A large number of agents, including DNA-damaging agents, EGFR inhibitors, antiangiogenic agents and novel taxane formulations are currently being tested in clinical trials for first-line and pretreated patients. Limited experiences with platinum salts, poly(ADP-ribose) polymerase (PARP) inhibitors, cetuximab, bevacizumab and ixabepilone have been published in recent years and will be reported. Novel immunohistochemistry analysis for identification of basal like/TN phenotype are awaited to correctly select this population. The clinical trials investigating new agents have to be designed for a specific (and possibly large) subset of patients with BC. In the future, a gene array platform with greater sensitivity for distinguishing the various BC subtypes, as well as having the power to predict the molecular biology of the disease, will be an indispensible tool for treatment selection. Currently, treatment of TN BC is more empirical than evidence-based. The cornerstone of treatment is chemotherapy, but in the near future, novel target agents will emerge as possible partners.

  5. Advantages and disadvantages of technologies for HER2 testing in breast cancer specimens.

    PubMed

    Furrer, Daniela; Sanschagrin, François; Jacob, Simon; Diorio, Caroline

    2015-11-01

    Human epidermal growth factor receptor 2 (HER2) plays a central role as a prognostic and predictive marker in breast cancer specimens. Reliable HER2 evaluation is central to determine the eligibility of patients with breast cancer to targeted anti-HER2 therapies such as trastuzumab and lapatinib. Presently, several methods exist for the determination of HER2 status at different levels (protein, RNA, and DNA level). In this review, we discuss the main advantages and disadvantages of the techniques developed so far for the evaluation of HER2 status in breast cancer specimens. Each technique has its own advantages and disadvantages. It is therefore not surprising that no consensus has been reached so far on which technique is the best for the determination of HER2 status. Currently, emphasis must be put on standardization of procedures, internal and external quality control assessment, and competency evaluation of already existing methods to ensure accurate, reliable, and clinically meaningful test results. Development of new robust and accurate diagnostic assays should also be encouraged. In addition, large clinical trials are warranted to identify the technique that most reliably predicts a positive response to anti-HER2 drugs. Copyright© by the American Society for Clinical Pathology.

  6. Data set of the protein expression profiles of Luminal A, Claudin-low and overexpressing HER2+ breast cancer cell lines by iTRAQ labelling and tandem mass spectrometry

    PubMed Central

    Calderón-González, Karla Grisel; Valero Rustarazo, Ma Luz; Labra-Barrios, Maria Luisa; Bazán-Méndez, César Isaac; Tavera-Tapia, Alejandra; Herrera-Aguirre, Marí;aEsther; Sánchez del Pino, Manuel M.; Gallegos-Pérez, José Luis; González-Márquez, Humberto; Hernández-Hernández, Jose Manuel; León-Ávila, Gloria; Rodríguez-Cuevas, Sergio; Guisa-Hohenstein, Fernando; Luna-Arias, Juan Pedro

    2015-01-01

    Breast cancer is the most common and the leading cause of mortality in women worldwide. There is a dire necessity of the identification of novel molecules useful in diagnosis and prognosis. In this work we determined the differentially expression profiles of four breast cancer cell lines compared to a control cell line. We identified 1020 polypeptides labelled with iTRAQ with more than 95% in confidence. We analysed the common proteins in all breast cancer cell lines through IPA software (IPA core and Biomarkers). In addition, we selected the specific overexpressed and subexpressed proteins of the different molecular classes of breast cancer cell lines, and classified them according to protein class and biological process. Data in this article is related to the research article “Determination of the protein expression profiles of breast cancer cell lines by Quantitative Proteomics using iTRAQ Labelling and Tandem Mass Spectrometry” (Calderón-González et al. [1] in press). PMID:26217805

  7. Polyethylene glycol-conjugated HER2-targeted peptides as a nuclear imaging probe for HER2-overexpressed gastric cancer detection in vivo.

    PubMed

    Guan, Siao-Syun; Wu, Cheng-Tien; Chiu, Chen-Yuan; Luo, Tsai-Yueh; Wu, Jeng-Yih; Liao, Tse-Zung; Liu, Shing-Hwa

    2018-06-19

    The human epidermal growth factor receptor 2 (HER2) involved proliferation, angiogenesis, and reduced apoptosis in gastric cancer (GC), which is a common target for tumor therapy. HER2 is usually overexpressed in more than 15% GC patients, developing a reliable diagnostic tool for tumor HER2 detection is important. In this study, we attend to use polyethylene glycol (PEG) linked anti-HER2/neu peptide (AHNP-PEG) as a nuclear imaging agent probe for HER2 detection in GC xenograft animal model. The HER2 expression of human sera and tissues were detected in GC patients and normal subjects. GC cell lines NCI-N87 (high HER2 levels) and MKN45 (low HER2 levels) were treated with AHNP-PEG to assess the cell viability and HER2 binding ability. The NCI-N87 was treated with AHNP-PEG to observe the level and phosphorylation of HER2. The MKN45 and NCI-N87-induced xenograft mice were intravenous injection with fluorescence labeled AHNP-PEG for detecting in vivo fluorescence imaging properties and biodistribution. The AHNP-PEG was conjugated with diethylenetriaminopentaacetic acid (DTPA) for indium-111 labeling ( 111 In-DTPA-AHNP-PEG). The stability of was assessed in vitro. The imaging properties and biodistribution of 111 In-DTPA-AHNP-PEG were observed in NCI-N87-induced xenograft mice. The serum HER2 (sHER2) levels in GC patients were significantly higher than the normal subjects. The sHER2 levels were correlated with the tumor HER2 levels in different stages of GC patients. The AHNP-PEG inhibited the cell growth and down-regulated HER2 phosphorylation in HER2-overexpressed human GC cells (NCI-N87) via specific HER2 interaction of cell surface. In addition, the GC tumor tissues from HER2-postive xenograft mice presented higher HER2 fluorescence imaging as compared to HER2-negative group. The HER2 levels in the tumor tissues were also higher than other organs in NCI-N87-induced xenograft mice. Finally, we further observed that the 111 In-DTPA-AHNP-PEG was significantly enhanced in tumor tissues of NCI-N87-induced xenograft mice compared to control. These findings suggest that the sHER2 measurement may be as a potential tool for detecting HER2 expressions in GC patients. The radioisotope-labeled AHNP-PEG may be useful to apply in GC patients for HER2 nuclear medicine imaging.

  8. Photochemical activation of MH3-B1/rGel: a HER2-targeted treatment approach for ovarian cancer

    PubMed Central

    Bull-Hansen, Bente; Berstad, Maria B.; Berg, Kristian; Cao, Yu; Skarpen, Ellen; Fremstedal, Ane Sofie; Rosenblum, Michael G.; Peng, Qian; Weyergang, Anette

    2015-01-01

    HER2-targeted therapy has been shown to have limited efficacy in ovarian cancer despite frequent overexpression of this receptor. Photochemical internalization (PCI) is a modality for cytosolic drug delivery, currently undergoing clinical evaluation. In the present project we studied the application of PCI in combination with the HER2-targeted recombinant fusion toxin, MH3-B1/rGel, for the treatment of ovarian cancer. The SKOV-3 cell line, resistant to trastuzumab- and MH3-B1/rGel- monotherapy, was shown to respond strongly to PCI of MH3-B1/rGel to a similar extent as observed for the treatment-sensitive SK-BR-3 breast cancer cells. Extensive hydrolytic degradation of MH3-B1/rGel in acidic endocytic vesicles was indicated as the mechanism of MH3-B1/rGel resistance in SKOV-3 cells. This was shown by the positive Pearson's correlation coefficient between Alexa488-labeled MH3-B1/rGel and Lysotracker in SKOV-3 cells in contrast to the negative Pearson's correlation coefficient in SK-BR-3 cells. The application of PCI to induce the release of MH3-B1/rGel was also demonstrated to be effective on SKOV-3 xenografts. Application of PCI with MH3-B1/rGel was further found highly effective in the HER2 expressing HOC-7 and NuTu-19 ovarian cancer cell lines. The presented results warrant future development of PCI in combination with MH3-B1/rGel as a novel therapeutic approach in preclinical models of ovarian cancer. PMID:26002552

  9. Validation of a fully automated HER2 staining kit in breast cancer.

    PubMed

    Moelans, Cathy B; Kibbelaar, Robby E; van den Heuvel, Marius C; Castigliego, Domenico; de Weger, Roel A; van Diest, Paul J

    2010-01-01

    Testing for HER2 amplification and/or overexpression is currently routine practice to guide Herceptin therapy in invasive breast cancer. At present, HER2 status is most commonly assessed by immunohistochemistry (IHC). Standardization of HER2 IHC assays is of utmost clinical and economical importance. At present, HER2 IHC is most commonly performed with the HercepTest which contains a polyclonal antibody and applies a manual staining procedure. Analytical variability in HER2 IHC testing could be diminished by a fully automatic staining system with a monoclonal antibody. 219 invasive breast cancers were fully automatically stained with the monoclonal antibody-based Oracle HER2 Bond IHC kit and manually with the HercepTest. All cases were tested for amplification with chromogenic in situ hybridization (CISH). HercepTest yielded an overall sharper membrane staining, with less cytoplasmic and stromal background than Oracle in 17% of cases. Overall concordance between both IHC techniques was 89% (195/219) with a kappa value of 0.776 (95% CI 0.698-0.854), indicating a substantial agreement. Most (22/24) discrepancies between HercepTest and Oracle showed a weaker staining for Oracle. Thirteen of the 24 discrepant cases were high-level HER2 amplified by CISH, and in 12 of these HercepTest IHC better reflected gene amplification status. All the 13 HER2 amplified discrepant cases were at least 2+ by HercepTest, while 10/13 of these were at least 2+ for Oracle. Considering CISH as gold standard, sensitivity of HercepTest and Oracle was 91% and 83%, and specificity was 94% and 98%, respectively. Positive and negative predictive values for HercepTest and Oracle were 90% and 95% for HercepTest and 96% and 91% for Oracle, respectively. Fully-automated HER2 staining with the monoclonal antibody in the Oracle kit shows a high level of agreement with manual staining by the polyclonal antibody in the HercepTest. Although Oracle shows in general some more cytoplasmic staining and may be slightly less sensitive in picking up HER2 amplified cases, it shows a higher specificity and may be considered as an alternative method to evaluate the HER2 expression in breast cancer with potentially less analytical variability.

  10. Combating HER2-overexpressing breast cancer through induction of calreticulin exposure by Tras-Permut CrossMab

    PubMed Central

    Zhang, Fan; Zhang, Jie; Liu, Moyan; Zhao, Lichao; LingHu, RuiXia; Feng, Fan; Gao, Xudong; Jiao, Shunchang; Zhao, Lei; Hu, Yi; Yang, Junlan

    2015-01-01

    Although trastuzumab has succeeded in breast cancer treatment, acquired resistance is one of the prime obstacles for breast cancer therapies. There is an urgent need to develop novel HER2 antibodies against trastuzumab resistance. Here, we first rational designed avidity-imporved trastuzumab and pertuzumab variants, and explored the correlation between the binding avidity improvement and their antitumor activities. After characterization of a pertuzumab variant L56TY with potent antitumor activities, a bispecific immunoglobulin G-like CrossMab (Tras-Permut CrossMab) was generated from trastuzumab and binding avidity-improved pertuzumab variant L56TY. Although, the antitumor efficacy of trastuzumab was not enhanced by improving its binding avidity, binding avidity improvement could significantly increase the anti-proliferative and antibody-dependent cellular cytotoxicity (ADCC) activities of pertuzumab. Further studies showed that Tras-Permut CrossMab exhibited exceptional high efficiency to inhibit the progression of trastuzumab-resistant breast cancer. Notably, we found that calreticulin (CRT) exposure induced by Tras-Permut CrossMab was essential for induction of tumor-specific T cell immunity against tumor recurrence. These data indicated that simultaneous blockade of HER2 protein by Tras-Permut CrossMab could trigger CRT exposure and subsequently induce potent tumor-specific T cell immunity, suggesting it could be a promising therapeutic strategy against trastuzumab resistance. PMID:25949918

  11. Resistance to therapy in estrogen receptor positive and human epidermal growth factor 2 positive breast cancers: progress with latest therapeutic strategies.

    PubMed

    Lousberg, Laurence; Collignon, Joëlle; Jerusalem, Guy

    2016-11-01

    In this article, we focus on the subtype of estrogen receptor (ER)-positive, human epidermal growth factor 2 (HER2)-positive breast cancer (BC). Preclinical and clinical data indicate a complex molecular bidirectional crosstalk between the ER and HER2 pathways. This crosstalk probably constitutes one of the key mechanisms of drug resistance in this subclass of BC. Delaying or even reversing drug resistance seems possible by targeting pathways implicated in this crosstalk. High-risk patients currently receive anti-HER2 therapy, chemotherapy and endocrine therapy in the adjuvant setting. In metastatic cases, most patients receive a combination of anti-HER2 therapy and chemotherapy. Only selected patients presenting more indolent disease are candidates for combinations of anti-HER2 therapy and endocrine therapy. However, relative improvements in progression-free survival by chemotherapy-based regimens are usually lower in ER-positive patients than the ER-negative and HER2-positive subgroup. Consequently, new approaches aiming to overcome endocrine therapy resistance by adding targeted therapies to endocrine therapy based regimens are currently explored. In addition, dual blockade of HER2 or the combination of trastuzumab and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOP) inhibitors targeting the downstream pathway are strategies to overcome resistance to trastuzumab. This may lead in the near future to the less frequent use of chemotherapy-based treatment options in ER-positive, HER2-positive BC.

  12. Genetic heterogeneity and actionable mutations in HER2-positive primary breast cancers and their brain metastases.

    PubMed

    De Mattos-Arruda, Leticia; Ng, Charlotte K Y; Piscuoglio, Salvatore; Gonzalez-Cao, Maria; Lim, Raymond S; De Filippo, Maria R; Fusco, Nicola; Schultheis, Anne M; Ortiz, Carolina; Viteri, Santiago; Arias, Alexandra; Macedo, Gabriel S; Oliveira, Mafalda; Gomez, Patricia; Teixidó, Cristina; Nuciforo, Paolo; Peg, Vicente; Saura, Cristina; Ramon Y Cajal, Santiago; Casas, Francesc Tresserra; Weigelt, Britta; Cortes, Javier; Seoane, Joan; Reis-Filho, Jorge S

    2018-04-17

    Brain metastases constitute a challenge in the management of patients with HER2-positive breast cancer treated with anti-HER2 systemic therapies. Here we sought to define the repertoire of mutations private to or enriched for in HER2-positive brain metastases. Massively parallel sequencing targeting all exons of 254 genes frequently mutated in breast cancers and/or related to DNA repair was used to characterize the spatial and temporal heterogeneity of HER2-positive breast cancers and their brain metastases in six patients. Data were analyzed with state-of-the-art bioinformatics algorithms and selected mutations were validated with orthogonal methods. Spatial and temporal inter-lesion genetic heterogeneity was observed in the HER2-positive brain metastases from an index patient subjected to a rapid autopsy. Genetic alterations restricted to the brain metastases included mutations in cancer genes FGFR2, PIK3CA and ATR , homozygous deletion in CDKN2A and amplification in KRAS . Shifts in clonal composition and the acquisition of additional mutations in the progression from primary HER2-positive breast cancer to brain metastases following anti-HER2 therapy were investigated in additional five patients. Likely pathogenic mutations private to or enriched in the brain lesions affected cancer and clinically actionable genes, including ATR, BRAF, FGFR2, MAP2K4, PIK3CA, RAF1 and TP53 . Changes in clonal composition and the acquisition of additional mutations in brain metastases may affect potentially actionable genes in HER2-positive breast cancers. Our observations have potential clinical implications, given that treatment decisions for patients with brain metastatic disease are still mainly based on biomarkers assessed in the primary tumor.

  13. Role of cannabinoid receptor CB2 in HER2 pro-oncogenic signaling in breast cancer.

    PubMed

    Pérez-Gómez, Eduardo; Andradas, Clara; Blasco-Benito, Sandra; Caffarel, María M; García-Taboada, Elena; Villa-Morales, María; Moreno, Estefanía; Hamann, Sigrid; Martín-Villar, Ester; Flores, Juana M; Wenners, Antonia; Alkatout, Ibrahim; Klapper, Wolfram; Röcken, Christoph; Bronsert, Peter; Stickeler, Elmar; Staebler, Annette; Bauer, Maret; Arnold, Norbert; Soriano, Joaquim; Pérez-Martínez, Manuel; Megías, Diego; Moreno-Bueno, Gema; Ortega-Gutiérrez, Silvia; Artola, Marta; Vázquez-Villa, Henar; Quintanilla, Miguel; Fernández-Piqueras, José; Canela, Enric I; McCormick, Peter J; Guzmán, Manuel; Sánchez, Cristina

    2015-06-01

    Pharmacological activation of cannabinoid receptors elicits antitumoral responses in different cancer models. However, the biological role of these receptors in tumor physio-pathology is still unknown. We analyzed CB2 cannabinoid receptor protein expression in two series of 166 and 483 breast tumor samples operated in the University Hospitals of Kiel, Tübingen, and Freiburg between 1997 and 2010 and CB2 mRNA expression in previously published DNA microarray datasets. The role of CB2 in oncogenesis was studied by generating a mouse line that expresses the human V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 2 (HER2) rat ortholog (neu) and lacks CB2 and by a variety of biochemical and cell biology approaches in human breast cancer cells in culture and in vivo, upon modulation of CB2 expression by si/shRNAs and overexpression plasmids. CB2-HER2 molecular interaction was studied by colocalization, coimmunoprecipitation, and proximity ligation assays. Statistical tests were two-sided. We show an association between elevated CB2 expression in HER2+ breast tumors and poor patient prognosis (decreased overall survival, hazard ratio [HR] = 0.29, 95% confidence interval [CI] = 0.09 to 0.71, P = .009) and higher probability to suffer local recurrence (HR = 0.09, 95% CI = 0.049 to 0.54, P = .003) and to develop distant metastases (HR = 0.33, 95% CI = 0.13 to 0.75, P = .009). We also demonstrate that genetic inactivation of CB2 impairs tumor generation and progression in MMTV-neu mice. Moreover, we show that HER2 upregulates CB2 expression by activating the transcription factor ELK1 via the ERK cascade and that an increased CB2 expression activates the HER2 pro-oncogenic signaling at the level of the tyrosine kinase c-SRC. Finally, we show HER2 and CB2 form heteromers in cancer cells. Our findings reveal an unprecedented role of CB2 as a pivotal regulator of HER2 pro-oncogenic signaling in breast cancer, and they suggest that CB2 may be a biomarker with prognostic value in these tumors. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Metastatic Extramammary Paget's Disease of Scrotum Responds Completely to Single Agent Trastuzumab in a Hemodialysis Patient: Case Report, Molecular Profiling and Brief Review of the Literature

    PubMed Central

    Barth, Peter; Dulaimi Al-Saleem, Essel; Edwards, Kristin W.; Millis, Sherri Z.; Wong, Yu-Ning; Geynisman, Daniel M.

    2015-01-01

    Extramammary Paget's disease (EMPD) is a rare cancer. Although EMPD is usually noninvasive and treated with local therapy, once metastatic the prognosis of EMPD is poor and treatment options are limited. We report a case of a complete response to single agent trastuzumab in a hemodialysis patient with metastatic Her2/neu overexpressed EMPD of the scrotum. Molecular profiling of his case as well as 12 other EMPD and 8 mammary Paget disease (MPD) cases was completed and revealed multiple biomarker aberrations. Overexpression of Her2 was frequently noted (30%–40%) in both EMPD and MPD patients and when present can be effectively treated with Her2 targeted agents. Trastuzumab therapy can be safely utilized in a hemodialysis patient. In addition, multiple protein overexpression and loss were seen in EMPD including PD-1, PD-L1, PTEN, and AR as well as PIK3CA mutation. These findings may lead to possible therapeutic interventions targeting these pathways in a disease with few effective treatment options. PMID:25692060

  15. Pazopanib Inhibits the Activation of PDGFRβ-Expressing Astrocytes in the Brain Metastatic Microenvironment of Breast Cancer Cells

    PubMed Central

    Gril, Brunilde; Palmieri, Diane; Qian, Yongzhen; Anwar, Talha; Liewehr, David J.; Steinberg, Seth M.; Andreu, Zoraida; Masana, Daniel; Fernández, Paloma; Steeg, Patricia S.; Vidal-Vanaclocha, Fernando

    2014-01-01

    Brain metastases occur in more than one-third of metastatic breast cancer patients whose tumors overexpress HER2 or are triple negative. Brain colonization of cancer cells occurs in a unique environment, containing microglia, oligodendrocytes, astrocytes, and neurons. Although a neuroinflammatory response has been documented in brain metastasis, its contribution to cancer progression and therapy remains poorly understood. Using an experimental brain metastasis model, we characterized the brain metastatic microenvironment of brain tropic, HER2-transfected MDA-MB-231 human breast carcinoma cells (231-BR-HER2). A previously unidentified subpopulation of metastasis-associated astrocytes expressing phosphorylated platelet-derived growth factor receptor β (at tyrosine 751; p751-PDGFRβ) was identified around perivascular brain micrometastases. p751-PDGFRβ+ astrocytes were also identified in human brain metastases from eight craniotomy specimens and in primary cultures of astrocyte-enriched glial cells. Previously, we reported that pazopanib, a multispecific tyrosine kinase inhibitor, prevented the outgrowth of 231-BR-HER2 large brain metastases by 73%. Here, we evaluated the effect of pazopanib on the brain neuroinflammatory microenvironment. Pazopanib treatment resulted in 70% (P = 0.023) decrease of the p751-PDGFRβ+ astrocyte population, at the lowest dose of 30 mg/kg, twice daily. Collectively, the data identify a subpopulation of activated astrocytes in the subclinical perivascular stage of brain metastases and show that they are inhibitable by pazopanib, suggesting its potential to prevent the development of brain micrometastases in breast cancer patients. PMID:23583652

  16. BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A.

    PubMed

    Puppe, Julian; Drost, Rinske; Liu, Xiaoling; Joosse, Simon A; Evers, Bastiaan; Cornelissen-Steijger, Paulien; Nederlof, Petra; Yu, Qiang; Jonkers, Jos; van Lohuizen, Maarten; Pietersen, Alexandra M

    2009-01-01

    Treatment of breast cancer is becoming more individualized with the recognition of tumor subgroups that respond differently to available therapies. Breast cancer 1 gene (BRCA1)-deficient tumors are usually of the basal subtype and associated with poor survival rates, highlighting the need for more effective therapy. We investigated a mouse model that closely mimics breast cancer arising in BRCA1-mutation carriers to better understand the molecular mechanism of tumor progression and tested whether targeting of the Polycomb-group protein EZH2 would be a putative therapy for BRCA1-deficient tumors. Gene expression analysis demonstrated that EZH2 is overexpressed in BRCA1-deficient mouse mammary tumors. By immunohistochemistry we show that an increase in EZH2 protein levels is also evident in tumors from BRCA1-mutation carriers. EZH2 is responsible for repression of genes driving differentiation and could thus be involved in the undifferentiated phenotype of these tumors. Importantly, we show that BRCA1-deficient cancer cells are selectively dependent on their elevated EZH2 levels. In addition, a chemical inhibitor of EZH2, 3-deazaneplanocin A (DZNep), is about 20-fold more effective in killing BRCA1-deficient cells compared to BRCA1-proficient mammary tumor cells. We demonstrate by specific knock-down experiments that EZH2 overexpression is functionally relevant in BRCA1-deficient breast cancer cells. The effectiveness of a small molecule inhibitor indicates that EZH2 is a druggable target. The overexpression of EZH2 in all basal-like breast cancers warrants further investigation of the potential for targeting the genetic make-up of this particular breast cancer type.

  17. Targeted Nanodiamonds as Phenotype Specific Photoacoustic Contrast Agents for Breast Cancer

    PubMed Central

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Cheng, Kun; Yang, Xinmai; Chang, Huan-Cheng; Forrest, M. Laird

    2015-01-01

    Aim The aim is to develop irradiated nanodiamonds (INDs) as a molecularly-targeted contrast agent for high resolution and phenotype-specific detection of breast cancer with photoacoustic (PA) imaging. Materials & Methods The surface of acid treated radiation-damaged nanodiamonds was grafted with polyethylene glycol (PEG) to improve its stability and circulation time in blood, followed by conjugation to an anti-Human epidermal growth factor receptor-2 (HER2) peptide (KCCYSL) with a final nanoparticle size of ca. 92 nm. Immunocompetent mice bearing orthotopic HER2 positive or negative tumors were administered INDs and PA imaged using an 820-nm near infrared laser. Results PA images demonstrated that INDs accumulate in tumors and completely delineated the entire tumor within 10 hours. HER2 targeting significantly enhanced imaging of HER2-positive tumors. Pathological examination demonstrated INDs are non-toxic. Conclusions PA technology is adaptable to low-cost bedside medicine, and with new contrast agents described herein, PA can achieve high resolution (sub-mm) and phenotype specific monitoring of cancer growth. PMID:25723091

  18. The Transmodulation of HER2 and EGFR by Substance P in Breast Cancer Cells Requires c-Src and Metalloproteinase Activation.

    PubMed

    Garcia-Recio, Susana; Pastor-Arroyo, Eva M; Marín-Aguilera, Mercedes; Almendro, Vanessa; Gascón, Pedro

    2015-01-01

    Substance P (SP) is a pleiotropic cytokine/neuropeptide that enhances breast cancer (BC) aggressiveness by transactivating tyrosine kinase receptors like EGFR and HER2. We previously showed that SP and its cognate receptor NK-1 (SP/NK1-R) signaling modulates the basal phosphorylation of HER2 and EGFR in BC, increasing aggressiveness and drug resistance. In order to elucidate the mechanisms responsible for NK-1R-mediated HER2 and EGFR transactivation, we investigated the involvement of c-Src (a ligand-independent mediator) and of metalloproteinases (ligand-dependent mediators) in HER2/EGFR activation. Overexpression of NK-1R in MDA-MB-231 and its chemical inhibition in SK-BR-3, BT-474 and MDA-MB-468 BC cells significantly modulated c-Src activation, suggesting that this protein is a mediator of NK-1R signaling. In addition, the c-Src inhibitor 4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline prevented SP-induced activation of HER2. On the other hand, SP-dependent phosphorylation of HER2 and EGFR decreased substantially in the presence of the MMP inhibitor 1-10, phenanthroline monohydrate, and the dual inhibition of both c-Src and MMP almost abolished the activation of HER2 and EGFR. Moreover, the use of these inhibitors demonstrated that this Src and MMP-dependent signaling is important to the cell viability and migration capacity of HER2+ and EGFR+ cell lines. Our results indicate that the transactivation of HER2 and EGFR by the pro-inflammatory cytokine/neuropeptide SP in BC cells is a c-Src and MMP-dependent process.

  19. Regional Nodal Irradiation After Breast Conserving Surgery for Early HER2-Positive Breast Cancer: Results of a Subanalysis From the ALTTO Trial.

    PubMed

    Gingras, Isabelle; Holmes, Eileen; De Azambuja, Evandro; Nguyen, David H A; Izquierdo, Miguel; Anne Zujewski, Jo; Inbar, Moshe; Naume, Bjorn; Tomasello, Gianluca; Gralow, Julie R; Wolff, Antonio C; Harris, Lyndsay; Gnant, Michael; Moreno-Aspitia, Alvaro; Piccart, Martine J; Azim, Hatem A

    2017-08-01

    Two randomized trials recently demonstrated that regional nodal irradiation (RNI) could reduce the risk of recurrence in early breast cancer; however, these trials were conducted in the pretrastuzumab era. Whether these results are applicable to human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients treated with anti-HER2-targeted therapy is unknown. This retrospective analysis was performed on patients with node-positive breast cancer who were enrolled in the Adjuvant Lapatinib and/or Trastuzumab Treatment Optimization phase III adjuvant trial and subjected to BCS. The primary objective of the present study was to examine the effect of RNI on disease-free survival (DFS). A multivariable cox regression analysis adjusted for number of positive lymph nodes, tumor size, grade, age, hormone receptors status, presence of macrometastatis, treatment arm, and chemotherapy timing was carried out to investigate the relationship between RNI and DFS. One thousand six hundred sixty-four HER2-positive breast cancer patients were included, of whom 878 (52.8%) had received RNI to the axillary, supraclavicular, and/or internal mammary lymph nodes. Patients in the RNI group had higher nodal burden and more frequently had tumors larger than 2 cm. At a median follow-up of 4.5 years, DFS was 84.3% in the RNI group and 88.3% in the non-RNI group. No differences in regional recurrence (0.9 % vs 0.6 %) or in overall survival (93.6% vs 95.3%) were observed between the two groups. After adjustment in multivariable analysis, there was no statistically significant association between RNI and DFS (hazard ratio = 0.96, 95% confidence interval = 0.71 to 1.29). Our analysis did not demonstrate a DFS benefit of RNI in HER2-positive, node-positive patients treated with adjuvant HER2-targeted therapy. The benefit of RNI in HER2-positive breast cancer needs further testing within randomized clinical trials. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. p95HER2 Methionine 611 Carboxy-Terminal Fragment Is Predictive of Trastuzumab Adjuvant Treatment Benefit in the FinHer Trial.

    PubMed

    Sperinde, Jeff; Huang, Weidong; Vehtari, Aki; Chenna, Ahmed; Kellokumpu-Lehtinen, Pirkko-Liisa; Winslow, John; Bono, Petri; Lie, Yolanda S; Petropoulos, Christos J; Weidler, Jodi; Joensuu, Heikki

    2018-03-13

    Purpose: Expression of p95HER2 (p95), a truncated form of the HER2 receptor, which lacks the trastuzumab binding site but retains kinase activity, has been reported as a prognostic biomarker for poor outcomes in patients with trastuzumab-treated HER2-positive metastatic breast cancer. The impact of p95 expression on trastuzumab treatment efficacy in early HER2-positive breast cancer is less clear. In the current study, p95 was tested as a predictive marker of trastuzumab treatment benefit in the HER2-positive subset of the FinHer adjuvant phase III trial. Experimental Design: In the FinHer trial, 232 patients with HER2-positive early breast cancer were randomized to receive chemotherapy plus 9 weeks of trastuzumab or no trastuzumab treatment. Quantitative p95 protein expression was measured in formalin-fixed paraffin-embedded samples using the p95 VeraTag assay (Monogram Biosciences), specific for the M611 form of p95. Quantitative HER2 protein expression was measured using the HERmark assay (Monogram Biosciences). Distant disease-free survival (DDFS) was used as the primary outcome measure. Results: In the arm receiving chemotherapy only, increasing log 10 (p95) correlated with shorter DDFS (HR, 2.0; P = 0.02). In the arm receiving chemotherapy plus trastuzumab ( N = 95), increasing log 10 (p95) was not correlated with a shorter DDFS. In a combined analysis of both treatment arms, high breast tumor p95 content was significantly correlated with trastuzumab treatment benefit in multivariate models (interaction P = 0.01). Conclusions: A high p95HER2/HER2 ratio identified patients with metastatic breast cancer with poor outcomes on trastuzumab-based therapies. Further investigation of the p95HER2/HER2 ratio as a potential prognostic or predictive biomarker for HER2-targeted therapy is warranted. Clin Cancer Res; 1-7. ©2018 AACR. ©2018 American Association for Cancer Research.

  1. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia.

    PubMed

    Li, Xin; Gonzalez, Maria E; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D; Kleer, Celina G

    2009-09-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with beta-catenin, inducing beta-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/beta-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with beta-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma.

  2. Targeted Overexpression of EZH2 in the Mammary Gland Disrupts Ductal Morphogenesis and Causes Epithelial Hyperplasia

    PubMed Central

    Li, Xin; Gonzalez, Maria E.; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D.; Kleer, Celina G.

    2009-01-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with β-catenin, inducing β-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/β-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with β-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma. PMID:19661437

  3. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device.

    PubMed

    Galletti, Giuseppe; Sung, Matthew S; Vahdat, Linda T; Shah, Manish A; Santana, Steven M; Altavilla, Giuseppe; Kirby, Brian J; Giannakakou, Paraskevi

    2014-01-07

    Circulating tumor cells (CTCs) have emerged as a reliable source of tumor cells, and their concentration has prognostic implications. CTC capture offers real-time access to cancer tissue without the need of an invasive biopsy, while their phenotypic and molecular interrogation can provide insight into the biological changes of the tumor that occur during treatment. The majority of the CTC capture methods are based on EpCAM expression as a surface marker of tumor-derived cells. However, EpCAM protein expression levels can be significantly down regulated during cancer progression as a consequence of the process of epithelial to mesenchymal transition. In this paper, we describe a novel HER2 (Human Epidermal Receptor 2)-based microfluidic device for the isolation of CTCs from peripheral blood of patients with HER2-expressing solid tumors. We selected HER2 as an alternative to EpCAM as the receptor is biologically and therapeutically relevant in several solid tumors, like breast cancer (BC), where it is overexpressed in 30% of the patients and expressed in 90%, and gastric cancer (GC), in which HER2 presence is identified in more than 60% of the cases. We tested the performance of various anti HER2 antibodies in a panel of nine different BC cell lines with varying HER2 protein expression levels, using immunoblotting, confocal microscopy, live cells imaging and flow cytometry analyses. The antibody associated with the highest capture efficiency and sensitivity for HER2 expressing cells on the microfluidic device was the one that performed best in live cells imaging and flow cytometry assays as opposed to the fixed cell analyses, suggesting that recognition of the native conformation of the HER2 extracellular epitope on living cells was essential for specificity and sensitivity of CTC capture. Next, we tested the performance of the HER2 microfluidic device using blood from metastatic breast and gastric cancer patients. The HER2 microfluidic device exhibited CTC capture in 9/9 blood samples. Thus, the described HER2-based microfluidic device can be considered as a valid clinically relevant method for CTC capture in HER2 expressing solid cancers.

  4. [Targeted detecting HER2 expression with recombinant anti HER2 ScFv-GFP fusion antibody].

    PubMed

    Gao, Guohui; Chen, Chong; Yang, Yanmei; Yang, Han; Wang, Jindan; Zheng, Yi; Huang, Qidi; Hu, Xiaoqu

    2012-08-01

    To verify the reliability of targeted detecting HER2 positive cancer cells and clinical pathological tissue specimens with a recombinant anti HER2 single chain antibody in single chain Fv fragment (scFv) format, we have constructed the fusion variable regions of the ScFv specific for HER2/neu. labeled a green-fluorescent protein(GFP). The humanized recombinant Anti HER2 ScFv-GFP gene was inserted into pFast Bac HT A, and expressed in insect cells sf9. Then the recombinant fusion protein Anti HER2 ScFv-GFP was properly purified with Ni2+-NTA affinity chromatography from the infected sf9 cells used to test the specificity of the fusion antibody for HER2 positive cancer cells. Firstly, the purified antibody incubated with HER2 positive breast cancer cells SKBR3, BT474 and HER2 negative breast cancer cells MCF7 for 12 h/24 h/48 h at 37 degrees C, in order to confirm targeted detecting HER2 positive breast cancer cells by Laser Confocal Microscopy. Furthermore, the same clinical pathological tissue samples were assessed by immunohistochemistry (IHC) and the fusion antibody Anti HER2 ScFv-GFP in the meanwhile. The data obtained indicated that the recombinant eukaryotic expression plasmid pFast Bac HT A/Anti HER2 ScFv-GFP was constructed successfully In addition, obvious green fluorescent was observed in insect cells sf9. When the purified fusion antibody was incubated with different cancer cells, much more green fluorescent was observed on the surface of the HER2 positive cancer cells SKBR3 and BT474. In contrast, no green fluorescent on the surface of the HER2 negative cancer cells MCF7 was detected. The concentration of the purified fusion antibody was 115.5 microg/mL, of which protein relative molecular weight was 60 kDa. The analysis showed the purity was about 97% and the titer was about 1:64. The detection results of IHC and fusion antibody testing indicated the conformity. In summary, the study showed that the new fusion antibody Anti HER2 ScFv-GFP can test HER2 positive cancer cells, indicating a potential candidate method for clinical HER2 positive specimens detection.

  5. Mucolytic Agents Can Enhance HER2 Receptor Accessibility for [(89)Zr]Trastuzumab, Improving HER2 Imaging in a Mucin-Overexpressing Breast Cancer Xenograft Mouse Model.

    PubMed

    Wimana, Zéna; Gebhart, G; Guiot, T; Vanderlinden, B; Morandini, R; Doumont, G; Sherer, F; Van Simaeys, G; Goldman, S; Ghanem, G; Flamen, P

    2015-10-01

    Binding of trastuzumab to HER2 receptors can be impaired by steric hindrance caused by mucin MUC4. As mucolytic drugs can breakdown disulfide bonds of mucoproteins, we checked if this approach could positively affect zirconium-89-labeled trastuzumab ([(89)Zr]T) binding/uptake. The effect of N-acetylcysteine (NAC) and MUC4 knockdown/stimulation on [(89)Zr]T binding/uptake were evaluated in MCF7(HER2-), BT474 and SKBr3(HER2+/MUC4-), and JIMT1(HER2+/MUC4+) cell lines. The results were then validated in SKBR3 and JIMT1 tumor-bearing nude mice with a microPET-CT and ex vivo analysis. Significant increases in [(89)Zr]T binding/uptake were observed in JIMT1 cells following MUC4 knockdown (62.4 ± 6.5%) and exposure to NAC (62.8 ± 19.4%). Compared to controls, mice treated with NAC showed a significant increase in [(89)Zr]T uptake in MUC4 tumors on microPET-CT (SUVmean (18.3 ± 4.7%), SUVmax (41.7 ± 8.4%)) and individual organ counting (37.3 ± 18.3%). In contrast, no significant differences were observed in SKBr3. NAC can enhance [(89)Zr]T accumulation and improve the HER2 imaging of MUC4-overexpressing tumors. The potential positive impact on trastuzumab-based treatment deserves further investigation.

  6. Palliative systemic therapy for young women with metastatic breast cancer.

    PubMed

    Eng, Lee Guek; Dawood, Shaheenah; Dent, Rebecca

    2015-09-01

    Breast cancer in young women age less than 40 years remains a relatively rare disease. Emerging data suggest that the biology of breast cancer in younger women may differ from that of older women. Although metastatic breast cancer remains incurable, it is definitely treatable; especially in this era of emerging novel therapeutics. Most women have hormone receptor-positive disease and strategies that interfere with proliferation and the PI3 kinase pathway are reporting exciting results. The prognosis of the metastatic HER2 subtype has been extended to a median survival of 56 months with dual HER2 targeting agents in the first-line setting. Finally, triple negative breast cancer has an enlarging range of therapeutic options including immunotherapy, antiangiogenesis therapy, and targeted therapies including agents that interfere with androgen receptor signaling. Combined palliative and holistic approaches are essential to help young women navigate the marathon of treatment for metastatic breast cancer.

  7. Systemic targeted therapy for her2-positive early female breast cancer: a systematic review of the evidence for the 2014 Cancer Care Ontario systemic therapy guideline.

    PubMed

    Mates, M; Fletcher, G G; Freedman, O C; Eisen, A; Gandhi, S; Trudeau, M E; Dent, S F

    2015-03-01

    This systematic review addresses the question "What is the optimal targeted therapy for female patients with early-stage human epidermal growth factor receptor 2 (her2)-positive breast cancer?" The medline and embase databases were searched for the period January 2008 to May 2014. The Standards and Guidelines Evidence directory of cancer guidelines and the Web sites of major guideline organizations were also searched. Sixty publications relevant to the targeted therapy portion of the systematic review were identified. In four major trials (hera, National Surgical Adjuvant Breast and Bowel Project B-31, North Central Cancer Treatment Group N9831, and Breast Cancer International Research Group 006), adjuvant trastuzumab for 1 year was superior in disease-free survival (dfs) and overall survival (os) to no trastuzumab; trastuzumab showed no benefit in one trial (pacs 04). A shorter duration of trastuzumab (less than 1 year compared with 1 year) was evaluated, with mixed results for dfs: one trial showed superiority (finher), one trial could not demonstrate noninferiority (phare), another trial showed equivalent results (E 2198), and one trial is still ongoing (persephone). Longer trastuzumab duration (hera: 2 years vs. 1 year) showed no improvement in dfs or os and a higher rate of cardiac events. Newer her2-targeted agents (lapatinib, pertuzumab, T-DM1, neratinib) have been or are still being evaluated in both adjuvant and neoadjuvant trials, either by direct comparison with trastuzumab alone or combined with trastuzumab. In the neoadjuvant setting (neoaltto, GeparQuinto, Neosphere), trastuzumab alone or in combination with another anti-her2 agent (lapatinib, pertuzumab) was compared with either lapatinib or pertuzumab alone and showed superior or equivalent rates of pathologic complete response. In the adjuvant setting, lapatinib alone or in combination with trastuzumab, compared with trastuzumab alone (altto) or with placebo (teach), was not superior in dfs. The results of the completed aphinity trial, evaluating the role of dual her2 blockade with trastuzumab and pertuzumab, are highly anticipated. Ongoing trials are evaluating trastuzumab as a single agent without adjuvant chemotherapy (respect) and in patients with low her2 expression (National Surgical Adjuvant Breast and Bowel Project B-47). Taking into consideration disease characteristics and patient preference, 1 year of trastuzumab should be offered to all patients with her2-positive breast cancer who are receiving adjuvant chemotherapy. Cardiac function should be regularly assessed in this patient population.

  8. Systemic targeted therapy for her2-positive early female breast cancer: a systematic review of the evidence for the 2014 Cancer Care Ontario systemic therapy guideline

    PubMed Central

    Mates, M.; Fletcher, G.G.; Freedman, O.C.; Eisen, A.; Gandhi, S.; Trudeau, M.E.; Dent, S.F.

    2015-01-01

    Background This systematic review addresses the question “What is the optimal targeted therapy for female patients with early-stage human epidermal growth factor receptor 2 (her2)–positive breast cancer?” Methods The medline and embase databases were searched for the period January 2008 to May 2014. The Standards and Guidelines Evidence directory of cancer guidelines and the Web sites of major guideline organizations were also searched. Results Sixty publications relevant to the targeted therapy portion of the systematic review were identified. In four major trials (hera, National Surgical Adjuvant Breast and Bowel Project B-31, North Central Cancer Treatment Group N9831, and Breast Cancer International Research Group 006), adjuvant trastuzumab for 1 year was superior in disease-free survival (dfs) and overall survival (os) to no trastuzumab; trastuzumab showed no benefit in one trial (pacs 04). A shorter duration of trastuzumab (less than 1 year compared with 1 year) was evaluated, with mixed results for dfs: one trial showed superiority (finher), one trial could not demonstrate noninferiority (phare), another trial showed equivalent results (E 2198), and one trial is still ongoing (persephone). Longer trastuzumab duration (hera: 2 years vs. 1 year) showed no improvement in dfs or os and a higher rate of cardiac events. Newer her2-targeted agents (lapatinib, pertuzumab, T-DM1, neratinib) have been or are still being evaluated in both adjuvant and neoadjuvant trials, either by direct comparison with trastuzumab alone or combined with trastuzumab. In the neoadjuvant setting (neoaltto, GeparQuinto, Neosphere), trastuzumab alone or in combination with another anti-her2 agent (lapatinib, pertuzumab) was compared with either lapatinib or pertuzumab alone and showed superior or equivalent rates of pathologic complete response. In the adjuvant setting, lapatinib alone or in combination with trastuzumab, compared with trastuzumab alone (altto) or with placebo (teach), was not superior in dfs. The results of the completed aphinity trial, evaluating the role of dual her2 blockade with trastuzumab and pertuzumab, are highly anticipated. Ongoing trials are evaluating trastuzumab as a single agent without adjuvant chemotherapy (respect) and in patients with low her2 expression (National Surgical Adjuvant Breast and Bowel Project B-47). Conclusions Taking into consideration disease characteristics and patient preference, 1 year of trastuzumab should be offered to all patients with her2-positive breast cancer who are receiving adjuvant chemotherapy. Cardiac function should be regularly assessed in this patient population. PMID:25848335

  9. Notch-1-PTEN-ERK1/2 signaling axis promotes HER2+ breast cancer cell proliferation and stem cell survival.

    PubMed

    Baker, Andrew; Wyatt, Debra; Bocchetta, Maurizio; Li, Jun; Filipovic, Aleksandra; Green, Andrew; Peiffer, Daniel S; Fuqua, Suzanne; Miele, Lucio; Albain, Kathy S; Osipo, Clodia

    2018-05-10

    Trastuzumab targets the HER2 receptor on breast cancer cells to attenuate HER2-driven tumor growth. However, resistance to trastuzumab-based therapy remains a major clinical problem for women with HER2+ breast cancer. Breast cancer stem cells (BCSCs) are suggested to be responsible for drug resistance and tumor recurrence. Notch signaling has been shown to promote BCSC survival and self-renewal. Trastuzumab-resistant cells have increased Notch-1 expression. Notch signaling drives cell proliferation in vitro and is required for tumor recurrence in vivo. We demonstrate herein a mechanism by which Notch-1 is required for trastuzumab resistance by repressing PTEN expression to contribute to activation of ERK1/2 signaling. Furthermore, Notch-1-mediated inhibition of PTEN is necessary for BCSC survival in vitro and in vivo. Inhibition of MEK1/2-ERK1/2 signaling in trastuzumab-resistant breast cancer cells mimics effects of Notch-1 knockdown on bulk cell proliferation and BCSC survival. These findings suggest that Notch-1 contributes to trastuzumab resistance by repressing PTEN and this may lead to hyperactivation of ERK1/2 signaling. Furthermore, high Notch-1 and low PTEN mRNA expression may predict poorer overall survival in women with breast cancer. Notch-1 protein expression predicts poorer survival in women with HER2+ breast cancer. These results support a potential future clinical trial combining anti-Notch-1 and anti-MEK/ERK therapy for trastuzumab-resistant breast cancer.

  10. SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases.

    PubMed

    Zhang, Siyuan; Huang, Wen-Chien; Zhang, Lin; Zhang, Chenyu; Lowery, Frank J; Ding, Zhaoxi; Guo, Hua; Wang, Hai; Huang, Suyun; Sahin, Aysegul A; Aldape, Kenneth D; Steeg, Patricia S; Yu, Dihua

    2013-09-15

    Despite better control of early-stage disease and improved overall survival of patients with breast cancer, the incidence of life-threatening brain metastases continues to increase in some of these patients. Unfortunately, other than palliative treatments there is no effective therapy for this condition. In this study, we reveal a critical role for Src activation in promoting brain metastasis in a preclinical model of breast cancer and we show how Src-targeting combinatorial regimens can treat HER2(+) brain metastases in this model. We found that Src was hyperactivated in brain-seeking breast cancer cells derived from human cell lines or from patients' brain metastases. Mechanistically, Src activation promoted tumor cell extravasation into the brain parenchyma via permeabilization of the blood-brain barrier. When combined with the EGFR/HER2 dual-targeting drug lapatinib, an Src-targeting combinatorial regimen prevented outgrowth of disseminated breast cancer cells through the induction of cell-cycle arrest. More importantly, this combinatorial regimen inhibited the outgrowth of established experimental brain metastases, prolonging the survival of metastases-bearing mice. Our results provide a rationale for clinical evaluation of Src-targeting regimens to treat patients with breast cancer suffering from brain metastasis. ©2013 AACR.

  11. miR-411-5p inhibits proliferation and metastasis of breast cancer cell via targeting GRB2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yunda; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102; Xu, Guoxing

    miR-411-5p (previously called miR-411) is severely involved in human diseases, however, the relationship between miR-411-5p and breast cancer has not been investigated thoroughly. Here, we found that the expression of miR-411-5p was downregulated in breast cancer tissues compared with their matched adjacent non-neoplastic tissues. In addition, the expression of miR-411-5p was also lower in breast cancer cell lines in contrast with MCF-10A. Moreover, we investigated the target and mechanism of miR-411-5p in breast cancer using mimic and inhibitor, and demonstrated the involvement of GRB2 and Ras activation. Ectopic expression of miR-411-5p suppressed the breast cancer cell proliferation, migration and invasionmore » while low expression of miR-411-5p exhibited the opposite effect. Furthermore, GRB2 was demonstrated to be significantly overexpressed in breast cancer tissues compared with normal tissues, and low expression of GRB2 had a longer overall survival compared with high expression of GRB2 in breast cancer. In general, our study shed light on the miR-411-5p related mechanism in the progression of breast cancer and, miR-411-5p/GRB2/Ras axis is potential to be molecular target for breast cancer therapy. - Highlights: • miR-411-5p is downregulated in breast cancer tissues and cell lines. • miR-411-5p inhibits breast cancer cells growth, migration and invasion in vitro. • GRB2 is a direct target of miR-411-5p in breast cancer. • GRB2 is overexpressed in breast cancer and associates with disease outcome. • miR-411-5p suppresses breast cancer progression though GRB2-SOS-Ras pathway.« less

  12. Anti-tumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells.

    PubMed

    Kim, Hee-Jun; Min, Ahrum; Im, Seock-Ah; Jang, Hyemin; Lee, Kyung Hun; Lau, Alan; Lee, Miso; Kim, Seongyeong; Yang, Yaewon; Kim, Jungeun; Kim, Tae Yong; Oh, Do-Youn; Brown, Jeffrey; O'Connor, Mark J; Bang, Yung-Jue

    2017-01-01

    Ataxia telangiectasia and Rad3-related (ATR) proteins are sensors of DNA damage, which induces homologous recombination (HR)-dependent repair. ATR is a master regulator of DNA damage repair (DDR), signaling to control DNA replication, DNA repair and apoptosis. Therefore, the ATR pathway might be an attractive target for developing new drugs. This study was designed to investigate the antitumor effects of the ATR inhibitor, AZD6738 and its underlying mechanism in human breast cancer cells. Growth inhibitory effects of AZD6738 against human breast cancer cell lines were studied using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (methyl thiazolyl tetrazolium, MTT) assay. Cell cycle analysis, Western blotting, immunofluorescence and comet assays were also performed to elucidate underlying mechanisms of AZD6738 action. Anti-proliferative and DDR inhibitory effects of AZD6738 were demonstrated in human breast cancer cell lines. Among 13 cell lines, the IC 50 values of nine cell lines were less than 1 μmol/L using MTT assay. Two cell lines, SK-BR-3 and BT-474, were chosen for further evaluation focused on human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells. Sensitive SK-BR-3 but not the less sensitive BT-474 breast cancer cells showed increased level of apoptosis and S phase arrest and reduced expression levels of phosphorylated check-point kinase 1 (CHK1) and other repair markers. Decreased functional CHK1 expression induced DNA damage accumulation due to HR inactivation. AZD6738 showed synergistic activity with cisplatin. Understanding the antitumor activity and mechanisms of AZD6738 in HER2-positive breast cancer cells creates the possibility for future clinical trials targeting DDR in HER2-positive breast cancer treatment. © 2016 UICC.

  13. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer

    PubMed Central

    Siena, S; Sartore-Bianchi, A; Marsoni, S; Hurwitz, H I; McCall, S J; Penault-Llorca, F; Srock, S; Bardelli, A; Trusolino, L

    2018-01-01

    Abstract Human epidermal growth factor receptor 2 (HER2) is an oncogenic driver, and a well-established therapeutic target in breast and gastric cancers. Using functional and genomic analyses of patient-derived xenografts, we previously showed that a subset (approximately 5%) of metastatic colorectal cancer (CRC) tumors is driven by amplification or mutation of HER2. This paper reviews the role of HER2 amplification as an oncogenic driver, a prognostic and predictive biomarker, and a clinically actionable target in CRC, considering the specifics of HER2 testing in this tumor type. While the role of HER2 as a biomarker for prognosis in CRC remains uncertain, its relevance as a therapeutic target has been established. Indeed, independent studies documented substantial clinical benefit in patients treated with biomarker-driven HER2-targeted therapies, with an impact on response rates and duration of response that compared favorably with immunotherapy and other examples of precision oncology. HER2-targeted therapeutic strategies have the potential to change the treatment paradigm for a clinically relevant subgroup of metastatic CRC patients. PMID:29659677

  14. Divisional role of quantitative HER2 testing in breast cancer.

    PubMed

    Yamamoto-Ibusuki, Mutsuko; Yamamoto, Yutaka; Fu, Peifen; Yamamoto, Satoko; Fujiwara, Saori; Honda, Yumi; Iyama, Ken-ichi; Iwase, Hirotaka

    2015-03-01

    Human epidermal growth factor receptor 2 (HER2) is amplified in human breast cancers in which therapy targeted to HER2 significantly improves patient outcome. We re-visited the use of real-time quantitative polymerase chain reaction (qPCR)-based assays using formalin-fixed paraffin-embedded (FFPE) tissues as alternative methods and investigated their particular clinical relevance. DNA and RNA were isolated from FFPE specimens and HER2 status was assessed by qPCR in 249 consecutive patients with primary breast cancer. Concordance with results forg immunohistochemistry (IHC) and in situ hybridization (ISH), clinical characteristics and survival was assessed. HER2 gene copy number had a stronger correlation with clinicopathological characteristics and excellent concordance with IHC/ISH results (Sensitivity: 96.7 %; concordance: 99.2 %). HER2 gene expression showed inadequate sensitivity, rendering it unsuitable to determine HER2 status (Sensitivity: 46.7 %; concordance: 92.1 %), but lower HER2 gene expression, leading to the classification of many cases as "false negative", contributed to a prediction of better prognosis within the HER2-amplified subpopulation. Quantitative HER2 assessments are suggested to have evolved their accuracy in this decade, which can be a potential alternative for HER2 diagnosis in line with the in situ method, while HER2 gene expression levels could provide additional information regarding prognosis or therapeutic strategy within a HER2-amplified subpopulation.

  15. Ratiometric spectral imaging for fast tumor detection and chemotherapy monitoring in vivo

    PubMed Central

    Hwang, Jae Youn; Gross, Zeev; Gray, Harry B.; Medina-Kauwe, Lali K.; Farkas, Daniel L.

    2011-01-01

    We report a novel in vivo spectral imaging approach to cancer detection and chemotherapy assessment. We describe and characterize a ratiometric spectral imaging and analysis method and evaluate its performance for tumor detection and delineation by quantitatively monitoring the specific accumulation of targeted gallium corrole (HerGa) into HER2-positive (HER2 +) breast tumors. HerGa temporal accumulation in nude mice bearing HER2 + breast tumors was monitored comparatively by a. this new ratiometric imaging and analysis method; b. established (reflectance and fluorescence) spectral imaging; c. more commonly used fluorescence intensity imaging. We also tested the feasibility of HerGa imaging in vivo using the ratiometric spectral imaging method for tumor detection and delineation. Our results show that the new method not only provides better quantitative information than typical spectral imaging, but also better specificity than standard fluorescence intensity imaging, thus allowing enhanced in vivo outlining of tumors and dynamic, quantitative monitoring of targeted chemotherapy agent accumulation into them. PMID:21721808

  16. A novel biphenyl urea derivate inhibits the invasion of breast cancer through the modulation of CXCR4

    PubMed Central

    Zhan, Yingzhuan; Zhang, Han; Li, Jing; Zhang, Yanmin; Zhang, Jie; He, Langchong

    2015-01-01

    The increased migration and invasion of breast carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. CXCR4, the receptor for stromal-derived factor-1, is reportedly involved in breast carcinogenesis and invasion. In this study, we investigated a novel biphenyl urea derivate, TPD7 for its ability to affect CXCR4 expression as well as function in breast cancer cells. We demonstrated that TPD7 inhibited the breast cancer proliferation and down-regulated the CXCR4 expression on breast cancer cells both over-expressing and low-expressing HER2, an oncogene known to induce the chemokine receptor. Treatments with pharmacological proteasome inhibitors partial suppressed TPD7-induced decrease in CXCR4 expression. Real-time PCR analysis revealed that down-regulation of CXCR4 by TPD7 also occurred at the translational level. Inhibition of CXCR4 expression by TPD7 further correlated with the suppression of SDF-1α-induced migration and invasion in breast tumour cells, knockdown of CXCR4 attenuated TPD7-inhibitory effects. In addition, TPD7 treatment significantly suppressed matrix metalloproteinase (MMP)-2 and MMP-9 expression, the downstream targets of CXCR4, perhaps via inactivation of the ERK signaling pathway. Overall, our results showed that TPD7 exerted its anti-invasive effect through the down-regulation of CXCR4 expression and thus had the potential for the treatment of breast cancer. PMID:25753200

  17. Micromixer Based Preparation of Functionalized Liposomes and Targeting Drug Delivery.

    PubMed

    Jia, Xiangqian; Wang, Weizhi; Han, Qiuju; Wang, Zihua; Jia, Yunhong; Hu, Zhiyuan

    2016-04-14

    We present here a specific targeting nanocarrier system by functionalization of liposomes with one new type of breast cancer targeting peptide (H6, YLFFVFER) by a micromixer with high efficiency. Antitumor drugs could be successfully delivered into human epidermal growth factor receptor 2 (HER2) positive breast cancer cells with high efficiency in both in vivo and ex vivo models.

  18. Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer

    PubMed Central

    Vandenberghe, Michel E.; Scott, Marietta L. J.; Scorer, Paul W.; Söderberg, Magnus; Balcerzak, Denis; Barker, Craig

    2017-01-01

    Tissue biomarker scoring by pathologists is central to defining the appropriate therapy for patients with cancer. Yet, inter-pathologist variability in the interpretation of ambiguous cases can affect diagnostic accuracy. Modern artificial intelligence methods such as deep learning have the potential to supplement pathologist expertise to ensure constant diagnostic accuracy. We developed a computational approach based on deep learning that automatically scores HER2, a biomarker that defines patient eligibility for anti-HER2 targeted therapies in breast cancer. In a cohort of 71 breast tumour resection samples, automated scoring showed a concordance of 83% with a pathologist. The twelve discordant cases were then independently reviewed, leading to a modification of diagnosis from initial pathologist assessment for eight cases. Diagnostic discordance was found to be largely caused by perceptual differences in assessing HER2 expression due to high HER2 staining heterogeneity. This study provides evidence that deep learning aided diagnosis can facilitate clinical decision making in breast cancer by identifying cases at high risk of misdiagnosis. PMID:28378829

  19. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma.

    PubMed

    Liu, Y J; Shen, D; Yin, X; Gavine, P; Zhang, T; Su, X; Zhan, P; Xu, Y; Lv, J; Qian, J; Liu, C; Sun, Y; Qian, Z; Zhang, J; Gu, Y; Ni, X

    2014-03-04

    Gastric cancer (GC) is a leading cause of cancer deaths worldwide. Since the approval of trastuzumab, targeted therapies are emerging as promising treatment options for the disease. This study aimed to explore the molecular segmentation of several known therapeutics targets, human epidermal growth factor receptor 2 (HER2), MET and fibroblast growth factor receptor 2 (FGFR2), within GC using clinically approved or investigational kits and scoring criteria. Knowledge of how these markers are segmented in the same cohort of GC patients could improve future clinical trial designs. Using immunohistochemistry (IHC) and FISH methods, overexpression and amplification of HER2, FGFR2 and MET were profiled in a cohort of Chinese GC samples. The correlations between anti-tumour sensitivity and the molecular segments of HER2, MET and FGFR2 alterations were further tested in a panel of GC cell lines and the patient-derived GC xenograft (PDGCX) model using the targeted inhibitors. Of 172 GC patients, positivity for HER2, MET and FGFR2 alternations was found in 23 (13.4%), 21 (12.2%) and 9 (5.2%) patients, respectively. Positivity for MET was found in 3 of 23 HER2-positive GC patients. Co-positivity for FGFR2 and MET was found in 1 GC patient, and amplification of the two genes was found in different tumour cells. Our study in a panel of GC cell lines showed that in most cell lines, amplification or high expression of a particular molecular marker was mutually exclusive and in vitro sensitivity to the targeted agents lapatinib, PD173074 and crizotinib was only observed in cell lines with the corresponding high expression of the drugs' target protein. SGC031, an MET-positive PDGCX mouse model, responded to crizotinib but not to lapatinib or PD173074. Human epidermal growth factor receptor 2, MET and FGFR2 oncogenic driver alterations (gene amplification and overexpression) occur in three largely distinct molecular segments in GC. A significant proportion of HER2-negative patients may potentially benefit from MET- or FGFR2-targeted therapies.

  20. Pertuzumab/Trastuzumab/CT Versus Trastuzumab/CT Therapy for HER2+ Breast Cancer: Results from the Prospective Neoadjuvant Breast Registry Symphony Trial (NBRST).

    PubMed

    Beitsch, Peter; Whitworth, Pat; Baron, Paul; Rotkis, Michael C; Mislowsky, Angela M; Richards, Paul D; Murray, Mary K; Pellicane, James V; Dul, Carrie L; Nash, Charles H; Stork-Sloots, Lisette; de Snoo, Femke; Untch, Sarah; Lee, Laura A

    2017-09-01

    Pertuzumab became a standard part of neoadjuvant therapy for human epidermal growth factor receptor 2-positive (HER2+) breast cancers approximately halfway through Neoadjuvant Breast Registry Symphony Trial (NBRST) enrollment, providing a unique opportunity to determine biologically which clinical HER2+ patients benefit most from dual targeting. As a neoadjuvant phase 4 study, NBRST classifies patients by both conventional and molecular subtyping. Of 308 clinical HER2+ patients enrolled in NBRST between 2011 and 2014 from 62 U.S. institutions, 297 received neoadjuvant chemotherapy (NCT) with HER2-targeted therapy and underwent surgery. This study compared the pathologic complete response (pCR) rate of BluePrint versus clinical subtypes with treatment, specifically differences between trastuzumab (T) treatment and trastuzumab and pertuzumab (T/P) treatment. In this study, 60% of the patients received NCT-T, and 40% received NCT-T/P. The overall pCR rate (ypT0/isN0) was 47%. BluePrint classified 161 tumors (54%) as HER2 type, with a pCR rate of 65%. This was significantly higher than the pCR rate for the 91 HER2+ tumors (31%) classified as luminal (18%) (p = 0.00001) and the 45 tumors (15%) classified as basal (44%) (p = 0.0166). The patients treated with T/P had higher pCR rates than those treated with trastuzumab alone. The difference was most pronounced in the BluePrint luminal patients (8 vs. 31%). The highest pCR was reached by the BluePrint HER2-type patients treated with T/P (76%). The addition of pertuzumab leads to increased pCR rates for all HER2+ patient groups except for the BluePrint basal-type patients. This better response was most pronounced for the BluePrint luminal-type patients.

  1. Development of octreotide-conjugated polymeric prodrug of bufalin for targeted delivery to somatostatin receptor 2 overexpressing breast cancer in vitro and in vivo

    PubMed Central

    Liu, Tao; Jia, Tingting; Yuan, Xia; Liu, Cheng; Sun, Jian; Ni, Zhenhua; Xu, Jian; Wang, Xuhui; Yuan, Yi

    2016-01-01

    Background Development of polymeric prodrugs of small molecular anticancer drugs has become one of the most promising strategies to overcome the intrinsic shortcomings of small molecular anticancer drugs and improve their anticancer performance. Materials and methods In the current work, we fabricated a novel octreotide (Oct)-modified esterase-sensitive tumor-targeting polymeric prodrug of bufalin (BUF) and explored its anticancer performance against somatostatin receptor 2 overexpressing breast cancer. Results The obtained tumor-targeting polymeric prodrug of BUF, P(oligo[ethylene glycol] monomethyl ether methacrylate [OEGMA]-co-BUF-co-Oct), showed a nanosize dimension and controlled drug release features in the presence of esterase. It was demonstrated by in vitro experiment that P(OEGMA-co-BUF-co-Oct) showed enhanced cytotoxicity, cellular uptake, and apoptosis in comparison with those of free BUF. In vivo experiment further revealed the improved accumulation of drugs in tumor tissues and enhanced anticancer performance of P(OEGMA-co-BUF-co-Oct). Conclusion Taken together, this study indicated that polymeric prodrug of BUF holds promising potential toward the treatment of somatostatin receptor 2 overexpressing breast cancer. PMID:27284243

  2. Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification.

    PubMed

    Fang, Shimeng; Tian, Hongzhu; Li, Xiancheng; Jin, Dong; Li, Xiaojie; Kong, Jing; Yang, Chun; Yang, Xuesong; Lu, Yao; Luo, Yong; Lin, Bingcheng; Niu, Weidong; Liu, Tingjiao

    2017-01-01

    Increasing attention has been attracted by exosomes in blood-based diagnosis because cancer cells release more exosomes in serum than normal cells and these exosomes overexpress a certain number of cancer-related biomarkers. However, capture and biomarker analysis of exosomes for clinical application are technically challenging. In this study, we developed a microfluidic chip for immunocapture and quantification of circulating exosomes from small sample volume and applied this device in clinical study. Circulating EpCAM-positive exosomes were measured in 6 cases breast cancer patients and 3 healthy controls to assist diagnosis. A significant increase in the EpCAM-positive exosome level in these patients was detected, compared to healthy controls. Furthermore, we quantified circulating HER2-positive exosomes in 19 cases of breast cancer patients for molecular classification. We demonstrated that the exosomal HER2 expression levels were almost consistent with that in tumor tissues assessed by immunohistochemical staining. The microfluidic chip might provide a new platform to assist breast cancer diagnosis and molecular classification.

  3. Clinical Overestimation of HER2 Positivity in Early Estrogen and Progesterone Receptor–Positive Breast Cancer and the Value of Molecular Subtyping Using BluePrint

    PubMed Central

    Langenhoven, Lizanne; Grant, Kathleen A.; van der Merwe, Lize; Kotze, Maritha J.

    2017-01-01

    Purpose Human epidermal growth factor receptor 2 (HER2) positivity is an important prognostic and predictive indicator in breast cancer. HER2 status is determined by immunohistochemistry and fluorescent in situ hybridization (FISH), which are potentially inaccurate techniques as a result of several technical factors, polysomy of chromosome 17, and amplification or overexpression of CEP17 (centromeric probe for chromosome 17) and/or HER2. In South Africa, HER2-positive tumors are excluded from a MammaPrint (MP; Agendia BV, Amsterdam, Netherlands) pretest algorithm. Clinical HER2 status has been reported to correlate poorly with molecular subtype. The aim of this study was to investigate the correlation of clinical HER2 status with BluePrint (BP) molecular subtyping. Methods Clinico-pathologic and genomic information was extracted from a prospectively collected central MP database containing records of 256 estrogen receptor–positive and/or progesterone receptor–positive tumors. Twenty-one tumors considered HER2 positive on immunohistochemistry or FISH were identified for this study. Results The median age of patients was 56 years (range, 34 to 77 years), with a median tumor size of 16 mm (3 to 27 mm). Four (19%) tumors were confirmed HER2-enriched subtype, six (29%) were luminal A, and 11 (52%) were luminal B. The positive predictive values of HER2/CEP17 ratio ≥ 2 and HER2 copy number ≥ 6 were only 29% and 40%, respectively. The differences in means for HER2/CEP17 ratio were significant between BP HER2-enriched versus luminal (P = .0249; 95% CI, 0.12 to 1.21) and MP high-risk versus low-risk tumors (P = .0002; 95% CI, 0.40 to 1.06). Conclusion Of the 21 tumors considered clinically HER2 positive, only four were HER2-enriched subtype with BP, indicating an overestimation of HER2 positivity. FISH testing has a poor positive predictive value. PMID:28831439

  4. Clinical Overestimation of HER2 Positivity in Early Estrogen and Progesterone Receptor-Positive Breast Cancer and the Value of Molecular Subtyping Using BluePrint.

    PubMed

    Myburgh, Ettienne J; Langenhoven, Lizanne; Grant, Kathleen A; van der Merwe, Lize; Kotze, Maritha J

    2017-08-01

    Human epidermal growth factor receptor 2 (HER2) positivity is an important prognostic and predictive indicator in breast cancer. HER2 status is determined by immunohistochemistry and fluorescent in situ hybridization (FISH), which are potentially inaccurate techniques as a result of several technical factors, polysomy of chromosome 17, and amplification or overexpression of CEP17 (centromeric probe for chromosome 17) and/or HER2. In South Africa, HER2-positive tumors are excluded from a MammaPrint (MP; Agendia BV, Amsterdam, Netherlands) pretest algorithm. Clinical HER2 status has been reported to correlate poorly with molecular subtype. The aim of this study was to investigate the correlation of clinical HER2 status with BluePrint (BP) molecular subtyping. Clinico-pathologic and genomic information was extracted from a prospectively collected central MP database containing records of 256 estrogen receptor-positive and/or progesterone receptor-positive tumors. Twenty-one tumors considered HER2 positive on immunohistochemistry or FISH were identified for this study. The median age of patients was 56 years (range, 34 to 77 years), with a median tumor size of 16 mm (3 to 27 mm). Four (19%) tumors were confirmed HER2-enriched subtype, six (29%) were luminal A, and 11 (52%) were luminal B. The positive predictive values of HER2/CEP17 ratio ≥ 2 and HER2 copy number ≥ 6 were only 29% and 40%, respectively. The differences in means for HER2/CEP17 ratio were significant between BP HER2-enriched versus luminal ( P = .0249; 95% CI, 0.12 to 1.21) and MP high-risk versus low-risk tumors ( P = .0002; 95% CI, 0.40 to 1.06). Of the 21 tumors considered clinically HER2 positive, only four were HER2-enriched subtype with BP, indicating an overestimation of HER2 positivity. FISH testing has a poor positive predictive value.

  5. Annexin A2 and its downstream IL-6 and HB-EGF as secretory biomarkers in the differential diagnosis of Her-2 negative breast cancer.

    PubMed

    Shetty, Praveenkumar; Patil, Vidya S; Mohan, Rajashekar; D'souza, Leonard Clinton; Bargale, Anil; Patil, Basavaraj R; Dinesh, U S; Haridas, Vikram; Kulkarni, Shrirang P

    2017-07-01

    Background AnnexinA2 (AnxA2) membrane deposition has a critical role in HB-EGF shedding as well as IL-6 secretion in breast cancer cells. This autocrine cycle has a major role in cancer cell proliferation, migration and metastasis. The objective of the study is to demonstrate annexinA2-mediated autocrine regulation via HB-EGF and IL-6 in Her-2 negative breast cancer progression. Methods Secretory annexinA2, HB-EGF and IL-6 were analysed in the peripheral blood sample of Her-2 negative ( n = 20) and positive breast cancer patients ( n = 16). Simultaneously, tissue expression was analysed by immunohistochemistry. The membrane deposition of these secretory ligands and their autocrine regulation was demonstrated using triple-negative breast cancer cell line model. Results Annexina2 and HB-EGF expression are inversely correlated with Her-2, whereas IL-6 expression is seen in both Her-2 negative and positive breast cancer cells. RNA interference studies and upregulation of annexinA2 proved that annexinA2 is the upstream of this autocrine pathway. Abundant soluble serum annexinA2 is secreted in Her-2 negative breast cancer (359.28 ± 63.73 ng/mL) compared with normal (286.10 ± 70.04 ng/mL, P < 0.01) and Her-2 positive cases (217.75 ± 60.59 ng/mL, P < 0.0001). In Her-2 negative cases, the HB-EGF concentrations (179.16 ± 118.81 pg/mL) were highly significant compared with normal (14.92 ± 17.33 pg/mL, P < 0.001). IL-6 concentrations were increased significantly in both the breast cancer phenotypes as compared with normal ( P < 0.001). Conclusion The specific expression pattern of annexinA2 and HB-EGF in triple-negative breast cancer tissues, increased secretion compared with normal cells, and their major role in the regulation of EGFR downstream signalling makes these molecules as a potential tissue and serum biomarker and an excellent therapeutic target in Her-2 negative breast cancer.

  6. Incidence and risk factors for breast cancer subtypes in three distinct South-East Asian ethnic groups: Chinese, Malay and natives of Sarawak, Malaysia.

    PubMed

    Devi, C R Beena; Tang, Tieng Swee; Corbex, Marilys

    2012-12-15

    We determined the incidences of the estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) subtypes among breast cancer cases in Sarawak, Malaysia and their correlation with various risk factors in the three ethnic groups: Chinese, Malay and native. Subtype status was ascertained for 1,034 cases of female breast cancer (93% of all cases diagnosed since 2003), and the age-standardized incidence rates (ASRs) of each subtype were inferred. Case-case comparisons across subtypes were performed for reproductive risk factors. We found 48% luminal A (ER+/PR+/HER2-), 29% triple-negative (ER-/PR-/HER2-), 12% triple-positive (ER+/PR+/HER2+) and 11% HER2-overexpressing (ER-/PR-/HER2+) subtypes, with ASRs of 10.6, 6.0, 2.8 and 2.8 per 100,000, respectively. The proportions of subtypes and ASRs differed significantly by ethnic groups: HER2-positive cases were more frequent in Malays (29%; 95% CI [23;35]) than Chinese (22%; [19;26] and natives (21%; [16;26]); triple-negative cases were less frequent among Chinese (23%; [20;27]) than Malays (33%; [27;39]) and natives (37%; [31;43]). The results of the case-case comparison were in accordance with those observed in western case series. Some uncommon associations, such as between triple-negative subtype and older age at menopause (OR, 1.59; p < 0.05), were found. The triple-negative and HER2+ subtypes predominate in our region, with significant differences among ethnic groups. Our results support the idea that the risk factors for different subtypes vary markedly. Westernized populations are more likely to have factors that increase the risk for the luminal A type, while risk factors for the triple-negative type are more frequent in local populations. Copyright © 2012 UICC.

  7. BRIP1 overexpression is correlated with clinical features and survival outcome of luminal breast cancer subtypes

    PubMed Central

    Gupta, Ishita; Ouhtit, Allal; Al-Ajmi, Adil; Rizvi, Syed Gauhar A; Al-Riyami, Hamad; Al-Riyami, Marwa

    2018-01-01

    In Oman, breast cancer is most common, representing approximately more than 25% of all cancers in women. Relatively younger populations of patients (25–40 years) present surprisingly with an aggressive phenotype and advanced tumor stages. In this study, we investigated differential gene expressions in Luminal A, Luminal B, triple-negative and Her2+ breast cancer subtypes and compared data to benign tumor samples. We identified a potential candidate gene BRIP1, showing differential expression in the four breast cancer subtypes examined, suggesting that BRIP1 has the profile of a useful diagnostic marker, suitable for targeted therapeutic intervention. RT-qPCR and Western blotting analysis showed higher BRIP1 expression in luminal samples as compared to triple-negative subtype patient’s samples. We further screened BRIP1 for eventual mutations/SNPs/deletions by sequencing the entire coding region. Four previously identified polymorphisms were detected, one within the 5′-UTR region (c.141-64G > A) and three in the BRCA-binding domain (c.2755T > C, c.2647G > A and c.3411T > C). Kaplan–Meier analysis revealed that patients with overexpression of BRIP1 displayed a poor survival rate (P < 0.05). BRIP1 has a dual function of an oncogene and a tumor suppressor gene in addition to its role as a potential biomarker to predict survival and prognosis. Data obtained in this study suggest that BRIP1 can plausibly have an oncogenic role in sporadic cancers. PMID:29138235

  8. Pazopanib inhibits the activation of PDGFRβ-expressing astrocytes in the brain metastatic microenvironment of breast cancer cells.

    PubMed

    Gril, Brunilde; Palmieri, Diane; Qian, Yongzhen; Anwar, Talha; Liewehr, David J; Steinberg, Seth M; Andreu, Zoraida; Masana, Daniel; Fernández, Paloma; Steeg, Patricia S; Vidal-Vanaclocha, Fernando

    2013-06-01

    Brain metastases occur in more than one-third of metastatic breast cancer patients whose tumors overexpress HER2 or are triple negative. Brain colonization of cancer cells occurs in a unique environment, containing microglia, oligodendrocytes, astrocytes, and neurons. Although a neuroinflammatory response has been documented in brain metastasis, its contribution to cancer progression and therapy remains poorly understood. Using an experimental brain metastasis model, we characterized the brain metastatic microenvironment of brain tropic, HER2-transfected MDA-MB-231 human breast carcinoma cells (231-BR-HER2). A previously unidentified subpopulation of metastasis-associated astrocytes expressing phosphorylated platelet-derived growth factor receptor β (at tyrosine 751; p751-PDGFRβ) was identified around perivascular brain micrometastases. p751-PDGFRβ(+) astrocytes were also identified in human brain metastases from eight craniotomy specimens and in primary cultures of astrocyte-enriched glial cells. Previously, we reported that pazopanib, a multispecific tyrosine kinase inhibitor, prevented the outgrowth of 231-BR-HER2 large brain metastases by 73%. Here, we evaluated the effect of pazopanib on the brain neuroinflammatory microenvironment. Pazopanib treatment resulted in 70% (P = 0.023) decrease of the p751-PDGFRβ(+) astrocyte population, at the lowest dose of 30 mg/kg, twice daily. Collectively, the data identify a subpopulation of activated astrocytes in the subclinical perivascular stage of brain metastases and show that they are inhibitable by pazopanib, suggesting its potential to prevent the development of brain micrometastases in breast cancer patients. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Pazopanib reveals a role for tumor cell B-Raf in the prevention of HER2+ breast cancer brain metastasis.

    PubMed

    Gril, Brunilde; Palmieri, Diane; Qian, Yong; Smart, DeeDee; Ileva, Lilia; Liewehr, David J; Steinberg, Seth M; Steeg, Patricia S

    2011-01-01

    Brain metastases of breast cancer contribute significantly to patient morbidity and mortality. We have tested pazopanib, a recently approved antiangiogenic drug that targets VEGFR1, VEGFR2, VEGFR3, PDGFRβ, PDGFRα, and c-kit, for prevention of experimental brain metastases and mechanism of action. In vitro assays included B-Raf enzymatic assays, Western blots, and angiogenesis assays. For in vivo assays, HER2 transfectants of the brain seeking sublines of MDA-MB-231 cells (231-BR-HER2) and MCF7 cells (MCF7-HER2-BR3, derived herein) were injected into the left cardiac ventricle of mice and treated with vehicle or pazopanib beginning on day 3 postinjection. Brain metastases were counted histologically, imaged, and immunostained. Treatment with 100 mg/kg of pazopanib resulted in a 73% decline in large 231-BR-HER2 metastases (P < 0.0001) and a 39% decline in micrometastases (P = 0.004). In vitro, pazopanib was directly antiproliferative to 231-BR-HER2 breast cancer cells and inhibited MEK and ERK activation in vitro despite B-Raf and Ras mutations. Enzymatic assays demonstrated that pazopanib directly inhibited the wild type and exon 11 oncogenic mutant, but not the V600E mutant forms of B-Raf. Activation of the B-Raf targets pERK1/2 and pMEK1/2 was decreased in pazopanib-treated brain metastases whereas blood vessel density was unaltered. In the MCF7-HER2-BR3 experimental brain metastasis model, pazopanib reduced overall brain metastasis volume upon magnetic resonance imaging (MRI) by 55% (P = 0.067), without affecting brain metastasis vascular density. The data identify a new activity for pazopanib directly on tumor cells as a pan-Raf inhibitor and suggest its potential for prevention of brain metastatic colonization of HER2(+) breast cancer. ©2010 AACR.

  10. Micromixer Based Preparation of Functionalized Liposomes and Targeting Drug Delivery

    PubMed Central

    2016-01-01

    We present here a specific targeting nanocarrier system by functionalization of liposomes with one new type of breast cancer targeting peptide (H6, YLFFVFER) by a micromixer with high efficiency. Antitumor drugs could be successfully delivered into human epidermal growth factor receptor 2 (HER2) positive breast cancer cells with high efficiency in both in vivo and ex vivo models. PMID:27096054

  11. Long-term survival in trastuzumab-treated patients with HER2-positive metastatic breast cancer: real-world outcomes and treatment patterns in a whole-of-population Australian cohort (2001-2016).

    PubMed

    Daniels, Benjamin; Kiely, Belinda E; Lord, Sarah J; Houssami, Nehmat; Lu, Christine Y; Ward, Robyn L; Pearson, Sallie-Anne

    2018-05-07

    Patients treated with trastuzumab for HER2-positive metastatic breast cancer (HER2+MBC) are living longer, but there is little information on their outcomes and treatment experience beyond the median survival from clinical trials and real-world observational studies. We aim to describe the real-world treatment patterns and overall survival (OS) for women surviving five or more years from initiation of trastuzumab for HER2+MBC. This is a retrospective, whole-of-population cohort study of women initiating trastuzumab for HER2+MBC between 2001 and 2011, followed to 2016. We defined long-term survivors (LTS) as those patients surviving ≥ 5 years from trastuzumab initiation. We used dispensing claims to describe timing of cancer treatments used by LTS and to estimate time on and off HER2-targeted therapies, and OS from trastuzumab initiation for HER2+MBC. Of 4177 women initiating trastuzumab for HER2+MBC, 1082 (26%) survived ≥ 5 years. Median age for LTS was 54 years (IQR 46-63). At a median follow-up of 9.4 years, 36% of LTS died; their conditional probability of surviving an additional 5 years was 55%. Median time on trastuzumab and all HER2-targeted therapy was 58.9 months (27.6-88.1) and 69.1 months (35.6-124.5), respectively. 85% of LTS had a period off HER2 therapy, lasting a median of 30.4 months (8.2-NR). LTS generally receive HER2-targeted therapies for periods of time longer than in clinical trials, but most LTS also had breaks in treatment. More research is needed to understand the effects of long-term treatment and to identify patients who may be able to safely discontinue HER2-targeted therapy.

  12. Concordance Between FISH Analysis of Her-2/Neu Gene in Breast Duct Carcinoma and Corresponding Axillary Nodal Metastases: Egyptian National Cancer Institute Experience.

    PubMed

    Badawy, Omnia M; Hassan, Hannan; ELBakey, Heba A; Mosaad, Maha

    2018-05-10

    Breast cancer is a major health problem in Egypt. Her-2/Neu gene is routinely assessed for all breast cancer patients primarily by immunohistochemistry. At National Cancer Institute (NCI), Cairo University, Flourescence In Situ hybridization (FISH) analysis of Her-2/Neu gene is carried out for Her-2/Neu score 2 and for some cases of score 3 (particularly those assessed outside NCI). The test is performed essentially on the primary tumor. However, some situations require testing on corresponding lymph node metastases. There is a debate about the concordance between Her-2/Neu status in the primary tumor and synchronous lymph node metastases in various studies. The aim of this study was to test for the concordance between Her-2/Neu status in the primary breast tumor and corresponding axillary nodal metastases. This is a retrospective study in which FISH analysis of Her-2/Neu was carried out simultaneously on archived material of 50 cases previously diagnosed as invasive duct carcinoma and the corresponding nodal metastases from the Pathology Department, NCI. There was complete concordance between Her-2 status in the primary tumor and the corresponding axillary lymph node metastatic deposits in which Her-2 was amplified in 44% of the studied cohort of Egyptian patients. Her-2/Neu gene assessed by FISH analysis on synchronous lymph node metastases is strongly correlated with the primary tumor. Hence, it is justified to carry out the Her-2/Neu test on synchronous lymph nodes to decide on whether to carry out anti-Her-2/Neu target therapy. Further studies on other metastatic sites is recommended.

  13. Gene delivery of TIPE2 inhibits breast cancer development and metastasis via CD8+ T and NK cell-mediated antitumor responses.

    PubMed

    Zhang, Zhenhua; Liu, Li; Cao, Shousong; Zhu, Yizhun; Mei, Qibing

    2017-05-01

    Breast cancer is the second leading cause of cancer-related deaths in the female patients which was mainly caused by metastasis. Development of target gene therapy for breast cancer to suppress tumor progress and metastasis will improve the therapeutic options and be of great benefit to the patients. Tumor necrosis factor-alpha-induced protein 8-like 2 is a novel molecule for maintaining immune homeostasis and is involved in cancer development. In the present study, we overexpressed TIPE2 in breast cancer cells to investigate the role of TIPE2 in the development of breast cancer. Our results showed that overexpression of TIPE2 significantly inhibited the proliferation of 4T1 cells in vitro and in vivo. We constructed a non-viral targeted gene therapeutic system by using the minicircle plasmids expressing TIPE2. We found that the growth and metastasis of breast cancer was significantly inhibited by hydrodynamic gene delivery of TIPE2 plasmids in vivo. Mechanistically, TIPE2 increased T and NK cells, and decreased MDSCs. Gene delivery of TIPE2 up-regulated the production of IFN-γ and TNF-α by CD8 + T and NK cells in spleens and tumor microenvironment, and enhanced the cytotoxic activity of CD8 + T and NK cells. Taken together, TIPE2 inhibited breast cancer development and metastasis possibly via promoting CD8 + T and NK cell-mediated antitumor immune responses. Thus, the results indicate that TIPE2 may be a potential therapeutic target for breast cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. HER2-positive double primary tumor of gastric and breast cancer occur synchronously in a patient: A case report

    PubMed Central

    OUYANG, QUCHANG; TIAN, CAN; GAO, JIANXIANG; HUANG, JIN; FU, HUA; HE, JINSONG; YANG, JIANBO

    2016-01-01

    The simultaneous occurrence of primary gastric cancer and breast cancer is rare, and the positive expression of human epidermal growth factor receptor (HER)2 in double primary carcinoma of gastric and breast cancer remains to be reported. The present study presented a 46-year-old woman complaining of irregular acid reflux and stomach discomfort. The stomach cancer was diagnosed by esophagogastroduodenoscopy examination of the pathological biopsies in 2010. The patient underwent a radical gastrectomy for gastric cancer, and postoperative pathological examination revealed moderately-poorly differentiated adenocarcinoma with HER2 positive expression. The tumor invaded into the entire thickness of the gastric wall and lymph nodes. The patient received five treatments of postoperative chemotherapy. In August 2011, the patient felt a lump in the right breast. Simple excision of the right breast mass was performed on September 2011, and postoperative pathological examination revealed the invasive ductal carcinoma of the right breast with HER2 amplification by fluorescent in situ hybridization assay. The patient was treated with postoperative chemotherapy and radiotherapy, and also Trastuzumab target therapy. The patient succumbed to aggressive disease progression in March 2012. PMID:27123269

  15. Pazopanib reveals a role for tumor cell B-Raf in the prevention of HER2+ breast cancer brain metastasis

    PubMed Central

    Gril, Brunilde; Palmieri, Diane; Qian, Yong; Smart, DeeDee; Ileva, Lilia; Liewehr, David J.; Steinberg, Seth M.; Steeg, Patricia S.

    2010-01-01

    Purpose Brain metastases of breast cancer contribute significantly to patient morbidity and mortality. We have tested pazopanib, a recently approved anti-angiogenic drug that targets VEGFR1-3, PDGFRβ, PDGFRα and c-kit, for prevention of experimental brain metastases and mechanism of action. Experimental Design In vitro assays included B-Raf enzymatic assays, western blots and angiogenesis assays. For in vivo assays, HER2 transfectants of the brain seeking sublines of MDA-MB-231 cells (231-BR-HER2) and MCF7 cells (MCF7-HER2-BR3, derived herein) were injected into the left cardiac ventricle of mice and treated with vehicle or pazopanib beginning on day 3 post-injection. Brain metastases were counted histologically, imaged and immunostained. Results Treatment with 100 mg/kg pazopanib resulted in a 73% decline in large 231-BR-HER2 metastases (p<0.0001) and 39% decline in micrometastases (p=0.004). In vitro, pazopanib was directly anti-proliferative to 231-BR-HER2 breast cancer cells and inhibited MEK and ERK activation in vitro despite B-Raf and Ras mutations. Enzymatic assays demonstrated that pazopanib directly inhibited the wild type and exon 11 oncogenic mutant, but not the V600E mutant forms of B-Raf. Activation of the B-Raf targets pERK1/2 and pMEK1/2 was decreased in pazopanib treated brain metastases while blood vessel density was unaltered. In the MCF7-HER2-BR3 experimental brain metastasis model, pazopanib reduced overall brain metastasis volume upon MRI imaging by 55% (p=0.067), without affecting brain metastasis vascular density. Conclusions The data identify a new activity for pazopanib directly on tumor cells as a pan-Raf inhibitor, and suggest its potential for prevention of brain metastatic colonization of HER2+ breast cancer. PMID:21081656

  16. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Luo, Huiyan; Cao, Zhong; Chen, Ya; Gao, Jinbiao; Li, Yingqin; Jiang, Qing; Xu, Ruihua; Liu, Jie

    2016-06-01

    Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor 2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44.Gastric cancer (GC), particularly of the type with high expression of both human epidermal growth factor receptor 2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01749e

  17. ErbB4 Overexpression as an Antagonist of ErbB2/HER2/Neu Induced Human Breast Cancer Cell Proliferation

    DTIC Science & Technology

    2006-08-01

    advantage and evade therapeutic eradication. Death decisions within mammalian cells are primarily regulated by the interplay between proapoptotic and...BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics . Cancer Cell 2002;2:183–92. 28. Bouillet P...Agricultural University, P. R. China, BS, Horticulture Positions and Honors 2005.5-Present Postdoctoral Fellow, Department of Molecular and Cellular

  18. Micromolecular methods for diagnosis and therapeutic strategy: a case study

    PubMed Central

    Elbouchtaoui, Morad; Tengher, Iulia; Miquel, Catherine; Brugière, Charlotte; Benbara, Amélie; Zelek, Laurent; Ziol, Marianne; Bouhidel, Fatiha; Janin, Anne; Bousquet, Guilhem; Leboeuf, Christophe

    2018-01-01

    An intraductal carcinoma, 55 mm across, was diagnosed on a total mastectomy in a 45-year-old woman. The 2 micro-invasive areas found were too small for reliable immunostainings for estrogen, progesterone, and HER2 receptors. In the sentinel lymph-node, a subcapsular tumor embole of about 50 cancer cells was identified on the extemporaneous cryo-cut section, but not on further sections after paraffin-embedding of the sample. Considering this tumor metastatic potential, we decided to assess HER2 status on the metastatic embole using pathological and molecular micro-methods. We laser-microdissected the tumor cells, extracted their DNA, and performed droplet-digital-PCR (ddPCR) for HER2 gene copy number variation. The HER2/RNaseP allele ratio was 5.2 in the laser-microdissected tumor cells, similar to the 5.3 ratio in the HER2-overexpressing breast cancer cell line BT-474. We thus optimized the adjuvant treatment of our patient and she received a trastuzumab-based adjuvant chemotherapy. PMID:29854320

  19. Basal Subtype of Invasive Breast Cancer Is Associated With a Higher Risk of True Recurrence After Conventional Breast-Conserving Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattangadi-Gluth, Jona A.; Wo, Jennifer Y.; Nguyen, Paul L.

    2012-03-01

    Purpose: To determine whether breast cancer subtype is associated with patterns of ipsilateral breast tumor recurrence (IBTR), either true recurrence (TR) or elsewhere local recurrence (ELR), among women with pT1-T2 invasive breast cancer (IBC) who receive breast-conserving therapy (BCT). Methods and Materials: From Jan 1998 to Dec 2003, 1,223 women with pT1-T2N0-3 IBC were treated with BCT (lumpectomy plus whole-breast radiation). Ninety percent of patients received adjuvant systemic therapy, but none received trastuzumab. Biologic cancer subtypes were approximated by determining estrogen receptor-positive (ER+), progesterone receptor-positive (PR+), and human epidermal growth factor receptor-2-positive (HER-2+) expression, classified as luminal A (ER+ ormore » PR+ and HER-2 negative [HER-2-]), luminal B (ER+ or PR+ and HER-2+), HER-2 (ER- and PR- and HER-2+), and basal (ER- and PR- and HER-2- ) subtypes. Imaging, pathology, and operative reports were reviewed by two physicians independently, including an attending breast radiologist. Readers were blinded to subtype and outcome. TR was defined as IBTR within the same quadrant and within 3 cm of the primary tumor. All others were defined as ELR. Results: At a median follow-up of 70 months, 24 patients developed IBTR (5-year cumulative incidence of 1.6%), including 15 TR and 9 ELR patients. At 5 years, basal (4.4%) and HER-2 (9%) subtypes had a significantly higher incidence of TR than luminal B (1.2%) and luminal A (0.2%) subtypes (p < 0.0001). On multivariate analysis, basal subtype (hazard ratio [HR], 4.8, p = 0.01), younger age at diagnosis (HR, 0.97; p = 0.05), and increasing tumor size (HR, 2.1; p = 0.04) were independent predictors of TR. Only younger age (HR, 0.95; p = 0.01) significantly predicted for ELR. Conclusions: Basal and HER-2 subtypes are significantly associated with higher rates of TR among women with pT1-T2 IBC after BCT. Younger age predicts for both TR and ELR. Strategies to reduce TR in basal breast cancers, such as increased boost doses, concomitant radiation and chemotherapy, or targeted therapy agents, should be explored.« less

  20. Activated d16HER2 homodimers and SRC kinase mediate optimal efficacy for trastuzumab.

    PubMed

    Castagnoli, Lorenzo; Iezzi, Manuela; Ghedini, Gaia C; Ciravolo, Valentina; Marzano, Giulia; Lamolinara, Alessia; Zappasodi, Roberta; Gasparini, Patrizia; Campiglio, Manuela; Amici, Augusto; Chiodoni, Claudia; Palladini, Arianna; Lollini, Pier Luigi; Triulzi, Tiziana; Menard, Sylvie; Nanni, Patrizia; Tagliabue, Elda; Pupa, Serenella M

    2014-11-01

    A splice isoform of the HER2 receptor that lacks exon 16 (d16HER2) is expressed in many HER2-positive breast tumors, where it has been linked with resistance to the HER2-targeting antibody trastuzumab, but the impact of d16HER2 on tumor pathobiology and therapeutic response remains uncertain. Here, we provide genetic evidence in transgenic mice that expression of d16HER2 is sufficient to accelerate mammary tumorigenesis and improve the response to trastuzumab. A comparative analysis of effector signaling pathways activated by d16HER2 and wild-type HER2 revealed that d16HER2 was optimally functional through a link to SRC activation (pSRC). Clinically, HER2-positive breast cancers from patients who received trastuzumab exhibited a positive correlation in d16HER2 and pSRC abundance, consistent with the mouse genetic results. Moreover, patients expressing high pSRC or an activated "d16HER2 metagene" were found to derive the greatest benefit from trastuzumab treatment. Overall, our results establish the d16HER2 signaling axis as a signature for decreased risk of relapse after trastuzumab treatment. ©2014 American Association for Cancer Research.

  1. A Physical Mechanism and Global Quantification of Breast Cancer

    PubMed Central

    Yu, Chong; Wang, Jin

    2016-01-01

    Initiation and progression of cancer depend on many factors. Those on the genetic level are often considered crucial. To gain insight into the physical mechanisms of breast cancer, we construct a gene regulatory network (GRN) which reflects both genetic and environmental aspects of breast cancer. The construction of the GRN is based on available experimental data. Three basins of attraction, representing the normal, premalignant and cancer states respectively, were found on the phenotypic landscape. The progression of breast cancer can be seen as switching transitions between different state basins. We quantified the stabilities and kinetic paths of the three state basins to uncover the biological process of breast cancer formation. The gene expression levels at each state were obtained, which can be tested directly in experiments. Furthermore, by performing global sensitivity analysis on the landscape topography, six key genes (HER2, MDM2, TP53, BRCA1, ATM, CDK2) and four regulations (HER2⊣TP53, CDK2⊣BRCA1, ATM→MDM2, TP53→ATM) were identified as being critical for breast cancer. Interestingly, HER2 and MDM2 are the most popular targets for treating breast cancer. BRCA1 and TP53 are the most important oncogene of breast cancer and tumor suppressor gene, respectively. This further validates the feasibility of our model and the reliability of our prediction results. The regulation ATM→MDM2 has been extensive studied on DNA damage but not on breast cancer. We notice the importance of ATM→MDM2 on breast cancer. Previous studies of breast cancer have often focused on individual genes and the anti-cancer drugs are mainly used to target the individual genes. Our results show that the network-based strategy is more effective on treating breast cancer. The landscape approach serves as a new strategy for analyzing breast cancer on both the genetic and epigenetic levels and can help on designing network based medicine for breast cancer. PMID:27410227

  2. Carboplatin+Nab-paclitaxel, Plus Trastuzumab (HER2+) or Bevacizumab (HER2-) in the Neoadjuvant Setting

    ClinicalTrials.gov

    2018-01-11

    Breast Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Recurrent Breast Cancer; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  3. Single-cell quantitative HER2 measurement identifies heterogeneity and distinct subgroups within traditionally defined HER2-positive patients.

    PubMed

    Onsum, Matthew D; Geretti, Elena; Paragas, Violette; Kudla, Arthur J; Moulis, Sharon P; Luus, Lia; Wickham, Thomas J; McDonagh, Charlotte F; MacBeath, Gavin; Hendriks, Bart S

    2013-11-01

    Human epidermal growth factor receptor 2 (HER2) is an important biomarker for breast and gastric cancer prognosis and patient treatment decisions. HER2 positivity, as defined by IHC or fluorescent in situ hybridization testing, remains an imprecise predictor of patient response to HER2-targeted therapies. Challenges to correct HER2 assessment and patient stratification include intratumoral heterogeneity, lack of quantitative and/or objective assays, and differences between measuring HER2 amplification at the protein versus gene level. We developed a novel immunofluorescence method for quantitation of HER2 protein expression at the single-cell level on FFPE patient samples. Our assay uses automated image analysis to identify and classify tumor versus non-tumor cells, as well as quantitate the HER2 staining for each tumor cell. The HER2 staining level is converted to HER2 protein expression using a standard cell pellet array stained in parallel with the tissue sample. This approach allows assessment of HER2 expression and heterogeneity within a tissue section at the single-cell level. By using this assay, we identified distinct subgroups of HER2 heterogeneity within traditional definitions of HER2 positivity in both breast and gastric cancers. Quantitative assessment of intratumoral HER2 heterogeneity may offer an opportunity to improve the identification of patients likely to respond to HER2-targeted therapies. The broad applicability of the assay was demonstrated by measuring HER2 expression profiles on multiple tumor types, and on normal and diseased heart tissues. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Intrinsic Subtype and Therapeutic Response Among HER2-Positive Breast Tumors from the NCCTG (Alliance) N9831 Trial

    PubMed Central

    Perez, Edith A.; Ballman, Karla V.; Mashadi-Hossein, Afshin; Tenner, Kathleen S.; Kachergus, Jennifer M.; Norton, Nadine; Necela, Brian M.; Carr, Jennifer M.; Ferree, Sean; Perou, Charles M.; Baehner, Frederick; Cheang, Maggie Chon U.

    2017-01-01

    Background: Genomic data from human epidermal growth factor receptor 2–positive (HER2+) tumors were analyzed to assess the association between intrinsic subtype and clinical outcome in a large, well-annotated patient cohort. Methods: Samples from the NCCTG (Alliance) N9831 trial were analyzed using the Prosigna algorithm on the NanoString platform to define intrinsic subtype, risk of recurrence scores, and risk categories for 1392 HER2+ tumors. Subtypes were evaluated for recurrence-free survival (RFS) using Kaplan-Meier and Cox model analysis following adjuvant chemotherapy (n = 484) or chemotherapy plus trastuzumab (n = 908). All statistical tests were two-sided. Results: Patients with HER2+ tumors from N9831 were primarily scored as HER2-enriched (72.1%). These individuals received statistically significant benefit from trastuzumab (hazard ratio [HR] = 0.68, 95% confidence interval [CI] = 0.52 to 0.89, P = .005), as did the patients (291 of 1392) with luminal-type tumors (HR = 0.52, 95% CI = 0.32 to 0.85, P = .01). Patients with basal-like tumors (97 of 1392) did not have statistically significantly better RFS when treated with trastuzumab and chemotherapy compared with chemotherapy alone (HR = 1.06, 95% CI = 0.53 to 2.13, P = .87). Conclusions: The majority of clinically defined HER2-positive tumors were classified as HER2-enriched or luminal using the Prosigna algorithm. Intrinsic subtype alone cannot replace conventional histopathological evaluation of HER2 status because many tumors that are classified as luminal A or luminal B will benefit from adjuvant trastuzumab if that subtype is accompanied by HER2 overexpression. However, among tumors that overexpress HER2, we speculate that assessment of intrinsic subtype may influence treatment, particularly with respect to evaluating alternative therapeutic approaches for that subset of HER2-positive tumors of the basal-like subtype. PMID:27794124

  5. Quantitative measurement of HER2 expression in breast cancers: comparison with 'real-world' routine HER2 testing in a multicenter Collaborative Biomarker Study and correlation with overall survival.

    PubMed

    Yardley, Denise A; Kaufman, Peter A; Huang, Weidong; Krekow, Lea; Savin, Michael; Lawler, William E; Zrada, Stephen; Starr, Alexander; Einhorn, Harvey; Schwartzberg, Lee S; Adams, John W; Lie, Yolanda; Paquet, Agnes C; Sperinde, Jeff; Haddad, Mojgan; Anderson, Steve; Brigino, Marlon; Pesano, Rick; Bates, Michael P; Weidler, Jodi; Bosserman, Linda

    2015-03-18

    Accurate assessment of HER2 status is critical in determining appropriate therapy for breast cancer patients but the best HER2 testing methodology has yet to be defined. In this study, we compared quantitative HER2 expression by the HERmark™ Breast Cancer Assay (HERmark) with routine HER2 testing by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), and correlated HER2 results with overall survival (OS) of breast cancer patients in a multicenter Collaborative Biomarker Study (CBS). Two hundred and thirty-two formalin-fixed, paraffin-embedded breast cancer tissues and local laboratory HER2 testing results were provided by 11 CBS sites. HERmark assay and central laboratory HER2 IHC retesting were retrospectively performed in a blinded fashion. HER2 results by all testing methods were obtained in 192 cases. HERmark yielded a continuum of total HER2 expression (H2T) ranging from 0.3 to 403 RF/mm2 (approximately 3 logs). The distribution of H2T levels correlated significantly (P<0.0001) with all routine HER2 testing results. The concordance of positive and negative values (equivocal cases excluded) between HERmark and routine HER2 testing was 84% for local IHC, 96% for central IHC, 85% for local FISH, and 84% for local HER2 status. OS analysis revealed a significant correlation of shorter OS with HER2 positivity by local IHC (HR=2.6, P=0.016), central IHC (HR=3.2, P=0.015), and HERmark (HR=5.1, P<0.0001) in this cohort of patients most of whom received no HER2-targeted therapy. The OS curve of discordant low (HER2 positive but H2T low, 10% of all cases) was aligned with concordant negative (HER2 negative and H2T low, HR=1.9, P=0.444), but showed a significantly longer OS than concordant positive (HER2 positive and H2T high, HR=0.31, P=0.024). Conversely, the OS curve of discordant high (HER2 negative but H2T high, 9% of all cases) was aligned with concordant positive (HR=0.41, P=0.105), but showed a significantly shorter OS than concordant negative (HR=41, P<0.0001). Quantitative HER2 measurement by HERmark is highly sensitive, accurately quantifies HER2 protein expression and correlates well with routine HER2 testing. When HERmark and local HER2 results were discordant, HERmark more accurately predicted overall survival.

  6. Follistatin is a metastasis suppressor in a mouse model of HER2-positive breast cancer.

    PubMed

    Seachrist, Darcie D; Sizemore, Steven T; Johnson, Emhonta; Abdul-Karim, Fadi W; Weber Bonk, Kristen L; Keri, Ruth A

    2017-06-05

    Follistatin (FST) is an intrinsic inhibitor of activin, a member of the transforming growth factor-β superfamily of ligands. The prognostic value of FST and its family members, the follistatin-like (FSTL) proteins, have been studied in various cancers. However, these studies, as well as limited functional analyses of the FSTL proteins, have yielded conflicting results on the role of these proteins in disease progression. Furthermore, very few have been focused on FST itself. We assessed whether FST may be a suppressor of tumorigenesis and/or metastatic progression in breast cancer. Using publicly available gene expression data, we examined the expression patterns of FST and INHBA, a subunit of activin, in normal and cancerous breast tissue and the prognostic value of FST in breast cancer metastases, recurrence-free survival, and overall survival. The functional effects of activin and FST on in vitro proliferation, migration, and invasion of breast cancer cells were also examined. FST overexpression in an autochthonous mouse model of breast cancer was then used to assess the in vivo impact of FST on metastatic progression. Examination of multiple breast cancer datasets revealed that FST expression is reduced in breast cancers compared with normal tissue and that low FST expression predicts increased metastasis and reduced overall survival. FST expression was also reduced in a mouse model of HER2/Neu-induced metastatic breast cancer. We found that FST blocks activin-induced breast epithelial cell migration in vitro, suggesting that its loss may promote breast cancer aggressiveness. To directly determine if FST restoration could inhibit metastatic progression, we transgenically expressed FST in the HER2/Neu model. Although FST had no impact on tumor initiation or growth, it completely blocked the formation of lung metastases. These data indicate that FST is a bona fide metastasis suppressor in this mouse model and support future efforts to develop an FST mimetic to suppress metastatic progression.

  7. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination.

    PubMed

    Fonseca, Nuno A; Rodrigues, Ana S; Rodrigues-Santos, Paulo; Alves, Vera; Gregório, Ana C; Valério-Fernandes, Ângela; Gomes-da-Silva, Lígia C; Rosa, Manuel Santos; Moura, Vera; Ramalho-Santos, João; Simões, Sérgio; Moreira, João Nuno

    2015-11-01

    Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels inmore » breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.« less

  9. Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation mapping

    PubMed Central

    Wulfkuhle, Julia D.; Berg, Daniela; Wolff, Claudia; Langer, Rupert; Tran, Kai; Illi, Julie; Espina, Virginia; Pierobon, Mariaelena; Deng, Jianghong; DeMichele, Angela; Walch, Axel; Bronger, Holger; Becker, Ingrid; Waldhör, Christine; Höfler, Heinz; Esserman, Laura; Liotta, Lance A.; Becker, Karl-Friedrich; Petricoin, Emanuel F.

    2017-01-01

    Purpose Targeting of the HER2 protein in human breast cancer represents a major advance in oncology, but relies on measurements of total HER2 protein and not HER2 signaling network activation. We utilized reverse phase protein microarrays (RPMAs) to measure total and phosphorylated HER2 in the context of HER family signaling to understand correlations between phosphorylated and total levels of HER2 and downstream signaling activity. Experimental Design Three independent study sets, comprising a total of 415 individual patient samples from flash frozen core biopsy samples and FFPE surgical and core samples, were analyzed via RPMA. The phosphorylation and total levels of the HER receptor family proteins and downstream signaling molecules were measured in laser capture microdissected (LCM) enriched tumor epithelium from 127 frozen pre-treatment core biopsy samples and whole tissue lysates from 288 FFPE samples and these results were compared to FISH and IHC. Results RPMA measurements of total HER2 were highly concordant (> 90% all sets) with FISH and/or IHC data, as was phosphorylation of HER2 in the FISH/IHC+ population. Phosphorylation analysis of HER family signaling identified HER2 activation in some FISH/IHC- tumors and, identical to that seen with FISH/IHC+ tumors, the HER2 activation was concordant with EGFR and HER3 phosphorylation and downstream signaling endpoint activation. Conclusions Molecular profiling of HER2 signaling of a large cohort of human breast cancer specimens using a quantitative and sensitive functional pathway activation mapping technique reveals IHC-/FISH-/pHER2+ tumors with HER2 pathway activation independent of total HER2 levels and functional signaling through HER3 and EGFR. PMID:23045247

  10. ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers.

    PubMed

    Garousi, Javad; Lindbo, Sarah; Nilvebrant, Johan; Åstrand, Mikael; Buijs, Jos; Sandström, Mattias; Honarvar, Hadis; Orlova, Anna; Tolmachev, Vladimir; Hober, Sophia

    2015-10-15

    Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, ¹¹¹In for SPECT imaging and ⁶⁸Ga for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule (111)In/⁶⁸Ga-DOTA-(HE)3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging. ©2015 American Association for Cancer Research.

  11. HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of herceptin.

    PubMed

    Heinmöller, Petra; Gross, Christof; Beyser, Kurt; Schmidtgen, Claudia; Maass, Gerd; Pedrocchi, Michele; Rüschoff, Josef

    2003-11-01

    For the first time a large number (563) of non-small cell lung cancer (NSCLC) samples was used to compare three different technologies for the assessment of HER2 status. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) were used for tumor tissue samples, and ELISA for serum samples. The results were compared with other tumor entities, mainly breast. Samples (563) from patients suffering from primary advanced or metastatic NSCLC were evaluated. HER2 overexpression was demonstrated using IHC in 20% (83 of 410) of the specimens, whereas 2% (7 of 378) were positive by FISH and 6% (31 of 511) showed elevated serum HER2 levels (>15 ng/ml) by ELISA. Sixty-six specimens were positive by IHC only and 13 by ELISA only, whereas none of the specimens was positive only by FISH. Concordance between all of the techniques was seen for only 3 specimens. Of 7 IHC 3+ specimens, 4 showed gene amplification by FISH, and 3 were positive by ELISA (>15 ng/ml), whereas of 76 IHC 2+ cases only 2 were amplified by FISH, and 4 were positive by ELISA. HER2 positivity by at least one of the three techniques was most common in adenocarcinomas, at 29% (42 of 143). Gene amplification and HER2 protein overexpression at the 3+ level appear to be uncommon in NSCLC. The concordance between FISH and IHC 3+ disease was good in this study, in addition, ELISA would have detected several patients without IHC/FISH-positive disease.

  12. Targeting natural compounds against HER2 kinase domain as potential anticancer drugs applying pharmacophore based molecular modelling approaches.

    PubMed

    Rampogu, Shailima; Son, Minky; Baek, Ayoung; Park, Chanin; Rana, Rabia Mukthar; Zeb, Amir; Parameswaran, Saravanan; Lee, Keun Woo

    2018-04-20

    Human epidermal growth factor receptors are implicated in several types of cancers characterized by aberrant signal transduction. This family comprises of EGFR (ErbB1), HER2 (ErbB2, HER2/neu), HER3 (ErbB3), and HER4 (ErbB4). Amongst them, HER2 is associated with breast cancer and is one of the most valuable targets in addressing the breast cancer incidences. For the current investigation, we have performed 3D-QSAR based pharmacophore search for the identification of potential inhibitors against the kinase domain of HER2 protein. Correspondingly, a pharmacophore model, Hypo1, with four features was generated and was validated employing Fischer's randomization, test set method and the decoy test method. The validated pharmacophore was allowed to screen the colossal natural compounds database (UNPD). Subsequently, the identified 33 compounds were docked into the proteins active site along with the reference after subjecting them to ADMET and Lipinski's Rule of Five (RoF) employing the CDOCKER implemented on the Discovery Studio. The compounds that have displayed higher dock scores than the reference compound were scrutinized for interactions with the key residues and were escalated to MD simulations. Additionally, molecular dynamics simulations performed by GROMACS have rendered stable root mean square deviation values, radius of gyration and potential energy values. Eventually, based upon the molecular dock score, interactions between the ligands and the active site residues and the stable MD results, the number of Hits was culled to two identifying Hit1 and Hit2 has potential leads against HER2 breast cancers. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. [Immunohistochemical hormonal mismatch and human epidermal growth factor type 2 [HER2] phenotype of brain metastases in breast cancer carcinoma compared to primary tumors].

    PubMed

    Joubert, C; Boissonneau, S; Fina, F; Figarella-Branger, D; Ouafik, L; Fuentes, S; Dufour, H; Gonçalves, A; Charaffe-Jauffret, E; Metellus, P

    2016-06-01

    Phenotype changes between primary tumor and the corresponding brain metastases are recent reported data. Breast cancer, with biological markers predicting prognosis and guiding therapeutic strategy remains an interesting model to observe and evaluate theses changes. The objective of our study was to compare molecular features (estrogen receptor [ER], progesterone receptor [PR], and human epidermal growth factor receptor type 2, [HER2]) between brain metastases and its primary tumor in patients presenting with pathologically confirmed breast cancer. This retrospective study was based on the immunohistochemical analysis of the brain metastases paraffin embedded samples stored in our institutional tumor bank, after surgical resection. The level of expression of hormonal receptors and HER2 on brain metastases were centrally reviewed and compared to the expression status in primary breast cancer from medical records. Forty-four samples of brain metastases were available for analysis. Hormonal receptor modification status was observed in 11/44 brain metastases (25%) for ER and 6/44 (13.6%) for PR. A modification of HER2 overexpression was observed in brain metastases in 6/44 (13.6%). Molecular subtype modification was shown in 17 cases (38.6%). A significant difference was demonstrated between time to develop brain metastases in cases without status modification (HER2, ER and PR) (med=49.5months [7.8-236.4]) and in cases in which brain metastases status differs from primary tumor (med=27.5months [0-197.3]), (P=0.0244, IC95=3.09-51.62, Mann and Whitney test). the main interest of this study was to focus on the molecular feature changes between primary tumor and their brain metastases. Time to develop brain metastases was correlated to phenotypic changes in brain metastases. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis.

    PubMed

    Paul, A; Gunewardena, S; Stecklein, S R; Saha, B; Parelkar, N; Danley, M; Rajendran, G; Home, P; Ray, S; Jokar, I; Vielhauer, G A; Jensen, R A; Tawfik, O; Paul, S

    2014-09-01

    Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a therapeutic option for breast cancer, including the TNBC subtype.

  15. PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis

    PubMed Central

    Paul, A; Gunewardena, S; Stecklein, S R; Saha, B; Parelkar, N; Danley, M; Rajendran, G; Home, P; Ray, S; Jokar, I; Vielhauer, G A; Jensen, R A; Tawfik, O; Paul, S

    2014-01-01

    Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a therapeutic option for breast cancer, including the TNBC subtype. PMID:24786829

  16. Inhibitory effects of Rhenium-188-labeled Herceptin on prostate cancer cell growth: a possible radioimmunotherapy to prostate carcinoma.

    PubMed

    Wang, Hsin-Yi; Lin, Wan-Yu; Chen, Mei-Chih; Lin, Teh; Chao, Chih-Hao; Hsu, Fu-Ning; Lin, Eugene; Huang, Chih-Yang; Luo, Tsai-Yueh; Lin, Ho

    2013-05-01

    Herceptin is widely used in treating Her2-overexpressing breast cancer. However, the application of Herceptin in prostate cancer is still controversial. Our previous results have indicated the relevance of Her2 in the transition of the androgen requirement in prostate cancer cells. In this study, the effects of radioimmunotherapy against Her2 in prostate cancer were investigated. DU145, an androgen receptor-negative prostate cancer cell line, was used in vitro and in vivo to evaluate the effects of Herceptin labeled with a beta emitter, Rhenium-188 (Re-188). Its effects on cell growth, extent of apoptosis, the bio-distribution of Re-188 labeled Herceptin (Re-H), and protein levels were determined. Treatments with Re-188 and Re-H reduced the proliferation of DU145 cells in dose- and time-dependent manners compared to the Herceptin-treated group. Growth inhibition and apoptosis were induced after Re-H treatment; growth inhibition was more distinct in cells with high Her2/p-Her2 levels. Our in vivo xenograft studies revealed that Re-H treatment significantly retarded tumor growth and altered the levels of apoptosis-related proteins. The bio-distribution of Re-H in mice demonstrated a tissue-specific pattern. Importantly, the levels of p35 protein, which is related to cancer cell survival and invasion, dramatically decreased after Re-H treatment. Our data demonstrate that Re-188-labeled Herceptin effectively inhibited the growth of DU145 cells compared to the Herceptin- and Re-188-treated cohorts. This implies that targeting Her2 by both radio- and immuno- therapy might be a potential strategy for treating patients with androgen-independent prostate cancer.

  17. Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: an in vitro study.

    PubMed

    Song, Weixiang; Luo, Yindeng; Zhao, Yajing; Liu, Xinjie; Zhao, Jiannong; Luo, Jie; Zhang, Qunxia; Ran, Haitao; Wang, Zhigang; Guo, Dajing

    2017-05-01

    The aim of this study was to improve tumor-targeted therapy for breast cancer by designing magnetic nanobubbles with the potential for targeted drug delivery and multimodal imaging. Herceptin-decorated and ultrasmall superparamagnetic iron oxide (USPIO)/paclitaxel (PTX)-embedded nanobubbles (PTX-USPIO-HER-NBs) were manufactured by combining a modified double-emulsion evaporation process with carbodiimide technique. PTX-USPIO-HER-NBs were examined for characterization, specific cell-targeting ability and multimodal imaging. PTX-USPIO-HER-NBs exhibited excellent entrapment efficiency of Herceptin/PTX/USPIO and showed greater cytotoxic effects than other delivery platforms. Low-frequency ultrasound triggered accelerated PTX release. Moreover, the magnetic nanobubbles were able to enhance ultrasound, magnetic resonance and photoacoustics trimodal imaging. These results suggest that PTX-USPIO-HER-NBs have potential as a multimodal contrast agent and as a system for ultrasound-triggered drug release in breast cancer.

  18. Clinical Implementation of Novel Targeted Therapeutics in Advanced Breast Cancer.

    PubMed

    Chamberlin, Mary D; Bernhardt, Erica B; Miller, Todd W

    2016-11-01

    The majority of advanced breast cancers have genetic alterations that are potentially targetable with drugs. Through initiatives such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), data can be mined to provide context for next-generation sequencing (NGS) results in the landscape of advanced breast cancer. Therapies for targets other than estrogen receptor alpha (ER) and HER2, such as cyclin-dependent kinases CDK4 and CDK6, were recently approved based on efficacy in patient subpopulations, but no predictive biomarkers have been found, leaving clinicians to continue a trial-and-error approach with each patient. Next-generation sequencing identifies potentially actionable alterations in genes thought to be drivers in the cancerous process including phosphatidylinositol 3-kinase (PI3K), AKT, fibroblast growth factor receptors (FGFRs), and mutant HER2. Epigenetically directed and immunologic therapies have also shown promise for the treatment of breast cancer via histone deacetylases (HDAC) 1 and 3, programmed T cell death 1 (PD-1), and programmed T cell death ligand 1 (PD-L1). Identifying biomarkers to predict primary resistance in breast cancer will ultimately affect clinical decisions regarding adjuvant therapy in the first-line setting. However, the bulk of medical decision-making is currently made in the secondary resistance setting. Herein, we review the clinical potential of PI3K, AKT, FGFRs, mutant HER2, HDAC1/3, PD-1, and PD-L1 as therapeutic targets in breast cancer, focusing on the rationale for therapeutic development and the status of clinical testing. J. Cell. Biochem. 117: 2454-2463, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study.

    PubMed

    Wiedermann, Ursula; Wiltschke, C; Jasinska, J; Kundi, M; Zurbriggen, R; Garner-Spitzer, E; Bartsch, R; Steger, G; Pehamberger, H; Scheiner, O; Zielinski, C C

    2010-02-01

    We have previously shown in mice that vaccination with three Her-2-peptides representing B-cell epitopes of the extracellular domain of Her-2/neu induces Her-2/neu-specific IgG antibodies with strong anti-tumor activity in vitro and in vivo. We have now finalized a phase I clinical trial with an anti-Her-2/neu vaccine-construct of immunopotentiating reconstituted influenza virosomes with the three peptides in patients with metastatic breast cancer (MBC). Ten MBC patients with low protein overexpression of Her-2/neu of MBC (+ or ++ upon immunohistochemistry, FISH negative) and positive hormone receptor status were enrolled in a single center phase I study. The virosomal formulated vaccine, consisting of 10 microg/peptide, was intramuscularly applied three times on days 1, 28, and 56. The primary endpoint of the study, which lasted 12 weeks, was safety, the secondary endpoint immunogenicity. Local erythema at the injection site was the only vaccine-related side effect occurring in four patients. In 8 of 10 patients an increase in peptide-specific antibody titer measured by ELISA was found. Importantly, the induced antibodies were also directed against the native Her-2/neu protein. Cellular immune responses, as measured by in vitro production of IL-2, IFN-c, and TNF-a of PBMCs showed a marked increase after vaccination in the majority of vaccinees. Notably, the number of CD4+CD25+Foxp3+T regulatory cells, which were significantly increased compared to healthy controls prior to vaccination, was markedly reduced following vaccination. In all, the immunological responses after vaccination indicated that the patients in stage IV of disease were immunocompetent and susceptible to vaccination. The Her-2/neu multipeptide vaccine was safe, well tolerated and effective in overcoming immunological tolerance to Her-2/neu. The induction of anti-Her-2-specific antibodies could result in clinical benefit comparable to passive anti-Her-2 antibody therapy.

  20. FHL2 regulates cell cycle-dependent and doxorubicin-induced p21Cip1/Waf1 expression in breast cancer cells.

    PubMed

    Martin, Bernd T; Kleiber, Kai; Wixler, Viktor; Raab, Monika; Zimmer, Brigitte; Kaufmann, Manfred; Strebhardt, Klaus

    2007-07-15

    The transcriptional cofactor FHL2 interacts with a broad variety of transcription factors and its expression is often deregulated in various types of cancer. Here we analyzed for the first time the molecular function of FHL2 in breast cancer. FHL2 is overexpressed in almost all human mammary carcinoma samples tested but not in normal breast tissues and only low levels of FHL2 expression were present in four premalignant ductal carcinoma in situ (DCIS). Cell cycle analysis revealed an upregulation of endogenous FHL2 towards G2/M in MDA-MB 231 cells and an accelerated G2/M transition when FHL2 expression was suppressed in these cells. In search for G2/M specific target genes regulated by FHL2, we found that expression of the cell cycle inhibitor p21Cip1/Waf1 (hereafter p21) is dependent on FHL2 in MDA-MB 231 breast cancer cells. Downregulation of FHL2 by shRNA abrogated the cell cycle dependent upregulation of p21 as well as the induction of p21 in response to treatment with the DNA damaging agent doxorubicin. FHL2-dependent p21 expression occurs in a p53-independent manner and p21 expression can be downregulated by specific inhibition of mitogen-activated protein kinases (MAPKs), implicating an involvement of MAPK signaling in this regulation. Analysis of FHL2 contribution to the MAPK signaling identified FHL2 as an important downstream effector of MAPKs in breast cancer cells, capable of transactivating endogenous AP1 target genes as well as AP1 dependent reporter genes. Finally, downregulation of FHL2 reduces the ability of MDA-MB 231 cells to form colonies in soft agar, while FHL2 overexpression enhances colony formation of breast cancer cells. Thus, our findings indicate that overexpression of the transcriptional cofactor FHL2 contributes to breast cancer development by mediating transcriptional activation of MAPK target genes known to be involved in cancer progression, such as p21.

  1. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation.

    PubMed

    Wang, Huajing; Sun, William

    2017-01-28

    With the discovery of the CRISPR/Cas9 technology, genome editing could be performed in a rapid, precise and effective manner. Its potential applications in functional interrogation of cancer-causing genes and cancer therapy have been extensively explored. In this study, we demonstrated the use of the CRISPR/Cas9 system to directly target the oncogene HER2. Directing Cas9 to exons of the HER2 gene inhibited cell growth in breast cancer cell lines that harbor amplification of the HER2 locus. The inhibitory effect was potentiated with the addition of PARP inhibitors. Unexpectedly, CRISPR-induced mutations did not significantly affect the level of HER2 protein expression. Instead, CRISPR targeting appeared to exert its effect through a dominant negative mutation. This HER2 mutant interfered with the MAPK/ERK axis of HER2 downstream signaling. Our work provides a novel mechanism underlying the anti-cancer effects of HER2-targeting by CRISPR/Cas9, which is distinct from the clinical drug Herceptin. In addition, it opens up the possibility that incomplete CRISPR targeting of certain oncogenes could still have therapeutic value by generation of dominant negative mutants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. For Some Breast Cancers, New Drug May Be Treatment Option

    Cancer.gov

    Results from an international clinical trial suggest that women with metastatic, HER2-positive breast cancer that is no longer responding to the targeted therapy trastuzumab (Herceptin) may soon have a new treatment option.

  3. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1.

    PubMed

    Li, Shoushan; Yan, Ting; Deng, Rong; Jiang, Xuesong; Xiong, Huaping; Wang, Yuan; Yu, Qiao; Wang, Xiaohua; Chen, Cheng; Zhu, Yichao

    2017-01-01

    Triple-negative breast cancer (TNBC) is an especially aggressive and hard-to-treat disease. Although the anticancer role of kaempferol has been reported in breast cancer, the effect of kaempferol on TNBC remains unclear. This experiment investigated the migration-suppressive role of a low dose of kaempferol in TNBC cells. Wound-healing assays and cell invasion assays were used to confirm the migration and invasion of cells treated with kaempferol or transfected indicated constructs. We evaluated the activations of RhoA, Rac1 and Cdc42 in TNBC cells with a Rho activation assay. A panel of inhibitors of estrogen receptor/progesterone receptor/human epidermal growth factor receptor 2 (ER/PR/HER2) treated non-TNBC (SK-BR-3 and MCF-7) cells and blocked the ER/PR/HER2 activity. Wound-healing assays and Rho activation assays were employed to measure the effect of kaempferol and ER/PR/HER2 inhibitors on Rho activation and cell migration rates. A low dose of kaempferol (20 μmol/L) had a potent inhibitory effect on the migration and invasion of TNBC cells, but not on the migration of non-TNBC (SK-BR-3 and MCF-7) cells. The low dose of kaempferol downregulated the activations of RhoA and Rac1 in TNBC cells. Moreover, the low dose of kaempferol also inhibited the migration and RhoA activations of HER2-silence SK-BR-3 and ER/PR-silence MCF-7 cells. Overexpressed HER2 rescued the cell migration and RhoA and Rac1 activations of kaempferol-treated MDA-MB-231 cells. The low dose of kaempferol inhibits the migration and invasion of TNBC cells via blocking RhoA and Rac1 signaling pathway.

  4. A novel far-red fluorescent xenograft model of ovarian carcinoma for preclinical evaluation of HER2-targeted immunotoxins

    PubMed Central

    Zdobnova, Tatiana; Sokolova, Evgeniya; Stremovskiy, Oleg; Karpenko, Dmitry; Telford, William; Turchin, Ilya; Balalaeva, Irina; Deyev, Sergey

    2015-01-01

    We have created a novel fluorescent model of a human ovarian carcinoma xenograft overexpressing receptor HER2, a promising molecular target of solid tumors. The model is based on a newly generated SKOV-kat cell line stably expressing far-red fluorescent protein Katushka. Katushka is most suitable for the in vivo imaging due to an optimal combination of high brightness and emission in the “window of tissue transparency”. The relevance of the fluorescent model for the in vivo monitoring of tumor growth and response to treatment was demonstrated using a newly created HER2-targeted recombinant immunotoxin based on the 4D5scFv antibody and a fragment of the Pseudomonas exotoxin A. PMID:26436696

  5. A Targeted RNAi Screen of the Breast Cancer Genome Identifies KIF14 and TLN1 as Genes That Modulate Docetaxel Chemosensitivity in Triple-Negative Breast Cancer

    PubMed Central

    Singel, Stina Mui; Cornelius, Crystal; Batten, Kimberly; Fasciani, Gail; Wright, Woodring E.; Lum, Lawrence; Shay, Jerry W.

    2015-01-01

    Purpose To identify biomarkers within the breast cancer genome that may predict chemosensitivity in breast cancer. Experimental Design We conducted an RNA interference (RNAi) screen within the breast cancer genome for genes whose loss-of-function enhanced docetaxel chemosensitivity in an estrogen receptor–negative, progesterone receptor–negative, and Her2-negative (ER−, PR−, and Her2−, respectively) breast cancer cell line, MDA-MB-231. Top candidates were tested for their ability to modulate chemosensitivity in 8 breast cancer cell lines and to show in vivo chemosensitivity in a mouse xenograft model. Results From ranking chemosensitivity of 328 short hairpin RNA (shRNA) MDA-MB-231 cell lines (targeting 133 genes with known somatic mutations in breast cancer), we focused on the top two genes, kinesin family member 14 (KIF14) and talin 1 (TLN1). KIF14 and TLN1 loss-of-function significantly enhanced chemosensitivity in four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, HCC38, HCC1937, and Hs478T) but not in three hormone receptor–positive cell lines (MCF7, T47D, and HCC1428) or normal human mammary epithelial cells (HMEC). Decreased expression of KIF14, but not TLN1, also enhanced docetaxel sensitivity in a Her2-amplified breast cancer cell line, SUM190PT. Higher KIF14 and TLN1 expressions are found in TNBCs compared with the other clinical subtypes. Mammary fat pad xenografts of KIF14- and TLN1-deficient MDA-MB-231 cells revealed reduced tumor mass compared with control MDA-MB-231 cells after chemotherapy. KIF14 expression is also prognostic of relapse-free and overall survival in representative breast cancer expression arrays. Conclusion KIF14 and TLN1 are modulators of response to docetaxel and potential therapeutic targets in TNBC. PMID:23479679

  6. Synergistic Inhibition of Her2/neu and p53-MDM2 Pathways. Addendum

    DTIC Science & Technology

    2007-09-01

    Therefore, combination of drugs targeting HER2/neu and MDM2 pathways will allow for a two-pronged attack on breast cancer. The overall objective of our...proposal is to determine if small molecule drugs designed to inhibit HER2/neu can be applied in combination with drugs designed to inhibit p53-MDM2...able to inhibit either the HER2/neu pathway or the p53-MDM2 pathway. Subsequently, designed small molecule drugs able to strongly induce apoptosis

  7. Androgen Receptor: A Complex Therapeutic Target for Breast Cancer

    PubMed Central

    Narayanan, Ramesh; Dalton, James T.

    2016-01-01

    Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. PMID:27918430

  8. TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer*

    PubMed Central

    Ko, Ying-Hui; Domingo-Vidal, Marina; Roche, Megan; Lin, Zhao; Whitaker-Menezes, Diana; Seifert, Erin; Capparelli, Claudia; Tuluc, Madalina; Birbe, Ruth C.; Tassone, Patrick; Curry, Joseph M.; Navarro-Sabaté, Àurea; Manzano, Anna; Bartrons, Ramon; Caro, Jaime; Martinez-Outschoorn, Ubaldo

    2016-01-01

    A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer. PMID:27803158

  9. Nanoshell-mediated targeted photothermal therapy of HER2 human breast cancer cells using pulsed and continuous wave lasers: an in vitro study.

    PubMed

    Khosroshahi, Mohammad E; Hassannejad, Zahra; Firouzi, Masoumeh; Arshi, Ahmad R

    2015-09-01

    In this study, we report the apoptosis induction in HER2 overexpressed breast cancer cells using pulsed, continuous wave lasers and polyvinylpyrrolidone (PVP)-stabilized magneto-plasmonic nanoshells (PVP-MPNS) delivered by immunoliposomes. The immunoliposomes containing PVP-MPNS were fabricated and characterized. Heating efficiency of the synthesized nanostructures was calculated. The effect of functionalization on cellular uptake of nanoparticles was assessed using two cell lines of BT-474 and Calu-6. The best uptake result was achieved by functionalized liposome (MPNS-LAb) and BT-474. Also, the interaction of 514 nm argon (Ar) and Nd/YAG second harmonic 532-nm lasers with nanoparticles was investigated based on the temperature rise of the nanoshell suspension and the release value of 5(6)-carboxyfluorescein (CF) from CF/MPNS-loaded liposomes. The temperature increase of the suspensions after ten consecutive pulses of 532 nm and 5 min of irradiation by Ar laser were measured approximately 2 and 12 °C, respectively. The irradiation of CF/MPNS-loaded liposomes by Ar laser for 3 min resulted in 24.3 % release of CF, and in the case of 532 nm laser, the release was laser energy dependent. Furthermore, the comparison of CF release showed a higher efficiency for the Ar laser than by direct heating of nanoshell suspension using circulating water. The percentage of cell apoptosis after irradiation by Ar and 532 nm lasers were 44.6 and 42.6 %, respectively. The obtained results suggest that controlling the NP-laser interaction using optical properties of nanoshells and the laser parameters can be used to develop a new cancer therapy modality via targeted nanoshell and drug delivery.

  10. In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival.

    PubMed

    Ladoire, Sylvain; Mignot, Grégoire; Dabakuyo, Sandrine; Arnould, Laurent; Apetoh, Lionel; Rébé, Cedric; Coudert, Bruno; Martin, Francois; Bizollon, Marie Hélène; Vanoli, André; Coutant, Charles; Fumoleau, Pierre; Bonnetain, Franck; Ghiringhelli, François

    2011-07-01

    Accumulating preclinical evidence suggests that anticancer immune responses contribute to the success of chemotherapy. However, the predictive value of tumour-infiltrating lymphocytes after neoadjuvant chemotherapy for breast cancer remains unknown. We hypothesized that the nature of the immune infiltrate following neoadjuvant chemotherapy would predict patient survival. In a series of 111 consecutive HER2- and a series of 51 non-HER2-overexpressing breast cancer patients treated by neoadjuvant chemotherapy, we studied by immunohistochemistry tumour infiltration by FOXP3 and CD8 T lymphocytes before and after chemotherapy. Kaplan-Meier analysis and Cox modelling were used to assess relapse-free survival (RFS) and overall survival (OS). A predictive scoring system using American Joint Committee on Cancer (AJCC) pathological staging and immunological markers was created. Association of high CD8 and low FOXP3 cell infiltrates after chemotherapy was significantly associated with improved RFS (p = 0.02) and OS (p = 0.002), and outperformed classical predictive factors in multivariate analysis. A combined score associating CD8/FOXP3 ratio and pathological AJCC staging isolated a subgroup of patients with a long-term overall survival of 100%. Importantly, this score also identified patients with a favourable prognosis in an independent cohort of HER2-negative breast cancer patients. These results suggest that immunological CD8 and FOXP3 cell infiltrate after treatment is an independent predictive factor of survival in breast cancer patients treated with neoadjuvant chemotherapy and provides new insights into the role of the immune milieu and cancer. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. AIB1 is required for the acquisition of epithelial growth factor receptor-mediated tamoxifen resistance in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Wenhui; Zhang Qingyuan; Kang Xinmei

    2009-03-13

    Acquired resistance to tamoxifen has become a serious obstacle in breast cancer treatment. The underlying mechanism responsible for this condition has not been completely elucidated. In this study, a tamoxifen-resistant (Tam-R) MCF-7 breast cancer cell line was developed to mimic the occurrence of acquired tamoxifen resistance as seen in clinical practice. Increased expression levels of HER1, HER2 and the estrogen receptor (ER)-AIB1 complex were found in tamoxifen-resistant cells. EGF stimulation and gefitinib inhibition experiments further demonstrated that HER1/HER2 signaling and AIB1 were involved in the proliferation of cells that had acquired Tam resistance. However, when AIB1 was silenced with AIB1-siRNAmore » in Tam-R cells, the cell growth stimulated by the HER1/HER2 signaling pathway was significantly reduced, and the cells were again found to be inhibited by tamoxifen. These results suggest that the AIB1 protein could be a limiting factor in the HER1/HER2-mediated hormone-independent growth of Tam-R cells. Thus, AIB1 may be a new therapeutic target, and the removal of AIB1 may decrease the crosstalk between ER and the HER1/HER2 pathway, resulting in the restoration of tamoxifen sensitivity in tamoxifen-resistant cells.« less

  12. Breast Cancer Subtypes and Response to Docetaxel in Node-Positive Breast Cancer: Use of an Immunohistochemical Definition in the BCIRG 001 Trial

    PubMed Central

    Hugh, Judith; Hanson, John; Cheang, Maggie Chon U.; Nielsen, Torsten O.; Perou, Charles M.; Dumontet, Charles; Reed, John; Krajewska, Maryla; Treilleux, Isabelle; Rupin, Matthieu; Magherini, Emmanuelle; Mackey, John; Martin, Miguel; Vogel, Charles

    2009-01-01

    Purpose To investigate the prognostic and predictive significance of subtyping node-positive early breast cancer by immunohistochemistry in a clinical trial of a docetaxel-containing regimen. Methods Pathologic data from a central laboratory were available for 1,350 patients (91%) from the BCIRG 001 trial of docetaxel, doxorubicin, and cyclophosphamide (TAC) versus fluorouracil, doxorubicin, and cyclophosphamide (FAC) for operable node-positive breast cancer. Patients were classified by tumor characteristics as (1) triple negative (estrogen receptor [ER]–negative, progesterone receptor [PR]–negative, HER2/neu [HER2]–negative), (2) HER2 (HER2-positive, ER-negative, PR-negative), (3) luminal B (ER-positive and/or PR-positive and either HER2-positive and/or Ki67high), and (4) luminal A (ER-positive and/or PR-positive and not HER2-positive or Ki67high), and assessed for prognostic significance and response to adjuvant chemotherapy. Results Patients were subdivided into triple negative (14.5%), HER2 (8.5%), luminal B (61.1%), and luminal A (15.9%). Three-year disease-free survival (DFS) rates (P values with luminal B as referent) were 67% (P < .0001), 68% (P = .0008), 82% (referent luminal B), and 91% (P = .0027), respectively, with hazard ratios of 2.22, 2.12, and 0.46. Improved 3-year DFS with TAC was found in the luminal B group (P = .025) and a combined ER-positive/HER2-negative group treated with tamoxifen (P = .041), with a marginal trend in the triple negatives (P = .051) and HER2 (P = .068) subtypes. No DFS advantage was seen in the luminal A population. Conclusion A simple immunopanel can divide breast cancers into biologic subtypes with strong prognostic effects. TAC significantly complements endocrine therapy in patients with luminal B subtype and, in the absence of targeted therapy, is effective in the triple-negative population. PMID:19204205

  13. The Human Cell Surfaceome of Breast Tumors

    PubMed Central

    da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José

    2013-01-01

    Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083

  14. Clinical value of R-spondins in triple-negative and metaplastic breast cancers.

    PubMed

    Coussy, F; Lallemand, F; Vacher, S; Schnitzler, A; Chemlali, W; Caly, M; Nicolas, A; Richon, S; Meseure, D; El Botty, R; De-Plater, L; Fuhrmann, L; Dubois, T; Roman-Roman, S; Dangles-Marie, V; Marangoni, E; Bièche, I

    2017-06-06

    RSPO ligands, activators of the Wnt/β-catenin pathway, are overexpressed in different cancers. The objective of this study was to investigate the role of RSPOs in breast cancer (BC). Expression of RSPO and markers of various cancer pathways were measured in breast tumours and cell lines by qRT-PCR. The effect of RSPO on the Wnt/β-catenin pathway activity was determined by luciferase assay, western blotting, and qRT-PCR. The effect of RSPO2 inhibition on proliferation was determined by using RSPO2 siRNAs. The effect of IWR-1, an inhibitor of the Wnt/β-catenin pathway, was examined on the growth of an RSPO2-positive patient-derived xenograft (PDX) model of metaplastic triple-negative BC. We detected RSPO2 and RSPO4 overexpression levels in BC, particularly in triple-negative BC (TNBC), metaplastic BC, and triple-negative cell lines. Various mechanisms could account for this overexpression: presence of fusion transcripts involving RSPO, and amplification or hypomethylation of RSPO genes. Patients with RSPO2-overexpressing tumours have a poorer metastasis-free survival (P=3.6 × 10 -4 ). RSPO2 and RSPO4 stimulate Wnt/β-catenin pathway activity. Inhibition of RSPO expression in a TN cell line inhibits cell growth, and IWR-1 significantly inhibits the growth of an RSPO2-overexpressing PDX. RSPO overexpression could therefore be a new prognostic biomarker and therapeutic target for TNBC.

  15. Distinct breast cancer subtypes in women with early-onset disease across races

    PubMed Central

    Singh, Mandeep; Ding, Yi; Zhang, Li-Ying; Song, Dong; Gong, Yun; Adams, Sylvia; Ross, Dara S; Wang, Jin-Hua; Grover, Shruti; Doval, Dinesh Chandra; Shao, Charles; He, Zi-Li; Chang, Victor; Chin, Warren W; Deng, Fang-Ming; Singh, Baljit; Zhang, David; Xu, Ru-Liang; Lee, Peng

    2014-01-01

    Background: Racial disparities among breast cancer (BCa) patients are known but not well studied in early-onset BCa. We analyzed molecular subtypes in early-onset BCa across five major races. Methods: A total of 2120 cases were included from non-Hispanic White (NHW), African American (AA) and Hispanic, Chinese and Indian. Based on ER, PR and HER-2 status, BCa was classified into 4 intrinsic subtypes as Luminal A, Luminal B, HER2/neu overexpression and Triple negative BCa (TNBC) subtypes. Data was stratified according to race and age as younger/early-onset group (40-years and younger) and older group (50-years and older). Results: In early-onset BCa, incidence of TNBC was significantly higher (p = 0.0369) in Indian women followed by AA, Hispanic, NHW and Chinese women. Incidence of Her2 over-expression subtype also was highest in Indian women, followed by Hispanic, Chinese, AA and NHW women. In contrast, Luminal B subtype was most significantly higher in AA women (p = 0.0000) followed by NHW (p = 0.0002), Chinese (p = 0.0003), Hispanic (0.0128) and Indian (p = 0.0468) women. Luminal A subtype was most significantly reduced in Indian women (p = 0.0113) followed by Hispanic, AA, NHW and Chinese women. These results were based on statistical analysis with the mean of older group populations. Conclusions: These results show significant disparities in receptor subtypes across races. This study will contribute in developing optimal clinical trial protocols and personalized management strategies for early-onset BCa patients. PMID:25057437

  16. Use and outcomes of targeted therapies in early and metastatic HER2-positive breast cancer in Australia: protocol detailing observations in a whole of population cohort

    PubMed Central

    Daniels, Benjamin; Lord, Sarah J; Kiely, Belinda E; Houssami, Nehmat; Haywood, Philip; Lu, Christine Y; Ward, Robyn L; Pearson, Sallie-Anne

    2017-01-01

    Background The management of human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) has changed dramatically with the introduction and widespread use of HER2-targeted therapies. However, there is relatively limited real-world information on patterns of use, effectiveness and safety in whole of population cohorts. The research programme detailed in this protocol will generate evidence on the prescribing patterns, safety monitoring and outcomes of patients with BC treated with HER2-targeted therapies in Australia. Methods/design Our ongoing research programme will involve a series of retrospective cohort studies that include every patient accessing Commonwealth-funded HER2-targeted therapies for the treatment of early BC and advanced BC in Australia. At the time of writing, our cohorts consist of 11 406 patients with early BC and 5631 with advanced BC who accessed trastuzumab and lapatinib between 2001 and 2014. Pertuzumab and trastuzumab emtansine were publicly funded for metastatic BC in 2015, and future data updates will include patients accessing these medicines. We will use dispensing claims for cancer and other medicines, medical service claims and demographics data for each patient accessing HER2-targeted therapies to undertake this research. Ethics and dissemination Ethics approval has been granted by the Population Health Service Research Ethics Committee and data access approval has been granted by the Australian Department of Human Services (DHS) External Review Evaluation Committee. Our findings will be reported in peer-reviewed publications, conference presentations and policy forums. By providing detailed information on the use and outcomes associated with HER2-targeted therapies in a national cohort treated in routine clinical care, our research programme will better inform clinicians and patients about the real-world use of these treatments and will assist third-party payers to better understand the use and economic costs of these treatments. PMID:28119394

  17. The KIP/CIP family members p21^{Waf1/Cip1} and p57^{Kip2} as diagnostic markers for breast cancer.

    PubMed

    Zohny, Samir F; Baothman, Othman A; El-Shinawi, Mohamed; Al-Malki, Abdulrahman L; Zamzami, Mazin A; Choudhry, Hani

    2017-01-01

    We examined the expression status of p21^{Waf1/Cip1} and p57^{Kip2} in breast cancer as well as their relationship with clinicopathological factors. Moreover, the diagnostic value of gene promoter methylation of p21^Waf1/Cip1 and p57^Kip2 was assessed in breast cancer patients. This study involved 85 patients diagnosed with breast cancer and 36 patients with benign breast lesions. The expression of p21^{Waf1/Cip1} and p57^{Kip2} in cell lysates was analyzed by ELISA and Western blot, respectively. The gene promoter methylation of p21^Waf1/Cip1 and p57^Kip2 was examined in cell lysates by methylation specific PCR. p21^{Waf1/Cip1} expression was higher while p57^{Kip2} level was lower in breast cancer patients compared to patients with benign breast lesions. The combined use of p21^{Waf1/Cip1} and p57^{Kip2} provided sensitivity and specificity of 82.35% and 86.11%, respectively. None of the malignant and benign breast tumors were found to be hypermethylated at p21^Waf1/Cip1 gene promoter. However, aberrant methylation of p57^Kip2 gene promoter was detected in 49 of 85 (57.65%) of breast cancer tumors. High p21^{Waf1/Cip1} level was associated with high grade, late stages and lymph node involvement, whereas low p57^{Kip2} level was correlated with high grade and HER2 overexpressing breast cancer. Moreover, hypermethylated p57^Kip2 gene promoter was associated with high grade. Our findings show that the overexpression of p21^{Waf1/Cip1}, down-expression of p57^{Kip2} and gene promoter methylation of p57^Kip2 could be considered as promising diagnostic markers for breast cancer.

  18. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.

    PubMed

    Coumans, Joëlle V F; Gau, David; Poljak, Anne; Wasinger, Valerie; Roy, Partha; Moens, Pierre D J

    2014-12-01

    Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer.

  19. Anti-HER2 Therapy Beyond Second-Line for HER2-Positive Metastatic Breast Cancer: A Short Review and Recommendations for Several Clinical Scenarios from a Spanish Expert Panel

    PubMed Central

    Martínez-Jañez, Noelia; Chacón, Ignacio; de Juan, Ana; Cruz-Merino, Luis; del Barco, Sònia; Fernández, Isaura; García-Teijido, Paula; Gómez-Bernal, Amalia; Plazaola, Arrate; Ponce, José; Servitja, Sonia; Zamora, Pilar

    2016-01-01

    Summary Background The aim of this project was to provide an expert opinion regarding anti-human epidermal growth factor receptor 2 (HER2) therapy beyond second-line treatment of metastatic breast cancer (mBC). Methods A group of experts discussed specific issues concerning anti-HER2 therapy in late-line settings in mBC. Results Trastuzumab emtansine (T-DM1) or dual HER2 blockade appeared to be good options for HER2-positive mBC after ≥ 2 HER2-targeted therapies. Once an objective response has been achieved with anti-HER2-containing therapy, the anti-HER2 agent can be continued until progression of the disease, unacceptable toxicity or patient decision. mBC treated with ≥ 3 consecutive lines of anti-HER therapy, ≥ 1 being a dual HER2 blockade and with early progression of disease during a fourth or later-line treatment, are clinically resistant to anti-HER therapy. For progression of metastasis in the brain after anti-HER2 therapy, lapatinib and chemotherapy appear to be a good alternative after best local treatment. Conclusions Further clinical trials are needed to provide valuable knowledge about the best treatment options in the later settings of mBC. PMID:27239176

  20. Stimulating CTL Towards HER2/neu Overexpressing Breast Cancer

    DTIC Science & Technology

    2000-10-01

    cytotoxicity possibly due to the peptides poor solubility and poor binding affinity. To gain further insight into the factors that govern CTL activity, we...662 peptide. Objective: Complete by 12/96. Methods: A soluble recombinant form of HLA-A2 is folded in vitro in the presence of j2m and HN654-662. The...decided to substitute the first position from isoleucine to lysine to improve solubility of the peptide library. The library was used in our in vitro

Top