DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, James J.; Wall, Donald; Wittman, Richard S.
Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less
Cantilevered probe detector with piezoelectric element
Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C
2014-04-29
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Cantilevered probe detector with piezoelectric element
Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C
2013-04-30
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Cantilevered probe detector with piezoelectric element
Adams, Jesse D [Reno, NV; Sulchek, Todd A [Oakland, CA; Feigin, Stuart C [Reno, NV
2012-07-10
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Cantilevered probe detector with piezoelectric element
Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.
2010-04-06
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.
2017-07-11
A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.
Method and apparatus for optimized sampling of volatilizable target substances
Lindgren, Eric R.; Phelan, James M.
2004-10-12
An apparatus for capturing, from gases such as soil gas, target analytes. Target analytes may include emanations from explosive materials or from residues of explosive materials. The apparatus employs principles of sorption common to solid phase microextraction, and is best used in conjunction with analysis means such as a gas chromatograph. To sorb target analytes, the apparatus functions using various sorptive structures to capture target analyte. Depending upon the embodiment, those structures may include a capillary tube including an interior surface on which sorptive material (similar to that on the surface of a SPME fiber) is supported (along with means for moving gases through the capillary tube so that the gases come into close proximity to the sorptive material). In one disclosed embodiment, at least one such sorptive structure is associated with an enclosure including an opening in communication with the surface of a soil region potentially contaminated with buried explosive material such as unexploded ordnance. Emanations from explosive materials can pass into and accumulate in the enclosure where they are sorbed by the sorptive structures. Also disclosed is the use of heating means such as microwave horns to drive target analytes into the soil gas from solid and liquid phase components of the soil.
Magnetically attached sputter targets
Makowiecki, D.M.; McKernan, M.A.
1994-02-15
An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.
Magnetically attached sputter targets
Makowiecki, Daniel M.; McKernan, Mark A.
1994-01-01
An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly.
Boll, Rose A [Knoxville, TN; Mirzadeh, Saed [Knoxville, TN
2008-10-14
A method of producing and purifying promethium-147 including the steps of: irradiating a target material including neodymium-146 with neutrons to produce promethium-147 within the irradiated target material; dissolving the irradiated target material to form an acidic solution; loading the acidic solution onto a chromatographic separation apparatus containing HDEHP; and eluting the apparatus to chromatographically separate the promethium-147 from the neodymium-146.
Method and apparatus for optimized sampling of volatilizable target substances
Lindgren, Eric R.; Phelan, James M.
2002-01-01
An apparatus for capturing, from gases such as soil gas, target analytes. Target analytes may include emanations from explosive materials or from residues of explosive materials. The apparatus employs principles of sorption common to solid phase microextraction, and is best used in conjunction with analysis means such as a gas chromatograph. To sorb target analytes, the apparatus functions using various sorptive structures to capture target analyte. Depending upon the embodiment, those structures may include 1) a conventional solid-phase microextraction (SPME) fiber, 2) a SPME fiber suspended in a capillary tube (with means provided for moving gases through the capillary tube so that the gases come into close proximity to the suspended fiber), and 3) a capillary tube including an interior surface on which sorptive material (similar to that on the surface of a SPME fiber) is supported (along with means for moving gases through the capillary tube so that the gases come into close proximity to the sorptive material). In one disclosed embodiment, at least one such sorptive structure is associated with an enclosure including an opening in communication with the surface of a soil region potentially contaminated with buried explosive material such as unexploded ordnance. Emanations from explosive materials can pass into and accumulate in the enclosure where they are sorbed by the sorptive structures. Also disclosed is the use of heating means such as microwave horns to drive target analytes into the soil gas from solid and liquid phase components of the soil.
Actinide targets for the synthesis of super-heavy elements
Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; ...
2015-06-18
Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less
NASA Astrophysics Data System (ADS)
Nagai, Keiji; Norimatsu, Takayoshi; Izawa, Yasukazu
Target fabrication technique is a key issue of laser fusion. We present a comprehensive, up-to-data compilation of laser fusion target fabrication and relating new materials. To achieve highly efficient laser implosion, organic and inorganic highly spherical millimeter-sized capsules and cryogenic hydrogen layers inside should be uniform in diameter and thickness within sub-micrometer ˜ nanometer error. Porous structured targets and molecular cluster targets are required for laser-plasma experiments and applications. Various technologies and new materials concerning above purposes are summarized including fast-ignition targets, equation-of-state measurement targets, high energy ion generation targets, etc.
Cockpit Video: A Low Cost BDA Source
1993-12-01
military expertise, and material withheld for operational security, the press was very reluctant to accept the military’s claims. As one reporter...readout of the KA-71 and radar scope film, and the normal intelligence support to include aircrew briefing/debriefing, preparation of target materials ...target, and recording the result of impact, the effectivenass of a weapon system can be evaluated. The secondary purposes of ARP materials include
Production of thorium-229 using helium nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirzadeh, Saed; Garland, Marc Alan
A method for producing .sup.229Th includes the steps of providing .sup.226Ra as a target material, and bombarding the target material with alpha particles, helium-3, or neutrons to form .sup.229Th. When neutrons are used, the neutrons preferably include an epithermal neutron flux of at least 1.times.10.sup.13 n s.sup.-1cm.sup.-2. .sup.228Ra can also be bombarded with thermal and/or energetic neutrons to result in a neutron capture reaction to form .sup.229Th. Using .sup.230Th as a target material, .sup.229Th can be formed using neutron, gamma ray, proton or deuteron bombardment.
Three dimensional separation trap based on dielectrophoresis and use thereof
Mariella, Jr., Raymond P.
2004-05-04
An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.
Compositions of Spherules and Rock Surfaces at Meridiani
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Jolliff, B. L.; Clark, B. C.; Gellert, R.
2007-01-01
The Alpha Particle X-ray Spectrometers (APXS) on the Mars Exploration Rovers (MER) have proven extremely valuable for analyzing rocks and soils on the surface of Mars. The precision of their compositional measurements has been shown to be phenomenal through analyses of the compositionally very uniform Meridiani soils. Through combined use of the rock abrasion tool (RAT) and the analytical instruments on the in-situ deployment device (IDD), analyses of the interiors of fine-grained and texturally uniform rocks with surfaces ground flat have been made under conditions that are nearly ideal for this mode of analysis. The APXS has also been used frequently to analyze materials whose characteristics, surface morphologies, and sample-detector geometries are less than ideal, but the analyses of which are nonetheless very useful for understanding the makeup of the target materials. Such targets include undisturbed rocks with irregular and sometimes coated surfaces and mixed targets such as soils that include fine-grained components as well as coarse grains and pieces of rocks. Such target materials include the well known hematite-rich concretions, referred to as blueberries because of their multispectral color, size, and mode of occurrence. In addition to non-ideal target geometry, such mixed materials also present a heterogeneous target in terms of density. These irregularities violate the assumptions commonly associated with analyses done in the laboratory to achieve the highest possible accuracy. Here we acknowledge the irregularities and we examine the inferences drawn from specific chemical trends obtained on imperfect targets in light of one of the potential pitfalls of natural materials on the surface of Mars, namely thin dust coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.
Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.
Post-impact alteration of the Manson impact structure
NASA Technical Reports Server (NTRS)
Crossey, L. J.; Mccarville, P.
1993-01-01
Core materials from the Manson impact site (Manson, Iowa) are examined in order to evaluate post-impact alteration processes. Diagenetic interpretation of post-impact events is based on petrologic, mineralogic, and geochemical investigation of core materials including the following: target strata, disturbed and disrupted strata, ejecta, breccias, microbreccias, and impact melt. The diagenetic study utilizes research cores obtained by the continental scientific drilling project (CSDP) at the Manson structure, as well as core and cuttings of related materials. Samples include impactites (breccias, microbreccias, and melt material), crater fill material (sedimentary clast breccias), disturbed and disrupted target rocks, and reference target material (Amoco Eisheid No. 1 materials). The study of multiple cores will permit development of a regional picture of post-impact thermal history. The specific objectives are as follows: (1) provide a detailed description of authigenic and alteration mineralogy from diverse lithologies encountered in research drill cores at the Manson impact structure, and (2) identify and relate significant post-impact mineral alteration to post-impact thermal regime (extent and duration). Results will provide mineralogical and geochemical constraints on models for post-impact processes including the following: infilling of the crater depression; cooling and hydrothermal alteration of melt rocks; and subsequent long-term, low-temperature alteration of target rocks, breccias, and melt rocks. Preliminary petrologic and x-ray diffraction examination of fracture linings and void fillings from research core M1 indicate the presence of quartz, chlorite, mixed-layer clays, gypsum/anhydrite, calcite, and minor pyrite.
Multispectral infrared target detection: phenomenology and modeling
NASA Astrophysics Data System (ADS)
Cederquist, Jack N.; Rogne, Timothy J.; Schwartz, Craig R.
1993-10-01
Many targets of interest provide only very small signature differences from the clutter background. The ability to detect these small difference targets should be improved by using data which is diverse in space, time, wavelength or some other observable. Target materials often differ from background materials in the variation of their reflectance or emittance with wavelength. A multispectral sensor is therefore considered as a means to improve detection of small signal targets. If this sensor operates in the thermal infrared, it will not need solar illumination and will be useful at night as well as during the day. An understanding of the phenomenology of the spectral properties of materials and an ability to model and simulate target and clutter signatures is needed to understand potential target detection performance from multispectral infrared sensor data. Spectral variations in material emittance are due to vibrational energy transitions in molecular bonds. The spectral emittances of many materials of interest have been measured. Examples are vegetation, soil, construction and road materials, and paints. A multispectral infrared signature model has been developed which includes target and background temperature and emissivity, sky, sun, cloud and background irradiance, multiple reflection effects, path radiance, and atmospheric attenuation. This model can be used to predict multispectral infrared signatures for small signal targets.
42 CFR 423.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 3 2011-10-01 2011-10-01 false Definitions concerning marketing materials. 423... Marketing Requirements § 423.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing Materials include any informational materials targeted to Medicare...
42 CFR 422.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 3 2012-10-01 2012-10-01 false Definitions concerning marketing materials. 422... Marketing Requirements § 422.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing materials include any informational materials targeted to Medicare...
42 CFR 422.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 3 2014-10-01 2014-10-01 false Definitions concerning marketing materials. 422... Marketing Requirements § 422.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing materials include any informational materials targeted to Medicare...
42 CFR 422.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 3 2013-10-01 2013-10-01 false Definitions concerning marketing materials. 422... Marketing Requirements § 422.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing materials include any informational materials targeted to Medicare...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammigan, Kavin; et al.
The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples formore » various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.« less
Topics in LIFE Target Survival: 11-SI-004 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Robin; Benett, Bill; Bond, Tiziana
The LIFE target design incorporates many considerations to generate the desired fusion gain including the physics design, the cost of manufacturing of the target, the injectability of the target, the aerodynamic flight characteristics of the target, the ability to track and engage the target and to maintain the structural and thermal integrity of the target. This document describes the effort that was made in support of issues of survivability of the target during injection which included issues massmanufactural materials and processes which could be used in the target.
42 CFR 423.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 3 2012-10-01 2012-10-01 false Definitions concerning marketing materials. 423... Part D Marketing Requirements § 423.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing Materials include any informational materials targeted to Medicare...
42 CFR 423.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 3 2013-10-01 2013-10-01 false Definitions concerning marketing materials. 423... Part D Marketing Requirements § 423.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing Materials include any informational materials targeted to Medicare...
42 CFR 423.2260 - Definitions concerning marketing materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 3 2014-10-01 2014-10-01 false Definitions concerning marketing materials. 423... Part D Marketing Requirements § 423.2260 Definitions concerning marketing materials. As used in this subpart— Marketing materials. Marketing Materials include any informational materials targeted to Medicare...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-05-01
Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recyclingmore » flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)« less
Detection of electromagnetic radiation using nonlinear materials
Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin
2016-06-14
An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
NASA Technical Reports Server (NTRS)
Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.
2014-01-01
The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).
A health literate approach to the prevention of childhood overweight and obesity
White, Richard O.; Thompson, Jessica R.; Rothman, Russell L.; Scott, Amanda M. McDougald; Heerman, William J.; Sommer, Evan C.; Barkin, Shari L.
2013-01-01
Objective To describe a systematic assessment of patient educational materials for the Growing Right Onto Wellness (GROW) trial, a childhood obesity prevention study targeting a low health literate population. Methods Process included: (1) expert review of educational content, (2) assessment of the quality of materials including use of the Suitability Assessment of Materials (SAM) tool, and (3) material review and revision with target population. Results 12 core modules were developed and assessed in an iterative process. Average readability was at the 6th grade reading level (SMOG Index 5.63 ± 0.76, and Fry graph 6.0 ± 0.85). SAM evaluation resulted in adjustments to literacy demand, layout & typography, and learning stimulation & motivation. Cognitive interviews with target population revealed additional changes incorporated to enhance participant's perception of acceptability and feasibility for behavior change. Conclusion The GROW modules are a collection of evidence-based materials appropriate for parents with low health literacy and their preschool aged children, that target the prevention of childhood overweight/obesity. Practice implications Most trials addressing the treatment or prevention of childhood obesity use written materials. Due to the ubiquitous prevalence of limited health literacy, our described methods may assist researchers in ensuring their content is both understood and actionable. PMID:24001660
A health literate approach to the prevention of childhood overweight and obesity.
White, Richard O; Thompson, Jessica R; Rothman, Russell L; McDougald Scott, Amanda M; Heerman, William J; Sommer, Evan C; Barkin, Shari L
2013-12-01
To describe a systematic assessment of patient educational materials for the Growing Right Onto Wellness (GROW) trial, a childhood obesity prevention study targeting a low health literate population. Process included: (1) expert review of educational content, (2) assessment of the quality of materials including use of the Suitability Assessment of Materials (SAM) tool, and (3) material review and revision with target population. 12 core modules were developed and assessed in an iterative process. Average readability was at the 6th grade reading level (SMOG Index 5.63 ± 0.76, and Fry graph 6.0 ± 0.85). SAM evaluation resulted in adjustments to literacy demand, layout & typography, and learning stimulation & motivation. Cognitive interviews with target population revealed additional changes incorporated to enhance participant's perception of acceptability and feasibility for behavior change. The GROW modules are a collection of evidence-based materials appropriate for parents with low health literacy and their preschool aged children, that target the prevention of childhood overweight/obesity. Most trials addressing the treatment or prevention of childhood obesity use written materials. Due to the ubiquitous prevalence of limited health literacy, our described methods may assist researchers in ensuring their content is both understood and actionable. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Reversible creation of nanostructures between identical or different species of materials
NASA Astrophysics Data System (ADS)
Jang, Hyun-Ik; Ko, Sungho; Park, Junyong; Lee, Dong-Eon; Jeon, Seokwoo; Ahn, Chi Won; Yoo, Kwang Soo; Park, Jae Hong
2012-07-01
In this study, accurate nanostructures with various aspect ratios are created on several types of material. This work is highly applicable to the energy, optical, and nano-bio fields, for example. A silicon (Si) nano-mold is preserved using the method described, and target nanostructures are replicated reversibly and unlimitedly to or from various hard and soft materials. It is also verified that various materials can be applied to the substrates. The results confirm that the target nanostructures are successfully created in precise straight line structures and circle structures with various aspect ratios, including extremely high aspect ratios of 1:18. It is suggested that the optimal replicating and demolding process of nanostructures with high aspect ratios, which are the most problematic, could be controlled by means of the surface energy between the functional materials. Relevant numerical and analytical studies are also performed. It is possible to expand the applicability of the nanostructured mold by adopting various backing materials, including rounded substrates. The scope of the applications is extended further by transferring the nanostructures between different species of materials including metallic materials as well as identical species.
Morrison, John L.; Stephens, Alan G.; Grover, S. Blaine
2001-11-20
An improved nuclear diagnostic method identifies a contained target material by measuring on-axis, mono-energetic uncollided particle radiation transmitted through a target material for two penetrating radiation beam energies, and applying specially developed algorithms to estimate a ratio of macroscopic neutron cross-sections for the uncollided particle radiation at the two energies, where the penetrating radiation is a neutron beam, or a ratio of linear attenuation coefficients for the uncollided particle radiation at the two energies, where the penetrating radiation is a gamma-ray beam. Alternatively, the measurements are used to derive a minimization formula based on the macroscopic neutron cross-sections for the uncollided particle radiation at the two neutron beam energies, or the linear attenuation coefficients for the uncollided particle radiation at the two gamma-ray beam energies. A candidate target material database, including known macroscopic neutron cross-sections or linear attenuation coefficients for target materials at the selected neutron or gamma-ray beam energies, is used to approximate the estimated ratio or to solve the minimization formula, such that the identity of the contained target material is discovered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammigan, K.; Hurh, P.
The Radiation Damage In Accelerator Target Environments (RaDIATE) collaboration was founded in 2012 and currently consists of over 50 participants and 11 institutions globally. Due to the increasing power of future proton accelerator sources in target facilities, there is a critical need to further understand the physical and thermo-mechanical radiation response of target facility materials. Thus, the primary objective of the RaDIATE collaboration is to draw on existing expertise in the nuclear materials and accelerator targets fields to generate new and useful materials data for application within the accelerator and fission/fusion communities. Current research activities of the collaboration include postmore » irradiation examination (PIE) of decommissioned components from existing beamlines such as the NuMI beryllium beam window and graphite NT-02 target material. PIE of these components includes advanced microstructural analyses (SEM/TEM, EBSD, EDS) and micro-mechanics technique such as nano-indentation, to help characterize any microstructural radiation damage incurred during operation. New irradiation campaigns of various candidate materials at both low and high energy beam facilities are also being pursued. Beryllium helium implantation studies at the University of Surrey as well as high energy proton irradiation of various materials at Brookhaven National Laboratory’s BLIP facility have been initiated. The program also extends to beam-induced thermal shock experiments using high intensity beam pulses at CERN’s HiRadMat facility, followed by advanced PIE activities to evaluate thermal shock resistance of the materials. Preliminary results from ongoing research activities, as well as the future plans of the RaDIATE collaboration R&D program will be discussed.« less
Plasma driven neutron/gamma generator
Leung, Ka-Ngo; Antolak, Arlyn
2015-03-03
An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.
Gibney, Katherine B; Brass, Amanda; Hume, Sam C; Leder, Karin
2014-01-01
International students in Victoria, Australia, originate from over 140 different countries. They are over-represented in disease notifications for tuberculosis and travel-associated infections, including enteric fever, hepatitis A, and malaria. We describe a public health initiative aimed to increase awareness of these illnesses among international students and their support staff. We identified key agencies including student support advisors, medical practitioners, health insurers, and government and professional organisations. We developed health education materials targeting international students regarding tuberculosis and travel-related infections to be disseminated via a number of different media, including electronic and printed materials. We sought informal feedback from personnel in all interested agencies regarding the materials developed, their willingness to deliver these materials to international students, and their preferred media for disseminating these materials. Education institutions with dedicated international student support staff and on-campus health clinics were more easily engaged to provide feedback and disseminate the health education materials than institutions without such dedicated personnel. Response to contacting off-campus medical practices was poor. Delivery of educational materials via electronic and social media was preferred over face-to-face education. It is feasible to provide health education messages targeting international students for dissemination via appropriately-staffed educational institutions. This initiative could be expanded in terms of age-group, geographic range, and health issues to be targeted. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Viola, Timothy S.; Klein, Mark D.
2017-10-01
The ability to predict spectral electro-optical (EO) signatures for various targets against realistic, cluttered backgrounds is paramount for rigorous signature evaluation. Knowledge of background and target signatures, including plumes, is essential for a variety of scientific and defense-related applications including contrast analysis, camouflage development, automatic target recognition (ATR) algorithm development and scene material classification. The capability to simulate any desired mission scenario with forecast or historical weather is a tremendous asset for defense agencies, serving as a complement to (or substitute for) target and background signature measurement campaigns. In this paper, a systematic process for the physical temperature and visible-through-infrared radiance prediction of several diverse targets in a cluttered natural environment scene is presented. The ability of a virtual airborne sensor platform to detect and differentiate targets from a cluttered background, from a variety of sensor perspectives and across numerous wavelengths in differing atmospheric conditions, is considered. The process described utilizes the thermal and radiance simulation software MuSES and provides a repeatable, accurate approach for analyzing wavelength-dependent background and target (including plume) signatures in multiple band-integrated wavebands (multispectral) or hyperspectrally. The engineering workflow required to combine 3D geometric descriptions, thermal material properties, natural weather boundary conditions, all modes of heat transfer and spectral surface properties is summarized. This procedure includes geometric scene creation, material and optical property attribution, and transient physical temperature prediction. Radiance renderings, based on ray-tracing and the Sandford-Robertson BRDF model, are coupled with MODTRAN for the inclusion of atmospheric effects. This virtual hyperspectral/multispectral radiance prediction methodology has been extensively validated and provides a flexible process for signature evaluation and algorithm development.
Amplification of biological targets via on-chip culture for biosensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Jason C.; Edwards, Thayne L.; Carson, Bryan
The present invention, in part, relates to methods and apparatuses for on-chip amplification and/or detection of various targets, including biological targets and any amplifiable targets. In some examples, the microculture apparatus includes a single-use, normally-closed fluidic valve that is initially maintained in the closed position by a valve element bonded to an adhesive coating. The valve is opened using a magnetic force. The valve element includes a magnetic material or metal. Such apparatuses and methods are useful for in-field or real-time detection of targets, especially in limited resource settings.
Engineering liposomal nanoparticles for targeted gene therapy.
Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S
2017-08-01
Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.
A polymer dataset for accelerated property prediction and design.
Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi
2016-03-01
Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.
Levis, Denise M; Westbrook, Kyresa
2013-01-01
Many health organizations and practitioners in the United States promote preconception health (PCH) to consumers. However, summaries and evaluations of PCH promotional activities are limited. We conducted a content analysis of PCH health education materials collected from local-, state-, national-, and federal-level partners by using an existing database of partners, outreach to maternal and child health organizations, and a snowball sampling technique. Not applicable. Not applicable. Thirty-two materials were included for analysis, based on inclusion/exclusion criteria. A codebook guided coding of materials' characteristics (type, authorship, language, cost), use of marketing and behavioral strategies to reach the target population (target audience, message framing, call to action), and inclusion of PCH subject matter (clinical-behavioral components). The self-assessment of PCH behaviors was the most common material (28%) to appear in the sample. Most materials broadly targeted women, and there was a near-equal distribution in targeting by pregnancy planning status segments (planners and nonplanners). "Practicing PCH benefits the baby's health" was the most common message frame used. Materials contained a wide range of clinical-behavioral components. Strategic targeting of subgroups of consumers is an important but overlooked strategy. More research is needed around PCH components, in terms of packaging and increasing motivation, which could guide use and placement of clinical-behavioral components within promotional materials.
Introduction to spallation physics and spallation-target design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, G.J.; Pitcher, E.J.; Daemen, L.L.
1995-10-01
When coupled with the spallation process in appropriate target materials, high-power accelerators can be used to produce large numbers of neutrons, thus providing an alternate method to the use of nuclear reactors for this purpose. Spallation offers exciting new possibilities for generating intense neutron fluxes for a variety of applications, including: (a) spallation-neutron sources for materials science research; (b) accelerator-based production of tritium; (c) accelerator-based transmutation of waste; (d) accelerator-based destruction of plutonium; and (e) radioisotope production for medical and energy applications. Target design plays a key role in these applications, with neutron production/leakage being strongly dependent on the incidentmore » particle type and energy, and target material and geometry.« less
Shape memory polymer (SMP) gripper with a release sensing system
Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Silva, Luiz Da
2000-01-01
A system for releasing a target material, such as an embolic coil from an SMP located at the end of a catheter utilizing an optical arrangement for releasing the material. The system includes a laser, laser driver, display panel, photodetector, fiber optics coupler, fiber optics and connectors, a catheter, and an SMP-based gripper, and includes a release sensing and feedback arrangement. The SMP-based gripper is heated via laser light through an optic fiber causing the gripper to release a target material (e.g., embolic coil for therapeutic treatment of aneurysms). Various embodiments are provided for coupling the laser light into the SMP, which includes specific positioning of the coils, removal of the fiber cladding adjacent the coil, a metal coating on the SMP, doping the SMP with a gradient absorbing dye, tapering the fiber optic end, coating the SMP with low refractive index material, and locating an insert between the fiber optic and the coil.
Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira
2015-12-01
The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vigilance problems in orbiter processing
NASA Technical Reports Server (NTRS)
Swart, William W.; Safford, Robert R.; Kennedy, David B.; Yadi, Bert A.; Barth, Timothy S.
1993-01-01
A pilot experiment was done to determine what factors influence potential performance errors related to vigilance in Orbiter processing activities. The selected activities include post flight inspection for burned gap filler material and pre-rollout inspection for tile processing shim material. It was determined that the primary factors related to performance decrement were the color of the target and the difficulty of the target presentation.
Recent Advances in Synthesis and Characterization of SWCNTs Produced by Laser Oven Process
NASA Technical Reports Server (NTRS)
Aepalli, Sivaram
2004-01-01
Results from the parametric study of the two-laser oven process indicated possible improvements with flow conditions and laser characteristics. Higher flow rates, lower operating pressures coupled with changes in flow tube material are found to improve the nanotube yields. The collected nanotube material is analyzed using a combination of characterization techniques including SEM, TEM, TGA, Raman and UV-VIS-NIR to estimate the purity of the samples. In-situ diagnostics of the laser oven process is now extended to include the surface temperature of the target material. Spectral emission from the target surface is compared with black body type emission to estimate the temperature. The surface temperature seemed to correlate well with the ablation rate as well as the quality of the SWCNTs. Recent changes in improving the production rate by rastering the target and using cw laser will be presented.
Recent Advances in Synthesis and Characterization of SWCNTs produced by laser oven process
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram
2004-01-01
Results from the parametric study of the two-laser oven process indicated possible improvements with flow conditions and laser characteristics (ref. 1). Higher flow rates, lower operating pressures coupled with changes in flow tube material are found to improve the nanotube yields. The collected nanotube material is analyzed using a combination of characterization techniques including SEM, TEM, TGA, Raman and UV-VIS-NIR to estimate the purity of the samples. Insitu diagnostics of the laser oven process is now extended to include the surface temperature of the target material. Spectral emission from the target surface is compared with black body type emission to estimate the temperature. The surface temperature seemed to correlate well with the ablation rate as well as the quality of the SWCNTs. Recent changes in improving the production rate by rastering the target and using cw laser will be presented.
The value of materials R&D in the fast track development of fusion power
NASA Astrophysics Data System (ADS)
Ward, D. J.; Taylor, N. P.; Cook, I.
2007-08-01
The objective of the international fusion program is the creation of power plants with attractive safety and environmental features and viable economics. There is a range of possible plants that can meet these objectives, as studied for instance in the recent EU studies of power plant concepts. All of the concepts satisfy safety and environmental objectives but the economic performance is interpreted differently in different world regions according to the perception of future energy markets. This leads to different materials performance targets and the direction and timescales of the materials development programme needed to meet those targets. In this paper, the implications for materials requirements of a fast track approach to fusion development are investigated. This includes a quantification of the overall benefits of more advanced materials: including the effect of trading off an extended development time against a reduced cost of electricity for resulting power plants.
Ishiwata, Kiichi; Hayashi, Kunpei; Sakai, Masanari; Kawauchi, Sugio; Hasegawa, Hideaki; Toyohara, Jun
2017-01-01
To elucidate the radionuclides and radiochemical impurities included in radiosynthesis processes of positron emission tomography (PET) tracers. Target materials and PET tracers were produced using a cyclotron/synthesis system from Sumitomo Heavy Industry. Positron and γ-ray emitting radionuclides were quantified by measuring radioactivity decay and using the high-purity Ge detector, respectively. Radiochemical species in gaseous and aqueous target materials were analyzed by gas and ion chromatography, respectively. Target materials had considerable levels of several positron emitters in addition to the positron of interest, and in the case of aqueous target materials extremely low levels of many γ-emitters. Five 11 C-, 15 O-, or 18 F-labeled tracers produced from gaseous materials via chemical reactions had no radionuclidic impurities, whereas 18 F-FDG, 18 F-NaF, and 13 N-NH 3 produced from aqueous materials had several γ-emitters as well as impure positron emitters. 15 O-Labeled CO 2 , O 2 , and CO had a radionuclidic impurity 13 N-N 2 (0.5-0.7 %). Target materials had several positron emitters other than the positron of interest, and extremely low level γ-emitters in the case of aqueous materials. PET tracers produced from gaseous materials except for 15 O-labeled gases had no impure radionuclides, whereas those derived from aqueous materials contained acceptable levels of impure positron emitters and extremely low levels of several γ-emitters.
Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles
NASA Astrophysics Data System (ADS)
Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang
2017-04-01
Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.
Systems and methods for the combinatorial synthesis of novel materials
Wu, Xin Di; Wang, Youqi; Goldwasser, Isy
2000-01-01
Methods and apparatus for the preparation of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by depositing components of target materials to predefined regions on the substrate, and, in some embodiments, simultaneously reacting the components to form at least two resulting materials. In particular, the present invention provides novel masking systems and methods for applying components of target materials onto a substrate in a combinatorial fashion, thus creating arrays of resulting materials that differ slightly in composition, stoichiometry, and/or thickness. Using the novel masking systems of the present invention, components can be delivered to each site in a uniform distribution, or in a gradient of stoichiometries, thicknesses, compositions, etc. Resulting materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. Once prepared, these resulting materials can be screened sequentially, or in parallel, for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical and other properties.
Two-dimensional simulation of high-power laser-surface interaction
NASA Astrophysics Data System (ADS)
Goldman, S. Robert; Wilke, Mark D.; Green, Ray E.; Busch, George E.; Johnson, Randall P.
1998-09-01
For laser intensities in the range of 108 - 109 W/cm2, and pulse lengths of order 10 microseconds or longer, we have modified the inertial confinement fusion code Lasnex to simulate gaseous and some dense material aspects of the laser-matter interaction. The unique aspect of our treatment consists of an ablation model which defines a dense material-vapor interface and then calculates the mass flow across this interface. The model treats the dense material as a rigid two-dimensional mass and heat reservoir suppressing all hydrodynamic motion in the dense material. The computer simulations and additional post-processors provide predictions for measurements including impulse given to the target, pressures at the target interface, electron temperatures and densities in the vapor-plasma plume region, and emission of radiation from the target. We will present an analysis of some relatively well diagnosed experiments which have been useful in developing our modeling. The simulations match experimentally obtained target impulses, pressures at the target surface inside the laser spot, and radiation emission from the target to within about 20%. Hence our simulational technique appears to form a useful basis for further investigation of laser-surface interaction in this intensity, pulse-width range.
Apparatus for depositing a low work function material
Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.
2006-10-10
Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
Housel, Lisa M.; Wang, Lei; Abraham, Alyson; ...
2018-02-19
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Housel, Lisa M.; Wang, Lei; Abraham, Alyson
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
Yoon, W.Y.; Jones, J.L.; Nigg, D.W.; Harker, Y.D.
1999-05-11
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0{times}10{sup 9} neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use. 3 figs.
Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method
Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.
1999-01-01
A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.
Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nicolas; Close, Sigrid; Goel, Ashish
2013-03-15
Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using amore » Van de Graaff dust accelerator. Iron projectiles ranging from 10{sup -16} g to 10{sup -11} g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space weather anomalies and failures.« less
Theory and experiments characterizing hypervelocity impact plasmas on biased spacecraft materials
NASA Astrophysics Data System (ADS)
Lee, Nicolas; Close, Sigrid; Goel, Ashish; Lauben, David; Linscott, Ivan; Johnson, Theresa; Strauss, David; Bugiel, Sebastian; Mocker, Anna; Srama, Ralf
2013-03-01
Space weather including solar activity and background plasma sets up spacecraft conditions that can magnify the threat from hypervelocity impacts. Hypervelocity impactors include both meteoroids, traveling between 11 and 72 km/s, and orbital debris, with typical impact speeds of 10 km/s. When an impactor encounters a spacecraft, its kinetic energy is converted over a very short timescale into energy of vaporization and ionization, resulting in a small, dense plasma. This plasma can produce radio frequency (RF) emission, causing electrical anomalies within the spacecraft. In order to study this phenomenon, we conducted ground-based experiments to study hypervelocity impact plasmas using a Van de Graaff dust accelerator. Iron projectiles ranging from 10-16 g to 10-11 g were fired at speeds of up to 70 km/s into a variety of target materials under a range of surface charging conditions representative of space weather effects. Impact plasmas associated with bare metal targets as well as spacecraft materials were studied. Plasma expansion models were developed to determine the composition and temperature of the impact plasma, shedding light on the plasma dynamics that can lead to spacecraft electrical anomalies. The dependence of these plasma properties on target material, impact speed, and surface charge was analyzed. Our work includes three major results. First, the initial temperature of the impact plasma is at least an order of magnitude lower than previously reported, providing conditions more favorable for sustained RF emission. Second, the composition of impact plasmas from glass targets, unlike that of impact plasmas from tungsten, has low dependence on impact speed, indicating a charge production mechanism that is significant down to orbital debris speeds. Finally, negative ion formation has a strong dependence on target material. These new results can inform the design and operation of spacecraft in order to mitigate future impact-related space weather anomalies and failures.
Novel Cyclotron-Based Radiometal Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeGrado, Timothy R.
2013-10-31
Accomplishments: (1) Construction of prototype solution target for radiometal production; (2) Testing of prototype target for production of following isotopes: a. Zr-89. Investigation of Zr-89 production from Y-89 nitrate solution. i. Defined problems of gas evolution and salt precipitation. ii. Solved problem of precipitation by addition of nitric acid. iii. Solved gas evolution problem with addition of backpressure regulator and constant degassing of target during irradiations. iv. Investigated effects of Y-89 nitrate concentration and beam current. v. Published abstracts at SNM and ISRS meetings; (3) Design of 2nd generation radiometal solution target. a. Included reflux chamber and smaller target volumemore » to conserve precious target materials. b. Included aluminum for prototype and tantalum for working model. c. Included greater varicosities for improved heat transfer; and, (4) Construction of 2nd generation radiometal solution target started.« less
Loading and conjugating cavity biostructures
Hainfeld, J.F.
1997-11-25
Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.
Loading and conjugating cavity biostructures
Hainfeld, J.F.
1995-08-22
Methods for the preparation and use of a biological delivery system are disclosed. The method of preparation includes the loading of a non-biological material into a biostructure having a load-bearing structure. The method also includes the removal of some of the biostructure`s contents and the loading of a non-biological material into the biostructure. The biostructure is biologically compatible with the host, and preferably is derived from the host, the host`s species or a related species. The loaded biostructure is used directly, or it can be targeted to specific cells, tissues and/or organs within a host. The targeted biostructure can be used to deliver the non-biological material to a specified tissue, organ or cell within a host for diagnostic, therapeutic or other purposes. 11 figs.
Dispersion of Projectile and Target Debris Upon Penetration of Thin Targets
NASA Astrophysics Data System (ADS)
Gwynn, D.; Bernhard, R. P.; See, T. H.; Horz, F.
1996-03-01
We continue to conduct penetration experiments of thin foils to support the development of cosmic-dust flight instruments that utilize thin films for the measurement of particle trajectories, or for the potential soft capture of hypervelocity impactors for subsequent compositional analysis upon retrieval to Earth. Each experiment is equipped with a witness plate, mounted to the rear of the target and fabricated from soft Aluminum-1100, ~30 x 30 cm in size and ranging from 2 to 5 mm thick; these witness plates essentially simulate the rear wall of a capture cell onto which the projectile material will plate out, including material that is being dislodged from the penetrated foil itself. Using compositionally contrasting projectile and foil materials in the laboratory, such as soda-lime glass impactors and aluminum targets, one produces two distinct populations of craters on the witness plates.
NASA Astrophysics Data System (ADS)
Hudson, Douglas J.; Torres, Manuel; Dougherty, Catherine; Rajendran, Natesan; Thompson, Rhoe A.
2003-09-01
The Air Force Research Laboratory (AFRL) Aerothermal Targets Analysis Program (ATAP) is a user-friendly, engineering-level computational tool that features integrated aerodynamics, six-degree-of-freedom (6-DoF) trajectory/motion, convective and radiative heat transfer, and thermal/material response to provide an optimal blend of accuracy and speed for design and analysis applications. ATAP is sponsored by the Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) facility at Eglin AFB, where it is used with the CHAMP (Composite Hardbody and Missile Plume) technique for rapid infrared (IR) signature and imagery predictions. ATAP capabilities include an integrated 1-D conduction model for up to 5 in-depth material layers (with options for gaps/voids with radiative heat transfer), fin modeling, several surface ablation modeling options, a materials library with over 250 materials, options for user-defined materials, selectable/definable atmosphere and earth models, multiple trajectory options, and an array of aerodynamic prediction methods. All major code modeling features have been validated with ground-test data from wind tunnels, shock tubes, and ballistics ranges, and flight-test data for both U.S. and foreign strategic and theater systems. Numerous applications include the design and analysis of interceptors, booster and shroud configurations, window environments, tactical missiles, and reentry vehicles.
A system structure for predictive relations in penetration mechanics
NASA Astrophysics Data System (ADS)
Korjack, Thomas A.
1992-02-01
The availability of a software system yielding quick numerical models to predict ballistic behavior is a requisite for any research laboratory engaged in material behavior. What is especially true about accessibility of rapid prototyping for terminal impaction is the enhancement of a system structure which will direct the specific material and impact situation towards a specific predictive model. This is of particular importance when the ranges of validity are at stake and the pertinent constraints associated with the impact are unknown. Hence, a compilation of semiempirical predictive penetration relations for various physical phenomena has been organized into a data structure for the purpose of developing a knowledge-based decision aided expert system to predict the terminal ballistic behavior of projectiles and targets. The ranges of validity and constraints of operation of each model were examined and cast into a decision tree structure to include target type, target material, projectile types, projectile materials, attack configuration, and performance or damage measures. This decision system implements many penetration relations, identifies formulas that match user-given conditions, and displays the predictive relation coincident with the match in addition to a numerical solution. The physical regimes under consideration encompass the hydrodynamic, transitional, and solid; the targets are either semi-infinite or plate, and the projectiles include kinetic and chemical energy. A preliminary databases has been constructed to allow further development of inductive and deductive reasoning techniques applied to ballistic situations involving terminal mechanics.
Extension of the BRYNTRN code to monoenergetic light ion beams
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.
1994-01-01
A monoenergetic version of the BRYNTRN transport code is extended to beam transport of light ions (H-2, H-3, He-3, and He-4) in shielding materials (thick targets). The redistribution of energy in nuclear reactions is included in transport solutions that use nuclear fragmentation models. We also consider an equilibrium target-fragment spectrum for nuclei with mass number greater than four to include target fragmentation effects in the linear energy transfer (LET) spectrum. Illustrative results for water and aluminum shielding, including energy and LET spectra, are discussed for high-energy beams of H-2 and He-4.
NASA Astrophysics Data System (ADS)
Alam, Omair; Gilfoyle, Gerard; Christo, Steve
2015-10-01
An experiment to measure the neutron magnetic form factor (GnM) is planned for the new CLAS12 detector in Hall B at Jefferson Lab. This form factor will be extracted from the ratio of the quasielastic electron-neutron to electron-proton scattering off a liquid deuterium (LD2) target. A collinear liquid hydrogen (LH2) target will be used to measure efficiencies at the same time as production data is collected from the LD2 target. To test target designs we have simulated CLAS12 and the target geometry. Electron-nucleon events are produced first with the QUasiElastic Event Generator (QUEEG) which models the internal motion of the nucleons in deuterium.1 The results are used as input to the CLAS12 Monte Caro code gemc; a Geant4-based program that simulates the particle's interactions with each component of CLAS12 including the target material. The dual target geometry has been added to gemc including support structures and cryogenic transport systems. A Perl script was written to define the target materials and geometries. The output of the script is a set of database entries read by gemc at runtime. An initial study of the impact of this dual-target structure revealed limited effects on the electron momentum and angular resolutions. Work supported by the University of Richmond and the US Department of Energy.
Penetration analysis of projectile with inclined concrete target
NASA Astrophysics Data System (ADS)
Kim, S. B.; Kim, H. W.; Yoo, Y. H.
2015-09-01
This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.
Studying the nonlinearity in Sonic IR NDE
NASA Astrophysics Data System (ADS)
Yu, Qiuye; Obeidat, Omar; Han, Xiaoyan
2017-02-01
Sonic IR Imaging combines pulsed ultrasound excitation and infrared imaging to detect defects in materials. The sound pulse causes rubbing due to non--unison motion between faces of defects, and infrared sensors image the temperature map over the target to identify defects. It works in various materials, including metal/metal alloy, ceramics, and composite materials. Its biggest advantage is that it's a fast, wide area NDE technique. It takes only a fraction of a second or a few seconds, depending on the thermal properties of the target, for one test over a few square feet. However, due to the nonlinearity in the coupling between the ultrasound transducer and the target, the repeatability has been an issue, which affects its application. In this paper, we present our study on this issue in Sonic IR.
High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepler, Keith D.; Slater, Michael
This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less
Targets and processes for fabricating same
Cowan, Thomas [Dresden, DE; Malekos, Steven [Reno, NV; Korgan, Grant [Reno, NV; Adams, Jesse [Reno, NV; Sentoku, Yasuhiko [Reno, NV; Le Galloudec, Nathalie [Reno, NV; Fuchs, Julien [Paris, FR
2012-07-24
In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.
Targets and processes for fabricating same
Adams, Jesse D; Malekos, Steven; Le Galloudec, Nathalie; Korgan, Grant; Cowan, Thomas; Sentoku, Yasuhiko
2016-05-17
In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.
Targets and processes for fabricating same
Cowna, Thomas; Malekos, Steven; Korgan, Grant; Adams, Jesse; Sentoku, Yasuhiko; LeGalloudec, Nathalie
2014-06-10
In particular embodiments, the present disclosure provides targets including a metal layer and defining a hollow inner surface. The hollow inner surface has an internal apex. The distance between at least two opposing points of the internal apex is less than about 15 .mu.m. In particular examples, the distance is less than about 1 .mu.m. Particular implementations of the targets are free standing. The targets have a number of disclosed shaped, including cones, pyramids, hemispheres, and capped structures. The present disclosure also provides arrays of such targets. Also provided are methods of forming targets, such as the disclosed targets, using lithographic techniques, such as photolithographic techniques. In particular examples, a target mold is formed from a silicon wafer and then one or more sides of the mold are coated with a target material, such as one or more metals.
Potential drug delivery approaches for XFS-associated and XFS-associated glaucoma.
Kulkarni, Shreya S; Kompella, Uday B
2014-01-01
Key tissue targets in treating exfoliation syndrome (XFS) and the associated glaucoma include lens, iris, and ciliary body, which produce the exfoliative material, and the trabecular meshwork, which may be impaired by the exfoliative material. In addition to antiglaucoma drug therapy, strategies for treating the disease include approaches for preventing formation of exfoliative material as well as those aimed at digesting exfoliative material. A variety of drug molecules including small molecules, protein drugs, and nucleic acids are potential candidates for treating XFS. Potential drug classes include antioxidants, lysyl oxidase-like 1 enhancers, antifibrotics, anti-inflammatory agents, proteases, and chaperones. However, the delivery of these agents to the target tissues in the anterior segment is hindered by protective static and dynamic barriers of the eye. Thus, unique drug delivery approaches are needed for each drug type (small molecules, proteins, and nucleic acids). In addition, there is a need for sustaining drug therapy for treating XFS, which can potentially be addressed by using nanoparticles, microparticles, implants, and contact lens delivery systems. This article provides an overview of drug delivery challenges and opportunities in treating XFS with the focus being on nanomedicines.
Advances in synthetic peptides reagent discovery
NASA Astrophysics Data System (ADS)
Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Stratis-Cullum, Dimitra N.
2013-05-01
Bacterial display technology offers a number of advantages over competing display technologies (e.g, phage) for the rapid discovery and development of peptides with interaction targeted to materials ranging from biological hazards through inorganic metals. We have previously shown that discovery of synthetic peptide reagents utilizing bacterial display technology is relatively simple and rapid to make laboratory automation possible. This included extensive study of the protective antigen system of Bacillus anthracis, including development of discovery, characterization, and computational biology capabilities for in-silico optimization. Although the benefits towards CBD goals are evident, the impact is far-reaching due to our ability to understand and harness peptide interactions that are ultimately extendable to the hybrid biomaterials of the future. In this paper, we describe advances in peptide discovery including, new target systems (e.g. non-biological materials), advanced library development and clone analysis including integrated reporting.
2014-12-01
with nickel coatings can result in compressive stresses, and the deposition of gold with small amounts of cobalt increase the coating hardness/wear...magnetic metal. In the literature, there are a few different approaches to allow for the sputter deposition of magnetic materials including: doping ...the target (i.e., nickel doped with vanadium, typically on the order of 7- 9% [19]) to the point that it is no longer magnetic, heating the target
Almeida, Jamie L.; Wang, Lili; Morrow, Jayne B.; Cole, Kenneth D.
2006-01-01
Bacillus anthracis spores have been used as biological weapons and the possibility of their further use requires surveillance systems that can accurately and reliably detect their presence in the environment. These systems must collect samples from a variety of matrices, process the samples, and detect the spores. The processing of the sample may include removal of inhibitors, concentration of the target, and extraction of the target in a form suitable for detection. Suitable reference materials will allow the testing of each of these steps to determine the sensitivity and specificity of the detection systems. The development of uniform and well-characterized reference materials will allow the comparison of different devices and technologies as well as assure the continued performance of detection systems. This paper discusses the special requirements of reference materials for Bacillus anthracis spores that could be used for testing detection systems. The detection of Bacillus anthracis spores is based on recognition of specific characteristics (markers) on either the spore surface or in the nucleic acids (DNA). We have reviewed the specific markers and their relevance to characterization of reference materials. We have also included the approach for the characterization of candidate reference materials that we are developing at the NIST laboratories. Additional applications of spore reference materials would include testing sporicidal treatments, techniques for sampling the environment, and remediation of spore-contaminated environments. PMID:27274929
Debris and shrapnel assessments for National Ignition Facility targets and diagnostics
NASA Astrophysics Data System (ADS)
Masters, N. D.; Fisher, A.; Kalantar, D.; Stölken, J.; Smith, C.; Vignes, R.; Burns, S.; Doeppner, T.; Kritcher, A.; Park, H.-S.
2016-05-01
High-energy laser experiments at the National Ignition Facility (NIF) can create debris and shrapnel capable of damaging laser optics and diagnostic instruments. The size, composition and location of target components and sacrificial shielding (e.g., disposable debris shields, or diagnostic filters) and the protection they provide is constrained by many factors, including: chamber and diagnostic geometries, experimental goals and material considerations. An assessment of the generation, nature and velocity of shrapnel and debris and their potential threats is necessary prior to fielding targets or diagnostics. These assessments may influence target and shielding design, filter configurations and diagnostic selection. This paper will outline the approach used to manage the debris and shrapnel risk associated with NIF targets and diagnostics and present some aspects of two such cases: the Material Strength Rayleigh- Taylor campaign and the Mono Angle Crystal Spectrometer (MACS).
ORNL actinide materials and a new detection system for superheavy nuclei
NASA Astrophysics Data System (ADS)
Rykaczewski, Krzysztof P.; Roberto, James B.; Brewer, Nathan T.; Utyonkov, Vladimir K.
2016-12-01
The actinide resources and production capabilities at Oak Ridge National Laboratory (ORNL) are reviewed, including potential electromagnetic separation of rare radioactive materials. The first experiments at the Dubna Gas Filled Recoil Separator (DGFRS) with a new digital detection system developed at ORNL and University of Tennessee Knoxville (UTK) are presented. These studies used 240Pu material provided by ORNL and mixed-Cf targets made at ORNL. The proposal to use an enriched 251Cf target and a large dose of 58Fe beam to reach the N = 184 shell closure and to observe new elements with Z = 124, 122 and 120 is discussed.
Method and apparatus for staining immobilized nucleic acids
Ramsey, J. Michael; Foote, Robert S.; Jacobson, Stephen C.
2000-01-01
A method for staining immobilized nucleic acids includes the steps of affixing DNA probes to a solid substrate, moving target DNA material into proximity with the DNA probes, whereby the target DNA hybridized with specific ones of the DNA probes, and moving a fluorescent dye into proximity with the hybridized target DNA, whereby the fluorescent dye binds to the hybridized DNA to enable subsequent detection of fluorescence.
Tajima, Toshiki
2006-04-18
A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.
Low work function surface layers produced by laser ablation using short-wavelength photons
Balooch, Mehdi; Dinh, Long N.; Siekhaus, Wigbert J.
2000-01-01
Short-wavelength photons are used to ablate material from a low work function target onto a suitable substrate. The short-wavelength photons are at or below visible wavelength. The elemental composition of the deposit is controlled by the composition of the target and the gaseous environment in which the ablation process is performed. The process is carried out in a deposition chamber to which a short-wavelength laser is mounted and which includes a substrate holder which can be rotated, tilted, heated, or cooled. The target material is mounted onto a holder that spins the target during laser ablation. In addition, the deposition chamber is provided with a vacuum pump, an external gas supply with atomizer and radical generator, a gas generator for producing a flow of molecules on the substrate, and a substrate cleaning device, such as an ion gun. The substrate can be rotated and tilted, for example, whereby only the tip of an emitter can be coated with a low work function material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleddermann, C.B.
The sputter deposition of high-temperature superconducting thin films was studied using optical emission spectroscopy. Argon or oxygen ions generated by a Kaufman ion gun were used to sputter material from a composite target containing yttrium, barium, and copper which had been oxygen annealed. The impact of ions onto the target generates a plume of sputtered material which includes various excited-state atoms and molecules. In these studies, optical emission is detected for all the metallic components of the film as well as for metallic oxides ejected from the target. No emission due to atomic or molecular oxygen was detected, however. Variationsmore » in sputter conditions such as changes in sputter ion energy, oxygen content of the beam, and target temperature are shown to greatly affect the emission intensity, which may correlate to the characteristics of the sputtering and the quality of the films deposited. The results suggest that optical emission from the sputtered material may be useful for real-time monitoring and control of the sputter deposition process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gus'kov, Sergei Yu; Borodziuk, S; Kasperczuk, A
2004-11-30
The results of investigations are presented which are concerned with laser radiation absorption in a target, the plasma state of its ablated material, the energy transfer to the solid target material, the characteristics of the shock wave and craters on the target surface. The investigation involved irradiation of a planar target by a subnanosecond plasma-producing laser pulse. The experiments were carried out with massive aluminium targets using the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the shock wave attenuation and on-target crater formation times (50-200 ns). The investigations were conducted for a laser radiation energymore » of 100 J at two wavelengths of 0.438 and 1.315 {mu}m. For a given pulse energy, the irradiation intensity was varied in a broad range (10{sup 13}-10{sup 16} W cm{sup -2}) by varying the radius of the laser beam. The efficiency of laser radiation-to-shock energy transfer was determined as a function of the intensity and wavelength of laser radiation; also determined were the characteristics of the plasma plume and the shock wave propagating in the solid target, including the experimental conditions under which two-dimensional effects are highly significant. (invited paper)« less
Nike Facility Diagnostics and Data Acquisition System
NASA Astrophysics Data System (ADS)
Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim
2013-10-01
The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.
Materials Informatics: The Materials ``Gene'' and Big Data
NASA Astrophysics Data System (ADS)
Rajan, Krishna
2015-07-01
Materials informatics provides the foundations for a new paradigm of materials discovery. It shifts our emphasis from one of solely searching among large volumes of data that may be generated by experiment or computation to one of targeted materials discovery via high-throughput identification of the key factors (i.e., “genes”) and via showing how these factors can be quantitatively integrated by statistical learning methods into design rules (i.e., “gene sequencing”) governing targeted materials functionality. However, a critical challenge in discovering these materials genes is the difficulty in unraveling the complexity of the data associated with numerous factors including noise, uncertainty, and the complex diversity of data that one needs to consider (i.e., Big Data). In this article, we explore one aspect of materials informatics, namely how one can efficiently explore for new knowledge in regimes of structure-property space, especially when no reasonable selection pathways based on theory or clear trends in observations exist among an almost infinite set of possibilities.
Koch, Jeffrey A [Livermore, CA
2003-07-08
An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.
AIDS education for a low literate audience in Zambia.
Msimuko, A K
1988-04-01
A workshop funded by the USA Program for Appropriate Technology in Health (PATH) was an effort by Zambia toward prevention and control of AIDS. The lack of educational materials about AIDS for a low-literate audience was the major problem addressed by the workshop. Other problems include the lack of collaborative effort in the development of materials on AIDS, and the lack of skills needed in the development of such materials in Zambia. 1 of the objectives of the workshop was to launch the Planned Parenthood Association of Zambia's (PPAZ) materials development project. The scope of this project includes the production of educational materials on AIDS for low-literate audiences and a counseling handbook for family planning workers. Print materials should be simply written, using words, idioms, and graphics that are familiar to the target audience. Other workshop objectives included the establishment of collaborative relationships between organizations involved in existing AIDS educational activities in Zambia, and the development of practical skills needed to produce print materials. Education was identified as the most important strategy for the prevention and control of AIDS, and PPAZ should be the executing agency of the print materials project. Audience research, using focus group techniques, focus group discussions, behavioral messages, and pretesting of messages, should be the most effective means of reaching targeted audiences. PPAZ is contracted by PATH to begin development of educational materials, and 2 committees have formed to implement the project and to establish interagency collaboration. Audience research was begun between January and March of 1988, focusing on people's beliefs, practices, and ideas about AIDS. The final phase of the project will be the printing, distribution, and use of the AIDS materials and the training of family planning field workers in the proper use of these materials.
Target design for materials processing very far from equilibrium
NASA Astrophysics Data System (ADS)
Barnard, John J.; Schenkel, Thomas
2016-10-01
Local heating and electronic excitations can trigger phase transitions or novel material states that can be stabilized by rapid quenching. An example on the few nanometer scale are phase transitions induced by the passage of swift heavy ions in solids where nitrogen-vacancy color centers form locally in diamonds when ions heat the diamond matrix to warm dense matter conditions at 0.5 eV. We optimize mask geometries for target materials such as silicon and diamond to induce phase transitions by intense ion pulses (e. g. from NDCX-II or from laser-plasma acceleration). The goal is to rapidly heat a solid target volumetrically and to trigger a phase transition or local lattice reconstruction followed by rapid cooling. The stabilized phase can then be studied ex situ. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of crystal targets with micro-structured masks. A simple analytical model, that includes ion heating and radial, diffusive cooling, was developed that agrees closely with the HYDRA simulations. The model gives scaling laws that can guide the design of targets over a wide range of parameters including those for NDCX-II and the proposed BELLA-i. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-697271.
ERIC Educational Resources Information Center
LeLoup, Jean; Ponterio, Robert
2007-01-01
Reading in a second language (L2) is important for a variety of reasons. Reading authentic materials, in particular, allows L2 learners to engage with native speaker content, and ultimately the target culture. One body of authentic materials is that of literary texts, including those of more traditional prose fiction, poetry, and drama, but also…
Lectures and Simulation Laboratories to Improve Learners' Conceptual Understanding
ERIC Educational Resources Information Center
Brophy, Sean P.; Magana, Alejandra J.; Strachan, Alejandro
2013-01-01
We studied the use of online molecular dynamics simulations (MD) to enhance student abilities to understand the atomic processes governing plastic deformation in materials. The target population included a second-year undergraduate engineering course in the School of Materials Engineering at Purdue University. The objectives of the study were to…
Remote sensing based on hyperspectral data analysis
NASA Astrophysics Data System (ADS)
Sharifahmadian, Ershad
In remote sensing, accurate identification of far objects, especially concealed objects is difficult. In this study, to improve object detection from a distance, the hyperspecral imaging and wideband technology are employed with the emphasis on wideband radar. As the wideband data includes a broad range of frequencies, it can reveal information about both the surface of the object and its content. Two main contributions are made in this study: 1) Developing concept of return loss for target detection: Unlike typical radar detection methods which uses radar cross section to detect an object, it is possible to enhance the process of detection and identification of concealed targets using the wideband radar based on the electromagnetic characteristics --conductivity, permeability, permittivity, and return loss-- of materials. During the identification process, collected wideband data is evaluated with information from wideband signature library which has already been built. In fact, several classes (e.g. metal, wood, etc.) and subclasses (ex. metals with high conductivity) have been defined based on their electromagnetic characteristics. Materials in a scene are then classified based on these classes. As an example, materials with high electrical conductivity can be conveniently detected. In fact, increasing relative conductivity leads to a reduction in the return loss. Therefore, metals with high conductivity (ex. copper) shows stronger radar reflections compared with metals with low conductivity (ex. stainless steel). Thus, it is possible to appropriately discriminate copper from stainless steel. 2) Target recognition techniques: To detect and identify targets, several techniques have been proposed, in particular the Multi-Spectral Wideband Radar Image (MSWRI) which is able to localize and identify concealed targets. The MSWRI is based on the theory of robust capon beamformer. During identification process, information from wideband signature library is utilized. The WB signature library includes such parameters as conductivity, permeability, permittivity, and return loss at different frequencies for possible materials related to a target. In the MSWRI approach, identification procedure is performed by calculating the RLs at different selected frequencies. Based on similarity of the calculated RLs and RL from WB signature library, targets are detected and identified. Based on the simulation and experimental results, it is concluded that the MSWRI technique is a promising approach for standoff target detection.
Mercury target R&D for the Oak Ridge spallation neutron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, J.R.; DiStefano, J.; Farrell, K.
1996-06-01
The conceptual design for the Oak Ridge Spallation Neutron Source (ORSNS) incorporates liquid mercury as its reference target material. A flowing liquid target was selected mainly because of the increased power handling capability possible with the convective transport process. The major reasons for choosing mercury as the liquid target material are because it: (1) is a liquid at room temperature, (2) has good heat transport properties, and (3) has a high atomic number and mass density resulting in high neutron yield and source brightness. Since liquid targets are not widely utilized in presently operating accelerator targets and because of themore » challenges posed by the intense, pulsed thermal energy deposition ({approximately}20-100 kJ deposited during each 1-10 {mu}s pulse), considerable R&D is planned for the mercury target concept. The key feasibility issue that will be addressed in early R&D efforts are the effects of the thermal shock environment, which will include development and testing of approaches to mitigate these effects. Materials compatiblity and ES&H issues associated with the use of liquid mercury are also of major importance in early R&D efforts. A brief description of the mercury target design concept, results of initial evaluations of its performance characteristics, identification of its critical issues, and an outline of the R&D program aimed at addressing these issues will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwantes, Jon M.; Taylor, Wayne A.; Rundberg, Robert S.
2008-05-15
Roughly one curie of 171Tm (t1/2=1.92a) has been produced and purified for the purpose of making a nuclear target for the first measurements of its neutron capture cross section. Target preparation consisted of three key steps: (1) material production; (2) separation and purification; and (3) electrodeposition onto a suitable backing material. Approximately 1.5 mg of the target material (at the time of separation) was produced by irradiating roughly 250 mg of its stable enriched 170Er lanthanide neighbor with neutrons at the ILL reactor in France. This production method resulted in a “difficult-to-separate” 1:167 mixture of near-neighboring lanthanides, Tm and Er.more » Separation and purification was accomplished using high-performance liquid chromatorgraphy (HPLC), with a proprietary cation exchange column (Dionex, CS-3) and alpha-hydroxyisobutyric acid (a-HIB) eluent. This technique yielded a final product of ~95% purity with respect to Tm. A portion (20 ug) of the Tm was electrodeposited on thin Be foil and delivered to the Los Alamos Neutron Science CEnter (LANSCE) for preliminary analysis of its neutron capture cross section using the Detector for Advanced Neutron Capture Experiments (DANCE). This paper discusses the major hurdles associated with the separation and purification step including, scale-up issues related to the use of HPLC for material separation and purification of the target material from a-HIB and 4-(2-pyridylazo)resorcinol (PAR) colorant.« less
Method and apparatus for conversion of carbonaceous materials to liquid fuel
Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.
2015-12-01
Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.
ERIC Educational Resources Information Center
Bevin, Roy Q.; Raudebaugh, Robert A.
This book is based on an integrated approach to science and technology and targets middle schools students. Each unit includes a teacher's guide and eight science activities. Units include: (1) "The Mousetrap Car"; (2) "The CO2 Car"; and (3) "The Space Frame Vehicle". Supplemental materials consist of seven readings including: (1) "Brainstorming";…
Dual beam optical system for pulsed laser ablation film deposition
Mashburn, D.N.
1996-09-24
A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target. 3 figs.
Dual beam optical system for pulsed laser ablation film deposition
Mashburn, Douglas N.
1996-01-01
A laser ablation apparatus having a laser source outputting a laser ablation beam includes an ablation chamber having a sidewall, a beam divider for dividing the laser ablation beam into two substantially equal halves, and a pair of mirrors for converging the two halves on a surface of the target from complementary angles relative to the target surface normal, thereby generating a plume of ablated material emanating from the target.
Participation Through Gaze Controlled Computer for Children with Severe Multiple Disabilities.
Holmqvist, Eva; Derbring, Sandra; Wallin, Sofia
2017-01-01
This paper presents work on developing methodology material for use of gaze controlled computers. The target group is families and professionals around children with severe multiple disabilities. The material includes software grids for children at various levels, aimed for communication, leisure and learning and will be available for download.
Brown, Jr., R. Malcolm; Barnes, Zack [Austin, TX; Sawatari, Chie [Shizuoka, JP; Kondo, Tetsuo [Kukuoka, JP
2008-02-26
The present invention includes a method, apparatus and system for nanofabrication in which one or more target molecules are identified for manipulation with an electron beam and the one or more target molecules are manipulated with the electron beam to produce new useful materials.
Techniques for Strength Measurement at High Pressures and Strain-Rates Using Transverse Waves
NASA Astrophysics Data System (ADS)
Richmond, Victoria Stolyar
The study of the strength of a material is relevant to a variety of applications including automobile collisions, armor penetration and inertial confinement fusion. Although dynamic behavior of materials at high pressures and strain-rates has been studied extensively using plate impact experiments, the results provide measurements in one direction only. Material behavior that is dependent on strength is unaccounted for. The research in this study proposes two novel configurations to mitigate this problem. The first configuration introduced is the oblique wedge experiment, which is comprised of a driver material, an angled target of interest and a backing material used to measure in-situ velocities. Upon impact, a shock wave is generated in the driver material. As the shock encounters the angled target, it is reflected back into the driver and transmitted into the target. Due to the angle of obliquity of the incident wave, a transverse wave is generated that allows the target to be subjected to shear while being compressed by the initial longitudinal shock such that the material does not slip. Using numerical simulations, this study shows that a variety of oblique wedge configurations can be used to study the shear response of materials and this can be extended to strength measurement as well. Experiments were performed on an oblique wedge setup with a copper impactor, polymethylmethacrylate driver, aluminum 6061-t6 target, and a lithium fluoride window. Particle velocities were measured using laser interferometry and results agree well with the simulations. The second novel configuration is the y-cut quartz sandwich design, which uses the anisotropic properties of y-cut quartz to generate a shear wave that is transmitted into a thin sample. By using an anvil material to back the thin sample, particle velocities measured at the rear surface of the backing plate can be implemented to calculate the shear stress in the material and subsequently the strength. Numerical simulations were conducted to show that this configuration has the ability to measure the strength for a variety of materials.
Apparatus comprising magnetically actuated valves and uses thereof
Edwards, Thayne L.; Harper, Jason C.
2016-07-12
The present invention, in part, relates to an apparatus having a single-use, normally-closed fluidic valve that is initially maintained in the closed position by a valve element bonded to an adhesive coating. The valve is opened using a magnetic force. The valve element includes a magnetic material or metal. In some examples, the valve is opened by bringing a magnet in proximity to the valve element to provide a magnetic force that delaminates the valve element from the adhesive coating. In particular, the apparatus can be useful for on-chip amplification and/or detection of various targets, including biological targets and any amplifiable targets. Such apparatuses and methods are useful for in-field or real-time detection of targets, especially in limited resource settings.
Near-Infrared Fluorescent Materials for Sensing of Biological Targets
Amiot, Carrie L.; Xu, Shuping; Liang, Song; Pan, Lingyun; Zhao, Julia Xiaojun
2008-01-01
Near-infrared fluorescent (NIRF) materials are promising labeling reagents for sensitive determination and imaging of biological targets. In the near-infrared region biological samples have low background fluorescence signals, providing high signal to noise ratio. Meanwhile, near-infrared radiation can penetrate into sample matrices deeply due to low light scattering. Thus, in vivo and in vitro imaging of biological samples can be achieved by employing the NIRF probes. To take full advantage of NIRF materials in the biological and biomedical field, one of the key issues is to develop intense and biocompatible NIRF probes. In this review, a number of NIRF materials are discussed including traditional NIRF dye molecules, newly developed NIRF quantum dots and single-walled carbon nanotubes, as well as rare earth metal compounds. The use of some NIRF materials in various nanostructures is illustrated. The enhancement of NIRF using metal nanostructures is covered as well. The fluorescence mechanism and bioapplications of each type of the NIRF materials are discussed in details. PMID:27879867
Spectral Target Detection using Schroedinger Eigenmaps
NASA Astrophysics Data System (ADS)
Dorado-Munoz, Leidy P.
Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and those similar pixels are clustered in a predictable region of the low-dimensional representation is used to define a decision rule that allows one to identify target pixels over the rest of pixels in a given image. In addition, a knowledge propagation scheme is used to combine spectral and spatial information as a means to propagate the "potential constraints" to nearby points. The propagation scheme is introduced to reinforce weak connections and improve the separability between most of the target pixels and the background. Experiments using different HSI data sets are carried out in order to test the proposed methodology. The assessment is performed from a quantitative and qualitative point of view, and by comparing the SE-based methodology against two other detection methodologies that use linear/non-linear algorithms as transformations and the well-known Adaptive Coherence/Cosine Estimator (ACE) detector. Overall results show that the SE-based detector outperforms the other two detection methodologies, which indicates the usefulness of the SE transformation in spectral target detection problems.
Rosenholm, Jessica M; Sahlgren, Cecilia; Lindén, Mika
2011-07-01
The main objective in the development of nanomedicine is to obtain delivery platforms for targeted delivery of drugs or imaging agents for improved therapeutic efficacy, reduced side effects and increased diagnostic sensitivity. A (nano)material class that has been recognized for its controllable properties on many levels is ordered mesoporous inorganic materials, typically in the form of amorphous silica (SiO2). Characteristics for this class of materials include mesoscopic order, tunable pore dimensions in the (macro)molecular size range, a high pore volume and surface area, the possibility for selective surface functionality as well as morphology control. The robust but biodegradable ceramic matrix moreover provides shelter for incorporated agents (drugs, proteins, imaging agents, photosensitizers) leaving the outer particle surface free for further modification. The unique features make these materials particularly amenable to modular design, whereby functional moieties and features may be interchanged or combined to produce multifunctional nanodelivery systems combining targeting, diagnostic, and therapeutic actions. This review covers the latest developments related to the use of mesoporous silica nanoparticles (MSNs) as nanocarriers in biomedical applications, with special focus on cancer therapy and diagnostics.
PEM fuel cell bipolar plate material requirements for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E.
1996-04-01
Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.
Laboratory analysis and airborne detection of materials stimulated to luminesce by the sun
Hemphill, W.R.; Theisen, A.F.; Tyson, R.M.
1984-01-01
The Fraunhofer line discriminator (FLD) is an airborne electro-optical device used to image materials which have been stimulated to luminesce by the Sun. Such materials include uranium-bearing sandstone, sedimentary phosphate rock, marine oil seeps, and stressed vegetation. Prior to conducting an airborne survey, a fluorescence spectrometer may be used in the laboratory to determine the spectral region where samples of the target material exhibit maximum luminescence, and to select the optimum Fraunhofer line. ?? 1984.
2014-01-01
soil, etc.) (Ref 6); (b) the kinematic and structural response of the target to blast loading including the role of target design and use of blast...both the role of material behavior under transient-dynamic loading conditions as well as the kinematic and structural responses of the target structure... seats , ammunition storage racks, power-train lines, etc.). Tradition- ally, the floor-rupture problem is solved through the use of thicker floor-plates
Simos, N.; Ludewig, H.; Kirk, H.; ...
2018-05-29
The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less
NASA Astrophysics Data System (ADS)
Simos, N.; Ludewig, H.; Kirk, H.; Dooryhee, E.; Ghose, S.; Zhong, Z.; Zhong, H.; Makimura, S.; Yoshimura, K.; Bennett, J. R. J.; Kotsinas, G.; Kotsina, Z.; McDonald, K. T.
2018-05-01
The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory's (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest in assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, N.; Ludewig, H.; Kirk, H.
The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less
Low- Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feld, Geoffrey K.; Heymann, Michael; Benner, W. Henry
X-ray free-electron lasers (XFELs) offer a new avenue to the structural probing of complex materials, including biomolecules. Delivery of precious sample to the XFEL beam is a key consideration, as the sample of interest must be serially replaced after each destructive pulse. The fixed-target approach to sample delivery involves depositing samples on a thin-film support and subsequent serial introduction via a translating stage. Some classes of biological materials, including two-dimensional protein crystals, must be introduced on fixed-target supports, as they require a flat surface to prevent sample wrinkling. A series of wafer and transmission electron microscopy (TEM)-style grid supports constructedmore » of low- Z plastic have been custom-designed and produced. Aluminium TEM grid holders were engineered, capable of delivering up to 20 different conventional or plastic TEM grids using fixed-target stages available at the Linac Coherent Light Source (LCLS). As proof-of-principle, X-ray diffraction has been demonstrated from two-dimensional crystals of bacteriorhodopsin and three-dimensional crystals of anthrax toxin protective antigen mounted on these supports at the LCLS. In conclusion, the benefits and limitations of these low- Z fixed-target supports are discussed; it is the authors' belief that they represent a viable and efficient alternative to previously reported fixed-target supports for conducting diffraction studies with XFELs.« less
Cratering at the Icy Satellites: Experimental Insights
NASA Astrophysics Data System (ADS)
Bruck Syal, M.; Schultz, P. H.
2013-12-01
Impact cratering processes play a central role in shaping the evolution of icy satellites and in guiding interpretations of various geologic features at these bodies. Accurate reconstruction of icy satellite histories depends in large part upon observed impact crater size-frequency distributions. Determining the extent of impact-induced thermal processing and the retention rates for impact-delivered materials of interest, e.g. organics, at these outer solar system moons is of fundamental importance for assessing their habitability and explaining differing geophysical histories. Hence, knowledge of how the impact process operates in ices or ice-rich materials is critically important. Recent progress in the development of water equations of state, coupled with increasingly efficient 3-D hydrocode calculations, has been used to construct careful numerical studies of melt and vapor generation for water ice targets. Complementary to this approach is experimental work to constrain the effects of differing ice target conditions, including porosity, rock mass fraction, and impact angle. Here we report on results from hypervelocity impact experiments (v~5.5 km/s) into water ice targets, performed at the NASA Ames Vertical Gun Range (AVGR). The setup at the AVGR allows for the use of particulate targets, which is useful for examining the effects of target porosity. Photometry and geophysical modeling both suggest that regolith porosity at the icy satellites is significant. We use a combination of half-space and quarter-space geometries, enabling analysis of the impact-generated vapor plume (half-space geometry), along with shock wave and transient crater growth tracking in a cross-sectional view (quarter-space geometry). Evaluating the impact-generated vapor from porous (φ = 0.5) and non-porous water ice targets provides an extension to previously published vapor production results for dolomite and CO2 ice targets. For the case of a 90 degree impact into porous ice, we calculate that 0.6% of the initial kinetic energy of the impactor is partitioned into the internal energy of the vapor plume. This is slightly higher than values determined in prior studies for non-porous CO2 ice (0.2%) [Schultz, 1996]. As CO2 ice possesses a lower vaporization temperature than water ice, this effect strongly suggests a role for porosity in enhancing vaporization. This is expected, as the compaction of porous materials performs additional, irreversible PdV work on the target, causing enhanced partitioning of kinetic energy into internal energy. At oblique impact angles, plume morphology changes dramatically while vaporization is enhanced. Comparing shock wave velocity attenuation in porous materials, including mixes of materials (e.g., quartz sand and porous ice), to numerical results obtained from shock physics codes such as CTH, provides insight into how impacts into porous ice-rich materials can be most accurately numerically modeled.
On the performance of infrared sensors in earth observations
NASA Technical Reports Server (NTRS)
Johnson, L. F.
1972-01-01
The performance of infrared sensing systems is dependent upon the radiative properties of targets in addition to constraints imposed by system components. The unclassified state-of-the-art of infrared system performance figures is reviewed to indicate the relevance to system performance of target radiative properties. A theory of rough surface scattering is developed which allows the formulation of the reflective characteristics of extended targets. The thermal radiation emission from extended targets is formulated on the basis of internal radiation characteristics of natural materials and the transmissive scattering effects at the surface. Finally, the total radiative characteristics may be expressed as functions of material properties and incident and received directions, although the expressions are extremely complex functions and do not account for the effects of shadowing or multiple scattering. It is believed that the theory may be extended to include these effects and to incorporate the local radii of curvature of the surface.
CAPABILITY TO RECOVER PLUTONIUM-238 IN H-CANYON/HB-LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.
2013-01-09
Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np-237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-anyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase-3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ~ 2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase-1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material.« less
Experimental simulation of impact cratering on icy satellites
NASA Technical Reports Server (NTRS)
Greeley, R.; Fink, J. H.; Gault, D. E.; Guest, J. E.
1982-01-01
Cratering processes on icy satellites were simulated in a series of 102 laboratory impact experiments involving a wide range of target materials. For impacts into homogeneous clay slurries with impact energies ranging from five million to ten billion ergs, target yield strengths ranged from 100 to 38 Pa, and apparent viscosities ranged from 8 to 200 Pa s. Bowl-shaped craters, flat-floored craters, central peak craters with high or little relief, and craters with no relief were observed. Crater diameters increased steadily as energies were raised. A similar sequence was seen for experiment in which impact energy was held constant but target viscosity and strength progressively decreases. The experiments suggest that the physical properties of the target media relative to the gravitationally induced stresses determined the final crater morphology. Crater palimpsests could form by prompt collapse of large central peak craters formed in low target strength materials. Ages estimated from crater size-frequency distributions that include these large craters may give values that are too high.
Guidelines for integrating population education into primary education and literacy programmes.
1989-01-01
In recent seminars and workshops in the Asia and Pacific region the integration of population education into primary schools and literacy programs were the main topics. In most of the countries in this area separate courses in population education appear to be unfeasible for primary and secondary schools. In the nonformal area experience has indicated that population education acquires more meaning and relevance if it is integrated into an ongoing development program. The integration approach requires knowledge of the contents of the accommodating subjects or programs and knowledge of the contents of the accommodating subjects or programs and knowledge of the contents of population education. Guidelines suggested include the following steps in developing an integrated curriculum and instructional materials. First determine the needs, characteristics and other background information needed on the target group. Next prioritize the problems and needs of the target group, and formulate educational objectives from the identified needs and problems. Next determine and sequence the curriculum contents and then determine specific population education objectives and contents for integration, and what specific materials have to be developed. Then identify the specific type of format of materials to be developed, and write the first draft of the material. Also prepare illustrations and other art and graphic materials. Then the draft material should be reviewed and translated into the language of the target audience if needed. The materials should then be pretested, or field tested, using a sample of the intended users. To make sure the materials are reaching the target groups and being used effectively, a user's guide should be prepared and teachers and facilitators, as well as supervisors, should be prepared on the use of the material. In addition, a distribution and utilization plan should be prepared. Nonformal education materials can be distributed through libraries, reading center, residences of village leaders, neighborhood stores, and direct mail. The material distribution and utilization should be monitored and evaluated.
Initial study of Schroedinger eigenmaps for spectral target detection
NASA Astrophysics Data System (ADS)
Dorado-Munoz, Leidy P.; Messinger, David W.
2016-08-01
Spectral target detection refers to the process of searching for a specific material with a known spectrum over a large area containing materials with different spectral signatures. Traditional target detection methods in hyperspectral imagery (HSI) require assuming the data fit some statistical or geometric models and based on the model, to estimate parameters for defining a hypothesis test, where one class (i.e., target class) is chosen over the other classes (i.e., background class). Nonlinear manifold learning methods such as Laplacian eigenmaps (LE) have extensively shown their potential use in HSI processing, specifically in classification or segmentation. Recently, Schroedinger eigenmaps (SE), which is built upon LE, has been introduced as a semisupervised classification method. In SE, the former Laplacian operator is replaced by the Schroedinger operator. The Schroedinger operator includes by definition, a potential term V that steers the transformation in certain directions improving the separability between classes. In this regard, we propose a methodology for target detection that is not based on the traditional schemes and that does not need the estimation of statistical or geometric parameters. This method is based on SE, where the potential term V is taken into consideration to include the prior knowledge about the target class and use it to steer the transformation in directions where the target location in the new space is known and the separability between target and background is augmented. An initial study of how SE can be used in a target detection scheme for HSI is shown here. In-scene pixel and spectral signature detection approaches are presented. The HSI data used comprise various target panels for testing simultaneous detection of multiple objects with different complexities.
ERIC Educational Resources Information Center
Dunlosky, John; Mueller, Michael L.
2016-01-01
The target articles explore a common hypothesis pertaining to whether perceptually degrading materials will improve reasoning, memory, and metamemory. Outcomes are mixed, yet some evidence was garnered in support of a version of the disfluency hypothesis that includes moderators, and along with evidence from prior research, researchers will likely…
The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, C.L., E-mail: cahill@gwu.edu; Feldman, G.; Briscoe, W.J.
The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.
Effective IEC approaches for Asia. IEC evaluation workshop.
1996-02-01
The UNFPA-supported project on development and distribution of information, education, and communication (IEC) materials in support of improving women's health and status was evaluated at a workshop held in Tokyo in December 13-15, 1995. The 1992-95 cycle of the project was analyzed by experts from Bangladesh, China, India, Indonesia, Malaysia, Nepal, the Philippines, and Vietnam plus three experts from the UNFPA/Country Support Team. The workshop also made it possible for the experts to identify needs as well as effective utilization of existing IEC materials. It was suggested that a nongovernmental organization be established for the distribution and effective use of these materials. The workshop mostly reviewed the print and audiovisual materials. Videos were also evaluated. The materials were found useful for the targeted region. Among other subregional issues it was noted that youth needs were inadequately addressed as they related to sexually transmitted diseases (STDs), unwanted pregnancy, risk of maternal mortality and morbidity, low birth weight, and premature birth. Although the women of the region comprise one-third of the world's population, 70% of the global annual maternal mortality of 500,000 occurs in the subregion. IEC materials should also target adolescents and their support groups. Other needs were also outlined: the expansion of educational opportunities for women, the promotion of employment, the involvement of men, and the training of personnel. The strategies used in the cycle helped strengthen self-reliance through information and experience sharing. The focus on women should be continued with more attention paid to adolescents and young adults, including males. Women's health issues should be expanded to include menopause, reproductive tract infections, STDs, HIV/AIDS prevention, and legal rights including abortion. The production of IEC materials should be identified through research and analysis of existing materials, focus group discussions, or field visits.
Method of synthesizing a low density material
Lorensen, L.E.; Monaco, S.B.
1987-02-27
A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.
Youth Attitude Tracking Study. Volume 2. Fall 1976.
1976-01-01
Advertising Copy Identification.......... . .......... ..... 15 Target Market Profile of :Reserve Components....... i5 Target Market Profile of Active...in the Tracking Areas to test such factors as -promotional materials, recruiting practices, and advertising strategy . A special feature included in the...8217 .. :~ . .’..;- .":, ,:,,.", . ’ .. €,. . . - .. " . " :" . . ". " . . .." ,"- .-- :-,, ". . ’ . -.-- . .: ’.-. :. -I MARKET FACTS " I age 15
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-05-01
The introductory chapter provides a discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. It discusses these industries in terms of resource characteristics, industry technology, pollution control requirements, market structure, the economics of recycling, and the issues involved in econometrically estimating scrap supply response behavior. It further presents the methodology established by DOE for the metals, textiles, rubber, and pulp and paper industries. The areas in which government policies might have a significant impact on the utilization of primary and secondary metals and on any recyclingmore » targets between now and 1987 are noted. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33. The profiles include such topics as industry structure, process technology, materials and recycling flow, and future trends. Chapter 4 specifically covers the evaluation of recycling targets for the ferrous, aluminum, copper, zinc, and lead industries. (MCW)« less
Coated foams, preparation, uses and articles
Duchane, D.V.; Barthell, B.L.
1982-10-21
Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.
NASA Technical Reports Server (NTRS)
Laskowski, Edward L. (Inventor)
1995-01-01
An apparatus for sensing a target characteristic, such as relative distance between the apparatus and target, target thickness, target material, or lateral position between the apparatus and the target, includes a coil for directing an electro-magnetic field at the target. A voltage controlled oscillator energizes the coil at a resonant frequency which is functionally related to the target characteristic. The coil has an effective impedance value at resonance functionally related to the target characteristic. A frequency monitor measures the resonant frequency. An impedance monitor determines the impedance value when the drive frequency is at the resonant value. A PROM or controller determines the target characteristic in response to the measured resonant frequency and the determined impedance value. The PROM or controller provides a signal responsive to the determined target characteristic.
Enriching the Curriculum with Pennsylvania German
ERIC Educational Resources Information Center
Meindl, Joerg
2016-01-01
The German classroom should prepare students for the linguistic diversity of the target culture, including regional varieties and German spoken outside of the D-A-CH region. Because textbooks do not often include materials on regional varieties, this article presents a model to incorporate Pennsylvania German (PG) into the curriculum. The model…
Consumer Health Education. Breast Cancer.
ERIC Educational Resources Information Center
Arkansas Univ., Fayetteville, Cooperative Extension Service.
This short booklet is designed to be used by health educators when teaching women about breast cancer and its early detection and the procedure for breast self-examination. It includes the following: (1) A one-page teaching plan consisting of objectives, subject matter, methods (including titles of films and printed materials), target audience,…
Weaver, J L; Busquet, M; Colombant, D G; Mostovych, A N; Feldman, U; Klapisch, M; Seely, J F; Brown, C; Holland, G
2005-02-04
Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hnu approximately 0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of approximately 1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/deltaE approximately 1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra.
Method of forming a continuous polymeric skin on a cellular foam material
Duchane, David V.; Barthell, Barry L.
1985-01-01
Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.
Remote laser evaporative molecular absorption spectroscopy
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis
2016-09-01
We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.
Ductility recovery in structural materials for spallation targets by post-irradiation annealing
NASA Astrophysics Data System (ADS)
Chen, J.; Jung, P.; Rödig, M.; Ullmaier, H.; Bauer, G. S.
2005-08-01
Low temperature irradiation embrittlement is one of the major criteria to determine the lifetime of spallation targets. Embrittlement is especially high at low service temperatures, e.g. 250 °C in liquid-mercury sources. It was the aim of the present study to investigate the effect of post-irradiation annealing on the mechanical properties of irradiated structural materials. The specimens used were obtained from spent target components of operating spallation facilities (Los Alamos Neutron Science Center, LANSCE, and the Spallation Neutron Source at Rutherford-Appleton Laboratory, ISIS). The investigated materials include a nickel-based alloy (IN718), an austenitic stainless steel (AISI 304L), a martensitic stainless steel (DIN 1.4926) and a refractory metal (Ta) which experienced 800 MeV proton irradiation to fluences of several 10 25 p/m 2. The specimens were annealed from 300 °C to 700 °C for 1 to 10 h, respectively, and their mechanical property changes were subsequently investigated at room temperature and 250 °C by tensile testing and fracture surface analysis conducted by scanning electron microscopy (SEM). The results showed that the ductility recovered to a large degree in 304L and DIN 1.4926 materials while their strength remained almost unchanged. Especially for DIN 1.4926, the ductility recovery is remarkable already at 400 °C. Together with its favorable thermo-mechanical properties, this makes martensitic steel a candidate for structural materials of spallation targets.
A study of 3-dimensionally periodic carbon nanostructures
NASA Astrophysics Data System (ADS)
Yin, Ming; Bleiweiss, Michael; Amirzadeh, Jafar; Datta, Timir; Arammash, Fouzi
2012-02-01
Electronic structures with intricate periodic 3-dimensional arrangements at the submicron scale were investigated. These may be fabricated using artificial porous opal substrates as the templates in which the targeted conducting medium is introduced. In the past these materials were reported to show interesting electronic behaviors. [Michael Bleiweiss, et al ``Localization and Related Phenomena in Multiply Connected Nanostructured,'' BAPS, Z30.011, Nanostructured Materials Session, March 2001, Seattle]. Several materials were studied in particular disordered carbon which has been reported to show quantum transport including fractional hall steps. The results of these measurements, including the observation of localization phenomena, will be discussed. Comparisons will be made with literature data.
Foster, J.S. Jr.
1960-04-19
A compact electronic device capable of providing short time high density outputs of neutrons is described. The device of the invention includes an evacuated vacuum housing adapted to be supplied with a deuterium, tritium, or other atmosphere and means for establishing an electrical discharge along a path through the gas. An energized solenoid is arranged to constrain the ionized gas (plasma) along the path. An anode bearing adsorbed or adherent target material is arranged to enclose the constrained plasma. To produce neutrons a high voltage is applied from appropriate supply means between the plasma and anode to accelerate ions from the plasma to impinge upcn the target material, e.g., comprising deuterium.
NASA Astrophysics Data System (ADS)
Ellison, Paul A.; Graves, Stephen A.; Murali, Dhanabalan; De Jesus, Onofre T.; Barnhart, Todd E.; Thomadsen, Bruce R.; Speer, Tod; Nickles, Robert J.
2017-05-01
The radioactive isotopes of bromine accessible with low energy medical cyclotrons have unique potential for diagnostic and radiotherapeutic nuclear medicine applications. These include bromine-76 (t1/2 = 16 h) for positron emission tomography and bromine-77 (t1/2 = 57 h) for Auger radionuclide therapy. Methods are presented to synthesize NiSe discs from elemental starting materials for proton irradiation in a 4π water cooling target configuration. Radiobromide was isolated from the irradiated NiSe material by dry distillation and used to radiolabel 7α-BrDHT for investigation as an Androgen-receptor-targeted theranostic radiopharmaceutical.
Hydrogen Storage Engineering Center of Excellence Metal Hydride Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motyka, T.
2014-05-31
The Hydrogen Storage Engineering Center of Excellence (HSECoE) was established in 2009 by the U.S. Department of Energy (DOE) to advance the development of materials-based hydrogen storage systems for hydrogen-fueled light-duty vehicles. The overall objective of the HSECoE is to develop complete, integrated system concepts that utilize reversible metal hydrides, adsorbents, and chemical hydrogen storage materials through the use of advanced engineering concepts and designs that can simultaneously meet or exceed all the DOE targets. This report describes the activities and accomplishments during Phase 1 of the reversible metal hydride portion of the HSECoE, which lasted 30 months from Februarymore » 2009 to August 2011. A complete list of all the HSECoE partners can be found later in this report but for the reversible metal hydride portion of the HSECoE work the major contributing organizations to this effort were the United Technology Research Center (UTRC), General Motors (GM), Pacific Northwest National Laboratory (PNNL), the National Renewable Energy Laboratory (NREL) and the Savannah River National Laboratory (SRNL). Specific individuals from these and other institutions that supported this effort and the writing of this report are included in the list of contributors and in the acknowledgement sections of this report. The efforts of the HSECoE are organized into three phases each approximately 2 years in duration. In Phase I, comprehensive system engineering analyses and assessments were made of the three classes of storage media that included development of system level transport and thermal models of alternative conceptual storage configurations to permit detailed comparisons against the DOE performance targets for light-duty vehicles. Phase 1 tasks also included identification and technical justifications for candidate storage media and configurations that should be capable of reaching or exceeding the DOE targets. Phase 2 involved bench-level testing and evaluation of system configurations, including material packaging and balance-of-plant components, and conceptual design validation. Phase 3 includes fabrication and testing of the selected prototype storage system(s) for model validation and performance evaluation against the DOE targets. A DOE decision was needed for the HSECoE to advance to each phase and work on some classes of storage materials were recommended not to continue.« less
Burchell, Mark J; Bowden, Stephen A; Cole, Michael; Price, Mark C; Parnell, John
2014-06-01
The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ~2 and ~4 km s(-1) at targets that included water ice, water, and sand. This involved shock pressures in the range of 2-12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s(-1) and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies.
Growth of Carbon Nanostructure Materials Using Laser Vaporization
NASA Technical Reports Server (NTRS)
Zhu, Shen; Su, Ching-Hua; Lehozeky, S.
2000-01-01
Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.
The National Spallation Neutron Source Target Station.
NASA Astrophysics Data System (ADS)
Gabriel, T. A.
1997-05-01
The technologies that are being utilized to design and build a state-of-the-art high powered (>= 1 MW), short pulsed (<= 1 μsec), and reliable spallation neutron source target station are discussed. The protons which directly and indirectly produce the neutrons will be obtained from a 1 GeV proton accelerator composed of an ion gun, rfq, linac, and storage ring. Many scientific and technical disciplines are required to produce a successful target station. These disciplines include engineering, remote handling, neutronics, materials, thermal hydraulics, shock analysis, etc. In the areas of engineering and remote handling special emphasis is being given to rapid and efficient assembly and disassembly of critical parts of the target station. In the neutronics area, emphasis is being given to neutron yield and pulse optimization from the moderators, and heating and activation rates throughout the station. Development of structural materials to withstand aggressive radiation environments and that are compatible with other materials is also an important area. Thermal hydraulics and shock analysis are being closely studied since large amounts of energy are being deposited in small volumes in relatively short time periods (< 1 μsec). These areas will be expanded upon in the paper.
NASA Astrophysics Data System (ADS)
Singh, Inderjeet; Singh, Bhajan; Sandhu, B. S.; Sabharwal, Arvind D.
2017-04-01
A method has been presented for calculation of effective atomic number (Zeff) of composite materials, by using back-scattering of 662 keV gamma photons obtained from a 137Cs mono-energetic radioactive source. The present technique is a non-destructive approach, and is employed to evaluate Zeff of different composite materials, by interacting gamma photons with semi-infinite material in a back-scattering geometry, using a 3″ × 3″ NaI(Tl) scintillation detector. The present work is undertaken to study the effect of target thickness on intensity distribution of gamma photons which are multiply back-scattered from targets (pure elements) and composites (mixtures of different elements). The intensity of multiply back-scattered events increases with increasing target thickness and finally saturates. The saturation thickness for multiply back-scattered events is used to assign a number (Zeff) for multi-element materials. Response function of the 3″ × 3″ NaI(Tl) scintillation detector is applied on observed pulse-height distribution to include the contribution of partially absorbed photons. The reduced value of signal-to-noise ratio interprets the increase in multiply back-scattered data of a response corrected spectrum. Data obtained from Monte Carlo simulations and literature also support the present experimental results.
Education and Communication for the Magnetospheric Multiscale Mission
NASA Astrophysics Data System (ADS)
Reiff, Patricia H.; Cline, Troy D.
2016-03-01
The Magnetospheric Multiscale mission (MMS) proposed a balanced portfolio of education and communication activities and products, including broadly distributed materials for the general public, special programs and materials for teachers, targeted activities and materials for underserved groups, and intensive experiences for future scientists and engineers. Our plan includes creation and dissemination of educational software, podcasts and vodcasts, planetarium shows, teacher and student activities, 3D models, social media and smartphone apps. We have surveyed users of NASA data to determine which modes of learning were effective in their youth and which are the most effective now, and use those results to inform our education and communication plans. All materials will be reviewed and placed in NASA online educational archives for broad dissemination.
Physicochemically functional ultrathin films by interfacial polymerization
Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.
1990-01-01
Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.
Barriers to Liposomal Gene Delivery: from Application Site to the Target.
Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R
2016-01-01
Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.
Machine learning properties of binary wurtzite superlattices
Pilania, G.; Liu, X. -Y.
2018-01-12
The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present paper, we show that fast and accurate predictions of a wide range of propertiesmore » of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. Finally, while the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.« less
Machine learning properties of binary wurtzite superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilania, G.; Liu, X. -Y.
The burgeoning paradigm of high-throughput computations and materials informatics brings new opportunities in terms of targeted materials design and discovery. The discovery process can be significantly accelerated and streamlined if one can learn effectively from available knowledge and past data to predict materials properties efficiently. Indeed, a very active area in materials science research is to develop machine learning based methods that can deliver automated and cross-validated predictive models using either already available materials data or new data generated in a targeted manner. In the present paper, we show that fast and accurate predictions of a wide range of propertiesmore » of binary wurtzite superlattices, formed by a diverse set of chemistries, can be made by employing state-of-the-art statistical learning methods trained on quantum mechanical computations in combination with a judiciously chosen numerical representation to encode materials’ similarity. These surrogate learning models then allow for efficient screening of vast chemical spaces by providing instant predictions of the targeted properties. Moreover, the models can be systematically improved in an adaptive manner, incorporate properties computed at different levels of fidelities and are naturally amenable to inverse materials design strategies. Finally, while the learning approach to make predictions for a wide range of properties (including structural, elastic and electronic properties) is demonstrated here for a specific example set containing more than 1200 binary wurtzite superlattices, the adopted framework is equally applicable to other classes of materials as well.« less
NASA Astrophysics Data System (ADS)
Schweitzer, Susanne; Nemitz, Wolfgang; Sommer, Christian; Hartmann, Paul; Fulmek, Paul; Nicolics, Johann; Pachler, Peter; Hoschopf, Hans; Schrank, Franz; Langer, Gregor; Wenzl, Franz P.
2014-09-01
For a systematic approach to improve the white light quality of phosphor converted light-emitting diodes (LEDs) for general lighting applications it is imperative to get the individual sources of error for color temperature reproducibility under control. In this regard, it is imperative to understand how compositional, optical and materials properties of the color conversion element (CCE), which typically consists of phosphor particles embedded in a transparent matrix material, affect the constancy of a desired color temperature of a white LED source. In this contribution we use an LED assembly consisting of an LED die mounted on a printed circuit board (PCB) by chip-on-board technology and a CCE with a glob-top configuration as a model system and discuss the impact of potential sources for color temperature deviation among individual devices. Parameters that are investigated include imprecisions in the amount of materials deposition, deviations from the target value for the phosphor concentration in the matrix material, deviations from the target value for the particle sizes of the phosphor material, deviations from the target values for the refractive indexes of phosphor and matrix material as well as deviations from the reflectivity of the substrate surface. From these studies, some general conclusions can be drawn which of these parameters have the largest impact on color deviation and have to be controlled most precisely in a fabrication process in regard of color temperature reproducibility among individual white LED sources.
Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R.
2013-07-01
Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site hadmore » previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ∼2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment is stored and still available for installation. Out of specification Pu-238 scrap material can be purified and recovered by utilizing the HB-Line Phase- 1 Scrap Recovery Line and the Phase-3 Pu-238 Oxide Conversion Line along with H-Canyon Frame Waste Recovery process. In addition, it also covers and describes utilizing the Phase-2 Np-237 Oxide Conversion Line, in conjunction with the H-Canyon Frames Process to restore the H-Canyon capability to process and recover Np-237 and Pu-238 from irradiated Np-237 targets and address potential synergies with other programs like recovery of Pu-244 and heavy isotopes of curium from other target material. (authors)« less
Sanderson, C J; Glauert, A M
1979-01-01
Electron micrographs of material fixed during the first 10 min of a T-cell cytotoxic system showed T-cell projections and T-cell burrowing into target cells. These observations were made possible by using a system with a very high rate of killing. The projections vary in shape and size, and can push deeply into the target cell, distorting organelles in their path, including the nucleus. The projections contain fine fibrillar material, to the exclusion of organelles. They push the target cell membrane in front of them to form pockets approximating to the shape of the projection. Areas of close contact occur between the projections and the target cell membrane, particularly at the leading edges. The likelihood that these projections develop as a result of contact with specific antigen, and are involved in the cytotoxic mechanism is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 PMID:311336
26 CFR 48.4161(b)-2 - Meaning of terms.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... The term “bows” includes all articles made of flexible materials, that are designed to be equipped with a string and used for the propelling of arrows in the sport of archery (target shooting), or in hunting or fishing. (2) Arrows. The term “arrows” includes all articles designed or constructed to be...
26 CFR 48.4161(b)-2 - Meaning of terms.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... The term “bows” includes all articles made of flexible materials, that are designed to be equipped with a string and used for the propelling of arrows in the sport of archery (target shooting), or in hunting or fishing. (2) Arrows. The term “arrows” includes all articles designed or constructed to be...
Multiple target laser ablation system
Mashburn, Douglas N.
1996-01-01
A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.
Proposed industrial recoverd materials utilization targets for the textile mill products industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-05-01
Materials recovery targets were established to represent the maximum technically and economically feasible increase in the use of energy-saving materials by January 1, 1987. This report describes targets for the textile industry and describes how those targets were determined. (MCW)
Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.
2018-01-01
Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909
Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R
2008-05-15
A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.
Relativistic electron beam device
Freeman, J.R.; Poukey, J.W.; Shope, S.L.; Yonas, G.
1975-07-01
A design is given for an electron beam device for irradiating spherical hydrogen isotope bearing targets. The accelerator, which includes hollow cathodes facing each other, injects an anode plasma between the cathodes and produces an approximately 10 nanosecond, megajoule pulse between the anode plasma and the cathodes. Targets may be repetitively positioned within the plasma between the cathodes, and accelerator diode arrangement permits materials to survive operation in a fusion power source. (auth)
Industrial recovered-materials-utilization targets for the textile-mill-products industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-01-01
The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets includemore » and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, David; Betzler, Ben; Hirtz, Gregory John
2016-09-01
The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se productionmore » capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.« less
Physicochemically functional ultrathin films by interfacial polymerization
Lonsdale, H.K.; Babcock, W.C.; Friensen, D.T.; Smith, K.L.; Johnson, B.M.; Wamser, C.C.
1990-08-14
Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclosed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers. 3 figs.
ERIC Educational Resources Information Center
Madeyski, Tom
1997-01-01
Includes 50 cost-effective ideas for promoting camp in the areas of recruiting new campers, encouraging returning campers, advertising strategies, printing brochures and other written materials, using photographs, targeting groups for camp facility rental, and effectively using the media. (LP)
Process for manufacture of inertial confinement fusion targets and resulting product
Masnari, Nino A.; Rensel, Walter B.; Robinson, Merrill G.; Solomon, David E.; Wise, Kensall D.; Wuttke, Gilbert H.
1982-01-01
An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.
Ultrathin metallized PBI paper
NASA Technical Reports Server (NTRS)
Chenevey, E. C.
1978-01-01
A study to determine the feasibility of preparing ultrathin papers with a target weight of 3.5 g/m squared from polybenzimidazole (PBI) fibrids was undertaken. Small hand sheets of target weight were fabricated. They were light brown, low density materials with sufficient strength to be readily handleable. Characterization of these sheets included strength, fold endurance, thermal gravimetric analysis in air and nitrogen and photomicrographs. Two different batches of PBI fibrids were studied and differences in fabrication performance were noted. In neither case could target weight papers be prepared using conventional paper making techniques.
Systems and methods for harvesting and storing materials produced in a nuclear reactor
Heinold, Mark R.; Dayal, Yogeshwar; Brittingham, Martin W.
2016-04-05
Systems produce desired isotopes through irradiation in nuclear reactor instrumentation tubes and deposit the same in a robust facility for immediate shipping, handling, and/or consumption. Irradiation targets are inserted and removed through inaccessible areas without plant shutdown and placed in the harvesting facility, such as a plurality of sealable and shipping-safe casks and/or canisters. Systems may connect various structures in a sealed manner to avoid release of dangerous or unwanted matter throughout the nuclear plant, and/or systems may also automatically decontaminate materials to be released. Useable casks or canisters can include plural barriers for containment that are temporarily and selectively removable with specially-configured paths inserted therein. Penetrations in the facilities may limit waste or pneumatic gas escape and allow the same to be removed from the systems without over-pressurization or leakage. Methods include processing irradiation targets through such systems and securely delivering them in such harvesting facilities.
Chemical hydrogen storage material property guidelines for automotive applications
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Brooks, Kriston P.
2015-04-01
Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.
Multiple target laser ablation system
Mashburn, D.N.
1996-01-09
A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.
Ignition of deuterium-trtium fuel targets
Musinski, Donald L.; Mruzek, Michael T.
1991-01-01
A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.
Ignition of deuterium-tritium fuel targets
Musinski, D.L.; Mruzek, M.T.
1991-08-27
Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.
NASA Astrophysics Data System (ADS)
Kókai, Zsófia; Török, Szabina; Zagyvai, Péter; Kiselev, Daniela; Moormann, Rainer; Börcsök, Endre; Zanini, Luca; Takibayev, Alan; Muhrer, Günter; Bevilacqua, Riccardo; Janik, József
2018-02-01
Different target options have been examined for the European Spallation Source, which is under construction in Lund, Sweden. During the design update phase, parameters and characteristics for the target design have been optimized not only for neutronics but also with respect to the waste characteristics related to the final disposal of the target. A rotating, solid tungsten target was eventually selected as baseline concept; the other options considered included mercury and lead-bismuth (LBE) targets suitable for a pulsed source. Since the licensee is obliged to present a decommissioning plan even before the construction phase starts, the radioactive waste category of the target after full operation time is of crucial importance. The results obtained from a small survey among project partners of 7th Framework Program granted by EU 202247 contract have been used. Waste characteristics of different potential spallation target materials were compared. Based on waste index, the tungsten target is the best alternative and the second one is the mercury target. However, all alternatives have HLW category after a 10 year cooling. Based on heat generation alone all of the options would be below the HLW limit after this cooling period. The LBE is the least advantageous alternative based on waste index and heat generation comparison. These results can be useful in compiling the licensing documents of the ESS facility as the target alternatives can be compared from various aspects related to their disposal.
Linker, Kevin L.; Brusseau, Charles A.
2002-01-01
A portal apparatus for screening persons or objects for the presence of trace amounts of target substances such as explosives, narcotics, radioactive materials, and certain chemical materials. The portal apparatus can have a one-sided exhaust for an exhaust stream, an interior wall configuration with a concave-shape across a horizontal cross-section for each of two facing sides to result in improved airflow and reduced washout relative to a configuration with substantially flat parallel sides; air curtains to reduce washout; ionizing sprays to collect particles bound by static forces, as well as gas jet nozzles to dislodge particles bound by adhesion to the screened person or object. The portal apparatus can be included in a detection system with a preconcentrator and a detector.
External triggering and triggered targeting strategies for drug delivery
NASA Astrophysics Data System (ADS)
Wang, Yanfei; Kohane, Daniel S.
2017-06-01
Drug delivery systems that are externally triggered to release drugs and/or target tissues hold considerable promise for improving the treatment of many diseases by minimizing nonspecific toxicity and enhancing the efficacy of therapy. These drug delivery systems are constructed from materials that are sensitive to a wide range of external stimuli, including light, ultrasound, electrical and magnetic fields, and specific molecules. The responsiveness conferred by these materials allows the release of therapeutics to be triggered on demand and remotely by a physician or patient. In this Review, we describe the rationales for such systems and the types of stimuli that can be deployed, and provide an outlook for the field.
NASA Astrophysics Data System (ADS)
Muto, Hachizo; Kusumori, Takeshi; Nakamura, Toshiyuki; Asano, Takashi; Hori, Takahiro
2006-04-01
We have developed a new pulsed laser ablation-deposition (PLAD) apparatus and techniques for fabricating films of high-temperature or functional materials, including two short-wavelength lasers: (a) a YAG 5th harmonic (213 nm) and (b) Raman-shifted lasers containing vacuum ultraviolet light; also involved are (c) a high-temperature heater with a maximum temperature of 1350 °C, (d) dual-target simultaneous ablation mechanics, and (e) hybrid PLAD using a pico-second YAG laser combined with (c) and/or (d). Using the high-T heater, hetero-epitaxial films of 3C-, 2H- and 4H-SiC have been prepared on sapphire-c. In situ p-doping for GaN epitaxial films is achieved by simultaneous ablation of GaN and Mg targets by (d) during film growth. Junctions such as pGaN (Mg-doped)-film/n-SiC(0 0 0 1) substrate and pGaN/n-Si(1 1 1) show good diode characteristics. Epitaxial films with a diamond lattice can be grown on the sapphire-c plane by hybrid PLAD (e) with a high-T heater using a 6H-SiC target. High quality epitaxial films of ZnO are grown by PLAD by introducing a low-temperature self-buffer layer; magnetization of ferromagnetic materials is enforced by overlaying on a ferromagnetic lattice plane of an anti-ferromagnetic material, showing the value of the layer-overlaying method in improving quality. The short-wavelength lasers are useful in reducing surface particles on functional films, including superconductors.
Recovery of germanium-68 from irradiated targets
Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.
1993-01-01
A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.
Proton irradiation on materials
NASA Technical Reports Server (NTRS)
Chang, C. Ken
1993-01-01
A computer code is developed by utilizing a radiation transport code developed at NASA Langley Research Center to study the proton radiation effects on materials which have potential application in NASA's future space missions. The code covers the proton energy from 0.01 Mev to 100 Gev and is sufficient for energetic protons encountered in both low earth and geosynchronous orbits. With some modification, the code can be extended for particles heavier than proton as the radiation source. The code is capable of calculating the range, stopping power, exit energy, energy deposition coefficients, dose, and cumulative dose along the path of the proton in a target material. The target material can be any combination of the elements with atomic number ranging from 1 to 92, or any compound with known chemical composition. The generated cross section for a material is stored and is reused in future to save computer time. This information can be utilized to calculate the proton dose a material would receive in an orbit when the radiation environment is known. It can also be used to determine, in the laboratory, the parameters such as beam current of proton and irradiation time to attain the desired dosage for accelerated ground testing of any material. It is hoped that the present work be extended to include polymeric and composite materials which are prime candidates for use as coating, electronic components, and structure building. It is also desirable to determine, for ground testing these materials, the laboratory parameters in order to simulate the dose they would receive in space environments. A sample print-out for water subject to 1.5 Mev proton is included as a reference.
Three-dimensional particle simulation of back-sputtered carbon in electric propulsion test facility
NASA Astrophysics Data System (ADS)
Zheng, Hongru; Cai, Guobiao; Liu, Lihui; Shang, Shengfei; He, Bijiao
2017-03-01
The back-sputtering deposition on thruster surface caused by ion bombardment on chamber wall material affects the performance of thrusters during the ground based electric propulsion endurance tests. In order to decrease the back-sputtering deposition, most of vacuum chambers applied in electric propulsion experiments are equipped with anti-sputtering targets. In this paper, a three-dimensional model of plume experimental system (PES) including double layer anti-sputtering target is established. Simulation cases are made to simulate the plasma environment and sputtering effects when an ion thruster is working. The particle in cell (PIC) method and direct simulation Monte Carlo (DSMC) method is used to calculate the velocity and position of particles. Yamamura's model is used to simulate the sputtering process. The distribution of sputtered anti-sputtering target material is presented. The results show that the double layer anti-sputtering target can significantly reduce the deposition on thruster surface. The back-sputtering deposition rates on thruster exit surface for different cases are compared. The chevrons on the secondary target are rearranged to improve its performance. The position of secondary target has relation with the ion beam divergence angle, and the radius of the vacuum chamber. The back-sputtering deposition rate is lower when the secondary target covers the entire ion beam.
NASA Technical Reports Server (NTRS)
Starke, E. A., Jr.
1997-01-01
This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.
Magnetic Materials Suitable for Fission Power Conversion in Space Missions
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.
2012-01-01
Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.
Bulldozing Your Way Through Projectile Motion.
ERIC Educational Resources Information Center
Lamb, William G.
1983-01-01
Presents two models and two demonstrations targeted at student understanding of projectile motion as the sum of two independent, perpendicular vectors. Describes materials required, construction, and procedures used. Includes a discussion of teaching points appropriate to each demonstration or model. (JM)
Low-Outgassing Photogrammetry Targets for Use in Outer Space
NASA Technical Reports Server (NTRS)
Gross, Jason N.; Sampler, Henry; Reed, Benjamin B.
2011-01-01
A short document discusses an investigation of materials for photogrammetry targets for highly sensitive optical scientific instruments to be operated in outer space and in an outer-space-environment- simulating thermal vacuum chamber on Earth. A key consideration in the selection of photogrammetry-target materials for vacuum environments is the need to prevent contamination that could degrade the optical responses of the instruments. Therefore, in addition to the high levels and uniformity of reflectivity required of photogrammetry-target materials suitable for use in air, the materials sought must exhibit minimal outgassing. Commercially available photogrammetry targets were found to outgas excessively under the thermal and vacuum conditions of interest; this finding prompted the investigators to consider optically equivalent or superior, lower-outgassing alternative target materials. The document lists several materials found to satisfy the requirements, but does not state explicitly whether the materials can be used individually or must be combined in the proper sequence into layered target structures. The materials in question are an aluminized polyimide tape, an acrylic pressure- sensitive adhesive, a 500-A-thick layer of vapor-deposited aluminum, and spherical barium titanate glass beads having various diameters from 20 to 63 microns..
van der Zanden, Loes F M; Vermeulen, Sita H; Oskarsdottir, Arna; Maurits, Jake S F; Diekstra, Meta H M; Ambert, Valentin; Cambon-Thomsen, Anne; Castellano, Daniel; Fritsch, Achim; Garcia Donas, Jesus; Guarch Troyas, Rosa; Guchelaar, Henk-Jan; Hartmann, Arndt; Hulsbergen-van de Kaa, Christina; Jaehde, Ulrich; Junker, Kerstin; Martinez-Cardus, Anna; Masson, Gisli; Oosterwijk-Wakka, Jeannette; Radu, Marius T; Rafnar, Thorunn; Rodriguez-Antona, Cristina; Roessler, Max; Ruijtenbeek, Rob; Stefansson, Kari; Warren, Anne; Wessels, Lodewyk; Eisen, Tim; Kiemeney, Lambertus A L M; Oosterwijk, Egbert
2017-08-01
For patients with metastatic renal cell cancer (mRCC), treatment choice is mainly based on clinical parameters. With many treatments available and the limited response to treatment and associated toxicities, there is much interest in identifying better biomarkers for personalized treatment. EuroTARGET aims to identify and characterize host- and tumor-related biomarkers for prediction of response to tyrosine kinase inhibitor therapy in mRCC. Here, we describe the EuroTARGET mRCC patient cohort. EuroTARGET is a European collaborative project designed as an observational study for which patients with mRCC were recruited prospectively in 62 centers. In addition, 462 patients with mRCC from previous studies were included. Detailed clinical information (baseline and follow-up) from all patients was entered in web-based case record forms. Blood was collected for germline DNA and pharmacokinetic/pharmacodynamic analyses and, where available, fresh-frozen tumor material was collected to perform tumor DNA, RNA, kinome, and methylome analyses. In total, 1,210 patients with mRCC were included. Of these, 920 received a tyrosine kinase inhibitor as first-line targeted treatment (sunitinib [N = 713, 78%], sorafenib [N = 41, 4%], or pazopanib [N = 166, 18%]) and had at least 6 months of outcome assessment (median follow-up 15.3 months [interquartile range: 8.5-30.2 months]). Germline DNA samples were available from 824 of these patients, fresh-frozen tumor material from 142 patients, fresh-frozen normal kidney tissue from 95 patients, and tissue microarrays created from formalin-fixed paraffin-embedded tumor material from 247 patients. Of the 920 patients, germline DNA variant chip data were successfully generated for 811 patients (Illumina HumanOmniExpress BeadChip). For 80 patients, next-generation exome sequencing of germline and tumor DNA was performed, tumor RNA sequencing was performed for 124 patients, kinome activity measured and processed for 121 patients (PamChip), and methylome data (Illumina Infinium HumanMethylation450 BeadChip) were created for 116 RCC tissues (and 23 normal kidney tissues). For 73 out of the 920 patients, all platform data types were generated. In addition, 40 patients were included in a pharmacokinetic/pharmacodynamic phase IV substudy. Analysis of EuroTARGET cohort data will contribute to personalization of therapy for patients with mRCC. The extensive clinical data and multiplatform EuroTARGET data will be freely available. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Recovery of niobium from irradiated targets
Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.
1994-01-01
A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.
Particle-in-Cell Modeling of Magnetron Sputtering Devices
NASA Astrophysics Data System (ADS)
Cary, John R.; Jenkins, T. G.; Crossette, N.; Stoltz, Peter H.; McGugan, J. M.
2017-10-01
In magnetron sputtering devices, ions arising from the interaction of magnetically trapped electrons with neutral background gas are accelerated via a negative voltage bias to strike a target cathode. Neutral atoms ejected from the target by such collisions then condense on neighboring material surfaces to form a thin coating of target material; a variety of industrial applications which require thin surface coatings are enabled by this plasma vapor deposition technique. In this poster we discuss efforts to simulate various magnetron sputtering devices using the Vorpal PIC code in 2D axisymmetric cylindrical geometry. Field solves are fully self-consistent, and discrete models for sputtering, secondary electron emission, and Monte Carlo collisions are included in the simulations. In addition, the simulated device can be coupled to an external feedback circuit. Erosion/deposition profiles and steady-state plasma parameters are obtained, and modifications due to self consistency are seen. Computational performance issues are also discussed. and Tech-X Corporation.
Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storage
2017-01-01
The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacity at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar. PMID:28413259
Materials genome in action: Identifying the performance limits of physical hydrogen storage
Thornton, Aaron W.; Simon, Cory M.; Kim, Jihan; ...
2017-03-08
The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacitymore » at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Finally, our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar.« less
Materials genome in action: Identifying the performance limits of physical hydrogen storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Aaron W.; Simon, Cory M.; Kim, Jihan
The Materials Genome is in action: the molecular codes for millions of materials have been sequenced, predictive models have been developed, and now the challenge of hydrogen storage is targeted. Renewably generated hydrogen is an attractive transportation fuel with zero carbon emissions, but its storage remains a significant challenge. Nanoporous adsorbents have shown promising physical adsorption of hydrogen approaching targeted capacities, but the scope of studies has remained limited. Here the Nanoporous Materials Genome, containing over 850 000 materials, is analyzed with a variety of computational tools to explore the limits of hydrogen storage. Optimal features that maximize net capacitymore » at room temperature include pore sizes of around 6 Å and void fractions of 0.1, while at cryogenic temperatures pore sizes of 10 Å and void fractions of 0.5 are optimal. Finally, our top candidates are found to be commercially attractive as “cryo-adsorbents”, with promising storage capacities at 77 K and 100 bar with 30% enhancement to 40 g/L, a promising alternative to liquefaction at 20 K and compression at 700 bar.« less
Bowden, Stephen A.; Cole, Michael; Parnell, John
2014-01-01
Abstract The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ∼2 and ∼4 km s−1 at targets that included water ice, water, and sand. This involved shock pressures in the range of 2–12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s−1 and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies. Key Words: Organic—Hypervelocity—Shock—Biomarkers. Astrobiology 14, 473–485. PMID:24901745
Preliminary Mark-18A (Mk-18A) Target Material Recovery Program Product Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Sharon M.; Patton, Bradley D.
2016-09-01
The Mk-18A Target Material Recovery Program (MTMRP) was established in 2015 to preserve the unique materials, e.g. 244Pu, in 65 previously irradiated Mk-18A targets for future use. This program utilizes existing capabilities at SRS and Savannah River National Laboratory (SRNL) to process targets, recover materials from them, and to package the recovered materials for shipping to ORNL. It also utilizes existing capabilities at ORNL to receive and store the recovered materials, and to provide any additional processing of the recovered materials or residuals required to prepare them for future beneficial use. The MTMRP is presently preparing for the processing ofmore » these valuable targets which is expected to begin in ~2019. As part of the preparations for operations, this report documents the preliminary acceptance criteria for the plutonium and heavy curium materials to be recovered from the Mk-18A targets at SRNL for transport and storage at ORNL. These acceptance criteria were developed based on preliminary concepts developed for processing, transporting, and storing the recovered Mk-18A materials. They will need to be refined as these concepts are developed in more detail.« less
Characterizing the vibration behavior in crack vicinity in sonic infrared imaging NDE
NASA Astrophysics Data System (ADS)
Yu, Qiuye; Obeidat, Omar; Han, Xiaoyan
2018-04-01
Sonic Infrared Imaging uses ultrasound excitation and infrared imaging to detect defects in different materials, including metals, metal alloys, and composites. In this NDE technology, the ultrasound excitation applied is typically a short pulse, usually a fraction of a second. The ultrasound causes the opposing surfaces of a crack or a defect to rub each other and result in temperature change with noticeable infrared radiation increase. This thermal signal can be captured by IR camera and used to locate the defect within the target. Probability of detection of defects can be significantly improved when chaotic sound is introduced to the materials. This nonlinearity between the ultrasound transducer and the target materials is an important phenomenon, and the understanding is critical to improve the repeatability and reliability of this technology. In this paper, we will present our study on this topic with emphasis of characterizing vibration in the crack vicinity.
Radiation Sensitization in Cancer Therapy.
ERIC Educational Resources Information Center
Greenstock, Clive L.
1981-01-01
Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…
Assessment of autophagosome formation by transmission electron microscopy
USDA-ARS?s Scientific Manuscript database
Autophagy is a complex degradative process by which cytosolic material, including organelles, is randomly sequestered within double-membrane bound vesicles termed autophagosomes and targeted for degradation. Initially described as a nutrient stress adaptation response, the process of autophagy is n...
Development of a reference material of a single DNA molecule for the quality control of PCR testing.
Mano, Junichi; Hatano, Shuko; Futo, Satoshi; Yoshii, Junji; Nakae, Hiroki; Naito, Shigehiro; Takabatake, Reona; Kitta, Kazumi
2014-09-02
We developed a reference material of a single DNA molecule with a specific nucleotide sequence. The double-strand linear DNA which has PCR target sequences at the both ends was prepared as a reference DNA molecule, and we named the PCR targets on each side as confirmation sequence and standard sequence. The highly diluted solution of the reference molecule was dispensed into 96 wells of a plastic PCR plate to make the average number of molecules in a well below one. Subsequently, the presence or absence of the reference molecule in each well was checked by real-time PCR targeting for the confirmation sequence. After an enzymatic treatment of the reaction mixture in the positive wells for the digestion of PCR products, the resultant solution was used as the reference material of a single DNA molecule with the standard sequence. PCR analyses revealed that the prepared samples included only one reference molecule with high probability. The single-molecule reference material developed in this study will be useful for the absolute evaluation of a detection limit of PCR-based testing methods, the quality control of PCR analyses, performance evaluations of PCR reagents and instruments, and the preparation of an accurate calibration curve for real-time PCR quantitation.
Direct current sputtering of boron from boron/coron mixtures
Timberlake, John R.; Manos, Dennis; Nartowitz, Ed
1994-01-01
A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.
The Extraterrestrial Materials Simulation Laboratory
NASA Technical Reports Server (NTRS)
Green, J. R.
2001-01-01
In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorhout, Jacquelyn Marie
This dissertation covers several distinct projects relating to the fields of nuclear forensics and basic actinide science. Post-detonation nuclear forensics, in particular, the study of fission products resulting from a nuclear device to determine device attributes and information, often depends on the comparison of fission products to a library of known ratios. The expansion of this library is imperative as technology advances. Rapid separation of fission products from a target material, without the need to dissolve the target, is an important technique to develop to improve the library and provide a means to develop samples and standards for testing separations.more » Several materials were studied as a proof-of-concept that fission products can be extracted from a solid target, including microparticulate (< 10 μm diameter) dUO 2, porous metal organic frameworks (MOFs) synthesized from depleted uranium (dU), and other organicbased frameworks containing dU. The targets were irradiated with fast neutrons from one of two different neutron sources, contacted with dilute acids to facilitate the separation of fission products, and analyzed via gamma spectroscopy for separation yields. The results indicate that smaller particle sizes of dUO 2 in contact with the secondary matrix KBr yield higher separation yields than particles without a secondary matrix. It was also discovered that using 0.1 M HNO 3 as a contact acid leads to the dissolution of the target material. Lower concentrations of acid were used for future experiments. In the case of the MOFs, a larger pore size in the framework leads to higher separation yields when contacted with 0.01 M HNO 3. Different types of frameworks also yield different results.« less
NASA Astrophysics Data System (ADS)
Vickers, Linda Diane
This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal of Pb and Bi targets would be optimally beneficial to the economy and environment. Future studies should relate the target performance to other system parameters, specifically solid and liquid blanket systems that contain the radioactive waste to be transmuted. The methodology of this dissertation may be applied to any target material of a high-energy particle accelerator.
Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal
2017-08-01
The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.
Green, Judith; Buckner, Stefanie; Milton, Sarah; Powell, Katie; Salway, Sarah; Moffatt, Suzanne
2017-08-01
A growing body of research attests to the impact of welfare regimes on health and health equity. However, the mechanisms that link different kinds of welfare entitlement to health outcomes are less well understood. This study analysed the accounts of 29 older adults in England to delineate how the form of entitlement to welfare and other resources (specifically, whether this was understood as a universal entitlement or as targeted to those in need) impacts on the determinants of health. Mechanisms directly affecting access to material resources (through deterring uptake of benefits) have been well documented, but those that operate through psychosocial and more structural pathways less so, in part because they are more challenging to identify. Entitlement that was understood collectively, or as arising from financial or other contributions to a social body, had positive impacts on wellbeing beyond material gains, including facilitating access to important health determinants: social contact, recognition and integration. Entitlement understood as targeted in terms of individualised concepts of need or vulnerability deterred access to material resources, but also fostered debate about legitimacy, thus contributing to negative impacts on individual wellbeing and the public health through the erosion of social integration. This has important implications for both policy and evaluation. Calls to target welfare benefits at those in most need emphasise direct material pathways to health impact. We suggest a model for considering policy change and evaluation which also takes into account how psychosocial and structural pathways are affected by the nature of entitlement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Greaves, Ronda F; Jolly, Lisa; Hartmann, Michaela F; Ho, Chung Shun; Kam, Richard K T; Joseph, John; Boyder, Conchita; Wudy, Stefan A
2017-03-01
Serum dihydrotestosterone (DHT) is an important analyte for the clinical assessment of disorders of sex development. It is also reportedly a difficult analyte to measure. Currently, there are significant gaps in the standardisation of this analyte, including no external quality assurance (EQA) program available worldwide to allow for peer review performance of DHT. We therefore proposed to establish a pilot EQA program for serum DHT. DHT was assessed in the 2015 Royal College of Pathologists of Australasia Quality Assurance Programs' Endocrine program material. The material's target (i.e. "true") values were established using a measurement procedure based on isotope dilution gas chromatography (GC) tandem mass spectrometry (MS/MS). DHT calibrator values were based on weighed values of pure DHT material (>97.5% purity) from Sigma. The allowable limits of performance (ALP) were established as ±0.1 up to 0.5 nmol/L and ±15% for targets >0.5 nmol/L. Target values for the six levels of RCPAQAP material for DHT ranged from 0.02 to 0.43 nmol/L (0.01-0.12 ng/mL). The material demonstrated linearity across the six levels. There were seven participating laboratories for this pilot study. Results of the liquid chromatography (LC) MS/MS methods were within the ALP; whereas the results from the immunoassay methods were consistently higher than the target values and outside the ALP. This report provides the first peer comparison of serum DHT measured by mass spectrometry (MS) and immunoassay laboratories. Establishment of this program provides one of the pillars to achieve method harmonisation. This supports accurate clinical decisions where DHT measurement is required.
Unsteady penetration of a target by a liquid jet
Uth, Tobias; Deshpande, Vikram S.
2013-01-01
It is widely acknowledged that ceramic armor experiences an unsteady penetration response: an impacting projectile may erode on the surface of a ceramic target without substantial penetration for a significant amount of time and then suddenly start to penetrate the target. Although known for more than four decades, this phenomenon, commonly referred to as dwell, remains largely unexplained. Here, we use scaled analog experiments with a low-speed water jet and a soft, translucent target material to investigate dwell. The transient target response, in terms of depth of penetration and impact force, is captured using a high-speed camera in combination with a piezoelectric force sensor. We observe the phenomenon of dwell using a soft (noncracking) target material. The results show that the penetration rate increases when the flow of the impacting water jet is reversed due to the deformation of the jet–target interface––this reversal is also associated with an increase in the force exerted by the jet on the target. Creep penetration experiments with a constant indentation force did not show an increase in the penetration rate, confirming that flow reversal is the cause of the unsteady penetration rate. Our results suggest that dwell can occur in a ductile noncracking target due to flow reversal. This phenomenon of flow reversal is rather widespread and present in a wide range of impact situations, including water-jet cutting, needleless injection, and deposit removal via a fluid jet. PMID:24277818
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
NASA Astrophysics Data System (ADS)
Ning, Cun-Zheng; Dou, Letian; Yang, Peidong
2017-12-01
Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.
A polymer dataset for accelerated property prediction and design
Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; ...
2016-03-01
Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate targetmore » of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. As a result, it will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.« less
Radar cross section studies/compact range research
NASA Technical Reports Server (NTRS)
Burnside, W. D.; Dominek, A. K.; Gupta, I. J.; Newman, E. H.; Pathak, P. H.; Peters, L., Jr.
1989-01-01
Achievements in advancing the state-of-the-art in the measurement, control, and analysis of electromagnetic scattering from general aerodynamic targets are summarized. The major topics associated with this study include: (1) electromagnetic scattering analysis; (2) indoor scattering measurement systems; (3) RCS control; (4) waveform processing techniques; (5) material scattering and design studies; (6) design and evaluation of standard targets; and (7) antenna studies. Progress in each of these areas is reported and related publications are listed.
Atlanta Public Schools French Guide.
ERIC Educational Resources Information Center
Atlanta Public Schools, GA.
This teacher's guide specifies language skills and related areas of knowledge needed for communicating in the target language. Discussion of the philosophy governing the Atlanta language program includes an examination of student eligibility, program articulation, teaching methods, testing, teaching materials, resources, and equipment for use in…
NASA Astrophysics Data System (ADS)
Callahan, John H.; Galicia, Marsha C.; Vertes, Akos
2002-09-01
Laser evaporation techniques, including matrix-assisted pulsed laser evaporation (MAPLE), are attracting increasing attention due to their ability to deposit thin layers of undegraded synthetic and biopolymers. Laser evaporation methods can be implemented in reflection geometry with the laser and the substrate positioned on the same side of the target. In some applications (e.g. direct write, DW), however, transmission geometry is used, i.e. the thin target is placed between the laser and the substrate. In this case, the laser pulse perforates the target and transfers some target material to the substrate. In order to optimize evaporation processes it is important to know the composition of the target plume and the material deposited from the plume. We used a recently introduced analytical method, atmospheric pressure matrix-assisted laser desorption ionization (AP-MALDI) to characterize the ionic components of the plume both in reflection and in transmission geometry. This technique can also be used to directly probe materials deposited on surfaces (such as glass slides) by laser evaporation methods. The test compound (small peptides, e.g. Angiotensin I, ATI or Substance P) was mixed with a MALDI matrix (α-cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA) or 2,5-dihydroxybenzoic acid (DHB)) and applied to the stainless steel (reflection geometry) or transparent conducting (transmission geometry) target holder. In addition to the classical dried droplet method, we also used electrospray target deposition to gain better control of crystallite size, thickness and homogeneity. The target was mounted in front of the inlet orifice of an ion trap mass spectrometer (IT-MS) that sampled the ionic components of the plume generated by a nitrogen laser. We studied the effect of several parameters, such as, the orifice to target distance, illumination geometry, extracting voltage distribution and sample preparation on the generated ions. Various analyte-matrix and matrix-matrix cluster ions were observed with relatively low abundance of the matrix ions.
Method for materials deposition by ablation transfer processing
Weiner, Kurt H.
1996-01-01
A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs.
Chemical hydrogen storage material property guidelines for automotive applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semelsberger, Troy; Brooks, Kriston P.
2015-04-01
Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less
Oblique impacts into low impedance layers
NASA Astrophysics Data System (ADS)
Stickle, A. M.; Schultz, P. H.
2009-12-01
Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA allows a clear view of failure patterns within the target, providing a 3D picture of the final damage, as well as damage formation and propagation. Secondly, PMMA has mechanical properties similar to those of brittle rocks in the upper crust, making it an appropriate material for comparison to geologic materials. An impact into a PMMA target with a one-projectile-diameter thick plasticine layer causes damage distinct from an impact into a PMMA target without a low impedance layer. The extent of the final damage is much less in the target with the low impedance layer and begins to form at later times, there is little to no crater visible on the surface, and the formation and propagation of the damage is completely different, creating distinct subsurface damage patterns. Three-dimensional CTH hydrocode models show that the pressure history of material around and underneath the impact point is also different when a low impedance layer is present, leading to the variations in damage forming within the targets.
Study of transport of laser-driven relativistic electrons in solid materials
NASA Astrophysics Data System (ADS)
Leblanc, Philippe
With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.
Eisener-Dorman, Amy F.; Lawrence, David A.; Bolivar, Valerie J.
2010-01-01
The development of gene targeting technologies has enabled research with immune system-related knockout mouse strains to advance our understanding of how cytokines and their receptors interact and influence a number of body systems, including the central nervous system. A critical issue when we are interpreting phenotypic data from these knockout strains is the potential role of genes other than the targeted one. Although many of the knockout strains have been made congenic on a C57BL/6 (B6) genetic background, there remains a certain amount of genetic material from the129 substrain that was used in the development of these strains. This genetic material could result in phenotypes incorrectly attributed to the targeted gene. We recently reported low activity behavior in Il10−/− mice that was linked to this genetic material rather than the targeted gene itself. In the current study we confirm the generalizability of those earlier findings, by assessing behavior in Il18−/− and Il18r1−/− knockout mice. We identified low activity and high anxiety-like behaviors in Il18r1−/− mice, whereas Il18−/− mice displayed little anxiety-like behavior. Although Il18r1−/− mice are considered a congenic strain, we have identified substantial regions of 129P2-derived genetic material not only flanking the ablated Il18r1 on Chromosome 1, but also on Chromosomes 4, 5, 8, 10, and 14. Our studies suggest that residual 129-derived gene(s), rather than the targeted Il18r1 gene, is/are responsible for the low level of activity seen in the Il18r1−/− mice. Mapping studies are necessary to identify the gene or genes contributing to the low activity phenotype. PMID:20580925
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, Adam; Merzari, Elia; Sofu, Tanju
2016-08-01
High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-statemore » simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.« less
Planetary and Primitive Object Strength Measurements and Sampling Apparatus
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
1997-01-01
We present experimental data and a model for the low-velocity (subsonic, 0 - 1000 m/s) penetration of brittle materials by both solid and hollow (i.e., coring) penetrators. The experiments show that penetration is proportional to momentum/frontal area of the penetrator. Because of the buildup of a cap in front of blunt penetrators, the presence or absence of a streamlined or sharp front end usually has a negligible effect for impact into targets with strength. The model accurately predicts the dependence of penetration depth on the various parameters of the target-penetrator system, as well as the qualitative condition of the target material ingested by a corer. In particular, penetration depth is approximately inversely proportional to the static bearing strength of the target. The bulk density of the target material has only a small effect on penetration, whereas friction can be significant, especially at higher impact velocities, for consolidated materials. This trend is reversed for impacts into unconsolidated materials. The present results suggest that the depth of penetration is a good measure of the strength, but not the density, of a consolidated target. Both experiments and model results show that, if passage through the mouth of a coring penetrator requires initially porous target material to be compressed to less than 26% porosity, the sample collected by the corer will be highly fragmented. If the final porosity remains above 26%, then most materials, except cohesionless materials, such as dry sand, will be collected as a compressed slug of material.
Advanced surface-enhanced Raman gene probe systems and methods thereof
Vo-Dinh, Tuan
2001-01-01
The subject invention is a series of methods and systems for using the Surface-Enhanced Raman (SER)-labeled Gene Probe for hybridization, detection and identification of SER-labeled hybridized target oligonucleotide material comprising the steps of immobilizing SER-labeled hybridized target oligonucleotide material on a support means, wherein the SER-labeled hybridized target oligonucleotide material comprise a SER label attached either to a target oligonucleotide of unknown sequence or to a gene probe of known sequence complementary to the target oligonucleotide sequence, the SER label is unique for the target oligonucleotide strands of a particular sequence wherein the SER-labeled oligonucleotide is hybridized to its complementary oligonucleotide strand, then the support means having the SER-labeled hybridized target oligonucleotide material adsorbed thereon is SERS activated with a SERS activating means, then the support means is analyzed.
Ford, Patrick; Santos, Eduardo; Ferrão, Paulo; Margarido, Fernanda; Van Vliet, Krystyn J; Olivetti, Elsa
2016-05-03
The challenges brought on by the increasing complexity of electronic products, and the criticality of the materials these devices contain, present an opportunity for maximizing the economic and societal benefits derived from recovery and recycling. Small appliances and computer devices (SACD), including mobile phones, contain significant amounts of precious metals including gold and platinum, the present value of which should serve as a key economic driver for many recycling decisions. However, a detailed analysis is required to estimate the economic value that is unrealized by incomplete recovery of these and other materials, and to ascertain how such value could be reinvested to improve recovery processes. We present a dynamic product flow analysis for SACD throughout Portugal, a European Union member, including annual data detailing product sales and industrial-scale preprocessing data for recovery of specific materials from devices. We employ preprocessing facility and metals pricing data to identify losses, and develop an economic framework around the value of recycling including uncertainty. We show that significant economic losses occur during preprocessing (over $70 M USD unrecovered in computers and mobile phones, 2006-2014) due to operations that fail to target high value materials, and characterize preprocessing operations according to material recovery and total costs.
Controlled Release Applications of Organometals.
ERIC Educational Resources Information Center
Thayer, John S.
1981-01-01
Reviews two classes of controlled release organometals: (1) distributional, to distribute bioactive materials to control a certain target organism; and (2) protective, to protect surface or interior of some structure from attach by organisms. Specific examples are given including a discussion of controlled release for schistosomiasis. (SK)
Parametric Study of Carbon Nanotube Production by Laser Ablation Process
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram; Nikolaev, Pavel; Holmes, William; Hadjiev, Victor; Scott, Carl
2002-01-01
Carbon nanotubes form a new class of nanomaterials that are presumed to have extraordinary mechanical, electrical and thermal properties. The single wall nanotubes (SWNTs) are estimated to be 100 times stronger than steel with 1/6th the weight; electrical carrying capacity better than copper and thermal conductivity better than diamond. Applications of these SWNTs include possible weight reduction of aerospace structures, multifunctional materials, nanosensors and nanoelectronics. Double pulsed laser vaporization process produces SWNTs with the highest percentage of nanotubes in the output material. The normal operating conditions include a green laser pulse closely followed by an infrared laser pulse. Lasers ab late a metal-containing graphite target located in a flow tube maintained in an oven at 1473K with argon flow of 100 sccm at a 500 Torr pressure. In the present work a number of production runs were carried out, changing one operating condition at a time. We have studied the effects of nine parameters, including the sequencing of the laser pulses, pulse separation times, laser energy densities, the type of buffer gas used, oven temperature, operating pressure, flow rate and inner flow tube diameters. All runs were done using the same graphite target. The collected nanotube material was characterized by a variety of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and thermo gravimetric analysis (TGA). Results indicate trends that could be used to optimize the process and increase the efficiency of the production process.
Vijayan, S.; Wong, C.F.; Buckley, L.P.
1994-11-22
In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.
Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.
1994-01-01
In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.
Smart optical writing head design for laser-based manufacturing
NASA Astrophysics Data System (ADS)
Amin, M. Junaid; Riza, Nabeel A.
2014-03-01
Proposed is a smart optical writing head design suitable for high precision industrial laser based machining and manufacturing applications. The design uses an Electronically Controlled Variable Focus Lens (ECVFL) which enables the highest achievable spatial resolution of writing head spot sizes for axial target distances reaching 8 meters. A proof-of-concept experiment is conducted using a visible wavelength laser with a collimated beam that is coupled to beam conditioning optics which includes an electromagnetically actuated deformable membrane liquid ECVFL cascaded with a bias convex lens of fixed focal length. Electronic tuning and control of the ECVFL keeps the laser writing head far-field spot beam radii under 1 mm that is demonstrated over a target range of 20 cm to 800 cm. Applications for the proposed writing head design, which can accommodate both continuous wave and pulsed wave sources, include laser machining, high precision industrial molding of components, as well as materials processing requiring material sensitive optical power density control.
Microgravity Impact Experiments: The Prime Campaign on the NASA KC-135
NASA Astrophysics Data System (ADS)
Colwell, Joshua E.; Sture, Stein; Lemos, Andreas R.
2002-11-01
Low velocity collisions (v less than 100 m/s) occur in a number of astrophysical contexts, including planetary rings, protoplanetary disks, the Kuiper belt of comets, and in secondary cratering events on asteroids and planetary satellites. In most of these situations the surface gravity of the target is less than a few per cent of 1 g. Asteroids and planetary satellites are observed to have a regolith consisting of loose, unconsolidated material. Planetary ring particles likely are also coated with dust based on observations of dust within ring systems. The formation of planetesimals in protoplanetary disks begins with the accretion of dust particles. The response of the surface dust layer to collisions in the near absence of gravity is necessary for understanding the evolution of these systems. The Collisions Into Dust Experiment (COLLIDE) performs six impact experiments into simulated regolith in microgravity conditions on the space shuttle. The parameter space to be explored is quite large, including effects such as impactor mass and velocity, impact angle, target porosity, size distribution, and particle shape. We have developed an experiment, the Physics of Regolith Impacts in Microgravity Experiment (PRIME), that is analogous to COLLIDE that is optimized for flight on the NASA KC-135 reduced gravity aircraft. The KC-135 environment provides the advantage of more rapid turnover between experiments, allowing a broader range of parameters to be studied quickly, and more room for the experiment so that more impact experiments can be performed each flight. The acceleration environment of the KC-135 is not as stable and minimal as on the space shuttle, and this requires impact velocities to be higher than the minimum achievable with COLLIDE. The experiment consists of an evacuated PRIME Impact Chamber (PIC) with an aluminum base plate and acrylic sides and top. A target tray, launcher, and mirror mount to the base plate. The launcher may be positioned to allow for impacts at angles of 30, 45, 60, and 90 degrees with respect to the target surface. The target material is contained in a 10 cm by 10 cm by 2 cm tray with a rotating door that is opened via a mechanical feed-through on the base plate. A spring-loaded inner door provides uniform compression on the target material prior to operation of the experiment to keep the material from settling or locking up during vibrations prior to the experiment. Data is recorded with the NASA high speed video camera. Frame rates are selected according to the impact parameters. The direct camera view is orthogonal to the projectile line of motion, and the mirrors within the PIC provide a view normal to the target surface. The spring-loaded launchers allow for projectile speeds between 10 cm/s and 500 cm/s with a variety of impactor sizes and densities. On each flight 8 PICs will be used, each one with a different set of impact parameters. Additional information is included in the original extended abstract.
NASA Astrophysics Data System (ADS)
Badyukov, Dmitrii D.; Bezaeva, Natalia S.; Rochette, Pierre; Gattacceca, Jérôme; Feinberg, Joshua M.; Kars, Myriam; Egli, Ramon; Raitala, Jouko; Kuzina, Dilyara M.
2018-01-01
Hypervelocity impacts occur on bodies throughout our solar system, and play an important role in altering the mineralogy, texture, and magnetic properties in target rocks at nanometer to planetary scales. Here we present the results of hypervelocity impact experiments conducted using a two-stage light-gas gun with 5 mm spherical copper projectiles accelerated toward basalt targets with 6 km s-1 impact velocities. Four different types of magnetite- and titanomagnetite-bearing basalts were used as targets for seven independent experiments. These laboratory impacts resulted in the formation of agglutinate-like particles similar in texture to lunar agglutinates, which are an important fraction of lunar soil. Materials recovered from the impacts were examined using a suite of complementary techniques, including optical and scanning electron microscopy, micro-Raman spectroscopy, and high- and low-temperature magnetometry, to investigate the texture, chemistry, and magnetic properties of newly formed agglutinate-like particles and were compared to unshocked basaltic parent materials. The use of Cu-projectiles, rather than Fe- and Ni-projectiles, avoids magnetic contamination in the final shock products and enables a clearer view of the magnetic properties of impact-generated agglutinates. Agglutinate-like particles show shock features, such as melting and planar deformation features, and demonstrate shock-induced magnetic hardening (two- to seven-fold increases in the coercivity of remanence Bcr compared to the initial target materials) and decreases in low-field magnetic susceptibility and saturation magnetization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClintock, David A; Riemer, Bernie; Ferguson, Phillip D
2012-01-01
During operation of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory the mechanical properties of the AISI 316L target module are altered by high-energy neutron and proton radiation. The interior surfaces of the target vessel are also damaged by cavitation-induced erosion, which results from repetitive rapid heating of the liquid mercury by high-energy proton beam pulses. Until recently no observations of cavitation-induced erosion were possible for conditions prototypical to the SNS. Post irradiation examination (PIE) of the first and second operational SNS targets was performed to gain insight into the radiation-induced changes in mechanical properties of the 316Lmore » target material and the extent of cavitation-induced erosion to the target vessel inner surfaces. Observations of cavitation-induced erosion of the first and second operational SNS target modules are presented here, including images of the target vessel interiors and specimens removed from the target beam-entrance regions.« less
Impact and Collisional Processes in the Solar System
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2001-01-01
In the past year, we have successfully developed the techniques necessary to conduct impact experiments on ice at very low temperatures. We employ the method of embedding gauges within a target to measure the shock wave and material properties. This means that our data are not model dependent; we directly measure the essential parameters needed for numerical simulations of impact cratering. Since then we have developed a new method for temperature control of icy targets that ensures temperature equilibrium throughout a porous target. Graduate student, Sarah Stewart-Mukhopadhyay, is leading the work on ices and porous materials as the main thrust of her thesis research. Our previous work has focused on icy materials with no porosity, and we propose to extend our research to include porous ice and porous ice-silicate mixtures. There is little shockwave data for porous ice, and none of the data was acquired under conditions applicable to the outer solar system. The solid ice Hugoniot is only defined for initial temperatures above -20 C. Our program uniquely measures the properties of ice at temperatures directly applicable to the solar system. Previous experiments were conducted at ambient temperatures soon after removing the target from a cold environment, usually just below freezing, or in a room just below freezing. Since ice has an extremely complicated phase diagram, it is important to conduct experiments at lower temperatures to determine the true outcome of impacts in the outer solar system. This research is complementary to other programs on icy materials. Our work focuses on the inherent material properties by measuring the shock wave directly; this complements the macroscopic observations and immediately provides the parameters necessary to extend this research to the gravity regime. Our numerical simulations of impacts in porous ice under very low gravity conditions, such as found on comets, show that the final crater size and shape is very dependent on the dynamic strength of the material.
Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets
NASA Technical Reports Server (NTRS)
Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.
1984-01-01
A pulsed CO2 lidar was used to study statistical properties of signal returns from various rough surfaces at distances near 2 km. These included natural in situ topographic materials as well as man-made hard targets. Three lidar configurations were used: heterodyne detection with single temporal mode transmitter pulses, and direct detection with single and multiple temporal mode pulses. The significant differences in signal return statistics, due largely to speckle effects, are discussed.
A Batch Feeder for Inhomogeneous Bulk Materials
NASA Astrophysics Data System (ADS)
Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.
2016-04-01
The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.
Method for materials deposition by ablation transfer processing
Weiner, K.H.
1996-04-16
A method in which a thin layer of semiconducting, insulating, or metallic material is transferred by ablation from a source substrate, coated uniformly with a thin layer of said material, to a target substrate, where said material is desired, with a pulsed, high intensity, patternable beam of energy. The use of a patternable beam allows area-selective ablation from the source substrate resulting in additive deposition of the material onto the target substrate which may require a very low percentage of the area to be covered. Since material is placed only where it is required, material waste can be minimized by reusing the source substrate for depositions on multiple target substrates. Due to the use of a pulsed, high intensity energy source the target substrate remains at low temperature during the process, and thus low-temperature, low cost transparent glass or plastic can be used as the target substrate. The method can be carried out atmospheric pressures and at room temperatures, thus eliminating vacuum systems normally required in materials deposition processes. This invention has particular application in the flat panel display industry, as well as minimizing materials waste and associated costs. 1 fig.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.
2006-01-01
Assessments of foreign object damage (FOD) of a commercial, gas-turbine grade, in situ toughened silicon nitride ceramic (AS800, Honeywell Ceramics Components) were made using four different projectile materials at ambient temperature. AS800 flexure target specimens rigidly supported were impacted at their centers in a velocity range from 50 to 450 m/s by spherical projectiles with a diameter of 1.59 mm. Four different projectile materials were used including hardened steel, annealed steel, silicon nitride ceramic, and brass. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to appraise the severity of local impact damage. For a given impact velocity, the degree of strength degradation was greatest for ceramic balls, least for brass balls, and intermediate for annealed and hardened steel balls. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles. Impact load as a function of impact velocity was quasi-statically estimated based on both impact and static indentation associated data.
Retro Rocket Motor Self-Penetrating Scheme for Heat Shield Exhaust Ports
NASA Technical Reports Server (NTRS)
Marrese-Reading, Colleen; St.Vaughn, Josh; Zell, Peter; Hamm, Ken; Corliss, Jim; Gayle, Steve; Pain, Rob; Rooney, Dan; Ramos, Amadi; Lewis, Doug;
2009-01-01
A preliminary scheme was developed for base-mounted solid-propellant retro rocket motors to self-penetrate the Orion Crew Module heat shield for configurations with the heat shield retained during landings on Earth. In this system the motors propel impactors into structural push plates, which in turn push through the heat shield ablator material. The push plates are sized such that the remaining port in the ablator material is large enough to provide adequate flow area for the motor exhaust plume. The push plate thickness is sized to assure structural integrity behind the ablative thermal protection material. The concept feasibility was demonstrated and the performance was characterized using a gas gun to launch representative impactors into heat shield targets with push plates. The tests were conducted using targets equipped with Fiberform(R) and PICA as the heat shield ablator material layer. The PICA penetration event times were estimated to be under 30 ms from the start of motor ignition. The mass of the system (not including motors) was estimated to be less than 2.3 kg (5 lbs) per motor. The configuration and demonstrations are discussed.
Army Science and Technology Master Plan, Fiscal Year 1997 - Volume 2.
1996-12-01
areas. Microbiology, physiology, and pharmacology are essential sciences in the production of fermented and processed foods (bread, yogurt , beer, wine...engineering) are of significant interest to the U.S. Army, and include production of the material (including cell culture and fermentation ), downstream...remains strong in targeted delivery (associated with MOD laboratories). Hungary has an established capability in production of fermenters . Remediation
Direct current sputtering of boron from boron/boron mixtures
Timberlake, J.R.; Manos, D.; Nartowitz, E.
1994-12-13
A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2016-12-01
Experiments have been done at the CERN HiRadMat (High Radiation to Materials) facility in which large cylindrical copper targets were irradiated with 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). The primary purpose of these experiments was to confirm the existence of hydrodynamic tunneling of ultra-relativistic protons and their hadronic shower in solid materials, that was predicted by previous numerical simulations. The experimental measurements have shown very good agreement with the simulation results. This provides confidence in our simulations of the interaction of the 7 TeV LHC (Large Hadron Collider) protons and the 50 TeV Future Circular Collider (FCC) protons with solid materials, respectively. This work is important from the machine protection point of view. The numerical simulations have also shown that in the HiRadMat experiments, a significant part of thetarget material is be converted into different phases of High Energy Density (HED) matter, including two-phase solid-liquid mixture, expanded as well as compressed hot liquid phases, two-phase liquid-gas mixture and gaseous state. The HiRadMat facility is therefore a unique ion beam facility worldwide that is currently available for studying the thermophysical properties of HED matter. In the present paper we discuss the numerical simulation results and present a comparison with the experimental measurements.
NASA Astrophysics Data System (ADS)
Fiedorowicz, H.; Bartnik, A.; Wachulak, P. W.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Ahad, I. U.; Fok, T.; Szczurek, A.; Wȩgrzyński, Ł.
In the paper we present new applications of laser plasma sources of soft X-rays and extreme ultraviolet (EUV) in various areas of plasma physics, nanotechnology and biomedical engineering. The sources are based on a gas puff target irradiated with nanosecond laser pulses from commercial Nd: YAG lasers, generating pulses with time duration from 1 to 10 ns and energies from 0.5 to 10 J at a 10 Hz repetition rate. The targets are produced with the use of a double valve system equipped with a special nozzle to form a double-stream gas puff target which allows for high conversion efficiency of laser energy into soft X-rays and EUV without degradation of the nozzle. The sources are equipped with various optical systems to collect soft X-ray and EUV radiation and form the radiation beam. New applications of these sources in imaging, including EUV tomography and soft X-ray microscopy, processing of materials and photoionization studies are presented.
Huang, Xiaojia; Lin, Jianbin; Yuan, Dongxing; Hu, Rongzong
2009-04-17
In this study, a simple and rapid method was developed for the determination of seven steroid hormones in wastewater. Sample preparation and analysis were performed by stir bar sorptive extraction (SBSE) based on poly(vinylpyridine-ethylene dimethacrylate) monolithic material (SBSEM) combined with high-performance liquid chromatography with diode array detection. To achieve the optimum extraction performance, several main parameters, including extraction and desorption time, pH value and contents of inorganic salt in the sample matrix, were investigated. Under the optimized experimental conditions, the method showed good linearity and repeatability, as well as advantages such as sensitivity, simplicity, low cost and high feasibility. The extraction performance of SBSEM to the target compounds also compared with commercial SBSE which used polydimethylsiloxane as coating. Finally, the proposed method was successfully applied to the determination of the target compounds in wastewater samples. The recoveries of spiked target compounds in real samples ranged from 48.2% to 110%.
Millimeter wave radars raise weapon IQ
NASA Astrophysics Data System (ADS)
Lerner, E. J.
1985-02-01
The problems encountered by laser and IR homing devices for guided munitions may be tractable with warhead-mounted mm-wave radars. Operating at about 100 GHz and having several kilometers range, mm-wave radars see through darkness, fog, rain and smoke. The radar must be coupled with an analyzer that discerns moving and stationary targets and higher priority targets. The target lock-on can include shut-off of the transmitter and reception of naturally-generated mm-waves bouncing off the target when in the terminal phase of the flight. Monopulse transmitters have simplified the radar design, although mass production of finline small radar units has yet to be accomplished, particularly in combining GaAs, ferrites and other materials on one monolithic chip.
Morphology of meteoroid and space debris craters on LDEF metal targets
NASA Technical Reports Server (NTRS)
Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.
1994-01-01
We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.
Molecular Composition Analysis of Distant Targets
NASA Technical Reports Server (NTRS)
Hughes, Gary B.; Lubin, Philip
2017-01-01
This document is the Final Report for NASA Innovative Advanced Concepts (NIAC) Phase I Grant 15-NIAC16A-0145, titled Molecular Composition Analysis of Distant Targets. The research was focused on developing a system concept for probing the molecular composition of cold solar system targets, such as Asteroids, Comets, Planets and Moons from a distant vantage, for example from a spacecraft that is orbiting the target (Hughes et al., 2015). The orbiting spacecraft is equipped with a high-power laser, which is run by electricity from photovoltaic panels. The laser is directed at a spot on the target. Materials on the surface of the target are heated by the laser beam, and begin to melt and then evaporate, forming a plume of asteroid molecules in front of the heated spot. The heated spot glows, producing blackbody illumination that is visible from the spacecraft, via a path through the evaporated plume. As the blackbody radiation from the heated spot passes through the plume of evaporated material, molecules in the plume absorb radiation in a manner that is specific to the rotational and vibrational characteristics of the specific molecules. A spectrometer aboard the spacecraft is used to observe absorption lines in the blackbody signal. The pattern of absorption can be used to estimate the molecular composition of materials in the plume, which originated on the target. Focusing on a single spot produces a borehole, and shallow subsurface profiling of the targets bulk composition is possible. At the beginning of the Phase I research, the estimated Technology Readiness Level (TRL) of the system was TRL-1. During the Phase I research, an end-to-end theoretical model of the sensor system was developed from first principles. The model includes laser energy and optical propagation, target heating, melting and evaporation of target material, plume density, thermal radiation from the heated spot, molecular cross section of likely asteroid materials, and estimation of the absorption profile at a distant spectrometer. Results obtained by executing simulations based on the model provide compelling evidence that the concept of remote laser evaporative molecular absorption spectroscopy is feasible. In this document, technical details of the model are presented, and results of simulations are described that indicate the utility of the proposed sensor system. Additionally, an asteroid rendezvous mission is analyzed, with a survey of system requirements to accomplish molecular composition analysis of the asteroid. Based on positive theoretical results obtained during Phase I, the estimated TRL of the system is now TRL-2. This document also describes potential future research and experimentation that could push the system to TRL-4 within 2 years. Steps required for construction of a laboratory prototype are described. An experiment to test predictions of the theory is described, based on the laboratory prototype setup.
Advances in Materials for Recent Low-Profile Implantable Bioelectronics.
Chen, Yanfei; Kim, Yun-Soung; Tillman, Bryan W; Yeo, Woon-Hong; Chun, Youngjae
2018-03-29
The rapid development of micro/nanofabrication technologies to engineer a variety of materials has enabled new types of bioelectronics for health monitoring and disease diagnostics. In this review, we summarize widely used electronic materials in recent low-profile implantable systems, including traditional metals and semiconductors, soft polymers, biodegradable metals, and organic materials. Silicon-based compounds have represented the traditional materials in medical devices, due to the fully established fabrication processes. Examples include miniaturized sensors for monitoring intraocular pressure and blood pressure, which are designed in an ultra-thin diaphragm to react with the applied pressure. These sensors are integrated into rigid circuits and multiple modules; this brings challenges regarding the fundamental material's property mismatch with the targeted human tissues, which are intrinsically soft. Therefore, many polymeric materials have been investigated for hybrid integration with well-characterized functional materials such as silicon membranes and metal interconnects, which enable soft implantable bioelectronics. The most recent trend in implantable systems uses transient materials that naturally dissolve in body fluid after a programmed lifetime. Such biodegradable metallic materials are advantageous in the design of electronics due to their proven electrical properties. Collectively, this review delivers the development history of materials in implantable devices, while introducing new bioelectronics based on bioresorbable materials with multiple functionalities.
Temperature Controller System for Gas Gun Targets
NASA Astrophysics Data System (ADS)
Bucholtz, S. M.; Gehr, R. J.; Rupp, T. D.; Sheffield, S. A.; Robbins, D. L.
2006-07-01
A temperature controller system capable of heating and cooling gas gun targets over the range -75°C to +120°C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge membrane with integrated thermocouples was developed to measure the internal temperature of the target. Using this system, multiple magnetic gauge shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful heating and cooling tests were completed on Teflon samples.
Emergence and Utility of Nonspherical Particles in Biomedicine
Fish, Margaret B.; Thompson, Alex J.; Fromen, Catherine A.; Eniola-Adefeso, Omolola
2016-01-01
The importance of the size of targeted, spherical drug carriers has been previously explored and reviewed. Particle shape has emerged as an equally important parameter in determining the in vivo journey and efficiency of drug carrier systems. Researchers have invented techniques to better control the geometry of particles of many different materials, which have allowed for exploration of the role of particle geometry in the phases of drug delivery. The important biological processes include clearance by the immune system, trafficking to the target tissue, margination to the endothelial surface, interaction with the target cell, and controlled release of a payload. The review of current literature herein supports that particle shape can be altered to improve a system’s targeting efficiency. Non-spherical particles can harness the potential of targeted drug carriers by enhancing targeted site accumulation while simultaneously decreasing side effects and mitigating some limitations faced by spherical carriers. PMID:27182109
Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization
Barnard, John J.; Schenkel, Thomas
2017-11-15
Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g.,more » hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.« less
Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization
NASA Astrophysics Data System (ADS)
Barnard, John J.; Schenkel, Thomas
2017-11-01
Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. The model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.
Fernández Cerdeño, Araceli; Martínez-Donate, Ana P; Zellner, Jennifer A; Sañudo, Fernando; Carrillo, Héctor; Engelberg, Moshe; Sipan, Carol; Hovell, Melbourne
2012-01-01
This article describes the development process of Hombres Sanos, a social marketing campaign to promote HIV testing and condom use for heterosexually identified Latino men who have sex with men and women. The steps included qualitative formative research and a social marketing analytic framework to understand our target audience better, identify incentives and barriers to risk reduction, guide product development, define an optimal promotional campaign, and inform the selection of campaign platforms. A better grasp of the authors' target beneficiaries' needs and values led to an innovative dual strategy for audience segmentation and targeting. The campaign had consumer-centered, culturally sensitive, and theory-driven communication materials. The authors found communication materials and events to be appealing and effective. The campaign was well received among the wider community, and evaluation showed promising results among Latino men in general and among heterosexually identified Latino men who have sex with men and women in particular. The authors provide a step-by-step overview of the project's formative research, including research methods and findings, and how these were translated into a social marketing campaign. In addition, the authors discuss the challenges encountered in this process and the potential of social marketing to reduce HIV risk among Latinos.
NASA Technical Reports Server (NTRS)
Blum, Joel D.; Papanastassiou, D. A.; Wasserburg, G. J.; Koeberl, C.
1992-01-01
The Nd and Sr isotopic compositions of Australasian tectites (including two flanged Australian tectites, two low-SiO2 Muong Nong-type tectites, and three high-SiO2 Muong Nong-type tectites) and the Nd, Sm, Sr, and Rb concentrations were investigated by isotope-dilution thermal ionization mass spectrometry, and the Sm-Nd and Rb-Sr isotope systematics were used to study the characteristics of the parental material. It is shown that the Nd and Sr isotopic data provide evidence that all Australasian tektites were derived from a single sedimentary formation with a narrow range of stratigraphic ages close to 170 Ma. It is suggested that all of the Australasian tektites were derived from a single impact event and that the australites represent the upper part of a melt sheet ejected at high velocity, whereas the indochinites represent melts formed at a lower level in the target material distributed closer to the area of the impact.
High temperature surface effects of He + implantation in ICF fusion first wall materials
NASA Astrophysics Data System (ADS)
Zenobia, Samuel J.; Radel, R. F.; Cipiti, B. B.; Kulcinski, Gerald L.
2009-06-01
The first wall armor of the inertial confinement fusion reactor chambers must withstand high temperatures and significant radiation damage from target debris and neutrons. The resilience of multiple materials to one component of the target debris has been investigated using energetic (20-40 keV) helium ions generated in the inertial electrostatic confinement device at the University of Wisconsin. The materials studied include: single-crystalline, and polycrystalline tungsten, tungsten-coated tantalum-carbide 'foams', tungsten-rhenium alloy, silicon carbide, carbon-carbon velvet, and tungsten-coated carbon-carbon velvet. Steady-state irradiation temperatures ranged from 750 to 1250 °C with helium fluences between 5 × 10 17 and 1 × 10 20 He +/cm 2. The crystalline, rhenium alloyed, carbide foam, and powder metallurgical tungsten specimens each experienced extensive pore formation after He + irradiation. Flaking and pore formation occurred on silicon carbide samples. Individual fibers of carbon-carbon velvet specimens sustained erosion and corrugation, in addition to the roughening and rupturing of tungsten coatings after helium ion implantation.
Authentic Text Types and Corresponding Activities: A List for the Foreign Language Instructor.
ERIC Educational Resources Information Center
Geltrich-Ludgate, Brigitta; Tovar, Deanna
1987-01-01
The study of authentic texts gives students the opportunity to become functional in target-language situations. An exhaustive alphabetical list of authentic text types and corresponding learning activities are presented. Text types include: advertisements, bank materials, bills and receipts, calendars, captions, comics, commercials, decals, forms,…
Advances in Materials for Recent Low-Profile Implantable Bioelectronics
Kim, Yun-Soung; Tillman, Bryan W.; Chun, Youngjae
2018-01-01
The rapid development of micro/nanofabrication technologies to engineer a variety of materials has enabled new types of bioelectronics for health monitoring and disease diagnostics. In this review, we summarize widely used electronic materials in recent low-profile implantable systems, including traditional metals and semiconductors, soft polymers, biodegradable metals, and organic materials. Silicon-based compounds have represented the traditional materials in medical devices, due to the fully established fabrication processes. Examples include miniaturized sensors for monitoring intraocular pressure and blood pressure, which are designed in an ultra-thin diaphragm to react with the applied pressure. These sensors are integrated into rigid circuits and multiple modules; this brings challenges regarding the fundamental material’s property mismatch with the targeted human tissues, which are intrinsically soft. Therefore, many polymeric materials have been investigated for hybrid integration with well-characterized functional materials such as silicon membranes and metal interconnects, which enable soft implantable bioelectronics. The most recent trend in implantable systems uses transient materials that naturally dissolve in body fluid after a programmed lifetime. Such biodegradable metallic materials are advantageous in the design of electronics due to their proven electrical properties. Collectively, this review delivers the development history of materials in implantable devices, while introducing new bioelectronics based on bioresorbable materials with multiple functionalities. PMID:29596359
1L Mark-IV Target Design Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, Paul E.
This presentation includes General Design Considerations; Current (Mark-III) Lower Tier; Mark-III Upper Tier; Performance Metrics; General Improvements for Material Science; General Improvements for Nuclear Science; Improving FOM for Nuclear Science; General Design Considerations Summary; Design Optimization Studies; Expected Mark-IV Performance: Material Science; Expected Mark-IV Performance: Nuclear Science (Disk); Mark IV Enables Much Wider Range of Nuclear-Science FOM Gains than Mark III; Mark-IV Performance Summary; Rod or Disk? Center or Real FOV?; and Project Cost and Schedule.
Cluster Beam Deposition of High Temperature Materials
1991-01-01
include Secur y Classifocation) CLUSTER BEAM DEPOSITION OF HIGH TEMPERATURE MATERIALS 12 . PERSONAL AUTHOR(S) William J. Herron and James F. Garvey 13a TYPE... industria - applications (su:erconducting thin films, diamond-liKe !arbn,. films, patterned or multi-layered thin films, etc...) INT RODIU C’I 1 Recently there...Tne path of the expanc~ nr gas pulse passes perpendicularly (left to right in tne figure) over the surface of the target rod. I I Laser Beam-I I I Lens
Almeida-Warren, Katarina; Sommer, Volker; Piel, Alex K; Pascual-Garrido, Alejandra
2017-10-01
Chimpanzee termite fishing has been studied for decades, yet the selective processes preceding the manufacture of fishing tools remain largely unexplored. We investigate raw material selection and potential evidence of forward planning in the chimpanzees of Issa valley, western Tanzania. Using traditional archaeological methods, we surveyed the location of plants from where chimpanzees sourced raw material to manufacture termite fishing tools, relative to targeted mounds. We measured raw material abundance to test for availability and selection. Statistics included Chi-Squared, two-tailed Wilcoxon, and Kruskall-Wallace tests. Issa chimpanzees manufactured extraction tools only from bark, despite availability of other suitable materials (e.g., twigs), and selected particular plant species as raw material sources, which they often also exploit for food. Most plants were sourced 1-16 m away from the mound, with a maximum of 33 m. The line of sight from the targeted mound was obscured for a quarter of these plants. The exclusive use of bark tools despite availability of other suitable materials indicates a possible cultural preference. The fact that Issa chimpanzees select specific plant species and travel some distance to source them suggests some degree of selectivity and, potentially, forward planning. Our results have implications for the reconstruction of early hominin behaviors, particularly with regard to the use of perishable tools, which remain archaeologically invisible. © 2017 Wiley Periodicals, Inc.
Dodson, Jennifer L; Hsiao, Ya-Chun; Kasat-Shors, Madhuri; Murray, Laura; Nguyen, Nga Kim; Richards, Adam K; Gittelsohn, Joel
2009-01-01
To understand influences on diet among low-income African-American adolescents in East Baltimore. Formative research was conducted for a food store-centered healthy diet intervention targeted to inner-city youth. Family, school and neighborhood influences on eating habits and health concepts were explored. Family structure, economic resources and past experiences influence what food means to adolescents. Healthy food in school and local stores is limited. Terminology to categorize foods was identified, including the term "home foods". Suggested adolescent nutritional interventions include promotion of home-based eating, improving availability of healthy foods in school and neighborhood stores, and targeted educational materials.
Goodman, Ronald K.; Hunt, Angus L.
1984-01-01
Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.
Modeling and validation of spectral BRDF on material surface of space target
NASA Astrophysics Data System (ADS)
Hou, Qingyu; Zhi, Xiyang; Zhang, Huili; Zhang, Wei
2014-11-01
The modeling and the validation methods of the spectral BRDF on the material surface of space target were presented. First, the microscopic characteristics of the space targets' material surface were analyzed based on fiber-optic spectrometer using to measure the direction reflectivity of the typical materials surface. To determine the material surface of space target is isotropic, atomic force microscopy was used to measure the material surface structure of space target and obtain Gaussian distribution model of microscopic surface element height. Then, the spectral BRDF model based on that the characteristics of the material surface were isotropic and the surface micro-facet with the Gaussian distribution which we obtained was constructed. The model characterizes smooth and rough surface well for describing the material surface of the space target appropriately. Finally, a spectral BRDF measurement platform in a laboratory was set up, which contains tungsten halogen lamp lighting system, fiber optic spectrometer detection system and measuring mechanical systems with controlling the entire experimental measurement and collecting measurement data by computers automatically. Yellow thermal control material and solar cell were measured with the spectral BRDF, which showed the relationship between the reflection angle and BRDF values at three wavelengths in 380nm, 550nm, 780nm, and the difference between theoretical model values and the measured data was evaluated by relative RMS error. Data analysis shows that the relative RMS error is less than 6%, which verified the correctness of the spectral BRDF model.
Shock-isolation material selection for electronic packages in hard-target environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stotts, Jarrett Eugene
High velocity munitions and kinetic penetrators experience monumental external forces, impulses, and accelerations. The hard target environment is immensely taxing on sophisticated electronic components and recorders designed to retrieve valuable data related to the systems performance and characteristics in the periods of flight, impact, and post-impact. Such electronic systems have upper limits of overall shock intensity which, if exceeded, will either shorten the operating life of the parts or risk destruction resulting in loss of both the data and the principal value of the recorder. The focus of this project was to refine the categorization of leading material types formore » encapsulation and passive shock isolation and implement them in a method useable for a wide variety of environments. Namely, a design methodology capable of being tailored to the specific impact conditions to maximize the lively hood of sensitive electronics and the information recorded. The results of the study concluded that the materials observed under consistent dynamic high strain rate tests, which include Conathane® EN-4/9, Slygard®-184, and Stycast™-2651, behaved well in certain aspects of energy transmission and shock when considering the frequency environment or package coupled with the isolation material’s application. Key points about the implementation of the materials in extreme shock environments is discussed with the connection to energy analysis, loss attributes, and pulse transmissibility modeling. However, attempts to model the materials solely based on energy transmissibility in the frequency domain using only external experimental data and simplified boundary conditions was not found to be consistent with that acquired from the pressure bar experiments. Further work will include the addition of further material experimentation of the encapsulants in other frequency and temperature states, confined and pre-load boundary states, and composite constructions.« less
Developing Culturally Targeted Diabetes Educational Materials for Older Russian-Speaking Immigrants.
Van Son, Catherine R
2014-07-01
Older adults who immigrate late in life face many challenges adapting to a new country. Immigrants bring their cultural beliefs and behaviors with them, which can influence their ability to make dietary changes required when they have type 2 diabetes. Culturally targeted patient education materials are needed to improve immigrants' health literacy and abilities to self-manage diabetes. Currently, there is a scarcity of diabetes patient education materials to meet the educational needs of the Russian-speaking immigrant group. The purpose of this article is to describe a project in which culturally targeted diabetes education materials for older Russian-speaking immigrants were designed and developed. Culturally targeted patient education materials are essential if they are to be accepted and used by clients from different ethnic minority populations. The creation of culturally relevant materials requires a team effort and community stakeholder input. The availability of materials on the internet facilitates access and use by health care providers. Culturally targeted education materials are an important component in addressing health literacy in ethnic minority populations. Next steps require that these materials be evaluated to test their impact on diabetes self-management behaviors and clinical outcomes such as adherence, amount of physical activity, and blood glucose levels. © 2014 The Author(s).
Nanotube Activities at NASA-Johnson Space Center
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram
2004-01-01
Nanotube activities at NASA-Johnson Space Center include production, purification, characterization as well as applications of single wall carbon nanotubes (SWCNTs). A parametric study of the pulsed laser ablation process is recently completed to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Enhancement of production is achieved by rastering the graphite target and by increasing the target surface temperature with a cw laser. In-situ diagnostics during production included time resolved passive emission and laser induced fluorescence from the plume. The improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymer/nanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large Surface area as well as high electrical and thermal conductivity exhibited by SWCNTs. Comparison with existing technologies and possible future improvements in the SWCNT materials sill be presented.
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi
2011-01-01
An important requirement of therapeutics for extended duration exploration missions beyond low Earth orbit will be the development of pharmaceutical technologies suitable for sustained and preventive health care in remote and adverse environmental conditions. Availability of sustained, stable and targeted delivery pharmaceuticals for preventive health of major organ systems including gastrointestinal, hepato-renal, musculo-skeletal and immune function are essential to offset adverse effects of space environment beyond low Earth orbit. Specifically, medical needs may include multi-drug combinations for hormone replacement, radiation protection, immune enhancement and organ function restoration. Additionally, extended stability of pharmaceuticals dispensed in space must be also considered in future drug development. Emerging technologies that can deliver stable and multi-therapy pharmaceutical preparations and delivery systems include nanotechnology based drug delivery platforms, targeted-delivery systems in non-oral and non-parenteral formulation matrices. Synthetic nanomaterials designed with molecular precision offer defined structures, electronics, and chemistries to be efficient drug carriers with clear advantages over conventional materials of drug delivery matricies. Nano-carrier materials like the bottle brush polymers may be suitable for systemic delivery of drug cocktails while Superparamagnetic Iron Oxide Nanoparticles or (SPIONS) have great potential to serve as carriers for targeted drug delivery to a specific site. These and other emerging concepts of drug delivery and extended shelf-life technologies will be reviewed in light of their application to address health-care challenges of exploration missions. Innovations in alternate treatments for sustained immune enhancement and infection control will be also discussed.
The "Let's Get Alarmed!" initiative: a smoke alarm giveaway programme.
DiGuiseppi, C; Slater, S; Roberts, I; Adams, L; Sculpher, M; Wade, A; McCarthy, M
1999-09-01
To reduce fires and fire related injuries by increasing the prevalence of functioning smoke alarms in high risk households. The programme was delivered in an inner London area with above average material deprivation and below average smoke alarm ownership. The target population included low income and rental households and households with elderly persons or young children. Forty wards, averaging 4000 households each, were randomised to intervention or control status. Free smoke alarms and fire safety information were distributed in intervention wards by community groups and workers as part of routine activities and by paid workers who visited target neighbourhoods. Recipients provided data on household age distribution and housing tenure. Programme costs were documented from a societal perspective. Data are being collected on smoke alarm ownership and function, and on fires and related injuries and their costs. Community and paid workers distributed 20,050 smoke alarms, potentially sufficient to increase smoke alarm ownership by 50% in intervention wards. Compared with the total study population, recipients included greater proportions of low income and rental households and households including children under 5 years or adults aged 65 and older. Total programme costs were 145,087 Pounds. It is possible to implement a large scale smoke alarm giveaway programme targeted to high risk households in a densely populated, multicultural, materially deprived community. The programme's effects on the prevalence of installed and functioning alarms and the incidence of fires and fire related injuries, and its cost effectiveness, are being evaluated as a randomized controlled trial.
Improving Health Education for Women Who Carry an FMR1 Premutation.
Espinel, Whitney; Charen, Krista; Huddleston, Lillie; Visootsak, Jeannie; Sherman, Stephanie
2016-04-01
Women who carry an FMR1 (i.e., fragile X) premutation have specific health risks over their lifetime. However, little is known about their experience understanding these risks and navigating their health needs. The aim of this study was to use qualitative analysis to uncover both barriers and facilitators to personal healthcare using a framework of the Health Belief Model. Five focus groups were conducted with a total of 20 women who carry the FMR1 premutation using a semi-structured discussion guide. All sessions were transcribed verbatim and independently coded by two researchers. The coders used a deductive - inductive approach to determine the prominent themes related to the participants' experiences seeking healthcare for premutation-related conditions. Salient barriers to personal healthcare included difficult clinical translation of research findings, lack of knowledge among healthcare providers and among the women themselves, different priorities, and shortage of premutation-specific support and targeted educational materials. Facilitators included family members, national and community support organizations, research studies, compassionate physicians, and other premutation carriers. Addressing barriers to personal healthcare through up-to-date educational materials can help diminish misperceptions regarding health risks. Targeted educational materials will aid in information sharing and awareness for women who carry the FMR1 premutation and their physicians.
Clinically advancing and promising polymer-based therapeutics.
Souery, Whitney N; Bishop, Corey J
2018-02-01
In this review article, we will examine the history of polymers and their evolution from provisional World War II materials to medical therapeutics. To provide a comprehensive look at the current state of polymer-based therapeutics, we will classify technologies according to targeted areas of interest, including central nervous system-based and intraocular-, gastrointestinal-, cardiovascular-, dermal-, reproductive-, skeletal-, and neoplastic-based systems. Within each of these areas, we will consider several examples of novel, clinically available polymer-based therapeutics; in addition, this review will also include a discussion of developing therapies, ranging from the in vivo to clinical trial stage, for each targeted area of treatment. Finally, we will emphasize areas of patient care in need of more effective, accessible, and targeted treatment approaches where polymer-based therapeutics may offer potential solutions. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Method for forming electrically charged laser targets
Goodman, Ronald K.; Hunt, Angus L.
1979-01-01
Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.
Gas Sensor Evaluations in Polymer Combustion Product Atmospheres
NASA Technical Reports Server (NTRS)
Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.
1999-01-01
Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzanyan, A S; Kuzanyan, A A; Petrosyan, V A
The factors determining the efficiency of the target material utilisation for pulsed laser deposition of films are considered. The target volume is calculated, which is evaporated in the ablation process by the focused laser radiation having a rectangular form. The new device is suggested and developed for obtaining thin films by the method of laser deposition, which is specific in the employment of a simple optical system mounted outside a deposition chamber that comprises two lenses and the diaphragm and focuses the laser beam onto a target in the form of a sector-like spot. Thin films of CuO and YBaCuOmore » were deposited with this device. Several deposition cycles revealed that the target material is consumed uniformly from the entire surface of the target. A maximal spread of the target thickness was not greater than ±2% both prior to deposition and after it. The device designed provides a high coefficient of the target material utilisation efficiency. (laser deposition of thin films)« less
A target development program for beamhole spallation neutron sources in the megawatt range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, G.S.; Atchison, F.
1995-10-01
Spallation sources as an alternative to fission neutron sources have been operating successfully up to 160 kW of beam power. With the next generation of these facilities aiming at the medium power range between 0.5 and 5 MW, loads on the targets will be high enough to make present experience of little relevance. With the 0.6 MW continuous facility SINQ under construction, and a 5 MW pulsed facility (ESS) under study in Europe, a research and development program is about to be started which aimes at assessing the limits of stationary and moving solid targets and the feasibility and potentialmore » benefits of flowing liquid metal targets. Apart from theoretical work and examination of existing irradiated material, including used targets from ISIS, it is intended to take advantage of the SINQ solid rod target design to improve the relevant data base by building the target in such a way that individual rods can be equipped as irradiation capsules.« less
Targets used in the production of radioactive ion beams at the HRIBF
NASA Astrophysics Data System (ADS)
Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.
2004-03-01
Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.
Monte Carlo simulation study of positron generation in ultra-intense laser-solid interactions
NASA Astrophysics Data System (ADS)
Yan, Yonghong; Wu, Yuchi; Zhao, Zongqing; Teng, Jian; Yu, Jinqing; Liu, Dongxiao; Dong, Kegong; Wei, Lai; Fan, Wei; Cao, Leifeng; Yao, Zeen; Gu, Yuqiu
2012-02-01
The Monte Carlo transport code Geant4 has been used to study positron production in the transport of laser-produced hot electrons in solid targets. The dependence of the positron yield on target parameters and the hot-electron temperature has been investigated in thick targets (mm-scale), where only the Bethe-Heitler process is considered. The results show that Au is the best target material, and an optimal target thickness exists for generating abundant positrons at a given hot-electron temperature. The positron angular distributions and energy spectra for different hot electron temperatures were studied without considering the sheath field on the back of the target. The effect of the target rear sheath field for positron acceleration was studied by numerical simulation while including an electrostatic field in the Monte Carlo model. It shows that the positron energy can be enhanced and quasi-monoenergetic positrons are observed owing to the effect of the sheath field.
Review—Ultra-Wide-Bandgap AlGaN Power Electronic Devices
Kaplar, R. J.; Allerman, A. A.; Armstrong, A. M.; ...
2016-12-20
“Ultra” wide-bandgap semiconductors are an emerging class of materials with bandgaps greater than that of gallium nitride (EG > 3.4 eV) that may ultimately benefit a wide range of applications, including switching power conversion, pulsed power, RF electronics, UV optoelectronics, and quantum information. This paper describes the progress made to date at Sandia National Laboratories to develop one of these materials, aluminum gallium nitride, targeted toward high-power devices. The advantageous material properties of AlGaN are reviewed, questions concerning epitaxial growth and defect physics are covered, and the processing and performance of vertical- and lateral-geometry devices are described. The paper concludesmore » with an assessment of the outlook for AlGaN, including outstanding research opportunities and a brief discussion of other potential applications.« less
Study of low energy neutron beam formation based on GEANT4 simulations
NASA Astrophysics Data System (ADS)
Avagyan, R.; Avetisyan, R.; Ivanyan, V.; Kerobyan, I.
2017-07-01
The possibility of obtaining thermal/epithermal energy neutron beams using external protons from cyclotron C18/18 is studied based on GEANT4 simulations. This study will be the basis of the Beam Shaped Assembly (BSA) development for future Boron Neutron Capture Therapy (BNCT). Proton induced reactions on 9Be target are considered as a neutron source, and dependence of neutron yield on target thickness is investigated. The problem of reducing the ratio of gamma to neutron yields by inserting a lead sheet after the beryllium target is studied as well. By GEANT4 modeling the optimal thicknesses of 9Be target and lead absorber are determined and the design characteristics of beam shaping assembly, including the materials and thicknesses of reflector and moderator are considered.
Light source employing laser-produced plasma
Tao, Yezheng; Tillack, Mark S
2013-09-17
A system and a method of generating radiation and/or particle emissions are disclosed. In at least some embodiments, the system includes at least one laser source that generates a first pulse and a second pulse in temporal succession, and a target, where the target (or at least a portion the target) becomes a plasma upon being exposed to the first pulse. The plasma expand after the exposure to the first pulse, the expanded plasma is then exposed to the second pulse, and at least one of a radiation emission and a particle emission occurs after the exposure to the second pulse. In at least some embodiments, the target is a solid piece of material, and/or a time period between the first and second pulses is less than 1 microsecond (e.g., 840 ns).
Polymeric nanoparticles for targeted drug delivery system for cancer therapy.
Masood, Farha
2016-03-01
A targeted delivery system based on the polymeric nanoparticles as a drug carrier represents a marvelous avenue for cancer therapy. The pivotal characteristics of this system include biodegradability, biocompatibility, non-toxicity, prolonged circulation and a wide payload spectrum of a therapeutic agent. Other outstanding features are their distinctive size and shape properties for tissue penetration via an active and passive targeting, specific cellular/subcellular trafficking pathways and facile control of cargo release by sophisticated material engineering. In this review, the current implications of encapsulation of anticancer agents within polyhydroxyalkanoates, poly-(lactic-co-glycolic acid) and cyclodextrin based nanoparticles to precisely target the tumor site, i.e., cell, tissue and organ are highlighted. Furthermore, the promising perspectives in this emerging field are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Asteroid collisions: Target size effects and resultant velocity distributions
NASA Technical Reports Server (NTRS)
Ryan, Eileen V.
1993-01-01
To study the dynamic fragmentation of rock to simulate asteroid collisions, we use a 2-D, continuum damage numerical hydrocode which models two-body impacts. This hydrocode monitors stress wave propagation and interaction within the target body, and includes a physical model for the formation and growth of cracks in rock. With this algorithm we have successfully reproduced fragment size distributions and mean ejecta speeds from laboratory impact experiments using basalt, and weak and strong mortar as target materials. Using the hydrocode, we have determined that the energy needed to fracture a body has a much stronger dependence on target size than predicted from most scaling theories. In addition, velocity distributions obtained indicate that mean ejecta speeds resulting from large-body collisions do not exceed escape velocities.
Falabella, S.; Sanders, D.M.
1994-01-18
A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.
Falabella, Steven; Sanders, David M.
1994-01-01
A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.
Production of high specific activity silicon-32
Phillips, Dennis R.; Brzezinski, Mark A.
1994-01-01
A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
High specific activity silicon-32
Phillips, Dennis R.; Brzezinski, Mark A.
1996-01-01
A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
High specific activity silicon-32
Phillips, D.R.; Brzezinski, M.A.
1996-06-11
A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.
[Status of traditional Chinese medicine materials seed and seedling breeding bases].
Li, Ying; Huang, Lu-Qi; Zhang, Xiao-Bo; Wang, Hui; Cheng, Meng; Zhang, Tian; Yang, Guang
2017-11-01
Seeds and seedlings are the material basis of traditional Chinese medicine materials production, and the construction of traditional Chinese medicine materials seed and seedling breeding bases is beneficial to the production of high-quality traditional Chinese medicine materials. The construction of traditional Chinese medicine materials seed and seedling breeding bases is one of the major topics of Chinese medica resources census pilot. Targets, tasks of traditional Chinese medicine materials seed and seedling breeding bases based on Chinese medica resources census pilot were expounded.Construction progress including hardware construction, germplasm conservation and breeding, procedures and standardsestablishment, social servicesare presented. Development counter measures were proposed for the next step: perfect the standard and system, maintain and strengthen the breeding function, strengthen the cultivation of multi-level talents, explore market development model, joint efforts to deepen services and development. Copyright© by the Chinese Pharmaceutical Association.
Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao
2017-09-27
Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.
NASA Astrophysics Data System (ADS)
Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.
2018-05-01
A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.
Experimental studies of the effect target geometry on the evolution of laser produced plasma plumes
NASA Astrophysics Data System (ADS)
Beatty, Cuyler; Anderson, Austin; Iratcabal, Jeremy; Dutra, Eric; Covington, Aaron
2016-10-01
The expansion of the laser plumes was shown to be dependent on the initial target geometry. A 16 channel framing camera was used to record the plume shape and propagation speeds were determined from analysis of the images. Plastic targets were manufactured using different methods including 3D printing, CNC machining and vacuum casting. Preliminary target designs were made using a 3D printer and ABS plastic material. These targets were then tested using a 3 J laser with a 5 ns duration pulse. Targets with a deep conical depression were shown to produce highly collimated plumes when compared to flat top targets. Preliminary results of these experiments will be discussed along with planned future experiments that will use the indented targets with a 30 J laser with a 0.8 ns duration pulse in preparation for pinched laser plume experiments at the Nevada Terawatt Facility. Other polymers that are readily available in a deuterated form will also be explored as part of an effort to develop a cost effective plasma plume target for follow on neutron production experiments. Dr. Austin Anderson.
NASA Astrophysics Data System (ADS)
De Temmerman, G.; Hirai, T.; Pitts, R. A.
2018-04-01
The tungsten (W) material in the high heat flux regions of the ITER divertor will be exposed to high fluxes of low-energy particles (e.g. H, D, T, He, Ne and/or N). Combined with long-pulse operations, this implies fluences well in excess of the highest values reached in today’s tokamak experiments. Shaping of the individual monoblock top surface and tilting of the vertical targets for leading-edge protection lead to an increased surface heat flux, and thus increased surface temperature and a reduced margin to remain below the temperature at which recrystallization and grain growth begin. Significant morphology changes are known to occur on W after exposure to high fluences of low-energy particles, be it H or He. An analysis of the formation conditions of these morphology changes is made in relation to the conditions expected at the vertical targets during different phases of operations. It is concluded that both H and He-related effects can occur in ITER. In particular, the case of He-induced nanostructure (also known as ‘fuzz’) is reviewed. Fuzz formation appears possible over a limited region of the outer vertical target, the inner target being generally a net Be deposition area. A simple analysis of the fuzz growth rate including the effect of edge-localized modes (ELMs) and the reduced thermal conductivity of fuzz shows that the fuzz thickness is likely to be limited by the occurrence of annealing during ELM-induced thermal excursions. Not only the morphology, but the material mechanical and thermal properties can be modified by plasma exposure. A review of the existing literature is made, but the existing data are insufficient to conclude quantitatively on the importance and extent of these effects for ITER. As a consequence of the high surface temperatures in ITER, W recrystallization is an important effect to consider, since it leads to a decrease in material strength. An approach is proposed here to develop an operational budget for the W material, i.e. the time the divertor material can be operated at a given temperature before a significant fraction of the material is recrystallized. In general, while it is clear that significant surface damage can occur during ITER operations, the tolerable level of damage in terms of plasma operations currently remains unknown.
Characteristics of W-26% Re Target Material(LCC-0103)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunwoo, A.
2003-10-07
The W-26 wt-% Re alloy was selected as a Stanford Linear Collider (SLC) target material for its exceptional physics properties and for the high strength and good ductility at the anticipated target operating temperatures, above the DBTT. After several years of operation, the target failed catastrophically. A detailed microstructural and mechanical characterization of the non-irradiated disk indicates that the material has been PM processed, nonuniformly mechanically worked and stress relieved. As a result, the ductility of the material varies through the thickness of the disk, making it difficult to determine the DBTT. The results of tensile and fatigue properties aremore » reported with the corresponding fractography of the fracture surfaces.« less
Characterization of Viscoelastic Materials for Low-Magnitude Blast Mitigation
NASA Astrophysics Data System (ADS)
Bartyczak, Susan; Mock, Willis
2013-06-01
Recent preliminary research indicates that exposure to low amplitude blast waves, such as from IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficiently protecting warfighters from this danger and the effects are debilitating, costly, and long-lasting. The objective of this research is to evaluate the blast mitigating behavior of current helmet materials and new materials designed for blast mitigation using a test fixture recently developed at the Naval Surface Warfare Center Dahlgren Division for use with an existing gas gun. A 40-mm-bore gas gun is used as a shock tube to generate blast waves (ranging from 5 to 30 psi) in a test fixture mounted at the gun muzzle. A fast opening valve is used to release helium gas from a breech which forms into a blast wave and impacts instrumented targets in the test fixture. Blast attenuation of selected materials is determined through the measurement of pressure and accelerometer data in front of and behind the target. Materials evaluated in this research include 6061-T6 aluminum, polyurea 1000, Styrofoam, and Sorbothane (durometer 50, shore 00). The experimental technique, calibration and checkout procedures, and results will be presented.
Li, Xinhua; Zhang, Da; Liu, Bob
2012-07-01
To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-μm Rh and 700-μm Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV, including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10(-5) for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of α, β, and γ in Archer equation were provided. The α values of kVp ≥ 40 were approximately consistent with those of NCRP Report No. 147. These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.
Martin, M.D.; Salsig, W.W. Jr.
1959-01-13
A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.
Very low pressure high power impulse triggered magnetron sputtering
Anders, Andre; Andersson, Joakim
2013-10-29
A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.
Allergy and Asthma. LC Science Tracer Bullet.
ERIC Educational Resources Information Center
Ezkovich, Jan, Comp.
This guide is intended for those who wish to review the literature in the related fields of allergy and asthma. Included is material appropriate for both the lay reader and the professional interested in recent research into causes and treatments. Not intended as a comprehensive bibliography, the guide is designed to specifically target resource…
ERIC Educational Resources Information Center
Saito, Kazuya; Trofimovich, Pavel; Isaacs, Talia
2017-01-01
The current study investigated linguistic influences on comprehensibility (ease of understanding) and accentedness (linguistic nativelikeness) in second language (L2) learners' extemporaneous speech. Target materials included picture narratives from 40 native French speakers of English from different proficiency levels. The narratives were…
Graphite sample preparation for AMS in a high pressure and temperature press
Rubin, M.; Mysen, B.O.; Polach, H.
1984-01-01
A high pressure-high temperature press is used to make target material for accelerator mass spectrometry. Graphite was produced from typical 14C samples including oxalic acid and carbonates. Beam strength of 12C was generally adequate, but random radioactive contamination by 14C made age measurements impractical. ?? 1984.
Graphite sample preparation for AMS in a high pressure and temperature press
Rubin, Meyer; Mysen, Bjorn O.; Polach, Henry
1984-01-01
A high pressure-temperature press is used to make target material for accelerator mass spectrometry. Graphite was produced from typical **1**4C samples including oxalic acid and carbonates. Beam strength of **1**2C was generally adequate, but random radioactive contamination by **1**4C made age measurements impractical.
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices
NASA Astrophysics Data System (ADS)
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-09-01
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-01-01
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body. PMID:27670953
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices.
Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie
2016-09-27
Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes' (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.
Sensor Compromise Detection in Multiple-Target Tracking Systems
Doucette, Emily A.; Curtis, Jess W.
2018-01-01
Tracking multiple targets using a single estimator is a problem that is commonly approached within a trusted framework. There are many weaknesses that an adversary can exploit if it gains control over the sensors. Because the number of targets that the estimator has to track is not known with anticipation, an adversary could cause a loss of information or a degradation in the tracking precision. Other concerns include the introduction of false targets, which would result in a waste of computational and material resources, depending on the application. In this work, we study the problem of detecting compromised or faulty sensors in a multiple-target tracker, starting with the single-sensor case and then considering the multiple-sensor scenario. We propose an algorithm to detect a variety of attacks in the multiple-sensor case, via the application of finite set statistics (FISST), one-class classifiers and hypothesis testing using nonparametric techniques. PMID:29466314
NASA Astrophysics Data System (ADS)
Zhang, X. C.; Lu, J.; Shi, S. Q.
2010-05-01
As a technique of grain refinement process by plastic deformation, surface mechanical attrition treatment (SMAT) has been developed to be one of the most effective ways to optimize the mechanical properties of various materials including pure metals and alloys. SMAT can significantly reduce grain size into nanometer regime in the surface layer of bulk materials, providing tremendous opportunities for improving physical, chemical and mechanical properties of the materials. In this work, a computational modeling of the surface mechanical attrition treatment (SMAT) process is presented, in which Johnson-Cook plasticity model and the finite element method were employed to study the high strain rate, elastic-plastic dynamic process of ball impact on a metallic target. AISI 304 steel with low stacking fault energy was chosen as the target material. First, a random impact model was used to analyze the statistic characteristics of ball impact, and then the plastic deformation behavior and residual stress distribution in AISI 304 stainless steel during SMAT were studied. The simulation results show that the compressive residual stress and vertical deformation of the surface structures were directly affected by ball impact frequency, incident impact angle and ball diameter used in SMAT process.
Protein-Based Drug-Delivery Materials.
Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao
2017-05-09
There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function-including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments-are summarized at the end of this review.
Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox).
Fortuna, Rafael; Vaz, Marco Aurélio; Youssef, Aliaa Rehan; Longino, David; Herzog, Walter
2011-01-04
Botulinum toxin type A (BTX-A) is a frequently used therapeutic tool to denervate muscles in the treatment of neuromuscular disorders. Although considered safe by the US Food and Drug Administration, BTX-A can produce adverse effects in target and non-target muscles. With an increased use of BTX-A for neuromuscular disorders, the effects of repeat injections of BTX-A on strength, muscle mass and structure need to be known. Therefore, the purpose of this study was to investigate the changes in strength, muscle mass and contractile material in New Zealand White (NZW) rabbits. Twenty NZW rabbits were divided into 4 groups: control and 1, 3 and 6 months of unilateral, repeat injections of BTX-A into the quadriceps femoris. Outcome measures included knee extensor torque, muscle mass and the percentage of contractile material in the quadriceps muscles of the target and non-injected contralateral hindlimbs. Strength in the injected muscles was reduced by 88%, 89% and 95% in the 1, 3 and 6 months BTX-A injected hindlimbs compared to controls. Muscle mass was reduced by 50%, 42% and 31% for the vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM), respectively, at 1 month, by 68%, 51% and 50% at 3 months and by 76%, 44% and 13% at 6 months. The percentage of contractile material was reduced for the 3 and 6 months animals to 80-64%, respectively, and was replaced primarily by fat. Similar, but less pronounced results were also observed for the quadriceps muscles of the contralateral hindlimbs, suggesting that repeat BTX-A injections cause muscle atrophy and loss of contractile tissue in target muscles and also in non-target muscles that are far removed from the injection site. Copyright © 2010 Elsevier Ltd. All rights reserved.
Remote liquid target loading system for LANL two-stage gas gun
NASA Astrophysics Data System (ADS)
Gibson, L. L.; Bartram, B.; Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.
2009-06-01
A Remote Liquid Loading System (RLLS) was designed to load high hazard liquid materials into targets for gas-gun driven impact experiments. These high hazard liquids tend to react with confining materials in a short period of time, degrading target assemblies and potentially building up pressure through the evolution of gas in the reactions. Therefore, the ability to load a gas gun target in place immediately prior to firing the gun, provides the most stable and reliable target fielding approach. We present the design and evaluation of a RLLS built for the LANL two-stage gas gun. Targets for the gun are made of PMMA and assembled to form a liquid containment cell with a volume of approximately 25 cc. The compatibility of materials was a major consideration in the design of the system, particularly for its use with highly concentrated hydrogen peroxide. Teflon and 304-stainless steel were the two most compatible materials with the materials to be tested. Teflon valves and tubing, as well as stainless steel tubing, were used to handle the liquid, along with a stainless steel reservoir. Preliminary testing was done to ensure proper flow rate and safety. The system has been used to successfully load 97.5 percent hydrogen peroxide into a target cell just prior to a successful multiple magnetic gauge experiment. TV cameras on the target verified the bubble-free filling operation.
Hanson, E; Ingold, S; Haas, C; Ballantyne, J
2018-05-01
The recovery of a DNA profile from the perpetrator or victim in criminal investigations can provide valuable 'source level' information for investigators. However, a DNA profile does not reveal the circumstances by which biological material was transferred. Some contextual information can be obtained by a determination of the tissue or fluid source of origin of the biological material as it is potentially indicative of some behavioral activity on behalf of the individual that resulted in its transfer from the body. Here, we sought to improve upon established RNA based methods for body fluid identification by developing a targeted multiplexed next generation mRNA sequencing assay comprising a panel of approximately equal sized gene amplicons. The multiplexed biomarker panel includes several highly specific gene targets with the necessary specificity to definitively identify most forensically relevant biological fluids and tissues (blood, semen, saliva, vaginal secretions, menstrual blood and skin). In developing the biomarker panel we evaluated 66 gene targets, with a progressive iteration of testing target combinations that exhibited optimal sensitivity and specificity using a training set of forensically relevant body fluid samples. The current assay comprises 33 targets: 6 blood, 6 semen, 6 saliva, 4 vaginal secretions, 5 menstrual blood and 6 skin markers. We demonstrate the sensitivity and specificity of the assay and the ability to identify body fluids in single source and admixed stains. A 16 sample blind test was carried out by one lab with samples provided by the other participating lab. The blinded lab correctly identified the body fluids present in 15 of the samples with the major component identified in the 16th. Various classification methods are being investigated to permit inference of the body fluid/tissue in dried physiological stains. These include the percentage of reads in a sample that are due to each of the 6 tissues/body fluids tested and inter-sample differential gene expression revealed by agglomerative hierarchical clustering. Copyright © 2018 Elsevier B.V. All rights reserved.
Future materials requirements for the high-energy-intensity production of aluminum
NASA Astrophysics Data System (ADS)
Welch, B. J.; Hyland, M. M.; James, B. J.
2001-02-01
Like all metallurgical industries, aluminum smelting has been under pressure from two fronts—to give maximum return on investment to the shareholders and to comply with environmental regulations by reducing greenhouse emissions. The smelting process has advanced by improving efficiency and productivity while continuing to seek new ways to extend the cell life. Materials selection (particularly the use of more graphitized cathodic electrodes) has enabled lower energy consumption, while optimization of the process and controlling in a narrow band has enabled increases in productivity and operations at higher current densities. These changes have, in turn, severely stressed the materials used for cell construction, and new problems are emerging that are resulting in a reduction of cell life. The target for aluminum electro-winning has been to develop an oxygen-evolving electrode, rather than one that evolves substantial amounts of carbon dioxide. Such an electrode, when combined with suitable wettable cathode material developments, would reduce operating costs by eliminating the need for frequent electrode change and would enable more productive cell designs and reduce plant size. The materials specifications for developing these are, however, an extreme challenge. Those specifications include minimized corrosion rate of any electrode into the electrolyte, maintaining an electronically conducting oxidized surface that is of low electrical resistance, meeting the metal purity targets, and enabling variable operating current densities. Although the materials specifications can readily be written, the processing and production of the materials is the challenge.
Development of companion diagnostics
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.; ...
2015-12-12
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods asmore » companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. Lastly, the review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic.« less
Development of companion diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods asmore » companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. Lastly, the review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic.« less
Development of Companion Diagnostics
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.; Pryma, Daniel A.
2016-01-01
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods as companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. The review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic. PMID:26687857
NASA Astrophysics Data System (ADS)
Farrell, Mikella E.; Strobbia, Pietro; Sarkes, Deborah A.; Stratis-Cullum, Dimitra N.; Cullum, Brian M.; Pellegrino, Paul M.
2016-05-01
The utility of peptide-based molecular sensing for the development of novel biosensors has resulted in a significant increase in their development and usage for sensing targets like chemical, biological, energetic and toxic materials. Using peptides as a molecular recognition element is particularly advantageous because there are several mature peptide synthesis protocols that already exist, peptide structures can be tailored, selected and manipulated to be highly discerning towards desired targets, peptides can be modified to be very stable in a host of environments and stable under many different conditions, and through the development of bifunctionalized peptides can be synthesized to also bind onto desired sensing platforms (various metal materials, glass, etc.). Two examples of the several Army relevant biological targets for peptide-based sensing platforms include Ricin and Abrin. Ricin and Abrin are alarming threats because both can be weaponized and there is no antidote for exposure. Combining the sensitivity of SERS with the selectivity of a bifunctional peptide allows for the emergence of dynamic hazard sensor for Army application.
NASA Astrophysics Data System (ADS)
Falzone, Nadia; Myhra, Sverre; Chakalova, Radka; Hill, Mark A.; Thomson, James; Vallis, Katherine A.
2013-11-01
The interactions between energetic ions and biological and/or organic target materials have recently attracted theoretical and experimental attention, due to their implications for detector and device technologies, and for therapeutic applications. Most of the attention has focused on detection of the primary ionization tracks, and their effects, while recoil target atom tracks remain largely unexplored. Detection of tracks by a negative tone photoresist (SU-8), followed by standard development, in combination with analysis by atomic force microscopy, shows that both primary and recoil tracks are revealed as conical spikes, and can be characterized at high spatial resolution. The methodology has the potential to provide detailed information about single impact events, which may lead to more effective and informative detector technologies and advanced therapeutic procedures. In comparison with current characterization methods the advantageous features include: greater spatial resolution by an order of magnitude (20 nm) detection of single primary and associated recoil tracks; increased range of fluence (to 2.5 × 109 cm-2) sensitivity to impacts at grazing angle incidence; and better definition of the lateral interaction volume in target materials.
Computational design of high efficiency release targets for use at ISOL facilities
NASA Astrophysics Data System (ADS)
Liu, Y.; Alton, G. D.; Middleton, J. W.
1999-06-01
This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated vitreous carbon fiber (RVCF) or carbon-bonded-carbon-fiber (CBCF) to form highly permeable composite target matrices. Computational studies which simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation will be presented in this report.
High-efficiency-release targets for use at ISOL facilities: computational design
NASA Astrophysics Data System (ADS)
Liu, Y.; Alton, G. D.
1999-12-01
This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected targets and thermal analyses of temperature distributions within a prototype target/heat-sink system subjected to primary ion beam irradiation are presented in this report.
Tuononen, Katja; Sarhadi, Virinder Kaur; Wirtanen, Aino; Rönty, Mikko; Salmenkivi, Kaisa; Knuuttila, Aija; Remes, Satu; Telaranta-Keerie, Aino I; Bloor, Stuart; Ellonen, Pekka; Knuutila, Sakari
2013-01-01
Anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements occur in a subgroup of non-small cell lung carcinomas (NSCLCs). The identification of these rearrangements is important for guiding treatment decisions. The aim of our study was to screen ALK gene fusions in NSCLCs and to compare the results detected by targeted resequencing with results detected by commonly used methods, including fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and real-time reverse transcription-PCR (RT-PCR). Furthermore, we aimed to ascertain the potential of targeted resequencing in detection of ALK-rearranged lung carcinomas. We assessed ALK fusion status for 95 formalin-fixed paraffin-embedded tumor tissue specimens from 87 patients with NSCLC by FISH and real-time RT-PCR, for 57 specimens from 56 patients by targeted resequencing, and for 14 specimens from 14 patients by IHC. All methods were performed successfully on formalin-fixed paraffin-embedded tumor tissue material. We detected ALK fusion in 5.7% (5 out of 87) of patients examined. The results obtained from resequencing correlated significantly with those from FISH, real-time RT-PCR, and IHC. Targeted resequencing proved to be a promising method for ALK gene fusion detection in NSCLC. Means to reduce the material and turnaround time required for analysis are, however, needed.
NASA Astrophysics Data System (ADS)
Marteau, Theresa M.
2017-05-01
Meeting climate change targets to limit global warming to 2°C requires rapid and large reductions in demand for products that most contribute to greenhouse gas (GHG) emissions. These include production of bulk materials (e.g. steel and cement), energy supply (e.g. fossil fuels) and animal source foods (particularly ruminants and their products). Effective strategies to meet these targets require transformative changes in supply as well as demand, involving changes in economic, political and legal systems at local, national and international levels, building on evidence from many disciplines. This paper outlines contributions from behavioural science in reducing demand. Grounded in dual-process models of human behaviour (involving non-conscious and conscious processes) this paper considers first why interventions aimed at changing population values towards the environment are usually insufficient or unnecessary for reducing demand although they may be important in increasing public acceptability of policies that could reduce demand. It then outlines two sets of evidence from behavioural science towards effective systems-based strategies, to identify interventions likely to be effective at: (i) reducing demand for products that contribute most to GHG emissions, mainly targeting non-conscious processes and (ii) increasing public acceptability for policy changes to enable these interventions, targeting conscious processes. This article is part of the themed issue 'Material demand reduction'.
Marteau, Theresa M
2017-06-13
Meeting climate change targets to limit global warming to 2°C requires rapid and large reductions in demand for products that most contribute to greenhouse gas (GHG) emissions. These include production of bulk materials (e.g. steel and cement), energy supply (e.g. fossil fuels) and animal source foods (particularly ruminants and their products). Effective strategies to meet these targets require transformative changes in supply as well as demand, involving changes in economic, political and legal systems at local, national and international levels, building on evidence from many disciplines. This paper outlines contributions from behavioural science in reducing demand. Grounded in dual-process models of human behaviour (involving non-conscious and conscious processes) this paper considers first why interventions aimed at changing population values towards the environment are usually insufficient or unnecessary for reducing demand although they may be important in increasing public acceptability of policies that could reduce demand. It then outlines two sets of evidence from behavioural science towards effective systems-based strategies, to identify interventions likely to be effective at: (i) reducing demand for products that contribute most to GHG emissions, mainly targeting non-conscious processes and (ii) increasing public acceptability for policy changes to enable these interventions, targeting conscious processes.This article is part of the themed issue 'Material demand reduction'. © 2017 The Authors.
2017-01-01
Meeting climate change targets to limit global warming to 2°C requires rapid and large reductions in demand for products that most contribute to greenhouse gas (GHG) emissions. These include production of bulk materials (e.g. steel and cement), energy supply (e.g. fossil fuels) and animal source foods (particularly ruminants and their products). Effective strategies to meet these targets require transformative changes in supply as well as demand, involving changes in economic, political and legal systems at local, national and international levels, building on evidence from many disciplines. This paper outlines contributions from behavioural science in reducing demand. Grounded in dual-process models of human behaviour (involving non-conscious and conscious processes) this paper considers first why interventions aimed at changing population values towards the environment are usually insufficient or unnecessary for reducing demand although they may be important in increasing public acceptability of policies that could reduce demand. It then outlines two sets of evidence from behavioural science towards effective systems-based strategies, to identify interventions likely to be effective at: (i) reducing demand for products that contribute most to GHG emissions, mainly targeting non-conscious processes and (ii) increasing public acceptability for policy changes to enable these interventions, targeting conscious processes. This article is part of the themed issue ‘Material demand reduction’. PMID:28461435
Breast-feeding: encourage mothers to "give it a go"!
Carson, Christine
2005-01-01
Breast-feeding is a part of the Government health agenda with a particular emphasis on encouraging those mothers who are least likely to breast-feed. Current and recent breast-feeding support materials from the Department of Health outline good practice for Primary Care Trusts, in line with targets for the increase in breast-feeding initiation. Breast-feeding reduces health inequalities, in the short and long term. The 2005 National Breastfeeding Awareness Week has the key message "Give it a go!" and materials including a Local Action booklet are available.
Advanced plastic scintillators for fast neutron discrimination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Patrick L; Anstey, Mitchell; Doty, F. Patrick
2014-09-01
The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.
Moreno, Eliana M; Moriana, Juan Antonio
2016-08-09
There is now broad consensus regarding the importance of involving users in the process of implementing guidelines. Few studies, however, have addressed this issue, let alone the implementation of guidelines for common mental health disorders. The aim of this study is to compile and describe implementation strategies and resources related to common clinical mental health disorders targeted at service users. The literature was reviewed and resources for the implementation of clinical guidelines were compiled using the PRISMA model. A mixed qualitative and quantitative analysis was performed based on a series of categories developed ad hoc. A total of 263 items were included in the preliminary analysis and 64 implementation resources aimed at users were analysed in depth. A wide variety of types, sources and formats were identified, including guides (40%), websites (29%), videos and leaflets, as well as instruments for the implementation of strategies regarding information and education (64%), self-care, or users' assessment of service quality. The results reveal the need to establish clear criteria for assessing the quality of implementation materials in general and standardising systems to classify user-targeted strategies. The compilation and description of key elements of strategies and resources for users can be of interest in designing materials and specific actions for this target audience, as well as improving the implementation of clinical guidelines.
Attitude control analysis of tethered de-orbiting
NASA Astrophysics Data System (ADS)
Peters, T. V.; Briz Valero, José Francisco; Escorial Olmos, Diego; Lappas, V.; Jakowski, P.; Gray, I.; Tsourdos, A.; Schaub, H.; Biesbroek, R.
2018-05-01
The increase of satellites and rocket upper stages in low earth orbit (LEO) has also increased substantially the danger of collisions in space. Studies have shown that the problem will continue to grow unless a number of debris are removed every year. A typical active debris removal (ADR) mission scenario includes launching an active spacecraft (chaser) which will rendezvous with the inactive target (debris), capture the debris and eventually deorbit both satellites. Many concepts for the capture of the debris while keeping a connection via a tether, between the target and chaser have been investigated, including harpoons, nets, grapples and robotic arms. The paper provides an analysis on the attitude control behaviour for a tethered de-orbiting mission based on the ESA e.Deorbit reference mission, where Envisat is the debris target to be captured by a chaser using a net which is connected to the chaser with a tether. The paper provides novel insight on the feasibility of tethered de-orbiting for the various mission phases such as stabilization after capture, de-orbit burn (plus stabilization), stabilization during atmospheric pass, highlighting the importance of various critical mission parameters such as the tether material. It is shown that the selection of the appropriate tether material while using simple controllers can reduce the effort needed for tethered deorbiting and can safely control the attitude of the debris/chaser connected with a tether, without the danger of a collision.
PCR technology for screening and quantification of genetically modified organisms (GMOs).
Holst-Jensen, Arne; Rønning, Sissel B; Løvseth, Astrid; Berdal, Knut G
2003-04-01
Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why it has been the first choice of most analytical laboratories interested in detection of genetically modified (GM) organisms (GMOs) and derived materials. Because the products that laboratories receive for analysis are often processed and refined, the quality and quantity of target analyte (e.g. protein or DNA) frequently challenges the sensitivity of any detection method. Among the currently available methods, PCR methods are generally accepted as the most sensitive and reliable methods for detection of GM-derived material in routine applications. The choice of target sequence motif is the single most important factor controlling the specificity of the PCR method. The target sequence is normally a part of the modified gene construct, for example a promoter, a terminator, a gene, or a junction between two of these elements. However, the elements may originate from wildtype organisms, they may be present in more than one GMO, and their copy number may also vary from one GMO to another. They may even be combined in a similar way in more than one GMO. Thus, the choice of method should fit the purpose. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content. Thresholds for labelling are now in place in many countries including those in the European Union. The success of the labelling schemes is dependent upon the efficiency with which GM-derived material can be detected. We will present an overview of currently available PCR methods for screening and quantification of GM-derived DNA, and discuss their applicability and limitations. In addition, we will discuss some of the major challenges related to determination of the limits of detection (LOD) and quantification (LOQ), and to validation of methods.
Temperature Controller System for Gas Gun Targets
NASA Astrophysics Data System (ADS)
Bucholtz, Scott; Sheffield, Stephen
2005-07-01
A temperature controller system capable of heating and cooling gas gun targets over the range -75 C to +200 C was designed and tested. The system uses cold nitrogen gas from a liquid nitrogen Dewar for cooling and compressed air for heating. Two gas flow heaters control the gas temperature for both heating and cooling. One heater controls the temperature of the target mounting plate and the other the temperature of a copper tubing coil surrounding the target. Each heater is separately adjustable, so the target material will achieve a uniform temperature throughout its volume. A magnetic gauge with integrated thermocouples was developed to measure the internal temperature of the target. Using this system shock experiments, including equation-of-state measurements and shock initiation of high explosives, can be performed over a range of initial temperatures. Successful tests were completed on Teflon samples. This work was supported by the NNSA Enhanced Surveillance Campaign through contract DE-ACO4-01AL66850.
Influence of factors on release of antimicrobials from antimicrobial packaging materials.
Wu, Yu-Mei; Wang, Zhi-Wei; Hu, Chang-Ying; Nerín, Cristina
2018-05-03
Antimicrobial packaging materials (films or coatings) (APMs) have aroused great interest among the scientists or the experts specialized in material science, food science, packaging engineering, biology and chemistry. APMs have been used to package the food, such as dairy products, poultry, meat (e.g., beef), salmon muscle, pastry dough, fresh pasta, bakery products, fruits, vegetables and beverages. Some materials have been already commercialized. The ability of APMs to extend the shelf-life of the food depends on the release rate of the antimicrobials (AMs) from the materials to the food. The optimum rate is defined as target release rate (TRR). To achieve TRR, the influencing factors of the release rate should be considered. Herein we reviewed for the first time these factors and their influence on the release. These factors mainly include the AMs, food (or food simulant), packaging materials, the interactions among them, the temperature and environmental relative humidity (RH).
Target materials for exotic ISOL beams
NASA Astrophysics Data System (ADS)
Gottberg, A.
2016-06-01
The demand for intensity, purity, reliability and availability of short-lived isotopes far from stability is steadily high, and considerably exceeding the supply. In many cases the ISOL (Isotope Separation On-Line) method can provide beams of high intensity and purity. Limitations in terms of accessible chemical species and minimum half-life are driven mainly by chemical reactions and physical processes inside of the thick target. A wide range of materials are in use, ranging from thin metallic foils and liquids to refractory ceramics, while poly-phasic mixed uranium carbides have become the reference target material for most ISOL facilities world-wide. Target material research and development is often complex and especially important post-irradiation analyses are hindered by the high intrinsic radiotoxicity of these materials. However, recent achievements have proven that these investigations are possible if the effort of different facilities is combined, leading to the development of new material matrices that can supply new beams of unprecedented intensity and beam current stability.
Designing with non-linear viscoelastic fluids
NASA Astrophysics Data System (ADS)
Schuh, Jonathon; Lee, Yong Hoon; Allison, James; Ewoldt, Randy
2017-11-01
Material design is typically limited to hard materials or simple fluids; however, design with more complex materials can provide ways to enhance performance. Using the Criminale-Ericksen-Filbey (CEF) constitutive model in the thin film lubrication limit, we derive a modified Reynolds Equation (based on asymptotic analysis) that includes shear thinning, first normal stress, and terminal regime viscoelastic effects. This allows for designing non-linear viscoelastic fluids in thin-film creeping flow scenarios, i.e. optimizing the shape of rheological material properties to achieve different design objectives. We solve the modified Reynolds equation using the pseudo-spectral method, and describe a case study in full-film lubricated sliding where optimal fluid properties are identified. These material-agnostic property targets can then guide formulation of complex fluids which may use polymeric, colloidal, or other creative approaches to achieve the desired non-Newtonian properties.
Autonomous Motility of Polymer Films.
Treml, Benjamin E; McKenzie, Ruel N; Buskohl, Philip; Wang, David; Kuhn, Michael; Tan, Loon-Seng; Vaia, Richard A
2018-02-01
Adaptive soft materials exhibit a diverse set of behaviors including reconfiguration, actuation, and locomotion. These responses however, are typically optimized in isolation. Here, the interrelation between these behaviors is established through a state space framework, using Nylon 6 thin films in a humidity gradient as an experimental testbed. It is determined that the dynamic behaviors are a result of not only a response to but also an interaction with the applied stimulus, which can be tuned via control of the environment and film characteristics, including size, permeability, and coefficient of hygroscopic expansion to target a desired behavior such as multimodal locomotion. Using these insights, it is demonstrated that films simultaneously harvest energy and information from the environment to autonomously move down a stimulus gradient. Improved understanding of the coupling between an adaptive material and its environment aids the development of materials that integrate closed loop autonomous sensing, actuation, and locomotion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yasui, Minami; Arakawa, Masahiko
2011-08-01
Laboratory impact experiments were conducted for gypsum-glass bead targets simulating the parent bodies of ordinary chondrites. The effects of the chondrules included in the parent bodies on impact disruption were experimentally investigated in order to determine the impact conditions for the formation of rubble-pile bodies after catastrophic disruption. The targets included glass beads with a diameter ranging from 100 μm to 3 mm and the volume fraction was 0.6, similar to that of ordinary chondrites, which is about 0.65-0.75. Nylon projectiles with diameters of 10 mm and 2 mm were impacted at 60-180 m s -1 by a single-stage gas gun and at 4 km s -1 by a two-stage light gas gun, respectively. The impact strength of the gypsum-glass bead target was found to range from 56 to 116 J kg -1 depending on the glass bead size, and was several times smaller than that of the porous gypsum target, 446 J kg -1 in low-velocity collisions. The impact strengths of the 100 μm bead target and the porous gypsum target strongly depended on the impact velocity: those obtained in high-velocity collisions were several times greater than those obtained in low-velocity collisions. The velocities of fragments ejected from two corners on the impact surface of the target, measured in the center of the mass system, were slightly dependent on the target materials, irrespective of impact velocity. These results suggest that chondrule-including planetesimals (CiPs) can reconstruct rubble-pile bodies in catastrophic disruptions at the size of the planetesimal smaller than that of planetesimals without chondrules.
Sanchis, Yovana; Coscollà, Clara; Roca, Marta; Yusà, Vicent
2015-06-01
An analytical strategy including both the quantitative target analysis of 8 regulated primary aromatic amines (PAAs), as well as a comprehensive post-run target screening of 77 migrating substances, was developed for nylon utensils, using liquid chromatography-orbitrap-high resolution mass spectrometry (LC-HRMS) operating in full scan mode. The accurate mass data were acquired with a resolving power of 50,000 FWHM (scan speed, 2 Hz), and by alternating two acquisition events, ESI+ with and without fragmentation. The target method was validated after statistical optimization of the main ionization and fragmentation parameters. The quantitative method presented appropriate performance to be used in official monitoring with recoveries ranging from 78% to 112%, precision in terms of Relative Standard Deviation (RSD) was less than 15%, and the limits of quantification were between 2 and 2.5 µg kg(-1). For post-target screening, a customized theoretical database was built for food contact material migrants, including bisphenols, phthalates, and other amines. For identification purposes, accurate exact mass (<5 ppm) and some diagnostic ions including fragments were used. The strategy was applied to 10 real samples collected from different retailers in the Valencian Region (Spain) during 2014. Six out of eight target PAAs were detected in at least one sample in the target analysis. The most frequently detected compounds were 4,4'-methylenedianiline and aniline, with concentrations ranging from 2.4 to 19,715 µg kg(-1) and 2.5 to 283 µg kg(-1), respectively. Two phthalates were identified and confirmed in the post-run target screening analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Post Irradiation Examination Results of the NT-02 Graphite Fins NUMI Target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammigan, K.; Hurh, P.; Sidorov, V.
2017-02-10
The NT-02 neutrino target in the NuMI beamline at Fermilab is a 95 cm long target made up of segmented graphite fins. It is the longest running NuMI target, which operated with a 120 GeV proton beam with maximum power of 340 kW, and saw an integrated total proton on target of 6.1 1020. Over the last half of its life, gradual degradation of neutrino yield was observed until the target was replaced. The probable causes for the target performance degradation are attributed to radiation damage, possibly including cracking caused by reduction in thermal shock resistance, as well as potentialmore » localized oxidation in the heated region of the target. Understanding the long-termstructural response of target materials exposed to proton irradiation is critical as future proton accelerator sources are becoming increasingly more powerful. As a result, an autopsy of the target was carried out to facilitate post-irradiation examination of selected graphite fins. Advanced microstructural imaging and surface elemental analysis techniques were used to characterize the condition of the fins in an effort to identify degradation mechanisms, and the relevant findings are presented in this paper.« less
User guide for luminescence sampling in archaeological and geological contexts
Nelson, Michelle S.; Gray, Harrison J.; Johnson, Jack A.; Rittenour, Tammy M.; Feathers, James K.; Mahan, Shannon
2015-01-01
Luminescence dating provides a direct age estimate of the time of last exposure of quartz or feldspar minerals to light or heat and has been successfully applied to deposits, rock surfaces, and fired materials in a number of archaeological and geological settings. Sampling strategies are diverse and can be customized depending on local circumstances, although all sediment samples need to include a light-safe sample and material for dose-rate determination. The accuracy and precision of luminescence dating results are directly related to the type and quality of the material sampled and sample collection methods in the field. Selection of target material for dating should include considerations of adequacy of resetting of the luminescence signal (optical and thermal bleaching), the ability to characterize the radioactive environment surrounding the sample (dose rate), and the lack of evidence for post-depositional mixing (bioturbation in soils and sediment). Sample strategies for collection of samples from sedimentary settings and fired materials are discussed. This paper should be used as a guide for luminescence sampling and is meant to provide essential background information on how to properly collect samples and on the types of materials suitable for luminescence dating.
Gulf War Air Power Survey. Volume 5. A Statistical Compendium and Chronology
1993-01-01
documentation proved to be a blessing and a curse. While students and analysts of the Gulf War can tap an especially broad spectrum of information collected...to target folders and pre- and post-strike photos. They include interviews and oral history materials, SITREPS from several different Services and...these limits. You will note the first "day" lasted longer than one day and included two nights. Subsequently, the system stabilized according to a
Development of a component design tool for metal hydride heat pumps
NASA Astrophysics Data System (ADS)
Waters, Essene L.
Given current demands for more efficient and environmentally friendly energy sources, hydrogen based energy systems are an increasingly popular field of interest. Within the field, metal hydrides have become a prominent focus of research due to their large hydrogen storage capacity and relative system simplicity and safety. Metal hydride heat pumps constitute one such application, in which heat and hydrogen are transferred to and from metal hydrides. While a significant amount of work has been done to study such systems, the scope of materials selection has been quite limited. Typical studies compare only a few metal hydride materials and provide limited justification for the choice of those few. In this work, a metal hydride component design tool has been developed to enable the targeted down-selection of an extensive database of metal hydrides to identify the most promising materials for use in metal hydride thermal systems. The material database contains over 300 metal hydrides with various physical and thermodynamic properties included for each material. Sub-models for equilibrium pressure, thermophysical data, and default properties are used to predict the behavior of each material within the given system. For a given thermal system, this tool can be used to identify optimal materials out of over 100,000 possible hydride combinations. The selection tool described herein has been applied to a stationary combined heat and power system containing a high-temperature proton exchange membrane (PEM) fuel cell, a hot water tank, and two metal hydride beds used as a heat pump. A variety of factors can be used to select materials including efficiency, maximum and minimum system pressures, pressure difference, coefficient of performance (COP), and COP sensitivity. The targeted down-selection of metal hydrides for this system focuses on the system's COP for each potential pair. The values of COP and COP sensitivity have been used to identify pairs of highest interest for use in this application. The metal hydride component design tool developed in this work selects between metal hydride materials on an unprecedented scale. It can be easily applied to other hydrogen-based thermal systems, making it a powerful and versatile tool.
Bioinspired engineering of thermal materials.
Tao, Peng; Shang, Wen; Song, Chengyi; Shen, Qingchen; Zhang, Fangyu; Luo, Zhen; Yi, Nan; Zhang, Di; Deng, Tao
2015-01-21
In the development of next-generation materials with enhanced thermal properties, biological systems in nature provide many examples that have exceptional structural designs and unparalleled performance in their thermal or nonthermal functions. Bioinspired engineering thus offers great promise in the synthesis and fabrication of thermal materials that are difficult to engineer through conventional approaches. In this review, recent progress in the emerging area of bioinspired advanced materials for thermal science and technology is summarized. State-of-the-art developments of bioinspired thermal-management materials, including materials for efficient thermal insulation and heat transfer, and bioinspired materials for thermal/infrared detection, are highlighted. The dynamic balance of bioinspiration and practical engineering, the correlation of inspiration approaches with the targeted applications, and the coexistence of molecule-based inspiration and structure-based inspiration are discussed in the overview of the development. The long-term outlook and short-term focus of this critical area of advanced materials engineering are also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pulsed-Laser Irradiation Space Weathering Of A Carbonaceous Chondrite
NASA Technical Reports Server (NTRS)
Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.
2017-01-01
Grains on the surfaces of airless bodies experience irradiation from solar energetic particles and melting, vaporization and recondensation processes associated with micrometeorite impacts. Collectively, these processes are known as space weathering and they affect the spectral properties, composition, and microstructure of material on the surfaces of airless bodies, e.g. Recent efforts have focused on space weathering of carbonaceous materials which will be critical for interpreting results from the OSIRIS-REx and Hayabusa2 missions targeting primitive, organic-rich asteroids. In addition to returned sample analyses, space weathering processes are quantified through laboratory experiments. For example, the short-duration thermal pulse from hypervelocity micrometeorite impacts have been simulated using pulsed-laser irradiation of target material e.g. Recent work however, has shown that pulsed-laser irradiation has variable effects on the spectral properties and microstructure of carbonaceous chondrite samples. Here we investigate the spectral characteristics of pulsed-laser irradiated CM2 carbonaceous chondrite, Murchison, including the vaporized component. We also report the chemical and structural characteristics of specific mineral phases within the meteorite as a result of pulsed-laser irradiation.
Acoustic Levitation Containerless Processing
NASA Technical Reports Server (NTRS)
Whymark, R. R.; Rey, C. A.
1985-01-01
This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.
Production Of High Specific Activity Copper-67
Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.
2002-12-03
A process for the selective production and isolation of high specific activity cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.
Production Of High Specific Activity Copper-67
Jamriska, Sr., David J.; Taylor, Wayne A.; Ott, Martin A.; Fowler, Malcolm; Heaton, Richard C.
2003-10-28
A process for the selective production and isolation of high specific activity Cu.sup.67 from proton-irradiated enriched Zn.sup.70 target comprises target fabrication, target irradiation with low energy (<25 MeV) protons, chemical separation of the Cu.sup.67 product from the target material and radioactive impurities of gallium, cobalt, iron, and stable aluminum via electrochemical methods or ion exchange using both anion and cation organic ion exchangers, chemical recovery of the enriched Zn.sup.70 target material, and fabrication of new targets for re-irradiation is disclosed.
NASA Technical Reports Server (NTRS)
Cronvich, L. L.; Liepman, H. P.
1979-01-01
Technology assessments in the areas of aerodynamics, propulsion, and structures and materials for cruise missile systems are discussed. The cruise missiles considered cover the full speed, altitude, and target range. The penetrativity, range, and maneuverability of the cruise missiles are examined and evaluated for performance improvements.
Sooyoung Kim; Robert J. McGaughey; Hans-Erik Andersen; Gerard Schreuder
2009-01-01
Tree species identification is important for a variety of natural resource management and monitoring activities including riparian buffer characterization, wildfire risk assessment, biodiversity monitoring, and wildlife habitat assessment. Intensity data recorded for each laser point in a LIDAR system is related to the spectral reflectance of the target material and...
Wide band design on the scaled absorbing material filled with flaky CIPs
NASA Astrophysics Data System (ADS)
Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi
2018-02-01
The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.
Discrimination of poorly exposed lithologies in AVIRIS data
NASA Technical Reports Server (NTRS)
Farrand, William H.; Harsanyi, Joseph C.
1993-01-01
One of the advantages afforded by imaging spectrometers such as AVIRIS is the capability to detect target materials at a sub-pixel scale. This paper presents several examples of the identification of poorly exposed geologic materials - materials which are either subpixel in scale or which, while having some surface expression over several pixels, are partially covered by vegetation or other materials. Sabol et al. (1992) noted that a primary factor in the ability to distinguish sub-pixel targets is the spectral contrast between the target and its surroundings. In most cases, this contrast is best expressed as an absorption feature or features present in the target but absent in the surroundings. Under such circumstances, techniques such as band depth mapping (Clark et al., 1992) are feasible. However, the only difference between a target material and its surroundings is often expressed solely in the continuum. We define the 'continuum' as the reflectance or radiance spanning spectral space between spectral features. Differences in continuum slope and shape can only be determined by reduction techniques which considers the entire spectral range; i.e., techniques such as spectral mixture analysis (Adams et al., 1989) and recently developed techniques which utilize an orthogonal subspace projection operator (Harsanyi, 1993). Two of the three examples considered herein deal with cases where the target material differs from its surroundings only by such a subtle continuum change.
Selective Deuteron Acceleration and Neutron Production on the Vulcan PW Laser
NASA Astrophysics Data System (ADS)
Krygier, A. G.; Morrison, J. T.; Freeman, R. R.; Ahmed, H.; Green, J. A.; Alejo, A.; Kar, S.; Vassura, L.
2014-10-01
Fast neutron sources are important for a variety of applications including radiography and the detection of sensitive materials. Here we report on the results of an experiment using the Vulcan PW laser at Rutherford Appleton Laboratory to produce a nearly pure deuterium ion beam via Target Normal Sheath Acceleration. The typical contaminants are suppressed by freezing a μ m's thick layer of heavy water vapor (D2 O) onto a cryogenic target during the shot sequence. Neutrons were generated by colliding the accelerated deuterons were into secondary targets made of deuterated plastic in the pitcher-catcher arrangement. Absolute yields for deuterium ions and neutrons are reported. This work is supported by DOE Contract DE-FC02-04ER54789.
Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign andmore » domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creasy, John T
2015-05-12
This project has the objective to reduce and/or eliminate the use of HEU in commerce. Steps in the process include developing a target testing methodology that is bounding for all Mo-99 target irradiators, establishing a maximum target LEU-foil mass, developing a LEU-foil target qualification document, developing a bounding target failure analysis methodology (failure in reactor containment), optimizing safety vs. economics (goal is to manufacture a safe, but relatively inexpensive target to offset the inherent economic disadvantage of using LEU in place of HEU), and developing target material specifications and manufacturing QC test criteria. The slide presentation is organized under themore » following topics: Objective, Process Overview, Background, Team Structure, Key Achievements, Experiment and Activity Descriptions, and Conclusions. The High Density Target project has demonstrated: approx. 50 targets irradiated through domestic and international partners; proof of concept for two front end processing methods; fabrication of uranium foils for target manufacture; quality control procedures and steps for manufacture; multiple target assembly techniques; multiple target disassembly devices; welding of targets; thermal, hydraulic, and mechanical modeling; robust target assembly parametric studies; and target qualification analysis for insertion into very high flux environment. The High Density Target project has tested and proven several technologies that will benefit current and future Mo-99 producers.« less
Organic/hybrid thin films deposited by matrix-assisted pulsed laser evaporation (MAPLE)
NASA Astrophysics Data System (ADS)
Stiff-Roberts, Adrienne D.; Ge, Wangyao
2017-12-01
Some of the most exciting materials research in the 21st century attempts to resolve the challenge of simulating, synthesizing, and characterizing new materials with unique properties designed from first principles. Achievements in such development for organic and organic-inorganic hybrid materials make them important options for electronic and/or photonic devices because they can impart multi-functionality, flexibility, transparency, and sustainability to emerging systems, such as wearable electronics. Functional organic materials include small molecules, oligomers, and polymers, while hybrid materials include inorganic nanomaterials (such as zero-dimensional quantum dots, one-dimensional carbon nanotubes, or two-dimensional nanosheets) combined with organic matrices. A critically important step to implementing new electronic and photonic devices using such materials is the processing of thin films. While solution-based processing is the most common laboratory technique for organic and hybrid materials, vacuum-based deposition has been critical to the commercialization of organic light emitting diodes based on small molecules, for example. Therefore, it is desirable to explore vacuum-based deposition of organic and hybrid materials that include larger macromolecules, such as polymers. This review article motivates the need for physical vapor deposition of polymeric and hybrid thin films using matrix-assisted pulsed laser evaporation (MAPLE), which is a type of pulsed laser deposition. This review describes the development of variations in the MAPLE technique, discusses the current understanding of laser-target interactions and growth mechanisms for different MAPLE variations, surveys demonstrations of MAPLE-deposited organic and hybrid materials for electronic and photonic devices, and provides a future outlook for the technique.
Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Festa, G.; Andreani, C.; Arcidiacono, L.; Burca, G.; Kockelmann, W.; Minniti, T.; Senesi, R.
2017-08-01
The environmental γ -ray background on the IMAT beamline at ISIS Spallation Neutron Source, Target Station 2, is characterized via γ spectroscopy. The measurements include gamma exposure at the imaging detector position, along with the gamma background inside the beamline. Present results are discussed and compared with previous measurements recorded at INES and VESUVIO beamlines operating at Target Station 1. They provide new outcome for expanding and optimizing the PGAA experimental capability at the ISIS neutron source for the investigation of materials, engineering components and cultural heritage objects at the ISIS neutron source.
NASA Technical Reports Server (NTRS)
Miller, J.; Zeitlin, C.; Heilbronn, L.; Borak, T.; Carter, T.; Frankel, K. A.; Fukumura, A.; Murakami, T.; Rademacher, S. E.; Schimmerling, W.;
1998-01-01
This paper surveys some recent accelerator-based measurements of the nuclear fragmentation of high energy nuclei in shielding and tissue-equivalent materials. These data are needed to make accurate predictions of the radiation field produced at depth in spacecraft and planetary habitat shielding materials and in the human body by heavy charged particles in the galactic cosmic radiation. Projectile-target combinations include 1 GeV/nucleon 56Fe incident on aluminum and graphite and 600 MeV/nucleon 56Fe and 290 MeV/nucleon 12C on polyethylene. We present examples of the dependence of fragmentation on material type and thickness, of a comparison between data and a fragmentation model, and of multiple fragments produced along the beam axis.
NASA Technical Reports Server (NTRS)
Hausrath, E. M.; Ming, D. W.; Peretyazhko, T.; Rampe, E. B.
2017-01-01
Water flowing through sediments at Gale Crater, Mars created environments that were likely habitable, and sampled basin-wide hydrological systems. However, many questions remain about these environments and the fluids that generated them. Measurements taken by the Mars Science Laboratory Curiosity of multiple fracture zones can help constrain the environments that formed them because they can be compared to nearby associated parent material (Figure 1). For example, measurements of altered fracture zones from the target Greenhorn in the Stimson sandstone can be compared to parent material measured in the nearby Big Sky target, allowing constraints to be placed on the alteration conditions that formed the Greenhorn target from the Big Sky target. Similarly, CheMin measurements of the powdered < 150 micron fraction from the drillhole at Big Sky and sample from the Rocknest eolian deposit indicate that the mineralogies are strikingly similar. The main differences are the presence of olivine in the Rocknest eolian deposit, which is absent in the Big Sky target, and the presence of far more abundant Fe oxides in the Big Sky target. Quantifying the changes between the Big Sky target and the Rocknest eolian deposit can therefore help us understand the diagenetic changes that occurred forming the Stimson sedimentary unit. In order to interpret these aqueous changes, we performed reactive transport modeling of 1) the formation of the Big Sky target from a Rocknest eolian deposit-like parent material, and 2) the formation of the Greenhorn target from the Big Sky target. This work allows us to test the relationships between the targets and the characteristics of the aqueous conditions that formed the Greenhorn target from the Big Sky target, and the Big Sky target from a Rocknest eolian deposit-like parent material.
Development of medicine-intended isotope production technologies at Yerevan Physics Institute
NASA Astrophysics Data System (ADS)
Avetisyan, Albert; Avagyan, Robert; Kerobyan, Ivetta; Dallakyan, Ruben; Harutyunyan, Gevorg; Melkonyan, Aleksandr
2015-05-01
Accelerator-based 99mTc and 123I isotopes production technologies were created and developed at A.Alikhanyan National Science Laboratory (former Yerevan Physics Institute - YerPhI). The method involves the irradiation of natural molybdenum (for 99mTc production) and natural xenon (for 123I production) using high-intensity bremsstrahlung photons from the electron beam of the LUE50 linear electron accelerator located at the YerPhI. We have developed and tested the extraction of 99mTc and 123I from the irradiated natural MoO3 and natural Xe, respectively. The production method has been developed and shown to be successful. The current activity is devoted to creation and development of the technology of direct production 99mTc on the 100Mo as target materials using the proton beam from an IBA C18/18 cyclotron. The proton cyclotron C18/18 (producer - IBA, Belgium) was purchased and will be installed nearby AANL (YerPhI) till end 2014. The 18 MeV protons will be used to investigate accelerator-based schemes for the direct production of 99mTc. Main topics of studies will include experimental measurement of 99mTc production yield for different energies of protons, irradiation times, intensities, development of new methods of 99mTc extraction from irradiated materials, development of target preparation technology, development of target material recovery methods for multiple use and others.
Monolithic ballasted penetrator
Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.
2001-01-01
The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.
Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM
2008-03-11
The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xinhua; Zhang Da; Liu, Bob
2012-07-15
Purpose: To provide transmission data for broad 25-39 kVp (kilovolt peak) W/Rh and 25-49 kVp W/Al (target/filter, W-tungsten, Rh-rhodium, and Al-aluminum) x-ray beams through common shielding materials, such as lead, concrete, gypsum wallboard, wood, steel, and plate glass. Methods: The unfiltered W-target x-ray spectra measured on a Selenia Dimensions system (Hologic Inc., Bedford, MA) set at 20-49 kVp were, respectively, filtered using 50-{mu}m Rh and 700-{mu}m Al, and were subsequently used for Monte Carlo calculations. The transmission of broad x-ray beams through shielding materials was simulated using Geant4 low energy electromagnetic physics package with photon- and electron-processes above 250 eV,more » including photoelectric effect, Compton scattering, and Rayleigh scattering. The calculated transmission data were fitted using Archer equation with a robust fitting algorithm. Results: The transmission of broad x-ray beams through the above-mentioned shielding materials was calculated down to about 10{sup -5} for 25-39 kVp W/Rh and 25-49 kVp W/Al. The fitted results of {alpha}, {beta}, and {gamma} in Archer equation were provided. The {alpha} values of kVp Greater-Than-Or-Slanted-Equal-To 40 were approximately consistent with those of NCRP Report No. 147. Conclusions: These data provide inputs for the shielding designs of x-ray imaging facilities with W-anode x-ray beams, such as from Selenia Dimensions.« less
Converter target chemistry - A new challenge to radioanalytical chemistry.
Choudhury, Dibyasree; Lahiri, Susanta
2018-07-01
The 1-2 GeV proton induced spallation reaction on the high Z materials like Hg, or lead bismuth eutectic (LBE), popularly known as converter targets, will produce strong flux of fast neutrons which would further react with fissile materials to produce intense radioactive ion beam (RIB). LBE offers suitability for use as converters over Hg but it suffers from the demerit of radiotoxic polonium production. These targets may be viewed as a store house of clinically important and other exotic radionuclides. For application of those radionuclides, radiochemical separation from bulk target material is of utmost importance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Maldives. Package on population education for special interest groups developed.
1995-01-01
The Population Education Program of the Non-Formal Education Center has developed a package of Population Education for Special Interest Groups comprising a learning package and fieldworker's guide. The learning package is especially developed for teaching population education for out-of-school populations. Special interest groups in Maldives include newly married couples, adolescents, and working youth. Produced under the guidance of UNESCO, Bangkok, the package contains 36 different materials such as posters, charts, leaflets, booklets, stories, and illustrated booklets which may be taught in 36 to 45 periods. The materials deal with eight themes, namely, family size and family welfare, population and resources, delayed marriage and parenthood, responsible parenthood, population-related values and beliefs, women in development, AIDS/STD, and respect for old people. Accompanying the learning package is the fieldworker's guide used to teach the package. It contains individual guides for each of the 36 learning materials. The guide gives the titles of the materials, format, objectives of the materials, messages, target groups, and an overview of the content of each learning materials. The methodologies used for teaching the learning materials include role playing, group discussion, questioning, brainstorming, survey, creative writing, problem-solving and evaluation. The package will be used by fieldworkers to conduct island-based population education courses. full text
Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials
NASA Astrophysics Data System (ADS)
Alice, Koniges; Nathan, Masters; Aaron, Fisher; David, Eder; Wangyi, Liu; Robert, Anderson; David, Benson; Andrea, Bertozzi
2015-02-01
We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.
Rayleigh-Taylor instability experiments in cryogenic deuterium
NASA Astrophysics Data System (ADS)
Hansen, J. F.; Smalyuk, V. A.
2005-10-01
We report on experiments under way at the Omega laser, using cryogenic deuterium to study Rayleigh-Taylor instabilities in laser targets. These instabilities are important in astrophysical situations (e.g., mixing of the different shells during a supernova explosion) and in inertial fusion (during the compression stage of a fusion target). They can be studied in small (˜1 mm) shock tubes filled with one heavy and one light material, with an interface between the two materials that is machined to seed the instability. A high-energy laser (˜5 kJ) drives a shock from the heavy to the light material. The evolution of the interface is studied using gated x-ray cameras, where x-ray illumination is obtained from additional laser beams focused on metal backlighter foils. Traditionally the heavy material is CH (1 g/cm^3) doped with I or Br for improved contrast, while the light material is a low-density (˜0.1 g/cm^3) C foam. The goal of the current experiments is to determine if contrast can be improved even further by replacing the foam with cryogenic deuterium, which has a density similar to the foam, but a lower x-ray opacity allowing clearer images, including images taken at late times in the evolution. Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.
Characterization of viscoelastic materials for low-magnitude blast mitigation
NASA Astrophysics Data System (ADS)
Bartyczak, S.; Mock, W.
2014-05-01
Recent research indicates that exposure to low amplitude blast waves, such as IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficiently protecting warfighters from this danger and the effects are debilitating, costly, and long-lasting. The objective of the present work is to evaluate the blast mitigating behavior of current helmet materials and new materials designed for blast mitigation using a test fixture recently developed at the Naval Surface Warfare Center Dahlgren Division for use with an existing gas gun. The 40-mm-bore gas gun was used as a shock tube to generate blast waves (ranging from 0.5 to 2 bar) in the test fixture mounted on the gun muzzle. A fast opening valve was used to release helium gas from the breech which formed into a blast wave and impacted instrumented targets in the test fixture. Blast attenuation of selected materials was determined through the measurement of stress data in front of and behind the target. Materials evaluated in this research include polyurethane foam from currently fielded US Army and Marine Corps helmets, polyurea 1000, and three hardnesses of Sorbothane (48, 58, and 70 durometer, Shore 00). Polyurea 1000 and 6061-T6 aluminum were used to calibrate the stress gauges.
Computational Hydrocode Study of Target Damage due to Fragment-Blast Impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatch-Aguilar, T; Najjar, F; Szymanski, E
2011-03-24
A target's terminal ballistic effects involving explosively generated fragments, along with the original blast, are of critical importance for many different security and safety related applications. Personnel safety and protective building design are but a few of the practical disciplines that can gain from improved understanding combined loading effects. Traditionally, any engineering level analysis or design effort involving explosions would divide the target damage analysis into two correspondingly critical areas: blast wave and fragment related impact effects. The hypothesis of this paper lies in the supposition that a linear combination of a blast-fragment loading, coupled with an accurate target responsemore » description, can lead to a non-linear target damage effect. This non-linear target response could then stand as the basis of defining what a synergistic or combined frag-blast loading might actually look like. The table below, taken from Walters, et. al. categorizes some of the critical parameters driving any combined target damage effect and drives the evaluation of results. Based on table 1 it becomes clear that any combined frag-blast analysis would need to account for the target response matching similar ranges for the mechanics described above. Of interest are the critical times upon which a blast event or fragment impact loading occurs relative to the target's modal response. A blast, for the purposes of this paper is defined as the sudden release of chemical energy from a given material (henceforth referred to as an energetic material) onto its surrounding medium. During the coupling mechanism a discrete or discontinuous shockwave is generated. This shockwave travels outward from the source transferring energy and momentum to any surrounding objects including personnel and engineering structures. From an engineering perspective blast effects are typically characterized by way of physical characteristics such as Peak Pressure (PP), Time of Arrival (TOA), Pressure-Impulse (PI) and Time of Duration (TD). Other peculiarities include the radial decrease in pressure from the source, any fireball size measurement, and subsequent increase in temperature from the passing of the shockwave through the surrounding medium. In light of all of these metrics, the loading any object receives from a blast event becomes intricately connected to the distance between itself and the source. Because of this, a clear distinction is made between close-in effects and those from a source far away from the object of interest. Explosively generated fragments on the other hand are characterized by means of their localized damage potential. Metrics such as whether the fragment penetrates or perforates a given object is quantified as well as other variables including fragment's residual velocity, % kinetic energy decrease, residual fragment mass and other exit criteria. A fragment launched under such violent conditions could easily be traveling at speeds in excess of 2500 ft/s. Given these speeds it is conceivable to imagine how any given fragment could deliver a concentrated load to a target and penetrates through walls, vehicles or even the protection systems of nearby personnel. This study will focus on the individual fragment-target impact event with the hopes of expanding it to eventually include statistical procedures. Since this is a modeling excursion into the combined frag-blast target damage effects the numerical methods used to frame this problem become important in-so-far as the simulations are done in a consistent manner. For this study a Finite-Element based Hydrocode solution called ALE3D (ALE=Arbitrary Lagrangian-Eulerian) was utilized. ALE3D is developed by Lawrence Livermore National Laboratory (Livermore, CA), and as this paper will show, successfully implemented a converged ALE formulation including as many of the different aspects needed to query the synergistic damage on a given target. Further information on the modeling setup is included.« less
NASA Astrophysics Data System (ADS)
Avagyan, R. H.; Kerobyan, I. A.
2015-07-01
The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.
Computational Modeling of Morphogenesis Regulated by Mechanical Feedback
Ramasubramanian, Ashok; Taber, Larry A.
2008-01-01
Mechanical forces cause changes in form during embryogenesis and likely play a role in regulating these changes. This paper explores the idea that changes in homeostatic tissue stress (target stress), possibly modulated by genes, drive some morphogenetic processes. Computational models are presented to illustrate how regional variations in target stress can cause a range of complex behaviors involving the bending of epithelia. These models include growth and cytoskeletal contraction regulated by stress-based mechanical feedback. All simulations were carried out using the commercial finite element code ABAQUS, with growth and contraction included by modifying the zero-stress state in the material constitutive relations. Results presented for bending of bilayered beams and invagination of cylindrical and spherical shells provide insight into some of the mechanical aspects that must be considered in studying morphogenetic mechanisms. PMID:17318485
Food and Natural Materials Target Mechanisms to Effectively Regulate Allergic Responses.
Shin, Hee Soon; Shon, Dong-Hwa
2015-01-01
An immune hypersensitivity disorder called allergy is caused by diverse allergens entering the body via skin contact, injection, ingestion, and/or inhalation. These allergic responses may develop into allergic disorders, including inflammations such as atopic dermatitis, asthma, anaphylaxis, food allergies, and allergic rhinitis. Several drugs have been developed to treat these allergic disorders; however, long-term intake of these drugs could have adverse effects. As an alternative to these medicines, food and natural materials that ameliorate allergic disorder symptoms without producing any side effects can be consumed. Food and natural materials can effectively regulate successive allergic responses in an allergic chain-reaction mechanism in the following ways: [1] Inhibition of allergen permeation via paracellular diffusion into epithelial cells, [2] suppression of type 2 T-helper (Th) cell-related cytokine production by regulating Th1/Th2 balance, [3] inhibition of pathogenic effector CD4(+) T cell differentiation by inducing regulatory T cells (Treg), and [4] inhibition of degranulation in mast cells. The immunomodulatory effects of food and natural materials on each target mechanism were scientifically verified and shown to alleviate allergic disorder symptoms. Furthermore, consumption of certain food and natural materials such as fenugreek, skullcap, chitin/chitosan, and cheonggukjang as anti-allergics have merits such as safety (no adverse side effects), multiple suppressive effects (as a mixture would contain various components that are active against allergic responses), and ease of consumption when required. These merits and anti-allergic properties of food and natural materials help control various allergic disorders.
Lanthanide co-ordination frameworks: Opportunities and diversity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Robert J.; Long, De-Liang; Hubberstey, Peter
2005-08-15
Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly moremore » difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials.« less
On collisional disruption - Experimental results and scaling laws
NASA Technical Reports Server (NTRS)
Davis, Donald R.; Ryan, Eileen V.
1990-01-01
Both homogeneous and inhomogeneous targets have been addressed by the present experimental consideration of the impact strengths, fragment sizes, and fragment velocities generated by cement mortar targets whose crushing strengths vary by an order of magnitude, upon impact of projectiles in the velocity range of 50-5700 m/sec. When combined with additional published data, dynamic impact strength is found to correlate with quasi-static material strengths for materials ranging in character from basalt to ice; two materials not following this trend, however, are weak mortar and clay targets. Values consistent with experimental results are obtainable with a simple scaling algorithm based on impact energy, material properties, and collisional strain rate.
Ford, Loretta T; Berg, Jonathan D
2017-03-01
Introduction Legal highs also known as novel psychoactive substances mimic the effects of classic drugs of abuse. Challenges to developing screening services for novel psychoactive substances include identifying which novel psychoactive substances are available to target. Using new techniques such as exact mass time of flight can help identify common novel psychoactive substances to target for screening patient samples by routine methods such as tandem mass spectrometry. We demonstrate this strategy working in our own clinical toxicology laboratory after qualitative analysis of 98 suspect materials for novel psychoactive substances by ultra-performance liquid chromatography with time of flight mass spectrometry. Results From July 2014 to July 2015 we received 98 requests to test a range of different suspect materials for novel psychoactive substances including herbs, tobacco, liquids, pills and powders. Overall, 87% of the suspect materials tested positive for novel psychoactive substances, and 15% for controlled drugs. Three common novel psychoactive substances were present in 74% of the suspect materials: methiopropamine, a methamphetamine analogue; ethylphenidate, a cocaine mimic; and the third generation synthetic cannabinoid 5F-AKB-48. For the 55 branded products we tested only 24% of the stated contents matched exactly the compounds we detected. Conclusion Testing suspect materials using ultra-performance liquid chromatography with time of flight mass spectrometry has identified three common novel psychoactive substances in use in the UK, simplifying the development of a relevant novel psychoactive substances screening service to our population. By incorporating this into our routine liquid chromatography tandem mass spectrometry drugs of abuse screen, then offers a clinically relevant novel psychoactive substances service to our users. This strategy ensures our clinical toxicology service continues to remain effective to meet the challenges of the changing drug use in the UK.
Aptamer-conjugated nanomaterials and their applications
Yang, Liu; Ye, Mao; Yang, Ronghua; Fu, Ting; Chen, Yan; Wang, Kemin
2011-01-01
The combination of aptamers with novel nanomaterials, including nanomaterial-based aptamer bioconjugates. has attracted considerable interest and has led to a wide variety of applications. In this review, we discuss how a variety of nanomaterials, including gold, silica and magnetic nanoparticles, as well as carbon nanotubes, hydrogels, liposomes and micelles, have been used to functionalize aptamers for a variety of applications. These aptamer functionalized materials have led to advances in amplified biosensing, cancer cell-specific recognition, high-efficiency separation, and targeted drug delivery. PMID:22016112
Assessment of candidates for target window material in accelerator-driven molybdenum-99 production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strons, Philip; Bailey, James; Makarashvili, Vakhtang
2016-10-01
NorthStar Medical Technologies is pursuing production of an important medical isotope, Mo-99, through a photo-nuclear reaction of a Mo-100 target using a high-power electron accelerator. The current target utilizes an Inconel 718 window. The purpose of this study was to evaluate other candidate materials for the target window, which separates the high-pressure helium gas inside the target from the vacuum inside the accelerator beamline and is subjected to significant stress. Our initial analysis assessed the properties (density, thermal conductivity, maximum stress, minimum window thickness, maximum temperature, and figure of merit) for a range of materials, from which the three mostmore » promising were chosen: Inconel 718, 250 maraging steel, and standard-grade beryllium. These materials were subjected to further analysis to determine the effects of thermal and mechanical strain versus beam power at varying thicknesses. Both beryllium and the maraging steel were calculated to withstand more than twice as high beam power than Inconel 718.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, John J.; Schenkel, Thomas
Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g.,more » hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.« less
Xenon Sputter Yield Measurements for Ion Thruster Materials
NASA Technical Reports Server (NTRS)
Williams, John D.; Gardner, Michael M.; Johnson, Mark L.; Wilbur, Paul J.
2003-01-01
In this paper, we describe a technique that was used to measure total and differential sputter yields of materials important to high specific impulse ion thrusters. The heart of the technique is a quartz crystal monitor that is swept at constant radial distance from a small target region where a high current density xenon ion beam is aimed. Differential sputtering yields were generally measured over a full 180 deg arc in a plane that included the beam centerline and the normal vector to the target surface. Sputter yield results are presented for a xenon ion energy range from 0.5 to 10 keV and an angle of incidence range from 0 deg to 70 deg from the target surface normal direction for targets consisting of molybdenum, titanium, solid (Poco) graphite, and flexible graphite (grafoil). Total sputter yields are calculated using a simple integration procedure and comparisons are made to sputter yields obtained from the literature. In general, the agreement between the available data is good. As expected for heavy xenon ions, the differential and total sputter yields are found to be strong functions of angle of incidence. Significant under- and over-cosine behavior is observed at low- and high-ion energies, respectively. In addition, strong differences in differential yield behavior are observed between low-Z targets (C and Ti) and high-Z targets (Mo). Curve fits to the differential sputter yield data are provided. They should prove useful to analysts interested in predicting the erosion profiles of ion thruster components and determining where the erosion products re-deposit.
Detection of sub-MeV dark matter with three-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Zurek, Kathryn M.; Grushin, Adolfo G.; Ilan, Roni; Griffin, Sinéad M.; Liu, Zhen-Fei; Weber, Sophie F.; Neaton, Jeffrey B.
2018-01-01
We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O (meV ) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.
S3 targets monitoring with an electron gun
NASA Astrophysics Data System (ADS)
Kallunkathariyil, J.; Stodel, Ch.; Marry, C.; Frémont, G.; Bastin, B.; Piot, J.; Clément, E.; Le Moal, S.; Morel, V.; Thomas, J.-C.; Kamalou, O.; Spitaëls, C.; Savajols, H.; Vostinar, M.; Pellemoine, F.; Mittig, W.
2018-05-01
The monitoring of targets under irradiation was investigated using a 20 keV electron beam. An integrated and automated electron beam deflection was developed allowing a monitoring over the whole surface of target materials. Thus, local defects could be identified on-line during an experiment performed at GANIL involving different materials irradiated with a focused krypton beam at 10.5 MeV/u. Performances of this target monitoring system are presented in this paper.
Optical Radiation from Shock-Compressed Materials. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Svendsen, Robert F., Jr.
1987-01-01
Recent observations of shock-induced radiation from oxides, silicates, and metals of geophysical interest constrain the shock-compressed temperature of these materials. The relationships between the temperature inferred from the observed radiation and the temperature of the shock-compressed film or foil and/or window were investigated. Changes of the temperature field in each target component away from that of their respective shock-compressed states occur because of: shock-impedance mismatch between target components; thermal mismatch between target components; surface roughness at target interfaces; and conduction within and between target components. In particular, conduction may affect the temperature of the film/foil window interface on the time scale of the experiments, and so control the intensity and history of the dominant thermal radiation sources in the target. This type of model was used to interpret the radiation emitted by a variety of shock-compressed materials and interfaces.
Research and development on materials for the SPES target
NASA Astrophysics Data System (ADS)
Corradetti, Stefano; Andrighetto, Alberto; Manzolaro, Mattia; Scarpa, Daniele; Vasquez, Jesus; Rossignoli, Massimo; Monetti, Alberto; Calderolla, Michele; Prete, Gianfranco
2014-03-01
The SPES project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro) is focused on the production of radioactive ion beams. The core of the SPES facility is constituted by the target, which will be irradiated with a 40 MeV, 200 µA proton beam in order to produce radioactive species. In order to efficiently produce and release isotopes, the material constituting the target should be able to work under extreme conditions (high vacuum and temperatures up to 2000 °C). Both neutron-rich and proton-rich isotopes will be produced; in the first case, carbon dispersed uranium carbide (UCx) will be used as a target, whereas to produce p-rich isotopes, several types of targets will have to be irradiated. The synthesis and characterization of different types of material will be reported. Moreover, the results of irradiation and isotopes release tests on different uranium carbide target prototypes will be discussed.
Magnetron with flux switching cathode and method of operation
Aaron, D.B.; Wiley, J.D.
1989-09-12
A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness. 5 figs.
Magnetron with flux switching cathode and method of operation
Aaron, David B.; Wiley, John D.
1989-01-01
A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness.
Computational screening of organic polymer dielectrics for novel accelerator technologies
Pilania, Ghanshyam; Weis, Eric; Walker, Ethan M.; ...
2018-06-18
The use of infrared lasers to power accelerating dielectric structures is a developing area of research. Within this technology, the choice of the dielectric material forming the accelerating structures, such as the photonic band gap (PBG) structures, is dictated by a range of interrelated factors including their dielectric and optical properties, amenability to photo-polymerization, thermochemical stability and other target performance metrics of the particle accelerator. In this direction, electronic structure theory aided computational screening and design of dielectric materials can play a key role in identifying potential candidate materials with the targeted functionalities to guide experimental synthetic efforts. In anmore » attempt to systematically understand the role of chemistry in controlling the electronic structure and dielectric properties of organic polymeric materials, here we employ empirical screening and density functional theory (DFT) computations, as a part of our multi-step hierarchal screening strategy. Our DFT based analysis focused on the bandgap, dielectric permittivity, and frequency-dependent dielectric losses due to lattice absorption as key properties to down-select promising polymer motifs. In addition to the specific application of dielectric laser acceleration, the general methodology presented here is deemed to be valuable in the design of new insulators with an attractive combination of dielectric properties.« less
Protein-Based Drug-Delivery Materials
Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao
2017-01-01
There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review. PMID:28772877
Synthesis of ZnO:As Films Using Off-Axis Sputtering Deposition
NASA Technical Reports Server (NTRS)
Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Rose, M. Franklin (Technical Monitor)
2001-01-01
As a novel oxide semiconductor material, ZnO is interesting for use in many applications. For fabricating electronic devices, it is important to have n- and p- type ZnO materials. Arsenic has been proven to be one of the p-type dopants for ZnO materials. However, information in studying the ZnAsO ternary compound films has been scarce. In order to investigate the morphology, structure and electrical properties of ZnAsO ternary compounds, ZnO:As films have been synthesized using off-axis sputtering deposition on various substrates including (100) Si and (0001) sapphire crystals. Films are grown under various growth conditions. ZnO:As targets with the atomic weight ratios of arsenic to zinc from 0.01 to 0.10 are used for film synthesis. The growth temperatures and pressures range from 350 to 550C and 5 to 150 mTorr, respectively. Argon to oxygen gas ratio for film growth is varied to examine the film quality as well. Film surface morphology, crystal structure, and compositions, are characterized using atomic force microscopy, x-ray diffraction, and energy dispersive spectroscopy, respectively. The compositions of target material and ZnO:As films grown under various conditions are then assessed. The electrical properties were also measured. The detail of these measurements will be discussed in the presentation.
Advanced Materials for Exploration Task Research Results
NASA Technical Reports Server (NTRS)
Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.
2008-01-01
The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.
Paasinen-Sohns, Aino; Koelzer, Viktor H; Frank, Angela; Schafroth, Julian; Gisler, Aline; Sachs, Melanie; Graber, Anne; Rothschild, Sacha I; Wicki, Andreas; Cathomas, Gieri; Mertz, Kirsten D
2017-03-01
Companion diagnostics rely on genomic testing of molecular alterations to enable effective cancer treatment. Here we report the clinical application and validation of the Oncomine Focus Assay (OFA), an integrated, commercially available next-generation sequencing (NGS) assay for the rapid and simultaneous detection of single nucleotide variants, short insertions and deletions, copy number variations, and gene rearrangements in 52 cancer genes with therapeutic relevance. Two independent patient cohorts were investigated to define the workflow, turnaround times, feasibility, and reliability of OFA targeted sequencing in clinical application and using archival material. Cohort I consisted of 59 diagnostic clinical samples from the daily routine submitted for molecular testing over a 4-month time period. Cohort II consisted of 39 archival melanoma samples that were up to 15years old. Libraries were prepared from isolated nucleic acids and sequenced on the Ion Torrent PGM sequencer. Sequencing datasets were analyzed using the Ion Reporter software. Genomic alterations were identified and validated by orthogonal conventional assays including pyrosequencing and immunohistochemistry. Sequencing results of both cohorts, including archival formalin-fixed, paraffin-embedded material stored up to 15years, were consistent with published variant frequencies. A concordance of 100% between established assays and OFA targeted NGS was observed. The OFA workflow enabled a turnaround of 3½ days. Taken together, OFA was found to be a convenient tool for fast, reliable, broadly applicable and cost-effective targeted NGS of tumor samples in routine diagnostics. Thus, OFA has strong potential to become an important asset for precision oncology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sudac, D.; Nad, K.; Orlic, Z.; Obhodas, J.; Valkovic, V.
2016-06-01
It was demonstrated in the previous work that various threat materials could be detected inside the sea going cargo container by measuring the three variables, carbon and oxygen concentration and density of investigated material. Density was determined by measuring transmitted neutrons, which is not always practical in terms of setting up the instrument geometry. In order to enable more geometry flexibility, we have investigated the possibility of using the scattered neutrons in cargo material identification. For that purpose, the densities of different materials were measured depending on the position of neutron detectors and neutron generator with respect to the target position. One neutron detector was put above the target, one behind and one in front of the target, above the neutron generator. It was shown that all three positions of neutron detectors can be successfully used to measure the target density, but only if the detected neutrons are successfully discriminated from the gamma rays.
An Evaluation of Independent Learning of the Japanese Hiragana System Using an Interactive CD
ERIC Educational Resources Information Center
Geraghty, Barbara; Quinn, Ann Marcus
2009-01-01
As Japanese uses three writing systems (hiragana, katakana, and the ideograms known as kanji), and as materials in the target language include all three, it is a major challenge to learn to read and write quickly. This paper focuses on interactive multi-media methods of teaching Japanese reading which foster learner autonomy. As little has been…
Environmental Assessment for Airborne Laser Debris Management Vandenberg AFB, California
2008-07-01
use, aesthetics, hazardous materials management, soils and geology, noise, cultural resources, and environmental justice. The resources analyzed in...more detail include: health and safety, hazardous waste management, water resources, air quality, and biological resources. Environmental Effects Under...either intact or destroyed target missiles could result in several potential hazards . Health and Safety. Based on the debris migration modeling and
JPRS Report, Science & Technology, Japan
1990-08-08
gap is created. Many research accomplishments concerning such syn- Based on these requirements, the concept of totally new thesis technologies have...the targets have shifted to active functions, such as Although the theory on characteristics of quasicrystals the conversion of solar ray to electric...organisms, such as humans, there are intel- committee chairman for the report compilation, to dis- ligent materials, including the nerve cells (neurons
The National Nanotechnology Initiative. Strategic Plan
2007-12-01
scaled-up, reliable, and cost -effective manufacturing of nanoscale materials, structures, devices, and systems. Includes R&D and integration of...provide their host agencies with fresh perspectives. The NNI will seek to facilitate targeted, cost -neutral, sabbatical-type exchanges between...spectrometry, that require expert operators to collect the data and interpret the results. Moreover, a single instrument may cost hundreds of thousands
Information Requirements Analyses for Transatmospheric Vehicles
1992-06-01
include takeoff inclination, Mach number/fuel burn schedule , planned headings, planned altitudes, threat types/locations, communications satel- lite...network availability schedules , and P/L/target-specific mission events. The mission materials are transferred to the TAV by means of magnetic media...constraints. It also monitors actual fuel consumption, compares it against the mission fuel schedule , predicts rest-of-mission fuel consumption, and
Ben Aissa, A; Herrera-Chacon, A; Pupin, R R; Sotomayor, M D P T; Pividori, M I
2017-02-15
Magnetic separation based on biologically-modified magnetic particles is a preconcentration procedure commonly integrated in magneto actuated platforms for the detection of a huge range of targets. However, the main drawback of this material is the low stability and high cost. In this work, a novel hybrid molecularly-imprinted polymer with magnetic properties is presented with affinity towards biotin and biotinylated biomolecules. During the synthesis of the magneto core-shell particles, biotin was used as a template. The characterization of this material by microscopy techniques including SEM, TEM and confocal microscopy is presented. The application of the magnetic-MIPs for the detection of biotin and biotinylated DNA in magneto-actuated platforms is also described for the first time. The magnetic-MIP showed a significant immobilization capacity of biotinylated molecules, giving rise to a cheaper and a robust method (it is not required to be stored at 4°C) with high binding capacity for the separation and purification under magnetic actuation of a wide range of biotinylated molecules, and their downstream application including determination of their specific targets. Copyright © 2016 Elsevier B.V. All rights reserved.
Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.
Wang, Yi-Han; Huang, Ke-Jing; Wu, Xu
2017-11-15
Layered transition metal dichalcogenides (TMDCs) comprise a category of two-dimensional (2D) materials that offer exciting properties, including large surface area, metallic and semi-conducting electrical capabilities, and intercalatable morphologies. Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. TMDCs nanomaterials have been widely applied in various electrochemical biosensors with high sensitivity and selectivity. The marriage of TMDCs and electrochemical biosensors has created many productive sensing strategies for applications in the areas of clinical diagnosis, environmental monitoring and food safety. In recent years, an increasing number of TMDCs-based electrochemical biosensors are reported, suggesting TMDCs offers new possibilities of improving the performance of electrochemical biosensors. This review summarizes recent advances in electrochemical biosensors based on TMDCs for detection of various inorganic and organic analytes in the last five years, including glucose, proteins, DNA, heavy metal, etc. In addition, we also point out the challenges and future perspectives related to the material design and development of TMDCs-based electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.
Vega, Juan M; Yu, Weichang; Han, Fangpu; Kato, Akio; Peters, Eric M; Zhang, Zhanyuan J; Birchler, James A
2008-04-01
The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.
Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets
NASA Astrophysics Data System (ADS)
Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass
2015-11-01
Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, M. Y. A; Sofu, T.; Zhong, Z.
2008-10-30
A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed viamore » the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten and uranium are very similar allowing the use of either material in the subcritical assembly without changing its characteristics. However, the uranium target has a higher neutron yield, which increases the neutron flux of the subcritical assembly. Based on the considered dimensions and heat generation profiles, the commercial CFD software Star-CD is used for the thermal-hydraulic analysis of each target design to satisfy a set of thermal criteria, the most limiting of which being to maintain the water temperature 50 below the boiling point. It is found that the turbulence in the inlet channels dissipates quickly in narrow gaps between the target plates and, as a result, the heat transfer is limited by the laminar flow conditions. On average, 3-D CFD analyses of target assemblies agree well with 1-D calculations using RELAP (performed by KIPT). However, the recirculation and stagnation zones predicted with the CFD models prove the importance of a 3-D analysis to avoid the resulting hotspots. The calculated temperatures are subsequently used for the structural analysis of each target configuration to satisfy the other engineering design requirements. The thermo-structural calculations are performed mostly with NASTRAN and the results occasionally compared with the results from MARC. Both, NASTRAN and MARC are commercially available structural-mechanics analysis software. Although, a significant thermal gradient forms in target elements along the beam direction, the high thermal stresses are generally observed peripherally around the edge of thin target disks/plates. Due to its high thermal conductivity, temperatures and thermal stresses in tungsten target are estimated to be significantly lower than in uranium target. The deformations of the target disks/plates are found to be insignificant, which eliminate concerns for flow blockages in narrow coolant channels. Consistent with the specifications of the KIPT accelerator to be used in this facility, the electron beam power is 100-kW with electron energy in the range of 100 to 200 MeV. As expected, the 100 MeV electrons deposit their energy faster while the 200-MeV electrons spread their energy deposition further along the beam direction. However in that electron energy range, the energy deposition profiles near the beam window require very thin target plates/disks to limit the temperatures and thermal stresses.« less
NASA Astrophysics Data System (ADS)
Heider, S. A.; Dunn, W. L.
2015-11-01
The signature-based radiation-scanning technique utilizes radiation detector responses, called "signatures," and compares these to "templates" in order to differentiate targets that contain certain materials, such as explosives or drugs, from those that do not. Our investigations are aimed at the detection of nitrogen-rich explosives contained in improvised explosive devices. We use the term "clutter" to refer to any non-explosive materials with which the interrogating radiation may interact between source and detector. To deal with the many target types and clutter configurations that may be encountered in the field, the use of "artificial templates" is proposed. The MCNP code was used to simulate 14.1 MeV neutron source beams incident on one type of target containing various clutter and sample materials. Signatures due to inelastic-scatter and prompt-capture gamma rays from hydrogen, carbon, nitrogen, and oxygen and two scattered neutron signatures were considered. Targets containing explosive materials in the presence of clutter were able to be identified from targets that contained only non-explosive ("inert") materials. This study demonstrates that a finite number of artificial templates is sufficient for IED detection with fairly good sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Kunz, Peter; Bricault, Pierre; Dombsky, Marik; Erdmann, Nicole; Hanemaayer, Vicky; Wong, John; Lützenkirchen, Klaus
2013-09-01
The production of radioactive ion beams (RIB) from spallation targets by irradiation with a continuous 500 MeV proton beam, has been routine at TRIUMF for several years. Based on the experience with composite refractory carbide targets a procedure for the fabrication of UC2/C targets was developed. It includes the preparation of UC2 by carbothermal reduction of UO2, the slip-casting of fine-grained UC2/C slurry on graphite foil under inert gas atmosphere and the cutting of composite target discs which are stacked up to a lamellar structure. The thermal properties of such an arrangement are adequate to withstand the high power deposition of an intense, continuous proton beam and also beneficial for the fast release of short-lived radioactive isotopes. Molecular structure, particle size and the impact of sintering of the target discs were investigated via XRD and SEM. Thickness and mass distribution were measured with position-sensitive LIII-edge densitometry. The results confirm that the properties of the UC2/C target material are well suited for RIB production at TRIUMF while there is still room for improvement with regard to uniformity of mass distribution in target disc thickness.
Characterization and fabrication of target materials for RIB generation
NASA Astrophysics Data System (ADS)
Welton, R. F.; Janney, M. A.; Mueller, P. E.; Ortman, W. K.; Rauniyar, R.; Stracener, D. W.; Williams, C. L.
2001-07-01
This report discusses two techniques developed at the Oak Ridge National Laboratory (ORNL) that are employed for the fabrication and characterization of targets used in the production of Radioactive Ion Beams (RIBs). First, our method of in-house fabrication of uranium carbide targets is discussed. We have found that remarkably uniform coatings of UC2 can be formed on the microstructure of porous C matrices. The technique has been used to form UC2 layers on highly thermally conductive graphitic foams. Targets fabricated in this fashion have been tested under low-intensity proton bombardment and yields of selected radioactive species are reported. This report also describes an off-line test stand for the investigation of effusive and diffusive transport in RIB target/ion sources. Permeation rates of gases and vapors passing through a high temperature membrane or through an effusive channel constructed from the material under investigation are recorded. Diffusion coefficients and adsorption enthalpies, which characterize the interaction of RIB species with materials of the target/ion source, are extracted from the time profile of the recorded data. Examples of diffusion, effusion, and conductance measurements are provided.
He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin
2017-06-22
For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future development. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Stork, D.; Heidinger, R.; Muroga, T.; Zinkle, S. J.; Moeslang, A.; Porton, M.; Boutard, J.-L.; Gonzalez, S.; Ibarra, A.
2017-09-01
Materials damage by 14.1MeV neutrons from deuterium-tritium (D-T) fusion reactions can only be characterised definitively by subjecting a relevant configuration of test materials to high-intensity ‘fusion-neutron spectrum sources’, i.e. those simulating closely D-T fusion-neutron spectra. This provides major challenges to programmes to design and construct a demonstration fusion reactor prior to having a large-scale, high-intensity source of such neutrons. In this paper, we discuss the different aspects related to these ‘relevant configuration’ tests, including: • generic issues in materials qualification/validation, comparing safety requirements against those of investment protection; • lessons learned from the fission programme, enabling a reduced fusion materials testing programme; • the use and limitations of presently available possible irradiation sources to optimise a fusion neutron testing program including fission-neutron irradiation of isotopically and chemically tailored steels, ion damage by high-energy helium ions and self-ion beams, or irradiation studies with neutron sources of non-fusion spectra; and • the different potential sources of simulated fusion neutron spectra and the choice using stripping reactions from deuterium-beam ions incident on light-element targets.
Composition and methods of preparation of target material for producing radionuclides
Seropeghin, Yurii D; Zhuikov, Boris L
2013-05-28
A composition suitable for use as a target containing antimony to be irradiated by accelerated charged particles (e.g., by protons to produce tin-117m) comprises an intermetallic compound of antimony and titanium which is synthesized at high-temperature, for example, in an arc furnace. The formed material is powdered and melted in an induction furnace, or heated at high gas pressure in gas static camera. The obtained product has a density, temperature stability, and heat conductivity sufficient to provide an appropriate target material.
Atmospheric effects in multispectral remote sensor data
NASA Technical Reports Server (NTRS)
Turner, R. E.
1975-01-01
The problem of radiometric variations in multispectral remote sensing data which occur as a result of a change in geometric and environmental factors is studied. The case of spatially varying atmospheres is considered and the effect of atmospheric scattering is analyzed for realistic conditions. Emphasis is placed upon a simulation of LANDSAT spectral data for agricultural investigations over the United States. The effect of the target-background interaction is thoroughly analyzed in terms of various atmospheric states, geometric parameters, and target-background materials. Results clearly demonstrate that variable atmospheres can alter the classification accuracy and that the presence of various backgrounds can change the effective target radiance by a significant amount. A failure to include these effects in multispectral data analysis will result in a decrease in the classification accuracy.
Effect of the target power density on high-power impulse magnetron sputtering of copper
NASA Astrophysics Data System (ADS)
Kozák, Tomáš
2012-04-01
We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.
Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables
NASA Technical Reports Server (NTRS)
Johnson, D. W.; Curry, D. M.; Kelly, R. E.
1986-01-01
Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.
Jenke, Dennis R; Zietlow, David; Garber, Mary Jo; Sadain, Salma; Reiber, Duane; Terbush, William
2007-01-01
Plastic materials are widely used in medical items, such as solution containers, transfusion sets, transfer tubing, and devices. An emerging trend in the biotechnology industry is the utilization of plastic containers to prepare, transport, and store an assortment of solutions including buffers, media, and in-process and finished product. The direct contact of such containers with the product at one or more points in its lifetime raises the possibility that container leachables may accumulate in the finished product. The interaction between several commercially available container materials and numerous model test solutions (representative of buffers and media used in biopharmaceutical applications) was investigated. This paper summarizes the identification of leachables associated with the container materials and documents the levels to which targeted leachables accumulate in the test solutions under defined storage conditions.
Saito, Yuta; Fons, Paul; Makino, Kotaro; Mitrofanov, Kirill V; Uesugi, Fumihiko; Takeguchi, Masaki; Kolobov, Alexander V; Tominaga, Junji
2017-10-12
Growth of Bi-Te films by helicon-wave magnetron sputtering is systematically explored using alloy targets. The film compositions obtained are found to strongly depend on both the sputtering and antenna-coil powers. The obtainable film compositions range from Bi 55 Te 45 to Bi 43 Te 57 when a Bi 2 Te 3 alloy target is used, and from Bi 42 Te 58 to Bi 40 Te 60 (Bi 2 Te 3 ) for a Te-rich Bi 30 Te 70 target. All films show strong orientation of the van der Waals layers (00l planes) parallel to the substrate. The atomic level stacking of Bi 2 Te 3 quintuple and Bi bi-layers has been directly observed by high resolution transmission electron microscopy. Band structure simulations reveal that Bi-rich Bi 4 Te 3 bulk is a zero band gap semimetal with a Dirac cone at the Gamma point when spin-orbit coupling is included. Optical measurements also confirm that the material has a zero band gap. The tunability of the composition and the topological insulating properties of the layers will enable the use of these materials for future electronics applications on an industrial scale.
Advance in phage display technology for bioanalysis.
Tan, Yuyu; Tian, Tian; Liu, Wenli; Zhu, Zhi; J Yang, Chaoyong
2016-06-01
Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spatiospectral Analysis of Accelerated Protons from Sub-Micron Liquid Crystal Films
NASA Astrophysics Data System (ADS)
Willis, Christopher; Poole, Patrick; Cochran, Ginevra; van Woerkom, Linn; Schumacher, Douglass
2017-10-01
Recent studies on ion acceleration have trended towards ultra-thin (<1 μm) targets due to improved ion energies and yields from these targets. As discussed here, ultra-thin targets may exhibit unusual spatial distributions in the accelerated ions, such that ion spectrometer data may not be representative of the overall distribution. More complete characterization of the ions requires spectral unfolding of radiochromic film (RCF) data, yielding spatially dependent spectra. Spatiospectral data will be presented from several experiments using sub-micron liquid crystal film targets at the Scarlet (OSU), Texas Petawatt (UT, Austin) and PHELIX (GSI, Darmstadt) laser facilities, including evidence of >75 MeV protons from 300 nm films at PHELIX. Analysis of RCF data is supported by Monte-Carlo modeling of RCF response to ions and electrons using FLUKA. Trends in the resulting ion distributions will be discussed including spatially varying slope temperature and observation of annular ring features at moderate ion energies on many shots. This material is based upon work supported by the AFOSR under award FA9550-14-1-0085, by the DARPA PULSE program through a Grant from AMRDEC, and by the NNSA under contract DE-NA0003107.
Delimitation of terrestrial impact craters by way of pseudotachylytic rock distribution
NASA Technical Reports Server (NTRS)
Spray, John G.
1993-01-01
The determination of the shape and size of terrestrial impact craters is problematic, yet is critical to understanding cratering mechanics and for scaling bolide mass, volume, and impact velocity with crater size and target response. The problem is particularly difficult in older geological terrains (e.g. Precambrian) which are more likely to have suffered post-impact deformation and hence distortion of the original structure and/or where weathering may have partly removed or obscured its original shape. Traditionally, a number of features are used to assist us in determining the shape and size of an impact structure. These include the following: (1) the occurrence of faults, especially those disposed concentrically relative to the crater--the outermost ring faults being interpreted as indicating a viable minimum diameter; and (2) the development of so-called breccias, some of which are also associated with faults (e.g. the Sudbury Breccia developed within the target rocks of the Sudbury Structure of Onta rio, Canada). 'Breccia' is not a satisfactory term because a number of breccia-types exist at impact sites (e.g. fall-back breccias and in-situ brecciated target material). Of relevance to crater diameter determination is the recognition of discrete zones and fault- and shock-related pseudotachylyte. Pseudotachylyte is a rock type comprising a fine-grained, usually dark matrix containing clasts of minerals and/or rock derived from the country rock target material. It origin is normally attributed to high-speed slip (including vibration) along a slip surface (i.e. fault) or to the passage of a shock wave through the host material. The clasts can occur as angular fragments (i.e. like a breccia), but are more commonly developed as rounded to sub-rounded fragments. Significantly, the scale of these pseudotachylytes can range from sub-millimeter thick veinlets to dyke-like bodies up to 1 km or more thick. It is the latter, larger occurrence which has been referred to as 'breccia.' The smaller-sized occurrence is generally not recognized in the field, nor is it traditionally associated with its larger counterpart.
Effect of a viscoelastic target on the impact response of a flat-nosed projectile
NASA Astrophysics Data System (ADS)
Liu, Hu; Yang, Jialing; Liu, Hua
2018-02-01
Taylor impact is a widely used strategy in which a flat-nosed projectile is fired onto a rigid anvil directly to determine the dynamic strength of rod specimens. Nowadays, the rigid anvil is often replaced by an output target bar to ensure the accuracy of measurement via recording strain signals in the output bar. For testing the dynamic strength of low-density materials, a low-impedance target bar, which exhibits viscoelastic characteristics is often employed. In this paper, an extended Taylor model is proposed to improve the idealization of treating the target bar as perfectly rigid material in the classic Taylor model, and the viscoelastic effect of the target bar is incorporated. The viscoelastic target bar is depicted by two elastic springs and one dashpot. Based on the plastic shock wave theory in the flat-nosed projectile associated with the viscoelastic wave analysis in the target bar, the viscoelastic effect of the target bar on the impact response of the flat-nosed projectile is investigated. The finite element simulation is also carried out to verify the theoretical model, and good agreement is found. The present theoretical model is also called the Taylor-cylinder Hopkinson impact, which provides a more accurate way to identify the dynamic material parameters. The dynamic responses of the present model are further compared with previous elastic and rigid target bar models. It is found that the viscoelastic effect of the target bar should be taken into consideration in the Taylor-cylinder Hopkinson impact test for low-impedance materials.
Radiocarbon dating of terrestrial carbonates
Pigati, Jeffrey S.; Rink, W. Jack; Thompson, Jeroen
2014-01-01
Terrestrial carbonates encompass a wide range of materials that potentially could be used for radiocarbon (14C) dating. Biogenic carbonates, including shells and tests of terrestrial and aquatic gastropods, bivalves, ostracodes, and foraminifera, are preserved in a variety of late Quaternary deposits and may be suitable for 14C dating. Primary calcareous deposits (marls, tufa, speleothems) and secondary carbonates (rhizoliths, fracture fill, soil carbonate) may also be targeted for dating when conditions are favorable. This chapter discusses issues that are commonly encountered in 14C dating of terrestrial carbonates, including isotopic disequilibrium and open-system behavior, as well as methods used to determine the reliability of ages derived from these materials. Recent methodological advancements that may improve the accuracy and precision of 14C ages of terrestrial carbonates are also highlighted.
Conjugated Polymers/DNA Hybrid Materials for Protein Inactivation.
Zhao, Likun; Zhang, Jiangyan; Xu, Huiming; Geng, Hao; Cheng, Yongqiang
2016-09-07
Chromophore-assisted light inactivation (CALI) is a powerful tool for analyzing protein functions due to the high degree of spatial and temporal resolution. In this work, we demonstrate a CALI approach based on conjugated polymers (CPs)/DNA hybrid material for protein inactivation. The target protein is conjugated with single-stranded DNA in advance. Single-stranded DNA can form CPs/DNA hybrid material with cationic CPs via electrostatic and hydrophobic interactions. Through the formation of CPs/DNA hybrid material, the target protein that is conjugated with DNA is brought into close proximity to CPs. Under irradiation, CPs harvest light and generate reactive oxygen species (ROS), resulting in the inactivation of the adjacent target protein. This approach can efficiently inactivate any target protein which is conjugated with DNA and has good specificity and universality, providing a new strategy for studies of protein function and adjustment of protein activity.
NASA Astrophysics Data System (ADS)
Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.
2009-09-01
The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.
NASA Technical Reports Server (NTRS)
Collins, Rufus D., Jr.; Kinard, William H.
1960-01-01
The results of this investigation indicate that the penetration of projectiles into quasi-infinite targets can be correlated as a function of the maximum momentum per unit area possessed by the projectiles. The penetration of projectiles into aluminum, copper, and steel targets was found to be a linear function while the penetration into lead targets was a nonlinear function of the momentum per unit area of the impacting projectiles. Penetration varied inversely as the projectile density and the elastic modulus of the target material for a given projectile momentum per unit area. Crater volumes were found to be a linear function of the kinetic energy of the projectile, the greater volumes being obtained in the target materials which had the lowest yield strength and the lowest speed of sound.
Imaging the Subsurface with Upgoing Muons
NASA Astrophysics Data System (ADS)
Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.
2014-12-01
We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The MicroRNA Interaction Network of Lipid Diseases
Kandhro, Abdul H.; Shoombuatong, Watshara; Nantasenamat, Chanin; Prachayasittikul, Virapong; Nuchnoi, Pornlada
2017-01-01
Background: Dyslipidemia is one of the major forms of lipid disorder, characterized by increased triglycerides (TGs), increased low-density lipoprotein-cholesterol (LDL-C), and decreased high-density lipoprotein-cholesterol (HDL-C) levels in blood. Recently, MicroRNAs (miRNAs) have been reported to involve in various biological processes; their potential usage being a biomarkers and in diagnosis of various diseases. Computational approaches including text mining have been used recently to analyze abstracts from the public databases to observe the relationships/associations between the biological molecules, miRNAs, and disease phenotypes. Materials and Methods: In the present study, significance of text mined extracted pair associations (miRNA-lipid disease) were estimated by one-sided Fisher's exact test. The top 20 significant miRNA-disease associations were visualized on Cytoscape. The CyTargetLinker plug-in tool on Cytoscape was used to extend the network and predicts new miRNA target genes. The Biological Networks Gene Ontology (BiNGO) plug-in tool on Cytoscape was used to retrieve gene ontology (GO) annotations for the targeted genes. Results: We retrieved 227 miRNA-lipid disease associations including 148 miRNAs. The top 20 significant miRNAs analysis on CyTargetLinker provides defined, predicted and validated gene targets, further targeted genes analyzed by BiNGO showed targeted genes were significantly associated with lipid, cholesterol, apolipoprotein, and fatty acids GO terms. Conclusion: We are the first to provide a reliable miRNA-lipid disease association network based on text mining. This could help future experimental studies that aim to validate predicted gene targets. PMID:29018475
NASA Astrophysics Data System (ADS)
Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.
2016-10-01
Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally, generally useful wavelength ranges are determined and the optimal amount of principal components is analyzed.
Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straub, Douglas; Bayham, Samuel; Weber, Justin
The proposed Clean Power Plan requires CO 2 emission reductions of 30% by 2030 and further reductions are targeted by 2050. The current strategies to achieve the 30% reduction targets do not include options for coal. However, the 2016 Annual Energy Outlook suggests that coal will continue to provide more electricity than renewable sources for many regions of the country in 2035. Therefore, cost effective options to reduce greenhouse gas emissions from fossil fuel power plants are vital in order to achieve greenhouse gas reduction targets beyond 2030. As part of the U.S. Department of Energy’s Advanced Combustion Program, themore » National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO 2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metal-oxide) is continuously cycled to oxidize the fuel. This CLC concept is the focus of this research and will be described in more detail in the following sections. The solid material that is used to transport oxygen is called an oxygen carrier material. The cost, durability, and performance of this material is a key issue for the CLC technology. Researchers at the NETL R&IC have developed an oxygen carrier material that consists of copper, iron, and alumina. This material has been tested extensively using lab scale instruments such as thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mechanical attrition (ASTM D5757), and small fluidized bed reactor tests. This report will describe the results from a realistic, circulating, proof-of-concept test that was completed using NETL’s 50kW th circulating Chemical Looping Reactor (CLR) test facility.« less
ELECTRICAL TECHNIQUES FOR ENGINEERING APPLICATIONS.
Bisdorf, Robert J.
1985-01-01
Surface electrical geophysical methods have been used in such engineering applications as locating and delineating shallow gravel deposits, depth to bedrock, faults, clay zones, and other geological phenomena. Other engineering applications include determining water quality, tracing ground water contaminant plumes and locating dam seepages. Various methods and electrode arrays are employed to solve particular geological problems. The sensitivity of a particular method or electrode array depends upon the physics on which the method is based, the array geometry, the electrical contrast between the target and host materials, and the depth to the target. Each of the available electrical methods has its own particular advantages and applications which the paper discusses.
Detergent Lysis of Animal Tissues for Immunoprecipitation.
DeCaprio, James; Kohl, Thomas O
2017-12-01
This protocol details protein extraction from mouse tissues for immunoprecipitation purposes and has been applied for the performance of large-scale immunoprecipitations of target proteins from various tissues for the identification of associated proteins by mass spectroscopy. The key factors in performing a successful immunoprecipitation directly relate to the abundance of target protein in a particular tissue type and whether or not the embryonic, newborn, or adult mouse-derived tissues contain fibrous and other insoluble material. Several tissue types, including lung and liver as well as carcinomas, contain significant amounts of fibrous tissue that can interfere with an immunoprecipitation. © 2017 Cold Spring Harbor Laboratory Press.
Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.
Kochergin, Vadim; Miller, Keith
2011-01-01
Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams.
Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules
Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang
2014-01-01
Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499
Microfabricated therapeutic actuators and release mechanisms therefor
Lee, Abraham P.; Fitch, Joseph P.; Schumann, Daniel L.; Da Silva, Luiz; Benett, William J.; Krulevitch, Peter A.
2000-01-01
Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a retaining/release actuator for the delivery of material, such as embolic coils, for example, through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. The SMP microtubing can be positioned around or within an end of a deposit material. Various heating arrangements can be utilized with the SMP release mechanism, and the SMP microtubing can include a metallic coating for enhanced light absorption.
Detection of sub-MeV dark matter with three-dimensional Dirac materials
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...
2018-01-08
Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less
Detection of sub-MeV dark matter with three-dimensional Dirac materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela
Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less
Brief review on pulse laser propulsion
NASA Astrophysics Data System (ADS)
Yu, Haichao; Li, Hanyang; Wang, Yan; Cui, Lugui; Liu, Shuangqiang; Yang, Jun
2018-03-01
Pulse laser propulsion (PLP) is an advanced propulsion concept can be used across a variety of fields with a wide range of applications. PLP reflects superior payload as well as decreased launch costs in comparison with other conventional methods of producing thrust, such as chemical propulsion or electric propulsion. Numerous researchers have attempted to exploit the potential applications of PLP. This paper first reviews concepts relevant to PLP, including the propulsion modes, breakdown regimes, and propulsion efficiency; the propulsion targets for different materials with the pulse laser are then discussed in detail, including the propulsion of solid and liquid microspheres. PLP applications such as the driven microsatellite, target surface particle removal, and orbital debris removal are also discussed. Although the PLP has been applied to a variety of fields, further research is yet warranted to establish its application in the aerospace field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.
This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less
Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.
1960-04-19
An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.
NASA Technical Reports Server (NTRS)
Sabol, Donald E., Jr.; Adams, John B.; Smith, Milton O.
1992-01-01
The conditions that affect the spectral detection of target materials at the subpixel scale are examined. Two levels of spectral mixture analysis for determining threshold detection limits of target materials in a spectral mixture are presented, the cases where the target is detected as: (1) a component of a spectral mixture (continuum threshold analysis) and (2) residuals (residual threshold analysis). The results of these two analyses are compared under various measurement conditions. The examples illustrate the general approach that can be used for evaluating the spectral detectability of terrestrial and planetary targets at the subpixel scale.
Protocells and their use for targeted delivery of multicomponent cargos to cancer cells
Brinker, Jeffrey C.; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S.; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L.
2016-11-01
Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.
Protocells and their use for targeted delivery of multicomponent cargos to cancer cells
Brinker, C Jeffrey; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L
2015-03-31
Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.
Methods of biological dosimetry employing chromosome-specific staining
Gray, Joe W.; Pinkel, Daniel
2000-01-01
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.
Methods And Compositions For Chromosome-Specific Staining
Gray, Joe W.; Pinkel, Daniel
2003-08-19
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.
Compositions for chromosome-specific staining
Gray, Joe W.; Pinkel, Daniel
1998-01-01
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.
Compositions for chromosome-specific staining
Gray, J.W.; Pinkel, D.
1998-05-26
Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. The methods produce staining patterns that can be tailored for specific cytogenetic analyses. The probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. The invention provides for automated means to detect and analyze chromosomal abnormalities. 17 figs.
NASA Astrophysics Data System (ADS)
Bell, James F.; Wellington, Danika; Hardgrove, Craig; Godber, Austin; Rice, Melissa S.; Johnson, Jeffrey R.; Fraeman, Abigail
2016-10-01
The Mars Science Laboratory (MSL) Curiosity rover Mastcam is a pair of multispectral CCD cameras that have been imaging the surface and atmosphere in three broadband visible RGB color channels as well as nine additional narrowband color channels between 400 and 1000 nm since the rover's landing in August 2012. As of Curiosity sol 1159 (the most recent PDS data release as of this writing), approximately 140 multispectral imaging targets have been imaged using all twelve unique bandpasses. Near-simultaneous imaging of an onboard calibration target allows rapid relative reflectance calibration of these data to radiance factor and estimated Lambert albedo, for direct comparison to lab reflectance spectra of rocks, minerals, and mixtures. Surface targets among this data set include a variety of outcrop and float rocks (some containing light-toned veins), unconsolidated pebbles and clasts, and loose sand and soil. Some of these targets have been brushed, scuffed, or otherwise disturbed by the rover in order to reveal the (less dusty) interiors of these materials, and those targets and each of Curiosity's drill holes and tailings piles have been specifically targeted for multispectral imaging.Analysis of the relative reflectance spectra of these materials, sometimes in concert with additional compositional and/or mineralogic information from Curiosity's ChemCam LIBS and passive-mode spectral data and CheMin XRD data, reveals the presence of relatively broad solid state crystal field and charge transfer absorption features characteristic of a variety of common iron-bearing phases, including hematite (both nanophase and crystalline), ferric sulfate, olivine, and pyroxene. In addition, Mastcam is sensitive to a weak hydration feature in the 900-1000 nm region that can provide insight on the hydration state of some of these phases, especially sulfates. Here we summarize the Mastcam multispectral data set and the major potential phase identifications made using that data set during the traverse so far in Gale crater, and describe the ways that Mastcam multispectral observations will continue to inform the ongoing ascent and exploration of Mt. Sharp, Gale crater's layered central mound of sedimentary rocks.
van Oosten, Johanna M F; Peter, Jochen; Boot, Inge
2015-01-01
Previous research on women's responses to male-targeted sexually explicit material (SEM) suggests that women may be critical toward such content. However, women's critical responses to SEM have not been explained empirically. The present study had two goals: (1) to investigate whether women's critical responses to male-targeted SEM depend on individual differences in gender role orientation (i.e., hyperfemininity) and (2) to explain the effect of hyperfemininity on critical responses to SEM by looking at the way sexual material is processed. In an online experiment among women aged 18 to 30 (N = 195), both the type of SEM (a male- versus female-targeted erotic story) and processing style (stimulus- versus response-focused) were manipulated. In addition, participants were divided into three groups based on low, moderate, or high hyperfemininity. When using stimulus-focused processing (i.e., attending to the characters and situational context of the story), women were more critical toward male-targeted SEM (relative to female-targeted material), but only when they had low and moderate degrees of hyperfemininity.
Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric; ...
2017-08-18
Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the specific activity of 186gRe in this scaled-up production run was 2.6±0.5 GBq/μg (70±10 Ci/mg).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric
Production of high specific activity 186gRe is of interest for development of theranostic radiopharmaceuticals. Previous studies have shown that high specific activity 186gRe can be obtained by cyclotron irradiation of enriched 186W via the 186W(d,2n) 186gRe reaction, but most irradiations were conducted at low beam currents and for short durations. In this paper, enriched 186W metal targets were irradiated at high incident deuteron beam currents to demonstrate production rates and contaminants produced when using thick targets. Full-stopping thick targets, as determined using SRIM, were prepared by uniaxial pressing of powdered natural abundance W metal or 96.86% enriched 186W metal encasedmore » between two layers of graphite flakes for target material stabilization. An assessment of structural integrity was made on each target preparation. To assess the performance of graphite-encased thick 186W metal targets, along with the impact of encasing on the separation chemistry, targets were first irradiated using a 22 MeV deuteron beam for 10 min at 10, 20, and 27 μA, with an estimated nominal deuteron energy of 18.7 MeV on the 186W target material (after energy degradation correction from top graphite layer). Gamma-ray spectrometry was performed post EOB on all targets to assess production yields and radionuclidic byproducts. The investigation also evaluated a method to recover and recycle enriched target material from a column isolation procedure. Material composition analyses of target materials, pass-through/wash solutions and recycling process isolates were conducted with SEM, FTIR, XRD, EDS and ICP-MS spectrometry. Finally, to demonstrate scaled-up production, a graphite-encased 186W target made from recycled 186W was irradiated for ~2 h with 18.7 MeV deuterons at a beam current of 27 μA to provide 0.90 GBq (24.3 mCi) of 186gRe, decay-corrected to the end of bombardment. ICP-MS analysis of the isolated 186gRe solution provided data that indicated the specific activity of 186gRe in this scaled-up production run was 2.6±0.5 GBq/μg (70±10 Ci/mg).« less
Material dependence of 2H(d,p)3H cross section at the very low energies
NASA Astrophysics Data System (ADS)
Kılıç, Ali İhsan; Czerski, Konrad; Kuştan-Kılıç, Fadime; Targosz-Sleczka, Natalia; Weissbach, Daniel; Huke, Armin; Ruprecht, Götz
2017-09-01
Calculations of the material dependence of 2H(d,p)3H cross section and neutron-to-proton branching ratio of d+d reactions have been performed including a concept of the 0+ threshold single particle resonance. The resonance has been assumed to explain the enhanced electron screening effect observed in the d+d reaction for different metallic targets. Here, we have included interference effects between the flat and resonance part of the cross section, which allowed us to enlighten observed suppression of the neutron channel in some metals such as Sr and Li. Since the position of the resonance depends on the screening energy that strongly depends on the local electron density. The resonance width, observed for the d+d reactions in the very hygroscopic metals (Sr and Li) and therefore probably contaminated by oxides, should be much larger than for other metals. Thus, the interference term of the cross section depending on the total resonance width provides the material dependences.
Ternary Blends of High Aluminate Cement, Fly ash and Blast-furnace slag for Sewerage Lining Mortar
NASA Astrophysics Data System (ADS)
Chao, L. C.; Kuo, C. P.
2018-01-01
High aluminate cement (HAC), fly ash (FA) and blast-furnace slag (BFS) have been treated sustainable materials for the use of cement products for wastewater infrastructure due to their capabilities of corrosion resistance. The purpose of this study is to optimize a ternary blend of above mentioned materials for a special type of mortar for sewerage lining. By the using of Taguchi method, four control parameters including water/cementitious material ratio, mix water content, fly ash content and blast-furnace slag content were considered in nine trial mix designs in this study. By evaluating target properties including (1) maximization of compressive strength, (2) maximization of electricity resistance and (3) minimization of water absorption rate, the best possible levels for each control parameter were determined and the optimal mix proportions were verified. Through the implementation of the study, a practical and completed idea for designing corrosion resistive mortar comprising HAC, FA and BSF is provided.
Detection of Unexploded Ordnance Using Airborne LWIR Emissivity Signatures
2015-11-25
glass and wood, are spectrally distinct and would not appear as false alarms. Index Terms— Hyperspectral, Long Wave Infrared , Emissivity, Target...hyperspectral; radar). Because of previous successes using thermal infrared bands for UXO [3, 4] and landmine detection [5], this paper aims at...potential false alarms. They included materials made of rubber , cardboard, metal, wood, glass and plastic (Figure 1). 2.2. Laboratory LWIR signature
LDEF's map experiment foil perforations yield hypervelocity impact penetration parameters
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.
1992-01-01
The space exposure of LDEF for 5.75 years, forming a host target in low earth orbit (LEO) orbit to a wide distribution of hypervelocity particulates of varying dimensions and different impact velocities, has yielded a multiplicity of impact features. Although the projectile parameters are generally unknown and, in fact not identical for any two impacts on a target, the great number of impacts provides statistically meaningful basis for the valid comparison of the response of different targets. Given sufficient impacts for example, a comparison of impact features (even without knowledge of the project parameters) is possible between: (1) differing material types (for the same incident projectile distribution); (2) differing target configurations (e.g., thick and thin targets for the same material projectiles; and (3) different velocities (using LDEF's different faces). A comparison between different materials is presented for infinite targets of aluminum, Teflon, and brass in the same pointing direction; the maximum finite-target penetration (ballistic limit) is also compared to that of the penetration of similar materials comprising of a semi-infinite target. For comparison of impacts on similar materials at different velocities, use is made of the pointing direction relative to LDEF's orbital motion. First, however, care must be exercised to separate the effect of spatial flux anisotropies from those resulting from the spacecraft velocity through a geocentrically referenced dust distribution. Data comprising thick and thin target impacts, impacts on different materials, and in different pointing directions is presented; hypervelocity impact parameters are derived. Results are also shown for flux modeling codes developed to decode the relative fluxes of Earth orbital and unbound interplanetary components intercepting LDEF. Modeling shows the west and space pointing faces are dominated by interplanetary particles and yields a mean velocity of 23.5 km/s at LDEF, corresponding to a V(infinity) Earth approach velocity = 20.9 km/s. Normally resolved average impact velocities on LDEF's cardinal point faces are shown. As 'excess' flux on the east, north, and south faces is observed, compatible with an Earth orbital component below some 5 microns in particle diameter.
Vapor shielding models and the energy absorbed by divertor targets during transient events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skovorodin, D. I., E-mail: dskovorodin@gmail.com; Arakcheev, A. S.; Pshenov, A. A.
2016-02-15
The erosion of divertor targets caused by high heat fluxes during transients is a serious threat to ITER operation, as it is going to be the main factor determining the divertor lifetime. Under the influence of extreme heat fluxes, the surface temperature of plasma facing components can reach some certain threshold, leading to an onset of intense material evaporation. The latter results in formation of cold dense vapor and secondary plasma cloud. This layer effectively absorbs the energy of the incident plasma flow, turning it into its own kinetic and internal energy and radiating it. This so called vapor shieldingmore » is a phenomenon that may help mitigating the erosion during transient events. In particular, the vapor shielding results in saturation of energy (per unit surface area) accumulated by the target during single pulse of heat load at some level E{sub max}. Matching this value is one of the possible tests to verify complicated numerical codes, developed to calculate the erosion rate during abnormal events in tokamaks. The paper presents three very different models of vapor shielding, demonstrating that E{sub max} depends strongly on the heat pulse duration, thermodynamic properties, and evaporation energy of the irradiated target material. While its dependence on the other shielding details such as radiation capabilities of material and dynamics of the vapor cloud is logarithmically weak. The reason for this is a strong (exponential) dependence of the target material evaporation rate, and therefore the “strength” of vapor shield on the target surface temperature. As a result, the influence of the vapor shielding phenomena details, such as radiation transport in the vapor cloud and evaporated material dynamics, on the E{sub max} is virtually completely masked by the strong dependence of the evaporation rate on the target surface temperature. However, the very same details define the amount of evaporated particles, needed to provide an effective shielding to the target, and, therefore, strongly influence resulting erosion rate. Thus, E{sub max} cannot be used for validation of shielding models and codes, aimed at the target material erosion calculations.« less
X-ray laser microscope apparatus
Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.
1990-01-01
A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.
Beam heating of thick targets for on-line mass separators
NASA Astrophysics Data System (ADS)
Eaton, T. W.; Ravn, H. L.; Isolde Collaboration
1987-05-01
Energy deposition computations have been made on a variety of target materials utilized for the production of radioisotopes by means of 600-MeV protons. Results have shown that, when a proton current of 100 μA is assumed, dispersed target materials, such as uranium carbide powder and magnesium oxide, are best able to withstand the energy absorption and consequent beam heating without the need of additional cooling. Modified foil targets of titanium, zirconium and tantalum also appear capable of withstanding a full beam current, whilst liquid metal targets in their present form appear to have limitations in terms of the maximum allowable beam current. A redesign of the target container is proposed which allows higher proton currents to be used with these targets also.
The Nike Laser Facility and its Capabilities
NASA Astrophysics Data System (ADS)
Serlin, V.; Aglitskiy, Y.; Chan, L. Y.; Karasik, M.; Kehne, D. M.; Oh, J.; Obenschain, S. P.; Weaver, J. L.
2013-10-01
The Nike laser is a 56-beam krypton fluoride (KrF) system that provides 3 to 4 kJ of laser energy on target. The laser uses induced spatial incoherence to achieve highly uniform focal distributions. 44 beams are overlapped onto target with peak intensities up to 1016 W/cm2. The effective time-averaged illumination nonuniformity is < 0 . 2 %. Nike produces highly uniform ablation pressures on target allowing well-controlled experiments at pressures up to 20 Mbar. The other 12 laser beams are used to generate diagnostic x-rays radiographing the primary laser-illuminated target. The facility includes a front end that generates the desired temporal and spatial laser profiles, two electron-beam pumped KrF amplifiers, a computer-controlled optical system, and a vacuum target chamber for experiments. Nike is used to study the physics and technology issues of direct-drive laser fusion, such as, hydrodynamic and laser-plasma instabilities, studies of the response of materials to extreme pressures, and generation of X rays from laser-heated targets. Nike features a computer-controlled data acquisition system, high-speed, high-resolution x-ray and visible imaging systems, x-ray and visible spectrometers, and cryogenic target capability. Work supported by DOE/NNSA.
Material issues relating to high power spallation neutron sources
NASA Astrophysics Data System (ADS)
Futakawa, M.
2015-02-01
Innovative researches using neutrons are being performed at the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), in which a mercury target system is installed for MW-class pulse spallation neutron sources. In order to produce neutrons by the spallation reaction, proton beams are injected into the mercury target. At the moment, when the intense proton beam hits the target, pressure waves are generated in mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel, leading to negative pressure that may cause cavitation along the vessel wall, i.e. on the interface between liquid and solid metals. On the other hand, the structural materials are subjected to irradiation damage due to protons and neutrons, very high cycle fatigue damages and so-called "liquid metal embrittlement". That is, the structural materials must be said to be exposed to the extremely severe environments. In the paper, research and development relating to the material issues in the high power spallation neutron sources that has been performed so far at J-PARC is summarized.
Brann, Maria; Mullins, Samantha Hope; Miller, Beverly K; Eoff, Shane; Graham, James; Aitken, Mary E
2012-08-01
Millions of all-terrain vehicles (ATV) are used around the world for recreation by both adults and youth. This increase in use has led to a substantial increase in the number of injuries and fatalities each year. Effective strategies for reducing this incidence are clearly needed; however, minimal research exists regarding effective educational interventions. This study was designed to assess rural ATV riders' preferences for and assessment of safety messages. 13 focus group discussions with youth and adult ATV riders were conducted. 88 formative research participants provided feedback on existing ATV safety materials, which was used to develop more useful ATV safety messages. 60 evaluative focus group participants critiqued the materials developed for this project. Existing ATV safety materials have limited effectiveness, in part because they may not address the content or design needs of the target population. ATV riders want educational and action-oriented safety messages that inform youth and adult riders about their responsibilities to learn, educate and implement safety behaviours (eg, appropriate-sized ATV, safety gear, solo riding, speed limits, riding locations). In addition, messages should be clear, realistic, visually appealing and easily accessible. Newly designed ATV safety materials using the acronym TRIPSS (training, ride off-road, impairment, plan ahead, safety gear, single rider) meet ATV riders' safety messaging needs. To reach a target population, it is crucial to include them in the development and assessment of safety messages. Germane to this particular study, ATV riders provided essential information for creating useful ATV safety materials.
Method for continuous control of composition and doping of pulsed laser deposited films
Lowndes, Douglas H.; McCamy, James W.
1995-01-01
A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.
Lowndes, Douglas H.; McCamy, James W.
1996-01-01
A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.
Repetition rates in heavy ion beam driven fusion reactors
NASA Astrophysics Data System (ADS)
Peterson, Robert R.
1986-01-01
The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.
Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong
2010-01-01
In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641
Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong
2010-01-01
In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.
Optical simulation of flying targets using physically based renderer
NASA Astrophysics Data System (ADS)
Cheng, Ye; Zheng, Quan; Peng, Junkai; Lv, Pin; Zheng, Changwen
2018-02-01
The simulation of aerial flying targets is widely needed in many fields. This paper proposes a physically based method for optical simulation of flying targets. In the first step, three-dimensional target models are built and the motion speed and direction are defined. Next, the material of the outward appearance of a target is also simulated. Then the illumination conditions are defined. After all definitions are given, all settings are encoded in a description file. Finally, simulated results are generated by Monte Carlo ray tracing in a physically based renderer. Experiments show that this method is able to simulate materials, lighting and motion blur for flying targets, and it can generate convincing and highquality simulation results.
Zaccariello, Lucio; Cremiato, Raffaele; Mastellone, Maria Laura
2015-10-01
The main role of a waste management plan is to define which is the combination of waste management strategies and method needed to collect and manage the waste in such a way to ensure a given set of targets is reached. Objectives have to be sustainable and realistic, consistent with the environmental policies and regulations and monitored to verify the progressive achievement of the given targets. To get the aim, the setting up and quantification of indicators can allow the measurement of efficiency of a waste management system. The quantification of efficiency indicators requires the developing of a material flow analysis over the system boundary, from waste collection to secondary materials selling, processing and disposal. The material flow analysis has been carried out with reference to a case study for which a reliable, time- and site-specific database was available. The material flow analysis allowed the evaluation of the amount of materials sent to recycling, to landfilling and to waste-to-energy, by highlighting that the sorting of residual waste can further increase the secondary materials amount. The utilisation of energy recovery to treat the low-grade waste allows the maximisation of waste diversion from landfill with a low production of hazardous ash. A preliminary economic balance has been carried out to define the gate fee of the waste management system that was in the range of 84-145 € t(-1) without including the separate collection cost. The cost of door-by-door separate collection, designed to ensure the collection of five separate streams, resulted in 250 € t(-1) ±30%. © The Author(s) 2015.
Plasma source development for fusion-relevant material testing
Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.; ...
2017-05-01
Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less
Plasma source development for fusion-relevant material testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caughman, John B. O.; Goulding, Richard H.; Biewer, Theodore M.
Plasma facing materials in the divertor of a magnetic fusion reactor will have to tolerate steady-state plasma heat fluxes in the range of 10 MW/m2 for ~107 sec, in addition to fusion neutron fluences, which can damage the plasma facing materials to high displacements per atom (dpa) of ~50 dpa . Material solutions needed for the plasma facing components are yet to be developed and tested. The Materials Plasma Exposure eXperiment (MPEX) is a newly proposed steady state linear plasma device that is designed to deliver the necessary plasma heat flux to a target for this material testing, including themore » capability to expose a-priori neutron damaged material samples to those plasmas. The requirements of the plasma source needed to deliver this plasma heat flux are being developed on the Proto-MPEX device, which is a linear high-intensity radio frequency (RF) plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is operated at 13.56 MHz with RF power levels up to 120 kW. Microwaves at 28 GHz (~30 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW), and ion cyclotron heating at 7-9 MHz (~30 kW) is via a magnetic beach approach. High plasma densities >6x1019/m3 have been produced in deuterium, with electron temperatures that can range from 2 to >10 eV. Operation with on-axis magnetic field strengths between 0.6 and 1.4 T is typical. The plasma heat flux delivered to a target can be > 10 MW/m2, depending on the operating conditions.« less
Design and Demonstration of a Material-Plasma Exposure Target Station for Neutron Irradiated Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, Juergen; Aaron, A. M.; Bell, Gary L.
2015-10-20
Fusion energy is the most promising energy source for the future, and one of the most important problems to be solved progressing to a commercial fusion reactor is the identification of plasma-facing materials compatible with the extreme conditions in the fusion reactor environment. The development of plasma–material interaction (PMI) science and the technology of plasma-facing components are key elements in the development of the next step fusion device in the United States, the so-called Fusion Nuclear Science Facility (FNSF). All of these PMI issues and the uncertain impact of the 14-MeV neutron irradiation have been identified in numerous expert panelmore » reports to the fusion community. The 2007 Greenwald report classifies reactor plasma-facing materials (PFCs) and materials as the only Tier 1 issues, requiring a “. . . major extrapolation from the current state of knowledge, need for qualitative improvements and substantial development for both the short and long term.” The Greenwald report goes on to list 19 gaps in understanding and performance related to the plasma–material interface for the technology facilities needed for DEMO-oriented R&D and DEMO itself. Of the 15 major gaps, six (G7, G9, G10, G12, G13) can possibly be addressed with ORNL’s proposal of an advanced Material Plasma Exposure eXperiment. Establishing this mid-scale plasma materials test facility at ORNL is a key element in ORNL’s strategy to secure a leadership role for decades of fusion R&D. That is to say, our end goal is to bring the “signature facility” FNSF home to ORNL. This project is related to the pre-conceptual design of an innovative target station for a future Material–Plasma Exposure eXperiment (MPEX). The target station will be designed to expose candidate fusion reactor plasma-facing materials and components (PFMs and PFCs) to conditions anticipated in fusion reactors, where PFCs will be exposed to dense high-temperature hydrogen plasmas providing steady-state heat fluxes of 5–20 MW/m 2 and ion fluxes up to 10 24 m -2s -1. Since PFCs will have to withstand neutron irradiation displacement damage up to 50 dpa, the target station design must accommodate radioactive specimens (materials to be irradiated in HFIR or at SNS) to enable investigations of the impact of neutron damage on materials. Therefore, the system will have to be able to install and extract irradiated specimens using equipment and methods to avoid sample modification, control contamination, and minimize worker dose. Included in the design considerations will be an assessment of all the steps between neutron irradiation and post-exposure materials examination/characterization, as well as an evaluation of the facility hazard categorization. In particular, the factors associated with the acquisition of radioactive specimens and their preparation, transportation, experimental configuration at the plasma-specimen interface, post-plasma-exposure sample handling, and specimen preparation will be evaluated. Neutronics calculations to determine the dose rates of the samples were carried out for a large number of potential plasma-facing materials.« less
Balkin, Ethan R.; Gagnon, Katherine; Strong, Kevin T.; ...
2016-06-28
This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity 186Re using deuteron irradiation of enriched 186W via the 186W(d,2n) 186Re reaction. Thick W and WO 3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxi-ally pressing powdered natural abundance W and WO 3, or 96.86% enriched 186W, into Al target supports. Alternatively, thick targets were prepared by pressing 186W between two layers of graphite powder or by placing pre-sintered (1105°C, 12 hours) natural abundance WO 3 pellets into an Al target support. Assessments ofmore » structural integrity were made on each target pre-pared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. With-in a minimum of 24 hours post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO 3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO 3 targets prepared and studied were unacceptable. By contrast, 186W metal was found to be a viable target material for 186Re production. Lastly, thick targets prepared with powdered 186W pressed between layers of graphite provided a particularly robust target configuration.« less
Balkin, Ethan R; Gagnon, Katherine; Strong, Kevin T; Smith, Bennett E; Dorman, Eric F; Emery, Robert C; Pauzauskie, Peter J; Fassbender, Michael E; Cutler, Cathy S; Ketring, Alan R; Jurisson, Silvia S; Wilbur, D Scott
2016-09-01
This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity (186)Re using deuteron irradiation of enriched (186)W via the (186)W(d,2n)(186)Re reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched (186)W, into Al target supports. Alternatively, thick targets were prepared by pressing (186)W between two layers of graphite powder or by placing pre-sintered (1105°C, 12h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, (186)W metal was found to be a viable target material for (186)Re production. Thick targets prepared with powdered (186)W pressed between layers of graphite provided a particularly robust target configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology
NASA Astrophysics Data System (ADS)
Samanta, Anirban; Medintz, Igor L.
2016-04-01
Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their myriad applications using examples from the literature. Overall, it is clear that this unique functional combination of nanomaterials has far more to offer than what we have seen to date and as new capabilities for each of these materials are developed, so, too, will new applications emerge.
LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham
2011-05-27
Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.
Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery.
Chen, Rui; Xu, Liu; Fan, Qin; Li, Man; Wang, Jingjing; Wu, Li; Li, Weidong; Duan, Jinao; Chen, Zhipeng
2017-11-01
Inhalation administration, compared with intravenous administration, significantly enhances chemotherapeutic drug exposure to the lung tissue and may increase the therapeutic effect for pulmonary anticancer. However, further identification of cancer cells after lung deposition of inhaled drugs is necessary to avoid side effects on normal lung tissue and to maximize drug efficacy. Moreover, as the action site of the major drug was intracellular organelles, drug target to the specific organelle is the final key for accurate drug delivery. Here, we designed a novel multifunctional nanoparticles (MNPs) for pulmonary antitumor and the material was well-designed for hierarchical target involved lung tissue target, cancer cell target, and mitochondrial target. The biodistribution in vivo determined by UHPLC-MS/MS method was employed to verify the drug concentration overwhelmingly increasing in lung tissue through inhaled administration compared with intravenous administration. Cellular uptake assay using A549 cells proved the efficient receptor-mediated cell endocytosis. Confocal laser scanning microscopy observation showed the location of MNPs in cells was mitochondria. All results confirmed the intelligent material can progressively play hierarchical target functions, which could induce more cell apoptosis related to mitochondrial damage. It provides a smart and efficient nanocarrier platform for hierarchical targeting of pulmonary anticancer drug. So far, this kind of material for pulmonary mitochondrial-target has not been seen in other reports.
Integrated modeling/analyses of thermal-shock effects in SNS targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taleyarkhan, R.P.; Haines, J.
1996-06-01
In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies,more » especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.« less
Carbon fiber composites application in ITER plasma facing components
NASA Astrophysics Data System (ADS)
Barabash, V.; Akiba, M.; Bonal, J. P.; Federici, G.; Matera, R.; Nakamura, K.; Pacher, H. D.; Rödig, M.; Vieider, G.; Wu, C. H.
1998-10-01
Carbon Fiber Composites (CFCs) are one of the candidate armour materials for the plasma facing components of the International Thermonuclear Experimental Reactor (ITER). For the present reference design, CFC has been selected as armour for the divertor target near the plasma strike point mainly because of unique resistance to high normal and off-normal heat loads. It does not melt under disruptions and might have higher erosion lifetime in comparison with other possible armour materials. Issues related to CFC application in ITER are described in this paper. They include erosion lifetime, tritium codeposition with eroded material and possible methods for the removal of the codeposited layers, neutron irradiation effect, development of joining technologies with heat sink materials, and thermomechanical performance. The status of the development of new advanced CFCs for ITER application is also described. Finally, the remaining R&D needs are critically discussed.
Anil Kumar, C. N.; Sakthivel, M.; Elangovan, R. K.; Arularasu, M.
2015-01-01
One of many hazardous workplaces includes the construction sites as they involve several dangerous tasks. Many studies have revealed that material handling equipment is a major cause of accidents at these sites. Though safety measures are being followed and monitored continuously, accident rates are still high as either workers are unaware of hazards or the safety regulations are not being strictly followed. This paper analyses the safety management systems at construction sites through means of questionnaire surveys with employees, specifically referring to safety of material handling equipment. Based on results of the questionnaire surveys, two construction sites were selected for a safety education program targeting worker safety related to material handling equipment. Knowledge levels of the workers were gathered before and after the program and results obtained were subjected to a t-test analysis to mark significance level of the conducted safety education program. PMID:26446572
The Exomet Project: EU/ESA Research on High-Performance Light-Metal Alloys and Nanocomposites
NASA Astrophysics Data System (ADS)
Sillekens, W. H.
The performance of structural materials is commonly associated with such design parameters as strength and stiffness relative to their density; a recognized means to further enhance the weight-saving potential of low-density materials is thus to improve on their mechanical attributes. The European Community research project ExoMet that started in mid-2012 targets such high-performance aluminum- and magnesium-based materials by exploring novel grain-refining and nanoparticle additions in conjunction with melt treatment by means of external fields (electromagnetic, ultrasonic, mechanical). These external fields are to provide for an effective and efficient dispersion of the additions in the melt and their uniform distribution in the as-cast material. The consortium of 27 companies, universities and research organizations from eleven countries integrates various scientific and technological disciplines as well as application areas — including automotive and (aero)-space.
Astronomy Meets Biology: EFOSC2 and the Chirality of Life
NASA Astrophysics Data System (ADS)
Sterzik, M.; Bagnulo, S.; Azua, A.; Salinas, F.; Alfaro, J.; Vicuna, R.
2010-12-01
Homochirality, i.e., the exclusive use of L-amino acids and D-sugar in biological material, induces circular polarisation in the diffuse reflectance spectra of biotic material. Polarimetry may therefore become an interesting remote sensing technique in the future search for extraterrestrial life. We have explored this technique and performed a laboratory experiment making an exotic use of an astronomical instrument. During a period when EFOSC2 was detached from the Nasmyth focus to host a visitor instrument at the NTT, we have observed various samples of biotic and abiotic material and measured their linear and circular polarisation spectra. Among the various targets, we have included samples of the hypolithic cyanobacteria species Chroococcidiopsis isolated from the Coastal Range of the Atacama Desert. To our knowledge, these are the first and highest precision measurements of circular polarisation using living material and obtained with an astronomical instrument.
Developing effective health and safety training materials for workers in beryllium-using industries.
Mayer, A S; Brazile, W J; Erb, S A; Barker, E A; Miller, C M; Mroz, M M; Maier, L A; Van Dyke, M V
2013-07-01
Despite reduced workplace exposures, beryllium sensitization and chronic beryllium disease still occur. Effective health and safety training is needed. Through an Occupational Safety and Health Administration (OSHA) Targeted Topic Training grant and company partners, we developed a training program. Evaluation and validation included knowledge and training reaction assessments and training impact survey. We describe herein the iterative, five-pronged approach: (1) needs assessment; (2) materials development; (3) pilot-testing, evaluation, and material revisions; (4) worker training; and (5) evaluation and validation. Mean posttraining test score increased 14% (82% to 96%; P < 0.005) and were unchanged at 90-day follow-up (94%; P = 0.744). In addition, 49% reported making changes in work practices. The use of a five-pronged training program was effective and well received and resulted in improved work practices. These materials are available on the OSHA Web site.
Compatibility of structural materials with liquid bismuth, lead, and mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, J.R.
1996-06-01
During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies,more » the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.« less
Targeted therapy using nanotechnology: focus on cancer
Sanna, Vanna; Pala, Nicolino; Sechi, Mario
2014-01-01
Recent advances in nanotechnology and biotechnology have contributed to the development of engineered nanoscale materials as innovative prototypes to be used for biomedical applications and optimized therapy. Due to their unique features, including a large surface area, structural properties, and a long circulation time in blood compared with small molecules, a plethora of nanomaterials has been developed, with the potential to revolutionize the diagnosis and treatment of several diseases, in particular by improving the sensitivity and recognition ability of imaging contrast agents and by selectively directing bioactive agents to biological targets. Focusing on cancer, promising nanoprototypes have been designed to overcome the lack of specificity of conventional chemotherapeutic agents, as well as for early detection of precancerous and malignant lesions. However, several obstacles, including difficulty in achieving the optimal combination of physicochemical parameters for tumor targeting, evading particle clearance mechanisms, and controlling drug release, prevent the translation of nanomedicines into therapy. In spite of this, recent efforts have been focused on developing functionalized nanoparticles for delivery of therapeutic agents to specific molecular targets overexpressed on different cancer cells. In particular, the combination of targeted and controlled-release polymer nanotechnologies has resulted in a new programmable nanotherapeutic formulation of docetaxel, namely BIND-014, which recently entered Phase II clinical testing for patients with solid tumors. BIND-014 has been developed to overcome the limitations facing delivery of nanoparticles to many neoplasms, and represents a validated example of targeted nanosystems with the optimal biophysicochemical properties needed for successful tumor eradication. PMID:24531078
Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W
2016-05-01
Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level. This pre-recycling process aims to achieve material segregation with a focus on the metallic portion and provide clear targets for subsequent recycling processes. The results show that contained metallic materials can be segregated into different size fractions at different levels. For example, for lithium cobalt oxide batteries, cobalt content has been improved from 35% by weight in the metallic portion before this pre-recycling process to 82% in the ultrafine (<0.5mm) fraction and to 68% in the fine (0.5-1mm) fraction, and been excluded in the larger pieces (>6mm). However, size fractions across multiple battery chemistries showed significant variability in material concentration. This finding indicates that sorting by cathode before pre-treatment could reduce the uncertainty of input materials and therefore improve the purity of output streams. Thus, battery labeling systems may be an important step towards implementation of any pre-recycling process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Asteroid deflection using a kinetic impactor: Insights from hypervelocity impact experiments
NASA Astrophysics Data System (ADS)
Hoerth, Tobias; Schäfer, Frank
2016-04-01
Within the framework of the planned AIDA mission [1], an impactor spacecraft (DART) hits the second component of the asteroid Didymos at hypervelocity. The impact crater will be observed from the AIM spacecraft and an observation of the ejecta plume is possible [1]. This allows conclusions to be drawn about the physical properties of the target material, and the momentum transfer will be studied [1]. In preparation for this mission, hypervelocity impact experiments can provide valuable information about the outcome of an impact event as a function of impactor and target material properties and, thus, support the interpretation of the data from the DART impact. In addition, these impact experiments provide an important means to validate numerical impact simulations required to simulate large-scale impacts that cannot be studied in laboratory experiments. Impact experiments have shown that crater morphology and size, crater growth and ejecta dynamics strongly depend on the physical properties of the target material [2]. For example, porous materials like sandstone lead to a shallower and slower ejection than low-porous materials like quartzite, and the cratering efficiency is reduced in porous targets leading to a smaller amount of ejected mass [3]. These phenomena result in a reduced momentum multiplication factor (often called "beta-value"), i.e. the ratio of the change in target momentum after the impact and the momentum of the projectile is smaller for porous materials. Hypervelocity impact experiments into target materials with different porosities and densities such as quartzite (2.9 %, 2.6 g/cm3), sandstone (25.3 %, 2 g/cm3), limestone (31 %, 1.8 g/cm3), and highly porous aerated concrete (87.5 %, 0.4 g/cm3) were conducted. Projectile velocities were varied between about 3 km/s and almost 7 km/s. A ballistic pendulum was used to measure the momentum transfer. The material strength required for scaling laws was determined for all target materials. The highest beta values were measured for the low-porous quartzite (e.g., beta ~ 3 for a projectile velocity of about 4.05 km/s). Porous materials like sandstone, on the other hand, show lower beta values (e.g., beta ~ 1.8 for a projectile velocity of about 4.11 km/s). [1] Cheng A. F. et al. 2015 Acta Astronaut 115:262-269 [2] Hoerth T. et al. 2013 Meteorit Planet Sci 48:23-32 [3] Hoerth T. et al. 2015 Proc Engin 103:197-204
A New Direction for NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)
2001-01-01
NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.
NASA Astrophysics Data System (ADS)
De Marco, Massimo; Krása, Josef; Cikhardt, Jakub; Consoli, Fabrizio; De Angelis, Riccardo; Pfeifer, Miroslav; Krůs, Miroslav; Dostál, Jan; Margarone, Daniele; Picciotto, Antonino; Velyhan, Andriy; Klír, Daniel; Dudžák, Roman; Limpouch, Jiří; Korn, Georg
2018-01-01
During the interaction of high intense laser pulse with solid target, a large amount of hot electrons is produced and a giant Electromagnetic Pulse (EMP) is generated due to the current flowing into the system target-target holder, as well as due to the escaping charged particles in vacuum. EMP production for different target materials is investigated inside and outside the target chamber, using monopole antenna, super wide-band microstrip antenna and Moebius antenna. The EMP consists in a fast transient magnetic field lasting hundreds of nanosecond with frequencies ranging from MHz to tens of GHz. Measurements of magnetic field and return target current in the range of kA were carried out by an inductive target probe (Cikhardt J. et al. Rev. Sci. Instrum. 85 (2014) 103507).
Managing critical materials with a technology-specific stocks and flows model.
Busch, Jonathan; Steinberger, Julia K; Dawson, David A; Purnell, Phil; Roelich, Katy
2014-01-21
The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model's potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%.
Managing Critical Materials with a Technology-Specific Stocks and Flows Model
2013-01-01
The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model’s potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%. PMID:24328245
Electron Density Calibration for Radiotherapy Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera-Martinez, F.; Rodriguez-Villafuerte, M.; Martinez-Davalos, A.
2006-09-08
Computed tomography (CT) images are used as basic input data for most modern radiosurgery treatment planning systems (TPS). CT data not only provide anatomic information to delineate target volumes, but also allow the introduction of corrections for tissue inhomogeneities into dose calculations during the treatment planning procedure. These corrections involve the determination of a relationship between tissue electron density ({rho}e) and their corresponding Hounsfield Units (HU). In this work, an elemental analysis of different commercial tissue equivalent materials using Scanning Electron Microscopy was carried out to characterize their chemical composition. The tissue equivalent materials were chosen to ensure a largemore » range of {rho}e to be included in the CT scanner calibration. A phantom was designed and constructed with these materials to simulate the size of a human head.« less
Rapid Harmonic Analysis of Piezoelectric MEMS Resonators.
Puder, Jonathan M; Pulskamp, Jeffrey S; Rudy, Ryan Q; Cassella, Cristian; Rinaldi, Matteo; Chen, Guofeng; Bhave, Sunil A; Polcawich, Ronald G
2018-06-01
This paper reports on a novel simulation method combining the speed of analytical evaluation with the accuracy of finite-element analysis (FEA). This method is known as the rapid analytical-FEA technique (RAFT). The ability of the RAFT to accurately predict frequency response orders of magnitude faster than conventional simulation methods while providing deeper insights into device design not possible with other types of analysis is detailed. Simulation results from the RAFT across wide bandwidths are compared to measured results of resonators fabricated with various materials, frequencies, and topologies with good agreement. These include resonators targeting beam extension, disk flexure, and Lamé beam modes. An example scaling analysis is presented and other applications enabled are discussed as well. The supplemental material includes example code for implementation in ANSYS, although any commonly employed FEA package may be used.
Development of ion beam sputtering techniques for actinide target preparation
NASA Astrophysics Data System (ADS)
Aaron, W. S.; Zevenbergen, L. A.; Adair, H. L.
1985-06-01
Ion beam sputtering is a routine method for the preparation of thin films used as targets because it allows the use of a minimum quantity of starting material, and losses are much lower than most other vacuum deposition techniques. Work is underway in the Isotope Research Materials Laboratory (IRML) at ORNL to develop the techniques that will make the preparation of actinide targets up to 100 μg/cm 2 by ion beam sputtering a routinely available service from IRML. The preparation of the actinide material in a form suitable for sputtering is a key to this technique, as is designing a sputtering system that allows the flexibility required for custom-ordered target production. At present, development work is being conducted on low-activity actinides in a bench-top system. The system will then be installed in a hood or glove box approved for radioactive materials handling where processing of radium, actinium, and plutonium isotopes among others will be performed.
Lakhan, Calvin
2016-11-01
This study highlights the economic and environmental challenges of recycling in Ontario, specifically examining the effect of attempting to increase the emissions target for the province's household recycling programme. The findings from the cost model analysis found that Ontario's Blue Box programme reduces overall carbon emissions by approximately 1.8 million tonnes every year. This study also found that targeting specific materials for recovery could result in a scenario where the province could improve both overall diversion and emissions offsets while reducing material management costs. Under our modelled scenario, as the tonnes of greenhouse gases (GHGs) avoided increases, the system cost per tonne of GHG avoided initial declines. However, after avoiding 2.05 million tonnes of GHGs, the system cost/tonne GHG avoided increases. To achieve an emissions target in excess of 2.05 million tonnes, the province will have to start recycling higher cost non-core materials (composite materials, other plastics, etc.). © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaskowiak, J; Ahmad, S; Ali, I
Purpose: To investigate quantitatively the performance of different deformable-image-registration algorithms (DIR) with helical (HCT), axial (ACT) and cone-beam CT (CBCT) by evaluating the variations in the CT-numbers and lengths of targets moving with controlled motion-patterns. Methods: Four DIR-algorithms including demons, fast-demons, Horn-Schunk and Locas-Kanade from the DIRART-software are used to register CT-images of a mobile-phantom. A mobile-phantom is scanned with different imaging techniques that include helical, axial and cone-beam CT. The phantom includes three targets with different lengths that are made from water-equivalent material and inserted in low-density-foam which is moved with adjustable motion-amplitudes and frequencies. Results: Most of themore » DIR-algorithms are able to produce the lengths of the stationary-targets, however, they do not produce the CT-number values in CBCT. The image-artifacts induced by motion are more regular in CBCT imaging where the mobile-target elongation increases linearly with motion-amplitude. In ACT and HCT, the motion-artifacts are irregular where some mobile -targets are elongated or shrunk depending on the motion-phase during imaging. The DIR-algorithms are successful in deforming the images of the mobile-targets to the images of the stationary-targets producing the CT-number values and length of the target for motion-amplitudes < 20 mm. Similarly in ACT, all DIR-algorithms produced the actual CT-number and length of the stationary-targets for motion-amplitudes < 15 mm. As stronger motion-artifacts are induced in HCT and ACT, DIR-algorithms fail to produce CT-values and shape of the stationary-targets and fast-demons-algorithm has worst performance. Conclusion: Most of DIR-algorithms produce the CT-number values and lengths of the stationary-targets in HCT and ACT images that has motion-artifacts induced by small motion-amplitudes. As motion-amplitudes increase, the DIR-algorithms fail to deform mobile-target images to the stationary-images in HCT and ACT. In CBCT, DIR-algorithms are successful in producing length and shape of the stationary-targets, however, they fail to produce the accurate CT-number level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remec, Igor; Ronningen, Reginald Martin
The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UC x material atmore » reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 10 13 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.« less
NASA Technical Reports Server (NTRS)
Clark-Ingram, Marceia
2010-01-01
Brominated Flame Retardants (BFRs) are widely used in the manufacture of electrical and electronic components and as additives in formulations for foams, plastics and rubbers. The United States (US) and the European Union (EU)have increased regulation and monitoring of of targeted BFRs, such as Polybrominated Diphenyl Ethers (PBDEs) due to the bioaccumulative effects in humans and animals. In response, manufacturers and vendors of BFR-containing materials are changing flame-retardant additives, sometimes without notifying BFR users. In some instances, Deca-bromodiphenylether (Deca-BDE) and other families of flame retardants are being used as replacement flame retardants for penta-BDE and octa-BDE. The reformulation of the BFR-containing material typically results in the removal of the targeted PBDE and replacement with a non-PBDE chemical or non-targeted PBDE. Many users of PBDE -based materials are concerned that vendors will perform reformulation and not inform the end user. Materials performance such as flammability, adhesion , and tensile strength may be altered due to reformulation. The requalification of newly formulated materials may be required, or replacement materials may have to be identified and qualified. The Shuttle Enviornmental Assurance (SEA) team indentified a risk to the Space Shuttle Program associated with the possibility that targeted PBDEs may be replaced without notification. Resultant decreases in flame retardancy, Liquid Oxygen (LOX) compatibility, or material performance could have serious consequences.
Mapping target signatures via partial unmixing of AVIRIS data
NASA Technical Reports Server (NTRS)
Boardman, Joseph W.; Kruse, Fred A.; Green, Robert O.
1995-01-01
A complete spectral unmixing of a complicated AVIRIS scene may not always be possible or even desired. High quality data of spectrally complex areas are very high dimensional and are consequently difficult to fully unravel. Partial unmixing provides a method of solving only that fraction of the data inversion problem that directly relates to the specific goals of the investigation. Many applications of imaging spectrometry can be cast in the form of the following question: 'Are my target signatures present in the scene, and if so, how much of each target material is present in each pixel?' This is a partial unmixing problem. The number of unmixing endmembers is one greater than the number of spectrally defined target materials. The one additional endmember can be thought of as the composite of all the other scene materials, or 'everything else'. Several workers have proposed partial unmixing schemes for imaging spectrometry data, but each has significant limitations for operational application. The low probability detection methods described by Farrand and Harsanyi and the foreground-background method of Smith et al are both examples of such partial unmixing strategies. The new method presented here builds on these innovative analysis concepts, combining their different positive attributes while attempting to circumvent their limitations. This new method partially unmixes AVIRIS data, mapping apparent target abundances, in the presence of an arbitrary and unknown spectrally mixed background. It permits the target materials to be present in abundances that drive significant portions of the scene covariance. Furthermore it does not require a priori knowledge of the background material spectral signatures. The challenge is to find the proper projection of the data that hides the background variance while simultaneously maximizing the variance amongst the targets.
Low-Cost Proton Conducting Membranes for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Hongxing
Proton exchange membrane (PEM) is the key component in PEM fuel cells that critically determines the system performance and its economic viability. Presently, the state-of-the-art PEMs, such as Nafion membranes, are based on perfluorosulfonic acid (PFSA) ionomers. But these ionomer materials are expensive, particularly at the low volumes that will be needed for initial commercialization. Besides, they are not suitable for fuel cells operated beyond 100°C, because of the limitations connected to the humidification requirement of such membrane materials, limiting the maximum operating temperature to about 90°C. Fuel cells for transportation applications are required to operate in a wide temperaturemore » range from –20°C to 120°C. Low-cost PEMs with capabilities in a range of temperature and humidity conditions are urgently needed to meet the DOE fuel cell targets for transportation applications. Amsen Technologies LLC chooses to address the DOE call with a novel reinforced PEM approach based on new, non-PFSA proton conducting ionomers developed from our previous DOE SBIR projects. Along with this approach is the use of very cheap, ultra thin and highly porous microporous polymer meshes as the support for the membrane. The new PEM is expected to have significant cost advantages over traditional PEMs. The microporous polyolefin support costs $2-3/m 2; and the new ionomers that Amsen has developed are estimated at ~$250/kg at the higher end including material costs and labor costs (which may go down in the future as the processing is optimized and production scaled up). These have led to an estimate of total material cost for the membrane at $11 to $12/m 2, offering high potential of meeting the DOE cost targets (≤$20/m 2) after adding processing cost and profit margin. The Phase I results have successfully demonstrated that it is very promising to develop the intended low-cost, high-performance PEM membrane. Suitable material system has been identified, and suitable process for forming the new PEM has been developed. Uniform membranes have been reproducibly fabricated. These membranes have been extensively characterized and evaluated in terms of microstructural features, and relevant physical and chemical properties including proton conductivity and area specific proton resistance in a range of temperature and humidity conditions, resistance to electronic conduction, water uptake/swelling, dimensional stability, chemical stability, and mechanical durability. Membrane electrode assemblies (MEA) with the new membrane have been successfully prepared and tested for fuel cell operation. The new PEM showed higher proton conductivity than Nafion membranes for all measurement conditions used in Phase I. With high proton conductivity and ultra-thin thickness (~20 /m), the new membrane showed high promise to met DOE targets for the low ASR. The ASR targets have been met for relatively high RH but not yet for RH ≤ 70%. Further optimization in ionomer chemistry and membrane processing is needed in order to meet the ASR targets for a wide range of temperature and humidity conditions. The new membrane showed fairly high electronic resistance at 1373 ohm cm 2, meeting the DOE target for electronic resistance (> 1000 ohm cm 2). The new membrane also has demonstrated promisingly high chemical stability, high mechanical durability, and high dimensional stability. Fuel cell operation using MEAs with the new membrane have shown the same level of fuel cell performance as MEAs with Nafion membranes. Overall, the new membrane has been demonstrated to have high potential of meeting all DOE performance targets for fuel cell applications as well as the cost targets. The manufacturers of PEM fuel cells, PEM electrolyzers, redox flow batteries, and MEA are the end-users and customers of PEMs. For commercialization purpose and potential partnering relations, we have been talking with many such manufacturers. They have responded with extremely high interest in the new PEM being developed in the present technology. Accomplishments so far have laid down a strong base for Amsen to further the development efforts on this new PEM and to pursue commercialization. The near-term future work will be mainly focused on further development and systematical optimization of the material system, processing, and performance of the new membrane; systematical evaluation of the new membrane in terms of all relevant properties including long-term mechanical, chemical, and combined chemical/mechanical durabilities using DOE specified testing protocols; development of production scale-up scheme; and preparation for commercialization.« less
Szigyarto, Cristina A.; Sibbons, Paul; Williams, Gill; Uhlen, Mathias; Metcalfe, Su M.
2010-01-01
Axotrophin/MARCH-7 was first identified in mouse embryonic stem cells as a neural stem cell gene. Using the axotrophin/MARCH-7 null mouse, we discovered profound effects on T lymphocyte responses, including 8-fold hyperproliferation and 5-fold excess release of the stem cell cytokine leukemia inhibitory factor (LIF). Our further discovery that axotrophin/MARCH-7 is required for targeted degradation of the LIF receptor subunit gp190 implies a direct role in the regulation of LIF signaling. Bioinformatics studies revealed a highly conserved RING-CH domain in common with the MARCH family of E3-ubiquitin ligases, and accordingly, axotrophin was renamed “MARCH-7.” To probe protein expression of human axotrophin/MARCH-7, we prepared antibodies against different domains of the protein. Each antibody bound its specific target epitope with high affinity, and immunohistochemistry cross-validated target specificity. Forty-eight human tissue types were screened. Epithelial cells stained strongly, with trophoblasts having the greatest staining. In certain tissues, specific cell types were selectively positive, including neurons and neuronal progenitor cells in the hippocampus and cerebellum, endothelial sinusoids of the spleen, megakaryocytes in the bone marrow, crypt stem cells of the small intestine, and alveolar macrophages in the lung. Approximately 20% of central nervous system neuropils were positive. Notably, axotrophin/MARCH-7 has an expression profile that is distinct from that of other MARCH family members. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. (J Histochem Cytochem 58:301–308, 2010) PMID:19901269
Prevention of STDs -- the challenge of changing behaviors.
Halpern, J; Finger, W R
1992-04-01
STD prevention efforts in Latin America, particularly in the Dominican Republic, have begun to stress the need for behavioral changes. Traditionally, the professional public health community has focused on secondary prevention of STDs -- detection and treatment of the disease in order to prevent complications from developing. But in light of the AIDS epidemic, greater attention has been paid to primary prevention. Hoping to prevent the disease from occurring, primary prevention efforts target high risk groups (prostitutes and their clients and young people) with health education and promotion of behavioral change. Such changes include using condoms, seeking medical care for STDs, and decreasing the number of sex partners. An example of primary prevention programs is the Avancemos Project in the Dominican Republic. Launched in 1989 by the country's Ministry of Health and Family Health International's AIDSTECH Division, the project targets sex workers with several intervention measures. Initially, the Avancemos Project trained 16 sex workers to serve as peer educators to distribute condoms and educational materials. These 16 volunteers have in turn trained more than 300 other peer educators. Among the educational materials distributed by the peer educators are 2 comic books entitled "Martiza's Advice" and "The Triumphs of Maritza." A handsome, well dressed, and street-wise sex worker, the title character in these comic books instructs on a range of issues, including how to negotiate with clients how to use a condom. As those involved with the project attest, the comic books have become extremely popular among the target group, tapping into the women's buried feelings of self-worth.
Method for sealing an oxygen transport membrane assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Javier E.; Grant, Arthur F.
An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less
Niu, J L; Burnett, J
2001-06-01
Methods, standards, and regulations that are aimed to reduce indoor air pollution from building materials are critically reviewed. These are classified as content control and emission control. Methods and standards can be found in both of these two classes. In the regulation domain, only content control is enforced in some countries and some regions, and asbestos is the only building material that is banned for building use. The controlled pollutants include heavy metals, radon, formaldehyde, and volatile organic compounds (VOCs). Emission rate control based upon environment chamber testing is very much in the nature of voluntary product labeling and ranking, and this mainly targets formaldehyde and VOC emissions. It is suggested that radon emission from building materials should be subject to similar emission rate control. A comprehensive set criteria and credit-awarding scheme that encourages the use of low-emission building material is synthesized, and how this scheme can be practiced in building design is proposed and discussed.
Skjevrak, Ingun; Brede, Cato; Steffensen, Inger-Lise; Mikalsen, Arne; Alexander, Jan; Fjeldal, Per; Herikstad, Hallgeir
2005-10-01
A procedure used by the Norwegian Food Safety Authority for surveillance of contaminants from plastic food contact materials (polyolefin drinking bottles, water boilers, polyamide cooking utensils and plastic multi-layer materials) is described. It is based on gas chromatographic-mass spectrometric (GC/MS) analysis of food simulants exposed to plastic materials. Most migrants were substances not-intentionally added to the plastic (degradation products, impurities) or originated from non-plastic components, such as printing inks, adhesives, not-listed additives, solvents and coatings. Hence, the majority of the identified migrants were regulated by the general statements in the EU Framework Regulation, which neither specify limits nor requirements regarding risk assessment, rather than by specific migration controls. Risk assessment has been carried out for selected non-authorized substances. The analysis and the management of these substances and materials with respect to safety represents a challenge to the food authorities.
Use of UV Sources for Detection and Identification of Explosives
NASA Technical Reports Server (NTRS)
Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur
2009-01-01
Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.
Birds of the Savannah Harbor Navigation Project, Dredged Material Disposal Areas, 19942012
2016-03-01
frequently the targeted beneficiaries of wildlife habitat creation because of their well-documented population declines, sensitive or endangered status...shorebirds (USACE 1996). This on-off rotation schedule also provides habitat for other fish and wildlife species and serves to control mosquitoes by...South Carolina Department of Natural Resources with the assistance of interested agencies including the USACE and U.S. Federal Wildlife Service (USFWS
Bio-inspired Armor Protective Material Systems for Ballistic Shock Mitigation
2011-01-01
Coupon testing a b s t r a c t Severe transient ballistic shocks from projectile impacts, mine blasts , or overhead artillery attacks can incapacitate an...past two decades [1]. A ballistic shock results from a significant amount of concentrated energy deposited from caliber projectile impacts, mine blasts ...LS- Dyna , has been predominately utilized to calculate the target shock responses including acceleration histo- ries, shock response spectra
ERIC Educational Resources Information Center
Blankenship, Glen; Muller, Martina, Ed.
This packet is a primary/elementary instructional package targeted at grades 3-4. The four lessons address physical and cultural geography, basic needs, community services and community helpers, transportation and communication, and political symbols. The materials focus on a comparative U.S./German perspective. The lessons include: (1)…
Teeter, Matthew G; Kopacz, Alexander J; Nikolov, Hristo N; Holdsworth, David W
2015-01-01
Additive manufacturing continues to increase in popularity and is being used in applications such as biomaterial ingrowth that requires sub-millimeter dimensional accuracy. The purpose of this study was to design a metrology test object for determining the capabilities of additive manufacturing systems to produce common objects, with a focus on those relevant to medical applications. The test object was designed with a variety of features of varying dimensions, including holes, cylinders, rectangles, gaps, and lattices. The object was built using selective laser melting, and the produced dimensions were compared to the target dimensions. Location of the test objects on the build plate did not affect dimensions. Features with dimensions less than 0.300 mm did not build or were overbuilt to a minimum of 0.300 mm. The mean difference between target and measured dimensions was less than 0.100 mm in all cases. The test object is applicable to multiple systems and materials, tests the effect of location on the build, uses a minimum of material, and can be measured with a variety of efficient metrology tools (including measuring microscopes and micro-CT). Investigators can use this test object to determine the limits of systems and adjust build parameters to achieve maximum accuracy. © IMechE 2014.
Front surface structured targets for enhancing laser-plasma interactions
NASA Astrophysics Data System (ADS)
Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass
2016-10-01
We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.
Kievit, Forrest M.; Zhang, Miqin
2012-01-01
Cancer nanotheranostics aims to combine imaging and therapy of cancer through use of nanotechnology. The ability to engineer nanomaterials to interact with cancer cells at the molecular level can significantly improve the effectiveness and specificity of therapy to cancers that are currently difficult to treat. In particular, metastatic cancers, drug-resistant cancers, and cancer stem cells impose the greatest therapeutic challenge that requires targeted therapy to treat effectively. Targeted therapy can be achieved with appropriate designed drug delivery vehicles such as nanoparticles, adult stem cells, or T cells in immunotherapy. In this article, we first review the different types of materials commonly used to synthesize nanotheranostic particles and their use in imaging. We then discuss biological barriers that these nanoparticles encounter and must bypass to reach the target cancer cells, including the blood, liver, kidneys, spleen, and particularly the blood-brain barrier. We then review how nanotheranostics can be used to improve targeted delivery and treatment of cancer cells using nanoparticles, adult stem cells, and T cells in immunotherapy. Finally, we discuss development of nanoparticles to overcome current limitations in cancer therapy. PMID:21842473
Near-infrared fluorescence image quality test methods for standardized performance evaluation
NASA Astrophysics Data System (ADS)
Kanniyappan, Udayakumar; Wang, Bohan; Yang, Charles; Ghassemi, Pejhman; Wang, Quanzeng; Chen, Yu; Pfefer, Joshua
2017-03-01
Near-infrared fluorescence (NIRF) imaging has gained much attention as a clinical method for enhancing visualization of cancers, perfusion and biological structures in surgical applications where a fluorescent dye is monitored by an imaging system. In order to address the emerging need for standardization of this innovative technology, it is necessary to develop and validate test methods suitable for objective, quantitative assessment of device performance. Towards this goal, we develop target-based test methods and investigate best practices for key NIRF imaging system performance characteristics including spatial resolution, depth of field and sensitivity. Characterization of fluorescence properties was performed by generating excitation-emission matrix properties of indocyanine green and quantum dots in biological solutions and matrix materials. A turbid, fluorophore-doped target was used, along with a resolution target for assessing image sharpness. Multi-well plates filled with either liquid or solid targets were generated to explore best practices for evaluating detection sensitivity. Overall, our results demonstrate the utility of objective, quantitative, target-based testing approaches as well as the need to consider a wide range of factors in establishing standardized approaches for NIRF imaging system performance.
Automated strip-mine and reclamation mapping from ERTS
NASA Technical Reports Server (NTRS)
Rogers, R. H. (Principal Investigator); Reed, L. E.; Pettyjohn, W. A.
1974-01-01
The author has identified the following significant results. Computer processing techniques were applied to ERTS-1 computer-compatible tape (CCT) data acquired in August 1972 on the Ohio Power Company's coal mining operation in Muskingum County, Ohio. Processing results succeeded in automatically classifying, with an accuracy greater than 90%: (1) stripped earth and major sources of erosion; (2) partially reclaimed areas and minor sources of erosion; (3) water with sedimentation; (4) water without sedimentation; and (5) vegetation. Computer-generated tables listing the area in acres and square kilometers were produced for each target category. Processing results also included geometrically corrected map overlays, one for each target category, drawn on a transparent material by a pen under computer control. Each target category is assigned a distinctive color on the overlay to facilitate interpretation. The overlays, drawn at a scale of 1:250,000 when placed over an AMS map of the same area, immediately provided map locations for each target. These mapping products were generated at a tenth of the cost of conventional mapping techniques.
Analysis of the optimal laminated target made up of discrete set of materials
NASA Technical Reports Server (NTRS)
Aptukov, Valery N.; Belousov, Valentin L.
1991-01-01
A new class of problems was analyzed to estimate an optimal structure of laminated targets fabricated from the specified set of homogeneous materials. An approximate description of the perforation process is based on the model of radial hole extension. The problem is solved by using the needle-type variation technique. The desired optimization conditions and quantitative/qualitative estimations of optimal targets were obtained and are discussed using specific examples.
Autonomous In-Situ Resources Prospector
NASA Technical Reports Server (NTRS)
Dissly, R. W.; Buehler, M. G.; Schaap, M. G.; Nicks, D.; Taylor, G. J.; Castano, R.; Suarez, D.
2004-01-01
This presentation will describe the concept of an autonomous, intelligent, rover-based rapid surveying system to identify and map several key lunar resources to optimize their ISRU (In Situ Resource Utilization) extraction potential. Prior to an extraction phase for any target resource, ground-based surveys are needed to provide confirmation of remote observation, to quantify and map their 3-D distribution, and to locate optimal extraction sites (e.g. ore bodies) with precision to maximize their economic benefit. The system will search for and quantify optimal minerals for oxygen production feedstock, water ice, and high glass-content regolith that can be used for building materials. These are targeted because of their utility and because they are, or are likely to be, variable in quantity over spatial scales accessible to a rover (i.e., few km). Oxygen has benefits for life support systems and as an oxidizer for propellants. Water is a key resource for sustainable exploration, with utility for life support, propellants, and other industrial processes. High glass-content regolith has utility as a feedstock for building materials as it readily sinters upon heating into a cohesive matrix more readily than other regolith materials or crystalline basalts. Lunar glasses are also a potential feedstock for oxygen production, as many are rich in iron and titanium oxides that are optimal for oxygen extraction. To accomplish this task, a system of sensors and decision-making algorithms for an autonomous prospecting rover is described. One set of sensors will be located in the wheel tread of the robotic search vehicle providing contact sensor data on regolith composition. Another set of instruments will be housed on the platform of the rover, including VIS-NIR imagers and spectrometers, both for far-field context and near-field characterization of the regolith in the immediate vicinity of the rover. Also included in the sensor suite are a neutron spectrometer, ground-penetrating radar, and an instrumented cone penetrometer for subsurface assessment. Output from these sensors will be evaluated autonomously in real-time by decision-making software to evaluate if any of the targeted resources has been detected, and if so, to quantify their abundance. Algorithms for optimizing the mapping strategy based on target resource abundance and distribution are also included in the autonomous software. This approach emphasizes on-the-fly survey measurements to enable efficient and rapid prospecting of large areas, which will improve the economics of ISRU system approaches. The mature technology will enable autonomous rovers to create in-situ resource maps of lunar or other planetary surfaces, which will facilitate human and robotic exploration.
3-D trajectory model for MDT using micro-spheres implanted within large blood vessels
NASA Astrophysics Data System (ADS)
Choomphon-anomakhun, Natthaphon; Natenapit, Mayuree
2016-09-01
Implant assisted magnetic drug targeting (IA-MDT) using ferromagnetic spherical targets implanted within large blood vessels and subjected to a uniform externally applied magnetic field (H0) has been investigated and reported for the first time. The capture areas (As) of magnetic drug carrier particles (MDCPs) were determined from the analysis of particle trajectories simulated from equations of motion. Then, the effects of various parameters, such as types of ferromagnetic materials in the targets and MDCPs, blood flow rates, mass fraction of the ferromagnetic material in the MDCPs, average radii of MDCPs (Rp) and the strength of H0 on the As were obtained. Furthermore, the effects of saturation magnetization of the ferromagnetic materials in the MDCPs and within the targets on the As were analyzed. After this, the suitable strengths of H0 and Rp for IA-MDT designs were reported. Dimensionless As, ranging from 2 to 7, was obtained with Rp ranging from 500 to 2500 nm, μ0H0 less than 0.8 T and a blood flow rate of 0.1 m s-1. The target-MDCP materials considered are iron-iron, iron-magnetite and SS409-magnetite, respectively.
An analysis of health promotion materials for Dutch truck drivers: Off target and too complex?
Boeijinga, Anniek; Hoeken, Hans; Sanders, José
2017-01-01
Despite various health promotion initiatives, unfavorable figures regarding Dutch truck drivers' eating behaviors, exercise behaviors, and absenteeism have not improved. The aim was to obtain a better understanding of the low level of effectiveness of current health interventions for Dutch truck drivers by examining to what extent these are tailored to the target group's particular mindset (focus of content) and health literacy skills (presentation of content). The article analyzes 21 health promotion materials for Dutch truck drivers using a two-step approach: (a) an analysis of the materials' focus, guided by the Health Action Process Approach; and (b) an argumentation analysis, guided by pragma-dialectics. The corpus analysis revealed: (a) a predominant focus on the motivation phase; and (b) in line with the aim of motivating the target group, a consistent use of pragmatic arguments, which were typically presented in an implicit way. The results indicate that existing health promotion materials for Dutch truck drivers are not sufficiently tailored to the target group's mindset and health literacy skills. Recommendations are offered to develop more tailored/effective health interventions targeting this high-risk, underserved occupational group.
Proteus: A Lecturer-Friendly Adaptive Tutoring System
ERIC Educational Resources Information Center
Sessink, Olivier D. T.; Beeftink, Hendrik H.; Tramper, Johannes; Hartog, Rob J. M.
2007-01-01
Effectively targeting a heterogeneous student population is a common challenge in academic courses. Most traditional learning material targets the "average student," and is suboptimal for students who lack certain prior knowledge, or students who have already attained some of the course objectives. Student-activating learning material supports…
Development of Sorbents for Extraction and Stabilization of Nucleic Acids
2016-09-13
traditional stabilization compounds. The materials were further shown to provide capture and subsequent stabilization of targets from a complex ...22 CAPTURE FROM COMPLEX SOLUTIONS...stabilization compounds (sugars and BSA). The materials were further shown to provide capture and subsequent stabilization of targets from a complex
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Nealy, John E.; Wilson, John W.
1988-01-01
Preliminary estimates of radiation exposures for manned interplanetary missions resulting from anomalously large solar flare events are presented. The calculations use integral particle fluences for the February 1956, November 1960, and August 1972 events as inputs into the Langley Research Center nucleon transport code BRYNTRN. This deterministic code transports primary and secondary nucleons (protons and neutrons) through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus fragmentation and recoil are also included. Estimates of 5 cm depth doses and dose equivalents in tissue are presented behind various thicknesses of aluminum, water, and composite aluminum/water shields for each of the three solar flare events.
Constraints in the hot-dry-rock resources of the united states
Sass, John; Guffanti, Marianne; ,
1993-01-01
As with hydrothermal systems, the western U.S has higher HDR potential overall than the eastern U.S. because geothermal gradients on average are higher in the west. Nevertheless, some attractive exploration targets occur in the eastern U.S. The most favorable target in the eastern U.S. (defined here to include the Great Plains province) is one in which the heat flow from the basement rocks is higher than average, either due to heat generation from highly radioactive rocks or to a plume of hot water driven upwards from greater depths by convection, and where such basement rocks are blanketed by one or more kilometers of sedimentary material having a low thermal conductivity.