Sample records for target ionization cross

  1. Absolute cross-section measurements of inner-shell ionization

    NASA Astrophysics Data System (ADS)

    Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer

    1994-12-01

    Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.

  2. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  3. Electron induced inelastic and ionization cross section for plasma modeling

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  4. Electron impact ionization from p-orbital targets

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan; Basak, Arun K.; Alfaz Uddin, M.

    2006-05-01

    Electron impact ionization cross sections are evaluated using a modified version [1] of the BELL formula [2] for a wide range of isoelectronic targets, ranging from Li to Ne targets with both the open and closed shell configurations. In this report the MBELL parameters are generalized for treating the orbital quantum numbers nl dependency; its accuracy has been tested by evaluating cross sections for a wider range of species and energies. Details will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 012708 (2005). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).

  5. Electron Impact K-shell Ionization of Atomic Targets

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan; Basak, Arun K.; Alfaz Uddin, M.; Patoary, A. A. R.

    2008-05-01

    In spite of considerable progress -both theoretically and experimentally- recently in evaluating accurate K-shell ionization cross sections that play a decisive role for quantitative analyses using (i) electron probe microanalysis, (ii) Auger electron spectroscopy and (iii) electron energy loss spectra, attempts are still continuing to search for a model that can easily generate reliable cross sections for a wide range of energies and for various targets needed for plasma modeling code We report few modifications of the widely used binary encounter approximation (BEA) [1,2] and have tested by evaluating the electron impact K-shell ionization of few neutral targets at various projectile energies. Details will be presented at the meeting. [1] M. Gryziniski, Phys. Rev. A 138, 336 (1965); [2] L. Vriens, Proc. Phys. Soc. (London) 89, 13, (1966). [3M. A. Uddin , A. K. F. Haque, M. M. Billah, A. K. Basak, K, R, Karim and B. C. Saha, ,Phys. Rev. A 71,032715 (2005); [4] M. A. Uddin, A. K. Basak, and B. C. Saha, Int. J. Quan. Chem 100, 184 (2004).

  6. Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components

    NASA Astrophysics Data System (ADS)

    Champion, Christophe

    2013-05-01

    Ionization of biomolecules remains still today rarely investigated on both the experimental and the theoretical sides. In this context, the present work appears as one of the first quantum mechanical approaches providing a multi-differential description of the electron-induced ionization process of the main DNA components for impact energies ranging from the target ionization threshold up to about 10 keV. The cross section calculations are here performed within the 1st Born approximation framework in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered electrons are both described by a plane wave. The biological targets of interest, namely, the DNA nucleobases and the sugar-phosphate backbone, are here described by means of the GAUSSIAN 09 system using the restricted Hartree-Fock method with geometry optimization. The theoretical predictions also obtained have shown a reasonable agreement with the experimental total ionization cross sections while huge discrepancies have been pointed out with existing theoretical models, mainly developed within a semi-classical framework.

  7. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  8. Ionization of biomolecular targets by ion impact: input data for radiobiological applications

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2013-06-01

    In this work we review and further develop a semiempirical model recently proposed for the ion impact ionization of complex biological media. The model is based on the dielectric formalism, and makes use of a semiempirical parametrization of the optical energy-loss function of bioorganic compounds, allowing the calculation of single and total ionization cross sections and related quantities for condensed biological targets, such as liquid water, DNA and its components, proteins, lipids, carbohydrates or cell constituents. The model shows a very good agreement with experimental data for water, adenine and uracil, and allows the comparison of the ionization efficiency of different biological targets, and also the average kinetic energy of the ejected secondary electrons.

  9. Total Electron-Impact Ionization Cross-Sections of CFx and NFx (x = 1 - 3)

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Tarnovsky, Vladimir; Becker, Kurt H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The discrepancy between experimental and theoretical total electron-impact ionization cross sections for a group of fluorides, CFx, and NFx, (x = 1 - 3), is attributed to the inadequacies in previous theoretical models. Cross-sections calculated using a recently developed siBED (simulation Binary-Encounter-Dipole) model that takes into account the shielding of the long-range dipole potential between the scattering electron and target are in agreement with experimentation. The present study also carefully reanalyzed the previously reported experimental data to account for the possibility of incomplete collection of fragment ions and the presence of ion-pair formation channels. For NF3, our experimental and theoretical cross-sections compare well with the total ionization cross-sections recently reported by Haaland et al. in the region below dication formation.

  10. Electron Impact K-shell Ionization Cross Sections at high energies

    NASA Astrophysics Data System (ADS)

    Haque, A. K. F.; Sarker, M. S. I.; Patoary, M. A. R.; Shahjahan, M.; Ismail Hossain, M.; Alfaz Uddin, M.; Basak, A. K.; Saha, Bidhan

    2008-10-01

    A simple modification of the empirical model of Deutsh et. al. [1] by incorporating both the ionic [2] and relativistic corrections [3] is proposed for evaluating the electron impact K -shell ionization cross sections of neutral atomic targets. Present results for 30 atomic targets with atomic number Z=1 -- 92 for incident energies up to E=2 GeV, agree well with available experimental cross sections. Comparisons with other theoretical findings will also be presented at the conference. [1] H. Deutsh, K. Becker, T. D. Mark, Int. J. Mass Spect. 177, 47 (1998). [2] M. A. Uddin, A. K. F. Haque, M. M. Billah, A. K. Basak, K. R. Karim, B. C. Saha, Phys. Rev. A 71, 032715 (2005).; Phys. Rev. A 73, 012708 (2006). [3] M. Gryzinski, Phys. Rev 138, 336 (1965).

  11. Scaling Cross Sections for Ion-atom Impact Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2003-06-06

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation,more » and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.« less

  12. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less

  13. Target electron ionization in Li2+-Li collisions: A multi-electron perspective

    NASA Astrophysics Data System (ADS)

    Śpiewanowski, M. D.; Gulyás, L.; Horbatsch, M.; Kirchner, T.

    2015-05-01

    The recent development of the magneto-optical trap reaction-microscope has opened a new chapter for detailed investigations of charged-particle collisions from alkali atoms. It was shown that energy-differential cross sections for ionization from the outer-shell in O8+-Li collisions at 1500 keV/amu can be readily explained with the single-active-electron approximation. Understanding of K-shell ionization, however, requires incorporating many-electron effects. An ionization-excitation process was found to play an important role. We present a theoretical study of target electron removal in Li2+-Li collisions at 2290 keV/amu. The results indicate that in outer-shell ionization a single-electron process plays the dominant part. However, the K-shell ionization results are more difficult to interpret. On one hand, we find only weak contributions from multi-electron processes. On the other hand, a large discrepancy between experimental and single-particle theoretical results indicate that multi-electron processes involving ionization from the outer shell may be important for a complete understanding of the process. Work supported by NSERC, Canada and the Hungarian Scientific Research Fund.

  14. A Test of Thick-Target Nonuniform Ionization as an Explanation for Breaks in Solar Flare Hard X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard

    2010-01-01

    Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.

  15. Pseudostate methods and differential cross sections for antiproton ionization of atomic hydrogen and helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGovern, M.; Walters, H. R. J.; Assafrao, D.

    2010-03-15

    A relaxed form of a recent impact parameter coupled pseudostate approximation of McGovern et al. [Phys. Rev. A 79, 042707 (2009)] for calculating differential ionization cross sections is proposed. This greatly eases the computational burden in cases where a range of ejected electron energies has to be considered. The relaxed approximation is tested against exact first Born calculations for antiproton impact on H and nonperturbatively for the highly nonperturbative system of Au{sup 53+} incident upon He. The approximation performs well in these tests. It is shown how, with a little further approximation, the relaxed theory leads to a widely usedmore » prescription for the total ionization cross section. Results for differential ionization of H and He by antiprotons are presented. These reveal the growing dominance of the interaction between the antiproton and the target nucleus at low impact energies and show the changing importance of the role of the postcollisional interaction between the antiproton and the ejected electron.« less

  16. Avalanche multiplication and impact ionization in amorphous selenium photoconductive target

    NASA Astrophysics Data System (ADS)

    Park, Wug-Dong; Tanioka, Kenkichi

    2014-03-01

    The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.

  17. Observation of anisotropic interactions between metastable atoms and target molecules by two-dimensional collisional ionization electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Kishimoto, Naoki; Ohno, Koichi

    Excited metastable atoms colliding with target molecules can sensitively probe outer properties of molecules by chemi-ionization (Penning ionization) from molecular orbitals in the outer region, since metastable atoms cannot penetrate into the repulsive interaction wall around the molecules. By means of two-dimensional measurements using kinetic energy analysis of electrons combined with a velocity-resolved metastable beam, one can obtain information on the anisotropic interaction between the colliding particles without any control of orientation or alignment of target molecules. We have developed a classical trajectory method to calculate the collision energy dependence of partial ionization cross-sections (CEDPICS) on the anisotropic interaction potential energy surface, which has enabled us to study stereodynamics between metastable atoms and target molecules as well as the spatial distribution of molecular orbitals and electron ejection functions which have a relation with entrance and exit channels of the reaction. Based on the individual CEDPICS, the electronic structure of molecules can also be elucidated.

  18. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less

  19. Differential cross sections for the electron impact ionization of Ar (3 p) atoms for equal energy final state electrons

    NASA Astrophysics Data System (ADS)

    Purohit, Ghanshyam; Singh, Prithvi

    2017-06-01

    The electron-impact ionization of inert gases for asymmetric final state energy sharing conditions has been studied in detail. However, there have been relatively few studies examining equal energy final state electrons. We report in this communication the results of triple differential cross sections (TDCSs) for electron impact ionization of Ar (3 p) for equal energy sharing of the outgoing electrons. We calculate TDCS in the modified distorted wave Born approximation (DWBA) formalism including post collision interaction (PCI) and polarization potential. We compare the results of our calculation with available measurements [Phys. Rev. A 87, 022712 (2013)]. We study the effect of PCI, target polarization on the trends of TDCS for the single ionization of Ar (3 p) targets.

  20. Directed Field Ionization

    NASA Astrophysics Data System (ADS)

    Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-04-01

    Selective field ionization is an important experimental technique used to study the state distribution of Rydberg atoms. This is achieved by applying a steadily increasing electric field, which successively ionizes more tightly bound states. An atom prepared in an energy eigenstate encounters many avoided Stark level crossings on the way to ionization. As it traverses these avoided crossings, its amplitude is split among multiple different states, spreading out the time resolved electron ionization signal. By perturbing the electric field ramp, we can change how the atoms traverse the avoided crossings, and thus alter the shape of the ionization signal. We have used a genetic algorithm to evolve these perturbations in real time in order to arrive at a target ionization signal shape. This process is robust to large fluctuations in experimental conditions. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.

  1. Design of a secondary ionization target for direct production of a C- beam from CO2 pulses for online AMS.

    PubMed

    Salazar, Gary; Ognibene, Ted

    2013-01-01

    We designed and optimized a novel device "target" that directs a CO 2 gas pulse onto a Ti surface where a Cs + beam generates C - from the CO 2 . This secondary ionization target enables an accelerator mass spectrometer to ionize pulses of CO 2 in the negative mode to measure 14 C/ 12 C isotopic ratios in real time. The design of the targets were based on computational flow dynamics, ionization mechanism and empirical optimization. As part of the ionization mechanism, the adsorption of CO 2 on the Ti surface was fitted with the Jovanovic-Freundlich isotherm model using empirical and simulation data. The inferred adsorption constants were in good agreement with other works. The empirical optimization showed that amount of injected carbon and the flow speed of the helium carrier gas improve the ionization efficiency and the amount of 12 C - produced until reaching a saturation point. Linear dynamic range between 150 and 1000 ng of C and optimum carrier gas flow speed of around 0.1 mL/min were shown. It was also shown that the ionization depends on the area of the Ti surface and Cs + beam cross-section. A range of ionization efficiency of 1-2.5% was obtained by optimizing the described parameters.

  2. Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization.

    PubMed

    Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip

    2017-02-01

    A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed. Graphical Abstract ᅟ.

  3. Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization

    NASA Astrophysics Data System (ADS)

    Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip

    2017-02-01

    A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed.

  4. Electron impact ionization of plasma important SiClX (X = 1-4) molecules: theoretical cross sections

    NASA Astrophysics Data System (ADS)

    Kothari, Harshit N.; Pandya, Siddharth H.; Joshipura, K. N.

    2011-06-01

    Electron impact ionization of SiClX (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl3 radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl4/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiClX (X = 1-3) and on SiCl4.

  5. Dissociative-ionization cross sections for 12-keV-electron impact on CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Pragya; Singh, Raj; Yadav, Namita

    The dissociative ionization of a CO{sub 2} molecule is studied at an electron energy of 12 keV using the multiple ion coincidence imaging technique. The absolute partial ionization cross sections and the precursor-specific absolute partial ionization cross sections of resulting fragment ions are obtained and reported. It is found that {approx}75% of single ionization, 22% of double ionization, and {approx}2% of triple ionization of the parent molecule contribute to the total fragment ion yield; quadruple ionization of CO{sub 2} is found to make a negligibly small contribution. Furthermore, the absolute partial ionization cross sections for ion-pair and ion-triple formation aremore » measured for nine dissociative ionization channels of up to a quadruply ionized CO{sub 2} molecule. In addition, the branching ratios for single-ion, ion-pair, and ion-triple formation are also determined.« less

  6. Electron-Impact Total Ionization Cross Sections of CH and C2H2

    PubMed Central

    Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene

    1997-01-01

    Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116

  7. Calculation of total electron excitation cross-sections and partial electron ionization cross-sections for the elements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Green, T. J.

    1973-01-01

    Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.

  8. Electron beam plasma ionizing target for the production of neutron-rich nuclides

    NASA Astrophysics Data System (ADS)

    Panteleev, V. N.; Barzakh, A. E.; Essabaa, S.; Fedorov, D. V.; Ionan, A. M.; Ivanov, V. S.; Lau, C.; Leroy, R.; Lhersonneau, G.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Stroe, L.; Tecchio, L. B.; Villari, A. C. C.; Volkov, Yu. M.

    2008-10-01

    The production of neutron-rich Ag, In and Sn isotopes from a uranium carbide target of a high density has been investigated at the IRIS facility in the PLOG (PNPI-Legnaro-GANIL-Orsay) collaboration. The UC target material with a density of 12 g/cm3 was prepared by the method of powder metallurgy in a form of pellets of 2 mm thickness, 11 mm in diameter and grain dimensions of about 20 μm. The uranium target mass of 31 g was exposed at a 1 GeV proton beam of intensity 0.05-0.07 μA. For the ionization of the produced species the electron beam-plasma ionization inside the target container (ionizing target) has been used. It was the first experiment when the new high density UC target material was exploited with the electron-plasma ionization. Yields of Sn isotopes have been measured in the target temperature range of (1900-2100) °C. The yields of some Pd, In and Cd isotopes were measured as well to compare to previously measured ones from a high density uranium carbide target having a ceramic-like structure. For the first time a nickel isotope was obtained from a high density UC target.

  9. Electron Impact Multiple Ionization Cross Sections for Solar Physics

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Savin, D. W.; Mueller, A.

    2017-12-01

    We have compiled a set of electron-impact multiple ionization (EIMI) cross sections for astrophysically relevant ions. EIMI can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature, as in solar flares or in nanoflare coronal heating. EIMI is also likely to be significant when the electron energy distribution is non-thermal, such as if the electrons follow a kappa distribution. Cross sections for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to the available experimental EIMI cross section data. Based on this comparison, we have interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for thousands of EIMI cross sections. We also highlight some outstanding issues that remain to be resolved.

  10. Single ionization and capture cross sections from biological molecules by bare projectile impact*

    NASA Astrophysics Data System (ADS)

    Quinto, Michele A.; Monti, Juan M.; Montenegro, Pablo D.; Fojón, Omar A.; Champion, Christophe; Rivarola, Roberto D.

    2017-02-01

    We report calculations on single differential and total cross sections for single ionization and single electron capture from biological targets, namely, vapor water and DNA nucleobasese molecules, by bare projectile impact: H+, He2+, and C6+. They are performed within the Continuum Distorted Wave - Eikonal Initial State approximation and compared to several existing experimental data. This study is oriented to the obtention of a reliable set of theoretical data to be used as input in a Monte Carlo code destined to micro- and nano- dosimetry.

  11. Electron impact ionization cross section studies of C2Fx (x = 1 - 6) and C3Fx (x = 1 - 8) fluorocarbon species

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Choi, Heechol; Song, Mi-Young; Karwasz, Grzegorz P.; Yoon, Jung-Sik

    2017-05-01

    The total ionization cross section for C2Fx (x = 1 - 6) and C3Fx (x = 1 - 8) fluorocarbon species are studied with the Binary-Encounter Bethe (BEB) model using various orbital parameters calculated from restricted/unrestricted Hartree-Fock (RHF/UHF) and Density Functional Theory (DFT). All the targets were optimized for their minimal structures and energies with several ab-initio methods with the aug-cc-pVTZ basis set. Among them, the present results with RHF/UHF orbital energies showed good agreement with the experimental results for stable targets C2F6, C2F4, C3F6 and C3F8. The results with the DFT (ωB97X/ωB97X-D) showed a reasonable agreement with the recent calculation of Bull et al. [J.N. Bull, M. Bart, C. Vallance, P.W. Harland, Phys. Rev. A 88, 062710 (2013)] for C2F6, C3F6 and C3F8 targets. The ionization cross section for C2F, C2F2, C2F3, C3F, C3F2, C3F3, C3F4, C3F5 and C3F7 were computed for the first time in the present study. We have also computed the vertical ionization potentials and polarizability for all the targets and compared them with other experimental and theoretical values. A good agreement is found between the present and the previous results. The calculated polarizability in turn is used to study the correlation with maximum ionization cross section and in general a good correlation is found among them, confirming the consistency and reliability of the present data. The cross section data reported in this article are very important for plasma modeling especially related to fluorocarbon plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  12. Cross sections for direct and dissociative ionization of NH3 and CS2 by electron impact

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Srivastava, S. K.

    1991-01-01

    A crossed electron beam-molecular beam collision geometry is used to measure cross sections for the production of positive ions by electron impact on NH3 and CS2. Ionization cross-section data for NH3 and the values of various cross sections are presented, as well as ionization efficiency curves for CS2. Considerable differences are found between the various results on NH3. The present values are close to the data of Djuric et al. (1981). The semiempirical calculations of Hare and Meath (1987) differ considerably in the absolute values of cross sections. Discrepancies were observed in comparisons of cross sections of other fragment ions resulting from the ionization and dissociate ionization of NH3.

  13. Total cross sections for positrons scattered elastically from helium based on new measurements of total ionization cross sections

    NASA Technical Reports Server (NTRS)

    Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.

    1990-01-01

    An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.

  14. Non-targeted effects of ionizing radiation–implications for low dose risk

    PubMed Central

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric; Hildebrandt, Guido; Belyakov, Oleg V.; Prise, Kevin M.; Little, Mark P.

    2014-01-01

    Non-DNA targeted effects of ionizing radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly with respect to systemic (human health) consequences at low and intermediate doses of ionizing radiation. Other outstanding questions include links between the different non-targeted responses and the variations in response observed between individuals and cell lines, possibly a function of genetic background. Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the Non-targeted effects of ionizing radiation (NOTE) Integrated Project funded by the European Union. Here we critically examine the evidence for non-targeted effects, discuss apparently contradictory results and consider implications for low-dose radiation health effects. PMID:23262375

  15. Proton-impact ionization cross sections of adenine measured at 0.5 and 2.0 MeV by electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Iriki, Y.; Kikuchi, Y.; Imai, M.; Itoh, A.

    2011-11-01

    Double-differential ionization cross sections (DDCSs) of vapor-phase adenine molecules (C5H5N5) by 0.5- and 2.0-MeV proton impact have been measured by the electron spectroscopy method. Electrons ejected from adenine were analyzed by a 45∘ parallel-plate electrostatic spectrometer over an energy range of 1.0-1000 eV at emission angles from 15∘ to 165∘. Single-differential cross sections (SDCSs) and total ionization cross sections (TICSs) were also deduced. It was found from the Platzman plot, defined as SDCSs divided by the classical Rutherford knock-on cross sections per target electron, that the SDCSs at higher electron energies are proportional to the total number of valence electrons (50) of adenine, while those at low-energy electrons are highly enhanced due to dipole and higher-order interactions. The present results of TICS are in fairly good agreement with recent classical trajectory Monte Carlo calculations, and moreover, a simple analytical formula gives nearly equivalent cross sections in magnitude at the incident proton energies investigated.

  16. Ionization cross section, pressure shift and isotope shift measurements of osmium

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan

    2017-11-01

    In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.

  17. Electron-impact total ionization cross sections of DNA sugar-phosphate backbone and an additivity principle

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.

    2005-01-01

    The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.

  18. Electron ionization cross-section calculations for liquid water at high impact energies

    NASA Astrophysics Data System (ADS)

    Bousis, C.; Emfietzoglou, D.; Hadjidoukas, P.; Nikjoo, H.; Pathak, A.

    2008-04-01

    Cross-sections for the ionization of liquid water is perhaps the most essential set of data needed for modeling electron transport in biological matter. The complexity of ab initio calculations for any multi-electron target has led to largely heuristic semi-empirical models which take advantage elements of the Bethe, dielectric and binary collision theories. In this work we present various theoretical models for calculating total ionization cross-sections (TICSs) for liquid water over the 10 keV-1 MeV electron energy range. In particular, we extend our recent dielectric model calculations for liquid water to relativistic energies using both the appropriate kinematic corrections and the transverse part. Comparisons are made with widely used atomic and molecular TICS models such as those of Khare and co-workers, Kim-Rudd, Deutsch-Märk, Vriens and Gryzinski. The required dipole oscillator strength was provided by our recent optical-data model which is based on the latest experimental data for liquid water. The TICSs computed by the above models differ by up to 40% from the dielectric results. The best agreement (to within ∼10%) was obtained by Khare's original model and an approximate form of Gryzinski's model. In contrast, the binary-encounter-dipole (BED) models of both Kim-Rudd and Khare and co-workers resulted in ∼10-20% higher TICS values, while discrepancies increased to ∼30-40% when their simpler binary-encounter-Bethe (BEB) versions were used. Finally, we discuss to what extent the accuracy of the TICS is indicative of the reliability of the underlying differential cross-sections.

  19. An X-Ray Analysis Database of Photoionization Cross Sections Including Variable Ionization

    NASA Technical Reports Server (NTRS)

    Wang, Ping; Cohen, David H.; MacFarlane, Joseph J.; Cassinelli, Joseph P.

    1997-01-01

    Results of research efforts in the following areas are discussed: review of the major theoretical and experimental data of subshell photoionization cross sections and ionization edges of atomic ions to assess the accuracy of the data, and to compile the most reliable of these data in our own database; detailed atomic physics calculations to complement the database for all ions of 17 cosmically abundant elements; reconciling the data from various sources and our own calculations; and fitting cross sections with functional approximations and incorporating these functions into a compact computer code.Also, efforts included adapting an ionization equilibrium code, tabulating results, and incorporating them into the overall program and testing the code (both ionization equilibrium and opacity codes) with existing observational data. The background and scientific applications of this work are discussed. Atomic physics cross section models and calculations are described. Calculation results are compared with available experimental data and other theoretical data. The functional approximations used for fitting cross sections are outlined and applications of the database are discussed.

  20. Nuclear-Recoil Differential Cross Sections for the Two Photon Double Ionization of Helium

    NASA Astrophysics Data System (ADS)

    Abdel Naby, Shahin; Ciappina, M. F.; Lee, T. G.; Pindzola, M. S.; Colgan, J.

    2013-05-01

    In support of the reaction microscope measurements at the free-electron laser facility at Hamburg (FLASH), we use the time-dependent close-coupling method (TDCC) to calculate fully differential nuclear-recoil cross sections for the two-photon double ionization of He at photon energy of 44 eV. The total cross section for the double ionization is in good agreement with previous calculations. The nuclear-recoil distribution is in good agreement with the experimental measurements. In contrast to the single-photon double ionization, maximum nuclear recoil triple differential cross section is obtained at small nuclear momenta. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California and the National Institute for Computational Sciences in Knoxville, Tennessee.

  1. Electron impact ionization cross sections of beryllium-tungsten clusters*

    NASA Astrophysics Data System (ADS)

    Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael

    2016-01-01

    We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7

  2. Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.

  3. Photoionization research on atomic radiation. 3: The ionization cross section of atomic nitrogen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Elzer, A.

    1982-01-01

    The photoionization cross section of atomic nitrogen was measured between the ionization limit and 432 A. The experimental values are well fitted by those from a calculation of HENRY due to the dipole velocity approximation. A Rydberg series converging to the 5S-state of the ion is clearly identified from the ionization measurements and is shown to ionize.

  4. Level crossings in the ionization of H(2) Rydberg molecules at a metal surface.

    PubMed

    McCormack, E A; Ford, M S; Softley, T P

    2010-10-28

    The ionization of H(2) Rydberg states at a metal surface is investigated using a molecular beam incident at grazing incidence on a gold surface. The H(2) molecules, excited by stepwise two-color laser excitation, are selected in each of the accessible Stark eigenstates of the N(+) = 2, n = 17 Rydberg manifold in turn and the ionization at the surface is characterized by applying a field to extract the ions formed. Profiles of extracted ion signal versus applied field show resonances that can be simulated by assuming an enhancement of surface ionization at fields corresponding to energy-level crossings between the populated N(+) = 2 manifold and the near-degenerate N(+) = 0 Stark manifolds. It is concluded that the slow (microsecond time scale) rotation-electronic energy transfer to N(+) = 0 states occurring at these crossings takes place in the time interval following application of the field ramp when the molecule is still distant from, and unperturbed by, the surface. However, the energy levels are strongly perturbed by image-dipole interactions as the molecule approaches close to the surface, leading to additional energy-level crossings. Adiabatic behavior at such crossings affects the intensity of the observed resonances in the surface ionization signal but not their field positions. Resonances are also observed in the surface ionization profiles at fields above the field-ionization threshold; some of these show asymmetric "Fano-type" line shapes due to quantum interference in the nonradiative coupling to degenerate bound and continuum states.

  5. Ionization enhancement in atmospheric pressure chemical ionization and suppression in electrospray ionization between target drugs and stable-isotope-labeled internal standards in quantitative liquid chromatography/tandem mass spectrometry.

    PubMed

    Liang, H R; Foltz, R L; Meng, M; Bennett, P

    2003-01-01

    The phenomena of ionization suppression in electrospray ionization (ESI) and enhancement in atmospheric pressure chemical ionization (APCI) were investigated in selected-ion monitoring and selected-reaction monitoring modes for nine drugs and their corresponding stable-isotope-labeled internal standards (IS). The results showed that all investigated target drugs and their co-eluting isotope-labeled IS suppress each other's ionization responses in ESI. The factors affecting the extent of suppression in ESI were investigated, including structures and concentrations of drugs, matrix effects, and flow rate. In contrast to the ESI results, APCI caused seven of the nine investigated target drugs and their co-eluting isotope-labeled IS to enhance each other's ionization responses. The mutual ionization suppression or enhancement between drugs and their isotope-labeled IS could possibly influence assay sensitivity, reproducibility, accuracy and linearity in quantitative liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, calibration curves were linear if an appropriate IS concentration was selected for a desired calibration range to keep the response factors constant. Copyright 2003 John Wiley & Sons, Ltd.

  6. Dynamic target ionization using an ultrashort pulse of a laser field

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2014-09-01

    Ionization processes under the interaction of an ultrashort pulse of an electromagnetic field with atoms in nonstationary states are considered. As an example, the ionization probability of the hydrogen-like atom upon the decay of quasi-stationary state is calculated. The method developed can be applied to complex systems, including targets in collisional states and various chemical reactions.

  7. Importance of projectile-target interactions in the triple differential cross sections for Low energy (e,2e) ionization of aligned H2

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Madison, Don; Ren, X.; Dorn, A.; Ning, Chuangang

    2014-10-01

    Experimental and theoretical Triple Differential Cross Sections (TDCS) are presented for electron impact ionization-excitation of the 2 sσg state of H2 in the perpendicular plane. The excited 2 sσg state immediately dissociates and the alignment of the molecule is determined by detecting one of the fragments. Results are presented for three different alignments in the xy-plane (scattering plane is xz)-alignment along y-axis, x-axis, and 45° between the x- and y-axes for incident electron energies of 4, 10, and 25 eV and different scattered electron angles of 20° and 30° in the perpendicular plane. Theoretical M4DW (molecular 4-body distorted wave) results are compared to experimental data, and overall we found reasonably good agreement between experiment and theory. The Results show that (e,2e) cross sections for excitation-ionization depend strongly on the orientation of the H2 molecule.

  8. Cross sections for ionization of tetrahydrofuran by protons at energies between 300 and 3000 keV

    NASA Astrophysics Data System (ADS)

    Wang, Mingjie; Rudek, Benedikt; Bennett, Daniel; de Vera, Pablo; Bug, Marion; Buhr, Ticia; Baek, Woon Yong; Hilgers, Gerhard; Rabus, Hans

    2016-05-01

    Double-differential cross sections for ionization of tetrahydrofuran by protons with energies from 300 to 3000 keV were measured at the Physikalisch-Technische Bundesanstalt ion accelerator facility. The electrons emitted at angles between 15∘ and 150∘ relative to the ion-beam direction were detected with an electrostatic hemispherical electron spectrometer. Single-differential and total ionization cross sections have been derived by integration. The experimental results are compared to the semiempirical Hansen-Kocbach-Stolterfoht model as well as to the recently reported method based on the dielectric formalism. The comparison to the latter showed good agreement with experimental data in a broad range of emission angles and energies of secondary electrons. The scaling property of ionization cross sections for tetrahydrofuran was also investigated. Compared to molecules of different size, the ionization cross sections of tetrahydrofuran were found to scale with the number of valence electrons at large impact parameters.

  9. Differential cross sections for ionizations of H and H2 by 75 keV proton impact

    NASA Astrophysics Data System (ADS)

    Igarashi, A.; Gulyás, L.

    2018-02-01

    We have calculated total, partial and fully differential cross sections (FDCSs) for ionizations of H and H2 by 75 keV proton impact within the framework of the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) approximation. Applying the single active electron model, the interaction between the projectile and the target ion is taken into account in the impact parameter picture. Extension of the CDW-EIS model to the molecular target is performed using the two-effective center approximation. The obtained results are compared with those of experimental and other theoretical data when available. The agreements between the theories and the experimental data are generally reasonable except for some cases of the FDCSs.

  10. Errata and update to ;Experimental cross sections for L-shell X-ray production and ionization by protons;

    NASA Astrophysics Data System (ADS)

    Miranda, J.; Lapicki, G.

    2018-01-01

    A compilation of experimental L-shell X-ray production and ionization cross sections induced by proton impact was published recently (Miranda and Lapicki, 2014), collecting 15 439 experimental cross sections. The database covers an energy range from 10 keV to 1 GeV, and targets from 10Ne to 95Am. A correction to several tabulated values that were in error, as well as an update including new data published after 2012 and older references not found previously are given in the present work. The updated data base increased the total number of experimental cross sections by 3.1% to 15 921. A new analysis of the total number of experimental points per year shows that the possible saturation in the cumulative total number of data is increased to 15 950 ± 110 points.

  11. Electron- and proton-induced ionization of pyrimidine

    DOE PAGES

    Champion, Christophe; Quinto, Michele; Weck, Philippe F

    2015-03-27

    This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolutemore » total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.« less

  12. 3D printing of graphene-doped target for "matrix-free" laser desorption/ionization mass spectrometry.

    PubMed

    Wang, Dingyi; Huang, Xiu; Li, Jie; He, Bin; Liu, Qian; Hu, Ligang; Jiang, Guibin

    2018-03-13

    We report a graphene-doped resin target fabricated via a 3D printing technique for laser desorption/ionization mass spectrometry analysis. The graphene doped in the target acts as an inherent laser absorber and ionization promoter, thus permitting the direct analysis of samples without adding matrix. This work reveals a new strategy for easy designing and fabrication of functional mass spectrometry devices.

  13. Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms

    DOE PAGES

    Armstrong, Gregory S. J.; Colgan, James Patrick; Pindzola, M. S.; ...

    2015-09-11

    Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this paper we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. Finally, we demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionizationmore » from excited Ca and Na atoms.« less

  14. Absolute electron-impact total ionization cross sections of chlorofluoromethanes

    NASA Astrophysics Data System (ADS)

    Martínez, Roberto; Sierra, Borja; Redondo, Carolina; Rayo, María N. Sánchez; Castaño, Fernando

    2004-12-01

    An experimental study is reported on the electron-impact total ionization cross sections (TICSs) of CCl4, CCl3F, CCl2F2, and CClF3 molecules. The kinetic energy of the colliding electrons was in the 10-85 eV range. TICSs were obtained as the sum of the partial ionization cross sections of all fragment ions, measured and identified in a linear double focusing time-of-flight mass spectrometer. The resulting TICS profiles—as a function of the electron-impact energy—have been compared both with those computed by ab initio and (semi)empirical methods and with the available experimental data. The computational methods used include the binary-encounter-Bethe (BEB) modified to include atoms with principal quantum numbers n⩾3, the Deutsch and Märk (DM) formalism, and the modified additivity rule (MAR). It is concluded that both modified BEB and DM methods fit the experimental TICS for (CF4), CClF3, CCl2F2, CCl3F, and CCl4 to a high accuracy, in contrast with the poor accord of the MAR method. A discussion on the factors influencing the discrepancies of the fittings is presented.

  15. Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium

    NASA Astrophysics Data System (ADS)

    Łukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-01

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the “trap loss” technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6P3/22 state between 7eV and 400eV . CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  16. Electron-impact Multiple-ionization Cross Sections for Atoms and Ions of Helium through Zinc

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Müller, A.; Savin, D. W.

    2017-12-01

    We compiled a set of electron-impact multiple-ionization (EIMI) cross section for astrophysically relevant ions. EIMIs can have a significant effect on the ionization balance of non-equilibrium plasmas. For example, it can be important if there is a rapid change in the electron temperature or if there is a non-thermal electron energy distribution, such as a kappa distribution. Cross section for EIMI are needed in order to account for these processes in plasma modeling and for spectroscopic interpretation. Here, we describe our comparison of proposed semiempirical formulae to available experimental EIMI cross-section data. Based on this comparison, we interpolated and extrapolated fitting parameters to systems that have not yet been measured. A tabulation of the fit parameters is provided for 3466 EIMI cross sections and the associated Maxwellian plasma rate coefficients. We also highlight some outstanding issues that remain to be resolved.

  17. Comparison of experimental and theoretical triple differential cross sections for the single ionization of C O2 (1 πg ) by electron impact

    NASA Astrophysics Data System (ADS)

    Ozer, Zehra N.; Ali, Esam; Dogan, Mevlut; Yavuz, Murat; Alwan, Osman; Naja, Adnan; Chuluunbaatar, Ochbadrakh; Joulakian, Boghos B.; Ning, Chuan-Gang; Colgan, James; Madison, Don

    2016-06-01

    Experimental and theoretical triple differential cross sections for intermediate-energy (250 eV) electron-impact single ionization of the CO2 are presented for three fixed projectile scattering angles. Results are presented for ionization of the outermost 1 πg molecular orbital of C O2 in a coplanar asymmetric geometry. The experimental data are compared to predictions from the three-center Coulomb continuum approximation for triatomic targets, and the molecular three-body distorted wave (M3DW) model. It is observed that while both theories are in reasonable qualitative agreement with experiment, the M3DW is in the best overall agreement with experiment.

  18. Relativistic effects in electron impact ionization from the p-orbital

    NASA Astrophysics Data System (ADS)

    Haque, A. K. F.; Uddin, M. A.; Basak, A. K.; Karim, K. R.; Saha, B. C.; Malik, F. B.

    2006-06-01

    The parameters of our recent modification of BELI formula (MBELL) [A.K.F. Haque, M.A. Uddin, A.K. Basak, K.R. Karim, B.C. Saha, Phys. Rev. A 73 (2006) 012708] are generalized in terms of the orbital quantum numbers nl to evaluate the electron impact ionization (EII) cross sections of a wide range of isoelectronic targets (H to Ne series) and incident energies. For both the open and closed p-shell targets, the present MBELL results with a single parameter set, agree nicely with the experimental cross sections. The relativistic effect of ionization in the 2p subshell of U82+ for incident energies up to 250 MeV is well accounted for by the prescribed parameters of the model.

  19. Electron- and proton-induced ionization of pyrimidine

    NASA Astrophysics Data System (ADS)

    Champion, Christophe; Quinto, Michele A.; Weck, Philippe F.

    2015-05-01

    The present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. The theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  20. Observation of ionization fronts in low density foam targets

    NASA Astrophysics Data System (ADS)

    Hoarty, D.; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.

    1999-05-01

    Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.

  1. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    NASA Astrophysics Data System (ADS)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  2. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency.

    PubMed

    Zeegers, Guido P; Günthardt, Barbara F; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm(-2)) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements. Graphical Abstract ᅟ.

  3. Absolute cross sections for the ionization-excitation of helium by electron impact

    NASA Astrophysics Data System (ADS)

    Bellm, S.; Lower, J.; Weigold, E.; Bray, I.; Fursa, D. V.; Bartschat, K.; Harris, A. L.; Madison, D. H.

    2008-09-01

    In a recent publication we presented detailed experimental and theoretical results for the electron-impact-induced ionization of ground-state helium atoms. The purpose of that work was to refine theoretical approaches and provide further insight into the Coulomb four-body problem. Cross section ratios were presented for transitions leading to excited states, relative to those leading to the ground state, of the helium ion. We now build on that study by presenting individual relative triple-differential ionization cross sections (TDCSs) for an additional body of experimental data measured at lower values of scattered-electron energies. This has been facilitated through the development of new electron-gun optics which enables us to accurately characterize the spectrometer transmission at low energies. The experimental results are compared to calculations resulting from a number of different approaches. For ionization leading to He+(1s2)1S , cross sections are calculated by the highly accurate convergent close-coupling (CCC) method. The CCC data are used to place the relative experimental data on to an absolute scale. TDCSs describing transitions to the excited states are calculated through three different approaches, namely, through a hybrid distorted- wave+R -matrix (close-coupling) model, through the recently developed four-body distorted-wave model, and by a first Born approximation calculation. Comparison of the first- and second-order theories with experiment allows for the accuracy of the different theoretical approaches to be assessed and gives insight into which physical aspects of the problem are most important to accurately model.

  4. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT IONIZATION OF Fe{sup 7+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, M.; Novotný, O.; Savin, D. W.

    2015-11-01

    We have measured electron impact ionization for Fe{sup 7+} from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurements to remove most metastables, resulting in a beam of 94% ground-level ions. Comparing with the previously recommended atomic data, we find that the Arnaud and Raymond cross section is up to about 40% larger than our measurement, with the largest discrepancies below about 400 eV. The cross section of Dere agrees to within 10%, which is about the magnitude of the experimental uncertainties.more » The remaining discrepancies between our measurement and the Dere calculations are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.« less

  5. Atomic x-ray production by relativistic heavy ions. [Cross sections, K and L shells, ionization 3 and 4. 88 GEV holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioannou, J.G.

    1977-12-01

    The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protonsmore » and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z/sub 1//sup 2/ for the cross section of the heavy ion with atomic number Z/sub 1/ to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z/sub 2/ of the target of the form (Z/sub 1/ - ..cap alpha..Z/sub 2/)/sup 2/, instead of Z/sub 1//sup 2/, is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology.« less

  6. Low-energy electron-impact ionization of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schow, E.; Hazlett, K.; Childers, J. G.

    2005-12-15

    Normalized doubly differential cross sections for the electron-impact ionization of helium at low energies are presented. The data are taken at the incident electron energies of 26.3, 28.3, 30.3, 32.5, 34.3, 36.5, and 40.7 eV and for scattering angles of 10 deg. -130 deg. The measurements involve the use of the moveable target method developed at California State University Fullerton to accurately determine the continuum background in the energy-loss spectra. Normalization of experimental data is made on a relative scale to well-established experimental differential cross sections for excitation of the n=2 manifold of helium and then on an absolute scalemore » to the well-established total ionization cross sections of Shah et al. [J. Phys. B 21, 2751 (1988)]. Comparisons are made with available experimental data and the results of the convergent close-coupling theory.« less

  7. Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams.

    PubMed

    Galassi, M E; Champion, C; Weck, P F; Rivarola, R D; Fojón, O; Hanssen, J

    2012-04-07

    Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons,whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.

  8. Quantum-mechanical predictions of DNA and RNA ionization by energetic proton beams

    NASA Astrophysics Data System (ADS)

    Galassi, M. E.; Champion, C.; Weck, P. F.; Rivarola, R. D.; Fojón, O.; Hanssen, J.

    2012-04-01

    Among the numerous constituents of eukaryotic cells, the DNA macromolecule is considered as the most important critical target for radiation-induced damages. However, up to now ion-induced collisions on DNA components remain scarcely approached and theoretical support is still lacking for describing the main ionizing processes. In this context, we here report a theoretical description of the proton-induced ionization of the DNA and RNA bases as well as the sugar-phosphate backbone. Two different quantum-mechanical models are proposed: the first one based on a continuum distorted wave-eikonal initial state treatment and the second perturbative one developed within the first Born approximation with correct boundary conditions (CB1). Besides, the molecular structure information of the biological targets studied here was determined by ab initio calculations with the Gaussian 09 software at the restricted Hartree-Fock level of theory with geometry optimization. Doubly, singly differential and total ionization cross sections also provided by the two models were compared for a large range of incident and ejection energies and a very good agreement was observed for all the configurations investigated. Finally, in comparison with the rare experiment, we have noted a large underestimation of the total ionization cross sections of uracil impacted by 80 keV protons, whereas a very good agreement was shown with the recently reported ionization cross sections for protons on adenine, at both the differential and the total scale.

  9. Dynamic correlation effects in fully differential cross sections for 75-keV proton-impact ionization of helium

    NASA Astrophysics Data System (ADS)

    Niu, Xiaojie; Sun, Shiyan; Wang, Fujun; Jia, Xiangfu

    2017-08-01

    The effect of final-state dynamic correlation is investigated for helium single ionization by 75-keV proton impact analyzing fully differential cross sections (FDCS). The final state is represented by a continuum correlated wave (CCW-PT) function which accounts for the interaction between the projectile and the residual target ion (PT interaction). This continuum correlated wave function partially includes the correlation of electron-projectile and electron-target relative motion as coupling terms of the wave equation. The transition matrix is evaluated using the CCW-PT function and the Born initial state. The analytical expression of the transition matrix has been obtained. We have shown that this series is strongly convergent and analyzed the contribution of their different terms to the FDCS within the perturbation method. Illustrative computations are performed in the scattering plane and in the perpendicular plane. Both the correlation effects and the PT interaction are checked by the preset calculations. Our results are compared with absolute experimental data as well as other theoretical models. We have shown that the dynamic correlation plays an important role in the single ionization of atoms by proton impact at intermediate projectile energies, especially at large transverse momentum transfer. While overall agreement between theory and the experimental data is encouraging, detailed agreement is lacking. The need for more theoretical and experimental work is emphasized.

  10. Parametrization of electron impact ionization cross sections for CO, CO2, NH3 and SO2

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.; Nguyen, Hung P.

    1987-01-01

    The electron impact ionization and dissociative ionization cross section data of CO, CO2, CH4, NH3, and SO2, measured in the laboratory, were parameterized utilizing an empirical formula based on the Born approximation. For this purpose an chi squared minimization technique was employed which provided an excellent fit to the experimental data.

  11. Near-threshold electron-impact doubly differential cross sections for the ionization of argon and krypton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Brent R.; Khakoo, Murtadha A.

    2011-04-15

    We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states ofmore » the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].« less

  12. Automatic Target Recognition Based on Cross-Plot

    PubMed Central

    Wong, Kelvin Kian Loong; Abbott, Derek

    2011-01-01

    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508

  13. Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip

    2007-10-01

    The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.

  14. Observation of Transonic Ionization Fronts in Low-Density Foam Targets

    NASA Astrophysics Data System (ADS)

    Hoarty, D.; Barringer, L.; Vickers, C.; Willi, O.; Nazarov, W.

    1999-04-01

    Transonic ionization fronts have been observed in low-density chlorinated foam targets using time-resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x rays produced by high-power laser irradiation of a thin foil. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions at a number of times. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.

  15. Theoretical electron-impact-ionization cross section for Fe11+ forming Fe12+

    NASA Astrophysics Data System (ADS)

    Kwon, Duck-Hee; Savin, Daniel Wolf

    2012-08-01

    We have calculated cross sections for electron impact ionization (EII) of P-like Fe11+ forming Si-like Fe12+. We have used the flexible atomic code (FAC) and a distorted-wave (DW) approximation. Particular attention has been paid to the ionization through the 3l→nl' and 2l→nl' excitation autoionization (EA) channels. We compare our results to previously published FAC DW results and recent experimental results. We find that the previous discrepancy between theory and experiment at the EII threshold can be accounted for by the 3l→nl' EA channels which were not included in the earlier calculations. At higher energies the discrepancy previously seen between theory and experiment for the magnitude of the 2l→nl'(n≥4) EA remains, though the difference has been reduced by our newer results. The resulting Maxwellian rate coefficient derived from our calculations lies within 11% of the experimentally derived rate coefficient in the temperature range where Fe11+ forms in collisional ionization equilibrium.

  16. SCALP: Scintillating ionization chamber for ALPha particle production in neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Galhaut, B.; Durand, D.; Lecolley, F. R.; Ledoux, X.; Lehaut, G.; Manduci, L.; Mary, P.

    2017-09-01

    The SCALP collaboration has the ambition to build a scintillating ionization chamber in order to study and measure the cross section of the α-particle production in neutron induced reactions. More specifically on 16O and 19F targets. Using the deposited energy (ionization) and the time of flight measurement (scintillation) with a great accuracy, all the nuclear reaction taking part on this project will be identify.

  17. Automatic measurement of target crossing speed

    NASA Astrophysics Data System (ADS)

    Wardell, Mark; Lougheed, James H.

    1992-11-01

    The motion of ground vehicle targets after a ballistic round is launched can be a major source of inaccuracy for small (handheld) anti-armour weapon systems. A method of automatically measuring the crossing component to compensate the fire control solution has been devised and tested against various targets in a range of environments. A photodetector array aligned with the sight's horizontal reticle obtains scene features, which are digitized and processed to separate target from sight motion. Relative motion of the target against the background is briefly monitored to deduce angular crossing rate and a compensating lead angle is introduced into the aim point. Research to gather quantitative data and optimize algorithm performance is described, and some results from field testing are presented.

  18. Ionization Cross Sections and Dissociation Channels of the DNA Sugar-Phosphate Backbone by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher; Huo, Winifred M.; Fletcher, Graham D.

    2004-01-01

    It has been suggested that the genotoxic effects of ionizing radiation in living cells are not caused by the highly energetic incident radiation, but rather are induced by less energetic secondary species generated, the most abundant of which are free electrons.' The secondary electrons will further react to cause DNA damage via indirect and direct mechanisms. Detailed knowledge of these mechanisms is ultimately important for the development of global models of cellular radiation damage. We are studying one possible mechanism for the formation cf DNA strand breaks involving dissociative ionization of the DNA sugar-phosphate backbone induced by secondary electron co!lisions. We will present ionization cross sections at electron collision energies between threshold and 10 KeV using the improved binary encounter dipole (iBED) formulation' Preliminary results of the possible dissociative ionization pathways will be presented. It is speculated that radical fragments produced from the dissociative ionization can further react, providing a possible mechanism for double strand breaks and base damage.

  19. Fully differential cross sections for Li2+-impact ionization of Li(2s) and Li(2p)

    NASA Astrophysics Data System (ADS)

    Ghorbani, Omid; Ghanbari-Adivi, Ebrahim; Fabian Ciappina, Marcelo

    2018-05-01

    A semiclassical impact parameter version of the continuum distorted wave-Eikonal initial state theory is developed to study the differential ionization of Li atoms in collisions with Li2+ ions. Both post and prior forms of the transition amplitude are considered. The fully differential cross sections are calculated for the lithium targets in their ground and their first excited states and for the projectile ions at 16 MeV impact energy. The role of the inter-nuclear interaction as well as the significance of the post-prior discrepancy in the ejected electron spectra are investigated. The obtained results for ejection of the electron into the azimuthal plane are compared with the recent measurements and with their corresponding values obtained using a fully quantum mechanical version of the theory. In most of the cases, the consistency of the present approach with the experimental and the quantum theoretical data is reasonable. However, for 2p-state ionization, in the cases where no experimental data exist, there is a considerable difference between the two theoretical approaches. This difference is questionable and further experiments are needed to judge which theory makes a more accurate description of the collision dynamics.

  20. Photo-ionization cross-section of donor-related in (In,Ga)N/GaN core/shell under hydrostatic pressure and electric field effects

    NASA Astrophysics Data System (ADS)

    El Ghazi, Haddou; John Peter, A.

    2017-04-01

    Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.

  1. Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets

    NASA Astrophysics Data System (ADS)

    Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.

    2000-04-01

    The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.

  2. Antiproton-impact ionization of hydrogen atom with Yukawa interaction

    NASA Astrophysics Data System (ADS)

    Jakimovski, Dragan; Grozdanov, Tasko P.; Janev, Ratko K.

    2018-01-01

    The process of ionization of hydrogen atom by antiproton impact is studied when the interparticle interactions in the system are described by screened interactions of Yukawa type. The collision dynamics is described by the semiclassical atomic-orbital close-coupling method in which the bound atomic states and positive energy continuum pseudostates are determined by diagonalization of target Hamiltonian in a sufficiently large even-tempered basis to ensure convergence of the results at each value of the screening length λ of the interaction. With decreasing the screening length, the bound states in the Yukawa potential become unbound, thus increasing the number of continuum pseudostates. At low collision energies, this leads to the increase of the ionization cross section. It is observed that the energies of pseudostates, generated by the exit of nl bound states in the continuum, at certain critical values λ nl c exhibit series of avoided crossings when λ is varied. The avoided crossings appear between the ( n + k) l and ( n + k + 1) l ( n = 1, 2, 3, … ; k = 0, 1, 2, …) states at screening lengths close to the critical screening length λ nl c . The avoided crossings become increasingly less pronounced with increasing n, k and l. The matrix elements for the ( n + k) l - ( n + k + 1) l transitions at the avoided crossings λ x,(n+k)l (n+k+1)l exhibit maxima and are reflected in the structure of the cross sections for population of the lower nl pseudostates. These structures are, however, smeared out in the total ionization cross section.

  3. Ionizing Collisions of Electrons with Radical Species OH, H2 O2 and HO2; Theoretical Calculations

    NASA Astrophysics Data System (ADS)

    Joshipura, K. N.; Pandya, S. H.; Vaishnav, B. G.; Patel, U. R.

    2016-05-01

    In this paper we present our calculated total ionization cross sections (TICS) of electron impact on radical targets OH, H2 O2 and HO2 at energies from threshold to 2000 eV. Reactive species such as these pose difficulties in measurements of electron scattering cross sections. No measured data have been reported in this regard except an isolated TICS measurement on OH radical, and hence the present work on the title radicals hold significance. These radical species are present in an environment in which water molecules undergo dissociation (neutral or ionic) in interactions with photons or electrons. The embedding environments could be quite diverse, ranging from our atmosphere to membranes of living cells. Ionization of OH, H2 O2 or HO2 can give rise to further chemistry in the relevant bulk medium. Therefore, it is appropriate and meaningful to examine electron impact ionization of these radicals in comparison with that of water molecules, for which accurate da are available. For the OH target single-centre scattering calculations are performed by starting with a 4-term complex potential, that describes simultaneous elastic plus inelastic scattering. TICS are obtained from the total inelastic cross sections in the complex scattering potential - ionization contribution formalism , a well established method. For H2 O2 and HO2 targets, we employ the additivity rule with overlap or screening corrections. Detailed results will be presented in the Conference.

  4. Composition of fatty acids in virgin olive oils from cross breeding segregating populations by gas chromatography separation with flame ionization detection.

    PubMed

    Sánchez de Medina, Verónica; El Riachy, Milad; Priego-Capote, Feliciano; Luque de Castro, María Dolores

    2015-11-01

    Recent technological advances to improve the quality of virgin olive oil (VOO) have been focused on olive breeding programs by selecting outstanding cultivars and target progenies. Fatty acid (FA) composition, with special emphasis on oleic acid (C18:1) and palmitic acid (C16:0), is one of the most critical quality factors to be evaluated in VOO. For this reason, the profile of FAs is frequently used as a decision tool in olive breeding programs. A method based on gas chromatography with flame ionization detection (GC-FID) was used to study the influence of genotype on the concentration of ten of the most important FAs in VOOs from target crosses Arbequina × Arbosana, Picual × Koroneiki and Sikitita × Arbosana and their corresponding genitors Arbequina, Arbosana, Koroneiki, Picual and Sikitita. For this purpose, a targeted approach was selected for determination of esterified FAs (EFAs) and non-esterified FAs (NEFAs) in a dual analysis by the same chromatographic method. A Pearson analysis revealed correlations between pairs of FAs, which allowed detecting metabolic connections through desaturation and elongation enzymes. An ANOVA test (with P < 0.01) led to identification of C16:0 EFA, C16:1 EFA and C18:1 EFA and also C16:1 NEFA and C18:0 NEFA as the FAs more influenced by cross breeding. Statistical analysis was carried out by unsupervised analysis using principal component analysis (PCA) and cluster analysis (CA) to look for variability sources. Crosses with a common genitor (Arbequina × Arbosana and Sikitita × Arbosana) were partially overlapped in the PCAs using the profile of FAs. The CA results revealed clear differences between Sikitita × Arbosana and Picual × Koroneiki crosses in the composition of the most significant FAs, while Arbequina × Arbosana was not properly discriminated from the other crosses. © 2014 Society of Chemical Industry.

  5. Differential Cross Sections for Ionization of Argon by 1 keV Positron and Electron Impact

    NASA Astrophysics Data System (ADS)

    Gavin, J.; DuBois, R. D.; de Lucio, O. G.

    2014-04-01

    Differential information was generated by establishing coincidences and imposing conditions on data recorded for target ions, scattered projectiles, and ejected electrons, as a function of projectile energy loss and scattering angles; in order to describe the interaction between a positron (electron) 1 keV beam and a simple Ar jet. Single ionization triply differential cross section (TDCS) results exhibit two distinct regions (lobes) for which binary (events arising from 2-body interaction) and recoil (events which can only be produced by many-body interactions) interactions are associated. Results indicate that binary events are significantly larger for positron impact, in accordance with theoretical predictions. A similar feature is found for different energy losses and scattering angles. Intensity of the recoil lobe for both projectiles, positron and electron, is observed to depend on the energy loss and scattering angle. Also, it can be noticed that for positron impact the recoil interactions intensity is larger than that observed for electron impact.

  6. Electron Impact Ionization and Dissociative Ionization of C2H2

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    1995-01-01

    By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.

  7. Use of Relativistic Effective Core Potentials in the Calculation of Electron-Impact Ionization Cross Sections

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Kim, Yong-Ki

    1999-01-01

    Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.

  8. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 13+} AND SINGLE IONIZATION OF Fe{sup 16+} AND Fe{sup 17+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, M.; Novotny, O.; Savin, D. W.

    2013-04-10

    We report measurements of electron impact ionization for Fe{sup 13+}, Fe{sup 16+}, and Fe{sup 17+} over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe{sup 13+}, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud and Raymond is more than 30% larger, while that of Dere is about 20%more » greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe{sup 13+} is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe{sup 16+} and Fe{sup 17+} agree with theoretical calculations to within the experimental uncertainties.« less

  9. Electron- and positron-impact ionization of inert gases

    NASA Astrophysics Data System (ADS)

    Campeanu, R. I.; Walters, H. R. J.; Whelan, Colm T.

    2018-06-01

    Triple-differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions which cannot be separately detected in an experiment with a single projectile. A comparison is presented between theory and the recent experiments of [Gavin, deLucio, and DuBois, Phys. Rev. A 95, 062703 (2017), 10.1103/PhysRevA.95.062703] for e± and contrasted with the results from earlier electron experiments. For the special case of xenon(5 p ), cross sections are presented for both electron- and positron-impact ionization in kinematics where the electron case appears well understood. The kinematics are then varied in order to focus on the possible role of distortion, exchange, and target wave-function effects.

  10. Electron Impact Inner-shell Ionization including relativistic corrections.

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan C.; Alfaz Uddin, M.; Basak, Arun K.

    2007-04-01

    We report a simple method to evaluate the electron impact inner-shell ionization cross sections at ultra high energy regime; there still remains a sparse cross sections due to lack of reliable method. To extend the validity domains of the siBED model [1] in terms of targets and incident energies in this work we modified the RQIBED model [2], and denoted it as MUIBED. It is examined for the description of the experimental EIICS data of various target atoms up to E=250MeV. Details will be presented at the meeting. [1] W. M. Huo, Phys. Rev A 64, 042719 (2001). [2] M. A. Uddin, A. K. F. Haque, M. S. Mahbub, K. R. Karim, A. K. Basak and B. C. Saha, Phys. Rev. A 71, 032715 (2005).

  11. Calculation of fully differential cross sections for the near threshold double ionization of helium atoms

    NASA Astrophysics Data System (ADS)

    Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod

    2016-01-01

    Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.

  12. Total Born approximation cross sections for single electron loss by atoms and ions colliding with atoms

    NASA Technical Reports Server (NTRS)

    Rule, D. W.

    1977-01-01

    The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.

  13. Electron impact ionization of atomic targets at relativistic energies

    NASA Astrophysics Data System (ADS)

    Uddin, M. A.; Basak, A. K.; Saha, B. C.

    2009-05-01

    The huge demand and scarcity of electron impact ionization cross sections (EIICS) that are essential not only in modeling but also in basic researches can be best filled in by simple to use analytical models [1] that are sufficiently accurate and provide fast generation of EIICS data over wide domain. We report few such models and compare their productive powers in terms of few adjustable parameters. Details of our results will be presented in the conference. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim, B. C. Saha, and F. B. Malik, Phys. Scr. 74, 377 (2006); Phys. Rev A 73, 052703; M. A. R. Patoary, M. A. Uddin, A. K. F. Haque, M. Shahjahan, A. K. Basak, M. R. Talukdar and B. C. Saha, Int. J. Quan. Chem (in press). Supported by NSF CREST.

  14. Chapter 6 Quantum Mechanical Methods for Loss-Excitation and Loss-Ionization in Fast Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Belkic, Dzevad

    Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on

  15. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  16. Excitation and Ionization Cross Sections for Electron-Beam Energy Deposition in High Temperature Air

    DTIC Science & Technology

    1987-07-09

    are given and compared to existing experimental results or other theoretical approaches. This information can readily be used as input for a deposition...of the doubly-differential, singly- differential and total ionization cross sections which subsequently served to guide theoretical calculations on...coworkers have been leaders in developing a theoretical base for studying electron production and energy deposition in atmospheric gases such as He, N2

  17. Quantum control via a genetic algorithm of the field ionization pathway of a Rydberg electron

    NASA Astrophysics Data System (ADS)

    Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-08-01

    Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n*)4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus directing the signal to the desired arrival time, a perturbing electric field produced by an arbitrary wave-form generator is added to a slowly rising electric field. A genetic algorithm evolves the perturbing field in an effort to achieve the target time-resolved field ionization signal.

  18. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  19. Processes of ionization of atoms in nonstationary states by the field of an attosecond pulse

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2015-02-01

    Processes of ionization at the interaction of attosecond pulses of an electromagnetic field with atoms in nonstationary states have been considered. The probabilities and ionization cross section at the radiative relaxation of an excited state of a single-electron atom and at the Auger decay of the autoionization state of a two-electron atom have been calculated. The developed method allows the expansion to the case of more complex targets, including those in the collision state, and to various chemical reactions.

  20. Following electron impact excitations of Rn, Ra, Th, U and Pu single atom L sub-shells ionization cross section calculations by using Lotz’s equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayinol, M., E-mail: aydinolm@dicle.edu.tr; Aydeniz, D., E-mail: daydeniz@hotmail.com

    L shell ionization cross section and L{sub i} subshells ionization cross sections of Rn, Ra, Th, U, Pu atoms calculated. For each of atoms, ten different electron impact energy values (E{sub o}) are used. Calculations carried out by using Lotz equation in Matlab. First, calculations done for non-relativistic case by using non-relativistic Lotz equation then repeated with relativistic Lotz equation. σ{sub L} total and σ{sub Li}(i = 1,2,3) subshells ionisation cross section values obtained for E{sub o} values in the energy range of E{sub Li}

  1. A measurement of the relative cross sections for simultaneous ionization and excitation of the degenerate He(plus) n equals 4 levels

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.; Kay, R. B.

    1972-01-01

    The relative cross sections for simultaneous ionization and excitation of helium by 200 eV electrons into the 4S, 4P, 4D and 4F levels have been measured via a fast delayed coincidence technique. Results are in poor agreement with Born approximation calculations for simultaneous ionization and excitation of helium, the 4P component being larger than expected.

  2. The different origins of high- and low-ionization broad emission lines revealed by gravitational microlensing in the Einstein cross

    NASA Astrophysics Data System (ADS)

    Braibant, L.; Hutsemékers, D.; Sluse, D.; Anguita, T.

    2016-07-01

    We investigate the kinematics and ionization structure of the broad emission line region of the gravitationally lensed quasar QSO2237+0305 (the Einstein cross) using differential microlensing in the high- and low-ionization broad emission lines. We combine visible and near-infrared spectra of the four images of the lensed quasar and detect a large-amplitude microlensing effect distorting the high-ionization CIV and low-ionization Hα line profiles in image A. While microlensing only magnifies the red wing of the Balmer line, it symmetrically magnifies the wings of the CIV emission line. Given that the same microlensing pattern magnifies both the high- and low-ionization broad emission line regions, these dissimilar distortions of the line profiles suggest that the high- and low-ionization regions are governed by different kinematics. Since this quasar is likely viewed at intermediate inclination, we argue that the differential magnification of the blue and red wings of Hα favors a flattened, virialized, low-ionization region whereas the symmetric microlensing effect measured in CIV can be reproduced by an emission line formed in a polar wind, without the need of fine-tuned caustic configurations. Based on observations made with the ESO-VLT, Paranal, Chile; Proposals 076.B-0197 and 076.B-0607 (PI: Courbin).

  3. Ionization cross sections of the Au L subshells by electron impact from the L3 threshold to 100 keV

    NASA Astrophysics Data System (ADS)

    Barros, Suelen F.; Vanin, Vito R.; Maidana, Nora L.; Martins, Marcos N.; García-Alvarez, Juan A.; Santos, Osvaldo C. B.; Rodrigues, Cleber L.; Koskinas, Marina F.; Fernández-Varea, José M.

    2018-01-01

    We measured the cross sections for Au Lα, Lβ, Lγ, Lℓ and Lη x-ray production by the impact of electrons with energies from the L3 threshold to 100 keV using a thin Au film whose mass thickness was determined by Rutherford Backscattering Spectrometry. The x-ray spectra were acquired with a Si drift detector, which allowed to separate the components of the Lγ multiplet lines. The measured Lα, Lβ, {{L}}{γ }1, L{γ }{2,3,6}, {{L}}{γ }{4,4\\prime }, {{L}}{γ }5, {{L}}{\\ell } and Lη x-ray production cross sections were then employed to derive Au L1, L2 and L3 subshell ionization cross sections with relative uncertainties of 8%, 7% and 7%, respectively; these figures include the uncertainties in the atomic relaxation parameters. The correction for the increase in electron path length inside the Au film was estimated by means of Monte Carlo simulations. The experimental ionization cross sections are about 10% above the state-of-the-art distorted-wave calculations.

  4. Absolute cross section for electron-impact ionization of He (1 s 2 s 3S)

    NASA Astrophysics Data System (ADS)

    Génévriez, Matthieu; Jureta, Jozo J.; Defrance, Pierre; Urbain, Xavier

    2017-07-01

    We present an experimental determination of the electron-impact ionization cross section of the 1 s 2 s 3S state of helium, for which there is a serious long-lasting discrepancy between theory and experiment. A technique for the production of a fast, intense beam of helium in the 1 s 2 s 3S state only has been developed for this purpose, based on photodetachment of the He- anion. The cross section is measured using the animated crossed beam technique. The present results are much lower than the experimental data of Dixon et al. [J. Phys. B 9, 2617 (1976), 10.1088/0022-3700/9/15/013] and are in excellent agreement with the calculation of Fursa and Bray [J. Phys. B 36, 1663 (2003), 10.1088/0953-4075/36/8/317].

  5. Use of the Bethe equation for inner-shell ionization by electron impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc

    2016-05-14

    We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L{sub 3}-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections andmore » available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232–276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.« less

  6. Radar cross sections of standard and complex shape targets

    NASA Technical Reports Server (NTRS)

    Sohel, M. S.

    1974-01-01

    The theoretical, analytical, and experimental results are described for radar cross sections (RCS) of different-shaped targets. Various techniques for predicting RCS are given, and RCS of finite standard targets are presented. Techniques used to predict the RCS of complex targets are made, and the RCS complex shapes are provided.

  7. Electron-impact-ionization dynamics of S F6

    NASA Astrophysics Data System (ADS)

    Bull, James N.; Lee, Jason W. L.; Vallance, Claire

    2017-10-01

    A detailed understanding of the dissociative electron ionization dynamics of S F6 is important in the modeling and tuning of dry-etching plasmas used in the semiconductor manufacture industry. This paper reports a crossed-beam electron ionization velocity-map imaging study on the dissociative ionization of cold S F6 molecules, providing complete, unbiased kinetic energy distributions for all significant product ions. Analysis of these distributions suggests that fragmentation following single ionization proceeds via formation of S F5 + or S F3 + ions that then dissociate in a statistical manner through loss of F atoms or F2, until most internal energy has been liberated. Similarly, formation of stable dications is consistent with initial formation of S F4 2 + ions, which then dissociate on a longer time scale. These data allow a comparison between electron ionization and photoionization dynamics, revealing similar dynamical behavior. In parallel with the ion kinetic energy distributions, the velocity-map imaging approach provides a set of partial ionization cross sections for all detected ionic fragments over an electron energy range of 50-100 eV, providing partial cross sections for S2 +, and enables the cross sections for S F4 2 + from S F+ to be resolved.

  8. Influence of Triply-Charged Ions and Ionization Cross-Sections in a Hybrid-PIC Model of a Hall Thruster Discharge

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani

    2014-01-01

    The sensitivity of xenon ionization rates to collision cross-sections is studied within the framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based on the Drawin form is proposed and is shown to better reproduce the measured crosssections at high electron energies, with differences in the integrated rate coefficients being on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit is implemented into HPHall and the updated model is used to simulate NASA's HiVHAc EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating points, the revised cross-sections result in an increase in the predicted thrust and anode efficiency, reducing the error relative to experimental performance measurements. Electron temperature and ionization reaction rates are shown to follow the trends expected based on the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The predicted thruster performance is found to have little or no dependence on the presence of triply-charged ions. The fraction of ion current carried by triply-charged ions is found to be on the order of 1% and increases slightly with increasing discharge voltage. The reaction rates for the 0?III, I?III, and II?III ionization reactions are found to be of similar order of magnitude and are about one order of magnitude smaller than the rate of 0?II ionization in the discharge channel.

  9. Analysis of Data on the Cross Sections for Electron-Impact Ionization and Excitation of Electronic States of Atomic Hydrogen (Review)

    NASA Astrophysics Data System (ADS)

    Shakhatov, V. A.; Lebedev, Yu. A.

    2018-01-01

    A review is given of experimental and theoretical data on the cross sections for ionization, excitation, and deexcitation of atomic hydrogen. The set of the cross sections required to calculate the electron energy distribution function and find the level-to-level rate coefficients needed to solve balance equations for the densities of neutral and charged particles in hydrogen plasma is determined.

  10. Optical potential approach to the electron-atom impact ionization threshold problem

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Hahn, Y.

    1973-01-01

    The problem of the threshold law for electron-atom impact ionization is reconsidered as an extrapolation of inelastic cross sections through the ionization threshold. The cross sections are evaluated from a distorted wave matrix element, the final state of which describes the scattering from the Nth excited state of the target atom. The actual calculation is carried for the e-H system, and a model is introduced which is shown to preserve the essential properties of the problem while at the same time reducing the dimensionability of the Schrodinger equation. Nevertheless, the scattering equation is still very complex. It is dominated by the optical potential which is expanded in terms of eigen-spectrum of QHQ. It is shown by actual calculation that the lower eigenvalues of this spectrum descend below the relevant inelastic thresholds; it follows rigorously that the optical potential contains repulsive terms. Analytical solutions of the final state wave function are obtained with several approximations of the optical potential.

  11. Coupled-Sturmian and perturbative treatments of electron transfer and ionization in high-energy p-He+ collisions

    NASA Astrophysics Data System (ADS)

    Winter, Thomas G.; Alston, Steven G.

    1992-02-01

    Cross sections have been determined for electron transfer and ionization in collisions between protons and He+ ions at proton energies from several hundred kilo-electron-volts to 2 MeV. A coupled-Sturmian approach is taken, extending the work of Winter [Phys. Rev. A 35, 3799 (1987)] and Stodden et al. [Phys. Rev. A 41, 1281 (1990)] to high energies where perturbative approaches are expected to be valid. An explicit connection is made with the first-order Born approximation for ionization and the impulse version of the distorted, strong-potential Born approximation for electron transfer. The capture cross section is shown to be affected by the presence of target basis functions of positive energy near v2/2, corresponding to the Thomas mechanism.

  12. Large discrepancies observed in theoretical studies of ion-impact ionization of the atomic targets at large momentum transfer

    NASA Astrophysics Data System (ADS)

    Ghorbani, Omid; Ghanbari-Adivi, Ebrahim

    2017-12-01

    A full quantum mechanical version of the three-body distorted wave-eikonal initial state (3DW-EIS) theory is developed to study of the single ionization of the atomic targets by ion impact at different momentum transfers. The calculations are performed both with and without including the internuclear interaction in the transition amplitude. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s2 ) and 24 \\text{Mev} \\text{O}8+\\text{-Li}~(2s ) collisions, the emission of the active electron into the scattering plane is considered and the fully differential cross-sections (FDCSs) are calculated for a fixed value of the ejected electron energy and a variety of momentum transfers. For both the specified collision systems, the obtained results are compared with the experimental data and with the cross-sections obtained using the semi-classical continuum distorted wave-eikonal initial state (CDW-EIS) approach. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s^2) , we also compared the results with those of a four-body three-Coulomb-wave (3CW) model. In general, we find some large discrepancies between the results obtained by different theories. These discrepancies are much more significant at larger momentum transfers. Also, for some ranges of the electron emission angles the results are much more sensitive to the internuclear interaction to be either turned on or off.

  13. Triply differential measurements of single ionization of argon by 1-keV positron and electron impact

    NASA Astrophysics Data System (ADS)

    Gavin, J.; de Lucio, O. G.; DuBois, R. D.

    2017-06-01

    By establishing coincidences between target ions and scattered projectiles, and coincidences between target ions, scattered projectiles, and ejected electrons, triply differential cross-section (TDCS) information was generated in terms of projectile energy loss and scattering angles for interactions between 1-keV positrons and electrons and Ar atoms. The conversion of the raw experimental information to the TDCS is discussed. The single-ionization TDCS exhibits two distinguishable regions (lobes) where binary and recoil interactions can be described by two peaks. A comparison of the positron and electron impact data shows that the relative intensity of both binary and recoil interactions decreases exponentially as a function of the momentum transfer and is larger when ionization is induced by positron impact, when compared with electron impact.

  14. Sensitivity of hot-cathode ionization vacuum gages in several gases

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1972-01-01

    Four hot-cathode ionization vacuum gages were calibrated in 12 gases. The relative sensitivities of these gages were compared to several gas properties. Ionization cross section was the physical property which correlated best with gage sensitivity. The effects of gage accelerating voltage and ionization-cross-section energy level were analyzed. Recommendations for predicting gage sensitivity according to gage type were made.

  15. Communication: Electron ionization of DNA bases.

    PubMed

    Rahman, M A; Krishnakumar, E

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  16. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heilbronn, L.; Iwata, Y.; Iwase,H.

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, withmore » the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.« less

  17. Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.

  18. Evaluation of computational models and cross sections used by MCNP6 for simulation of characteristic X-ray emission from thick targets bombarded by kiloelectronvolt electrons

    NASA Astrophysics Data System (ADS)

    Poškus, A.

    2016-09-01

    This paper evaluates the accuracy of the single-event (SE) and condensed-history (CH) models of electron transport in MCNP6.1 when simulating characteristic Kα, total K (=Kα + Kβ) and Lα X-ray emission from thick targets bombarded by electrons with energies from 5 keV to 30 keV. It is shown that the MCNP6.1 implementation of the CH model for the K-shell impact ionization leads to underestimation of the K yield by 40% or more for the elements with atomic numbers Z < 15 and overestimation of the Kα yield by more than 40% for the elements with Z > 25. The Lα yields are underestimated by more than an order of magnitude in CH mode, because MCNP6.1 neglects X-ray emission caused by electron-impact ionization of L, M and higher shells in CH mode (the Lα yields calculated in CH mode reflect only X-ray fluorescence, which is mainly caused by photoelectric absorption of bremsstrahlung photons). The X-ray yields calculated by MCNP6.1 in SE mode (using ENDF/B-VII.1 library data) are more accurate: the differences of the calculated and experimental K yields are within the experimental uncertainties for the elements C, Al and Si, and the calculated Kα yields are typically underestimated by (20-30)% for the elements with Z > 25, whereas the Lα yields are underestimated by (60-70)% for the elements with Z > 49. It is also shown that agreement of the experimental X-ray yields with those calculated in SE mode is additionally improved by replacing the ENDF/B inner-shell electron-impact ionization cross sections with the set of cross sections obtained from the distorted-wave Born approximation (DWBA), which are also used in the PENELOPE code system. The latter replacement causes a decrease of the average relative difference of the experimental X-ray yields and the simulation results obtained in SE mode to approximately 10%, which is similar to accuracy achieved with PENELOPE. This confirms that the DWBA inner-shell impact ionization cross sections are significantly more

  19. Non-Targeted Effects Induced by Ionizing Radiation: Mechanisms and Potential Impact on Radiation Induced Health Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, William F.; Sowa, Marianne B.

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (> 1Gy), at low doses (< 100mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculationmore » on how these observations might lead to and impact long-term human health outcomes.« less

  20. Communication: Electron ionization of DNA bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, M. A.; Krishnakumar, E., E-mail: ekkumar@tifr.res.in

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve themore » existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.« less

  1. Signatures of the atomic nucleus in laser-assisted single ionization of one-electron atoms

    NASA Astrophysics Data System (ADS)

    Ajana, Imane; Khalil, Driss; Makhoute, Abdelkader

    2018-03-01

    The dynamics of the electron-impact single ionization of hydrogenic targets in the presence of a laser field (e, 2e) has been studied for different residual ion charges Z = 1, 2, 3 and 4. The state of fast electron in the laser field is described by the Volkov state, while the dressed state of the ejected slow electron and atomic target is treated perturbatively to the first-order perturbation theory. We calculate the triple differential cross section in the Ehrhardt asymmetric coplanar geometry. We have compared and analyzed the triple differential cross sections from one-electron atoms by varying the charge state of the residual ion, and evaluating the interplay between the laser influence and the role of scattering from the residual ion.

  2. Triple differential study of ionization of H2 by proton impact for varying electron ejection geometries

    NASA Astrophysics Data System (ADS)

    Hasan, A.; Sharma, S.; Arthanayaka, T. P.; Lamichhane, B. R.; Remolina, J.; Akula, S.; Madison, D. H.; Schulz, M.

    2014-11-01

    We have performed a kinematically complete experiment on ionization of H2 by 75 keV proton impact. The triple differential cross sections (TDCS) extracted from the measurement were compared to a molecular 3-body distorted wave (M3DW) calculation for three different electron ejection geometries. Overall, the agreement between experiment and theory is better than in the case of a helium target for the same projectile. Nevertheless, significant quantitative discrepancies remain, which probably result from the capture channel, which may be strongly coupled to the ionization channel. Therefore, improved agreement could be expected from a non-perturbative coupled-channel approach.

  3. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  4. Inner-shell Ionization With Relativistic Corrections By Electron Impact

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan; Patoary, M. A. R.; Alfaz Uddin, M.; Haque, A. K. F.; Basak, Arun K.

    2007-06-01

    A simple method is proposed and tested by evaluating the electron impact inner-shell ionization cross sections of various targets up to ultra high energy region. In this energy region there are not many calculations due to lack of reliable method. In this work we extend the validity of the siBED model [1] in terms of targets and incident energies. The extension of our earlier RQIBED model [2] is also reported here and we examined its findings for the description of the experimental EIICS data of various targets up to E=1000 MeV. Details will be presented at the meeting. [1] W. M. Huo, Phys. Rev A 64, 042719 (2001). [2] M. A. Uddin, A. K. F. Haque, M. S. Mahbub, K. R. Karim, A. K. Basak and B. C. Saha, Phys. Rev. A 71, 032715 (2005).

  5. Theoretical and experimental quantification of doubly and singly differential cross sections for electron-induced ionization of isolated tetrahydrofuran molecules

    DOE PAGES

    Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; ...

    2014-07-29

    Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1 st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.

  6. A highly sensitive electron spectrometer for crossed-beam collisional ionization: A retarding-type magnetic bottle analyzer and its application to collision-energy resolved Penning ionization electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamakita, Yoshihiro; Tanaka, Hideyasu; Maruyama, Ryo; Yamakado, Hideo; Misaizu, Fuminori; Ohno, Koichi

    2000-08-01

    A highly sensitive electron energy analyzer which utilizes a "magnetic bottle" combined with a retarding electrostatic field has been developed for Penning ionization electron spectroscopy. A beam of metastable rare-gas atoms is crossed with a continuous supersonic sample beam in the source region of the analyzer. The emitted electrons are collected by an inhomogeneous magnetic field (the magnetic bottle effect) with a high efficiency of nearly 4π solid angle, which is more than 103 times higher than that of a conventional hemispherical analyzer. The kinetic energy of electrons is analyzed by scanning the retarding field in a flight tube of the analyzer in the presence of a weak magnetic field. The velocity of the metastable atoms can also be resolved by a time-of-flight method in the present instrument. Examples of Penning ionization electron energy spectra as a function of collision energy are presented for Ar and N2 with metastable He*(2 3S) atoms. This instrument has opened the possibility for extensive studies of Penning ionization electron spectroscopy for low-density species, such as clusters, ions, electronically excited species, unstable or transient species, and large molecules with low volatility.

  7. Near-Threshold Ionization of Argon by Positron Impact

    NASA Astrophysics Data System (ADS)

    Babij, T. J.; Machacek, J. R.; Murtagh, D. J.; Buckman, S. J.; Sullivan, J. P.

    2018-03-01

    The direct single-ionization cross section for Ar by positron impact has been measured in the region above the first ionization threshold. These measurements are compared to semiclassical calculations which give rise to a power law variation of the cross section in the threshold region. The experimental results appear to be in disagreement with extensions to the Wannier theory applied to positron impact ionization, with a smaller exponent than that calculated by most previous works. In fact, in this work, we see no difference in threshold behavior between the positron and electron cases. Possible reasons for this discrepancy are discussed.

  8. Low-energy electron-impact single ionization of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Pindzola, M. S.; Childers, G.

    2006-04-15

    A study is made of low-energy electron-impact single ionization of ground-state helium. The time-dependent close-coupling method is used to calculate total integral, single differential, double differential, and triple differential ionization cross sections for impact electron energies ranging from 32 to 45 eV. For all quantities, the calculated cross sections are found to be in very good agreement with experiment, and for the triple differential cross sections, good agreement is also found with calculations made using the convergent close-coupling technique.

  9. Infrared small target detection based on directional zero-crossing measure

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangyue; Ding, Qinghai; Luo, Haibo; Hui, Bin; Chang, Zheng; Zhang, Junchao

    2017-12-01

    Infrared small target detection under complex background and low signal-to-clutter ratio (SCR) condition is of great significance to the development on precision guidance and infrared surveillance. In order to detect targets precisely and extract targets from intricate clutters effectively, a detection method based on zero-crossing saliency (ZCS) map is proposed. The original map is first decomposed into different first-order directional derivative (FODD) maps by using FODD filters. Then the ZCS map is obtained by fusing all directional zero-crossing points. At last, an adaptive threshold is adopted to segment targets from the ZCS map. Experimental results on a series of images show that our method is effective and robust for detection under complex backgrounds. Moreover, compared with other five state-of-the-art methods, our method achieves better performance in terms of detection rate, SCR gain and background suppression factor.

  10. Measurement of relative cross sections for simultaneous ionization and excitation of the helium 4 2s and 4 2p states

    NASA Technical Reports Server (NTRS)

    Sutton, J. F.

    1972-01-01

    The relative cross sections for simultaneous ionization and excitation of helium by 200-eV electrons into the 4 2s and 4 2p states were measured via a fast delayed coincidence technique. Results show good agreement with the relative cross sections for single electron excitation of helium and hydrogen. An application of the results of the measurement to the development of ultraviolet intensity standard is suggested. This technique involves the use of known branching ratios, a visible light flux reference, and the measured relative cross sections.

  11. Experimental optimization of directed field ionization

    NASA Astrophysics Data System (ADS)

    Liu, Zhimin Cheryl; Gregoric, Vincent C.; Carroll, Thomas J.; Noel, Michael W.

    2017-04-01

    The state distribution of an ensemble of Rydberg atoms is commonly measured using selective field ionization. The resulting time resolved ionization signal from a single energy eigenstate tends to spread out due to the multiple avoided Stark level crossings atoms must traverse on the way to ionization. The shape of the ionization signal can be modified by adding a perturbation field to the main field ramp. Here, we present experimental results of the manipulation of the ionization signal using a genetic algorithm. We address how both the genetic algorithm and the experimental parameters were adjusted to achieve an optimized result. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377.

  12. Effects of target heating on experiments using Kα and Kβ diagnostics.

    PubMed

    Palmeri, P; Boutoux, G; Batani, D; Quinet, P

    2015-09-01

    We describe the impact of heating and ionization on emission from the target of Kα and Kβ radiation induced by the propagation of hot electrons generated by laser-matter interaction. We consider copper as a test case and, starting from basic principles, we calculate the changes in emission wavelength, ionization cross section, and fluorescence yield as Cu is progressively ionized. We have finally considered the more realistic case when hot electrons have a distribution of energies with average energies of 50 and 500 keV (representative respectively of "shock ignition" and of "fast ignition" experiments) and in which the ions are distributed according to ionization equilibrium. In addition, by confronting our theoretical calculations with existing data, we demonstrate that this study offers a generic theoretical background for temperature diagnostics in laser-plasma interactions.

  13. Cross sections for electron collision with difluoroacetylene

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Choi, Heechol; Kwon, Deuk-Chul; Yoon, Jung-Sik; Antony, Bobby; Song, Mi-Young

    2017-04-01

    We report a detailed calculation of total elastic, differential elastic, momentum transfer and electronic excitation for electron impact on difluoroacetylene (C2F2) molecules using the R-matrix method at low energies. After testing many target models, the final results are reported for the target model that gave the best target properties and predicted the lowest value of the shape resonance. The shape resonance is detected at 5.86 eV and 6.49 eV with the close-coupling and static exchange models due to 2Πg (2B2g, 2B3g) states. We observed that the effect of polarization becomes prominent at low energies below 4 eV, decreasing the magnitude of the elastic cross section systematically as it increases for C2F2. We have also computed elastic cross sections for C2H2, C2F4 and C2H4 with a similar model and compared with the experimental data for these molecules along with C2F2. General agreement is found in terms of the shape and nature of the cross section. Such a comparison shows the reliability of the present method for obtaining the cross section for C2F2. The calculation of elastic scattering cross section is extended to higher energies up to 5 keV using the spherical complex optical potential method. The two methods are found to be consistent, merging at around 12 eV for the elastic scattering cross section. Finally we report the total ionization cross section using the binary encounter Bethe method for C2F2. The perfluorination effect in the shape and magnitude of the elastic, momentum transfer and ionization cross sections when compared with C2H2 showed a similar trend to that in the C2H4-C2F4 and C6H6-C6F6 systems. The cross-section data reported in this article could be an important input for the development of a C2F2 plasma model for selective etching of Si/SiO2 in the semiconductor industry.

  14. Single electron impact ionization of the methane molecule

    NASA Astrophysics Data System (ADS)

    Bouamoud, Mammar; Sahlaoui, Mohammed; Benmansour, Nour El Houda; Atomic and Molecular Collisions Team

    2014-10-01

    Triply differential cross sections (TDCS) results of electron-impact ionization of the inner 2a1 molecular orbital of CH4 are presented in the framework of the Second Born Approximation and compared with the experimental data performed in coplanar asymmetric geometry. The cross sections are averaged on the random orientations of the molecular target for accurate comparison with experiments and are compared also with the theoretical calculations of the Three Coulomb wave (3CW) model. Our results are in good agreement with experiments and 3CW results in the binary peak. In contrast the Second Born Approximation yields a significant higher values compared to the 3CW results for the recoil peak and seems to describe suitably the recoil region where higher order effects can occur with the participation of the recoiling ion in the collision process.

  15. CCC calculated integrated cross sections of electron-H2 scattering

    NASA Astrophysics Data System (ADS)

    Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor

    2016-09-01

    Recently we applied the molecular convergent close-coupling (CCC) method to electron scattering from molecular hydrogen H2. Convergence of the major integrated cross sections has been explicitly demonstrated in the fixed-nuclei approximation by increasing the number of H2 target states in the close-coupling expansion from 9 to 491. The calculations have been performed using a projectile partial wave expansion with maximum orbital angular momentum Lmax = 8 and total orbital angular momentum projections | M | <= 8 . Coupling to the ionization continuum is modeled via a large pseudo state expansion, which we found is required to obtain reliable elastic and excitation cross sections. Here we present benchmark elastic, single-ionization, electronic excitation and total integrated cross sections over a broad energy range (0.1 to 300 eV) and compare with available experiment and previous calculations. Los Alamos National Laboratory and Curtin University.

  16. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    PubMed

    Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  17. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D. B.; Costa, R. F. da; Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arisemore » due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.« less

  18. Degradation spectra and ionization yields of electrons in gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inokuti, M.; Douthat, D.A.; Rau, A.R.P.

    1975-01-01

    Progress in the microscopic theory of electron degradation in gases by Platzman, Fano, and co-workers is outlined. The theory consists of (1) the cataloging of all major inelastic-collision cross sections for electrons (including secondary-electron energy distribution in a single ionizing collision) and (2) the evaluation of cumulative consequences of individual electron collisions for the electrons themselves as well as for target molecules. For assessing the data consistency and reliability and extrapolating the data to the unexplored ranges of variables (such as electron energy), a series of plots devised by Platzman are very powerful. Electron degradation spectra were obtained through numericalmore » solution of the Spencer--Fano equation for all electron energies down to the first ionization thresholds for a few examples such as He and Ne. The systematics of the solutions resulted in the recognition of approximate scaling properties of the degradation spectra for different initial electron energies and pointed to new methods of more efficient treatment. Systematics of the ionization yields and their energy dependence on the initial electron energy were also recognized. Finally, the Spencer--Fano equation for the degradation spectra and the Fowler equation for the ionization and other yields are tightly linked with each other by a set of variational principles. (52 references, 7 figures) (DLC)« less

  19. New Method for Calculating The Electron Impact Ionization of Ions

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan; Basak, Arun K.; Uddin, M. A.

    2005-11-01

    The electron impact single ionization of ionic targets ( 1 <= Z <= 92) is reported using a recently proposed method [1]. It is based on the simplified version of the improved-binary-encounter-dipole (siBED) model [2]. Including the both the ionic and the relativistic corrections (RQIBED model) [3] we have recently investigated the ionization of He-like[4] and Be-like systems [5] with considerable success. However, the presence of adjustable parameters make it dependent on available experimental results We have applied a new techniques to avoid this and show explicitly how to evaluate cross sections for filled as well as unfilled s-orbital targets. Details will be presented at the conference. [1] M. A. Uddin, A. K. F. Haque, a. K. Basak, K. R. Karim and B. C. Saha, Phys Rev A (2005) in press [2] W. M. Huo, Phys. Rev. A 64, 042719 (2001). [3]M. A. Uddin, M. A. K. F. Haque, A. K. Basak and B. C. Saha, Phys. Rev. A 70, 032706 (2004). [4] M. A. Uddin, A. K. F. Haque, M. S. Mahbub, K. R. Karim, A. K. Basak, B. C. Saha, Int. J. Mass Spect. 244, 76 (2005).

  20. Effects of target shape and reflection on laser radar cross sections.

    PubMed

    Steinvall, O

    2000-08-20

    Laser radar cross sections have been evaluated for a number of ideal targets such as cones, spheres, paraboloids, and cylinders by use of different reflection characteristics. The time-independent cross section is the ratio of the cross section of one of these forms to that of a plate with the same maximum radius. The time-dependent laser radar cross section involves the impulse response from the object shape multiplied by the beam's transverse profile and the surface bidirectional reflection distribution function. It can be clearly seen that knowledge of the combined effect of object shape and reflection characteristics is important for determining the shape and the magnitude of the laser radar return. The results of this study are of interest for many laser radar applications such as ranging, three-dimensional imaging-modeling, tracking, antisensor lasers, and target recognition.

  1. The SPES surface ionization source

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; D'Agostini, F.; Monetti, A.; Andrighetto, A.

    2017-09-01

    Ion sources and target systems play a crucial role in isotope separation on line facilities, determining the main characteristics of the radioactive ion beams available for experiments. In the context of the selective production of exotic species (SPES) facility, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced by the 238U fissions are delivered to the 1+ ion source by means of a tubular transfer line. Here they can be ionized and subsequently accelerated toward the experimental areas. In this work, the characterization of the surface ionization source currently adopted for the SPES facility is presented, taking as a reference ionization efficiency and transversal emittance measurements. The effects of long term operation at high temperature are also illustrated and discussed.

  2. Identification of mammalian proteins cross-linked to DNA by ionizing radiation.

    PubMed

    Barker, Sharon; Weinfeld, Michael; Zheng, Jing; Li, Liang; Murray, David

    2005-10-07

    Ionizing radiation (IR) is an important environmental risk factor for various cancers and also a major therapeutic agent for cancer treatment. Exposure of mammalian cells to IR induces several types of damage to DNA, including double- and single-strand breaks, base and sugar damage, as well as DNA-DNA and DNA-protein cross-links (DPCs). Little is known regarding the biological consequences of DPCs. Identifying the proteins that become cross-linked to DNA by IR would be an important first step in this regard. We have therefore undertaken a proteomics study to isolate and identify proteins involved in IR-induced DPCs. DPCs were induced in AA8 Chinese hamster ovary or GM00637 human fibroblast cells using 0-4 gray of gamma-rays under either aerated or hypoxic conditions. DPCs were isolated using a recently developed method, and proteins were identified by mass spectrometry. We identified 29 proteins as being cross-linked to DNA by IR under aerated and/or hypoxic conditions. The identified proteins include structural proteins, actin-associated proteins, transcription regulators, RNA-splicing components, stress-response proteins, cell cycle regulatory proteins, and GDP/GTP-binding proteins. The involvement of several proteins (actin, histone H2B, and others) in DPCs was confirmed by using Western blot analysis. The dose responsiveness of DPC induction was examined by staining one-dimensional SDS-polyacrylamide gels with SYPRO Tangerine followed by analysis using fluorescence imaging. Quantitation of the fluorescence signal indicated no significant difference in total yields of IR-induced DPCs generated under aerated or hypoxic conditions, although differences were observed for several individual protein bands.

  3. Experimental and theoretical double differential cross sections for electron impact ionization of methane

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Champion, Christophe; Dogan, Mevlut

    2016-04-01

    Experimental and theoretical double differential cross sections (DDCSs) for electron-induced ionization of methane (CH4) are here reported for primary energies ranging from 50 eV to 350 eV and ejection angles between 25° and 130°. Experimental DDCSs are compared with theoretical predictions performed within the first Born approximation Coulomb wave. In this model, the initial molecular state is described by using single center wave functions, the incident (scattered) electron being described by a plane wave, while a Coulomb wave function is used for modeling the secondary ejected electron. A fairly good agreement may be observed between theory and experiment with nevertheless an expected systematic overestimation of the theory at low-ejection energies (<50 eV).

  4. Electron-impact ionization and electron attachment cross sections of radicals important in transient gaseous discharges

    NASA Technical Reports Server (NTRS)

    Lee, Long C.; Srivastava, Santosh K.

    1990-01-01

    Electron-impact ionization and electron attachment cross sections of radicals and excited molecules were measured using an apparatus that consists of an electron beam, a molecular beam and a laser beam. The information obtained is needed for the pulse power applications in the areas of high power gaseous discharge switches, high energy lasers, particle beam experiments, and electromagnetic pulse systems. The basic data needed for the development of optically-controlled discharge switches were also investigated. Transient current pulses induced by laser irradiation of discharge media were observed and applied for the study of electron-molecule reaction kinetics in gaseous discharges.

  5. Thick-target transmission method for excitation functions of interaction cross sections

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Ebata, S.; Imai, S.

    2016-09-01

    We propose a method, called as thick-target transmission (T3) method, to obtain an excitation function of interaction cross sections. In an ordinal experiment to measure the excitation function of interaction cross sections by the transmission method, we need to change the beam energy for each cross section. In the T3 method, the excitation function is derived from the beam attenuations measured at the targets of different thicknesses without changing the beam energy. The advantage of the T3 method is the simplicity and availability for radioactive beams. To confirm the availability, we perform a simulation for the 12C + 27Al system with the PHITS code instead of actual experiments. Our results have large uncertainties but well reproduce the tendency of the experimental data.

  6. Trajectory calculations of two-dimensional Penning ionization electron spectra of N 2 in collision with metastable He* 2 3S atoms

    NASA Astrophysics Data System (ADS)

    Ohno, Koichi; Yamazaki, Masakazu; Kishimoto, Naoki; Ogawa, Tetsuji; Takeshita, Kouichi

    2000-12-01

    Ionization cross-sections of N 2 in collision with He* 2 3S as functions of the collision energy and the ejected electron kinetic energy (two-dimensional Penning ionization electron spectra, 2D-PIES) have been evaluated by trajectory calculations based on quantum chemical potential surfaces of both entrance and exit channels as well as on the transition widths for producing X, A, and B states of N 2+. The present approach using a Li atom for He * and an overlap approximation for Γ has given theoretical 2D-PIES in good agreement with the observation and a promise for its application to the study of dynamics in collisional ionization involving highly anisotropic target systems.

  7. Low-energy electron scattering from atomic hydrogen. I. Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J.G.; James, K.E. Jr.; Bray, Igor

    2004-02-01

    Absolute doubly differential cross sections for the ionization of atomic hydrogen by electron impact have been measured at energies ranging from near threshold to intermediate values. The measurements are normalized to the accurate differential cross section for the electron-impact excitation of the H 1 {sup 2}S{yields}2 {sup 2}S+2 {sup 2}P transition. These measurements were made possible through the use of a moveable target source which enables the collection of hydrogen energy loss spectra free of all backgrounds. The measurements cover the incident electron energy range of 14.6-40 eV and scattering angles from 12 deg. to 127 deg., and are inmore » very good agreement with the results of the latest theoretical models--the convergent close-coupling model and the exterior complex scaling model.« less

  8. A laser desorption ionization/matrix-assisted laser desorption ionization target system applicable for three distinct types of instruments (LinTOF/curved field RTOF, LinTOF/RTOF and QqRTOF) with different performance characteristics from three vendors.

    PubMed

    Rados, Edita; Pittenauer, Ernst; Frank, Johannes; Varmuza, Kurt; Allmaier, Günter

    2018-04-30

    We have developed a target system which enables the use of only one target (i.e. target preparation set) for three different laser desorption ionization (LDI)/matrix-assisted laser desorption ionization (MALDI) mass spectrometric instruments. The focus was on analysing small biomolecules with LDI for future use of the system for the study of meteorite samples (carbonaceous chondrites) using devices with different mass spectrometric performance characteristics. Three compounds were selected due to their potential presence in meteoritic chondrites: tryptophan, 2-deoxy-d-ribose and triphenylene. They were prepared (with and without MALDI matrix, i.e. MALDI and LDI) and analysed with three different mass spectrometers (LinTOF/curved field RTOF, LinTOF/RTOF and QqRTOF). The ion sources of two of the instruments were run at high vacuum, and one at intermediate pressure. Two devices used a laser wavelength of 355 nm and one a wavelength of 337 nm. The developed target system operated smoothly with all devices. Tryptophan, 2-deoxy-d-ribose and triphenylene showed similar desorption/ionization behaviour for all instruments using the LDI mode. Interestingly, protonated tryptophan could be observed only with the LinTOF/curved field RTOF device in LDI and MALDI mode, while sodiated molecules were observed with all three instruments (in both ion modes). Deprotonated tryptophan was almost completely obscured by matrix ions in the MALDI mode whereas LDI yielded abundant deprotonated molecules. The presented target system allowed successful analyses of the three compounds using instruments from different vendors with only one preparation showing different analyser performance characteristics. The elemental composition with the QqRTOF analyser and the high-energy 20 keV collision-induced dissociation fragmentation will be important in identifying unknown compounds in chondrites. © 2018 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

  9. Angular Distributions of Differential Electron Capture Cross Sections in Collisions Between Low-Velocity Highly-Charged Ions and Neutral Targets.

    NASA Astrophysics Data System (ADS)

    Waggoner, William Tracy

    1990-01-01

    Experimental capture cross sections d sigma / dtheta versus theta , are presented for various ions incident on neutral targets. First, distributions are presented for Ar ^{rm 8+} ions incident on H_{rm 2}, D _{rm 2}, and Ar targets. Energy gain studies indicate that capture occurs to primarily a 5d,f final state of Ar^{rm 7+} with some contributions from transfer ionization (T.I.) channels. Angular distribution spectra for all three targets are similar, with spectra having a main peak located at forward angles which is attributed to single capture events, and a secondary structure occurring at large angles which is attributed to T.I. contributions. A series of Ar^{rm 8+} on Ar spectra were collected using a retarding grid system as a low resolution energy spectrometer to resolve single capture events from T.I. events. The resulting single capture and T.I. angular distributions are presented. Results are discussed in terms of a classical deflection function employing a simple two state curve crossing model. Angular distributions for electron capture from He by C, N, O, F, and Ne ions with charge states from 5 ^+-8^+ are presented for projectile energies between 1.2 and 2.0 kV. Distributions for the same charge state but different ion species are simlar, but not identical with distributions for the 5 ^+ and 7^+ ions being strongly forward peaked, the 6^+ distributions are much less forward peaked with the O^{6+} distributions showing structure, the Ne^{8+} ion distribution appears to be an intermediate case between forward peaking and large angle scattering. These results are discussed in terms of classical deflection functions which utilize two state Coulomb diabatic curve crossing models. Finally, angular distributions are presented for electron capture from He by Ar^{rm 6+} ions at energies between 1287 eV and 296 eV. At large projectile energies the distribution is broad. As the energy decreases below 523 eV, distributions shift to forward angles with a second

  10. Secondary neutron-production cross sections from heavy-ion interactions in composite targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heilbronn, L.; Iwata, Y.; Murakami, T.

    Secondary neutron-production cross sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 deg. and 80 deg. in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity,more » with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential cross sections are fitted with a moving-source parametrization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials and for neutron production in nontarget materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well but, on average, underestimate the magnitudes of the cross sections.« less

  11. Photoionization and electron-impact ionization of Ar5+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.C.; Lu, M.; Esteves, D.

    2007-02-27

    Absolute cross sections for photoionization andelectron-impact Photionization of Ar5+ have been measuredusing twodifferent interacting-beams setups. The spectra consist of measurementsof the yield of products dueto single ionization as a function ofelectron or photon energy. In addition, absolute photoionization andelectron-impact ionization cross sections were measured to normalize themeasured Ar6+ product-ion yield spectra. In the energy range from 90 to111 eV, both electron-impact ionization and photoionization of Ar5+aredominated by indirect 3s subshell excitation-autoionization. In theenergy range from 270 to 285 eV, resonances due to 2p-3dexcitation-autoionization are prominent in the photoionization spectrum.In the range from 225 to 335 eV, an enhancement due tomore » 2p-nl (n>2>excitations are evident in the electron-impactionization cross section.The electron and photon impact data show some features due to excitationof the same intermediate autoionizing states.« less

  12. Electron impact ionization of the gas-phase sorbitol

    NASA Astrophysics Data System (ADS)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  13. Influence of field ionization effect on the divergence of laser-driven fast electrons

    NASA Astrophysics Data System (ADS)

    Lang, Y.; Yang, X. H.; Xu, H.; Jin, Z.; Zhuo, H. B.

    2018-07-01

    The effect of field ionization on the divergence of fast electrons (E k ≥ 50 keV), driven by ultrashort-ultraintense laser pulse interaction with plasma, is studied by using 2D3V particle-in-cell simulations. It is found that, due to temperature anisotropy of the fast electrons in the ionizing target, strong fluctuant magnetic fields in the preplasma region is generated through Weibel instability. In turn, the field induces an enhancement of the hot electron divergence for the target with ionization process. Meanwhile, compared with the target without an ionization process, larger divergence of hot electrons can also be seen in the ionizing target with laser intensity varying from 5 × 1019 W/cm2 to 5 × 1020 W/cm2 and the divergence is weakly dependent on target materials for a fixed profile of preplasma. The results here are useful for the application of laser-driven fast electron beams.

  14. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  15. Electron ionization of metastable nitrogen and oxygen atoms in relation to the auroral emissions

    NASA Astrophysics Data System (ADS)

    Pandya, Siddharth; Joshipura, K. N.

    Atomic and molecular excited metastable states (EMS) are exotic systems due to their special properties like long radiative life-time, large size (average radius) and large polarizability along with relatively smaller first ionization energy compared to their respective ground states (GS). The present work includes our theoretical calculations on electron impact ionization of metastable atomic states N( (2) P), N( (2) D) of nitrogen and O( (1) S), O( (1) D) of oxygen. The targets of our present interest, are found to be present in our Earth's ionosphere and they play an important role in auroral emissions observed in Earth’s auroral regions [1] as also in the emissions observed from cometary coma [2, 3] and airglow emissions. In particular, atomic oxygen in EMS can radiate, the visible O( (1) D -> (3) P) doublet 6300 - 6364 Å red doublet, the O( (1) S -> (1) D) 5577 Å green line, and the ultraviolet O( (1) S -> (3) P) 2972 Å line. For metastable atomic nitrogen one observes the similar emissions, in different wavelengths, from (2) D and (2) P states. At the Earth's auroral altitudes, from where these emissions take place in the ionosphere, energetic electrons are also present. In particular, if the metastable N as well as O atoms are ionized by the impact of electrons then these species are no longer available for emissions. This is a possible loss mechanism, and hence it is necessary to analyze the importance of electron ionization of the EMS of atomic O and N, by calculating the relevant cross sections. In the present paper we investigate electron ionization of the said metastable species by calculating relevant total cross sections. Our quantum mechanical calculations are based on projected approximate ionization contribution in the total inelastic cross sections [4]. Detailed results and discussion along with the significance of these calculations will be presented during the COSPAR-2014. References [1] A.Bhardwaj, and G. R. Gladstone, Rev. Geophys., 38

  16. Collision energy-resolved study of the emission cross-section and the Penning ionization cross-section in the reaction of BrCN with He*(2 3S)

    NASA Astrophysics Data System (ADS)

    Kanda, Kazuhiro; Yamakita, Yoshihiro; Ohno, Koichi

    2001-12-01

    The dissociative excitation of BrCN producing CN(B 2Σ +) fragment by the collision of He *(2 3S) was investigated by the collision energy-resolved electron and emission spectroscopy using time-of-flight method with a high-intensity He * beam. The Penning electrons ejected from BrCN and the subsequent CN ( B2Σ +- X2Σ +) emission were measured as a function of collision energy in the range of 90-180 meV. The formation of CN ( B2Σ +) is concluded to proceed dominantly via the promotion of an electron from Π-character orbital, by comparison between the collision energy dependence of the partial Penning ionization cross-sections and the CN ( B2Σ +- X2Σ +) emission cross-section.

  17. Autoionizing resonances in electron-impact ionization of O5+ ions

    NASA Astrophysics Data System (ADS)

    Müller, A.; Teng, H.; Hofmann, G.; Phaneuf, R. A.; Salzborn, E.

    2000-12-01

    We report on a detailed experimental and theoretical study of electron-impact ionization of O5+ ions. A high-resolution scan measurement of the K-shell excitation threshold region has been performed with statistical uncertainties as low as 0.03%. At this level of precision a wealth of features in the cross section arising from indirect ionization processes becomes visible, and even interference of direct ionization with resonant-excitation/auto-double-ionization (READI) is clearly observed. The experimental results are compared with R-matrix calculations that include both direct and indirect processes in a unified way. Radiative damping of autoionizing Li-like states is found to be about 10-15 %. The calculations almost perfectly reproduce most of the experimental resonance features found in the present measurement including READI. They also agree with the direct-ionization converged close-coupling results of I. Bray [J. Phys. B 28, L247 (1995)] and the absolute total ionization cross section measurement of K. Rinn et al. [Phys. Rev. A 36, 595 (1987)].

  18. Electron-helium S-wave model benchmark calculations. II. Double ionization, single ionization with excitation, and double excitation

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.

  19. Accurate Cross Sections for Microanalysis.

    PubMed

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V.

  20. Targeted analyte detection by standard addition improves detection limits in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui

    2012-09-18

    Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.

  1. Ionizing radiation, ion transports, and radioresistance of cancer cells

    PubMed Central

    Huber, Stephan M.; Butz, Lena; Stegen, Benjamin; Klumpp, Dominik; Braun, Norbert; Ruth, Peter; Eckert, Franziska

    2013-01-01

    The standard treatment of many tumor entities comprises fractionated radiation therapy which applies ionizing radiation to the tumor-bearing target volume. Ionizing radiation causes double-strand breaks in the DNA backbone that result in cell death if the number of DNA double-strand breaks exceeds the DNA repair capacity of the tumor cell. Ionizing radiation reportedly does not only act on the DNA in the nucleus but also on the plasma membrane. In particular, ionizing radiation-induced modifications of ion channels and transporters have been reported. Importantly, these altered transports seem to contribute to the survival of the irradiated tumor cells. The present review article summarizes our current knowledge on the underlying mechanisms and introduces strategies to radiosensitize tumor cells by targeting plasma membrane ion transports. PMID:23966948

  2. Cross-section and rate formulas for electron-impact ionization, excitation, deexcitation, and total depopulation of excited atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vriens, L.; Smeets, A.H.M.

    1980-09-01

    For electron-induced ionization, excitation, and de-excitation, mainly from excited atomic states, a detailed analysis is presented of the dependence of the cross sections and rate coefficients on electron energy and temperature, and on atomic parameters. A wide energy range is covered, including sudden as well as adiabatic collisions. By combining the available experimental and theoretical information, a set of simple analytical formulas is constructed for the cross sections and rate coefficients of the processes mentioned, for the total depopulation, and for three-body recombination. The formulas account for large deviations from classical and semiclassical scaling, as found for excitation. They agreemore » with experimental data and with the theories in their respective ranges of validity, but have a wider range of validity than the separate theories. The simple analytical form further facilitates the application in plasma modeling.« less

  3. Ion energies in high power impulse magnetron sputtering with and without localized ionization zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuchen; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Tanaka, Koichi

    2015-03-23

    High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.

  4. Laser stripping of hydrogen atoms by direct ionization

    DOE PAGES

    Brunetti, E.; Becker, W.; Bryant, H. C.; ...

    2015-05-08

    Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.

  5. Laser stripping of hydrogen atoms by direct ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunetti, E.; Becker, W.; Bryant, H. C.

    Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.

  6. L -subshell ionization of Ce, Nd, and Lu by 4-10-MeV C ions

    NASA Astrophysics Data System (ADS)

    Lapicki, G.; Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.; Sen, P.; Sarkadi, L.; Trautmann, D.

    2005-08-01

    Ll,Lα,Lβ,Lγ,Lγ1+5,Lγ2+3,Lγ4+4' x-ray production cross sections of Ce58 , Nd60 and Lu71 induced by 4-, 6-, 8-, and 10-MeV carbon ions were measured. For Lu, Lγ2+3 is separated from Lγ2+3+6 after revision of the technique of Datz so that Lγ1+5 was used instead of Lγ1 , the Lγ4+4'/Lγ1+5 ratio was corrected for multiple ionization, and uncertainties in Lγ4+4' were incorporated in the fitting process. L -subshell ionization cross sections were extracted as a weighted average from two combinations of these cross sections, {Lα,Lγ1+5,Lγ2+3} and {Lα,Lγ1+5,Lγ} . It is shown that, to within a few percent, the first of these two combinations results in the identical cross sections as this weighted average. Within 10%, permutations of different sets of single-hole atomic parameters yielded the same ionization cross sections. These cross sections are typically within 15% and at most 35% of the cross sections obtained with atomic parameters that were altered in two different ways for multiple ionization. Extracted subshell and total L -shell ionization cross sections as well as Ce and Nd data of Braziewicz are compared with the ECPSSR theory of Brandt and Lapicki that accounts for the energy-loss (E), Coulomb-deflection (C), perturbed-stationary-state (PSS) and relativistic (R) effects. These measurements are also compared with the ECPSSR theory after its corrections—in a separated and united atom (USA) treatment, and for the intrashell (IS) transitions with the factors of Sarkadi and Mukoyama normalized to match L -shell cross section with the sum of L -subshell cross sections—as well as with the similarly improved semiclassical approximation of Trautmann. For Ce and Nd, the agreement of the extracted ionization cross sections with these theories is poor for L1 and good for L2 , L3 , and total L shell ionization. For the L2 subshell, this agreement is better for Ce and Nd than for Lu. The ECPSSR theory corrected for the USA and IS effects is surprisingly

  7. Observation of two-center interference effects for electron impact ionization of N2

    NASA Astrophysics Data System (ADS)

    Chaluvadi, Hari; Nur Ozer, Zehra; Dogan, Mevlut; Ning, Chuangang; Colgan, James; Madison, Don

    2015-08-01

    In 1966, Cohen and Fano (1966 Phys. Rev. 150 30) suggested that one should be able to observe the equivalent of Young’s double slit interference if the double slits were replaced by a diatomic molecule. This suggestion inspired many experimental and theoretical studies searching for double slit interference effects both for photon and particle ionization of diatomic molecules. These effects turned out to be so small for particle ionization that this work proceeded slowly and evidence for interference effects were only found by looking at cross section ratios. Most of the early particle work concentrated on double differential cross sections for heavy particle scattering and the first evidence for two-center interference for electron-impact triple differential cross section (TDCS) did not appear until 2006 for ionization of H2. Subsequent work has now firmly established that two-center interference effects can be seen in the TDCS for electron-impact ionization of H2. However, in spite of several experimental and theoretical studies, similar effects have not been found for electron-impact ionization of N2. Here we report the first evidence for two-center interference for electron-impact ionization of N2.

  8. Electron capture to the continuum manifestation in fully differential cross sections for ion impact single ionization

    NASA Astrophysics Data System (ADS)

    Ciappina, M. F.; Fojón, O. A.; Rivarola, R. D.

    2018-04-01

    We present theoretical calculations of single ionization of He atoms by protons and multiply charged ions. The kinematical conditions are deliberately chosen in such a way that the ejected electron velocity matches the projectile impact velocity. The computed fully differential cross sections (FDCS) in the scattering plane using the continuum-distorted wave-eikonal initial state show a distinct peaked structure for a polar electron emission angle θ k = 0°. This element is absent when a first order theory is employed. Consequently, we can argue that this peak is a clear manifestation of a three-body effect, not observed before in FDCS. We discuss a possible interpretation of this new feature.

  9. Vanadium fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser–solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-09-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmerimore » et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)« less

  10. Gadolinium-148 and other spallation production cross section measurements for accelerator target facilities

    NASA Astrophysics Data System (ADS)

    Kelley, Karen Corzine

    At the Los Alamos Neutron Science Center accelerator complex, protons are accelerated to 800 MeV and directed to two tungsten targets, Target 4 at the Weapons Neutron Research facility and the 1L target at the Lujan Center. The Department of Energy requires hazard classification analyses to be performed on these targets and places limits on certain radionuclide inventories in the targets to avoid characterizing the facilities as "nuclear facilities." Gadolinium-148 is a radionuclide created from the spallation of tungsten. Allowed isotopic inventories are particularly low for this isotope because it is an alpha-particle emitter with a 75-year half-life. The activity level of Gadolinium-148 is low, but it encompasses almost two-thirds of the total dose burden for the two tungsten targets based on present yield estimates. From a hazard classification standpoint, this severely limits the lifetime of these tungsten targets. The cross section is not well-established experimentally and this is the motivation for measuring the Gadolinium-148 production cross section from tungsten. In a series of experiments at the Weapons Neutron Research facility, Gadolinium-148 production was measured for 600- and 800-MeV protons on tungsten, tantalum, and gold. These experiments used 3 mum thin tungsten, tantalum, and gold foils and 10 mum thin aluminum activation foils. In addition, spallation yields were determined for many short-lived and long-lived spallation products with these foils using gamma and alpha spectroscopy and compared with predictions of the Los Alamos National Laboratory codes CEM2k+GEM2 and MCNPX. The cumulative Gadolinium-148 production cross section measured from tantalum, tungsten, and gold for incident 600-MeV protons were 15.2 +/- 4.0, 8.31 +/- 0.92, and 0.591 +/- 0.155, respectively. The average production cross sections measured at 800 MeV were 28.6 +/- 3.5, 19.4 +/- 1.8, and 3.69 +/- 0.50 for tantalum, tungsten, and gold, respectively. These cumulative

  11. Fragmentation Cross Sections of 290 and 400 MeV/nucleon 12C Beamson Elemental Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, C.; Guetersloh, S.; Heilbronn, L.

    Charge-changing and fragment production cross sections at 0circ have been obtained for interactions of 290 MeV/nucleon and 400MeV/nucleon carbon beams with C, CH2, Al, Cu, Sn, and Pb targets. Thesebeams are relevant to cancer therapy, space radiation, and the productionof radioactive beams. We compare to previously published results using Cand CH2 targets at similar beam energies. Due to ambiguities arising fromthe presence of multiple fragments on many events, previous publicationshave reported only cross sections for B and Be fragments. In this work wehave extracted cross sections for all fragment species, using dataobtained at three distinct values of angular acceptance, supplementedmore » bydata taken with the detector stack placed off the beam axis. A simulationof the experiment with the PHITS Monte Carlo code shows fair agreementwith the data obtained with the large acceptance detectors, but agreementis poor at small acceptance. The measured cross sections are alsocompared to the predictions of the one-dimensional cross section modelsEPAX2 and NUCFRG2; the latter is presently used in NASA's space radiationtransport calculations. Though PHITS and NUCFRG2 reproduce thecharge-changing cross sections with reasonable accuracy, none of themodels is able to accurately predict the fragment cross sections for allfragment species and target materials.« less

  12. Breakup and fusion cross sections of the 6Li nucleus with targets of mass A = 58, 144 and 208

    NASA Astrophysics Data System (ADS)

    Mukeru, B.; Rampho, G. J.; Lekala, M. L.

    2018-04-01

    We use the continuum discretized coupled channels method to investigate the effects of continuum-continuum coupling on the breakup and fusion cross sections of the weakly bound 6Li nucleus with the 58Ni, 144Sm and 208Pb nuclear targets. The cross sections were analyzed at incident energies E cm below, close to and above the Coulomb barrier V B. We found that for the medium and heavy targets, the breakup cross sections are enhanced at energies below the Coulomb barrier (E cm/V B ≤ 0.8) owing to these couplings. For the lighter target, relatively small enhancement of the breakup cross sections appear at energies well below the barrier (E cm/V B ≤ 0.6). At energies E cm/V B > 0.8 for medium and heavy targets, and E cm/V B > 0.6 for the light target, the continuum-continuum couplings substantially suppress the breakup cross sections. On the other hand, the fusion cross sections are enhanced at energies E cm/V B < 1.4, E cm/V B < 1.2 and E cm/V B < 0.8 for the light, medium and heavy target, respectively. The enhancement decreases as the target mass increases. Above the indicated respective energies, these couplings suppress the fusion cross sections. We also compared the breakup and fusion cross sections, and found that below the barrier, the breakup cross sections are more dominant regardless of whether continuum-continuum couplings are included.

  13. Target characterizations for a 14N(p,γ)15O cross section measurement

    NASA Astrophysics Data System (ADS)

    Gyürky, Gy.; Csik, A.; Mátyus, Zs.; Fülöp, Zs.; Halász, Z.; Kiss, G. G.; Szücs, T.; Wagner, L.

    2018-01-01

    The 14N(p,γ)15O reaction controls the rate of CNO cycle hydrogen burning in various astrophysical sites and it is therefore one of the most important reactions in nuclear astrophysics. An experimental program is in progress to measure the 14N(p,γ)15O cross section in a wide energy range using a novel approach. A crucial quantity for the cross section determination is the number of N atoms in the target. In this paper the results of different experiments used for N target characterization are presented.

  14. Triple Differential Cross Sections for Ionization of Laser-Aligned Mg Atoms by electron impact

    NASA Astrophysics Data System (ADS)

    Amami, Sadek; Madison, Don; Nixon, Kate; Murray, Andrew

    2013-09-01

    3DW (3-body distorted wave) triple differential cross sections have been calculated for electron impact ionization of magnesium atoms aligned by lasers. Calculations have been performed for the kinematics of the experiment performed by Kate Nixon and Andrew Murray at Manchester, England [K. L. Nixon and A. J. Murray 2011 Phys. Rev. Lett. 106, 123201]. An incident projectile was produced with energy of 41.91eV, scattered and ejected electrons were detected with equal energies (E1 =E2 =20eV), the scattered projectile was detected at a fixed angle of 30deg, and the ejected electrons were detected at angles ranging between 0circ; - 180circ; . The theoretical 3DW results will be compared with the experimental data. This work is supported by the US National Science Foundation under Grant.No.PHY-1068237.

  15. Analysis of solvent dyes in refined petroleum products by electrospray ionization mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.

    2010-01-01

    Solvent dyes are used to color refined petroleum products to enable differentiation between gasoline, diesel, and jet fuels. Analysis for these dyes in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Flow injection analysis/electrospray ionization/mass spectrometry in both negative and positive mode was used to optimize ionization of ten typical solvent dyes. Samples of hydrocarbon product were analyzed under similar conditions. Positive electrospray ionization produced very complex spectra, which were not suitably specific for targeting only the dyes. Negative electrospray ionization produced simple spectra because aliphatic and aromatic moieties were not ionized. This enabled screening for a target dye in samples of hydrocarbon product from a spill.

  16. Electron impact ionization dynamics of para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Ali, E.; Ning, C. G.; Colgan, J.; Ingólfsson, O.; Madison, D. H.; Brunger, M. J.

    2016-10-01

    Triple differential cross sections (TDCSs) for the electron impact ionization of the unresolved combination of the 4 highest occupied molecular orbitals (4b3g, 5b2u, 1b1g, and 2b3u) of para-benzoquinone are reported. These were obtained in an asymmetric coplanar geometry with the scattered electron being observed at the angles -7.5°, -10.0°, -12.5° and -15.0°. The experimental cross sections are compared to theoretical calculations performed at the molecular 3-body distorted wave level, with a marginal level of agreement between them being found. The character of the ionized orbitals, through calculated momentum profiles, provides some qualitative interpretation for the measured angular distributions of the TDCS.

  17. Population kinetics on K alpha lines of partially ionized Cl atoms.

    PubMed

    Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki

    2002-07-01

    A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.

  18. Target detection portal

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.

    2002-01-01

    A portal apparatus for screening persons or objects for the presence of trace amounts of target substances such as explosives, narcotics, radioactive materials, and certain chemical materials. The portal apparatus can have a one-sided exhaust for an exhaust stream, an interior wall configuration with a concave-shape across a horizontal cross-section for each of two facing sides to result in improved airflow and reduced washout relative to a configuration with substantially flat parallel sides; air curtains to reduce washout; ionizing sprays to collect particles bound by static forces, as well as gas jet nozzles to dislodge particles bound by adhesion to the screened person or object. The portal apparatus can be included in a detection system with a preconcentrator and a detector.

  19. HARP targets pion production cross section and yield measurements: Implications for MiniBooNE neutrino flux

    NASA Astrophysics Data System (ADS)

    Wickremasinghe, Don Athula Abeyarathna

    The prediction of the muon neutrino flux from a 71.0 cm long beryllium target for the MiniBooNE experiment is based on a measured pion production cross section which was taken from a short beryllium target (2.0 cm thick - 5% nuclear interaction length) in the Hadron Production (HARP) experiment at CERN. To verify the extrapolation to our longer target, HARP also measured the pion production from 20.0 cm and 40.0 cm beryllium targets. The measured production yields on targets of 50% and 100% nuclear interaction lengths in the kinematic rage of momentum from 0.75 GeV/c to 6.5 GeV/c and the range of angle from 30 mrad to 210 mrad are presented along with an update of the short target cross sections. The best fitted extended Sanford-Wang (SW) model parameterization for updated short beryllium target positive pion production cross section is presented. Yield measurements for all three targets are also compared with that from the Monte Carlo predictions in the MiniBooNE experiment for different SW parameterization. The comparisons of muon neutrino flux predictions for updated SW model is presented.

  20. The investigation of time dependent flame structure by ionization probes

    NASA Technical Reports Server (NTRS)

    Ventura, J. M. P.; Suzuki, T.; Yule, A. J.; Ralph, S.; Chigier, N. A.

    1980-01-01

    Ionization probes were used to measure mean ionization current and frequency spectra, auto-correlations and cross-correlations in jet flames with variation in the initial Reynolds numbers and equivalence ratios. Special attention was paid to the transitional region between the burner exit plane and the plane of onset of turbulence.

  1. Projectile-charge dependence of the differential cross section for the ionization of argon atoms at 1 keV

    NASA Astrophysics Data System (ADS)

    Purohit, G.; Kato, D.

    2017-10-01

    The single ionization triple differential cross sections (TDCS) of the Ar (3 p ) atoms are reported for the positron and electron impact at 1 keV. The calculated cross sections have been obtained using distorted wave Born approximation (DWBA) approach for the average ejected electron energies 13 and 26 eV at different momentum transfer conditions. The present attempt is helpful to probe the information on the TDCS trends for the particle-matter and antiparticle-matter interactions and to analyze the recent measurements [Phy. Rev. A 95, 062703 (2017), 10.1103/PhysRevA.95.062703]. The binary electron emission is enhanced while the recoil emission is decreased for the positron impact relative to the electron impact in the DWBA calculation results. Systematic shift of peaks, shifting away from the momentum transfer direction for positron impact and shifting towards each other for electron impact, is observed with increasing momentum transfer.

  2. Comparison of experimental and theoretical electron-impact-ionization triple-differential cross sections for ethane

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don

    2015-10-01

    We have recently examined electron-impact ionization of molecules that have one large atom at the center, surrounded by H nuclei (H2O , N H3 , C H4 ). All of these molecules have ten electrons; however, they vary in their molecular symmetry. We found that the triple-differential cross sections (TDCSs) for the highest occupied molecular orbitals (HOMOs) were similar, as was the character of the HOMO orbitals which had a p -type "peanut" shape. In this work, we examine ethane (C2H6 ) which is a molecule that has two large atoms surrounded by H nuclei, so that its HOMO has a double-peanut shape. The experiment was performed using a coplanar symmetric geometry (equal final-state energies and angles). We find the TDCS for ethane is similar to the single-center molecules at higher energies, and is similar to a diatomic molecule at lower energies.

  3. Theoretical and Experimental Triple Differential Cross Sections for Electron Impact Ionization of SF6

    NASA Astrophysics Data System (ADS)

    Chaluvadi, Hari; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don

    2014-10-01

    Experimental and theoretical Triply Differential Cross Sections (TDCS) will be presented for electron-impact ionization of sulfur hexafluoride (SF6) for the molecular orbital 1t1g. M3DW (molecular 3-body distorted wave) results will be compared with experiment for coplanar geometry and for perpendicular plane geometry (a plane which is perpendicular to the incident beam direction). In both cases, the final state electron energies and observation angles are symmetric and the final state electron energies range from 5 eV to 40 eV. It will be shown that there is a large difference between using the OAMO (orientation averaged molecular orbital) approximation and the proper average over all orientations and also that the proper averaged results are in much better agreement with experiment. Work supported by NSF under Grant Number PHY-1068237. Computational work was performed with Institutional resources made available through Los Alamos National Laboratory.

  4. Small target detection using bilateral filter and temporal cross product in infrared images

    NASA Astrophysics Data System (ADS)

    Bae, Tae-Wuk

    2011-09-01

    We introduce a spatial and temporal target detection method using spatial bilateral filter (BF) and temporal cross product (TCP) of temporal pixels in infrared (IR) image sequences. At first, the TCP is presented to extract the characteristics of temporal pixels by using temporal profile in respective spatial coordinates of pixels. The TCP represents the cross product values by the gray level distance vector of a current temporal pixel and the adjacent temporal pixel, as well as the horizontal distance vector of the current temporal pixel and a temporal pixel corresponding to potential target center. The summation of TCP values of temporal pixels in spatial coordinates makes the temporal target image (TTI), which represents the temporal target information of temporal pixels in spatial coordinates. And then the proposed BF filter is used to extract the spatial target information. In order to predict background without targets, the proposed BF filter uses standard deviations obtained by an exponential mapping of the TCP value corresponding to the coordinate of a pixel processed spatially. The spatial target image (STI) is made by subtracting the predicted image from the original image. Thus, the spatial and temporal target image (STTI) is achieved by multiplying the STI and the TTI, and then targets finally are detected in STTI. In experimental result, the receiver operating characteristics (ROC) curves were computed experimentally to compare the objective performance. From the results, the proposed algorithm shows better discrimination of target and clutters and lower false alarm rates than the existing target detection methods.

  5. HARP targets pion production cross section and yield measurements. Implications for MiniBooNE neutrino flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wickremasinghe, Don Athula Abeyarathna

    2015-07-01

    The prediction of the muon neutrino flux from a 71.0 cm long beryllium target for the MiniBooNE experiment is based on a measured pion production cross section which was taken from a short beryllium target (2.0 cm thick - 5% nuclear interaction length) in the Hadron Production (HARP) experiment at CERN. To verify the extrapolation to our longer target, HARP also measured the pion production from 20.0 cm and 40.0 cm beryllium targets. The measured production yields, d 2N π± (p; θ )=dpd Ω, on targets of 50% and 100% nuclear interaction lengths in the kinematic rage of momentum frommore » 0.75 GeV/c to 6.5 GeV/c and the range of angle from 30 mrad to 210 mrad are presented along with an update of the short target cross sections. The best fitted extended Sanford-Wang (SW) model parameterization for updated short beryllium target π + production cross section is presented. Yield measurements for all three targets are also compared with that from the Monte Carlo predictions in the MiniBooNE experiment for different SW parameterization. The comparisons of v μ flux predictions for updated SW model is presented.« less

  6. Method Development for Binding Media Analysis in Painting Cross-Sections by Desorption Electrospray Ionization-Mass Spectrometry (DESI-MS).

    PubMed

    Watts, Kristen; Lagalante, Anthony

    2018-06-06

    Art conservation science is in need of a relatively nondestructive way of rapidly identifying the binding media within a painting cross-section and isolating binding media to specific layers within the cross-section. Knowledge of the stratigraphy of cross-sections can be helpful for removing possible unoriginal paint layers on the artistic work. Desorption electrospray ionization-mass spectrometry (DESI-MS) was used in ambient mode to study cross-sections from mock-up layered paint samples and samples from a 17th century baroque painting. The DESI spray was raster scanned perpendicular to the cross-section layers to maximize lateral resolution then analyzed with a triple quadrupole mass analyzer in linear ion trap mode. From these scans, isobaric mass maps were created to map the locations of masses indicative of particular binding media onto the cross-sections. Line paint-outs of pigments in different binding media showed specific and unique ions to distinguish between the modern acrylic media and the lipid containing binding media. This included: OP (EO) 9 surfactant in positive ESI for acrylic (m/z 621), and oleic (m/z 281), stearic (m/z 283), and azelaic (m/z 187) acids in negative ESI for oil and egg tempera. DESI-MS maps of mock-up cross-sections of layered pigmented binding media showed correlation between these ions and the layers with a spatial resolution of 100 μm. DESI-MS is effective in monitoring binding media within an intact painting cross-section via mass spectrometric methods. This includes distinguishing between lipid-containing and modern binding materials present in a known mockup cross section matrix as well as identifying lipid binding media in a 17th century baroque era painting. This article is protected by copyright. All rights reserved.

  7. Comparison of 3-D Multi-Lag Cross-Correlation and Speckle Brightness Aberration Correction Algorithms on Static and Moving Targets

    PubMed Central

    Ivancevich, Nikolas M.; Dahl, Jeremy J.; Smith, Stephen W.

    2010-01-01

    Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively. PMID:19942503

  8. Comparison of 3-D multi-lag cross- correlation and speckle brightness aberration correction algorithms on static and moving targets.

    PubMed

    Ivancevich, Nikolas M; Dahl, Jeremy J; Smith, Stephen W

    2009-10-01

    Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively.

  9. Triple differential cross sections for the electron-impact ionization of H{sub 2} molecules for equal and unequal outgoing electron energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Al-Hagan, O.; Madison, D. H.

    A comprehensive theoretical and experimental investigation of the triple differential cross sections arising from the electron-impact ionization of molecular hydrogen is made, at an incident electron energy of 35.4 eV, for cases where the outgoing electrons have equal and unequal energies, and for a range of experimental geometries. Generally, good agreement is found between two theoretical approaches and experiment, with the best agreement arising for intermediate geometries with large gun angles and for the perpendicular geometry.

  10. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  11. Observation of increased space-charge limited thermionic electron emission current by neutral gas ionization in a weakly-ionized deuterium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollmann, E. M.; Yu, J. H.; Doerner, R. P.

    2015-09-14

    The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.

  12. Kinematically complete study of low-energy electron-impact ionization of argon: Internormalized cross sections in three-dimensional kinematics

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Amami, Sadek; Zatsarinny, Oleg; Pflüger, Thomas; Weyland, Marvin; Dorn, Alexander; Madison, Don; Bartschat, Klaus

    2016-06-01

    As a further test of advanced theoretical methods to describe electron-impact single-ionization processes in complex atomic targets, we extended our recent work on Ne (2 p ) ionization [X. Ren, S. Amami, O. Zatsarinny, T. Pflüger, M. Weyland, W. Y. Baek, H. Rabus, K. Bartschat, D. Madison, and A. Dorn, Phys. Rev. A 91, 032707 (2015), 10.1103/PhysRevA.91.032707] to Ar (3 p ) ionization at the relatively low incident energy of E0=66 eV. The experimental data were obtained with a reaction microscope, which can cover nearly the entire 4 π solid angle for the secondary electron emission. We present experimental data for detection angles of 10, 15, and 20∘ for the faster of the two outgoing electrons as a function of the detection angle of the secondary electron with energies of 3, 5, and 10 eV, respectively. Comparison with theoretical predictions from a B -spline R -matrix (BSR) with pseudostates approach and a three-body distorted-wave (3DW) approach, for detection of the secondary electron in three orthogonal planes as well as the entire solid angle, shows overall satisfactory agreement between experiment and the BSR results, whereas the 3DW approach faces difficulties in predicting some of the details of the angular distributions. These findings are different from our earlier work on Ne (2 p ), where both the BSR and 3DW approaches yielded comparable levels of agreement with the experimental data.

  13. Indirect contributions to electron-impact ionization of Li+ (1 s 2 s S31 ) ions: Role of intermediate double-K -vacancy states

    NASA Astrophysics Data System (ADS)

    Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.

    2018-02-01

    Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.

  14. Ionization balance of impurities in turbulent scrape-off layer plasmas I: local ionization-recombination equilibrium

    NASA Astrophysics Data System (ADS)

    Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.

    2015-12-01

    In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.

  15. Calculation method for laser radar cross sections of rotationally symmetric targets.

    PubMed

    Cao, Yunhua; Du, Yongzhi; Bai, Lu; Wu, Zhensen; Li, Haiying; Li, Yanhui

    2017-07-01

    The laser radar cross section (LRCS) is a key parameter in the study of target scattering characteristics. In this paper, a practical method for calculating LRCSs of rotationally symmetric targets is presented. Monostatic LRCSs for four kinds of rotationally symmetric targets (cone, rotating ellipsoid, super ellipsoid, and blunt cone) are calculated, and the results verify the feasibility of the method. Compared with the results for the triangular patch method, the correctness of the method is verified, and several advantages of the method are highlighted. For instance, the method does not require geometric modeling and patch discretization. The method uses a generatrix model and double integral, and its calculation is concise and accurate. This work provides a theory analysis for the rapid calculation of LRCS for common basic targets.

  16. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms themore » gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.« less

  17. Following electron impact excitation of single (N, O, F, Ne, Na, Mg, Al, Si) atom L subshells ionization cross section calculations by using Lotz's equation

    NASA Astrophysics Data System (ADS)

    Aydinol, Mahmut

    2017-02-01

    L shell and L subshells ionization cross sections σL and σLi (i = 1, 2, 3) following electron impact on (N,O, F, Ne, Na, Mg, Al, Si) atoms calculated. By using Lotz' equation for nonrelativistic cases in Matlab σL and σLi cross section values obtained for ten electron impact(Eo) values in the range of ELiionization threshold energy), σL and σLi are increasing rapidly with Eo. For a fixed Eo value(≈3.ELi), while Z value increases from 7≤Z≤14 σL and σLi decrease. Results show that for smaller values of Eo(close to ELi), x-ray yields formation of Li(i=1,2,3) subshells decreases while competing other yields are increase. Results may help to understand similar findings which obtained from other electron impact excitation of L shell σL and subshells σLi studies for single atoms.

  18. Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Foram M., E-mail: foram29@gmail.com; Joshipura, K. N., E-mail: knjoshipura22@gmail.com; Chaudhari, Asha S., E-mail: ashaschaudhari@gmail.com

    2016-05-06

    Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Q{sub ion} and the summed-electronic excitation cross section ΣQ{sub exc} in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incidentmore » electron energy along with available comparisons.« less

  19. Directed Field Ionization: A Genetic Algorithm for Evolving Electric Field Pulses

    NASA Astrophysics Data System (ADS)

    Kang, Xinyue; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-04-01

    When an ionizing electric field pulse is applied to a Rydberg atom, the electron's amplitude traverses many avoided crossings among the Stark levels as the field increases. The resulting superposition determines the shape of the time resolved field ionization spectrum at a detector. An engineered electric field pulse that sweeps back and forth through avoided crossings can control the phase evolution so as to determine the electron's path through the Stark map. In the region of n = 35 in rubidium there are hundreds of potential avoided crossings; this yields a large space of possible pulses. We use a genetic algorithm to search this space and evolve electric field pulses to direct the ionization of the Rydberg electron in rubidium. We present the algorithm along with a comparison of simulated and experimental results. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.

  20. Study of photon emission by electron capture during solar nuclei acceleration, 1: Temperature-dependent cross section for charge changing processes

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.

    1985-01-01

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.

  1. Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee

    2017-05-01

    The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.

  2. Correlation-driven charge migration following double ionization and attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hollstein, Maximilian; Santra, Robin; Pfannkuche, Daniela

    2017-05-01

    We theoretically investigate charge migration following prompt double ionization. Thereby, we extend the concept of correlation-driven charge migration, which was introduced by Cederbaum and coworkers for single ionization [Chem. Phys. Lett. 307, 205 (1999), 10.1016/S0009-2614(99)00508-4], to doubly ionized molecules. This allows us to demonstrate that compared to singly ionized molecules, in multiply ionized molecules, electron dynamics originating from electronic relaxation and correlation are particularly prominent. In addition, we also discuss how these correlation-driven electron dynamics might be evidenced and traced experimentally using attosecond transient absorption spectroscopy. For this purpose, we determine the time-resolved absorption cross section and find that the correlated electron dynamics discussed are reflected in it with exceptionally great detail. Strikingly, we find that features in the cross section can be traced back to electron hole populations and time-dependent partial charges and hence, can be interpreted with surprising ease. By taking advantage of element-specific core-to-valence transitions even atomic spatial resolution can be achieved. Thus, with the theoretical considerations presented, not only do we predict particularly diverse and correlated electron dynamics in molecules to follow prompt multiple ionization but we also identify a promising route towards their experimental investigation.

  3. Physical parameters for proton induced K-, L-, and M-shell ionization processes

    NASA Astrophysics Data System (ADS)

    Shehla; Puri, Sanjiv

    2016-10-01

    The proton induced atomic inner-shell ionization processes comprising radiative and non-radiative transitions are characterized by physical parameters, namely, the proton ionization cross sections, X-ray emission rates, fluorescence yields and Coster-Kronig (CK) transition probabilities. These parameters are required to calculate the K/L/M shell X-ray production (XRP) cross sections and relative X-ray intensity ratios, which in turn are required for different analytical applications. The current status of different physical parameters is presented in this report for use in various applications.

  4. Experimental and theoretical triple differential cross sections for electron-impact ionization of Ar (3p) for equal energy final state electrons

    NASA Astrophysics Data System (ADS)

    Amami, Sadek; Ozer, Zehra N.; Dogan, Mevlut; Yavuz, Murat; Varol, Onur; Madison, Don

    2016-09-01

    There have been several studies of electron-impact ionization of inert gases for asymmetric final state energy sharing and normally one electron has an energy significantly higher than the other. However, there have been relatively few studies examining equal energy final state electrons. Here we report experimental and theoretical triple differential cross sections for electron impact ionization of Ar (3p) for equal energy sharing of the outgoing electrons. Previous experimental results combined with some new measurements are compared with distorted wave born approximation (DWBA) results, DWBA results using the Ward-Macek (WM) approximation for the post collision interaction (PCI), and three-body distorted wave (3DW) which includes PCI without approximation. The results show that it is crucially important to include PCI in the calculation particularly for lower energies and that the WM approximation is valid only for high energies. The 3DW, on the other hand, is in reasonably good agreement with data down to fairly low energies.

  5. Evaluation of Waveform Structure Features on Time Domain Target Recognition under Cross Polarization

    NASA Astrophysics Data System (ADS)

    Selver, M. A.; Seçmen, M.; Zoral, E. Y.

    2016-08-01

    Classification of aircraft targets from scattered electromagnetic waves is a challenging application, which suffers from aspect angle dependency. In order to eliminate the adverse effects of aspect angle, various strategies were developed including the techniques that rely on extraction of several features and design of suitable classification systems to process them. Recently, a hierarchical method, which uses features that take advantage of waveform structure of the scattered signals, is introduced and shown to have effective results. However, this approach has been applied to the special cases that consider only a single planar component of electric field that cause no-cross polarization at the observation point. In this study, two small scale aircraft models, Boeing-747 and DC-10, are selected as the targets and various polarizations are used to analyse the cross-polarization effects on system performance of the aforementioned method. The results reveal the advantages and the shortcomings of using waveform structures in time-domain target identification.

  6. Strategic Directions in Heliophysics Research Related to Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2010-01-01

    In 2009, the Heliophysics Division of NASA published its triennial roadmap entitled "Heliophysics; the solar and space physics of a new era." In this document contains a science priority that is recommended that will serve as input into the recently initiated NRC Heliophysics Decadal Survey. The 2009 roadmap includes several science targets recommendations that are directly related to weakly ionized plasmas, including on entitled "Ion-Neutral Coupling in the Atmosphere." This talk will be a brief overview of the roadmap with particular focus on the science targets relevant to weakly ionized plasmas.

  7. TNF-induced target cell killing by CTL activated through cross-presentation.

    PubMed

    Wohlleber, Dirk; Kashkar, Hamid; Gärtner, Katja; Frings, Marianne K; Odenthal, Margarete; Hegenbarth, Silke; Börner, Carolin; Arnold, Bernd; Hämmerling, Günter; Nieswandt, Bernd; van Rooijen, Nico; Limmer, Andreas; Cederbrant, Karin; Heikenwalder, Mathias; Pasparakis, Manolis; Protzer, Ulrike; Dienes, Hans-Peter; Kurts, Christian; Krönke, Martin; Knolle, Percy A

    2012-09-27

    Viruses can escape cytotoxic T cell (CTL) immunity by avoiding presentation of viral components via endogenous MHC class I antigen presentation in infected cells. Cross-priming of viral antigens circumvents such immune escape by allowing noninfected dendritic cells to activate virus-specific CTLs, but they remain ineffective against infected cells in which immune escape is functional. Here, we show that cross-presentation of antigen released from adenovirus-infected hepatocytes by liver sinusoidal endothelial cells stimulated cross-primed effector CTLs to release tumor necrosis factor (TNF), which killed virus-infected hepatocytes through caspase activation. TNF receptor signaling specifically eliminated infected hepatocytes that showed impaired anti-apoptotic defense. Thus, CTL immune surveillance against infection relies on two similarly important but distinct effector functions that are both MHC restricted, requiring either direct antigen recognition on target cells and canonical CTL effector function or cross-presentation and a noncanonical effector function mediated by TNF. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  8. 'Petite' mutagenesis and mitotic crossing-over in yeast by DNA-targeted alkylating agents.

    PubMed

    Ferguson, L R; Turner, P M; Gourdie, T A; Valu, K K; Denny, W A

    1989-12-01

    Although the biological properties (cytotoxicity, mutagenicity and carcinogenicity) of alkylating agents result from their bonding interactions with DNA, such compounds generally do not show any special binding affinity for DNA. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity have been designed as DNA-directed alkylating agents. We have considered whether such DNA targeting has an effect on mutagenic properties by evaluating this series of drugs in comparison with their untargeted counterparts for toxic, recombinogenic and mutagenic properties in Saccharomyces cerevisiae strain D5. The simple untargeted aniline mustards are effective inducers of mitotic crossing-over in this strain, but resemble other reported alkylators in being rather inefficient inducers of the "petite" or mitochondrial mutation in yeast. However, the majority of the DNA-targeted mustards were very efficient petite mutagens, while showing little evidence of mitotic crossing-over or other nuclear events. The 100% conversion of cells into petites and the lack of a differential between growing and non-growing cells are similar to the effects of the well characterised mitochondrial mutagen ethidium bromide. These data suggest very different modes of action between the DNA-targeted alkylators and their non-targeted counterparts.

  9. Direct targeting of human plasma for matrix-assisted laser desorption/ionization and analysis of plasma proteins by time of flight-mass spectrometry.

    PubMed

    Jin, Ya; Manabe, Takashi

    2005-07-01

    A method to analyze human plasma proteins without fractionation, directly applying a plasma-matrix mixture on the target plate of a matrix-assisted laser desorption/ionization-time of flight-mass spectrometer (MALDI-TOF-MS), has been described. Peaks of ionized plasma proteins could not be detected applying a mixture of an undiluted plasma sample and a matrix solution, but they appeared when the plasma was diluted before mixing with the matrix. Tenfold diluted plasma provided well-resolved protein peaks in the m/z range from 4000 to 30,000. The addition of a simple post-crystallization washing procedure performed on the target plate further improved the quality of mass spectra. We numbered 58 peaks in the range of 4-160 kDa and 32 out of which were assigned to the plasma protein species which have been reported. Especially high sensitivity and resolution were obtained in the region < 30 kDa, where multiple isoforms of apolipoprotein A-I, apolipoprotein A-II, apolipoprotein C-I, apolipoprotein C-II, apolipoprotein C-III, and transthyretin could be assigned. Various post-translational modifications are involved in the isoforms, e.g., proteolytic cleavage, glycosylation and chemical modifications. This method will become complementary with the present electrophoretic techniques, especially for the analysis of low-molecular-mass proteins.

  10. Long-term biological effects induced by ionizing radiation--implications for dose mediated risk.

    PubMed

    Miron, S D; Astărăstoae, V

    2014-01-01

    Ionizing radiations are considered to be risk agents that are responsible for the effects on interaction with living matter. The occurring biological effects are due to various factors such as: dose, type of radiation, exposure time, type of biological tissue, health condition and the age of the person exposed. The mechanisms involved in the direct modifications of nuclear DNA and mitochondrial DNA are reviewed. Classical target theory of energy deposition in the nucleus that causes DNA damages, in particular DNA double-strand breaks and that explanation of the biological consequences of ionizing radiation exposure is a paradigm in radiobiology. Recent experimental evidences have demonstrated the existence of a molecular mechanism that explains the non-targeted effects of ionizing radiation exposure. Among these novel data, genomic instability and a variety of bystander effects are discussed here. Those bystander effects of ionizing radiation are fulfilled by cellular communication systems that give rise to non-targeted effects in the neighboring non irradiated cells. This paper provides also a commentary on the synergistic effects induced by the co-exposures to ionizing radiation and various physical agents such as electromagnetic fields and the co-exposures to ionizing radiation and chemical environmental contaminants such as metals. The biological effects of multiple stressors on genomic instability and bystander effects are also discussed. Moreover, a brief presentation of the methods used to characterize cyto- and genotoxic damages is offered.

  11. Electron impact fragmentation of thymine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Mahon, Francis; Barrett, Gerard; Gradziel, Marcin L.

    2014-06-01

    We have measured mass spectra for positive ions for low-energy electron impact on thymine using a reflectron time-of-flight mass spectrometer. Using computer controlled data acquisition, mass spectra have been acquired for electron impact energies up to 100 eV in steps of 0.5 eV. Ion yield curves for most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. The ion yield curves have been normalized by comparing the sum of the ion yields to the average of calculated total ionization cross sections. Appearance energies have been determined. The nearly equal appearance energies of 83 u and 55 u observed in the present work strongly indicate that near threshold the 55 u ion is formed directly by the breakage of two bonds in the ring, rather than from a successive loss of HNCO and CO from the parent ion. Likewise 54 u is not formed by CO loss from 82 u. The appearance energies are in a number of cases consistent with the loss of one or more hydrogen atoms from a heavier fragment, but 70 u is not formed by hydrogen loss from 71 u.

  12. Electron ionization of SiCl4

    NASA Astrophysics Data System (ADS)

    King, Simon J.; Price, Stephen D.

    2011-02-01

    Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl4, in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl4. For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl4. Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl2+ fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl42+. The lowest energy dicationic precursor state, leading to SiCl3+ + Cl+ formation, lies 27.4 ± 0.3 eV above the ground state of SiCl4 and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).

  13. Electron ionization of SiCl4.

    PubMed

    King, Simon J; Price, Stephen D

    2011-02-21

    Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).

  14. Copper fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser-solid experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmeri, P., E-mail: patrick.palmeri@umons.ac.be; Quinet, P., E-mail: pascal.quinet@umons.ac.be; IPNAS, Université de Liège, B-4000 Liège

    2015-03-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII crossmore » sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)« less

  15. Deuterium target data for precision neutrino-nucleus cross sections

    DOE PAGES

    Meyer, Aaron S.; Betancourt, Minerba; Gran, Richard; ...

    2016-06-23

    Amplitudes derived from scattering data on elementary targets are basic inputs to neutrino-nucleus cross section predictions. A prominent example is the isovector axial nucleon form factor, F A(q 2), which controls charged current signal processes at accelerator-based neutrino oscillation experiments. Previous extractions of F A from neutrino-deuteron scattering data rely on a dipole shape assumption that introduces an unquantified error. A new analysis of world data for neutrino-deuteron scattering is performed using a model-independent, and systematically improvable, representation of F A. A complete error budget for the nucleon isovector axial radius leads to r A 2 = 0.46(22)fm 2, withmore » a much larger uncertainty than determined in the original analyses. The quasielastic neutrino-neutron cross section is determined as σ(ν μn → μ -p)| Ev=1 GeV = 10.1(0.9)×10 -39cm 2. The propagation of nucleon-level constraints and uncertainties to nuclear cross sections is illustrated using MINERvA data and the GENIE event generator. Furthermore, these techniques can be readily extended to other amplitudes and processes.« less

  16. Theoretical study of (e, 2e) process of atomic and molecular targets*

    NASA Astrophysics Data System (ADS)

    Houamer, Salim; Chinoune, Mehdi; Cappello, Claude Dal

    2017-01-01

    Triple differential ionization cross sections (TDCSs) by electron impact are calculated for some atomic and molecular targets by using several models where Post Collisional Interaction (PCI) is taken in account. We also investigate the effect of the short range potential and describe the ejected electron either by a Coulomb wave or by a distorted wave. Significant differences are observed between these models. A better agreement with experimental data is achieved when the short range potential and distortion effects are included.

  17. Electron Impact Ionization of Heavier Ions including relativistic effects

    NASA Astrophysics Data System (ADS)

    Saha, B. C.; Haque, A. K. F.; Uddin, M. A.; Basak, A. K.

    2006-11-01

    The demands of the electron impact ionization cross sections in diverse fields are enormous. And this is hard to fulfill either by experimental or ab initio calculations. So various analytical and semi-classical models are applied for a rapid generation of ionization cross sections accurately. We have applied a modified version [1] of the Bell et. al. equations [2] including both the ionic and relativistic corrections. In this report we show how to generalize the MBELL parameters for treating the orbital quantum numbers nl dependency; the accuracy of the procedure is tested by evaluating cross sections for various species and energies. Detail results will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 052703 (2006). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).

  18. Electron Impact Ionization of Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Saha, B. C.; Basak, A. K.

    2006-10-01

    Electron impact ionization cross sections are at the heart of many active fields ranging from astro- to medical- physics. These applications require cross sections for a wide range of species as a function of projectile energies. This demand, however, is very hard to fulfill neither by experiments nor ab initio calculations. Various analytical and semi-classical models are commonly used to generate such a vast ionization cross sections. We recently applied a modified version [1] of the Bell et. al. equations [2] including both the ionic and relativistic corrections. We will show in this presentation how to generalize the much-needed MBELL parameters for treating the orbital quantum numbers nl dependency; comparing our results with experimental findings tests the accuracy of this procedure; very good agreements are obtained even in relativistic energies. Details will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 052703 (2006). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).

  19. Dissociative Ionization of Aromatic and Heterocyclic Molecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.

    2003-01-01

    Space radiation poses a major health hazard to humans in space flight. The high-energy charged particles in space radiation ranging from protons to high atomic number, high-energy (HZE) particles, and the secondary species they produce, attack DNA, cells, and tissues. Of the potential hazards, long-term health effects such as carcinogenesis are likely linked to the DNA lesions caused by secondary electrons in the 1 - 30 eV range. Dissociative ionization (DI) is one of the electron collision processes that can damage the DNA, either directly by causing a DNA lesion, or indirectly by producing radicals and cations that attack the DNA. To understand this process, we have developed a theoretical model for DI. Our model makes use of the fact that electron motion is much faster than nuclear motion and assumes DI proceeds through a two-step process. The first step is electron-impact ionization resulting in a particular state of the molecular ion in the geometry of the neutral molecule. In the second step the ion undergoes unimolecular dissociation. Thus the DI cross section sigma(sup DI)(sub a) for channel a is given by sigma(sup DI)(sub a) = sigma(sup I)(sub a) P(sub D) with sigma(sup I)(sub a) the ionization cross section of channel a and P(sub D) the dissociation probability. This model has been applied to study the DI of H2O, NH3, and CH4, with results in good agreement with experiment. The ionization cross section sigma(sup I)(sub a) was calculated using the improved binary encounter-dipole model and the unimolecular dissociation probability P(sub D) obtained by following the minimum energy path determined by the gradients and Hessians of the electronic energy with respect to the nuclear coordinates of the ion. This model is used to study the DI from the low-lying channels of benzene and pyridine to understand the different product formation in aromatic and heterocyclic molecules. DI study of the DNA base thymine is underway. Solvent effects will also be discussed.

  20. Joint passive radar tracking and target classification using radar cross section

    NASA Astrophysics Data System (ADS)

    Herman, Shawn M.

    2004-01-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  1. Joint passive radar tracking and target classification using radar cross section

    NASA Astrophysics Data System (ADS)

    Herman, Shawn M.

    2003-12-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  2. Electron emission from transfer ionization reaction in 30 keV amu‑1 He 2+ on Ar collision

    NASA Astrophysics Data System (ADS)

    Amaya-Tapia, A.; Antillón, A.; Estrada, C. D.

    2018-06-01

    A model is presented that describes the transfer ionization process in H{e}2++Ar collision at a projectile energy of 30 keV amu‑1. It is based on a semiclassical independent-particle close-coupling method that yields a reasonable agreement between calculated and experimental values of the total single-ionization and single-capture cross sections. It is found that the transfer ionization reaction is predominantly carried out through simultaneous capture and ionization, rather than by sequential processes. The transfer-ionization differential cross section in energy that is obtained satisfactorily reproduces the global behavior of the experimental data. Additionally, the probabilities of capture and ionization as function of the impact parameter for H{e}2++A{r}+ and H{e}++A{r}+ collisions are calculated, as far as we know, for the first time. The results suggest that the model captures essential elements that describe the two-electron transfer ionization process and could be applied to systems and processes of two electrons.

  3. Dissociative Ionization of Benzene by Electron Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.

  4. Electron ionization and dissociation of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  5. Theoretical studies of photoexcitation and ionization in H2O

    NASA Technical Reports Server (NTRS)

    Diercksen, G. H. F.; Kraemer, W. P.; Rescigno, T. N.; Bender, C. F.; Mckoy, B. V.; Langhoff, S. R.; Langhoff, P. W.

    1982-01-01

    Theoretical studies using Franck-Condon and static-exchange approximations are reported for the complete dipole excitation and ionization spectrum in H2O, where (1) large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the ground state equilibrium geometry, and (2) previously devised moment-theory techniques are employed in constructing the continuum oscillator-strength densities from the calculated spectra. Comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impact-excitation cross sections, and dipole and synchrotron-radiation studies of partial-channel photoionization cross sections. The calculated partial-channel cross sections are found to be atomic-like, and dominated by 2p-kd components. It is suggested that the latter transition couples with the underlying 1b(1)-kb(1) channel, accounting for a prominent feature in recent synchrotron-radiation measurements.

  6. Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE

    NASA Astrophysics Data System (ADS)

    Kögler, Toni; Beyer, Roland; Junghans, Arnd R.; Schwengner, Ronald; Wagner, Andreas

    2018-03-01

    The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f). The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  7. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observationsmore » for all the targets reported here, especially for the total cross section.« less

  9. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE PAGES

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...

    2017-07-07

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  10. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  11. Multiple outer-shell ionization effect in inner-shell x-ray production by light ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapicki, G.; Mehta, R.; Duggan, J.L.

    1986-11-01

    L-shell x-ray production cross sections by 0.25--2.5-MeV /sub 2//sup 4/He/sup +/ ions in /sub 28/Ni, /sub 29/Cu, /sub 32/Ge, /sub 33/As, /sub 37/Rb, /sub 38/Sr, /sub 39/Y, /sub 40/Zr, and /sub 46/Pd are reported. The data are compared to the first Born approximation and the ECPSSR theory that accounts for the projectile energy loss (E) and Coulomb deflection (C) as well as the perturbed-stationary-state (PSS) and relativistic (R) effects in the treatment of the target L-shell electron. Surprisingly, the first Born approximation appears to converge to the data while the ECPSSR predictions underestimate them in the low-velocity limit. This ismore » explained as the result of improper use of single-hole fluorescence yields. A heuristic formula is proposed to account for multiple ionizations in terms of a classical probability for these phenomena and, after it is applied, the ECPSSR theory of L-shell ionization is found to be in good agreement with the data.« less

  12. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  13. Observation of ionization shifts in K-shell emission from short-pulse laser irradiated micro-dot targets

    NASA Astrophysics Data System (ADS)

    Neumayer, Paul; Kritcher, Andrea; Landen, Otto; Lee, Haeja; Offerman, Dustin; Shipton, Eric; Glenzer, Siegfried

    2006-10-01

    X-ray Thomson scattering using short pulse laser generated intense line radiation has a great potential as a time-resolved temperature and density diagnostic for high-energy density states of matter. We present recent results characterizing Chlorine K-alpha and K-beta line emission obtained by irradiating Saran foil with 50 Terawatt laser pulses from the Callisto laser (Jupiter Laser Facility, Lawrence Livermore National Laboratory). Spectra from front and rear side emission are recorded simultaneously with high resolution HOPG spectrometers employing imaging plate detectors. Conversion efficiencies of laser pulse energy into x-ray line emission of several 10-5 are achieved and are maintained throughout up to 7 J of laser energy, thus constituting a short pulsed narrow band x-ray source of more than 10^11 photons. When the target size is reduced to 50 micrometer (``micro-dot'') a significant blue-shift of up to 5 eV is clearly observed. This can be attributed to higher ionization states of the target atoms indicating achievement of a high-temperature solid density state. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 and LDRD 05-ERI-003.

  14. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isselhardt, Brett H.

    2011-09-01

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/ 238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser inmore » a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.« less

  15. Effects of Ionization in a Laser Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.

    2010-11-04

    Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure.

  16. Instantaneous charge state of uranium projectiles in fully ionized plasmas from energy loss experiments

    NASA Astrophysics Data System (ADS)

    Morales, Roberto; Barriga-Carrasco, Manuel D.; Casas, David

    2017-04-01

    The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann et al. in the 1990s. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, and it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experimental data remain very scarce. Thus, the validity of our charge state model is checked by comparing the theoretical predictions with an energy loss experiment, as the energy loss has a generally quadratic dependence on the projectile charge state. The dielectric formalism has been used to calculate the plasma stopping power including the Brandt-Kitagawa (BK) model to describe the charge distribution of the projectile. In this charge distribution, the instantaneous number of bound electrons instead of the equilibrium number has been taken into account. Comparing our theoretical predictions with experiments, it is shown the necessity of including the instantaneous charge state and the BK charge distribution for a correct energy loss estimation. The results also show that the initial charge state has a strong influence in order to estimate the energy loss of the uranium ions.

  17. Double ionization in R -matrix theory using a two-electron outer region

    NASA Astrophysics Data System (ADS)

    Wragg, Jack; Parker, J. S.; van der Hart, H. W.

    2015-08-01

    We have developed a two-electron outer region for use within R -matrix theory to describe double ionization processes. The capability of this method is demonstrated for single-photon double ionization of He in the photon energy region between 80 and 180 eV. The cross sections are in agreement with established data. The extended R -matrix with time dependence method also provides information on higher-order processes, as demonstrated by the identification of signatures for sequential double ionization processes involving an intermediate He+ state with n =2 .

  18. On ionizing shock waves

    NASA Astrophysics Data System (ADS)

    Kaniel, A.; Igra, O.; Ben-Dor, G.; Mond, M.

    The flow field in the ionizing relaxation zone developed behind a normal shock wave in an electrically neutral, homogeneous, two temperature mixture of thermally ideal gases (molecules, atoms, ions, electrons) was numerically solved. The heat transfer between the electron gas and the other components was taken into account while all the other transport phenomena (molecular, turbulent and radiative) were neglected in the relaxation zone, since it is dominated by inelastic collisions. The threshold cross sections measured by Specht (1981), for excitation of argon by electron collisions, were used. The calculated results show good agreement with the results of the shock tube experiments presented by Glass and Liu (1978), especially in the electron avalanche region. A critical examination was made of the common assumptions regarding the average energy with which electrons are produced by atom-atom collisions and the relative effectiveness of atom-atom collisions (versus electron-atom collisions) in ionizing excited argon.

  19. Use of non-ionizing electromagnetic fields for the treatment of cancer.

    PubMed

    Jimenez, Hugo; Blackman, Carl; Lesser, Glenn; Debinski, Waldemar; Chan, Michael; Sharma, Sambad; Watabe, Kounosuke; Lo, Hui-Wen; Thomas, Alexandra; Godwin, Dwayne; Blackstock, William; Mudry, Albert; Posey, James; O'Connor, Rodney; Brezovich, Ivan; Bonin, Keith; Kim-Shapiro, Daniel; Barbault, Alexandre; Pasche, Boris

    2018-01-01

    Cancer treatment and treatment options are quite limited in circumstances such as when the tumor is inoperable, in brain cancers when the drugs cannot penetrate the blood-brain-barrier, or when there is no tumor-specific target for generation of effective therapeutic antibodies. Despite the fact that electromagnetic fields (EMF) in medicine have been used for therapeutic or diagnostic purposes, the use of non-ionizing EMF for cancer treatment is a new emerging concept. Here we summarize the history of EMF from the 1890's to the novel and new innovative methods that target and treat cancer by non-ionizing radiation.

  20. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1)

    NASA Astrophysics Data System (ADS)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Marchenko, Yaroslav Y.; Parr, Marina A.; Rolich, Valerij I.; Mikhrina, Anastasiya L.; Dobrodumov, Anatolii V.; Pitkin, Emil; Multhoff, Gabriele

    2015-12-01

    The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy for theranostics. Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast negative agents that are used for the detection of tumors with MRI. Herein, we conjugated the Hsp70-specific antibody (cmHsp70.1) which is known to recognize mHsp70 to superparamagnetic iron nanoparticles to assess tumor-specific targeting before and after ionizing irradiation. In vitro experiments demonstrated the selectivity of SPION-cmHsp70.1 conjugates to free and mHsp70 in different tumor cell types (C6 glioblastoma, K562 leukemia, HeLa cervix carcinoma) in a dose-dependent manner. High-resolution MRI (11 T) on T2-weighted images showed the retention of the conjugates in the C6 glioma model. Accumulation of SPION-cmHsp70.1 nanoparticles in the glioma resulted in a nearly 2-fold drop of values in comparison to non-conjugated SPIONs. Biodistribution analysis using NLR-M2 measurements showed a 7-fold increase in the tumor-to-background (normal brain) uptake ratio of SPION-cmHsp70.1 conjugates in glioma-bearing rats in comparison to SPIONs. This accumulation within Hsp70-positive glioma was further enhanced after a single dose (10 Gy) of ionizing radiation. Elevated accumulation of the magnetic conjugates in the tumor due to radiosensitization proves the combination of radiotherapy and application of Hsp70-targeted agents in brain tumors.The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy

  1. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements

    NASA Astrophysics Data System (ADS)

    Darny, T.; Pouvesle, J.-M.; Puech, V.; Douat, C.; Dozias, S.; Robert, Eric

    2017-04-01

    The use of cold atmospheric pressure plasma jets for in vivo treatments implies most of the time plasma interaction with conductive targets. The effect of conductive target contact on the discharge behavior is studied here for a grounded metallic target and compared to the free jet configuration. In this work, realized with a plasma gun, we measured helium metastable HeM (23S1) concentration (by laser absorption spectroscopy) and electric field (EF) longitudinal and radial components (by electro-optic probe). Both diagnostics were temporally and spatially resolved. Mechanisms after ionization front impact on the target surface have been identified. The remnant conductive ionized channel behind the ionization front electrically transiently connects the inner high voltage electrode to the target. Due to impedance mismatching between the ionized channel and the target, a secondary ionization front is initiated and rapidly propagates from the target surface to the inner electrode through this ionized channel. This leads to a greatly enhanced HeM production inside the plasma plume and the capillary. Forward and reverse dynamics occur with further multi reflections of more or less damped ionization fronts between the inner electrode and the target as long as the ionized channel is persisting. This phenomenon is very sensitive to parameters such as target distance and ionized channel conductivity affecting electrical coupling between these two and evidenced using positive or negative voltage polarity and nitrogen admixture. In typical operating conditions for the plasma gun used in this work, it has been found that after the secondary ionization front propagation, when the ionized channel is conductive enough, a glow like discharge occurs with strong conduction current. HeM production and all species excitation, especially reactive ones, are then driven by high voltage pulse evolution. The control of forward and reverse dynamics, impacting on the production of the glow

  2. Use of a microwave diagnostics technique to measure the temperature of an axisymmetric ionized gas flow

    NASA Astrophysics Data System (ADS)

    Tsel'Sov, Iu. G.; Kondrat'ev, A. S.

    1990-12-01

    A method is developed for determining the temperature of an ionized gas on the basis of electron-density sounding. This technique is used to measure the cross-sectional temperature distribution of an axisymmetric ionized gas flow using microwave diagnostics.

  3. ERCS08: A FORTRAN program equipped with a Windows graphics user interface that calculates ECPSSR cross sections for the removal of atomic electrons

    NASA Astrophysics Data System (ADS)

    Horvat, Vladimir

    2009-06-01

    ERCS08 is a program for computing the atomic electron removal cross sections. It is written in FORTRAN in order to make it more portable and easier to customize by a large community of physicists, but it also comes with a separate windows graphics user interface control application ERCS08w that makes it easy to quickly prepare the input file, run the program, as well as view and analyze the output. The calculations are based on the ECPSSR theory for direct (Coulomb) ionization and non-radiative electron capture. With versatility in mind, the program allows for selective inclusion or exclusion of individual contributions to the cross sections from effects such as projectile energy loss, Coulomb deflection of the projectile, perturbation of electron's stationary state (polarization and binding), as well as relativity. This makes it straightforward to assess the importance of each effect in a given collision regime. The control application also makes it easy to setup for calculations in inverse kinematics (i.e. ionization of projectile ions by target atoms or ions). Program summaryProgram title: ERCS08 Catalogue identifier: AECU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12 832 No. of bytes in distributed program, including test data, etc.: 318 420 Distribution format: tar.gz Programming language: Once the input file is prepared (using a text editor or ERCS08w), all the calculations are done in FORTRAN using double precision. Computer: see "Operating system" below Operating system: The main program (ERCS08) can run on any computer equipped with a FORTRAN compiler. Its pre-compiled executable file (supplied) runs under DOS or Windows. The supplied graphics user interface control application (ERCS08w

  4. Neutral Atom Diffusion in a Partially Ionized Prominence Plasma

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly

    2010-01-01

    The support of solar prominences is normally described in terms of a magnetic force on the prominence plasma that balances the solar gravitational force. Because the prominence plasma is only partially ionized. it is necessary to consider in addition the support of the neutral component of the prominence plasma. This support is accomplished through a frictional interaction between the neutral and ionized components of the plasma, and its efficacy depends strongly on the degree of ionization of the plasma. More specifically, the frictional force is proportional to the relative flow of neutral and ion species, and for a sufficiently weakly ionized plasma, this flow must be relatively large to produce a frictional force that balances gravity. A large relative flow, of course, implies significant draining of neutral particles from the prominence. We evaluate the importance of this draining effect for a hydrogen-helium plasma, and consider the observational evidence for cross-field diffusion of neutral prominence material,

  5. M-shell electron capture and direct ionization of gold by 25-MeV carbon and 32-MeV oxygen ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M.C.; McDaniel, F.D.; Duggan, J.L.

    1984-01-01

    M-shell x-ray production cross sections have been measured for thin solid targets of Au for 25 MeV /sup 12/C/sup q+/ (q = 4, 5, 6) and for 32 MeV /sup 16/O/sup q+/ (q = 5, 7, 8). The microscopic cross sections were determined from measurements made with targets ranging in thickness from 0.5 to 100 ..mu..g/cm/sup 2/. For projectiles with one or two K-shell vacancies, the M-shell x-ray production cross sections are found to be enhanced over those by projectiles without a K-shell vacancy. The sum of direct ionization to the continuum (DI) and electron capture (EC) to the L,more » M, N ... shells and EC to the K-shell of the projectile have been extracted from the data. The results are compared to the predictions of first Born theories i.e. PWBA for DI and OBK of Nikolaev for EC and the ECPSSR approach that accounts for energy loss, Coulomb deflection and relativistic effects in the perturbed stationary state theory. 25 references, 3 figures, 1 table.« less

  6. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes

    PubMed Central

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M.

    2016-01-01

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 – 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models. PMID:27212712

  7. VUV photo-processing of PAH cations: quantitative study on the ionization versus fragmentation processes.

    PubMed

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine; Mulas, Giacomo; Sabbah, Hassan; Giuliani, Alexandre; Nahon, Laurent; Martin, Serge; Champeaux, Jean-Philippe; Mayer, Paul M

    2016-05-10

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

  8. First measurement of unpolarized semi-inclusive deep-inelastic scattering cross sections from a He 3 target [First measurement of unpolarized SIDIS cross section from a 3He target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X.; Allada, K.; Aniol, K.

    2017-03-24

    Here, the unpolarized semi-inclusive deep-inelastic scattering (SIDIS) differential cross sections in 3He(e,e'π ±)X have been measured for the first time in Jefferson Lab experiment E06-010 with a 5.9 GeV e – beam on a 3He gas target. The experiment focuses on the valence quark region, covering a kinematic range 0.12 < x bj < 0.45,1 < Q 2 < 4(GeV/c) 2,0.45 < z h < 0.65, and 0.05 < P t < 0.55GeV/c. The extracted SIDIS differential cross sections of π± production are compared with existing phenomenological models while the 3He nucleus approximated as two protons and one neutron inmore » a plane-wave picture, in multidimensional bins. Within the experimental uncertainties, the azimuthal modulations of the cross sections are found to be consistent with zero.« less

  9. Electron impact ionization of metastable 2P-state hydrogen atoms in the coplanar geometry

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Nahar, N.

    Triple differential cross sections (TDCS) for the ionization of metastable 2P-state hydrogen atoms by electrons are calculated for various kinematic conditions in the asymmetric coplanar geometry. In this calculation, the final state is described by a multiple-scattering theory for ionization of hydrogen atoms by electrons. Results show qualitative agreement with the available experimental data and those of other theoretical computational results for ionization of hydrogen atoms from ground state, and our first Born results. There is no available other theoretical results and experimental data for ionization of hydrogen atoms from the 2P state. The present study offers a wide scope for the experimental study for ionization of hydrogen atoms from the metastable 2P state.

  10. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria.

    PubMed

    Natan, Michal; Gutman, Ori; Lavi, Ronit; Margel, Shlomo; Banin, Ehud

    2015-02-24

    Increased resistance of bacteria to disinfection and antimicrobial treatment poses a serious public health threat worldwide. This has prompted the search for agents that can inhibit both bacterial growth and withstand harsh conditions (e.g., high organic loads). In the current study, N-halamine-derivatized cross-linked polymethacrylamide nanoparticles (NPs) were synthesized by copolymerization of the monomer methacrylamide (MAA) and the cross-linker monomer N,N-methylenebis(acrylamide) (MBAA) and were subsequently loaded with oxidative chlorine using sodium hypochlorite (NaOCl). The chlorinated NPs demonstrated remarkable stability and durability to organic reagents and to repetitive bacterial loading cycles as compared with the common disinfectant NaOCl (bleach), which was extremely labile under these conditions. The antibacterial mechanism of the cross-linked P(MAA-MBAA)-Cl NPs was found to involve generation of reactive oxygen species (ROS) only upon exposure to organic media. Importantly, ROS were not generated upon suspension in water, revealing that the mode of action is target-specific. Further, a unique and specific interaction of the chlorinated NPs with Staphylococcus aureus was discovered, whereby these microorganisms were all specifically targeted and marked for destruction. This bacterial encircling was achieved without using a targeting module (e.g., an antibody or a ligand) and represents a highly beneficial, natural property of the P(MAA-MBAA)-Cl nanostructures. Our findings provide insights into the mechanism of action of P(MAA-MBAA)-Cl NPs and demonstrate the superior efficacy of the NPs over bleach (i.e., stability, specificity, and targeting). This work underscores the potential of developing sustainable P(MAA-MBAA)-Cl NP-based devices for inhibiting bacterial colonization and growth.

  11. Plasma rate coefficients for electron-impact ionization of Xeq+ ions (q = 8, …, 17)

    NASA Astrophysics Data System (ADS)

    Borovik, A., Jr.; Gharaibeh, M. F.; Schippers, S.; Müller, A.

    2015-02-01

    Plasma rate coefficients (PRCs) for electron-impact single ionization of ground-state Xeq+ ions (q=8,\\ldots ,17) in the temperature range 2 × 105 - 2 × 107 K have been derived from a combination of experimental cross-section data and results of distorted-wave calculations. For Xe8+ and Xe9+ new measurements were performed and thoroughly analyzed with respect to the contributions from different ionization mechanisms and the effects of long-lived excited states in the parent ion beams that had been employed in the experiments. In the same manner, previously published experimental data for the higher charge states were analyzed to extract the ground-configuration ionization cross sections and to derive the associated PRCs. The resulting temperature-dependent PRC functions were parameterized and the associated parameters are provided in tabular form. With the exception of Xe8+ the absolute uncertainties of the inferred rate coefficients are estimated to be +/- 10%. For Xe8+ the uncertainties are +/- 25% due to the necessary correction for strong metastable-ion contributions to the measured cross sections.

  12. Development of a Photo-Cross-Linkable Diaminoquinazoline Inhibitor for Target Identification in Plasmodium falciparum.

    PubMed

    Lubin, Alexandra S; Rueda-Zubiaurre, Ainoa; Matthews, Holly; Baumann, Hella; Fisher, Fabio R; Morales-Sanfrutos, Julia; Hadavizadeh, Kate S; Nardella, Flore; Tate, Edward W; Baum, Jake; Scherf, Artur; Fuchter, Matthew J

    2018-04-13

    Diaminoquinazolines represent a privileged scaffold for antimalarial discovery, including use as putative Plasmodium histone lysine methyltransferase inhibitors. Despite this, robust evidence for their molecular targets is lacking. Here we report the design and development of a small-molecule photo-cross-linkable probe to investigate the targets of our diaminoquinazoline series. We demonstrate the effectiveness of our designed probe for photoaffinity labeling of Plasmodium lysates and identify similarities between the target profiles of the probe and the representative diaminoquinazoline BIX-01294. Initial pull-down proteomics experiments identified 104 proteins from different classes, many of which are essential, highlighting the suitability of the developed probe as a valuable tool for target identification in Plasmodium falciparum.

  13. Global relative quantification with liquid chromatography-matrix-assisted laser desorption ionization time-of-flight (LC-MALDI-TOF)--cross-validation with LTQ-Orbitrap proves reliability and reveals complementary ionization preferences.

    PubMed

    Hessling, Bernd; Büttner, Knut; Hecker, Michael; Becher, Dörte

    2013-10-01

    Quantitative LC-MALDI is an underrepresented method, especially in large-scale experiments. The additional fractionation step that is needed for most MALDI-TOF-TOF instruments, the comparatively long analysis time, and the very limited number of established software tools for the data analysis render LC-MALDI a niche application for large quantitative analyses beside the widespread LC-electrospray ionization workflows. Here, we used LC-MALDI in a relative quantification analysis of Staphylococcus aureus for the first time on a proteome-wide scale. Samples were analyzed in parallel with an LTQ-Orbitrap, which allowed cross-validation with a well-established workflow. With nearly 850 proteins identified in the cytosolic fraction and quantitative data for more than 550 proteins obtained with the MASCOT Distiller software, we were able to prove that LC-MALDI is able to process highly complex samples. The good correlation of quantities determined via this method and the LTQ-Orbitrap workflow confirmed the high reliability of our LC-MALDI approach for global quantification analysis. Because the existing literature reports differences for MALDI and electrospray ionization preferences and the respective experimental work was limited by technical or methodological constraints, we systematically compared biochemical attributes of peptides identified with either instrument. This genome-wide, comprehensive study revealed biases toward certain peptide properties for both MALDI-TOF-TOF- and LTQ-Orbitrap-based approaches. These biases are based on almost 13,000 peptides and result in a general complementarity of the two approaches that should be exploited in future experiments.

  14. VUV PHOTO-PROCESSING OF PAH CATIONS: QUANTITATIVE STUDY ON THE IONIZATION VERSUS FRAGMENTATION PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Junfeng; Castillo, Sarah Rodriguez; Joblin, Christine

    2016-05-10

    Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7–20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation andmore » photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ∼13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies all species behave similarly; the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ∼18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them; all are in good agreement with theoretical ones, confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.« less

  15. Recoil-ion momentum distributions for transfer ionization in fast proton-He collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, H.T.; Reinhed, P.; Schuch, R.

    2005-07-15

    We present high-luminosity experimental investigations of the transfer ionization (TI:p+He{yields}H{sup 0}+He{sup 2+}+e{sup -}) process in collisions between fast protons and neutral helium atoms in the earlier inaccessibly high-energy range 1.4-5.8 MeV. The protons were stored in the heavy-ion storage and cooler ring CRYRING, where they intersected a narrow supersonic helium gas jet. We discuss the longitudinal recoil-ion momentum distribution, as measured by means of cold-target recoil-ion momentum spectroscopy and find that this distribution splits into two completely separated peaks at the high end of our energy range. These separate contributions are discussed in terms of the earlier proposed Thomas TImore » (TTI) and kinematic TI mechansims. The cross section of the TTI process is found to follow a {sigma}{proportional_to}v{sup -b} dependence with b=10.78{+-}0.27 in accordance with the expected v{sup -11} asymptotic behavior. Further, we discuss the probability for shake-off accompanying electron transfer and the relation of this TI mechanism to photodouble ionization. Finally the influence of the initial-state electron velocity distribution on the TTI process is discussed.« less

  16. An atmospheric pressure ionization source using a high voltage target compared to electrospray ionization for the LC/MS analysis of pharmaceutical compounds.

    PubMed

    Lubin, Arnaud; De Vries, Ronald; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip

    2017-08-05

    The type and design of an ionization source can have a significant influence on the performances of a bioanalytical method. It is, therefore, of high interest to evaluate the performances of newly introduced sources to highlight their benefits and limitations in comparison to other well established sources. In this paper, liquid chromatography - mass spectrometry (LC/MS) performances of a new atmospheric pressure ionization (API) source, commercialized as UniSpray, is evaluated. The dynamic range of 24 pharmaceutical and biological compounds is compared between the new API source and electrospray ionization (ESI) for 3 different mobile phase conditions. Matrix effects are also compared with ESI on a refined selection of 19 pharmaceutical and biological compounds in 4 matrices commonly encountered in bioanalysis. A slightly better dynamic range towards lower concentrations was often observed with the new API source. Matrix effects were quite similar between the two sources with a small, but statistically significant, lower percentage of matrix effects observed for the new API source in plasma and bile in the positive ion mode, and bile in negative ion mode for ESI. Finally, the sensitivity of late eluting compounds could be improved on the new API source by post-column addition of water. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Theory of electron-impact ionization of atoms

    NASA Astrophysics Data System (ADS)

    Kadyrov, A. S.; Mukhamedzhanov, A. M.; Stelbovics, A. T.; Bray, I.

    2004-12-01

    The existing formulations of electron-impact ionization of a hydrogenic target suffer from a number of formal problems including an ambiguous and phase-divergent definition of the ionization amplitude. An alternative formulation of the theory is given. An integral representation for the ionization amplitude which is free of ambiguity and divergence problems is derived and is shown to have four alternative, but equivalent, forms well suited for practical calculations. The extension to amplitudes of all possible scattering processes taking place in an arbitrary three-body system follows. A well-defined conventional post form of the breakup amplitude valid for arbitrary potentials including the long-range Coulomb interaction is given. Practical approaches are based on partial-wave expansions, so the formulation is also recast in terms of partial waves and partial-wave expansions of the asymptotic wave functions are presented. In particular, expansions of the asymptotic forms of the total scattering wave function, developed from both the initial and the final state, for electron-impact ionization of hydrogen are given. Finally, the utility of the present formulation is demonstrated on some well-known model problems.

  18. Chemical protection against ionizing radiation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given tomore » the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.« less

  19. Accuracy of theory for calculating electron impact ionization of molecules

    NASA Astrophysics Data System (ADS)

    Chaluvadi, Hari Hara Kumar

    The study of electron impact single ionization of atoms and molecules has provided valuable information about fundamental collisions. The most detailed information is obtained from triple differential cross sections (TDCS) in which the energy and momentum of all three final state particles are determined. These cross sections are much more difficult for theory since the detailed kinematics of the experiment become important. There are many theoretical approximations for ionization of molecules. One of the successful methods is the molecular 3-body distorted wave (M3DW) approximation. One of the strengths of the DW approximation is that it can be applied for any energy and any size molecule. One of the approximations that has been made to significantly reduce the required computer time is the OAMO (orientation averaged molecular orbital) approximation. In this dissertation, the accuracy of the M3DW-OAMO is tested for different molecules. Surprisingly, the M3DW-OAMO approximation yields reasonably good agreement with experiment for ionization of H2 and N2. On the other hand, the M3DW-OAMO results for ionization of CH4, NH3 and DNA derivative molecules did not agree very well with experiment. Consequently, we proposed the M3DW with a proper average (PA) calculation. In this dissertation, it is shown that the M3DW-PA calculations for CH4 and SF6 are in much better agreement with experimental data than the M3DW-OAMO results.

  20. Electron-impact ionization of atomic hydrogen at incident electron energies of 15.6, 17.6, 25, and 40 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J. G.; James, K. E.; Hughes, M.

    2003-09-01

    Absolute doubly differential cross sections for the electron-impact ionization of atomic hydrogen have been measured from near threshold to intermediate energies. The measurements are calibrated to the well-established, accurate differential cross section for electron-impact excitation of the atomic hydrogen transition H(1{sup 2}S{yields}2{sup 2}S+2{sup 2}P). In these experiments background secondary electrons are suppressed by moving the atomic hydrogen target source to and from the collision region. Measurements cover the incident electron energy range of 14.6-40 eV, for scattering angles of 10 degree sign -120 degree sign and are found to be in very good agreement with the results of the mostmore » advanced theoretical models--the convergent close-coupling model and the exterior complex scaling model.« less

  1. Enhanced Biodegradability of Pharmaceuticals and Personal Care Products by Ionizing Radiation.

    PubMed

    Kim, Hyun Young; Lee, O-Mi; Kim, Tae-Hun; Yu, Seungho

    2015-04-01

    The radiolytic degradation of antibiotic compounds, including lincomycin (LMC), sulfamethoxazole (SMX), and tetracycline (TCN), and the change of biodegradability of the radiation-treated target compounds were evaluated. As a result, the degradation of target antibiotics by hydrolysis, biodegradation, and gamma irradiation showed a compound-dependent manner. However, the biodegradability of all target compounds was enhanced by the gamma irradiation. The enhanced biodegradability after gamma irradiation (2 kGy) followed the trend of LMC (18.89%)ionizing radiation followed by biodegradation. This result indicated that ionizing radiation technology would be useful to enhance biodegradability of the recalcitrant pollutants and can facilitate further degradation of residuals or intermediates in the effluent when discharged into surface water.

  2. Propensity for distinguishing two free electrons with equal energies in electron-impact ionization of helium

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Senftleben, Arne; Pflüger, Thomas; Bartschat, Klaus; Zatsarinny, Oleg; Berakdar, Jamal; Colgan, James; Pindzola, Michael S.; Bray, Igor; Fursa, Dmitry V.; Dorn, Alexander

    2015-11-01

    We report a combined experimental and theoretical study on the electron-impact ionization of helium at E0=70.6 eV and equal energy sharing of the two outgoing electrons (E1=E2=23 eV ), where a double-peak or dip structure in the binary region of the triple differential cross section is observed. The experimental cross sections are compared with results from convergent close-coupling (CCC), B -spline R-matrix-with-pseudostates (BSR), and time-dependent close-coupling (TDCC) calculations, as well as predictions from the dynamic screening three-Coulomb (DS3C) theory. Excellent agreement is obtained between experiment and the nonperturbative CCC, BSR, and TDCC theories, and good agreement is also found for the DS3C model. The data are further analyzed regarding contributions in particular coupling schemes for the spins of either the two outgoing electrons or one of the outgoing electrons and the 1 s electron remaining in the residual ion. While both coupling schemes can be used to explain the observed double-peak structure in the cross section, the second one allows for the isolation of the exchange contribution between the incident projectile and the target. For different observation angles of the two outgoing electrons, we interpret the results as a propensity for distinguishing these two electrons—one being more likely the incident projectile and the other one being more likely ejected from the target.

  3. Electron-Impact Total Ionization Cross Sections of Fluorine Compounds

    NASA Astrophysics Data System (ADS)

    Kim, Y.-K.; Ali, M. A.; Rudd, M. E.

    1997-10-01

    A theoretical method called the Binary-Encounter-Bethe (BEB) model(M. A. Ali, Y.-K. Kim, H. Hwang, N. M. Weinberger, and M. E. Rudd, J. Chem. Phys. 106), 9602 (1997), and references therein. that combines the Mott cross section at low incident energies T and the Bethe cross section at high T was applied to fluorine compounds of interest to plasma processing of semiconductors (CF_4, CHF_3, C_2F_6, C_4F_8, etc.). The theory provides total ioniztion cross sections in an analytic form from the threshold to a few keV in T, making it convenient to use the theory for modeling. The theory is particularly effective for closed-shell molecules. The theoretical cross sections are compared to available experimental data.

  4. Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-02-01

    Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn + ( n = 1000-10,000) to form a mixed cluster. The `tailored beam' has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl- , allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. H-D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1-8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield.

  5. Semi-empirical scaling for ion-atom single charge exchange cross sections in the intermediate velocity regime

    NASA Astrophysics Data System (ADS)

    Friedman, B.; DuCharme, G.

    2017-06-01

    We present a semi-empirical scaling law for non-resonant ion-atom single charge exchange cross sections for collisions with velocities from {10}7 {{t}}{{o}} {10}9 {cm} {{{s}}}-1 and ions with positive charge q< 8. Non-resonant cross sections tend to have a velocity peak at collision velocities v≲ 1 {{a}}{{u}} with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, {{Δ }}E, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters {v}{{m}},{I}{{T}},{Z}{{T}},{and} {Z}{{P}}, where the {Z}{{T},{{P}}} are the target and projectile atomic numbers. For the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.

  6. Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Speier, F.; Elzer, A.

    1982-01-01

    An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.

  7. Resonant enhanced multiphoton ionization studies of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dixit, S. N.; Levin, D.; Mckoy, V.

    1987-01-01

    In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.

  8. Role of the ceramide-signaling pathways in ionizing radiation-induced apoptosis.

    PubMed

    Vit, Jean-Philippe; Rosselli, Filippo

    2003-11-27

    Ionizing radiations (IR) exposure leads to damage on several cellular targets. How signals from different targets are integrated to determine the cell fate remains a controversial issue. Understanding the pathway(s) responsible(s) for the cell killing effect of the IR exposure is of prime importance in light of using radiations as anticancer agent or as diagnostic tool. In this study, we have established that IR-induced cell damage initiates two independent signaling pathways that lead to a biphasic intracellular ceramide increase. A transitory increase of ceramide is observed within minutes after IR exposure as a consequence of DNA damage-independent acid sphingomyelinase activation. Several hours after irradiation, a second wave of ceramide accumulation is observed depending on the DNA damage-dependent activation of ceramide synthase, which requires a signaling pathway involving ATM. Importantly, we have demonstrated that the late ceramide accumulation is also dependent on the first one and is rate limiting for the apoptotic process induced by IR. In conclusion, our observations suggest that ceramide is a major determinant of the IR-induced apoptotic process at the cross-point of different signal transduction pathways.

  9. Extreme ionization of Xe clusters driven by ultraintense laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidenreich, Andreas; Last, Isidore; Jortner, Joshua

    We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe{sub n} clusters (n=2-2171, initial cluster radius R{sub 0}=2.16-31.0 A ring ) driven by ultraintense infrared Gaussian laser fields (peak intensity I{sub M}=10{sup 15}-10{sup 20} W cm{sup -2}, temporal pulse length {tau}=10-100 fs, and frequency {nu}=0.35 fs{sup -1}). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of (Xe{sup q+}){sub n} with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of themore » inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I{sub M}=10{sup 18}-10{sup 20} W cm{sup -2}) inner ionization is dominated by BSI. At lower intensities (I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2}), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the (Xe{sup q+}){sub n} ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe{sub 2171} at {tau}=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2} establishes an ultraintense laser pulse

  10. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  11. Role of Relativistic Effects in the Ionization of Heavy Ions by Electron Impact

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan C.; Basak, Arun K.

    2005-05-01

    Electron impact single ionization cross sections of few heavy ions are evaluated using the recently proposed modifications [1] of the widely used simplified version of the improved binary-encounter (siBED) dipole model [2]. This model consists of two adjustable parameters and it is found that they are related to the nature of the charge distribution in the bonding region of the target. For its effective uses for ionic target the siBED model is further modified [3] in terms of the ionic and relativistic effects. This study focuses on the relativistic energy domain and the findings suggest the fate of those parameters. Details of our findings will be presented at the conference. [1] W. M. Huo, Phys. Rev. A 64, 042719 (2001). [2] M. A. Uddin, M. A. K. F. Haque, A. K. Basak and B. C. Saha, Phys. Rev A70, 0322706(2004). [3] M. a. Uddin, M. A. K. F. Haque, M. S. Mahbub, K. R. Karim, A.K. Basak and B. C. Saha, Phys. Rev. A (in press) 2005.

  12. The great importance of normalization of LC-MS data for highly-accurate non-targeted metabolomics.

    PubMed

    Mizuno, Hajime; Ueda, Kazuki; Kobayashi, Yuta; Tsuyama, Naohiro; Todoroki, Kenichiro; Min, Jun Zhe; Toyo'oka, Toshimasa

    2017-01-01

    The non-targeted metabolomics analysis of biological samples is very important to understand biological functions and diseases. LC combined with electrospray ionization-based MS has been a powerful tool and widely used for metabolomic analyses. However, the ionization efficiency of electrospray ionization fluctuates for various unexpected reasons such as matrix effects and intraday variations of the instrument performances. To remove these fluctuations, normalization methods have been developed. Such techniques include increasing the sensitivity, separating co-eluting components and normalizing the ionization efficiencies. Normalization techniques allow simultaneously correcting of the ionization efficiencies of the detected metabolite peaks and achieving quantitative non-targeted metabolomics. In this review paper, we focused on these normalization methods for non-targeted metabolomics by LC-MS. Copyright © 2016 John Wiley & Sons, Ltd.

  13. A modal radar cross section of thin-wire targets via the singularity expansion method

    NASA Technical Reports Server (NTRS)

    Richards, M. A.; Shumpert, T. H.; Riggs, L. S.

    1992-01-01

    A modal radar cross section (RCS) of arbitrary wire scatterers is constructed in terms of SEM parameters. Numerical results are presented for both straight and L-shaped wire targets and are compared to computations performed in the frequency domain using the method of moments.

  14. Resonance ionization laser ion sources for on-line isotope separators (invited).

    PubMed

    Marsh, B A

    2014-02-01

    A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.

  15. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    PubMed

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  16. Charge transfer and ionization in collisions of Si3+ with H from low to high energy

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; He, B.; Ning, Y.; Liu, C. L.; Yan, J.; Stancil, P. C.; Schultz, D. R.

    2006-11-01

    Charge transfer processes due to collisions of ground state Si3+(3sS1) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) and classical-trajectory Monte Carlo (CTMC) methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained from Herrero [J. Phys. B 29, 5583 (1996)] which were calculated with a full configuration-interaction method. Total and state-selective single-electron capture cross sections are obtained for collision energies from 0.01eV/u to 1MeV/u . Total and state-selective rate coefficients are also presented for temperatures from 2×103K to 107K . Comparison with existing data reveals that the total CTMC cross sections are in good agreement with the experimental measurements at the higher considered energies and that previous Landau-Zener calculations underestimate the total rate coefficients by a factor of up to two. The CTMC calculations of target ionization are presented for high energies.

  17. Targeting Protein for Xenopus Kinesin-like Protein 2 (TPX2) Regulates γ-Histone 2AX (γ-H2AX) Levels upon Ionizing Radiation*

    PubMed Central

    Neumayer, Gernot; Helfricht, Angela; Shim, Su Yeon; Le, Hoa Thi; Lundin, Cecilia; Belzil, Camille; Chansard, Mathieu; Yu, Yaping; Lees-Miller, Susan P.; Gruss, Oliver J.; van Attikum, Haico; Helleday, Thomas; Nguyen, Minh Dang

    2012-01-01

    The microtubule-associated protein targeting protein for Xenopus kinesin-like protein 2 (TPX2) plays a key role in spindle assembly and is required for mitosis in human cells. In interphase, TPX2 is actively imported into the nucleus to prevent its premature activity in microtubule organization. To date, no function has been assigned to nuclear TPX2. We now report that TPX2 plays a role in the cellular response to DNA double strand breaks induced by ionizing radiation. Loss of TPX2 leads to inordinately strong and transient accumulation of ionizing radiation-dependent Ser-139-phosphorylated Histone 2AX (γ-H2AX) at G0 and G1 phases of the cell cycle. This is accompanied by the formation of increased numbers of high intensity γ-H2AX ionizing radiation-induced foci. Conversely, cells overexpressing TPX2 have reduced levels of γ-H2AX after ionizing radiation. Consistent with a role for TPX2 in the DNA damage response, we found that the protein accumulates at DNA double strand breaks and associates with the mediator of DNA damage checkpoint 1 (MDC1) and the ataxia telangiectasia mutated (ATM) kinase, both key regulators of γ-H2AX amplification. Pharmacologic inhibition or depletion of ATM or MDC1, but not of DNA-dependent protein kinase (DNA-PK), antagonizes the γ-H2AX phenotype caused by TPX2 depletion. Importantly, the regulation of γ-H2AX signals by TPX2 is not associated with apoptosis or the mitotic functions of TPX2. In sum, our study identifies a novel and the first nuclear function for TPX2 in the cellular responses to DNA damage. PMID:23045526

  18. Second Order Born Effects in the Perpendicular Plane Ionization of Xe (5p) Atoms

    NASA Astrophysics Data System (ADS)

    Purohit, G.; Singh, Prithvi; Patidar, Vinod

    We report triple differential cross section (TDCS) results for the perpendicular plane ionization of xenon atoms at incident electron energies 5, 10, 20, 30, and 40 eV above ionization potential. The TDCS calculation have been preformed within the modified distorted wave Born approximation formalism including the second order Born (SBA) amplitude. We compare the (e, 2e) TDCS result of our calculation with the very recent measurements of Nixon and Murray [Phys. Rev. A 85, 022716 (2012)] and relativistic DWBA-G results of Illarionov and Stauffer [J. Phys. B: At. Mol. Opt. Phys. 45, 225202 (2012)] and discuss the process contributing to structure seen in the differential cross section.

  19. Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.

    The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less

  20. Electron Impact Ionization Cross Sections in Rb and Cs.

    NASA Astrophysics Data System (ADS)

    Reddish, T. J.; Lukomski, M.; Sutton, S.; Kedzierski, W.; McConkey, J. W.; Bartschat, K.; Bartlett, P. L.; Stelbovics, A. T.; Bray, I.

    2006-05-01

    We present a new atom trapping technique for determining absolute, total ionisation cross sections (TICS) out of an excited atom. The novel feature of this method is in utilizing Doppler cooling of neutral atoms to determine ionisation cross sections. This fluorescence-monitoring experiment, which is a variant of the `trap loss' technique, has enabled us to obtain the experimental electron impact ionisation cross sections out of the Cs 6^2P3/2 excited state between 7 - 400 eV. New CCC, R-Matrix with Pseudo-States (RMPS), and Born approximation single ionisation cross sections (SICS) are also presented for both the ground and excited states of Cs and Rb, and compared with the available experimental data. The comparison of the results reveals the importance of the autoionisation and multiple ionisation contributions to the TICS. The autoionisation contribution appears to be substantial for ionisation out of the Cs 6^2P and Rb 5^2P excited states; ˜ 3-4 larger than the direct ionisation contribution predicted by CCC at ˜ 30-50 eV. This surprising result shows the importance of multi-electron processes in determining the ionisation cross sections of heavy alkali atoms.

  1. Electron-Impact Excitation and Ionization in Air

    DTIC Science & Technology

    2009-09-01

    average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...physics-based model of nonequilibrium chemistry and radiation in hypersonic flow, it is timely to investigate and update the electron collision cross

  2. Photodissociation of anisole and absolute photoionization cross-section of the phenoxy radical.

    PubMed

    Xu, Hong; Pratt, S T

    2013-11-21

    We have studied the photodissociation dynamics of anisole (C6H5OCH3) at 193 nm and determined the absolute photoionization cross-section of the phenoxy radical at 118.2 nm (10.486 eV) relative to the known cross-section of the methyl radical. Even at this energy, there is extensive fragmentation of the phenoxy radical upon photoionization, which is attributed to ionizing transitions that populate low-lying excited electronic states of the cation. For phenoxy radicals with less than ∼1 eV of internal energy, we find a cross-section for the production of the phenoxy cation of 14.8 ± 3.8 Mb. For radicals with higher internal energy, dissociative ionization is the dominant process, and for internal energies of ∼2.7-3.7 eV, we find a total cross-section (photoionization plus dissociative ionization) of 22.3 ± 4.1 Mb. The results are discussed relative to the recently reported photoionization cross-section of phenol.

  3. Fe(+) chemical ionization of peptides.

    PubMed

    Speir, J P; Gorman, G S; Amster, I J

    1993-02-01

    Laser-desorbed peptide neutral molecules were allowed to react with Fe(+) in a Fourier transform mass spectrometer, using the technique of laser desorption/chemical ionization. The Fe(+) ions are formed by laser ablation of a steel target, as well as by dissociative charge-exchange ionization of ferrocene with Ne(+). Prior to reaction with laser-desorbed peptide molecules, Fe(+) ions undergo 20-100 thermalizin collisions with xenon to reduce the population of excited-state metal ion species. The Fe(+) ions that have not experienced thermalizing collisions undergo charge exchange with peptide molecules. Iron ions that undergo thermalizing collisions before they are allowed to react with peptides are found to undergo charge exchange and to form adduct species [M + Fe(+)] and fragment ions that result from the loss of small, stable molecules, such as H2O, CO, and CO2, from the metal ion-peptide complex.

  4. High-current fast electron beam propagation in a dielectric target.

    PubMed

    Klimo, Ondrej; Tikhonchuk, V T; Debayle, A

    2007-01-01

    Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.

  5. Electron-impact ionization of silicon tetrachloride (SiCl4).

    PubMed

    Basner, R; Gutkin, M; Mahoney, J; Tarnovsky, V; Deutsch, H; Becker, K

    2005-08-01

    We measured absolute partial cross sections for the formation of various singly charged and doubly charged positive ions produced by electron impact on silicon tetrachloride (SiCl4) using two different experimental techniques, a time-of-flight mass spectrometer (TOF-MS) and a fast-neutral-beam apparatus. The energy range covered was from the threshold to 900 eV in the TOF-MS and to 200 eV in the fast-neutral-beam apparatus. The results obtained by the two different experimental techniques were found to agree very well (better than their combined margins of error). The SiCl3(+) fragment ion has the largest partial ionization cross section with a maximum value of slightly above 6x10(-20) m2 at about 100 eV. The cross sections for the formation of SiCl4(+), SiCl+, and Cl+ have maximum values around 4x10(-20) m2. Some of the cross-section curves exhibit an unusual energy dependence with a pronounced low-energy maximum at an energy around 30 eV followed by a broad second maximum at around 100 eV. This is similar to what has been observed by us earlier for another Cl-containing molecule, TiCl4 [R. Basner, M. Schmidt, V. Tamovsky, H. Deutsch, and K. Becker, Thin Solid Films 374 291 (2000)]. The maximum cross-section values for the formation of the doubly charged ions, with the exception of SiCl3(++), are 0.05x10(-20) m2 or less. The experimentally determined total single ionization cross section of SiCl4 is compared with the results of semiempirical calculations.

  6. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  7. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  8. Two- and three-photon ionization in the noble gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, E.J.

    1981-08-01

    By using a characteristic Green's function for an exactly solvable Schroedinger equation with an approximation to the central potential of Hermann and Skillman, the cross section for nonresonant two- and three-photon ionization of Ne, Ar, Kr, and Xe were calculated in jl coupling. Expressions for cross sections in jl coupling are given. Comparison with the Ar two-photon cross section of Pindzola and Kelly, calculated using the many-body theory, the dipole-length approximation, and LS coupling shows a disagreement of as much as a factor of 2. The disagreement appears to arise from distortion introduced by shifting the Green's-function resonances to experimentalmore » values.« less

  9. SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Flannagain, Aidan M.; Gallagher, Peter T.; Brown, John C.

    2015-02-01

    Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as amore » solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.« less

  10. Electron Impact Excitation-Ionization of Molecules

    NASA Astrophysics Data System (ADS)

    Ali, Esam Abobakr A.

    In the last few decades, the study of atomic collisions by electron-impact has made significant advances. The most difficult case to study is electron impact ionization of molecules for which many approximations have to be made and the validity of these approximations can only be checked by comparing with experiment. In this thesis, I have examined the Molecular three-body distorted wave (M3DW) or Molecular four-body distorted wave (M4DW) approximations for electron-impact ionization. These models use a fully quantum mechanical approach where all particles are treated quantum mechanically and the post collision interaction (PCI) is treated to all orders of perturbation. These electron impact ionization collisions play central roles in the physics and chemistry of upper atmosphere, biofuel, the operation of discharges and lasers, radiation induced damage in biological material like damage to DNA by secondary electrons, and plasma etching processes. For the M3DW model, I will present results for electron impact single ionization of small molecules such as Water, Ethane, and Carbon Dioxide and the much larger molecules Tetrahydrofuran, phenol, furfural, 1-4 Benzoquinone. I will also present results for the four-body problem in which there are two target electrons involved in the collision. M4DW results will be presented for dissociative excitation-ionization of orientated D2. I will show that M4DW calculations using a variational wave function for the ground state that included s- and p- orbital states give better agreement to the experimental measurements than a ground state approximated as a product of two 1s-type Dyson orbitals.

  11. Characteristics of light reflected from a dense ionization wave with a tunable velocity.

    PubMed

    Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-11-20

    An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  12. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  13. Increased sensitivity to ionizing radiation by targeting the homologous recombination pathway in glioma initiating cells.

    PubMed

    Lim, Yi Chieh; Roberts, Tara L; Day, Bryan W; Stringer, Brett W; Kozlov, Sergei; Fazry, Shazrul; Bruce, Zara C; Ensbey, Kathleen S; Walker, David G; Boyd, Andrew W; Lavin, Martin F

    2014-12-01

    Glioblastoma is deemed the most malignant form of brain tumour, particularly due to its resistance to conventional treatments. A small surviving group of aberrant stem cells termed glioma initiation cells (GICs) that escape surgical debulking are suggested to be the cause of this resistance. Relatively quiescent in nature, GICs are capable of driving tumour recurrence and undergo lineage differentiation. Most importantly, these GICs are resistant to radiotherapy, suggesting that radioresistance contribute to their survival. In a previous study, we demonstrated that GICs had a restricted double strand break (DSB) repair pathway involving predominantly homologous recombination (HR) associated with a lack of functional G1/S checkpoint arrest. This unusual behaviour led to less efficient non-homologous end joining (NHEJ) repair and overall slower DNA DSB repair kinetics. To determine whether specific targeting of the HR pathway with small molecule inhibitors could increase GIC radiosensitivity, we used the Ataxia-telangiectasia mutated inhibitor (ATMi) to ablate HR and the DNA-dependent protein kinase inhibitor (DNA-PKi) to inhibit NHEJ. Pre-treatment with ATMi prior to ionizing radiation (IR) exposure prevented HR-mediated DNA DSB repair as measured by Rad51 foci accumulation. Increased cell death in vitro and improved in vivo animal survival could be observed with combined ATMi and IR treatment. Conversely, DNA-PKi treatment had minimal impact on GICs ability to resolve DNA DSB after IR with only partial reduction in cell survival, confirming the major role of HR. These results provide a mechanistic insight into the predominant form of DNA DSB repair in GICs, which when targeted may be a potential translational approach to increase patient survival. Copyright © 2014. Published by Elsevier B.V.

  14. Signature of charge migration in modulations of double ionization

    NASA Astrophysics Data System (ADS)

    Mauger, François; Abanador, Paul M.; Bruner, Adam; Sissay, Adonay; Gaarde, Mette B.; Lopata, Kenneth; Schafer, Kenneth J.

    2018-04-01

    We present a theoretical investigation of charge migration following strong-field ionization in a multielectron system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 +1 D ), interacting with a strong, static electric field. We show that in this system charge migration results from the interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the efficacy of the semiclassical representation. We use the ab initio solution of the full 1 +1 D system as a reference for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.

  15. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization.

    PubMed

    Neustetter, M; Jabbour Al Maalouf, E; Limão-Vieira, P; Denifl, S

    2016-08-07

    Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n (+) (0 ≤ n ≤ 6) and W2(CO)n (+) (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n (+) (0 ≤ n ≤ 3) and W2C(CO)n (+) (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.

  16. Ratios of double to single ionization of He and Ne by strong 400-nm laser pulses using the quantitative rescattering theory

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjin; Li, Xiaojin; Zatsarinny, Oleg; Bartschat, Klaus; Lin, C. D.

    2018-01-01

    We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross sections are calculated using the state-of-the-art many-electron R -matrix theory. The simulation results for double-to-single-ionization ratios are found to compare well with experimental data and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.

  17. Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7.

    PubMed

    Borges, Itamar

    2014-03-01

    Singlet, triplet and ionized states of the energetic molecule 1,1-diamino-2,2-dinitroethylene, known as FOX-7 or DADNE, were investigated using the symmetry-adapted-cluster configuration interaction (SAC-CI) ab initio wave function. The 20 computed singlet transitions, with 2 exceptions, were bright. The most intense singlet transitions were of the n₀→π type-typical of molecules having nitro groups. Fast intersystem crossing (ISC) from the 1¹A, 2¹A and 8¹A bright singlet transitions is possible. Other feasible ISC processes are discussed. The computed singlet and ionization spectra have similar features when compared to nitramide and N,N-dimethylnitramine molecules, which have only a nitro group. The ionization energies of the first 20 states have differences in comparison with Koopmans' energy values that can reach 3 eV. Moreover, the character of the first ionized states, dominated by single ionizations, is not the same when compared with the character resulting from application of Koopmans' theorem.

  18. Total photoionization cross sections of atomic oxygen from threshold to 44.3A

    NASA Technical Reports Server (NTRS)

    Angel, G. C.; Samson, James A. R.

    1987-01-01

    The relative cross section of atomic oxygen for the production of singly charged ions has been remeasured in more detail and extended to cover the wavelength range 44.3 to 910.5 A by the use of synchrotron radiation. In addition, the contribution of multiple ionization to the cross sections has been measured allowing total photoionization cross sections to be obtained below 250 A. The results have been made absolute by normalization to previously measured data. The use of synchrotron radiation has enabled measurements of the continuum cross section to be made between the numerous autoionizing resonances that occur near the ionization thresholds. This in turn has allowed a more critical comparison of the various theoretical estimates of the cross section to be made. The series of autoionizing resonances leading to the 4-P state of the oxygen ion have been observed for the first time in an ionization type experiment and their positions compared with both theory and previous photographic recordings.

  19. Photoexcitation and ionization in carbon dioxide - Theoretical studies in the separated-channel static-exchange approximation

    NASA Technical Reports Server (NTRS)

    Padial, N.; Csanak, G.; Mckoy, B. V.; Langhoff, P. W.

    1981-01-01

    Vertical-electronic static-exchange photoexcitation and ionization cross sections are reported which provide a first approximation to the complete dipole spectrum of CO2. Separated-channel static-exchange calculations of vertical-electronic transition energies and oscillator strengths, and Stieltjes-Chebyshev moment methods were used in the development. Detailed comparisons were made of the static-exchange excitation and ionization spectra with photoabsorption, electron-impact excitation, and quantum-defect estimates of discrete transition energies and intensities, and with partial-channel photoionization cross sections obtained from fluorescence measurements and from tunable-source and (e, 2e) photoelectron spectroscopy. Results show that the separate-channel static-exchange approximation is generally satisfactory in CO2.

  20. Enhanced one-photon double ionization of atoms and molecules in an environment of different species.

    PubMed

    Stumpf, V; Kryzhevoi, N V; Gokhberg, K; Cederbaum, L S

    2014-05-16

    The correlated nature of electronic states in atoms and molecules is manifested in the simultaneous emission of two electrons after absorption of a single photon close to the respective threshold. Numerous observations in atoms and small molecules demonstrate that the double ionization efficiency close to threshold is rather small. In this Letter we show that this efficiency can be dramatically enhanced in the environment. To be specific, we concentrate on the case where the species in question has one or several He atoms as neighbors. The enhancement is achieved by an indirect process, where a He atom of the environment absorbs a photon and the resulting He(+) cation is neutralized fast by a process known as electron transfer mediated decay, producing thereby doubly ionized species. The enhancement of the double ionization is demonstrated in detail for the example of the Mg · He cluster. We show that the double ionization cross section of Mg becomes 3 orders of magnitude larger than the respective cross section of the isolated Mg atom. The impact of more neighbors is discussed and the extension to other species and environments is addressed.

  1. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  2. Semi-empirical scaling for ion–atom single charge exchange cross sections in the intermediate velocity regime

    DOE PAGES

    Friedman, B.; DuCharme, G.

    2017-05-11

    We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less

  3. Electron- and photon-impact ionization of furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Ali, E.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; Madison, D. H.; Brunger, M. J.

    2015-11-01

    The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″ + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  4. Photoabsorption cross section of acetylene in the EUV region

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Judge, D. L.

    1985-01-01

    The measurement of the absolute photoabsorption cross sections of C2H2 in the 175-740 A region by means of a double ionization chamber is reported. The continuum background source is the synchrotron radiation emitted by the Wisconsin 240 MeV electron storage ring. It is found that the cross sections range from 2 to a maximum of 36 Mb. Two new Rydberg series are identified and the cross section data are applied in the analysis of various sum rules. From the rules, it is shown that the data of C2H2 in the 580-1088 A range may be too low, while the measured ionization transition moment may be too high.

  5. Total photoionization cross sections of atomic oxygen from threshold to 44.3 A

    NASA Technical Reports Server (NTRS)

    Angel, G. C.; Samson, James A. R.

    1988-01-01

    Synchrotron radiation was used to obtain the relative photoionization cross section of atomic oxygen for the production of singly charged ions over the 44.3-910.5-A wavelength range. Measurement of the contribution of multiple ionization to the cross sections has made possible the determination of total photoionization cross sections below 250 A. The series of autoionizing resonances leading to the 4P state of the oxygen ion has been observed using an ionization-type experimental procedure for the first time.

  6. Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead.

    PubMed

    Huang, Yishun; Ma, Yanli; Chen, Yahong; Wu, Xuemeng; Fang, Luting; Zhu, Zhi; Yang, Chaoyong James

    2014-11-18

    Because of the severe health risks associated with lead pollution, rapid, sensitive, and portable detection of low levels of Pb(2+) in biological and environmental samples is of great importance. In this work, a Pb(2+)-responsive hydrogel was prepared using a DNAzyme and its substrate as cross-linker for rapid, sensitive, portable, and quantitative detection of Pb(2+). Gold nanoparticles (AuNPs) were first encapsulated in the hydrogel as an indicator for colorimetric analysis. In the absence of lead, the DNAzyme is inactive, and the substrate cross-linker maintains the hydrogel in the gel form. In contrast, the presence of lead activates the DNAzyme to cleave the substrate, decreasing the cross-linking density of the hydrogel and resulting in dissolution of the hydrogel and release of AuNPs for visual detection. As low as 10 nM Pb(2+) can be detected by the naked eye. Furthermore, to realize quantitative visual detection, a volumetric bar-chart chip (V-chip) was used for quantitative readout of the hydrogel system by replacing AuNPs with gold-platinum core-shell nanoparticles (Au@PtNPs). The Au@PtNPs released from the hydrogel upon target activation can efficiently catalyze the decomposition of H2O2 to generate a large volume of O2. The gas pressure moves an ink bar in the V-chip for portable visual quantitative detection of lead with a detection limit less than 5 nM. The device was able to detect lead in digested blood with excellent accuracy. The method developed can be used for portable lead quantitation in many applications. Furthermore, the method can be further extended to portable visual quantitative detection of a variety of targets by replacing the lead-responsive DNAzyme with other DNAzymes.

  7. Fully differential cross sections for the single ionization of helium by fast ions: Classical model calculations

    NASA Astrophysics Data System (ADS)

    Sarkadi, L.

    2018-04-01

    Fully differential cross sections (FDCSs) have been calculated for the single ionization of helium by 1- and 3-MeV proton and 100-MeV/u C6 + ion impact using the classical trajectory Monte Carlo (CTMC) method in the nonrelativistic, three-body approximation. The calculations were made employing a Wigner-type model in which the quantum-mechanical position distribution of the electron is approximated by a weighted integral of the microcanonical distribution over a range of the binding energy of the electron. In the scattering plane, the model satisfactorily reproduces the observed shape of the binary peak. In the region of the peak the calculated FDCSs agree well with the results of continuum-distorted-wave calculations for all the investigated collisions. For 1-MeV proton impact the experimentally observed shift of the binary peak with respect to the first Born approximation is compared with the shifts obtained by different higher-order quantum-mechanical theories and the present CTMC method. The best result was achieved by CTMC, but still a large part of the shift remained unexplained. Furthermore, it was found that the classical theory failed to reproduce the shape of the recoil peak observed in the experiments, it predicts a much narrower peak. This indicates that the formation of the recoil peak is dominated by quantum-mechanical effects. For 100-MeV/u C6 + ion impact the present CTMC calculations confirmed the existence of the "double-peak" structure of the angular distribution of the electron in the plane perpendicular to the momentum transfer, in accordance with the observation, the prediction of an incoherent semiclassical model, and previous CTMC results. This finding together with wave-packet calculations suggests that the "C6 + puzzle" may be solved by considering the loss of the projectile coherence. Experiments to be conducted using ion beams of anisotropic coherence are proposed for a more differential investigation of the ionization dynamics.

  8. Universal empirical fit to L-shell X-ray production cross sections in ionization by protons

    NASA Astrophysics Data System (ADS)

    Lapicki, G.; Miranda, J.

    2018-01-01

    A compilation published in 2014, with a recent 2017 update, contains 5730 experimental total L-shell X-ray production cross sections (XRPCS). The database covers an energy range from 10 keV to 1 GeV, and targets from 18Ar to 95Am. With only two adjustable parameters, universal fit to these data normalized to XRPCS calculated at proton velocity v1 equal to the electron velocity in the L-shell v2L, is obtained in terms of a single ratio of v1/v2L. This fit reproduces 97% of the compiled XRPCS to within a factor of 2.

  9. Efficient and scalable ionization of neutral atoms by an orderly array of gold-doped silicon nanowires

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Helal, Ahmed; Dunsky, David; Leviyev, Alex; Mallavarapu, Akhila; Sreenivasan, S. V.; Raizen, Mark

    2017-04-01

    Ionization of atoms and molecules is an important process in many applications and processes such as mass spectrometry. Ionization is typically accomplished by electron bombardment, and while it is scalable to large volumes, is also very inefficient due to the small cross section of electron-atom collisions. Photoionization methods can be highly efficient, but are not scalable due to the small ionization volume. Electric field ionization is accomplished using ultra-sharp conducting tips biased to a few kilovolts, but suffers from a low ionization volume and tip fabrication limitations. We report on our progress towards an efficient, robust, and scalable method of atomic and molecular ionization using orderly arrays of sharp, gold-doped silicon nanowires. As demonstrated in earlier work, the presence of the gold greatly enhances the ionization probability, which was attributed to an increase in available acceptor surface states. We present here a novel process used to fabricate the nanowire array, results of simulations aimed at optimizing the configuration of the array, and our progress towards demonstrating efficient and scalable ionization.

  10. Giant plasmon excitation in single and double ionization of C60 by fast highly charged Si and O ions

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Tribedi, L. C.

    2007-09-01

    Se have investigated single and double ionization of C60 molecule in collisions with 2.33 MeV/u Siq+ (q=6-14) and 3.125 MeV/u Oq+ (q=5-8) projectiles. The projectile charge state dependence of the single and double ionization yields of C60 are then compared to those for an ion-atom collision system using Ne gas as a target. A large difference between the gas and the cluster target behaviour was partially explained in terms of a model based on collective excitation namely the giant dipole plasmon resonance (GDPR). The qualitative agreement between the data and GDPR model prediction for single and double ionization signifies the importance of single and double plasmon excitations in the ionization process. A large deviation of the GDPR model for triple and quadruple ionization from the experimental data imply the importance of the other low impact parameter processes such as evaporation, fragmentation and a possible solid-like dynamical screening.

  11. Internuclear separation dependent ionization of the valence orbitals of I2 by strong laser fields.

    PubMed

    Chen, H; Tagliamonti, V; Gibson, G N

    2012-11-09

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σ(g)(2)π(u)(4)π(g)(4)σ(u)(0). We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σ(g)) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  12. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    NASA Astrophysics Data System (ADS)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  13. Absolute photoionization cross sections of two cyclic ketones: cyclopentanone and cyclohexanone.

    PubMed

    Price, Chelsea; Fathi, Yasmin; Meloni, Giovanni

    2017-05-01

    Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing vacuum ultraviolet (VUV) synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS-QB3 calculated values for the adiabatic ionization energies agree well with the experimental values, and the identification of possible dissociative fragments is discussed for both systems. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Search for Dark Matter Interactions using Ionization Yield in Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Uvarov, Sergey

    Cosmological observations overwhelmingly support the existence of dark matter which constitutes 87% of the universe's total mass. Weakly Interacting Massive Particles (WIMPs) are a prime candidate for dark matter, and the Large Underground Xenon (LUX) experiment aims to a direct-detection of a WIMP-nucleon interaction. The LUX detector is a dual-phase xenon time-projection chamber housed 4,850 feet underground at Sanford Underground Research Facility in Lead, South Dakota. We present the ionization-only analysis of the LUX 2013 WIMP search data. In the 1.04 x 104 kg-days exposure, thirty events were observed out of the 24.8 expected from radioactive backgrounds. We employ a cut-and-count method to set a 1-sided 90% C.L. upper limit for spin-independent WIMP-nucleon cross-sections. A zero charge yield for nuclear-recoils below 0.7 keV is included upper limit calculation. This ionization-only analysis excludes an unexplored region of WIMP-nucleon cross-section for low-mass WIMPs achieving 1.56 x 10-43 cm2 WIMP-nucleon cross-section exclusion for a 5.1 GeV/ c2 WIMP.

  15. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results:more » IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.« less

  16. Dynamical orientation effects in atomic ionization by impact of protons and positrons

    NASA Astrophysics Data System (ADS)

    Fregenal, Daniel; Barrachina, Raúl; Bernardi, Guillermo; Suárez, Sergio; Fiol, Juan

    2011-10-01

    Recent results in ionization collisions with positrons and protons showed that just above the two-body threshold, for electron velocities close to the final projectile's velocity, the electron-projectile continuum dipole is narrowly oriented along the direction of motion of its centre-of-mass, with the negative charge pointing towards the residual target. Although a forward-backward asymmetry in the vicinity of the two-body threshold has been studied many year ago in ion impact ionization collisions, that was by far a much milder effect that left no fingerprint on the cusp position. Our results show that the phenomena is present for ionization by impact of both protons and positrons. In this communication, through measurements on H+ + He and calculations we analyze in detail this effect that can be linked to a dynamical alignment of the two-body subsystem in the continuum. Recent results in ionization collisions with positrons and protons showed that just above the two-body threshold, for electron velocities close to the final projectile's velocity, the electron-projectile continuum dipole is narrowly oriented along the direction of motion of its centre-of-mass, with the negative charge pointing towards the residual target. Although a forward-backward asymmetry in the vicinity of the two-body threshold has been studied many year ago in ion impact ionization collisions, that was by far a much milder effect that left no fingerprint on the cusp position. Our results show that the phenomena is present for ionization by impact of both protons and positrons. In this communication, through measurements on H+ + He and calculations we analyze in detail this effect that can be linked to a dynamical alignment of the two-body subsystem in the continuum. This work was partially supported by the Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad Nacional de Cuyo and Fundacion Balseiro.

  17. Plasma Immersion Ion Implantation with Solid Targets for Space and Aerospace Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, R. M.; Goncalves, J. A. N.; Ueda, M.

    2009-01-05

    This paper describes successful results obtained by a new type of plasma source, named as Vaporization of Solid Targets (VAST), for treatment of materials for space and aerospace applications, by means of plasma immersion ion implantation and deposition (PIII and D). Here, the solid element is vaporized in a high pressure glow discharge, being further ionized and implanted/deposited in a low pressure cycle, with the aid of an extra electrode. First experiments in VAST were run using lithium as the solid target. Samples of silicon and aluminum alloy (2024) were immersed into highly ionized lithium plasma, whose density was measuredmore » by a double Langmuir probe. Measurements performed with scanning electron microscopy (SEM) showed clear modification of the cross-sectioned treated silicon samples. X-ray photoelectron spectroscopy (XPS) analysis revealed that lithium was implanted/deposited into/onto the surface of the silicon. Implantation depth profiles may vary according to the condition of operation of VAST. One direct application of this treatment concerns the protection against radiation damage for silicon solar cells. For the case of the aluminum alloy, X-ray diffraction analysis indicated the appearance of prominent new peaks. Surface modification of A12024 by lithium implantation/deposition can lower the coefficient of friction and improve the resistance to fatigue of this alloy. Recently, cadmium was vaporized and ionized in VAST. The main benefit of this element is associated with the improvement of corrosion resistance of metallic substrates. Besides lithium and cadmium, VAST allows to performing PIII and D with other species, leading to the modification of the near-surface of materials for distinct purposes, including applications in the space and aerospace areas.« less

  18. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neustetter, M.; Jabbour Al Maalouf, E.; Denifl, S., E-mail: Stephan.Denifl@uibk.ac.at, E-mail: plimaovieira@fct.unl.pt

    2016-08-07

    Electron ionization of neat tungsten hexacarbonyl (W(CO){sub 6}) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO){sub 6} clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO){sub n}{sup +} (0 ≤ n ≤ 6) and W{sub 2}(CO){sub n}{sup +} (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO){sub n}{sup +} (0 ≤more » n ≤ 3) and W{sub 2}C(CO){sub n}{sup +} (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.« less

  19. Measurement of cross sections for the 147Sm(n, alpha)144Nd reaction at 5.0 and 6.0 MeV.

    PubMed

    Zhang, Guohui; Zhang, Jiaguo; Guo, Li'an; Wu, Hao; Chen, Jinxiang; Tang, Guoyou; Gledenov, Yu M; Sedysheva, M V; Khuukhenkhuu, G; Szalanski, P J

    2009-01-01

    Cross sections of the (147)Sm(n, alpha)(144)Nd reaction were measured at En=5.0 and 6.0MeV. A twin gridded ionization chamber was used as a charged particle detector and two large area (147)Sm(2)O(3) samples placed back to back were employed. Experiments were performed at the 4.5MV Van de Graaff accelerator of Peking University. Neutrons were produced through the D(d, n)(3)He reaction with a deuterium gas target. Absolute neutron flux was determined by a small (238)U fission chamber. Present cross-section data are compared with existing results of evaluations and measurements.

  20. Low-sample flow secondary electrospray ionization: improving vapor ionization efficiency.

    PubMed

    Vidal-de-Miguel, G; Macía, M; Pinacho, P; Blanco, J

    2012-10-16

    In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an elecrospray plume become ionized after charge is transferred from the charging electrosprayed particles to the sample species. Current SESI systems have shown a certain potential. However, their ionization efficiency is limited by space charge repulsion and by the high sample flows required to prevent vapor dilution. As a result, they have a poor conversion ratio of vapor into ions. We have developed and tested a new SESI configuration, termed low-flow SESI, that permits the reduction of the required sample flows. Although the ion to vapor concentration ratio is limited, the ionic flow to sample vapor flow ratio theoretically is not. The new ionizer is coupled to a planar differential mobility analyzer (DMA) and requires only 0.2 lpm of vapor sample flow to produce 3.5 lpm of ionic flow. The achieved ionization efficiency is 1/700 (one ion for every 700 molecules) for TNT and, thus, compared with previous SESI ionizers coupled with atmospheric pressure ionization-mass spectrometry (API-MS) (Mesonero, E.; Sillero, J. A.; Hernández, M.; Fernandez de la Mora, J. Philadelphia PA, 2009) has been improved by a large factor of at least 50-100 (our measurements indicate 70). The new ionizer coupled with the planar DMA and a triple quadrupole mass spectrometer (ABSciex API5000) requires only 20 fg (50 million molecules) to produce a discernible signal after mobility and MS(2) analysis.

  1. Application of a post-collisional-interaction distorted-wave model for (e, 2e) of some atomic targets and methane

    NASA Astrophysics Data System (ADS)

    Chinoune, M.; Houamer, S.; Dal Cappello, C.; Galstyan, A.

    2016-10-01

    Recently Isik et al (2016 J. Phys B: At. Mol. Opt. Phys. 49 065203) performed measurements of the triple differential cross sections (TDCSs) of methane by electron impact. Their data clearly show that post-collisional interaction (PCI) effects are present in the angular distributions of ejected electrons. A model describing the ejected electron by a distorted wave and including PCI is applied for the single ionization of atomic targets and for methane. Extensive comparisons between this model and other previous models are made with available experiments.

  2. Umbilical cord vitamin D, ionized calcium and myocardial oxygen demand.

    PubMed

    Reeves, Inez; Liang, Willie; Asadi, M Sadegh; Millis, Richard M

    2014-07-01

    Systemic blood vitamin D and total calcium are correlates of birthweight and cardiovascular disease but whether umbilical cord blood vitamin D and ionized calcium are correlates of birthweight and cardiovascular function is not known. This cross-sectional study correlates umbilical cord vitamin D, ionized calcium and birthweight with the heart rate-systolic pressure product (RPP), an indicator of myocardial oxygen demand. Cord blood vitamin D and ionized calcium concentrations were compared for vitamin D normal (≥50 nM, 20 ng/mL) and vitamin D deficiency (<50 nM, 20 ng/mL) in normal weight (≥2500 g) and low birthweight (LBW, <2500 g) newborns. Heart rate and blood pressure were measured during postnatal transition and RPP was computed. RPP was positively correlated with birthweight (r = +0.52, p < 0.001) and with cord ionized calcium level (r = +0.42, p < 0.01) in the normal and LBW newborns. RPP was positively correlated with cord vitamin D level in the LBW newborns (raw r = +0.50, p < 0.05, normalized for birthweight r = +0.73, p < 0.01). Small RPP, an indicator of low myocardial oxygen demand, in LBW newborns appears to correlate with low umbilical cord vitamin D and ionized calcium levels, suggestive of pathological heart development.

  3. Ionization of Atoms by Slow Heavy Particles, Including Dark Matter.

    PubMed

    Roberts, B M; Flambaum, V V; Gribakin, G F

    2016-01-15

    Atoms and molecules can become ionized during the scattering of a slow, heavy particle off a bound electron. Such an interaction involving leptophilic weakly interacting massive particles (WIMPs) is a promising possible explanation for the anomalous 9σ annual modulation in the DAMA dark matter direct detection experiment [R. Bernabei et al., Eur. Phys. J. C 73, 2648 (2013)]. We demonstrate the applicability of the Born approximation for such an interaction by showing its equivalence to the semiclassical adiabatic treatment of atomic ionization by slow-moving WIMPs. Conventional wisdom has it that the ionization probability for such a process should be exponentially small. We show, however, that due to nonanalytic, cusplike behavior of Coulomb functions close to the nucleus this suppression is removed, leading to an effective atomic structure enhancement. We also show that electron relativistic effects actually give the dominant contribution to such a process, enhancing the differential cross section by up to 1000 times.

  4. Theoretical Calculations for Electron Impact Ionization of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Amami, Sadek Mohamed Fituri

    In the last twenty years, significant progress has been made for the theoretical treatment of electron impact ionization (e,2e) of atoms and molecules and, for some cases, very nice agreement between experiment and theory has been achieved. In particular, excellent agreement between theory and experiment and theory has been achieved for ionization of hydrogen and helium. However, agreement between experiment and theory is not nearly as good for ionization of larger atoms and molecules. In the first part of this dissertation, different theoretical approaches will be employed to study the triply differential cross section (TDCS) for low and intermediate energy electron-impact ionization of Neon and Argon for different orbital states. There is a very recent interest in studying ionization of Laser aligned atoms in order to get a better understanding about electron impact ionization of molecules. In the next part of this dissertation, results will be presented for electron-impact ionization of three laser aligned atoms, Mg, Ca, and Na. The comparison between the theory and experiment showed that our three body distorted wave (3DW) model gave excellent agreement with experiment in the scattering plane but very poor agreement perpendicular to the scattering plane. An explanation for this poor agreement out of the scattering plane has been provided by comparing our theoretical results with those of the time depended close coupling (TDCC) model and this explanation is also provided in this dissertation. Recently, significant attention has been directed towards obtaining a better under-standing of electron-impact ionization of molecules which are significantly more challenging than atoms. In the last part of this dissertation, results will be presented for electron-impact ionization of three different molecules (N2 , H2O, and CH4) which have been studied comprehensively using different theoretical approximations for different types of geometries. The published papers in

  5. (e, 2e) simple ionization of {{\\rm{H}}}_{3}^{+} by fast electron impact: use of triangular three-center continuum and bound state wave functions

    NASA Astrophysics Data System (ADS)

    Obeid, S.; Chuluunbaatar, O.; Joulakian, B. B.

    2017-07-01

    The variation of the multiply differential cross section of the (e, 2e) simple ionization of {{{H}}}3+, with the incident and ejection energy values, as well as the directions of the ejected and scattered electrons, is studied. The calculations have been performed in the frame of the perturbative first Born procedure, which has required the development of equilateral triangular three center bound and continuum state wave functions. The results explore the optimal conditions and the particularities of the triangular targets, such as the appearance of interference patterns in the variation of the four fold differential cross section (FDCS) with the scattering angle for a fixed orientation of the molecule. The comparison between the results obtained by two H3 + ground wave functions, with and without a correlation term r 12, shows that the effect of correlation on the magnitude of the triple differential cross section is not large, but it produces some modification in the structure of the FDCS.

  6. Enhancement of ionization efficiency of mass spectrometric analysis from non-electrospray ionization friendly solvents with conventional and novel ionization techniques.

    PubMed

    Jiang, Ping; Lucy, Charles A

    2015-10-15

    Electrospray ionization mass spectrometry (ESI-MS) has significantly impacted the analysis of complex biological and petroleum samples. However ESI-MS has limited ionization efficiency for samples in low dielectric and low polarity solvents. Addition of a make-up solvent through a T union or electrospray solvent through continuous flow extractive desorption electrospray ionization (CF-EDESI) enable ionization of analytes in non-ESI friendly solvents. A conventional make-up solvent addition setup was used and a CF-EDESI source was built for ionization of nitrogen-containing standards in hexane or hexane/isopropanol. Factors affecting the performance of both sources have been investigated and optimized. Both the make-up solvent addition and CF-EDESI improve the ionization efficiency for heteroatom compounds in non-ESI friendly solvents. Make-up solvent addition provides higher ionization efficiency than CF-EDESI. Neither the make-up solvent addition nor the CF-EDESI eliminates ionization suppression of nitrogen-containing compounds caused by compounds of the same chemical class. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Motion state analysis of space target based on optical cross section

    NASA Astrophysics Data System (ADS)

    Tian, Qichen; Li, Zhi; Xu, Can; Liu, Chenghao

    2017-10-01

    In order to solve the problem that the movement state analysis method of the space target based on OCS is not related to the real motion state. This paper proposes a method based on OCS for analyzing the state of space target motion. This paper first establish a three-dimensional model of real STSS satellite, then change the satellite's surface into element, and assign material to each panel according to the actual conditions of the satellite. This paper set up a motion scene according to the orbit parameters of STSS satellite in STK, and the motion states are set to three axis steady state and slowly rotating unstable state respectively. In these two states, the occlusion condition of the surface element is firstly determined, and the effective face element is selected. Then, the coordinates of the observation station and the solar coordinates in the satellite body coordinate system are input into the OCS calculation program, and the OCS variation curves of the three axis steady state and the slow rotating unstable state STSS satellite are obtained. Combining the satellite surface structure and the load situation, the OCS change curve of the three axis stabilized satellite is analyzed, and the conclude that the OCS curve fluctuates up and down when the sunlight is irradiated to the load area; By using Spectral analysis method, autocorrelation analysis and the cross residual method, the rotation speed of OCS satellite in slow rotating unstable state is analyzed, and the rotation speed of satellite is successfully reversed. By comparing the three methods, it is found that the cross residual method is more accurate.

  8. The CoRoT target HD 49933: a possible seismic signature of heavy elements ionization in the deep convective zone

    NASA Astrophysics Data System (ADS)

    Brito, Ana; Lopes, Ilídio

    2017-04-01

    We use a seismic diagnostic, based on the derivative of the phase shift of the acoustic waves reflected by the surface, to probe the outer layers of the star HD 49933. This diagnostic is particularly sensitive to partial ionization processes occurring above the base of the convective zone. The regions of partial ionization of light elements, hydrogen and helium, have well-known seismological signatures. In this work, we detect a different seismic signature in the acoustic frequencies, which we showed to correspond to the location where the partial ionization of heavy elements occurs. The location of the corresponding acoustic glitch lies between the region of the second ionization of helium and the base of the convective zone, approximately 5 per cent below the surface of the stars.

  9. High molecular weight non-polar hydrocarbons as pure model substances and in motor oil samples can be ionized without fragmentation by atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Hourani, Nadim; Kuhnert, Nikolai

    2012-10-15

    High molecular weight non-polar hydrocarbons are still difficult to detect by mass spectrometry. Although several studies have targeted this problem, lack of good self-ionization has limited the ability of mass spectrometry to examine these hydrocarbons. Failure to control ion generation in the atmospheric pressure chemical ionization (APCI) source hampers the detection of intact stable gas-phase ions of non-polar hydrocarbon in mass spectrometry. Seventeen non-volatile non-polar hydrocarbons, reported to be difficult to ionize, were examined by an optimized APCI methodology using nitrogen as the reagent gas. All these analytes were successfully ionized as abundant and intact stable [M-H](+) ions without the use of any derivatization or adduct chemistry and without significant fragmentation. Application of the method to real-life hydrocarbon mixtures like light shredder waste and car motor oil was demonstrated. Despite numerous reports to the contrary, it is possible to ionize high molecular weight non-polar hydrocarbons by APCI, omitting the use of additives. This finding represents a significant step towards extending the applicability of mass spectrometry to non-polar hydrocarbon analyses in crude oil, petrochemical products, waste or food. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Multiple ionization of C 60 in collisions with 2.33 MeV/u O-ions and giant plasmon excitation

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, Ajay; Tribedi, L. C.

    2007-03-01

    Single and multiple ionization of C60 in collisions with fast (v = 9.7 a.u.) Oq+ ions have been studied. Relative cross sections for production of C 601+ to C 604+ have been measured. The intensity ratios of double-to-single ionization agree very well with a model based on giant dipole plasmon resonance (GDPR). Almost linear increasing trend of the yields of single and double ionizations with projectile charge state is well reproduced by the single and double plasmon excitation mechanisms. The observed charge state independence of triple and quadruple ionization is in sharp contrast to the GDPR model.

  11. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Antony, Bobby

    2018-05-01

    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  12. Assessment of experimental d-PIGE γ-ray production cross sections for 12C, 14N and 16O and comparison with absolute thick target yields

    NASA Astrophysics Data System (ADS)

    Csedreki, L.; Halász, Z.; Kiss, Á. Z.

    2016-08-01

    Measured differential cross sections for deuteron induced γ-ray emission from the reactions 12C(d,pγ)13C, (Eγ = 3089 keV), 14N(d,pγ)15N (Eγ = 8310 keV) and 16O(d,pγ)17O (Eγ = 871 keV) available in the literature were assessed. In order to cross check the assessed γ-ray production cross section data, thick target γ-yields calculated from the differential cross sections were compared with available measured thick target yields. Recommended differential cross section data for each reaction were deduced for particle induced γ-ray emission (PIGE) applications.

  13. A tandem mass spectrometer for crossed-beam irradiation of mass-selected molecular systems by keV atomic ions

    NASA Astrophysics Data System (ADS)

    Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain

    2018-04-01

    In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.

  14. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE PAGES

    Hu, S. X.; Collins, Lee A.; Goncharov, V. N.; ...

    2016-04-14

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations on the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm 3 and T = 15,625 to 500,000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which exhibits the correct behaviors of continuum lowering and pressure ionization. The thermal conductivities (κ QMD) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted withmore » a generalized Coulomb logarithm [(lnΛ) QMD] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Furthermore, hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted –20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  15. Measurement of fragmentation cross sections of 12C ions on a thin gold target with the FIRST apparatus

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirio, R.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; de Napoli, M.; Durante, M.; Fernández-García, J. P.; Finck, Ch.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kummali, A. H.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fèvre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Piersanti, L.; Pleskac, R.; Randazzo, N.; Rescigno, R.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Salvador, S.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Tropea, S.; Vanstalle, M.; Younis, H.; Patera, V.; FIRST Collaboration

    2016-06-01

    A detailed knowledge of the light ions interaction processes with matter is of great interest in basic and applied physics. As an example, particle therapy and space radioprotection require highly accurate fragmentation cross-section measurements to develop shielding materials and estimate acute and late health risks for manned missions in space and for treatment planning in particle therapy. The Fragmentation of Ions Relevant for Space and Therapy experiment at the Helmholtz Center for Heavy Ion research (GSI) was designed and built by an international collaboration from France, Germany, Italy, and Spain for studying the collisions of a 12C ion beam with thin targets. The collaboration's main purpose is to provide the double-differential cross-section measurement of carbon-ion fragmentation at energies that are relevant for both tumor therapy and space radiation protection applications. Fragmentation cross sections of light ions impinging on a wide range of thin targets are also essential to validate the nuclear models implemented in MC simulations that, in such an energy range, fail to reproduce the data with the required accuracy. This paper presents the single differential carbon-ion fragmentation cross sections on a thin gold target, measured as a function of the fragment angle and kinetic energy in the forward angular region (θ ≲6° ), aiming to provide useful data for the benchmarking of the simulation softwares used in light ions fragmentation applications. The 12C ions used in the measurement were accelerated at the energy of 400 MeV/nucleon by the SIS (heavy ion synchrotron) GSI facility.

  16. Electron impact scattering study of hypohalous acids HOX (X = F, Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Yadav, Hitesh; Bhutadia, Harshad; Prajapati, Dinesh; Desai, Hardik; Vinodkumar, Minaxi; Vinodkumar, P. C.

    2018-05-01

    In this article we aim to report total cross sections (TCS) QT, total elastic cross sections (Qel), total inelastic cross sections (Qinel) i.e. (total ionizations cross sections (Qion)+total electronic excitation cross sections (Qexc)) from threshold of the target to 5000 eV energy range. We have used a well-defined theoretical methodology Spherical Complex Optical Potential (SCOP) to compute QT, Qel and Qinel and Complex Scattering Potential - ionization contribution (CSP - ic) method to report the (Qion). The cross-sectional data reported here for the Hypohalous Acids is for the first time and the present data can become a guideline for the experimentalist to study these targets.

  17. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  18. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting.

    PubMed

    Cole, Adam J; David, Allan E; Wang, Jianxin; Galbán, Craig J; Hill, Hannah L; Yang, Victor C

    2011-03-01

    While successful magnetic tumor targeting of iron oxide nanoparticles has been achieved in a number of models, the rapid blood clearance of magnetically suitable particles by the reticuloendothelial system (RES) limits their availability for targeting. This work aimed to develop a long-circulating magnetic iron oxide nanoparticle (MNP) platform capable of sustained tumor exposure via the circulation and, thus, potentially enhanced magnetic tumor targeting. Aminated, cross-linked starch (DN) and aminosilane (A) coated MNPs were successfully modified with 5 kDa (A5, D5) or 20 kDa (A20, D20) polyethylene glycol (PEG) chains using simple N-Hydroxysuccinimide (NHS) chemistry and characterized. Identical PEG-weight analogues between platforms (A5 & D5, A20 & D20) were similar in size (140-190 nm) and relative PEG labeling (1.5% of surface amines - A5/D5, 0.4% - A20/D20), with all PEG-MNPs possessing magnetization properties suitable for magnetic targeting. Candidate PEG-MNPs were studied in RES simulations in vitro to predict long-circulating character. D5 and D20 performed best showing sustained size stability in cell culture medium at 37 °C and 7 (D20) to 10 (D5) fold less uptake in RAW264.7 macrophages when compared to previously targeted, unmodified starch MNPs (D). Observations in vitro were validated in vivo, with D5 (7.29 h) and D20 (11.75 h) showing much longer half-lives than D (0.12 h). Improved plasma stability enhanced tumor MNP exposure 100 (D5) to 150 (D20) fold as measured by plasma AUC(0-∞). Sustained tumor exposure over 24 h was visually confirmed in a 9L-glioma rat model (12 mg Fe/kg) using magnetic resonance imaging (MRI). Findings indicate that a polyethylene glycol modified, cross-linked starch-coated MNP is a promising platform for enhanced magnetic tumor targeting, warranting further study in tumor models. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Reprint of: Ionization probabilities of Ne, Ar, Kr, and Xe by proton impact for different initial states and impact energies

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Miraglia, J. E.

    2018-01-01

    In this contribution we present ab initio results for ionization total cross sections, probabilities at zero impact parameter, and impact parameter moments of order +1 and -1 of Ne, Ar, Kr, and Xe by proton impact in an extended energy range from 100 keV up to 10 MeV. The calculations were performed by using the continuum distorted wave eikonal initial state approximation (CDW-EIS) for energies up to 1 MeV, and using the first Born approximation for larger energies. The convergence of the CDW-EIS to the first Born above 1 MeV is clear in the present results. Our inner-shell ionization cross sections are compared with the available experimental data and with the ECPSSR results. We also include in this contribution the values of the ionization probabilities at the origin, and the impact parameter dependence. These values have been employed in multiple ionization calculations showing very good description of the experimental data. Tables of the ionization probabilities are presented, disaggregated for the different initial bound states, considering all the shells for Ne and Ar, the M-N shells of Kr and the N-O shells of Xe.

  20. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    PubMed Central

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  1. Effect of multiple plasmon excitation on single, double and multiple ionizations of C60 in collisions with fast highly charged Si ions

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Kumar, A.; Tribedi, L. C.

    2007-06-01

    We have investigated the single and multiple ionizations of the C60 molecule in collisions with fast Siq+ projectiles for various projectile charge states (q) between q = 6 and 14. The q-dependence of the ionization cross sections and their ratios is compared with the giant dipole plasmon resonance (GDPR) model. The excellent qualitative agreement with the model in case of single and double ionizations and also a reasonable agreement with the triple (and to some extent with quadruple) ionization (without evaporation) yields signify dominant contributions of the single-, double- and triple-plasmon excitations on the single- and multiple-ionization process.

  2. Characterization of on-target generated tryptic peptides from Giberella zeae conidia spore proteins by means of matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Dong, Hongjuan; Marchetti-Deschmann, Martina; Allmaier, Günter

    2014-01-01

    Traditionally characterization of microbial proteins is performed by a complex sequence of steps with the final step to be either Edman sequencing or mass spectrometry, which generally takes several weeks or months to be complete. In this work, we proposed a strategy for the characterization of tryptic peptides derived from Giberella zeae (anamorph: Fusarium graminearum) proteins in parallel to intact cell mass spectrometry (ICMS) in which no complicated and time-consuming steps were needed. Experimentally, after a simple washing treatment of the spores, the aliquots of the intact G. zeae macro conidia spores solution, were deposited two times onto one MALDI (matrix-assisted laser desorption ionization) mass spectrometry (MS) target (two spots). One spot was used for ICMS and the second spot was subject to a brief on-target digestion with bead-immobilized or non-immobilized trypsin. Subsequently, one spot was analyzed immediately by MALDI MS in the linear mode (ICMS) whereas the second spot containing the digested material was investigated by MALDI MS in the reflectron mode ("peptide mass fingerprint") followed by protonated peptide selection for MS/MS (post source decay (PSD) fragment ion) analysis. Based on the formed fragment ions of selected tryptic peptides a complete or partial amino acid sequence was generated by manual de novo sequencing. These sequence data were used for homology search for protein identification. Finally four different peptides of varying abundances have been identified successfully allowing the verification that our desorbed/ionized surface compounds were indeed derived from proteins. The presence of three different proteins could be found unambiguously. Interestingly, one of these proteins is belonging to the ribosomal superfamily which indicates that not only surface-associated proteins were digested. This strategy minimized the amount of time and labor required for obtaining deeper information on spore preparations within the

  3. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  4. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  5. Copper cladding on polymer surfaces by ionization-assisted deposition

    NASA Astrophysics Data System (ADS)

    Kohno, Tomoki; Tanaka, Kuniaki; Usui, Hiroaki

    2018-03-01

    Copper thin films were prepared on poly(ethylene terephthalate) (PET) and polyimide (PI) substrates by an ionization-assisted vapor deposition method. The films had a polycrystalline structure, and their crystallite size decreased with increasing ion acceleration voltage V a. Ion acceleration was effective in reducing the surface roughness of the films. Cross-sectional transmission electron microscopy revealed that the copper/polymer interface showed increased corrugation with increasing V a. The increase in V a also induced the chemical modification of polymer chains of the PET substrate, but the PI substrate underwent smaller modification after ion bombardment. Most importantly, the adhesion strength between the copper film and the PET substrate increased with increasing V a. It was concluded that ionization-assisted deposition is a promising technique for preparing metal clad layers on flexible polymer substrates.

  6. Demonstration of self-truncated ionization injection for GeV electron beams

    PubMed Central

    Mirzaie, M.; Li, S.; Zeng, M.; Hafz, N. A. M.; Chen, M.; Li, G. Y.; Zhu, Q. J.; Liao, H.; Sokollik, T.; Liu, F.; Ma, Y. Y.; Chen, L.M.; Sheng, Z. M.; Zhang, J.

    2015-01-01

    Ionization-induced injection mechanism was introduced in 2010 to reduce the laser intensity threshold for controllable electron trapping in laser wakefield accelerators (LWFA). However, usually it generates electron beams with continuous energy spectra. Subsequently, a dual-stage target separating the injection and acceleration processes was regarded as essential to achieve narrow energy-spread electron beams by ionization injection. Recently, we numerically proposed a self-truncation scenario of the ionization injection process based upon overshooting of the laser-focusing in plasma which can reduce the electron injection length down to a few hundred micrometers, leading to accelerated beams with extremely low energy-spread in a single-stage. Here, using 100 TW-class laser pulses we report experimental observations of this injection scenario in centimeter-long plasma leading to the generation of narrow energy-spread GeV electron beams, demonstrating its robustness and scalability. Compared with the self-injection and dual-stage schemes, the self-truncated ionization injection generates higher-quality electron beams at lower intensities and densities, and is therefore promising for practical applications. PMID:26423136

  7. Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression

    PubMed Central

    2009-01-01

    Background Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Results Using parallel oligonucleotide array platforms, shared orthologues between species were identified and normalized. The osteosarcoma expression signatures could not distinguish the canine and human diseases by hierarchical clustering. Cross-species target mining identified two genes, interleukin-8 (IL-8) and solute carrier family 1 (glial high affinity glutamate transporter), member 3 (SLC1A3), which were uniformly expressed in dog but not in all pediatric osteosarcoma patient samples. Expression of these genes in an independent population of pediatric osteosarcoma patients was associated with poor outcome (p = 0.020 and p = 0.026, respectively). Validation of IL-8 and SLC1A3 protein expression in pediatric osteosarcoma tissues further supported the potential value of these novel targets. Ongoing evaluation will validate the biological significance of these targets and their associated pathways. Conclusions Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapies. PMID:20028558

  8. Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.

    2013-12-01

    Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.

  9. Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter

    NASA Astrophysics Data System (ADS)

    Davis, Paul F.

    In this work we demonstrate spectrally resolved x-ray scattering from electron-plasma waves in shock-compressed deuterium and proton-heated matter. Because the spectral signature of inelastic x-ray scattering is strongly dependent on the free electron density of the system, it is used to infer ionization in dynamically heated samples. Using 2-6 ns, 500 J laser pulses from LLNL's Janus laser, we shocked liquid deuterium to pressures approaching 50 GPa, reaching compressions of 4 times liquid density. A second laser produced intense 2 keV x-rays. By collecting and spectrally dispersing forward scattered photons at 45°, the onset of ionization was detected at compressions of about 3 times in the form of plasmon oscillations. Backscattered x-rays bolstered this observation by measuring the free electron distribution through Compton scattering. Comparison with simulations shows very close agreement between the pressure dependence of ionization and molecular dissociation in dynamically compressed deuterium. In a second set of experiments, a 10 ps, 200 J Titan laser pulse was split into two beams. One created a stream of MeV protons to heat samples of boron and boron-nitride and the other pumped 4.5 keV K-alpha radiation in a titanium foil to probe the hot target. We observed scattered x-rays 300 ps after heating, noting a strong difference in average ionization between the two target materials at temperatures of 16 eV and very similar mass densities. Comparison with electron structure calculations suggests that this difference is due to a persistence of long-range ion structure in BN resulting in high-temperature band structure. These results underscore the importance of understanding the complex electron structure of materials even at electron-volt temperatures and gigapascal pressures. Our results provide new data to guide the theoretical modeling of warm, dense matter important to understanding giant planets and inertial fusion targets.

  10. Neutron-induced fission cross section measurement of 233U, 241Am and 243Am in the energy range 0.5 MeV En 20 MeV at n TOF at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belloni, F.; Milazzo, P. M.; Calviani, M.

    2012-01-01

    Neutron-induced fission cross section measurements of 233U, 243Am and 241Am relative to 235U have been carried out at the neutron time-of-flight facility n TOF at CERN. A fast ionization chamber has been employed. All samples were located in the same detector; therefore the studied elements and the reference 235U target are subject to the same neutron beam.

  11. Ionizing Radiation–Inducible miR-27b Suppresses Leukemia Proliferation via Targeting Cyclin A2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bo; Li, Dongping; Kovalchuk, Anna

    2014-09-01

    Purpose: Ionizing radiation is a common carcinogen that is important for the development of leukemia. However, the underlying epigenetic mechanisms remain largely unknown. The goal of the study was to explore microRNAome alterations induced by ionizing radiation (IR) in murine thymus, and to determine the role of IR-inducible microRNA (miRNA/miR) in the development of leukemia. Methods and Materials: We used the well-established C57BL/6 mouse model and miRNA microarray profiling to identify miRNAs that are differentially expressed in murine thymus in response to irradiation. TIB152 human leukemia cell line was used to determine the role of estrogen receptor–α (ERα) in miR-27bmore » transcription. The biological effects of ectopic miR-27b on leukemogenesis were measured by western immunoblotting, cell viability, apoptosis, and cell cycle analyses. Results: Here, we have shown that IR triggers the differential expression of miR-27b in murine thymus tissue in a dose-, time- and sex-dependent manner. miR-27b was significantly down-regulated in leukemia cell lines CCL119 and TIB152. Interestingly, ERα was overexpressed in those 2 cell lines, and it was inversely correlated with miR-27b expression. Therefore, we used TIB152 as a model system to determine the role of ERα in miR-27b expression and the contribution of miR-27b to leukemogenesis. β-Estradiol caused a rapid and transient reduction in miR-27b expression reversed by either ERα-neutralizing antibody or ERK1/2 inhibitor. Ectopic expression of miR-27b remarkably suppressed TIB152 cell proliferation, at least in part, by inducing S-phase arrest. In addition, it attenuated the expression of cyclin A2, although it had no effect on the levels of PCNA, PPARγ, CDK2, p21, p27, p-p53, and cleaved caspase-3. Conclusion: Our data reveal that β-estradiol/ERα signaling may contribute to the down-regulation of miR-27b in acute leukemia cell lines through the ERK1/2 pathway, and that miR-27b may function as a

  12. An atomic model for neutral and singly ionized uranium

    NASA Technical Reports Server (NTRS)

    Maceda, E. L.; Miley, G. H.

    1979-01-01

    A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.

  13. Experimental Resonance Enhanced Multiphoton Ionization (REMPI) studies of small molecules

    NASA Technical Reports Server (NTRS)

    Dehmer, J. L.; Dehmer, P. M.; Pratt, S. T.; Ohalloran, M. A.; Tomkins, F. S.

    1987-01-01

    Resonance enhanced multiphoton ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. An overview of current studies of excited molecular states is given to illustrate the principles and prospects of REMPI.

  14. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    PubMed

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  15. Dark Matter Detection Using Helium Evaporation and Field Ionization

    NASA Astrophysics Data System (ADS)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  16. Filamentation instability of a fast electron beam in a dielectric target.

    PubMed

    Debayle, A; Tikhonchuk, V T

    2008-12-01

    High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper proposes an analytical description of the filamentation instability of an electron beam propagating through an insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast beam provides free electrons for the neutralization current.

  17. Acid-triggered core cross-linked nanomicelles for targeted drug delivery and magnetic resonance imaging in liver cancer cells

    PubMed Central

    Li, Xian; Li, Hao; Yi, Wei; Chen, Jianyu; Liang, Biling

    2013-01-01

    Purpose To research the acid-triggered core cross-linked folate-poly(ethylene glycol)-b-poly[N-(N′,N′-diisopropylaminoethyl) glutamine] (folated-PEG-P[GA-DIP]) amphiphilic block copolymer for targeted drug delivery and magnetic resonance imaging (MRI) in liver cancer cells. Methods As an appropriate receptor of protons, the N,N-diisopropyl tertiary amine group (DIP) was chosen to conjugate with the side carboxyl groups of poly(ethylene glycol)-b-poly (L-glutamic acid) to obtain PEG-P(GA-DIP) amphiphilic block copolymers. By ultrasonic emulsification, PEG-P(GA-DIP) could be self-assembled to form nanosized micelles loading doxorubicin (DOX) and superparamagnetic iron oxide nanoparticles (SPIONs) in aqueous solution. When PEG-P(GA-DIP) nanomicelles were combined with folic acid, the targeted effect of folated-PEG-P(GA-DIP) nanomicelles was evident in the fluorescence and MRI results. Results To further increase the loading efficiency and the cell-uptake of encapsulated drugs (DOX and SPIONs), DIP (pKa≈6.3) groups were linked with ~50% of the side carboxyl groups of poly(L-glutamic acid) (PGA), to generate the core cross-linking under neutral or weakly acidic conditions. Under the acidic condition (eg, endosome/lysosome), the carboxyl groups were neutralized to facilitate disassembly of the P(GA-DIP) blocks’ cross-linking, for duly accelerating the encapsulated drug release. Combined with the tumor-targeting effect of folic acid, specific drug delivery to the liver cancer cells and MRI diagnosis of these cells were greatly enhanced. Conclusion Acid-triggered and folate-decorated nanomicelles encapsulating SPIONs and DOX, facilitate the targeted MRI diagnosis and therapeutic effects in tumors. PMID:23976852

  18. Adaptive Identification and Characterization of Polar Ionization Patches

    NASA Technical Reports Server (NTRS)

    Coley, W. R.; Heelis, R. A.

    1995-01-01

    Dynamics Explorer 2 (DE 2) spacecraft data are used to detect and characterize polar cap 'ionization patches' loosely defined as large-scale (greater than 100 km) regions where the F region plasma density is significantly enhanced (approx greater than 100%) above the background level. These patches are generally believed to develop in or equatorward of the dayside cusp region and then drift in an antisunward direction over the polar cap. We have developed a flexible algorithm for the identification and characterization of these structures, as a function of scale-size and density enhancement, using data from the retarding potential analyzer, the ion drift meter, and the langmuir probe on board the DE 2 satellite. This algorithm was used to study the structure and evolution of ionization patches as they cross the polar cap. The results indicate that in the altitude region from 240 to 950 km ion density enhancements greater than a factor of 3 above the background level are relatively rare. Further, the ionization patches show a preferred horizontal scale size of 300-400 km. There exists a clear seasonal and universal time dependence to the occurrence frequency of patches with a northern hemisphere maximum centered on the winter solstice and the 1200-2000 UT interval.

  19. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  20. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  1. Cross sections for electron collisions with nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itikawa, Yukikazu, E-mail: yukitikawa@nifty.com

    Cross section data are reviewed for electron collisions with nitric oxide. Collision processes considered are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature (up to the end of 2015), recommended values of the cross section are determined, as far as possible.

  2. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; McCrory, R. L.

    2016-04-15

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm{sup 3} and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T < 50 eV). The orbital-free molecular dynamics method is only used to gauge the average ionization behavior of CH under the average-atommore » model in conjunction with the pressure-matching mixing rule. The thermal conductivities (κ{sub QMD}) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted with a generalized Coulomb logarithm [(lnΛ){sub QMD}] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted ∼20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  3. Study of elastic and inelastic cross sections by positron impact on inert gases

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2018-04-01

    In this article, a modified computational method recently introduced is used for the calculation of total, positronium (Ps) formation and ionization cross sections including direct and total ionization cross sections for positron scattering from noble gases. The incident positron is assumed to have energies over a wide range from 5 eV to 5 keV. The positron-atom interaction potential is developed under an optical potential framework and the computations of cross sections for each process are performed by introducing appropriate absorption thresholds. The calculated results obtained by employing this modified approach are found to be in reasonably good agreement with most of the existing data.

  4. Computational approach for elucidating interactions of cross-species miRNAs and their targets in Flaviviruses.

    PubMed

    Shinde, Santosh P; Banerjee, Amit Kumar; Arora, Neelima; Murty, U S N; Sripathi, Venkateswara Rao; Pal-Bhadra, Manika; Bhadra, Utpal

    2015-03-01

    Combating viral diseases has been a challenging task since time immemorial. Available molecular approaches are limited and not much effective for this daunting task. MicroRNA based therapies have shown promise in recent times. MicroRNAs are tiny non-coding RNAs that regulate translational repression of target mRNA in highly specific manner. In this study, we have determined the target regions for human and viral microRNAs in the conserved genomic regions of selected viruses of Flaviviridae family using miRanda and performed a comparative target selectivity analysis among them. Specific target regions were determined and they were compared extensively among themselves by exploring their position to determine the vicinity. Based on the multiplicity and cooperativity analysis, interaction maps were developed manually to represent the interactions between top-ranking miRNAs and genomes of the viruses considered in this study. Self-organizing map (SOM) was used to cluster the best-ranked microRNAs based on the vital physicochemical properties. This study will provide deep insight into the interrelation of the viral and human microRNAs interactions with the selected Flaviviridae genomes and will help to identify cross-species microRNA targets on the viral genome.

  5. Ionization Waves of Arbitrary Velocity

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Franke, P.; Katz, J.; Palastro, J. P.; Begishev, I. A.; Boni, R.; Bromage, J.; Milder, A. L.; Shaw, J. L.; Froula, D. H.

    2018-06-01

    Flying focus is a technique that uses a chirped laser beam focused by a highly chromatic lens to produce an extended focal region within which the peak laser intensity can propagate at any velocity. When that intensity is high enough to ionize a background gas, an ionization wave will track the intensity isosurface corresponding to the ionization threshold. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced that propagated both forward and backward relative to the ionizing laser. All backward and all superluminal cases mitigated the issue of ionization-induced refraction that typically inhibits the formation of long, contiguous plasma channels.

  6. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  7. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Huaming; Yang, Bo; Mao, Xianglei

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  8. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE PAGES

    Hou, Huaming; Yang, Bo; Mao, Xianglei; ...

    2018-05-10

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  9. Ambient diode laser desorption dielectric barrier discharge ionization mass spectrometry of nonvolatile chemicals.

    PubMed

    Gilbert-López, Bienvenida; Schilling, Michael; Ahlmann, Norman; Michels, Antje; Hayen, Heiko; Molina-Díaz, Antonio; García-Reyes, Juan F; Franzke, Joachim

    2013-03-19

    In this work, the combined use of desorption by a continuous wave near-infrared diode laser and ionization by a dielectric barrier discharge-based probe (laser desorption dielectric barrier discharge ionization mass spectrometry (LD-DBDI-MS)) is presented as an ambient ionization method for the mass spectrometric detection of nonvolatile chemicals on surfaces. A separation of desorption and ionization processes could be verified. The use of the diode laser is motivated by its low cost, ease of use, and small size. To achieve an efficient desorption, the glass substrates are coated at the back side with a black point (target point, where the sample is deposited) in order to absorb the energy offered by the diode laser radiation. Subsequent ionization is accomplished by a helium plasmajet generated in the dielectric barrier discharge source. Examples on the application of this approach are shown in both positive and negative ionization modes. A wide variety of multiclass species with low vapor pressure were tested including pesticides, pharmaceuticals and explosives (reserpine, roxithromycin, propazine, prochloraz, spinosad, ampicillin, dicloxacillin, enrofloxacin, tetracycline, oxytetracycline, erythromycin, spinosad, cyclo-1,3,5,7-tetramethylene tetranitrate (HMX), and cyclo-1,3,5-trimethylene trinitramine (RDX)). A comparative evaluation revealed that the use of the laser is advantageous, compared to just heating the substrate surface.

  10. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  11. Perturbative calculation of two-photon double electron ionization of helium

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2008-05-01

    We report the total integrated cross-section (TICS) of two-photon double ionization of helium in the photon energy range from 40 to 54 eV. We compute the TICS in the lowest order perturbation theory (LOPT) using the length and Kramers-Henneberger gauges of the electromagnetic interaction. Our findings indicate that the LOPT gives results for the TICS in agreement with our earlier non-perturbative calculations.

  12. Absolute photoionization cross sections of furanic fuels: 2-ethylfuran, 2-acetylfuran and furfural.

    PubMed

    Smith, Audrey R; Meloni, Giovanni

    2015-11-01

    Absolute photoionization cross sections of the molecules 2-ethylfuran, 2-acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time-of-flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS-QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Ultrasound ionization of biomolecules.

    PubMed

    Wu, Chen-I; Wang, Yi-Sheng; Chen, Nelson G; Wu, Chung-Yi; Chen, Chung-Hsuan

    2010-09-15

    To date, mass spectrometric analysis of biomolecules has been primarily performed with either matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI). In this work, ultrasound produced by a simple piezoelectric device is shown as an alternative method for soft ionization of biomolecules. Precursor ions of proteins, saccharides and fatty acids showed little fragmentation. Cavitation is considered as a primary mechanism for the ionization of biomolecules. Copyright 2010 John Wiley & Sons, Ltd.

  14. A robust algorithm for automated target recognition using precomputed radar cross sections

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.; Lanterman, Aaron D.

    2004-09-01

    Passive radar is an emerging technology that offers a number of unique benefits, including covert operation. Many such systems are already capable of detecting and tracking aircraft. The goal of this work is to develop a robust algorithm for adding automated target recognition (ATR) capabilities to existing passive radar systems. In previous papers, we proposed conducting ATR by comparing the precomputed RCS of known targets to that of detected targets. To make the precomputed RCS as accurate as possible, a coordinated flight model is used to estimate aircraft orientation. Once the aircraft's position and orientation are known, it is possible to determine the incident and observed angles on the aircraft, relative to the transmitter and receiver. This makes it possible to extract the appropriate radar cross section (RCS) from our simulated database. This RCS is then scaled to account for propagation losses and the receiver's antenna gain. A Rician likelihood model compares these expected signals from different targets to the received target profile. We have previously employed Monte Carlo runs to gauge the probability of error in the ATR algorithm; however, generation of a statistically significant set of Monte Carlo runs is computationally intensive. As an alternative to Monte Carlo runs, we derive the relative entropy (also known as Kullback-Liebler distance) between two Rician distributions. Since the probability of Type II error in our hypothesis testing problem can be expressed as a function of the relative entropy via Stein's Lemma, this provides us with a computationally efficient method for determining an upper bound on our algorithm's performance. It also provides great insight into the types of classification errors we can expect from our algorithm. This paper compares the numerically approximated probability of Type II error with the results obtained from a set of Monte Carlo runs.

  15. Ionization Waves of Arbitrary Velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnbull, D.; Franke, P.; Katz, J.

    The flying focus is a technique in which a chirped laser beam is focused by a chromatic lens to produce an extended focal spot within which laser intensity can propagate at any velocity. If the intensity is above the ionization threshold of a background gas, an ionization wave will track the ionization threshold intensity isosurface as it propagates. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced, both forward- and backward-propagating relative to the ionizing laser. In conclusion, all backward and all superluminal cases mitigated the issue of ionization-induced refractionmore » that typically challenges the formation of long, contiguous plasma channels.« less

  16. Ionization Waves of Arbitrary Velocity

    DOE PAGES

    Turnbull, D.; Franke, P.; Katz, J.; ...

    2018-05-31

    The flying focus is a technique in which a chirped laser beam is focused by a chromatic lens to produce an extended focal spot within which laser intensity can propagate at any velocity. If the intensity is above the ionization threshold of a background gas, an ionization wave will track the ionization threshold intensity isosurface as it propagates. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced, both forward- and backward-propagating relative to the ionizing laser. In conclusion, all backward and all superluminal cases mitigated the issue of ionization-induced refractionmore » that typically challenges the formation of long, contiguous plasma channels.« less

  17. Charge segregation in weakly ionized microgels

    DOE PAGES

    Hyatt, John S.; Douglas, Alison M.; Stanley, Chris; ...

    2017-01-19

    Here we investigate microgels synthesized from N-isopropylacrylamide (NIPAM) copolymerized with a large mol% of acrylic acid, finding that when the acid groups are partially ionized at high temperatures, competition between ion-induced swelling and hydrophobic deswelling of poly(NIPAM) chains results in microphase separation. In cross-linked microgels, this manifests as a dramatic decrease in the ratio between the radius of gyration and the hydrodynamic radius to ~0.2, indicating that almost all the mass of the microgel is concentrated near the particle center. We also observe a concurrent decrease of the polymer network length scale via small-angle neutron scattering, confirming the presence ofmore » a dense, deswollen core surrounded by a diffuse, charged periphery. We compare these results to those obtained for a system of charged ultralow-cross-linked microgels; the form factor shows a distinct peak at high q when the temperature exceeds a threshold value. Lastly, we successfully fit the form factor to theory developed to describe scattering from weakly charged gels in poor solvents, and we tie this behavior to charge segregation in the case of the cross-linked microgels.« less

  18. Preparation of iridium targets by electrodeposition for neutron capture cross section measurements

    DOE PAGES

    Bond, Evelyn M.; Moody, W. Allen; Arnold, Charles; ...

    2016-03-01

    Here, the preparation of 191Ir and 193Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4–1 mg/cm 2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191Ir and 193Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475.

  19. The relation between societal factors and different forms of prejudice: A cross-national approach on target-specific and generalized prejudice.

    PubMed

    Meeusen, Cecil; Kern, Anna

    2016-01-01

    The goal of this paper was to investigate the generalizability of prejudice across contexts by analyzing associations between different types of prejudice in a cross-national perspective and by investigating the relation between country-specific contextual factors and target-specific prejudices. Relying on the European Social Survey (2008), results indicated that prejudices were indeed positively associated, confirming the existence of a generalized prejudice component. Next to substantial cross-national differences in associational strength, also within country variance in target-specific associations was observed. This suggested that the motivations for prejudice largely vary according to the intergroup context. Two aspects of the intergroup context - economic conditions and cultural values - showed to be related to generalized and target-specific components of prejudice. Future research on prejudice and context should take an integrative approach that considers both the idea of generalized and specific prejudice simultaneously. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Tunable Ionization Modes of a Flowing Atmospheric-Pressure Afterglow (FAPA) Ambient Ionization Source.

    PubMed

    Badal, Sunil P; Michalak, Shawn D; Chan, George C-Y; You, Yi; Shelley, Jacob T

    2016-04-05

    Plasma-based ambient desorption/ionization sources are versatile in that they enable direct ionization of gaseous samples as well as desorption/ionization of analytes from liquid and solid samples. However, ionization matrix effects, caused by competitive ionization processes, can worsen sensitivity or even inhibit detection all together. The present study is focused on expanding the analytical capabilities of the flowing atmospheric-pressure afterglow (FAPA) source by exploring additional types of ionization chemistry. Specifically, it was found that the abundance and type of reagent ions produced by the FAPA source and, thus, the corresponding ionization pathways of analytes, can be altered by changing the source working conditions. High abundance of proton-transfer reagent ions was observed with relatively high gas flow rates and low discharge currents. Conversely, charge-transfer reagent species were most abundant at low gas flows and high discharge currents. A rather nonpolar model analyte, biphenyl, was found to significantly change ionization pathway based on source operating parameters. Different analyte ions (e.g., MH(+) via proton-transfer and M(+.) via charge-transfer) were formed under unique operating parameters demonstrating two different operating regimes. These tunable ionization modes of the FAPA were used to enable or enhance detection of analytes which traditionally exhibit low-sensitivity in plasma-based ADI-MS analyses. In one example, 2,2'-dichloroquaterphenyl was detected under charge-transfer FAPA conditions, which were difficult or impossible to detect with proton-transfer FAPA or direct analysis in real-time (DART). Overall, this unique mode of operation increases the number and range of detectable analytes and has the potential to lessen ionization matrix effects in ADI-MS analyses.

  1. Fragmentation Cross Sections of Medium-Energy 35Cl, 40Ar, and 48TiBeams on Elemental Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, C.; Guetersloh, S.; Heilbronn, L.

    Charge-changing and fragment production cross sections at 0degrees have been obtained for interactions of 290, 400, and 650MeV/nucleon 40Ar beams, 650 and 1000 MeV/nucleon 35Cl beams, and a 1000MeV/nucleon 48Ti beam. Targets of C, CH2, Al, Cu, Sn, and Pb were used.Using standard analysis methods, we obtain fragment cross sections forcharges as low as 8 for Cl and Ar beams, and as low as 10 for the Tibeam. Using data obtained with small-acceptance detectors, we reportfragment production cross sections for charges as low as 5, corrected foracceptance using a simple model of fragment angular distributions. Withthe lower-charged fragment cross sections,more » we cancompare the data topredictions from several models (including NUCFRG2, EPAX2, and PHITS) ina region largely unexplored in earlier work. As found in earlier workwith other beams, NUCFRG2 and PHITS predictions agree reasonably wellwith the data for charge-changing cross sections, but do not accuratelypredict the fragment production cross sections. The cross sections forthe lightest fragments demonstrate the inadequacy of several models inwhich the cross sections fall monotonically with the charge of thefragment. PHITS, despite not agreeing particularly well with the fragmentproduction cross sections on average, nonetheless qualitativelyreproduces somesignificant features of the data that are missing from theother models.« less

  2. Highly ionized physical vapor deposition plasma source working at very low pressure

    NASA Astrophysics Data System (ADS)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.

    2012-04-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.

  3. A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.

    2006-01-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.

  4. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils.

    PubMed

    Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Plasma diagnosis as a tool for the determination of the parameters of electron beam evaporation and sources of ionization

    NASA Astrophysics Data System (ADS)

    Mukherjee, Jaya; Dileep Kumar, V.; Yadav, S. P.; Barnwal, Tripti A.; Dikshit, Biswaranjan

    2016-07-01

    The atomic vapor generated by electron beam heating is partially ionized due to atom-atom collisions (Saha ionization) and electron impact ionization, which depend upon the source temperature and area of evaporation as compared to the area of electron beam bombardment on the target. When electron beam evaporation is carried out by inserting the target inside an insulating liner to reduce conductive heat loss, it is expected that the area of evaporation becomes significantly more than the area of electron beam bombardment on the target, resulting in reduced electron impact ionization. To assess this effect and to quantify the parameters of evaporation, such as temperature and area of evaporation, we have carried out experiments using zirconium, tin and aluminum as a target. By measuring the ion content using a Langmuir probe, in addition to measuring the atomic vapor flux at a specific height, and by combining the experimental data with theoretical expressions, we have established a method for simultaneously inferring the source temperature, evaporation area and ion fraction. This assumes significance because the temperature cannot be reliably measured by an optical pyrometer due to the wavelength dependent source emissivity and reflectivity of thin film mirrors. In addition, it also cannot be inferred from only the atomic flux data at a certain height as the area of evaporation is unknown (it can be much more than the area of electron bombardment, especially when the target is placed in a liner). Finally, the reason for the lower observed electron temperatures of the plasma for all the three cases is found to be the energy loss due to electron impact excitation of the atomic vapor during its expansion from the source.

  6. Gold-Containing Indoles as Anti-Cancer Agents that Potentiate the Cytotoxic Effects of Ionizing Radiation

    PubMed Central

    Craig, Sandra; Gao, Lei; Lee, Irene; Gray, Thomas; Berdis, Anthony J.

    2012-01-01

    This report describes the design and application of several distinct gold-containing indoles as anti-cancer agents. When used individually, all gold-bearing compounds display cytostatic effects against leukemia and adherent cancer cell lines. However, two gold-bearing indoles show unique behavior by increasing the cytotoxic effects of clinically relevant levels of ionizing radiation. Quantifying the amount of DNA damage demonstrates that each gold-indole enhances apoptosis by inhibiting DNA repair. Both Au(I)-indoles were tested for inhibitory effects against various cellular targets including thioredoxin reductase, a known target of several gold compounds, and various ATP-dependent kinases. While neither compound significantly inhibits the activity of thioreoxin reductase, both showed inhibitory effects against several kinases associated with cancer initiation and progression. The inhibition of these kinases provides a possible mechanism for the ability of these Au(I)-indoles potentiate the cytotoxic effects of ionizing radiation. Clinical applications of combining Au(I)-indoles with ionizing radiation are discussed as a new strategy to achieve chemosensitization of cancer cells. PMID:22289037

  7. Herschel Galactic plane survey of ionized gas traced by [NII

    NASA Astrophysics Data System (ADS)

    Yildiz, Umut; Goldsmith, Paul; Pineda, Jorge; Langer, William

    2015-01-01

    Far infrared and sub-/millimeter atomic & ionic fine structure and molecular rotational lines are powerful tracers of star formation on both Galactic and extragalactic scales. Although CO lines trace cool to moderately warm molecular gas, ionized carbon [CII] produces the strongest lines, which arise from almost all reasonably warm (T>50 K) parts of the ISM. However, [CII] alone cannot distinguish highly ionized gas from weakly ionized gas. [NII] plays a significant role in star formation as it is produced only in ionized regions; in [HII] regions as well as diffuse ionized gas. The ionization potential of nitrogen (14.5 eV) is greater than that of hydrogen (13.6 eV), therefore the ionized nitrogen [NII] lines reflect the effects of massive stars, with possible enhancement from X-ray and shock heating from the surroundings. Two far-infrared 122 um and 205 um [NII] fine structure spectral lines are targeted via Photodetector Array Camera and Spectrometer (PACS) onboard Herschel Space Observatory. The sample consists of 149 line-of-sight (LOS) positions in the Galactic plane. These positions overlap with the [CII] 158 um observations obtained with the GOT C+ survey. With a reasonable assumption that the emission from both 122 um and 205 um lines originate in the same gas; [NII] 122/205 um line ratio indicates the a good measure of the electron density of each of the LOS positions. [NII] detections are mainly toward the Galactic center direction and the [NII] electron densities are found between 7-50 cm^-3, which is enhanced WIM (Warm Ionized Medium). WIM densities are expected to be much lower (~1 cm-3), therefore non-detections toward the opposite side of the Galactic Center shows abundant of this gas. The pixel to pixel variation of the emission within a single Herschel pointing is relatively small, which is interpreted as the [NII] emission comes from an extended gas. It is important to quantify what fraction of [CII] emission arises in the ionized gas. Thus, with

  8. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  9. Calculation of (n,α) reaction cross sections by using some Skyrme force parameters for Potassium (41K) target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Alkanli, Hasancan; Sahan, Halide; Yigit, Mustafa

    2017-09-01

    In this study, the (n,α) nuclear reaction cross section was calculated for 41K target nuclei for neutron and proton density parameters using SKa, SKb, SLy5, and SLy6 Skyrme force. Theoretical cross section for the (n,α) nuclear reaction was obtained using a formula constituted by Tel et al. (2008). Results are compared with experimental data from EXFOR. The calculated results from formula was found in a close agreement with experimental data.

  10. Empirical Observations on the Sensitivity of Hot Cathode Ionization Type Vacuum Gages

    NASA Technical Reports Server (NTRS)

    Summers, R. L.

    1969-01-01

    A study of empirical methods of predicting tile relative sensitivities of hot cathode ionization gages is presented. Using previously published gage sensitivities, several rules for predicting relative sensitivity are tested. The relative sensitivity to different gases is shown to be invariant with gage type, in the linear range of gage operation. The total ionization cross section, molecular and molar polarizability, and refractive index are demonstrated to be useful parameters for predicting relative gage sensitivity. Using data from the literature, the probable error of predictions of relative gage sensitivity based on these molecular properties is found to be about 10 percent. A comprehensive table of predicted relative sensitivities, based on empirical methods, is presented.

  11. A novel neural network based image reconstruction model with scale and rotation invariance for target identification and classification for Active millimetre wave imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Smriti; Bisht, Amit Singh; Singh, Dharmendra; Pathak, Nagendra Prasad

    2014-12-01

    Millimetre wave imaging (MMW) is gaining tremendous interest among researchers, which has potential applications for security check, standoff personal screening, automotive collision-avoidance, and lot more. Current state-of-art imaging techniques viz. microwave and X-ray imaging suffers from lower resolution and harmful ionizing radiation, respectively. In contrast, MMW imaging operates at lower power and is non-ionizing, hence, medically safe. Despite these favourable attributes, MMW imaging encounters various challenges as; still it is very less explored area and lacks suitable imaging methodology for extracting complete target information. Keeping in view of these challenges, a MMW active imaging radar system at 60 GHz was designed for standoff imaging application. A C-scan (horizontal and vertical scanning) methodology was developed that provides cross-range resolution of 8.59 mm. The paper further details a suitable target identification and classification methodology. For identification of regular shape targets: mean-standard deviation based segmentation technique was formulated and further validated using a different target shape. For classification: probability density function based target material discrimination methodology was proposed and further validated on different dataset. Lastly, a novel artificial neural network based scale and rotation invariant, image reconstruction methodology has been proposed to counter the distortions in the image caused due to noise, rotation or scale variations. The designed neural network once trained with sample images, automatically takes care of these deformations and successfully reconstructs the corrected image for the test targets. Techniques developed in this paper are tested and validated using four different regular shapes viz. rectangle, square, triangle and circle.

  12. Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection

    PubMed Central

    Dadachova, Ekaterina; Nakouzi, Antonio; Bryan, Ruth A.; Casadevall, Arturo

    2003-01-01

    There is an urgent need for new antimicrobial therapies to combat drug resistance, new pathogens, and the relative inefficacy of current therapy in compromised hosts. Ionizing radiation can kill microorganisms quickly and efficiently, but this modality has not been exploited as a therapeutic antimicrobial strategy. We have developed methods to target ionizing radiation to a fungal cell by labeling a specific mAb with the therapeutic radioisotopes Rhenium-188 and Bismuth-213. Radiolabeled antibody killed cells of human pathogenic fungus Cryptococcus neoformans in vitro, thus converting an antibody with no inherent antifungal activity into a microbicidal molecule. Administration of radiolabeled antibody to mice with C. neoformans infection delivered 213Bi and 188Re to the sites of infection, reduced their organ fungal burden, and significantly prolonged their survival without apparent toxicity. This study establishes the principle that targeted radiation can be used for the therapy of an infectious disease, and suggests that it may have wide applicability as an antimicrobial strategy. PMID:12930899

  13. Ionizing radiation delivered by specific antibody is therapeutic against a fungal infection

    NASA Astrophysics Data System (ADS)

    Dadachova, Ekaterina; Nakouzi, Antonio; Bryan, Ruth A.; Casadevall, Arturo

    2003-09-01

    There is an urgent need for new antimicrobial therapies to combat drug resistance, new pathogens, and the relative inefficacy of current therapy in compromised hosts. Ionizing radiation can kill microorganisms quickly and efficiently, but this modality has not been exploited as a therapeutic antimicrobial strategy. We have developed methods to target ionizing radiation to a fungal cell by labeling a specific mAb with the therapeutic radioisotopes Rhenium-188 and Bismuth-213. Radiolabeled antibody killed cells of human pathogenic fungus Cryptococcus neoformans in vitro, thus converting an antibody with no inherent antifungal activity into a microbicidal molecule. Administration of radiolabeled antibody to mice with C. neoformans infection delivered 213Bi and 188Re to the sites of infection, reduced their organ fungal burden, and significantly prolonged their survival without apparent toxicity. This study establishes the principle that targeted radiation can be used for the therapy of an infectious disease, and suggests that it may have wide applicability as an antimicrobial strategy.

  14. Electron-impact Ionization of P-like Ions Forming Si-like Ions

    NASA Astrophysics Data System (ADS)

    Kwon, D.-H.; Savin, D. W.

    2014-03-01

    We have calculated electron-impact ionization (EII) for P-like systems from P to Zn15 + forming Si-like ions. The work was performed using the flexible atomic code (FAC) which is based on a distorted-wave approximation. All 3l → nl' (n = 3-35) excitation-autoionization (EA) channels near the 3p direct ionization threshold and 2l → nl' (n = 3-10) EA channels at the higher energies are included. Close attention has been paid to the detailed branching ratios. Our calculated total EII cross sections are compared both with previous FAC calculations, which omitted many of these EA channels, and with the available experimental results. Moreover, for Fe11 +, we find that part of the remaining discrepancies between our calculations and recent measurements can be accounted for by the inclusion of the resonant excitation double autoionization process. Lastly, at the temperatures where each ion is predicted to peak in abundances in collisional ionization equilibrium, the Maxwellian rate coefficients derived from our calculations differ by 50%-7% from the previous FAC rate coefficients, with the difference decreasing with increasing charge.

  15. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  16. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  17. Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Y. Y.; Ning, L. N.; Wang, J. G.

    2013-12-15

    Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ε/I{sub 2p} (I{sub 2p} is the ionizationmore » energy of 2p state and ε is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δ{sub nl}{sup c}, corresponding to the special plasma condition when the bound state |nl just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δ{sub nl}{sup c}, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.« less

  18. Target-guided separation of Bougainvillea glabra betacyanins by direct coupling of preparative ion-pair high-speed countercurrent chromatography and electrospray ionization mass-spectrometry.

    PubMed

    Jerz, Gerold; Wybraniec, Sławomir; Gebers, Nadine; Winterhalter, Peter

    2010-07-02

    In this study, preparative ion-pair high-speed countercurrent chromatography was directly coupled to an electrospray ionization mass-spectrometry device (IP-HSCCC/ESI-MS-MS) for target-guided fractionation of high molecular weight acyl-oligosaccharide linked betacyanins from purple bracts of Bougainvillea glabra (Nyctaginaceae). The direct identification of six principal acyl-oligosaccharide linked betacyanins in the mass range between m/z 859 and m/z 1359 was achieved by positive ESI-MS ionization and gave access to the genuine pigment profile already during the proceeding of the preparative separation. Inclusively, all MS/MS-fragmentation data were provided during the chromatographic run for a complete analysis of substitution pattern. On-line purity evaluation of the recovered fractions is of high value in target-guided screening procedures and for immediate decisions about suitable fractions used for further structural analysis. The applied preparative hyphenation was shown to be a versatile screening method for on-line monitoring of countercurrent chromatographic separations of polar crude pigment extracts and also traced some minor concentrated compounds. For the separation of 760mg crude pigment extract the biphasic solvent system tert.-butylmethylether/n-butanol/acetonitrile/water 2:2:1:5 (v/v/v/v) was used with addition of ion-pair forming reagent trifluoroacetic acid. The preparative HSCCC-eluate had to be modified by post-column addition of a make-up solvent stream containing formic acid to reduce ion-suppression caused by trifluoroacetic acid and later significantly maximized response of ESI-MS/MS detection of target substances. A variable low-pressure split-unit guided a micro-eluate to the ESI-MS-interface for sensitive and direct on-line detection, and the major volume of the effluent stream was directed to the fraction collector for preparative sample recovery. The applied make-up solvent mixture significantly improved smoothness of the continuously

  19. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  20. Measurements of production cross sections of 10Be and 26Al by 120 GeV and 392 MeV proton bombardment of 89Y, 159Tb, and natCu targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekimoto, S.; Okumura, S.; Yashima, H.

    2015-08-12

    The production cross sections of 10Be and 26Al were measured by accelerator mass spectrometry using 89Y, 159Tb, and natCu targets bombarded by protons with energies E p of 120 GeV and 392 MeV. The production cross sections obtained for 10Be and 26Al were compared with those previously reported using E p = 50 MeV–24 GeV and various targets. It was found that the production cross sections of 10Be monotonically increased with increasing target mass number when the proton energy was greater than a few GeV. On the other hand, it was also found that the production cross sections of 10Bemore » decreased as the target mass number increased from that of carbon to those near the mass numbers of nickel and zinc when the proton energy was below approximately 1 GeV. They also increased as the target mass number increased from near those of nickel and zinc to that of bismuth, in the same proton energy range. Similar results were observed in the production cross sections of 26Al, though the absolute values were quite different between 10Be and 26Al. As a result, the difference between these production cross sections may depend on the impact parameter (nuclear radius) and/or the target nucleus stiffness.« less

  1. Absorption and dissociative photoionization cross sections of NH3 from 80 to 1120 A

    NASA Technical Reports Server (NTRS)

    Samson, James A. R.; Haddad, G. N.; Kilcoyne, L. D.

    1987-01-01

    The total absorption, photoionization, and dissociative photoionization cross sections of ammonia have been measured from 80 to 1120 A. All possible fragment ions have been observed including doubly ionized ammonia. The absolute ionization efficiencies have also been measured in this spectral range. The appearance potentials of the fragment ions have been measured and are compared with the calculated appearance potentials derived from published heats of formation and ionization potentials of the fragments.

  2. Total and dissociative photoionization cross sections of N2 from threshold to 107 eV

    NASA Technical Reports Server (NTRS)

    Samson, James A. R.; Masuoka, T.; Pareek, P. N.; Angel, G. C.

    1986-01-01

    The absolute cross sections for the production of N(+) and N2(+) were measured from the dissociative ionization threshold of 115 A. In addition, the absolute photoabsorption and photoionization cross sections were tabulated between 114 and 796 A. The ionization efficiencies were also given at several discrete wave lengths between 660 and 790 A. The production of N(+) fragment ions are discussed in terms of the doubly excited N2(+) states with binding energies in the range of 24 to 44 eV.

  3. Total and dissociative photoionization cross sections of N2 from threshold to 107 eV

    NASA Technical Reports Server (NTRS)

    Samson, James A. R.; Masuoka, T.; Pareek, P. N.; Angel, G. C.

    1987-01-01

    The absolute cross sections for the production of N(+) and N2(+) have been measured from the dissociative ionization threshold to 115 A. In addition, the absolute photoabsorption and photoionization cross sections are tabulated between 114 and 796 A. The ionization efficiencies are also given at several discrete wavelengths between 660 and 790 A. The production of N(+) fragment ions are discussed in terms of the doubly excited N2(+) states with binding energies in the range 24 to 44 eV.

  4. SR90, strontium shaped-charge critical ionization velocity experiment

    NASA Technical Reports Server (NTRS)

    Wescott, Eugene M.; Stenbaek-Nielsen, Hans; Swift, Daniel W.; Valenzuela, Arnoldo; Rees, David

    1990-01-01

    In May 1986 an experiment was performed to test Alfven's critical ionization velocity (CIV) effect in free space, using the first high explosive shaped charge with a conical liner of strontium metal. The release, made at 540 km altitude at dawn twilight, was aimed at 48 deg to B. The background electron density was 1.5 x 10(exp 4) cu cm. A faint field-aligned Sr(+) ion streak with tip velocity of 2.6 km/s was observed from two optical sites. Using two calibration methods, it was calculated that between 4.5 x 10(exp 20) and 2 x 10(exp 21) ions were visible. An ionization time constant of 1920 s was calculated for Sr from the solar UV spectrum and ionization cross section which combined with a computer simulation of the injection predicts 1.7 x 10(exp 21) solar UV ions in the low-velocity part of the ion streak. Thus all the observed ions are from solar UV ionization of the slow (less than critical) velocity portion of the neutral jet. The observed neutral Sr velocity distribution and computer simulations indicate that 2 x 10(exp 21) solar UV ions would have been created from the fast (greater than critical) part of the jet. They would have been more diffuse, and were not observed. Using this fact it was estimated that any CIV ions created were less than 10(exp 21). It was concluded that future Sr CIV free space experiments should be conducted below the UV shadow height and in much larger background plasma density.

  5. Roles of Tunneling, Multiphoton Ionization, and Cascade Ionization for Femtosecond Optical Breakdown in Aqueous Media

    DTIC Science & Technology

    2009-09-01

    observed in the wavelength dependence of femtosecond breakdown would indicate a significant role of multiphoton ionization compared to tunneling ...relevant for femtosecond breakdown, and tunnel ionization featuring no Ith() dependence becomes ever more with decreasing pulse duration. However, it...c) Figure 4.22 Wavelength dependence of ionization probabilities by a) avalanche, b) multiphoton, and c) tunneling ionization. 1

  6. Anomalous photo-ionization of 4d shell in medium-Z ionized atoms

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Busquet, M.

    2013-09-01

    Photoionization (PI) cross sections (PICS) are necessary for the simulation of astrophysical and ICF plasmas. In order to be used in plasma modeling, the PICS are usually fit to simple analytical formulas. We observed an unusual spectral shape of the PICS of the 4d shell of ionized Xe and other elements, computed with different codes: a local minimum occurs around twice the threshold energy. We explain this phenomenon as interference between the bound 4d wavefunction and the free electron wavefunction, which is similar to the Cooper minima for neutral atoms. Consequently, the usual fitting formulas, which consist of a combination of inverse powers of the frequency beyond threshold, may yield rates for PI and radiative recombination (RR) that are incorrect by orders of magnitude. A new fitting algorithm is proposed and is included in the latest version of HULLAC.v9.5.

  7. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    PubMed

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  8. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    PubMed Central

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C. D.; Chen, Jing

    2016-01-01

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules. PMID:27329071

  9. Developing hybrid approaches to predict pKa values of ionizable groups

    PubMed Central

    Witham, Shawn; Talley, Kemper; Wang, Lin; Zhang, Zhe; Sarkar, Subhra; Gao, Daquan; Yang, Wei

    2011-01-01

    Accurate predictions of pKa values of titratable groups require taking into account all relevant processes associated with the ionization/deionization. Frequently, however, the ionization does not involve significant structural changes and the dominating effects are purely electrostatic in origin allowing accurate predictions to be made based on the electrostatic energy difference between ionized and neutral forms alone using a static structure. On another hand, if the change of the charge state is accompanied by a structural reorganization of the target protein, then the relevant conformational changes have to be taken into account in the pKa calculations. Here we report a hybrid approach that first predicts the titratable groups, which ionization is expected to cause conformational changes, termed “problematic” residues, then applies a special protocol on them, while the rest of the pKa’s are predicted with rigid backbone approach as implemented in multi-conformation continuum electrostatics (MCCE) method. The backbone representative conformations for “problematic” groups are generated with either molecular dynamics simulations with charged and uncharged amino acid or with ab-initio local segment modeling. The corresponding ensembles are then used to calculate the pKa of the “problematic” residues and then the results are averaged. PMID:21744395

  10. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  11. Electron Impact Ionization of Heavier Ions

    NASA Astrophysics Data System (ADS)

    Saha, B. C.

    2006-10-01

    The electron impact ionization (EII) is a dominant ion creation process in various kinds of plasmas. Hydrogenic atoms occurs not only in plasmas but may also be formed due to radiation effects in many organic and inorganic materials. Apart from its fundamental importance in collisional physics the knowledge of the EII cross sections finds its wide applications in modeling astrophysical and fusion plasmas. So the demand of the EIICS is enormous. It is hard to fulfill such a demand either by experimental or ab initio calculations. Thus various analytical and semi-classical models are employed to generate accurate EII cross sections. We report here a modified version [1] of the Bell et. al. equations [2] including both the ionic and relativistic corrections (MBELL). We generalize the MBELL parameters for treating the dependency of the orbital quantum numbers nl; evaluating cross sections for various species at different energies tests the accuracy of the procedure. Detail will be presented at the meeting. [1] A. K. F. Haque, M. A. Uddin, A. K. Basak, K. R. Karim and B. C. Saha, Phys. Rev. A73, 052703 (2006). [2] K. L. Bell, H. B. Gilbody, J. G. Hughes, A. E. Kingston, and F. J. Smith, J. Phys. Chem. Ref. Data 12, 891 (1983).

  12. Dustbuster: a New Generation Impact-ionization Time-of-flight Mass Spectrometer for in situ Analysis of Cosmic Dust

    NASA Astrophysics Data System (ADS)

    Austin, D. E.; Ahrens, T. J.; Beauchamp, J. L.

    2000-10-01

    We have developed and tested a small impact-ionization time-of-flight mass spectrometer for analysis of cosmic dust, suitable for use on deep space missions. This mass spectrometer, named Dustbuster, incorporates a large target area and a reflectron, simultaneously optimizing mass resolution, sensitivity, and collection efficiency. Dust particles hitting the 65-cm2 target plate are partially ionized. The resulting ions are accelerated through a modified reflectron that focuses the ions in space and time to produce high-resolution spectra. The instrument, shown below, measures 10 x 10 x 20 cm, has a mass of 500 g, and consumes little power. Laser desorption ionization of metal and mineral samples (embedded in the impact plate) simulates particle impacts for instrument performance tests. Mass resolution in these experiments is near 200, permitting resolution of isotopes. The mass spectrometer can be combined with other instrument components to determine dust particle trajectories and sizes. This project was funded by NASA's Planetary Instrument Definition and Development Program.

  13. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin.

    PubMed

    Lecuit, Marc; Nelson, D Michael; Smith, Steve D; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I; Cossart, Pascale

    2004-04-20

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA-E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA-E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand-receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously.

  14. Human responses to the threat of or exposure to ionizing radiation at Three Mile Island, Pennsylvania, and Goiania, Brazil.

    PubMed

    Collins, Daniel L

    2002-02-01

    The psychological stressors and their aftereffects associated with the Three Mile Island accident, the Goiania, Brazil, cesium-137 accident, and the Abadia, Brazil, storage location are summarized and compared. Cross-cultural comparisons of human responses to ionizing radiation are rare. A multidisciplinary methodological approach to examining the psychological responses to ionizing radiation is even more rare. The psychological, behavioral, neuroendocrine, and cardiovascular results are summarized for Three Mile Island, Goiania, and Abadia.

  15. Calculations of total electron-impact ionization cross sections for Fluoroketone C5F10O and Fluoronitrile C4F7N using modified Deutsch-Märk formula

    NASA Astrophysics Data System (ADS)

    Xiong, Jiayu; Li, Xingwen; Wu, Jian; Guo, Xiaoxue; Zhao, Hu

    2017-11-01

    Both fluoroketone C5F10O and fluoronitrile C4F7N are promising substitute gases for SF6. The electron-impact ionization cross sections for these two gases are calculated using the Deutsch-Märk (DM) formula and its modified method. The necessary molecular geometry optimization and electron population were determined by ab initio calculation, which was performed with quantum chemistry code. The level of calculation, including the theoretical method and basis-set, are carefully determined. To eliminate the drawbacks of the DM formula, a modified DM formula is set in this paper. The modified DM formula, of which the weighting factors are changed, has a better agreement with the experimental data on both the peak and shape of the cross-section curves. The results calculated by DM formula and modified DM formula are given as references to fill in gaps in further research into C5F10O and C4F7N.

  16. Effect of ionization, bedding, and feeding on air quality in a horse stable.

    PubMed

    Siegers, Esther Willemijn; Anthonisse, Milou; van Eerdenburg, Frank J C M; van den Broek, Jan; Wouters, Inge M; Westermann, Cornélie Martine

    2018-05-01

    Organic dust is associated with Equine asthma. Ionization should reduce airborne dust levels. To determine the effect of ionization of air, type of bedding, and feed on the levels of airborne dust, endotoxin, and fungal colonies in horse stables. 24 healthy University-owned horses occupied the stables. A randomized controlled cross-over study. Four units with 6 stables were equipped with an ionization installation (25 VA, 5000 Volt Direct Current). Horses were kept either on wood shavings and fed haylage (2 units), or on straw and fed dry hay (2 units). Measurements were performed with and without activated ionization, during daytime and nighttime, repeatedly over the course of a week and repeatedly during 4-6 weeks. Statistical analysis was performed using a mixed effect model with Akaike's Information Criterion for model reduction and 95% profile (log) likelihood confidence intervals (CI). Ionization did not alter concentrations of dust, endotoxin, or fungi, fewer. In the units with straw and hay, the concentration of dust, endotoxin, and fungi (difference in logarithmic mean 1.92 (95%CI 1.71-2.12); 2.86 (95%CI 2.59-3.14); 1.75 (95%CI 1.13-2.36)) were significantly higher compared to wood shavings and haylage. The installation of a negative air-ionizer in the horse stable did not reduce concentrations of dust, endotoxin, and viable fungal spores. The substantial effect of low dust bedding and feed is confirmed. Copyright © 2018 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  17. Defect of the well-known (classical) expression for the ionization rate in gas-discharge plasma and its modification

    NASA Astrophysics Data System (ADS)

    Litvinov, I. I.

    2015-11-01

    A critical analysis is given of the well-known expression for the electron-impact ionization rate constant α i of neutral atoms and ions, derived by linearization of the ionization cross section σ i (ɛ) as a function of the electron energy near the threshold I and containing the characteristic factor ( I + 2 kT). Using the classical Thomson expression for the ionization cross section, it is shown that in addition to the linear slope of σ i (ɛ), it is also necessary to take into account the large negative curvature of this function near the threshold. In this case, the second term in parentheses changes its sign, which means that the commonly used expression for α i (˜4 kT/I) already at moderate values of the temperature ( kT/I ˜ 0.1). The source of this error lies in a mathematical mistake in the original approach and is related to the incorrect choice of the sequential orders of terms small in the parameter kT/I. On the basis of a large amount of experimental data and considerations similar to the Gryzinski theory, a universal two-parameter modification of the Thomson formula (as well as the Bethe—Born formula) is proposed and a new simple expression for the ionization rate constant for arbitrary values of kT/I is derived.

  18. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  19. Electron capture by U(91+) and U(92+) and ionization of U(90+) and U(91+)

    NASA Technical Reports Server (NTRS)

    Gould, H.; Greiner, D.; Lindstrom, P.; Symons, T. J. M.; Crawford, H.

    1984-01-01

    U(92+)/U(91+) and U(91+)/U(90+) electron-capture and ionization cross sections and equilibrium charge-state distributions are measured experimentally in mylar, Cu and Ta of varying thickness. Relativistic U(68+) ions at 437 or 962 MeV/nucleon are produced by a heavy-ion linear accelerator and synchrotron in tandem and passed through the target material into a magnetic specrometer and position-sensitive proportional counter for evaluation of charge states. The results are presented graphically and discussed. At 962 MeV/nucleon, beams containing 85 percent bare U(92+) nuclei are obtained using 150-mg/sq cm Cu or 85-mg/sq cm Ta; at 437 MeV/nucleon, 50 percent bare U(92+) nuclei are obtained with 90-mg/sq cm Cu. The techniques decribed can be applied to produce beams of bare U nuclei for acceleration to ultrarelativistic speeds or beams of few-electron U for atomic-physics experiments on quantum electrodynamics.

  20. Cross section of α-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical γ process

    NASA Astrophysics Data System (ADS)

    Szücs, T.; Kiss, G. G.; Gyürky, Gy.; Halász, Z.; Fülöp, Zs.; Rauscher, T.

    2018-01-01

    The stellar reaction rates of radiative α-capture reactions on heavy isotopes are of crucial importance for the γ process network calculations. These rates are usually derived from statistical model calculations, which need to be validated, but the experimental database is very scarce. This paper presents the results of α-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of 191Ir(α,γ)195Au, 191Ir(α,n)194Au, 193Ir(α,n)196mAu, 193Ir(α,n)196Au reactions have been measured with the activation technique between Eα = 13.4 MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the α + nucleus optical potential gives a good description of the experimental data.

  1. Absolute partial photoionization cross sections of ethylene

    NASA Astrophysics Data System (ADS)

    Grimm, F. A.; Whitley, T. A.; Keller, P. R.; Taylor, J. W.

    1991-07-01

    Absolute partial photoionization cross sections for ionization out of the first four valence orbitals to the X 2B 3u, A 2B 3g, B 2A g and C 2B 2u states of the C 2H 4+ ion are presented as a function of photon energy over the energy range from 12 to 26 eV. The experimental results have been compared to previously published relative partial cross sections for the first two bands at 18, 21 and 24 eV. Comparison of the experimental data with continuum multiple scattering Xα calculations provides evidence for extensive autoionization to the X 2B 3u state and confirms the predicted shape resonances in ionization to the A 2B 3g and B 2A g states. Identification of possible transitions for the autoionizing resonances have been made using multiple scattering transition state calculations on Rydberg excited states.

  2. The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogomilov, M.; Karadzhov, Y.; Kolev, D.

    2012-05-01

    The international Muon Ionization Cooling Experiment (MICE), which is under construction at the Rutherford Appleton Laboratory (RAL), will demonstrate the principle of ionization cooling as a technique for the reduction of the phase-space volume occupied by a muon beam. Ionization cooling channels are required for the Neutrino Factory and the Muon Collider. MICE will evaluate in detail the performance of a single lattice cell of the Feasibility Study 2 cooling channel. The MICE Muon Beam has been constructed at the ISIS synchrotron at RAL, and in MICE Step I, it has been characterized using the MICE beam-instrumentation system. In thismore » paper, the MICE Muon Beam and beam-line instrumentation are described. The muon rate is presented as a function of the beam loss generated by the MICE target dipping into the ISIS proton beam. For a 1 V signal from the ISIS beam-loss monitors downstream of our target we obtain a 30 KHz instantaneous muon rate, with a neglible pion contamination in the beam.« less

  3. On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene.

    PubMed

    Holzmeier, Fabian; Fischer, Ingo; Kiendl, Benjamin; Krueger, Anke; Bodi, Andras; Hemberger, Patrick

    2016-04-07

    We report the determination of the absolute photoionization cross section of cyclopropenylidene, c-C3H2, and the heat of formation of the C3H radical and ion derived by the dissociative ionization of the carbene. Vacuum ultraviolet (VUV) synchrotron radiation as provided by the Swiss Light Source and imaging photoelectron photoion coincidence (iPEPICO) were employed. Cyclopropenylidene was generated by pyrolysis of a quadricyclane precursor in a 1 : 1 ratio with benzene, which enabled us to derive the carbene's near threshold absolute photoionization cross section from the photoionization yield of the two pyrolysis products and the known cross section of benzene. The cross section at 9.5 eV, for example, was determined to be 4.5 ± 1.4 Mb. Upon dissociative ionization the carbene decomposes by hydrogen atom loss to the linear isomer of C3H(+). The appearance energy for this process was determined to be AE(0K)(c-C3H2; l-C3H(+)) = 13.67 ± 0.10 eV. The heat of formation of neutral and cationic C3H was derived from this value via a thermochemical cycle as Δ(f)H(0K)(C3H) = 725 ± 25 kJ mol(-1) and Δ(f)H(0K)(C3H(+)) = 1604 ± 19 kJ mol(-1), using a previously reported ionization energy of C3H.

  4. Electron-impact ionization of P-like ions forming Si-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, D.-H.; Savin, D. W., E-mail: hkwon@kaeri.re.kr

    2014-03-20

    We have calculated electron-impact ionization (EII) for P-like systems from P to Zn{sup 15+} forming Si-like ions. The work was performed using the flexible atomic code (FAC) which is based on a distorted-wave approximation. All 3ℓ → nℓ' (n = 3-35) excitation-autoionization (EA) channels near the 3p direct ionization threshold and 2ℓ → nℓ' (n = 3-10) EA channels at the higher energies are included. Close attention has been paid to the detailed branching ratios. Our calculated total EII cross sections are compared both with previous FAC calculations, which omitted many of these EA channels, and with the available experimentalmore » results. Moreover, for Fe{sup 11+}, we find that part of the remaining discrepancies between our calculations and recent measurements can be accounted for by the inclusion of the resonant excitation double autoionization process. Lastly, at the temperatures where each ion is predicted to peak in abundances in collisional ionization equilibrium, the Maxwellian rate coefficients derived from our calculations differ by 50%-7% from the previous FAC rate coefficients, with the difference decreasing with increasing charge.« less

  5. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: Role of internalin interaction with trophoblast E-cadherin

    PubMed Central

    Lecuit, Marc; Nelson, D. Michael; Smith, Steve D.; Khun, Huot; Huerre, Michel; Vacher-Lavenu, Marie-Cécile; Gordon, Jeffrey I.; Cossart, Pascale

    2004-01-01

    Listeria monocytogenes produces severe fetoplacental infections in humans. How it targets and crosses the maternofetal barrier is unknown. We used immunohistochemistry to examine the location of L. monocytogenes in placental and amniotic tissue samples obtained from women with fetoplacental listeriosis. The results raised the possibility that L. monocytogenes crosses the maternofetal barrier through the villous syncytiotrophoblast, with secondary infection occurring via the amniotic epithelium. Because epidemiological studies indicate that the bacterial surface protein, internalin (InlA), may play a role in human fetoplacental listeriosis, we investigated the cellular patterns of expression of its host receptor, E-cadherin, at the maternofetal interface. E-cadherin was found on the basal and apical plasma membranes of syncytiotrophoblasts and in villous cytotrophoblasts. Established trophoblastic cell lines, primary trophoblast cultures, and placental villous explants were each exposed to isogenic InlA+ or InlA- strains of L. monocytogenes, and to L. innocua expressing or not InlA. Quantitative assays of cellular invasion demonstrated that bacterial entry into syncytiotrophoblasts occurs via the apical membrane in an InlA–E-cadherin dependent manner. In human placental villous explants, bacterial invasion of the syncytiotrophoblast barrier and underlying villous tissue and subsequent replication produces histopathological lesions that mimic those seen in placentas of women with listeriosis. Thus, the InlA–E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Such a ligand–receptor interaction allowing a pathogen to specifically cross the placental villous trophoblast barrier has not been reported previously. PMID:15073336

  6. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  7. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  8. Partial photoionization cross sections of NH4 and H3O Rydberg radicals

    NASA Astrophysics Data System (ADS)

    Velasco, A. M.; Lavín, C.; Martín, I.; Melin, J.; Ortiz, J. V.

    2009-07-01

    Photoionization cross sections for various Rydberg series that correspond to ionization channels of ammonium and oxonium Rydberg radicals from the outermost, occupied orbitals of their respective ground states are reported. These properties are known to be relevant in photoelectron dynamics studies. For the present calculations, the molecular-adapted quantum defect orbital method has been employed. A Cooper minimum has been found in the 3sa1-kpt2 Rydberg channel of NH4 beyond the ionization threshold, which provides the main contribution to the photoionization of this radical. However, no net minimum is found in the partial cross section of H3O despite the presence of minima in the 3sa1-kpe and 3sa1-kpa1 Rydberg channels. The complete oscillator strength distributions spanning the discrete and continuous regions of both radicals exhibit the expected continuity across the ionization threshold.

  9. Investigation on the absolute and relative photoionization cross sections of 3 potential propargylic fuels.

    PubMed

    Winfough, Matthew; Meloni, Giovanni

    2017-12-01

    Absolute photoionization cross sections for 2 potential propargylic fuels (propargylamine and dipropargyl ether) along with the partial ionization cross sections for their dissociative fragments are measured and presented for the first time via synchrotron photoionization mass spectrometry. The experimental setup consists of a multiplexed orthogonal time-of-flight mass spectrometer and is located at the Advanced Light Source facility of the Lawrence Berkeley National Laboratory in Berkeley, California. Data for a third propargylic compound (propargyl alcohol) were taken; however, because of its low signal, due to its weakly bound cation, only the dissociative ionization fragment from the H-loss channel is observed and presented. Suggested pathways leading to formation of dissociative photoionization fragments along with CBS-QB3 calculated adiabatic ionization energies and appearance energies for the dissociative fragments are also presented. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Simultaneous ESI-APCI+ ionization and fragmentation pathways for nine benzodiazepines and zolpidem using single quadrupole LC-MS.

    PubMed

    Galaon, Toma; Vacaresteanu, Catalina; Anghel, Dan-Florin; David, Victor

    2014-05-01

    Nine important 1,4-benzodiazepines and zolpidem were characterized by liquid chromatography-mass spectrometry using a multimode ionization source able to generate ions using both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), and a single quadrupole mass analyzer. An optimum chromatographic separation was applied for all target compounds in less than 8 minutes using a Zorbax Eclipse Plus column (100 × 4.6 mm, 3.5 µm) kept at 35°C and a 0.3% HCOOH/ACN/IPA (61:34:5) mobile phase pumped at 1 ml/min. Optimization of LC-MS method generated low limit of quantitation (LOQ) values situated in the range 0.3-20.5 ng/ml. Comparison between differences in method sensitivity, under specified chromatographic conditions, when using ESI-only, APCI-only, and simultaneous ESI-APCI ionization with such a multimode source was discussed. Mixed ESI-APCI(+) mode proved to be the most sensitive ionization generating an average 35% detector response increase compared to ESI-only ionization and 350% detector response increase with respect to APCI-only ionization. Characterization of the nine benzodiazepines and zolpidem concerning their MS fragmentation pathway following 'in-source' collision-induced dissociation is discussed in detail and some general trends regarding these fragmentations are set. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Cross-section measurement for the 67Zn(n, α)64Ni reaction at 6.0 MeV

    NASA Astrophysics Data System (ADS)

    Zhang, Guohui; Wu, Hao; Zhang, Jiaguo; Liu, Jiaming; Chen, Jinxiang; Gledenov, Yu. M.; Sedysheva, M. V.; Khuukhenkhuu, G.; Szalanski, P. J.

    2010-01-01

    Up to now, no experimental cross-section data exist for the 67Zn ( n, α) 64Ni reaction in the MeV neutron energy region. In the present work, the cross-section of the 67Zn ( n, α) 64Ni reaction was measured at E n = 6.0 MeV. Experiments were performed at the Van de Graaff accelerator of Peking University, China. Fast neutrons were produced through the D ( d, n) 3He reaction using a deuterium gas target. Absolute neutron flux was determined by a small 238U fission chamber and a BF3 long counter was used as a neutron flux monitor. A twin gridded ionization chamber was employed as the α -particle detector and two back-to-back 67Zn samples were used for α events measurement. Background was measured and subtracted from foreground. The measured cross-section of the 67Zn ( n, α) 64Ni reaction was 7.3 (1±15%) mb at 6.0MeV. The present result was compared with existing evaluations and TALYS code calculations.

  12. On-target separation of analyte with 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid liquid matrix for matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Sekiya, Sadanori; Taniguchi, Kenichi; Tanaka, Koichi

    2012-03-30

    3-Aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) is a liquid matrix (LM), which was reported by Kumar et al. in 1996 for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. It is a viscous liquid and has some advantages of durability of ion generation by a self-healing surface and quantitative performance. In this study, we found a novel aspect of 3AQ/CHCA as a MALDI matrix, which converges hydrophilic material into the center of the droplet of analyte-3AQ/CHCA mixture on a MALDI sample target well during the process of evaporation of water derived from analyte solvent. This feature made it possible to separate not only the buffer components, but also the peptides and oligosaccharides from one another within 3AQ/CHCA. The MALDI imaging analyses of the analyte-3AQ/CHCA droplet indicated that the oligosaccharides and the peptides were distributed in the center and in the whole area around the center of 3AQ/CHCA, respectively. This 'on-target separation' effect was also applicable to glycoprotein digests such as ribonuclease B. These features of 3AQ/CHCA liquid matrix eliminate the requirement for pretreatment, and reduce sample handling losses thus resulting in the improvement of throughput and sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  14. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography

    DOE PAGES

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; ...

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. Inmore » addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. Here, we showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.« less

  15. Relationships between structure, ionization profile and sensitivity of exogenous anabolic steroids under electrospray ionization and analysis in human urine using liquid chromatography-tandem mass spectrometry.

    PubMed

    Cha, Eunju; Kim, Sohee; Kim, Hee Won; Lee, Kang Mi; Kim, Ho Jun; Kwon, Oh-Seung; Lee, Jaeick

    2016-04-01

    The relationships between the ionization profile, sensitivity, and structures of 64 exogenous anabolic steroids (groups I-IV) was investigated under electrospray ionization (ESI) conditions. The target analytes were ionized as [M + H](+) or [M + H-nH2 O](+) in the positive mode, and these ions were used as precursor ions for selected reaction monitoring analysis. The collision energy and Q3 ions were optimized based on the sensitivity and selectivity. The limits of detection (LODs) were 0.05-20 ng/mL for the 64 steroids. The LODs for 38 compounds, 14 compounds and 12 compounds were in the range of 0.05-1, 2-5 and 10-20 ng/mL, respectively. Steroids including the conjugated keto-functional group at C3 showed good proton affinity and stability, and generated the [M + H](+) ion as the most abundant precursor ion. In addition, the LODs of steroids using the [M + H](+) ion as the precursor ion were mostly distributed at low concentrations. In contrast, steroids containing conjugated/unconjugated hydroxyl functional groups at C3 generated [M + H - H2 O](+) or [M + H - 2H2 O](+) ions, and these steroids showed relatively high LODs owing to poor stability and multiple ion formation. An LC-MS/MS method based on the present ionization profile was developed and validated for the determination of 78 steroids (groups I-V) in human urine. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Triatoma dimidiata Infestation in Chagas Disease Endemic Regions of Guatemala: Comparison of Random and Targeted Cross-Sectional Surveys

    PubMed Central

    King, Raymond J.; Cordon-Rosales, Celia; Cox, Jonathan; Kitron, Uriel D.

    2011-01-01

    Background Guatemala is presently engaged in the Central America Initiative to interrupt Chagas disease transmission by reducing intradomiciliary prevalence of Triatoma dimidiata, using targeted cross-sectional surveys to direct control measures to villages exceeding the 5% control threshold. The use of targeted surveys to guide disease control programs has not been evaluated. Here, we compare the findings from the targeted surveys to concurrent random cross-sectional surveys in two primary foci of Chagas disease transmission in central and southeastern Guatemala. Methodology/Principal Findings Survey prevalences of T. dimidiata intradomiciliary infestation by village and region were compared. Univariate logistic regression was used to assess the use of risk factors to target surveys and to evaluate indicators associated with village level intradomiciliary prevalences >5% by survey and region. Multivariate logistic regression models were developed to assess the ability of random and targeted surveys to target villages with intradomiciliary prevalence exceeding the control threshold within each region. Regional prevalences did not vary by survey; however, village prevalences were significantly greater in random surveys in central (13.0% versus 8.7%) and southeastern (22.7% versus 6.9%) Guatemala. The number of significant risk factors detected did not vary by survey in central Guatemala but differed considerably in the southeast with a greater number of significant risk factors in the random survey (e.g. land surface temperature, relative humidity, cropland, grassland, tile flooring, and stick and mud and palm and straw walls). Differences in the direction of risk factor associations were observed between regions in both survey types. The overall discriminative capacity was significantly greater in the random surveys in central and southeastern Guatemala, with an area under the receiver-operator curve (AUC) of 0.84 in the random surveys and approximately 0.64 in the

  17. Partially Ionized Plasmas in Astrophysics

    NASA Astrophysics Data System (ADS)

    Ballester, José Luis; Alexeev, Igor; Collados, Manuel; Downes, Turlough; Pfaff, Robert F.; Gilbert, Holly; Khodachenko, Maxim; Khomenko, Elena; Shaikhislamov, Ildar F.; Soler, Roberto; Vázquez-Semadeni, Enrique; Zaqarashvili, Teimuraz

    2018-03-01

    Partially ionized plasmas are found across the Universe in many different astrophysical environments. They constitute an essential ingredient of the solar atmosphere, molecular clouds, planetary ionospheres and protoplanetary disks, among other environments, and display a richness of physical effects which are not present in fully ionized plasmas. This review provides an overview of the physics of partially ionized plasmas, including recent advances in different astrophysical areas in which partial ionization plays a fundamental role. We outline outstanding observational and theoretical questions and discuss possible directions for future progress.

  18. Simultaneous ionization-excitation of helium to the 3s, 3p, and 3d states of He+

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg; Bartschat, Klaus

    2015-05-01

    We extended our work on ionization of helium with simultaneous excitation to the n = 2 states to include the n = 3 manifold of the residual ion. This requires the inclusion of pseudo-states constructed on the 3s, 3p, and 3d ionic core. We used a parallelized version of the B-spline R-matrix (BSR) package to perform a calculation with 1,254 target states, resulting in up to 3,027 coupled channels and matrices of rank up to 200,000 to be diagonalized. The triple-differential cross section (TDCS) was extracted by the projection method. We obtain excellent agreement with experiment regarding the angular dependence of the TDCS for all kinematical situations available for comparison. Some discrepancies remain for the absolute magnitude. Results for the n = 2 states are stable and closely agree with previous predictions. Work supported by the United States National Science Foundation under grants No. PHY-1212450, PHY-1430245 and the XSEDE allocation PHY-090031.

  19. Laser-Induced Ionization Efficiency Enhancement On A Filament For Thermal Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegfried, M.

    2015-10-14

    The evaluation of trace Uranium and Plutonium isotope ratios for nanogram to femtogram material quantities is a vital tool for nuclear counter-proliferation and safeguard activities. Thermal Ionization Mass Spectrometry (TIMS) is generally accepted as the state of the art technology for highly accurate and ultra-trace measurements of these actinide ratios. However, the very low TIMS ionization yield (typically less than 1%) leaves much room for improvement. Enhanced ionization of Nd and Sm from a TIMS filament was demonstrated using wavelength resonance with a nanosecond (pulse width) laser operating at 10 Hz when light was directed toward the filament.1 For thismore » study, femtosecond and picosecond laser capabilities were to be employed to study the dissociation and ionization mechanisms of actinides/lanthanides and measure the enhanced ionization of the metal of interest. Since the underlying chemistry of the actinide/lanthanide carbides produced and dissociated on a TIMS filament is not well understood, the experimental parameters affecting the photodissociation and photoionization with one and two laser beams were to be investigated.« less

  20. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    PubMed Central

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  1. Comments on ionization cooling channels

    DOE PAGES

    Neuffer, David

    2017-09-25

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  2. Comments on ionization cooling channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuffer, David

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  3. Matrix Assisted Ionization Vacuum (MAIV), a New Ionization Method for Biological Materials Analysis Using Mass Spectrometry*

    PubMed Central

    Inutan, Ellen D.; Trimpin, Sarah

    2013-01-01

    The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry. PMID:23242551

  4. Differential Gene Expression in Primary Human Skin Keratinocytes and Fibroblasts in Response to Ionizing Radiation

    PubMed Central

    Warters, Raymond L.; Packard, Ann T.; Kramer, Gwen F.; Gaffney, David K.; Moos, Philip J.

    2009-01-01

    Although skin is usually exposed during human exposures to ionizing radiation, there have been no thorough examinations of the transcriptional response of skin fibroblasts and keratinocytes to radiation. The transcriptional response of quiescent primary fibroblasts and keratinocytes exposed to from 10 cGy to 5 Gy and collected 4 h after treatment was examined. RNA was isolated and examined by microarray analysis for changes in the levels of gene expression. Exposure to ionizing radiation altered the expression of 279 genes across both cell types. Changes in RNA expression could be arranged into three main categories: (1) changes in keratinocytes but not in fibroblasts, (2) changes in fibroblasts but not in keratinocytes, and (3) changes in both. All of these changes were primarily of p53 target genes. Similar radiation-induced changes were induced in immortalized fibroblasts or keratinocytes. In separate experiments, protein was collected and analyzed by Western blotting for expression of proteins observed in microarray experiments to be overexpressed at the mRNA level. Both Q-PCR and Western blot analysis experiments validated these transcription changes. Our results are consistent with changes in the expression of p53 target genes as indicating the magnitude of cell responses to ionizing radiation. PMID:19580510

  5. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    PubMed Central

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  6. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  7. Theoretical and observational determinations of the ionization coefficient of meteors

    NASA Astrophysics Data System (ADS)

    Jones, William

    1997-07-01

    We examine the problem of the determination of the ionization coefficient beta from both the theoretical and observational points of view. In the past, theoretical evaluations of beta in terms of the relevant scattering cross-sections have used the Massey-Sida formula, which we show to give results which are plainly incorrect. We derive an integral equation for beta and compare the results of its application to copper and iron with laboratory simulations. Agreement for the variation of the ionization coefficient with velocity is good. The ionization coefficient has been determined observationally by Verniani & Hawkins from a comparison of radar and visual observations, employing the luminous efficiency tau also obtained observationally by Verniani. However, this determination of tau would appear to be invalidated by fragmentation. There is good evidence that the radiation of cometary meteors is dominated by that of iron in the visual range, and we have accordingly re-analysed the data of Verniani & Hawkins using the luminous efficiency of iron obtained in simulation experiments. However, it is not possible to choose an iron concentration which gives agreement between the determination of the ionization coefficient by this means and its determination from the theoretical equation in terms of either scattering coefficients or simulation methods. The observational ionization coefficients are much lower than predicted by the present theory and we provisionally explain this as a consequence of transfer of charge from the meteoric ion to a molecule of the air. It is now possible for the meteoric atom to be re-ionized, but it is also possible at sufficiently high initial line densities for significant dissociative recombination of the electrons and nitrogen or oxygen to take place. This recombination will not take place in meteor trains simulated in an ionization chamber. We thus conclude that the present theory is limited to faint radio meteors at lower velocities (v<~35

  8. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  9. Simple and universal model for electron-impact ionization of complex biomolecules

    NASA Astrophysics Data System (ADS)

    Tan, Hong Qi; Mi, Zhaohong; Bettiol, Andrew A.

    2018-03-01

    We present a simple and universal approach to calculate the total ionization cross section (TICS) for electron impact ionization in DNA bases and other biomaterials in the condensed phase. Evaluating the electron impact TICS plays a vital role in ion-beam radiobiology simulation at the cellular level, as secondary electrons are the main cause of DNA damage in particle cancer therapy. Our method is based on extending the dielectric formalism. The calculated results agree well with experimental data and show a good comparison with other theoretical calculations. This method only requires information of the chemical composition and density and an estimate of the mean binding energy to produce reasonably accurate TICS of complex biomolecules. Because of its simplicity and great predictive effectiveness, this method could be helpful in situations where the experimental TICS data are absent or scarce, such as in particle cancer therapy.

  10. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    PubMed Central

    Lavenant, Gwendoline Thiery; Zavalin, Andrey I.; Caprioli, Richard M.

    2013-01-01

    Targeted multiplex Imaging Mass Spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This manuscript describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet. PMID:23397138

  11. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.

    2013-04-01

    Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.

  12. Discrimination of excess toxicity from baseline level for ionizable compounds: Effect of pH.

    PubMed

    Li, Jin J; Zhang, Xu J; Wang, Xiao H; Wang, Shuo; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2016-03-01

    The toxic effect can be affected by pH in water through affecting the degree of ionization of ionizable compounds. Wrong classification of mode of action can be made from the apparent toxicities. In this paper, the toxicity data of 61 compounds to Daphnia magna determined at three pH values were used to investigate the effect of pH on the discrimination of excess toxicity. The results show that the apparent toxicities are significantly less than the baseline level. Analysis on the effect of pH on bioconcentration factor (BCF) shows that the log BCF values are significantly over-estimated for the strongly ionizable compounds, leading to the apparent toxicities greatly less than the baseline toxicities and the toxic ratios greatly less than zero. A theoretical equation between the apparent toxicities and pH has been developed basing on the critical body residue (CBR). The apparent toxicities are non-linearly related to pH, but linearly to fraction of unionized form. The determined apparent toxicities are well fitted with the toxicities predicted by the equation. The toxicities in the unionized form calculated from the equation are close to, or greater than the baseline level for almost all the strongly ionizable compounds, which are very different from the apparent toxicities. The studied ionizable compounds can be either classified as baseline, less inert or reactive compounds in D. magna toxicity. Some ionizable compounds do not exhibit excess toxicity at a certain pH, due not to their poor reactivity with target molecules, but because of the ionization in water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C 2H 4, C 2H 3F, and 1,1-C 2H 2F 2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  14. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.

    PubMed

    Abdelhamid, Hani Nasser

    2018-03-01

    Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.

  15. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  16. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method

    PubMed Central

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-01-01

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets. PMID:27801795

  17. Detection and Identification of Multiple Stationary Human Targets Via Bio-Radar Based on the Cross-Correlation Method.

    PubMed

    Zhang, Yang; Chen, Fuming; Xue, Huijun; Li, Zhao; An, Qiang; Wang, Jianqi; Zhang, Yang

    2016-10-27

    Ultra-wideband (UWB) radar has been widely used for detecting human physiological signals (respiration, movement, etc.) in the fields of rescue, security, and medicine owing to its high penetrability and range resolution. In these applications, especially in rescue after disaster (earthquake, collapse, mine accident, etc.), the presence, number, and location of the trapped victims to be detected and rescued are the key issues of concern. Ample research has been done on the first issue, whereas the identification and localization of multi-targets remains a challenge. False positive and negative identification results are two common problems associated with the detection of multiple stationary human targets. This is mainly because the energy of the signal reflected from the target close to the receiving antenna is considerably stronger than those of the targets at further range, often leading to missing or false recognition if the identification method is based on the energy of the respiratory signal. Therefore, a novel method based on cross-correlation is proposed in this paper that is based on the relativity and periodicity of the signals, rather than on the energy. The validity of this method is confirmed through experiments using different scenarios; the results indicate a discernible improvement in the detection precision and identification of the multiple stationary targets.

  18. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    NASA Astrophysics Data System (ADS)

    Sen, Swati; Kundagrami, Arindam

    2015-12-01

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  19. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization.

    PubMed

    Sen, Swati; Kundagrami, Arindam

    2015-12-14

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  20. Characterization of Ce SUP 3+-tributyl phosphate coordination complexes produced by fused droplet electrospray ionization with a target capillary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary S. Groenewold; Jean-Jacques Gaumet

    2011-12-01

    Coordination complexes containing Ce(III) and tri-n-butyl phosphate (TBP) in the 1+, 2+ and 3+ charge states were generated using desorption electrospray ionization (DESI) mass spectrometry, in which the analyte solutions were supplied via a target capillary orthogonally situated with respect to the electrospray. Comparison with direct electrospray (ESI) showed that the same coordination complexes were produced in each experiment, and could be described by the general formula [Ce(NO3)m=0-2(TBP)n](3-m)+. This result indicates that DESI has utility for measuring metal speciation for metal ligand solutions where the gas-phase complexes generated by ESI have been correlated with solution speciation. Such an application wouldmore » be useful for analyses where it is desirable to limit the total amount of metal being handled, or that have solvent systems that are not readily amenable to ESI. Both the direct ESI and DESI mass spectra showed similar trends with respect to the TBP:Ce ratio, viz. high values tend to favor formation of a larger fraction of the 1+ species, and the 2+ and 3+ species become relatively more important as the ratio is decreased. Within individual charge state ion envelopes, lower TBP:Ce ratios produce coordination complexes with fewer ligands, a trend also seen using both approaches. These trends again point toward strong similarity between the direct ESI and DESI analyses of the metal-ligand solutions. The DESI experiments were less sensitive for measuring the coordination complexes compared to the direct ESI experiments, by a factor of 10 - 100 depending on whether minimum detectable concentration or absolute ion abundances were considered. Nevertheless, mid-picomolar quantities of coordination complexes were measured using the target capillary, indicating that sensitivity would be sufficient for measuring species in many industrial separations processes.« less

  1. Laser resonance ionization spectroscopy of antimony

    NASA Astrophysics Data System (ADS)

    Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.

    2017-02-01

    The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.

  2. Reaction Cross Sections for 8He and 14B on Proton target for the Separation of Proton and Neutron Density Distributions

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaomi; Fukuda, Mitsunori; Nishimura, Daiki; Suzuki, Shinji; Takechi, Maya; Mihara, Mototsugu; Matsuta, Kensaku; Morita, Yusuke; Kamisho, Yasuto; Ohno, Junichi; Kanbe, Ryosuke; Yamaoka, Shintaro; Watanabe, Kota; Ohtsubo, Takashi; Izumikawa, Takuji; Nagashima, Masayuki; Honma, Akira; Murooka, Daiki; Suzuki, Takashi; Yamaguchi, Takayuki; Kohno, Junpei; Yamaki, Sayaka; Matsunaga, Satoshi; Kinno, Shunpei; Taguchi, Yoshimasa; Kitagawa, Atsushi; Fukuda, Shigekazu; Sato, Shinji

    We utilized the proton-neutron asymmetry of nucleon-nucleon total cross sections in the intermediate energy region (σ pn ne σ pp( nn )) to obtain the information of proton and neutron distributions respectively. We have measured reaction cross sections (σR) for 14B and 8He on proton targets as isospin asymmetric targets in addition to symmetric ones. Proton and neutron density distributions were derived respectively through the χ2-fitting procedure with the modified Glauber calculation. The result suggests a necessity for 14B of a long tail, and also a necessity for 8He of a neutron tail. Root-mean-square proton, neutron and matter radii for 14B and 8He are also derived. Each radius is consistent with some of the other experimental values and also with some of the several theoretical values.

  3. Heavy fragment production cross sections from 1.05 GeV/nucleon 56Fe in C, Al, Cu, Pb, and CH2 targets

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Heilbronn, L.; Miller, J.; Rademacher, S. E.; Borak, T.; Carter, T. R.; Frankel, K. A.; Schimmerling, W.; Stronach, C. E.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    We have obtained charge-changing cross sections and partial cross sections for fragmentation of 1.05 GeV/nucleon Fe projectiles incident on H, C, Al, Cu, and Pb nuclei. The energy region covered by this experiment is critical for an understanding of galactic cosmic ray propagation and space radiation biophysics. Surviving primary beam particles and fragments with charges from 12 to 25 produced within a forward cone of half-angle 61 mrad were detected using a silicon detector telescope to identify their charge and the cross sections were calculated after correction of the measured yields for finite target thickness effects. The cross sections are compared to model calculations and to previous measurements. Cross sections for the production of fragments with even-numbered nuclear charges are seen to be enhanced in almost all cases.

  4. Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1982-01-01

    Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.

  5. 12-months metabolic changes among gender dysphoric individuals under cross-sex hormone treatment: a targeted metabolomics study

    PubMed Central

    Auer, Matthias K.; Cecil, Alexander; Roepke, Yasmin; Bultynck, Charlotte; Pas, Charlotte; Fuss, Johannes; Prehn, Cornelia; Wang-Sattler, Rui; Adamski, Jerzy; Stalla, Günter K.; T’Sjoen, Guy

    2016-01-01

    Metabolomic analyses in epidemiological studies have demonstrated a strong sexual dimorphism for most metabolites. Cross-sex hormone treatment (CSH) in transgender individuals enables the study of metabolites in a cross-gender setting. Targeted metabolomic profiling of serum of fasting transmen and transwomen at baseline and following 12 months of CSH (N = 20/group) was performed. Changes in 186 serum metabolites and metabolite ratios were determined by targeted metabolomics analysis based on ESI-LC-MS/MS. RandomForest (RF) analysis was applied to detect metabolites of highest interest for grouping of transwomen and transmen before and after initiation of CSH. Principal component analysis (PCA) was performed to check whether group differentiation was achievable according to these variables and to see if changes in metabolite levels could be explained by a priori gender differences. PCA predicted grouping of individuals-determined by the citrulline/arginine-ratio and the amino acids lysine, alanine and asymmetric dimethylarginine - in addition to the expected grouping due to changes in sex steroids and body composition. The fact that most of the investigated metabolites did, however, not change, indicates that the majority of sex dependent differences in metabolites reported in the literature before may primarily not be attributable to sex hormones but to other gender-differences. PMID:27833161

  6. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  7. Complete solution of electronic excitation and ionization in electron-hydrogen molecule scattering

    DOE PAGES

    Zammit, Mark C.; Savage, Jeremy S.; Fursa, Dmitry V.; ...

    2016-06-08

    The convergent close-coupling method has been used to solve the electron-hydrogen molecule scattering problem in the fixed-nuclei approximation. Excellent agreement with experiment is found for the grand total, elastic, electronic-excitation, and total ionization cross sections from the very low to the very high energies. This shows that for the electronic degrees of freedom the method provides a complete treatment of electron scattering on molecules as it does for atoms.

  8. Preparation and characterization of three 7Be targets for the measurement of the 7Be(n, p)7Li and 7Be(n, α)7Li reaction cross sections

    NASA Astrophysics Data System (ADS)

    Maugeri, E. A.; Heinitz, S.; Dressler, R.; Barbagallo, M.; Ulrich, J.; Schumann, D.; Colonna, N.; Köster, U.; Ayranov, M.; Vontobel, P.; Mastromarco, M.; Schell, J.; Correia, J. Martins; Stora, T.; n TOF Collaboration

    2018-05-01

    This manuscript describes the production of three targets obtained by implantation of different activities of 7Be into thin aluminium disks. Two of the produced targets were used to measure the 7Be(n, p)7Li cross section in the energy range of interest for the Big-Bang Nucleosynthesis. A third target was used to measure the cross sections of 7Be(n, p)7Li and 7Be(n, α)7Li nuclear reactions with cold and thermal neutrons, respectively. This paper describes also the characterization of the first two targets, performed after the neutron irradiation, in terms of implanted 7Be activities and spatial distributions.

  9. Charge exchange contamination of CRIT-II barium CIV experiment. [critical ionization velocity in ionosphere

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Meyerott, R. E.; Rairden, R. L.

    1991-01-01

    Experiments have been recently performed which attempted to confirm critical ionization velocity (CIV) ionization by deploying chemicals at high velocity in the ionosphere. Specifically, the CRIT-II rocket performed a barium release in the ionosphere, where observations of Ba(+) resonant emissions following the release are believed to have resulted from the CIV process. Calculations are presented which suggest a significant fraction (if not all) of the Ba(+) observed likely resulted from charge exchange with the thermosphere ions and not through CIV processes. The results presented here are pertinent to other CIV experiments performed in the ionosphere. It is recommended that laboratory measurements should be made of the charge exchange cross section between O(+) and Ba as well as other metal vapors used in CIV experiments.

  10. Absolute single-photoionization cross sections of Se 2 + : Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macaluso, D. A.; Aguilar, A.; Kilcoyne, A. L. D.

    2015-12-28

    Absolute single-photoionization cross-section measurements for Se 2+ ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged-beams photo-ion technique. Measurements were made at a photon energy resolution of 24 ± 3 meV in the photon energy range 23.5-42.5 eV, spanning the ground state and low-lying metastable state ionization thresholds. Here, to clearly resolve the resonant structure near the ground-state threshold, high-resolution measurements were made from 30.0 to 31.9 eV at a photon energy resolution of 6.7 ± 0.7 meV. Numerous resonance features observed in the experimental spectra are assigned and their energies and quantummore » defects tabulated. The high-resolution cross-section measurements are compared with large-scale, state-of-the-art theoretical cross-section calculations obtained from the Dirac Coulomb R -matrix method. Suitable agreement is obtained over the entire photon energy range investigated. In conclusion, these results are an experimental determination of the absolute photoionization cross section of doubly ionized selenium and include a detailed analysis of the photoionization resonance spectrum of this ion.« less

  11. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  12. Silver-109-based laser desorption/ionization mass spectrometry method for detection and quantification of amino acids.

    PubMed

    Arendowski, Adrian; Nizioł, Joanna; Ruman, Tomasz

    2018-04-01

    A new methodology applicable for both high-resolution laser desorption/ionization mass spectrometry and mass spectrometry imaging of amino acids is presented. The matrix-assisted laser desorption ionization-type target containing monoisotopic cationic 109 Ag nanoparticles ( 109 AgNPs) was used for rapid mass spectrometry measurements of 11 amino acids of different chemical properties. Amino acids were directly tested in 100,000-fold concentration change conditions ranging from 100 μg/mL to 1 ng/mL which equates to 50 ng to 500 fg of amino acid per measurement spot. Limit of detection values obtained suggest that presented method/target system is among the fastest and most sensitive ones in laser mass spectrometry. Mass spectrometry imaging of spots of human blood plasma spiked with amino acids showed their surface distribution allowing optimization of quantitative measurements. Copyright © 2018 John Wiley & Sons, Ltd.

  13. ON THE IONIZATION OF LUMINOUS WMAP SOURCES IN THE GALAXY: CONSTRAINTS FROM He RECOMBINATION LINE OBSERVATIONS WITH THE GBT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roshi, D. Anish; Plunkett, Adele; Rosero, Viviana

    2012-04-10

    Murray and Raham used the Wilkinson Microwave Anisotropy Probe (WMAP) free-free foreground emission map to identify diffuse ionized regions (DIRs) in the Galaxy. It has been found that the 18 most luminous WMAP sources produce more than half of the total ionizing luminosity of the Galaxy. We observed radio recombination lines (RRLs) toward the luminous WMAP source G49.75-0.45 with the Green Bank Telescope near 1.4 GHz. Hydrogen RRL is detected toward the source but no helium line is detected, implying that n{sub He{sup +}}/n{sub H{sup +}}< 0.024. This limit puts severe constraint on the ionizing spectrum. The total ionizing luminositymore » of G49 (3.05 Multiplication-Sign 10{sup 51} s{sup -1}) is {approx}2.8 times the luminosity of all radio H II regions within this DIR and this is generally the case for other WMAP sources. Murray and Rahman propose that the additional ionization is due to massive clusters ({approx}7.5 Multiplication-Sign 10{sup 3} M{sub Sun} for G49) embedded in the WMAP sources. Such clusters should produce enough photons with energy {>=}24.6 eV to fully ionize helium in the DIR. Our observations rule out a simple model with G49 ionized by a massive cluster. We also considered 'leaky' H II region models for the ionization of the DIR, suggested by Lockman and Anantharamaiah, but these models also cannot explain our observations. We estimate that the helium ionizing photons need to be attenuated by {approx}>10 times to explain the observations. If selective absorption of He ionizing photons by dust is causing this additional attenuation, then the ratio of dust absorption cross sections for He and H ionizing photons should be {approx}>6.« less

  14. Collision cross sections of N2 by H+ impact at keV energies within time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.

    2018-03-01

    We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.

  15. Selectivity of Electronic Coherence and Attosecond Ionization Delays in Strong-Field Double Ionization

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Reduzzi, Maurizio; Chang, Kristina F.; Timmers, Henry; Neumark, Daniel M.; Leone, Stephen R.

    2018-06-01

    Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe+ and Xe2 + . A high degree of coherence g =0.4 is observed between P3 2 0-P3 0 0 of Xe2 + , whereas for other possible pairs of states the coherences are below the detection limits of the experiments. A comparison of the experimental results with numerical simulations based on an uncorrelated electron-emission model shows that the coherences produced by strong-field double ionization are more selective than predicted. Surprisingly short ionization time delays, 0.85 fs, 0.64 fs, and 0.75 fs relative to Xe+ formation, are also measured for the P2 3 , P0 3 , and P1 3 states of Xe2 + , respectively. Both the unpredicted selectivity in the formation of coherence and the subfemtosecond time delays of specific states provide new insight into correlated electron dynamics in strong-field double ionization.

  16. Streptococcus sanguinis isolate displaying a phenotype with cross-resistance to several rRNA-targeting agents.

    PubMed

    Mendes, Rodrigo E; Deshpande, Lalitagauri M; Kim, Jihye; Myers, Debra S; Ross, James E; Jones, Ronald N

    2013-08-01

    This study describes a clinical case of a 71-year-old male with a history of ischemic cardiomyopathy after left ventricular assist device (LVAD) endocarditis caused by methicillin-resistant Staphylococcus epidermidis (MRSE) and a rare linezolid-resistant Streptococcus sanguinis strain (MIC, 32 μg/ml). The patient received courses of several antimicrobial agents, including linezolid for 79 days. The S. sanguinis strain had mutations in the 23S rRNA (T2211C, T2406C, G2576T, C2610T) and an amino acid substitution (N56D) in L22 and exhibited cross-resistance to ribosome-targeting agents.

  17. Streptococcus sanguinis Isolate Displaying a Phenotype with Cross-Resistance to Several rRNA-Targeting Agents

    PubMed Central

    Deshpande, Lalitagauri M.; Kim, Jihye; Myers, Debra S.; Ross, James E.; Jones, Ronald N.

    2013-01-01

    This study describes a clinical case of a 71-year-old male with a history of ischemic cardiomyopathy after left ventricular assist device (LVAD) endocarditis caused by methicillin-resistant Staphylococcus epidermidis (MRSE) and a rare linezolid-resistant Streptococcus sanguinis strain (MIC, 32 μg/ml). The patient received courses of several antimicrobial agents, including linezolid for 79 days. The S. sanguinis strain had mutations in the 23S rRNA (T2211C, T2406C, G2576T, C2610T) and an amino acid substitution (N56D) in L22 and exhibited cross-resistance to ribosome-targeting agents. PMID:23698536

  18. Recombinant Hepatitis C Virus Envelope Glycoprotein Vaccine Elicits Antibodies Targeting Multiple Epitopes on the Envelope Glycoproteins Associated with Broad Cross-Neutralization

    PubMed Central

    Wong, Jason Alexander Ji-Xhin; Bhat, Rakesh; Hockman, Darren; Logan, Michael; Chen, Chao; Levin, Aviad; Frey, Sharon E.; Belshe, Robert B.; Tyrrell, D. Lorne

    2014-01-01

    ABSTRACT Although effective hepatitis C virus (HCV) antivirals are on the horizon, a global prophylactic vaccine for HCV remains elusive. The diversity of the virus is a major concern for vaccine development; there are 7 major genotypes of HCV found globally. Therefore, a successful vaccine will need to protect against HCV infection by all genotypes. Despite the diversity, many monoclonal antibodies (MAbs) with broadly cross-neutralizing activity have been described, suggesting the presence of conserved epitopes that can be targeted to prevent infection. Similarly, a vaccine comprising recombinant envelope glycoproteins (rE1E2) derived from the genotype 1a HCV-1 strain has been shown to be capable of eliciting cross-neutralizing antibodies in guinea pigs, chimpanzees, and healthy human volunteers. In order to investigate the basis for this cross-neutralization, epitope mapping of anti-E1E2 antibodies present within antisera from goats and humans immunized with HCV-1 rE1E2 was conducted through peptide mapping and competition studies with a panel of cross-neutralizing MAbs targeting various epitopes within E1E2. The immunized-goat antiserum was shown to compete with the binding of all MAbs tested (AP33, HC33.4, HC84.26, 1:7, AR3B, AR4A, AR5A, IGH526, and A4). Antisera showed the best competition against HC84.26 and AR3B and the weakest competition against AR4A. Furthermore, antisera from five immunized human vaccinees were shown to compete with five preselected MAbs (AP33, AR3B, AR4A, AR5A, and IGH526). These data show that immunization with HCV-1 rE1E2 elicits antibodies targeting multiple cross-neutralizing epitopes. Our results further support the use of such a vaccine antigen to induce cross-genotype neutralization. IMPORTANCE An effective prophylactic vaccine for HCV is needed for optimal control of the disease burden. The high diversity of HCV has posed a challenge for developing vaccines that elicit neutralizing antibodies for protection against infection

  19. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuan; Gottwald, T.; Mattolat, C.

    We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less

  20. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    DOE PAGES

    Liu, Yuan; Gottwald, T.; Mattolat, C.; ...

    2017-03-20

    We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less

  1. Double-frequency microwave ionization of Na

    NASA Astrophysics Data System (ADS)

    Ruff, G. A.; Dietrick, K. M.; Gallagher, T. F.

    1990-11-01

    We report the ionization of Na atoms by the simultaneous application of microwave fields of two different frequencies. We conclude that the salient features of double-frequency ionization can be readily understood. Both the hydrogenlike ||m||=2 states and the nonhydrogenic ||m||=0 and 1 states ionize when the sum of the field amplitudes, the peak field, reaches the field required for ionization by a single microwave frequency, E=1/9n4 and E=1/3n5, respectively.

  2. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  3. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  4. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  5. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, Scott A.; Glish, Gary L.

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  6. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  7. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of p-vinylaniline

    NASA Astrophysics Data System (ADS)

    Tzeng, Sheng Yuan; Dong, Changwu; Tzeng, Wen Bih

    2012-10-01

    We report the vibronic and cation spectra of p-vinylaniline, which are recorded by using the resonant two-photon ionization and the mass-analyzed threshold ionization spectroscopic techniques. The band origin of the S1 ← S0 electronic transition appears at 31,490 ± 2 cm-1 and the adiabatic ionization energy is determined to be 59,203 ± 5 cm-1. Due to the nature of the substituent, the amino and vinyl groups lead to lower electronic excitation and ionization energies by a few thousand wave numbers. Most of the observed active modes result from the in-plane ring deformation and substituent-sensitive vibrations of this molecule in the electronically excited S1 and cationic ground D0 states. By comparing the frequencies of the observed active vibrations, one may conclude that the molecular geometry and the vibrational coordinates of these modes of the p-vinylaniline cation in the D0 state resemble those of the neutral species in the S1 state.

  8. Direct identification of prohibited substances in cosmetics and foodstuffs using ambient ionization on a miniature mass spectrometry system.

    PubMed

    Ma, Qiang; Bai, Hua; Li, Wentao; Wang, Chao; Li, Xinshi; Cooks, R Graham; Ouyang, Zheng

    2016-03-17

    Significantly simplified work flows were developed for rapid analysis of various types of cosmetic and foodstuff samples by employing a miniature mass spectrometry system and ambient ionization methods. A desktop Mini 12 ion trap mass spectrometer was coupled with paper spray ionization, extraction spray ionization and slug-flow microextraction for direct analysis of Sudan Reds, parabens, antibiotics, steroids, bisphenol and plasticizer from raw samples with complex matrices. Limits of detection as low as 5 μg/kg were obtained for target analytes. On-line derivatization was also implemented for analysis of steroid in cosmetics. The developed methods provide potential analytical possibility for outside-the-lab screening of cosmetics and foodstuff products for the presence of illegal substances. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation.

    PubMed

    Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin

    2015-01-01

    Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.

  10. A Pre-ionization System to Limit Neutral Gas in a Compact Toroid Injector

    NASA Astrophysics Data System (ADS)

    Allfrey, Ian; Roche, Thomas; Matsumoto, Tadafumi; Garate, Eusebio; Gota, Hiroshi; Asai, Tomohiko; the TAE Team

    2016-10-01

    Fusion plasmas require long lifetimes and high temperatures, both of which are limited by particle loss, among other factors. Therefore, refueling a long-lived advanced beam-driven field-reversed configuration (FRC) plasma in C-2U is necessary, and injecting a supersonic compact toroid (CT) is an effective means of introducing particles into the FRC core. However, neutral gas that trails the CT into the target chamber cools the FRC. Pre-ionization (PI) system assists the break down between electrodes of the CT injector (CTI), so the amount of introduced gas can be lowered by up to a factor of two, effectively increasing the ionization fraction; thus, reducing the amount of neutral gas in the system. Additionally, the PI decreases the delay in CTI breakdown so a highly reproducible operation is achievable. The PI system consists of a fast, high voltage, pulse discharge circuit coupled to a Teflon insulated semi-rigid coaxial cable inserted into the CTI. System details and experimental data will be presented, in addition to issues such as the introduction of impurities and pre-ionizer lifetime.

  11. A Chemogenomic Analysis of Ionization Constants - Implications for Drug Discovery

    PubMed Central

    Manallack, David T.; Prankerd, Richard J.; Nassta, Gemma C.; Ursu, Oleg; Oprea, Tudor I.; Chalmers, David K.

    2013-01-01

    Chemogenomics methods seek to characterize the interaction between drugs and biological systems and are an important guide for the selection of screening compounds. The acid/base character of drugs has a profound influence on their affinity for the receptor, on their absorption, distribution, metabolism, excretion and toxicity (ADMET) profile and the way the drug can be formulated. In particular, the charge state of a molecule greatly influences its lipophilicity and biopharmaceutical characteristics. This study investigates the acid/base profile of human small molecule drugs, chemogenomics datasets and screening compounds including a natural products set. We estimate the ionization constants (pKa values) of these compounds and determine the identity of the ionizable functional groups in each set. We find substantial differences in acid/base profiles of the chemogenomic classes. In many cases, these differences can be linked to the nature of the target binding site and the corresponding functional groups needed for recognition of the ligand. Clear differences are also observed between the acid/base characteristics of drugs and screening compounds. For example, the proportion of drugs containing a carboxylic acid was 20%, in stark contrast to a value of 2.4% for the screening set sample. The proportion of aliphatic amines was 27% for drugs and only 3.4% for screening compounds. This suggests that there is a mismatch between commercially available screening compounds and the compounds that are likely to interact with a given chemogenomic target family. Our analysis provides a guide for the selection of screening compounds to better target specific chemogenomic families with regard to the overall balance of acids, bases and pKa distributions. PMID:23303535

  12. PO calculation for reduction in radar cross section of hypersonic targets using RAM

    NASA Astrophysics Data System (ADS)

    Liu, Song-hua; Guo, Li-xin; Pan, Wei-tao; Chen, Wei; Xiao, Yi-fan

    2018-06-01

    The radar cross section (RCS) reduction of hypersonic targets by radar absorbing materials (RAM) coating under different reentry cases is analyzed in the C and X bands frequency range normally used for radar detection. The physical optics method is extended to both the inhomogeneous plasma sheath and RAM layer present simultaneously. The simulation results show that the absorbing coating can reduce the RCS of the plasma cloaking system and its effectiveness is related to the maximum plasma frequency. Moreover, the amount of the RCS decrease, its maxima, and the corresponding optimal RAM thickness depend on the non-uniformity and parameters of the plasma sheath. In addition, the backward RCS of the flight vehicle shrouded by plasma shielding and man-made absorber is calculated and compared to the bare cone.

  13. PHD TUTORIAL: A complete numerical approach to electron hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.

    2006-11-01

    This tutorial presents an extensive computational study of electron-impact scattering and ionization of atomic hydrogen and hydrogenic ions, through the solution of the non-relativistic Schrödinger equation in coordinate space using propagating exterior complex scaling (PECS). It details the complete numerical and computational development of the PECS method, which enables highly computationally-efficient solution of these collision systems. Benchmark results are presented for a complete range of electron-hydrogen collisions, including discrete elastic and inelastic scattering both below and above the ionization threshold energy, very low-energy ionizing collisions through to moderately high-energy ionizing collisions, ground-state and excited-state targets and charged hydrogenic targets with Z <= 4. Total ionization cross sections through to fully differential cross sections, both in-plane and out-of-plane, are given and are found to be in excellent accord with other state-of-the-art methods and measurements, where available. We also review our recent confirmation (Bartlett and Stelbovics 2004 Phys. Rev. Lett. 93 233201) of the Wannier and related threshold laws for e-H collisions.

  14. Heating the warm ionized medium

    NASA Technical Reports Server (NTRS)

    Reynolds, R. J.; Cox, D. P.

    1992-01-01

    If photoelectric heating by grains within the diffuse ionized component of the interstellar medium is 10 exp -25 ergs/s per H atom, the average value within diffuse H I regions, then grain heating equals or exceeds photoionization heating of the ionized gas. This supplemental heat source would obviate the need for energetic ionizing photons to balance the observed forbidden-line cooling and could be responsible in part for enhanced intensities of some of the forbidden lines.

  15. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  16. Ejection-ionization of molecules from free standing graphene

    NASA Astrophysics Data System (ADS)

    Verkhoturov, Stanislav V.; Czerwinski, Bartlomiej; Verkhoturov, Dmitriy S.; Geng, Sheng; Delcorte, Arnaud; Schweikert, Emile A.

    2017-02-01

    We present the first data on emission of -C60 stimulated by single impacts of 50 keV C60+2 on the self-assembled molecular layer of C60 deposited on free standing 2 layer graphene. The yield, Y, of -C60 emitted in the transmission direction is 1.7%. To characterize the ejection and ionization of molecules, we have measured the emission of -C60 from the surface of bulk C60 (Y = 3.7%) and from a single layer of C60 deposited on bulk pyrolytic graphite (Y = 3.3%). To gain insight into the mechanism(s) of ejection, molecular dynamic simulations were performed. The scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. In the case of 50 keV C60+2 impacts on graphene plus C60, the C atoms of the projectile collide with those of the target. The knocked-on atoms take on a part of the kinetic energy of the projectile atoms. Another part of the kinetic energy is deposited into the rim around the impact site. The ejection of molecules from the rim is a result of collective movement of the molecules and graphene membrane, where the membrane movement provides the impulse for ejection. The efficient emission of the intact molecular ions implies an effective ionization probability of intact C60. The proposed mechanism of ionization involves the tunneling of electrons from the vibrationally exited area around the hole to the ejecta.

  17. Wave-packet continuum-discretization approach to ion-atom collisions including rearrangement: Application to differential ionization in proton-hydrogen scattering

    NASA Astrophysics Data System (ADS)

    Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.

    2018-03-01

    In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.

  18. Pediatric Sarcomas Are Targetable by MR-Guided High Intensity Focused Ultrasound (MR-HIFU): Anatomical Distribution and Radiological Characteristics.

    PubMed

    Shim, Jenny; Staruch, Robert M; Koral, Korgun; Xie, Xian-Jin; Chopra, Rajiv; Laetsch, Theodore W

    2016-10-01

    Despite intensive therapy, children with metastatic and recurrent sarcoma or neuroblastoma have a poor prognosis. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is a noninvasive technique allowing the delivery of targeted ultrasound energy under MR imaging guidance. MR-HIFU may be used to ablate tumors without ionizing radiation or target chemotherapy using hyperthermia. Here, we evaluated the anatomic locations of tumors to assess the technical feasibility of MR-HIFU therapy for children with solid tumors. Patients with sarcoma or neuroblastoma with available cross-sectional imaging were studied. Tumors were classified based on the location and surrounding structures within the ultrasound beam path as (i) not targetable, (ii) completely or partially targetable with the currently available MR-HIFU system, and (iii) potentially targetable if a respiratory motion compensation technique was used. Of the 121 patients with sarcoma and 61 patients with neuroblastoma, 64% and 25% of primary tumors were targetable at diagnosis, respectively. Less than 20% of metastases at diagnosis or relapse were targetable for both sarcoma and neuroblastoma. Most targetable lesions were located in extremities or in the pelvis. Respiratory motion compensation may increase the percentage of targetable tumors by 4% for sarcomas and 10% for neuroblastoma. Many pediatric sarcomas are localized at diagnosis and are targetable by current MR-HIFU technology. Some children with neuroblastoma have bony tumors targetable by MR-HIFU at relapse, but few newly diagnosed children with neuroblastoma have tumors amenable to MR-HIFU therapy. Clinical trials of MR-HIFU should focus on patients with anatomically targetable tumors. © 2016 Wiley Periodicals, Inc.

  19. Optical measurements and analytical modeling of magnetic field generated in a dieletric target

    NASA Astrophysics Data System (ADS)

    Yafeng, BAI; Shiyi, ZHOU; Yushan, ZENG; Yihan, LIANG; Rong, QI; Wentao, LI; Ye, TIAN; Xiaoya, LI; Jiansheng, LIU

    2018-01-01

    Polarization rotation of a probe pulse by the target is observed with the Faraday rotation method in the interaction of an intense laser pulse with a solid target. The rotation of the polarization plane of the probe pulse may result from a combined action of fused silica and diffused electrons. After the irradiation of the main pulse, the rotation angle changed significantly and lasted ∼2 ps. These phenomena may imply a persistent magnetic field inside the target. An analytical model is developed to explain the experimental observation. The model indicates that a strong toroidal magnetic field is induced by an energetic electron beam. Meanwhile, an ionization channel is observed in the shadowgraph and extends at the speed of light after the irradiation of the main beam. The formation of this ionization channel is complex, and a simple explanation is given.

  20. Computation of Electron Impact Ionization Cross sections of Iron Hydrogen Clusters - Relevance in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Patel, Umang; Joshipura, K. N.

    2017-04-01

    Plasma-wall interaction (PWI) is one of the key issues in nuclear fusion research. In nuclear fusion devices, such as the JET tokamak or the ITER, first-wall materials will be directly exposed to plasma components. Erosion of first-wall materials is a consequence of the impact of hydrogen and its isotopes as main constituents of the hot plasma. Besides the formation of gas-phase atomic species in various charge states, di- and polyatomic molecular species are expected to be formed via PWI processes. These compounds may profoundly disturb the fusion plasma, may lead to unfavorable re-deposition of materials and composites in other areas of the vessel. Interaction between atoms, molecules as well transport of impurities are of interest for modelling of fusion plasma. Qion by electron impact are such process also important in low temperature plasma processing, astrophysics etc. We reported electron impact Qionfor iron hydrogen clusters, FeHn (n = 1 to 10) from ionization threshold to 2000 eV. A semi empirical approach called Complex Scattering Potential - Ionization Contribution (CSP-ic) has been employed for the reported calculation. In context of fusion relevant species Qion were reported for beryllium and its hydrides, tungsten and its oxides and cluster of beryllium-tungsten by Huber et al.. Iron hydrogen clusters are another such species whose Qion were calculated through DM and BEB formalisms, same has been compared with present calculations.