Sample records for target normal sheath

  1. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, K. D.; Huang, T. W.; Zhou, C. T., E-mail: zcangtao@iapcm.ac.cn

    2016-01-15

    Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstratedmore » that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA) case.« less

  2. Enhanced target normal sheath acceleration based on the laser relativistic self-focusing

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Zhuo, H. B.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yu, T. P.; Wu, H. C.; Yin, Y.; Ge, Z. Y.; Li, X. H.

    2014-06-01

    The enhanced target normal sheath acceleration of ions in laser target interaction via the laser relativistic self-focusing effect is investigated by theoretical analysis and particle-in-cell simulations. The temperature of the hot electrons in the underdense plasma is greatly increased due to the occurrence of resonant absorption, while the electron-betatron-oscillation frequency is close to its witnessed laser frequency [Pukhov et al., Phys. Plasma 6, 2847 (1999)]. While these hot electrons penetrate through the backside solid target, a stronger sheath electric field at the rear surface of the target is induced, which can accelerate the protons to a higher energy. It is also shown that the optimum length of the underdense plasma is approximately equal to the self-focusing distance.

  3. Control of target-normal-sheath-accelerated protons from a guiding cone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, D. B.; Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225; Zhuo, H. B., E-mail: hongbin.zhuo@gmail.com

    2015-06-15

    It is demonstrated through particle-in-cell simulations that target-normal-sheath-accelerated protons can be well controlled by using a guiding cone. Compared to a conventional planar target, both the collimation and number density of proton beams are substantially improved, giving a high-quality proton beam which maintained for a longer distance without degradation. The effect is attributed to the radial electric field resulting from the charge due to the hot target electrons propagating along the cone surface. This electric field can effectively suppress the spatial spread of the protons after the expansion of the hot electrons.

  4. Proton acceleration measurements using fs laser irradiation of foils in the target normal sheath acceleration regime

    NASA Astrophysics Data System (ADS)

    Batani, D.; Boutoux, G.; Burgy, F.; Jakubowska, K.; Ducret, J. E.

    2018-05-01

    We present experimental results obtained at the CELIA laboratory using the laser ECLIPSE to study proton acceleration from ultra-intense laser pulses. Several types of targets were irradiated with different laser conditions (focusing and prepulse level). Proton emission was characterized using time-of-flight detectors (SiC and diamond) and a Thomson parabola spectrometer. In all cases, the maximum energy of observed protons was of the order of 260 keV with a large energy spectrum. Such characteristics are typical of protons emitted following the target normal sheath acceleration mechanism for low-energy short-pulse lasers like ECLIPSE.

  5. Parametric investigations of target normal sheath acceleration experiments

    NASA Astrophysics Data System (ADS)

    Zani, Alessandro; Sgattoni, Andrea; Passoni, Matteo

    2011-10-01

    One of the most important challenges related to laser-driven ion acceleration research is to actively control some important ion beam features. This is a peculiar topic in the light of future possible technological applications. In the present work we make use of one theoretical model for target normal sheath acceleration in order to reproduce recent experimental parametric studies about maximum ion energy dependencies on laser parameters. The key role played by pulse energy and intensity is enlightened. Finally the effective dependence of maximum ion energy on intensity is evaluated using a combined theoretical approach, obtained by means of an analytical and a particle-in-cell numerical investigation.

  6. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime

    DOE PAGES

    Poole, P. L.; Obst, L.; Cochran, G. E.; ...

    2018-01-11

    Here we present an experimental study investigating laser-driven proton acceleration via target normal sheath acceleration (TNSA) over a target thickness range spanning the typical TNSA-dominant regime (~1 μm) down to below the onset of relativistic laser-transparency (<40 nm). This is done with a single target material in the form of freely adjustable films of liquid crystals along with high contrast (via plasma mirror) laser interaction (~2.65 J, 30 fs, I>1 x 10 21 W cm -2). Thickness dependent maximum proton energies scale well with TNSA models down to the thinnest targets, while those under ~40 nm indicate the influence ofmore » relativistic transparency on TNSA, observed via differences in light transmission, maximum proton energy, and proton beam spatial profile. Oblique laser incidence (45°) allowed the fielding of numerous diagnostics to determine the interaction quality and details: ion energy and spatial distribution was measured along the laser axis and both front and rear target normal directions; these along with reflected and transmitted light measurements on-shot verify TNSA as dominant during high contrast interaction, even for ultra-thin targets. Additionally, 3D particle-in-cell simulations qualitatively support the experimental observations of target-normal-directed proton acceleration from ultra-thin films.« less

  7. Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poole, P. L.; Obst, L.; Cochran, G. E.

    Here we present an experimental study investigating laser-driven proton acceleration via target normal sheath acceleration (TNSA) over a target thickness range spanning the typical TNSA-dominant regime (~1 μm) down to below the onset of relativistic laser-transparency (<40 nm). This is done with a single target material in the form of freely adjustable films of liquid crystals along with high contrast (via plasma mirror) laser interaction (~2.65 J, 30 fs, I>1 x 10 21 W cm -2). Thickness dependent maximum proton energies scale well with TNSA models down to the thinnest targets, while those under ~40 nm indicate the influence ofmore » relativistic transparency on TNSA, observed via differences in light transmission, maximum proton energy, and proton beam spatial profile. Oblique laser incidence (45°) allowed the fielding of numerous diagnostics to determine the interaction quality and details: ion energy and spatial distribution was measured along the laser axis and both front and rear target normal directions; these along with reflected and transmitted light measurements on-shot verify TNSA as dominant during high contrast interaction, even for ultra-thin targets. Additionally, 3D particle-in-cell simulations qualitatively support the experimental observations of target-normal-directed proton acceleration from ultra-thin films.« less

  8. Modeling target normal sheath acceleration using handoffs between multiple simulations

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Willis, Christopher; Mitchell, Robert; King, Frank; Schumacher, Douglass; Akli, Kramer; Freeman, Richard

    2013-10-01

    We present a technique to model the target normal sheath acceleration (TNSA) process using full-scale LSP PIC simulations. The technique allows for a realistic laser, full size target and pre-plasma, and sufficient propagation length for the accelerated ions and electrons. A first simulation using a 2D Cartesian grid models the laser-plasma interaction (LPI) self-consistently and includes field ionization. Electrons accelerated by the laser are imported into a second simulation using a 2D cylindrical grid optimized for the initial TNSA process and incorporating an equation of state. Finally, all of the particles are imported to a third simulation optimized for the propagation of the accelerated ions and utilizing a static field solver for initialization. We also show use of 3D LPI simulations. Simulation results are compared to recent ion acceleration experiments using SCARLET laser at The Ohio State University. This work was performed with support from ASOFR under contract # FA9550-12-1-0341, DARPA, and allocations of computing time from the Ohio Supercomputing Center.

  9. Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE.

    PubMed

    Wang, Dahui; Shou, Yinren; Wang, Pengjie; Liu, Jianbo; Li, Chengcai; Gong, Zheng; Hu, Ronghao; Ma, Wenjun; Yan, Xueqing

    2018-02-07

    We report a simulation study on proton acceleration driven by ultraintense laser pulses with normal contrast (10 7 -10 9 ) containing nanosecond plateau amplified spontaneous emission (ASE). It's found in hydrodynamic simulations that if the thickness of the targets lies in the range of hundreds nanometer matching the intensity and duration of ASE, the ablation pressure would push the whole target in the forward direction with speed exceeding the expansion velocity of plasma, resulting in a plasma density profile with a long extension at the target front and a sharp gradient at the target rear. When the main pulse irradiates the plasma, self-focusing happens at the target front, producing highly energetic electrons through direct laser acceleration(DLA) building the sheath field. The sharp plasma gradient at target rear ensures a strong sheath field. 2D particle-in-cell(PIC) simulations reveal that the proton energy can be enhanced by a factor of 2 compared to the case of using micrometer-thick targets.

  10. Role of target thickness in proton acceleration from near-critical mass-limited plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-07-01

    The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.

  11. Comprehensive Study of Plasma-Wall Sheath Transport Phenomena

    DTIC Science & Technology

    2012-09-10

    environment, a Langmuir probe and a Retarding Potential Analyzer (RPA). The Langmuir probe could be considered the seminal plasma diagnostic, and a large...plasma-sheath interface. Electric field is normalized by Te/LD (LD is the Debye length) and velocity is normalized by the Bohm speed. Figure 14...studying the interaction of the near-wall plasma sheath with a magnetic field , and modeled the plasma sheath of the GT thick-sheath (~10mm) plasma

  12. Optic Nerve Sheath Tethering in Adduction Occurs in Esotropia and Hypertropia, But Not in Exotropia

    PubMed Central

    Suh, Soh Youn; Clark, Robert A.; Demer, Joseph L.

    2018-01-01

    Purpose Repetitive strain to the optic nerve (ON) due to tethering in adduction has been recently proposed as an intraocular pressure-independent mechanism of optic neuropathy in primary open-angle glaucoma. Since strabismus may alter adduction, we investigated whether gaze-related ON straightening and associated globe translation differ in horizontal and vertical strabismus. Methods High-resolution orbital magnetic resonance imaging was obtained in 2-mm thick quasi-coronal planes using surface coils in 25 subjects (49 orbits) with esotropia (ET, 19 ± 3.6Δ SEM), 11 (15 orbits) with exotropia (XT, 33.7 ± 7.3Δ), 7 (12 orbits) with hypertropia (HT, 14.6 ± 3.2Δ), and 31 normal controls (62 orbits) in target-controlled central gaze, and in maximum attainable abduction and adduction. Area centroids were used to determine ON path sinuosity and globe positions. Results Adduction angles achieved in ET (30.6° ± 0.9°) and HT (27.2° ± 2.3°) did not significantly differ from normal (28.3° ± 0.7°), but significantly less adduction was achieved in XT (19.0° ± 2.5°, P = 0.005). ON sheath tethering in adduction occurred in ET and HT similarly to normal, but did not in XT. The globe translated significantly less than normal, nasally in adduction in XT and temporally in abduction in ET and HT (P < 0.02, for all). Globe retraction did not occur during abduction or adduction in any group. Conclusions Similar to normal subjects, the ON and sheath become tethered without globe retraction in ET and HT. In XT, adduction tethering does not occur, possibly due to limited adduction angle. Thus, therapeutic limitation of adduction could be considered as a possible treatment for ON sheath tethering.

  13. Enhanced ion acceleration in transition from opaque to transparent plasmas

    NASA Astrophysics Data System (ADS)

    Mishra, R.; Fiuza, F.; Glenzer, S.

    2018-04-01

    Using particle-in-cell simulations, we investigate ion acceleration in the interaction of high intensity lasers with plasmas which transition from opaque to transparent during the interaction process. We show that the highest ion energies are achieved when the laser traverses the target around the peak intensity and re-heats the electron population responsible for the plasma expansion, enhancing the corresponding sheath electric field. This process can lead to an increase of up to 2x in ion energy when compared with the standard Target Normal Sheath Acceleration in opaque targets under the same laser conditions. A theoretical model is developed to predict the optimal target areal density as a function of laser intensity and pulse duration. A systematic parametric scan for a wide range of target densities and thicknesses is performed in 1D, 2D and 3D and shown consistent with the theory and with recent experimental results. These results open the way for a better optimization of the ion energy in future laser–solid experiments.

  14. Sheath liquid interface for the coupling of normal-phase liquid chromatography with electrospray mass spectrometry and its application to the analysis of neoflavonoids.

    PubMed

    Charles, Laurence; Laure, Frédéric; Raharivelomanana, Phila; Bianchini, Jean-Pierre

    2005-01-01

    A novel interface that allows normal-phase liquid chromatography to be coupled with electrospray ionization (ESI) is reported. A make-up solution of 60 mM ammonium acetate in methanol, infused at a 5 microl min(-1) flow-rate at the tip of the electrospray probe, provides a sheath liquid which is poorly miscible with the chromatographic effluent, but promotes efficient ionization of the targeted analytes. Protonated molecules generated in the ESI source were subjected to tandem mass spectrometric experiments in a triple-quadrupole mass spectrometer. The main fragmentation reactions were characterized for each analyte and specific mass spectral transitions were used to acquire chromatographic data in the multiple reaction monitoring detection mode. Results obtained during optimization of the sheath liquid composition and flow-rate suggest that the electrospray process was mainly under the control of the make-up solution, and that it forms an external charged layer around a neutral chromatographic mobile phase core. This sheath liquid interface was implemented for the analysis of some neoflavonoid compounds and its performance was evaluated. Limits of detection were established for calophillolide, inophyllum B, inophyllum P and inophyllum C at 100, 25, 15 and 100 ng ml(-1), respectively.

  15. PO calculation for reduction in radar cross section of hypersonic targets using RAM

    NASA Astrophysics Data System (ADS)

    Liu, Song-hua; Guo, Li-xin; Pan, Wei-tao; Chen, Wei; Xiao, Yi-fan

    2018-06-01

    The radar cross section (RCS) reduction of hypersonic targets by radar absorbing materials (RAM) coating under different reentry cases is analyzed in the C and X bands frequency range normally used for radar detection. The physical optics method is extended to both the inhomogeneous plasma sheath and RAM layer present simultaneously. The simulation results show that the absorbing coating can reduce the RCS of the plasma cloaking system and its effectiveness is related to the maximum plasma frequency. Moreover, the amount of the RCS decrease, its maxima, and the corresponding optimal RAM thickness depend on the non-uniformity and parameters of the plasma sheath. In addition, the backward RCS of the flight vehicle shrouded by plasma shielding and man-made absorber is calculated and compared to the bare cone.

  16. Enhanced ion acceleration in transition from opaque to transparent plasmas

    DOE PAGES

    Mishra, R.; Fiuza, F.; Glenzer, S.

    2018-04-20

    Using particle-in-cell simulations, we investigate ion acceleration in the interaction of high intensity lasers with plasmas which transition from opaque to transparent during the interaction process. We show that the highest ion energies are achieved when the laser traverses the target around the peak intensity and re-heats the electron population responsible for the plasma expansion, enhancing the corresponding sheath electric field. This process can lead to an increase of up to 2x in ion energy when compared with the standard Target Normal Sheath Acceleration in opaque targets under the same laser conditions. A theoretical model is developed to predict themore » optimal target areal density as a function of laser intensity and pulse duration. A systematic parametric scan for a wide range of target densities and thicknesses is performed in 1D, 2D and 3D and shown consistent with the theory and with recent experimental results. Thus, these results open the way for a better optimization of the ion energy in future laser–solid experiments.« less

  17. Enhanced ion acceleration in transition from opaque to transparent plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, R.; Fiuza, F.; Glenzer, S.

    Using particle-in-cell simulations, we investigate ion acceleration in the interaction of high intensity lasers with plasmas which transition from opaque to transparent during the interaction process. We show that the highest ion energies are achieved when the laser traverses the target around the peak intensity and re-heats the electron population responsible for the plasma expansion, enhancing the corresponding sheath electric field. This process can lead to an increase of up to 2x in ion energy when compared with the standard Target Normal Sheath Acceleration in opaque targets under the same laser conditions. A theoretical model is developed to predict themore » optimal target areal density as a function of laser intensity and pulse duration. A systematic parametric scan for a wide range of target densities and thicknesses is performed in 1D, 2D and 3D and shown consistent with the theory and with recent experimental results. Thus, these results open the way for a better optimization of the ion energy in future laser–solid experiments.« less

  18. Ultrasonographic assessment of the proximal digital annular ligament in the equine forelimb.

    PubMed

    Dik, K J; Boroffka, S; Stolk, P

    1994-01-01

    Ultrasonography was used with 6 normal cadaver forelimbs of Dutch Warmblood horses to delineate the ultrasonographic anatomy of the palmar pastern region, with emphasis on the proximal digital annular ligament. Using a 5.5 MHz sector scanner, the thin proximal digital annular ligament was not visible on offset sonograms. Only if the digital sheath in the normal limb was distended was the distal border of this ligament outlined. In all normal limbs the palmarodistal thickness of the combined skin-proximal digital annular ligament layer in the mid-pastern region was 2 mm. The flexor tendons and distal sesamoidean ligaments were easily identified as hyperechoic structures. Distension of the digital sheath in the normal limbs clearly outlined the anechoic digital sheath pouches. In 4 lame horses ultrasonography aided the diagnosis of functional proximal digital annular ligament constriction. In all 4 diseased forelimbs ultrasonography demonstrated thickening of the skin-proximal digital annular ligament layer and distension of the digital sheath. In one of these limbs the distended digital sheath was also thickened. The flexor tendons and distal sesamoidean ligaments were normal. There was no radiographic evidence of additional bone or joint lesions.

  19. Investigation on target normal sheath acceleration through measurements of ions energy distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tudisco, S., E-mail: tudisco@lns.infn.it; Cirrone, G. A. P.; Mascali, D.

    2016-02-15

    An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 10{sup 19} W/cm{sup 2}. A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.

  20. Comprehensive adipocytic and neurogenic tissue microarray analysis of NY-ESO-1 expression - a promising immunotherapy target in malignant peripheral nerve sheath tumor and liposarcoma

    PubMed Central

    Shurell, Elizabeth; Vergara-Lluri, Maria E.; Li, Yunfeng; Crompton, Joseph G.; Singh, Arun; Bernthal, Nicholas; Wu, Hong; Eilber, Fritz C.; Dry, Sarah M.

    2016-01-01

    Background Immunotherapy targeting cancer-testis antigen NY-ESO-1 shows promise for tumors with poor response to chemoradiation. Malignant peripheral nerve sheath tumors (MPNSTs) and liposarcomas (LPS) are chemoresistant and have few effective treatment options. Materials Methods Using a comprehensive tissue microarray (TMA) of both benign and malignant tumors in primary, recurrent, and metastatic samples, we examined NY-ESO-1 expression in peripheral nerve sheath tumor (PNST) and adipocytic tumors. The PNST TMA included 42 MPNSTs (spontaneous n = 26, NF1-associated n = 16), 35 neurofibromas (spontaneous n = 22, NF-1 associated n = 13), 11 schwannomas, and 18 normal nerves. The LPS TMA included 48 well-differentiated/dedifferentiated (WD/DD) LPS, 13 myxoid/round cell LPS, 3 pleomorphic LPS, 8 lipomas, 1 myelolipoma, and 3 normal adipocytic tissue samples. Stained in triplicate, NY-ESO-1 intensity and density were scored. Results NY-ESO-1 expression was exclusive to malignant tumors. 100% of myxoid/round cell LPS demonstrated NY-ESO-1 expression, while only 6% of WD/DD LPS showed protein expression, one of which was WD LPS. Of MPNST, 4/26 (15%) spontaneous and 2/16 (12%) NF1-associated MPNSTs demonstrated NY-ESO-1 expression. Strong NY-ESO-1 expression was observed in myxoid/round cell and dedifferentiated LPS, and MPNST in primary, neoadjuvant, and metastatic settings. Conclusions We found higher prevalence of NY-ESO-1 expression in MPNSTs than previously reported, highlighting a subset of MPNST patients who may benefit from immunotherapy. This study expands our understanding of NY-ESO-1 in WD/DD LPS and is the first demonstration of staining in a WD LPS and metastatic/recurrent myxoid/round cell LPS. These results suggest immunotherapy targeting NY-ESO-1 may benefit patients with aggressive tumors resistant to conventional therapy. PMID:27655679

  1. Experimental investigation of plasma sheaths in magnetic mirror and cusp configurations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhengqi; Wei, Zi-an; Ma, J. X.

    2017-11-01

    Sheath structures near a metal plate in a magnetized plasma were experimentally investigated in magnetic mirror and cusp configurations. Plasma parameters and the sheath potential distributions were probed by a planar and an emissive probe, respectively. The measured sheath profiles in the mirror configuration show that the sheath thickness first decreases and then increases when the magnetic strength is raised. A magnetic flux-tube model was used to explain this result. In the cusp configuration, the measured sheath thickness decreases with the increase of the coil current creating the magnetic cusp. However, when normalized by the electron Debye length, the dependence of the sheath thickness on the coil current is reversed.

  2. Measurement of plasma sheath overlap above a trench

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.; Steinberger, Thomas E.

    2017-06-01

    The plasma sheath above a rectangular trench has been experimentally characterized as the trench width is varied in a radio frequency (rf) plasma discharge for two different rf powers giving two different sets of plasma parameters. Measurements were made using the positions and all six normal mode frequencies of two dust particles floating just inside the sheath edge above the center of the trench. We find that sheath overlap occurs when the trench width ≲ 3 s 0 for a trench depth ≈0.7s0, where s0 is the planar sheath width. The electric field gradient inside the sheath edge increases with rf power.

  3. Dynamics of magnetized plasma sheaths around a trench

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatami, M. M., E-mail: m-hatami@kntu.ac.ir

    2016-08-15

    Considering a magnetized plasma sheath, the temporal evolution of the ion properties (the incident ion flux, the ion impact angle, and the incident ion dose) around a rectangular trench is studied numerically. Our results show that the ion flux along the bottom surface greatly reduces in the presence of magnetic field and its uniformity improves, but the magnetic field does not considerably affect the ion flux along the sidewall. In addition, the thickness of the plasma sheath increases by increasing the magnetic field while its conformality to the target surface reduces faster. Moreover, it is shown that any increase inmore » the magnitude (inclination angle) of the magnetic field causes a decrease (an increase) in the angle of incidence of ions on the bottom and sidewall surfaces. Furthermore, in the presence of magnetic field, the ions strike nearly normal to the surface of the bottom while they become less oblique along the sidewall surface. In addition, contrary to the corners of the trench, it is found that the magnetic field greatly affects the incident ion dose at the center of the trench surfaces. Also, it is shown that the incident ion dose along the sidewall is the highest near the center of the sidewall in both magnetized and magnetic-free cases. However, uniformity of the incident ion dose along the sidewall is better than that along the bottom in both magnetized and unmagnetized plasma sheath.« less

  4. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.

    2005-08-01

    Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.

  5. The feasibility of transradial laser atherectomy for chronic total occlusion using the 5 Fr sheath system.

    PubMed

    Sherif, Khaled; Yaqub, Yasir; Suarez, Jose A

    2016-05-01

    We present a case of chronic total occlusion (CTO) approached with LASER endovascular intervention by radial artery approach using a 5 French sheath. A 57-year-old man presented to our hospital having had retrosternal chest pain for two days. Physical examination was normal at the time of presentation. The laboratory tests were within normal limits, including cardiac enzymes except the lipid panel which showed hypertriglyceridemia. The patient underwent a myocardial perfusion scintigraphy stress test that revealed inferior wall ischemia, with normal left ventricular ejection fraction. A 5-French vascular sheath was placed in the right radial artery. Selective coronary artery angiography was performed, which showed right coronary artery (RCA) CTO. A 5-French JR4 guide catheter successfully engaged the RCA and Laser angioplasty was performed across the CTO into the RCA. A marked improvement of flow was evident thereafter. To best of our knowledge this is the first case report showing the feasibility of laser atherectomy using the 5 French sheath system in a coronary arterial CTO. Copyright © 2016 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  6. Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime

    NASA Astrophysics Data System (ADS)

    Becker, G. A.; Tietze, S.; Keppler, S.; Reislöhner, J.; Bin, J. H.; Bock, L.; Brack, F.-E.; Hein, J.; Hellwing, M.; Hilz, P.; Hornung, M.; Kessler, A.; Kraft, S. D.; Kuschel, S.; Liebetrau, H.; Ma, W.; Polz, J.; Schlenvoigt, H.-P.; Schorcht, F.; Schwab, M. B.; Seidel, A.; Zeil, K.; Schramm, U.; Zepf, M.; Schreiber, J.; Rykovanov, S.; Kaluza, M. C.

    2018-05-01

    The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.

  7. Novel target design for enhanced laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.

    2017-09-01

    We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.

  8. Monte Carlo simulation study of positron generation in ultra-intense laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Yan, Yonghong; Wu, Yuchi; Zhao, Zongqing; Teng, Jian; Yu, Jinqing; Liu, Dongxiao; Dong, Kegong; Wei, Lai; Fan, Wei; Cao, Leifeng; Yao, Zeen; Gu, Yuqiu

    2012-02-01

    The Monte Carlo transport code Geant4 has been used to study positron production in the transport of laser-produced hot electrons in solid targets. The dependence of the positron yield on target parameters and the hot-electron temperature has been investigated in thick targets (mm-scale), where only the Bethe-Heitler process is considered. The results show that Au is the best target material, and an optimal target thickness exists for generating abundant positrons at a given hot-electron temperature. The positron angular distributions and energy spectra for different hot electron temperatures were studied without considering the sheath field on the back of the target. The effect of the target rear sheath field for positron acceleration was studied by numerical simulation while including an electrostatic field in the Monte Carlo model. It shows that the positron energy can be enhanced and quasi-monoenergetic positrons are observed owing to the effect of the sheath field.

  9. The magnetized sheath of a dusty plasma with grains size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Jing, E-mail: ouj@ipp.ac.cn; Gan, Chunyun; Lin, Binbin

    2015-05-15

    The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected valuemore » of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance.« less

  10. Selective Deuteron Acceleration and Neutron Production on the Vulcan PW Laser

    NASA Astrophysics Data System (ADS)

    Krygier, A. G.; Morrison, J. T.; Freeman, R. R.; Ahmed, H.; Green, J. A.; Alejo, A.; Kar, S.; Vassura, L.

    2014-10-01

    Fast neutron sources are important for a variety of applications including radiography and the detection of sensitive materials. Here we report on the results of an experiment using the Vulcan PW laser at Rutherford Appleton Laboratory to produce a nearly pure deuterium ion beam via Target Normal Sheath Acceleration. The typical contaminants are suppressed by freezing a μ m's thick layer of heavy water vapor (D2 O) onto a cryogenic target during the shot sequence. Neutrons were generated by colliding the accelerated deuterons were into secondary targets made of deuterated plastic in the pitcher-catcher arrangement. Absolute yields for deuterium ions and neutrons are reported. This work is supported by DOE Contract DE-FC02-04ER54789.

  11. Optical, x-ray and microwave diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tudisco, S.; Mascali, D.; Altana, C.

    2013-07-26

    Laser-driven ion acceleration is a new approach for the particles acceleration, which allows obtaining ion beams with unique properties, such as short burst duration, large particle number, small size source size, low transverse emittance. Currently, two main acceleration mechanisms have been identified and investigated: target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). Electrons dynamics and energies are strongly coupled to these acceleration mechanisms and they can be investigated with optical and X-ray techniques. The main aim of these studies are the identification of few physical observables that can be directly correlated to the proton emission obtained (in termsmore » of reproducibility and intensity) in operations with different target material and structure and laser-target interaction parameters.« less

  12. Laser contrast and other key parameters enhancing the laser conversion efficiency in ion acceleration regime

    NASA Astrophysics Data System (ADS)

    Torrisi, Lorenzo

    2018-01-01

    Measurements of ion acceleration in plasma produced by fs lasers at intensity of the order of 1018 W/cm2 have been performed in different European laboratories. The forward emission in target-normal-sheath-acceleration (TNSA) regime indicated that the maximum energy is a function of the laser parameters, of the irradiation conditions and of the target properties.In particular the laser intensity and contrast play an important role to maximize the ion acceleration enhancing the conversion efficiency. Also the use of suitable prepulses, focal distances and polarized laser light has important roles. Finally the target composition, surface, geometry and multilayered structure, permit to enhance the electric field driving the forward ion acceleration.Experimental measurements will be reported and discussed.

  13. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons.

    PubMed

    Nakatsutsumi, M; Sentoku, Y; Korzhimanov, A; Chen, S N; Buffechoux, S; Kon, A; Atherton, B; Audebert, P; Geissel, M; Hurd, L; Kimmel, M; Rambo, P; Schollmeier, M; Schwarz, J; Starodubtsev, M; Gremillet, L; Kodama, R; Fuchs, J

    2018-01-18

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5  T at laser intensities ~10 21  W cm -2 ) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

  14. Selective pH-Responsive Core-Sheath Nanofiber Membranes for Chem/Bio/Med Applications: Targeted Delivery of Functional Molecules.

    PubMed

    Han, Daewoo; Steckl, Andrew J

    2017-12-13

    Core-sheath fibers using different Eudragit materials were successfully produced, and their controlled multi-pH responses have been demonstrated. Core-sheath fibers made of Eudragit L 100 (EL100) core and Eudragit S 100 (ES100) sheath provide protection and/or controlled release of core material at pH 6 by adjusting the sheath thickness (controlled by the flow rate of source polymer solution). The thickest sheath (∼250 nm) provides the least core release ∼1.25%/h, while the thinnest sheath (∼140 nm) provides much quicker release ∼16.75%/h. Furthermore, switching core and sheath material dramatically altered the pH response. Core-sheath fibers made of ES100 core and EL100 sheath can provide a consistent core release rate, while the sheath release rate becomes higher as the sheath layer becomes thinner. For example, the thinnest sheath (∼120 nm) provides a core and sheath release ratio of 1:2.5, while the thickest sheath (∼200 nm) shows only a ratio of 1:1.7. All core-sheath Eudragit fibers show no noticeable release at pH 5, while they are completely dissolved at pH 7. Extremely high surface area in the porous network of the fiber membranes provides much faster (>30 times) response to external pH changes as compared to that of equivalent cast films.

  15. Kinetic simulations of scrape-off layer physics in the DIII-D tokamak

    DOE PAGES

    Churchill, Randy M.; Canik, John M.; Chang, C. S.; ...

    2016-12-27

    Simulations using the fully kinetic code XGCa were undertaken to explore the impact of kinetic effects on scrape-off layer (SOL) physics in DIII-D H-mode plasmas. XGCa is a total- f, gyrokinetic code which self-consistently calculates the axisymmetric electrostatic potential and plasma dynamics, and includes modules for Monte Carlo neutral transport. Fluid simulations are normally used to simulate the SOL, due to its high collisionality. However, depending on plasma conditions, a number of discrepancies have been observed between experiment and leading SOL fluid codes (e.g. SOLPS), including underestimating outer target temperatures, radial electric field in the SOL, parallel ion SOL flowsmore » at the low field side, and impurity radiation. Many of these discrepancies may be linked to the fluid treatment, and might be resolved by including kinetic effects in SOL simulations. The XGCa simulation of the DIII-D tokamak in a nominally sheath-limited regime show many noteworthy features in the SOL. The density and ion temperature are higher at the low-field side, indicative of ion orbit loss. The SOL ion Mach flows are at experimentally relevant levels ( Mi ~0.5), with similar shapes and poloidal variation as observed in various tokamaks. Surprisingly, the ion Mach flows close to the sheath edge remain subsonic, in contrast to the typical fluid Bohm criterion requiring ion flows to be above sonic at the sheath edge. Related to this are the presence of elevated sheath potentials, eΔΦ/T e ~ 3–4, over most of the SOL, with regions in the near-SOL close to the separatrix having eΔΦ/Te > 4. Finally, these two results at the sheath edge are a consequence of non-Maxwellian features in the ions and electrons there.« less

  16. Miniature sheathed thermocouples for turbine blade temperature measurement

    NASA Technical Reports Server (NTRS)

    Holanda, R.; Glawe, G. E.; Krause, L. N.

    1974-01-01

    An investigation was made of sheathed thermocouples for turbine blade temperature measurements. Tests were performed on the Chromel-Alumel sheathed thermocouples with both two-wire and single-wire configurations. Sheath diameters ranged from 0.25 to 0.76 mm, and temperatures ranged from 1080 to 1250 K. Both steady-state and thermal cycling tests were performed for times up to 450 hr. Special-order and commercial-grade thermocouples were tested. The tests showed that special-order single-wire sheathed thermocouples can be obtained that are reliable and accurate with diameters as small as 0.25 mm. However, all samples of 0.25-mm-diameter sheathed commercial-grade two-wire and single-wire thermocouples that were tested showed unacceptable drift rates for long-duration engine testing programs. The drift rates were about 1 percent in 10 hr. A thermocouple drift test is recommended in addition to the normal acceptance tests in order to select reliable miniature sheathed thermocouples for turbine blade applications.

  17. GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Hardee, Philip; Mizuno, Yosuke; Nishikawa, Ken-Ichi

    2007-01-01

    A new general relativistic magnetohydrodynamics (GRMHD ) code "RAISHIN" used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, cl2, on the KH instability associated with a relativistic, Y = 2.5, jet spine-sheath interaction. In the simulations sound speeds up to ? c/3 and Alfven wave speeds up to ? 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from d 2 sheath speeds is found.

  18. Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions

    DOE PAGES

    Zulick, C.; Raymond, A.; McKelvey, A.; ...

    2016-06-15

    Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a K α imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Furthermore, Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.

  19. Sperm fibrous sheath proteins: a potential new class of target antigens for use in human therapeutic cancer vaccines

    PubMed Central

    Chiriva-Internati, Maurizio; Cobos, Everardo; Da Silva, Diane M.

    2008-01-01

    Cancer vaccines have been demonstrated to be a promising strategy for treating human neoplastic disease, but one of the limitations of these vaccines remains the paucity of target antigens to which to direct an effective immune response. We hypothesize that sperm fibrous sheath proteins may be a new class of useful antigens for developing successful cancer vaccines. This hypothesis is supported by the expression of two sperm fibrous sheath proteins, called sperm protein 17 and calcium-binding tyrosine-phosphorylation regulated protein, in tumors of unrelated histological origin and their capability to induce T cell-based immune responses. PMID:18433090

  20. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  1. Temporally resolved proton radiography of rapidly varying electric and magnetic fields in laser-driven capacitor coil targets

    NASA Astrophysics Data System (ADS)

    Morace, A.; Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Alpinaniz, J.; Brabetz, C.; Schaumann, G.; Volpe, L.

    2017-02-01

    Understanding the dynamics of rapidly varying electromagnetic fields in intense short pulse laser plasma interactions is of key importance to understand the mechanisms at the basis of a wide variety of physical processes, from high energy density physics and fusion science to the development of ultrafast laser plasma devices to control laser-generated particle beams. Target normal sheath accelerated (TNSA) proton radiography represents an ideal tool to diagnose ultrafast electromagnetic phenomena, providing 2D spatially and temporally resolved radiographs with temporal resolution varying from 2-3 ps to few tens of ps. In this work we introduce the proton radiography technique and its application to diagnose the spatial and temporal evolution of electromagnetic fields in laser-driven capacitor coil targets.

  2. Ion acceleration via TNSA near and beyond the relativistic transparency limit

    NASA Astrophysics Data System (ADS)

    Schumacher, Douglass; Poole, Patrick; Cochran, Ginevra; Willis, Christopher

    2017-10-01

    Ultra-intense laser-based ion acceleration can proceed via several mechanisms whose fundamental operation and interplay with each other are still not well understood. The details of Relativistically Induced Transparency (RIT) and its impact on ultra-thin target acceleration are of interest for fundamental studies and to progress toward applications requiring controlled, high energy secondary radiation, e.g. hadron cancer therapy. Liquid crystal film targets formed in-situ with thickness control between 10 nm and > 50 μm uniquely allow study of how ion acceleration varies with target thickness. Several recent studies have investigated Target Normal Sheath Acceleration (TNSA) down to the thickness at which RIT occurs, with a wide range of laser conditions (energy, pulse duration, and contrast), using various ion and optical diagnostics to ascertain acceleration mechanisms and quality. Observation of target-normal directed ion acceleration enhancement at the RIT thickness onset will be discussed, including analysis of ion spatial and spectral features as well as particle-in-cell simulations investigating the underlying physical processes. This material is based upon work supported by the AFOSR under Award Number FA9550-14-1-0085, by the NNSA under DE-NA0003107, and by computing time from the Ohio Supercomputer Center.

  3. Pair production by high intensity picosecond laser interacting with thick solid target at XingGuangIII

    NASA Astrophysics Data System (ADS)

    Wu, Yuchi; Dong, Kegong; Yan, Yonghong; Zhu, Bin; Zhang, Tiankui; Chen, Jia; Yu, Minghai; Tan, Fang; Wang, Shaoyi; Han, Dan; Lu, Feng; Gu, Yuqiu

    2017-06-01

    An experiment for pair production by high intensity laser irradiating thick solid targets is present. The experiment used picosecond beam of the XingGuangIII laser facility, with intensities up to several 1019 W/cm2, pulse durations about 0.8 ps and laser energies around 120 J. Pairs were generated from 1 mm-thick tantalum disk targets with different diameters from 1 mm to 10 mm. Energy spectra of hot electron from targetrear surface represent a Maxwellian distribution and obey a scaling of ∼(Iλ2)0.5. Large quantity of positrons were observed at the target rear normal direction with a yield up to 2.8 × 109 e+/sr. Owing to the target rear surface sheath field, the positrons behave as a quasi-monoenergetic beam with peak energy of several MeV. Our experiment shows that the peak energy of positron beam is inversely proportional to the target diameter.

  4. Effect of electron reflection on magnetized plasma sheath in an oblique magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ting-Ting; Ma, J. X., E-mail: jxma@ustc.edu.cn; Wei, Zi-An

    Magnetized plasma sheaths in an oblique magnetic field were extensively investigated by conventionally assuming Boltzmann relation for electron density. This article presents the study of the magnetized sheath without using the Boltzmann relation but by considering the electron reflection along the magnetic field lines caused by the negative sheath potential. A generalized Bohm criterion is analytically derived, and sheath profiles are numerically obtained, which are compared with the results of the conventional model. The results show that the ion Mach number at the sheath edge normal to the wall has a strong dependence on the wall potential, which differs significantlymore » from the conventional model in which the Mach number is independent of the wall potential. The floating wall potential is lower in the present model than that in the conventional model. Furthermore, the sheath profiles are appreciably narrower in the present model when the wall bias is low, but approach the result of the conventional model when the wall bias is high. The sheath thickness decreases with the increase of ion-to-electron temperature ratio and magnetic field strength but has a complex relationship with the angle of the magnetic field.« less

  5. Initial experimental evidence of self-collimation of target-normal-sheath-accelerated proton beam in a stack of conducting foils

    NASA Astrophysics Data System (ADS)

    Ni, P. A.; Lund, S. M.; McGuffey, C.; Alexander, N.; Aurand, B.; Barnard, J. J.; Beg, F. N.; Bellei, C.; Bieniosek, F. M.; Brabetz, C.; Cohen, R. H.; Kim, J.; Neumayer, P.; Roth, M.; Logan, B. G.

    2013-08-01

    Phenomena consistent with self-collimation (or weak self-focusing) of laser target-normal-sheath-accelerated protons was experimentally observed for the first time, in a specially engineered structure ("lens") consisting of a stack of 300 thin aluminum foils separated by 50 μm vacuum gaps. The experiments were carried out in a "passive environment," i.e., no external fields applied, neutralization plasma or injection of secondary charged particles was imposed. Experiments were performed at the petawatt "PHELIX" laser user facility (E = 100 J, Δt = 400 fs, λ = 1062 nm) at the "Helmholtzzentrum für Schwerionenforschung-GSI" in Darmstadt, Germany. The observed rms beam spot reduction depends inversely on energy, with a focusing degree decreasing monotonically from 2 at 5.4 MeV to 1.5 at 18.7 MeV. The physics inside the lens is complex, resulting in a number of different mechanisms that can potentially affect the particle dynamics within the structure. We present a plausible simple interpretation of the experiment in which the combination of magnetic self-pinch forces generated by the beam current together with the simultaneous reduction of the repulsive electrostatic forces due to the foils are the dominant mechanisms responsible for the observed focusing/collimation. This focusing technique could be applied to a wide variety of space-charge dominated proton and heavy ion beams and impact fields and applications, such as HEDP science, inertial confinement fusion in both fast ignition and heavy ion fusion approaches, compact laser-driven injectors for a Linear Accelerator (LINAC) or synchrotron, medical therapy, materials processing, etc.

  6. Macroparticle separation and plasma collimation in positively biased ducts in filtered vacuum arc deposition systems

    NASA Astrophysics Data System (ADS)

    Beilis, I. I.; Keidar, M.; Boxman, R. L.; Goldsmith, S.

    1999-02-01

    The objective of the present work was to determine the influence of positive bias on plasma and macroparticle (MP) flow in curved magnetized plasma ducts. The plasma bulk and sheath regions were analyzed. In the plasma bulk, the current density and electrical field component normal to the wall were obtained and used as boundary conditions for the near wall sheath region. In the sheath, a nonstationary model for MP charging and motion was developed. The solution of the hydrodynamic equations in the plasma when a positive bias is applied to the wall result in a radial electrical current. The electric field in the plasma bulk is generated by the separation between the magnetically confined electrons, and the ions, which are thrown outwards by the centrifugal force. The field increases with increasing positive bias. It was shown that MPs traveling in the sheath accumulate a charge which depends on the potential distribution, in contrast to MP charging in the quasineutral plasma where the charge depends on plasma density and electron temperature. MP trapping in the near-wall sheath was found. MPs may move in the sheath region along the wall by a repetitive process of electrostatic attraction to the wall, mechanical reflection and neutralization, followed by MP charging and attraction, etc. For example, titanium MPs with a radius less than 0.4 μm and with a velocity component normal to the wall of about 20 m/s are trapped if the sheath potential drop exceeds 20 V. It was obtained that the MP transmission fraction through filter decreases by more than few orders of magnitude due to the trapping effect when a bias potential of +100 V is applied between the wall and the plasma.

  7. Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Sen; Han, Hong-Ying; Peng, Xiao-Qing; Chang, Ye; Wang, De-Zhen

    2010-03-01

    A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.

  8. Receptor Tyrosine Kinases as Targets for Treatment of Peripheral Nerve Sheath Tumors in NF 1 Patients

    DTIC Science & Technology

    2010-03-01

    targeted therapy of MPNST. Acknowledgements We thank Kathrein Stichling and Petra Matylewski for their technical assist- ance and Prof. Karl Riabowol...neurofibromatosis. Oncogene, 17, 795–800. 13.Leroy,K., Dumas,V., Martin -Garcia,N. et al. (2001) Malignant peripheral nerve sheath tumors associated with...specific inhibitors. Finally, a combination of drugs is likely to be most effec- tive in combating MPNSTs. Acknowledgments We thank Petra Matylewski

  9. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it; Ceccio, G.; Cannavò, A.

    2016-04-15

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions dependingmore » on the laser parameters, the irradiation conditions, and a target optimization.« less

  10. Coupled interactions between tungsten surfaces and transient high-heat-flux deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Takamura, S.; Uesugi, Y.

    2015-03-01

    Fundamental studies on the interactions between transient deuterium-plasma heat pulses and tungsten surfaces were carried out in terms of electrical, mechanical and thermal response in a compact plasma device AIT-PID (Aichi Institute of Technology-Plasma Irradiation Device). Firstly, electron-emission-induced surface-temperature increase is discussed in the surface-temperature range near tungsten's melting point, which is accomplished by controlling the sheath voltage and power transmission factor. Secondly, anomalous penetration of tungsten atomic efflux into the surrounding plasma was observed in addition to a normal layered population; it is discussed in terms of the effect of substantial tungsten influx into the deuterium plasma, which causes dissipation of plasma electron energy. Thirdly, a momentum input from pulsed plasma onto a tungsten target was observed visually. The force is estimated numerically by the accelerated ion flow to the target as well as the reaction of tungsten-vapour efflux. Finally, a discussion follows on the effects of the plasma heat pulses on the morphology of tungsten surface (originally a helium-induced ‘fuzzy’ nanostructure). A kind of bifurcated effect is obtained: melting and annealing. Open questions remain for all the phenomena observed, although sheath-voltage-dependent plasma-heat input may be a key parameter. Discussions on all these phenomena are provided by considering their implications to tokamak fusion devices.

  11. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

    DOE PAGES

    Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.; ...

    2018-01-18

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less

  12. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less

  13. Ripple formation on Si surfaces during plasma etching in Cl2

    NASA Astrophysics Data System (ADS)

    Nakazaki, Nobuya; Matsumoto, Haruka; Sonobe, Soma; Hatsuse, Takumi; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2018-05-01

    Nanoscale surface roughening and ripple formation in response to ion incidence angle has been investigated during inductively coupled plasma etching of Si in Cl2, using sheath control plates to achieve the off-normal ion incidence on blank substrate surfaces. The sheath control plate consisted of an array of inclined trenches, being set into place on the rf-biased electrode, where their widths and depths were chosen in such a way that the sheath edge was pushed out of the trenches. The distortion of potential distributions and the consequent deflection of ion trajectories above and in the trenches were then analyzed based on electrostatic particle-in-cell simulations of the plasma sheath, to evaluate the angular distributions of ion fluxes incident on substrates pasted on sidewalls and/or at the bottom of the trenches. Experiments showed well-defined periodic sawtooth-like ripples with their wave vector oriented parallel to the direction of ion incidence at intermediate off-normal angles, while relatively weak corrugations or ripplelike structures with the wave vector perpendicular to it at high off-normal angles. Possible mechanisms for the formation of surface ripples during plasma etching are discussed with the help of Monte Carlo simulations of plasma-surface interactions and feature profile evolution. The results indicate the possibility of providing an alternative to ion beam sputtering for self-organized formation of ordered surface nanostructures.

  14. Spinal cord dysmyelination caused by an anti-PLP IgM antibody: implications for the mechanism of CNS myelin formation

    PubMed Central

    Rosenbluth, J.; Schiff, R.

    2008-01-01

    Antiglycolipid IgM antibodies are known to induce formation of ‘wide-spaced’ or ‘expanded’ myelin, a distinctive form of dysmylination characterized by a repeat period ~2X or 3X normal, seen also in diseases including multiple sclerosis. To determine whether an antibody directed against a myelin protein would cause equivalent pathology, we implanted O10 hybridoma cells into the spinal cord of adult or juvenile rats. O10 produces an IgM directed against PLP, the major protein of CNS myelin. Subsequent examination of the cords showed focal demyelination and remyelination. In addition, however, some juvenile cords, but none of the adults, displayed wide-spaced myelin with lamellae separated by an extracellular material comprised of elements consistent with IgM molecules in appearance. Wide spacing tended to involve the outer layers of the sheath and in some cases alternated with normally spaced lamellae. A feature not seen previously consists of multiple expanded myelin lamellae in one sector of a sheath continuous with normally spaced lamellae in another, resulting in variation in sheath thickness around the axonal circumference. This uneven distribution of wide-spaced lamellae is most simply explained based on incorporation of IgM molecules into immature sheaths during myelin formation and implies a model of CNS myelinogenesis more complex than simple spiraling. The periaxonal space never displays widening of this kind, but the interface with adjacent myelin sheaths or oligodendrocytes may. Thus, wide spacing appears to require that IgM molecules bridge between two PLP-containing membranes and does not reflect the mere presence of immunoglobulin within the extracellular space. PMID:18951490

  15. Receptor Tyrosine Kinases as Targets for Treatment of Peripheral Nerve Sheath Tumors in NF 1 Patients

    DTIC Science & Technology

    2007-03-01

    EGFR patterns by interphase cytogenetics (FISH) in malignant peripheral nerve sheath tumor (MPNST) and morphologically similar spindle cell neoplasms ...Armstrong,F., Delsol,G., Dastugue,N. and Brousset,P. (2003) Chronic myeloproliferative disorders with rearrangement of the platelet-derived growth

  16. The Child-Langmuir laws and cathode sheath in the N2O

    NASA Astrophysics Data System (ADS)

    Lisovskiy, Valeriy; Artushenko, Ekaterina; Yegorenkov, Vladimir

    2013-09-01

    It is established which of the Child-Langmuir collisional laws are most appropriate for describing the cathode sheath in the N2O. At low pressure p < 0 . 3 Torr the Child-Langmuir law version relating to the constant ion mobility. At p > 0 . 75 Torr one has to employ the law version for which it is assumed that ion mean free path within the cathode sheath is constant. In the intermediate pressure range 0 . 3 < p < 0 . 75 Torr neither of the Child-Langmuir law versions gives a correct description of the cathode sheath in the N2O. The ratio of the normal current density to the gas pressure squared J /p2 , the normal voltage drop and the cathode sheath thickness are determined. For the stainless steel cathode they equals to U = 364 V and pd = 2 . 5 Torr .mm. At large N2O pressure the above ratio remains constant and it amounts to J /p2 = 0.44 mA/(cm .Torr)2 for any inter-electrode gap value we studied. On decreasing the N2O pressure the ratio J /p2 increases and for narrow gaps between electrodes it may approach several or even several tens mA/(cm .Torr)2. and Scientific Center of Physical Technologies, Svobody Sq.6, Kharkov, 61022, Ukraine.

  17. Simulations of laser-driven ion acceleration from a thin CH target

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Bulanov, Stepan; Ji, Qing; Steinke, Sven; Treffert, Franziska; Vay, Jean-Luc; Schenkel, Thomas; Esarey, Eric; Leemans, Wim; Vincenti, Henri

    2017-10-01

    2D and 3D computer simulations of laser driven ion acceleration from a thin CH foil using code WARP were performed. As the foil thickness varies from a few nm to μm, the simulations confirm that the acceleration mechanism transitions from the RPA (radiation pressure acceleration) to the TNSA (target normal sheath acceleration). In the TNSA regime, with the CH target thickness of 1 μ m and a pre-plasma ahead of the target, the simulations show the production of the collimated proton beam with the maximum energy of about 10 MeV. This agrees with the experimental results obtained at the BELLA laser facility (I 5 × 18 W / cm2 , λ = 800 nm). Furthermore, the maximum proton energy dependence on different setups of the initialization, i.e., different angles of the laser incidence from the target normal axis, different gradient scales and distributions of the pre-plasma, was explored. This work was supported by LDRD funding from LBNL, provided by the U.S. DOE under Contract No. DE-AC02-05CH11231, and used resources of the NERSC, a DOE office of Science User Facility supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  18. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs

    PubMed Central

    Choi, Kyung-Suk; Harfe, Brian D.

    2011-01-01

    The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a “wrapper” around the notochord to constrain these cells along the vertebral column. PMID:21606373

  19. Hedgehog signaling is required for formation of the notochord sheath and patterning of nuclei pulposi within the intervertebral discs.

    PubMed

    Choi, Kyung-Suk; Harfe, Brian D

    2011-06-07

    The vertebrae notochord is a transient rod-like structure that produces secreted factors that are responsible for patterning surrounding tissues. During later mouse embryogenesis, the notochord gives rise to the middle part of the intervertebral disc, called the nucleus pulposus. Currently, very little is known about the molecular mechanisms responsible for forming the intervertebral discs. Here we demonstrate that hedgehog signaling is required for formation of the intervertebral discs. Removal of hedgehog signaling in the notochord and nearby floorplate resulted in the formation of an aberrant notochord sheath that normally surrounds this structure. In the absence of the notochord sheath, small nuclei pulposi were formed, with most notochord cells dispersed throughout the vertebral bodies during embryogenesis. Our data suggest that the formation of the notochord sheath requires hedgehog signaling and that the sheath is essential for maintaining the rod-like structure of the notochord during early embryonic development. As notochord cells form nuclei pulposi, we propose that the notochord sheath functions as a "wrapper" around the notochord to constrain these cells along the vertebral column.

  20. Ultra-intense laser interaction with specially-designed targets as a source of energetic protons

    NASA Astrophysics Data System (ADS)

    Psikal, J.; Matys, M.

    2017-05-01

    In this contribution, we discuss the optimization of laser driven proton acceleration efficiency by nanostructured targets, interpret the experimental results showing the manipulation of proton beam profiles by nanosctructured rear surface of the targets and investigate the acceleration of protons from hydrogen solid ribbon by PW-class lasers, with the help of multidimensional particle-in-cell simulations. Microstructured hollow targets are proposed to enhance the absorption of the laser pulse energy while keeping the target thickness to minimum, which is both favorable for enhanced efficiency of the acceleration of protons. Thin targets with grating structures of various configurations on their rear sides stretch the proton beams in the perpendicular direction to the grating orientation due to transverse electric fields generated inside the target grooves and can reduce the proton beam divergence in the parallel direction to the grating due to a lower density of the stretched beam compared with flat foils. Finally, it is shown that when multiPW laser pulse interacts with hydrogen solid ribbon, hole boring radiation pressure acceleration (RPA) dominates over the target normal sheath acceleration (TNSA).

  1. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    NASA Astrophysics Data System (ADS)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  2. Selective deuterium ion acceleration using the Vulcan petawatt laser

    NASA Astrophysics Data System (ADS)

    Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  3. Large-scale studies of ion acceleration in laser-generated plasma at intensities from 1010 W/cm2 to 1019 W/cm2

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2018-02-01

    A large-scale study of ion acceleration in laser-generated plasma, extended to intensities from 1010 W/cm2 up to 1019 W/cm2, is presented. Aluminium thick and thin foils were irradiated in high vacuum using different infrared lasers and pulse durations from ns up to fs scale. Plasma was monitored mainly using SiC detectors employed in time-of-flight configuration. Protons and aluminium ions, at different energies and yields, were measured as a function of the laser intensity. The discontinuity region between particle acceleration from both the backward plasma (BPA) in thick targets and the forward plasma in thin foils in the target normal sheath acceleration (TNSA) regimes were investigated.

  4. Thin liquid sheet target capabilities for ultra-intense laser acceleration of ions at a kHz repetition rate

    NASA Astrophysics Data System (ADS)

    Klim, Adam; Morrison, J. T.; Orban, C.; Feister, S.; Ngirmang, G. K.; Smith, J.; Frische, K.; Peterson, A. C.; Chowdhury, E. A.; Freeman, R. R.; Roquemore, W. M.

    2016-10-01

    The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) water sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. We present results from liquid water targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.

  5. Assessing the permeability of the rat sciatic nerve epineural sheath against compounds with local anesthetic activity: an ex vivo electrophysiological study.

    PubMed

    Kagiava, Alexia; Theophilidis, George

    2013-10-01

    Abstract Studies have shown that the sciatic nerve epineural sheath acts as a barrier and has a delaying effect on the diffusion of local anesthetics into the nerve fibers and endoneurium. The purpose of this work is to assess and to quantify the permeability of the epineural sheath. For this purpose, we isolated the rat sciatic nerve in a three-chamber recording bath that allowed us to monitor the constant in amplitude evoked nerve compound action potential (nCAP) for over 24 h. For nerves exposed to the compounds under investigation, we estimated the IT50 the time required to inhibit the nCAP to 50% of its initial value. For desheathed nerves, the half-vitality time was denoted as IT50(-) and for the ensheath normal nerves as IT50(+). There was no significant difference between the IT50 of desheathed and ensheathed nerves exposed to normal saline. The IT50(-) for nerves exposed to 40 mM lidocaine was 12.1 ± 0.95 s (n=14) and the IT50(+) was 341.4 ± 2.49 s (n=6). The permeability (P) coefficient of the epineural sheath was defined as the ratio IT50(+)/IT50(-). The P coefficient for 40 mM lidocaine and linalool was 28.2 and 3.48, correspondingly, and for 30 mM 2-heptanone was 4.87. This is an indication that the epineural sheath provided a stronger barrier against lidocaine, compared to natural local anesthetics, linalool and 2-heptanone. The methodology presented here is a useful tool for studying epineural sheath permeability to compounds with local anesthetic properties.

  6. Spontaneous rectus sheath hematoma in pregnancy and a systematic anatomical workup of rectus sheath hematoma: a case report.

    PubMed

    Eckhoff, Kerstin; Wedel, Thilo; Both, Marcus; Bas, Kayhan; Maass, Nicolai; Alkatout, Ibrahim

    2016-10-19

    Rectus sheath hematoma is a rare clinical diagnosis, particularly in pregnancy. Due to unspecific symptoms, misdiagnosis is likely and could potentially endanger a patient as well as her fetus. A 26-year-old white woman presented with mild right-sided abdominal pain, which increased during palpation and movement, at 26 + 3 weeks' gestational age. Ultrasound imaging initially showed a round and well-demarcated structure, which appeared to be in contact with her uterine wall, leading to a suspected diagnosis of an infarcted leiomyoma. However, she reported increasing levels of pain and laboratory tests showed a significant drop in her initially normal hemoglobin level. A magnetic resonance imaging scan finally revealed a large type III rectus sheath hematoma on the right side. Because of progressive blood loss into her rectus sheath under conservative therapy, with a significant further decrease in her hemoglobin levels, surgical treatment via right-sided paramedian laparotomy was initiated. During the operation the arterial bleed could be ligated. She eventually achieved complete convalescence and delivered a healthy newborn spontaneously after 40 weeks of gestation. This case report highlights the clinical and diagnostic features of rectus sheath hematoma and shows the anatomical aspects of the rectus sheath, simplifying early and correct diagnosis.

  7. Recent sheath physics studies on DIII-D

    NASA Astrophysics Data System (ADS)

    Watkins, J. G.; Labombard, B.; Stangeby, P. C.; Lasnier, C. J.; McLean, A. G.; Nygren, R. E.; Boedo, J. A.; Leonard, A. W.; Rudakov, D. L.

    2015-08-01

    A study to examine some current issues in the physics of the plasma sheath has been recently carried out in DIII-D low power Ohmic plasmas using both flush and domed Langmuir probes, divertor Thomson scattering (DTS), an infrared camera (IRTV), and a new calorimeter triple probe assembly mounted on the Divertor Materials Evaluation System (DIMES). The sheath power transmission factor was found to be consistent with the theoretically predicted value of 7 (±2) for low power plasmas. Using this factor, the three heat flux profiles derived from the LP, DTS, and calorimeter diagnostic measurements agree. Comparison of flush and domed Langmuir probes and divertor Thomson scattering indicates that proper interpretation of flush probe data to get target plate density and temperature is feasible and could potentially yield accurate measurements of target plate conditions where the probes are located.

  8. Endobronchial ultrasonography using a guide sheath technique for diagnosis of peripheral pulmonary lesions

    PubMed Central

    Zhang, Lei; Wu, Hongxu; Wang, Guiqi

    2017-01-01

    Endobronchial ultrasonography using a guide sheath (EBUS-GS) is a novel method used for collecting peripheral pulmonary lesion (PPL) samples. EBUS-GS is performed by introducing a guide sheath-covered miniprobe into the target bronchus and then withdrawing the miniprobe after lesion detection, leaving the guide sheath in situ as a working channel for obtaining lesion samples. EBUS-GS can improve PPL diagnosis rates and be used for obtaining specimens for molecular analysis. In this review, we discuss the clinical applications of EBUS-GS, the factors that affect its diagnostic sensitivity, and potential complications. We also compare EBUS-GS with other available diagnostic techniques and discuss the strengths and limitations of this method. PMID:29063872

  9. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  10. Dual Ion Species Plasma Expansion from Isotopically Layered Cryogenic Targets

    NASA Astrophysics Data System (ADS)

    Scott, G. G.; Carroll, D. C.; Astbury, S.; Clarke, R. J.; Hernandez-Gomez, C.; King, M.; Alejo, A.; Arteaga, I. Y.; Dance, R. J.; Higginson, A.; Hook, S.; Liao, G.; Liu, H.; Mirfayzi, S. R.; Rusby, D. R.; Selwood, M. P.; Spindloe, C.; Tolley, M. K.; Wagner, F.; Zemaityte, E.; Borghesi, M.; Kar, S.; Li, Y.; Roth, M.; McKenna, P.; Neely, D.

    2018-05-01

    A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer-thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modeling shows that by controlling the deuterium layer thickness, a composite H+/D+ ion beam can be produced by target normal sheath acceleration (TNSA), with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modeling shows that a (4.3 ±0.7 ) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9°. Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4 ±0.7 ) MeV per nucleon was measured in a cone of half angle 7°-9°, while maintaining a significant TNSA proton component.

  11. Fast neutron production from lithium converters and laser driven protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, M.; Jiang, S.; Wertepny, D.

    2013-05-15

    Experiments to generate neutrons from the {sup 7}Li(p,n){sup 7}Be reaction with 60 J, 180 fs laser pulses have been performed at the Texas Petawatt Laser Facility at the University of Texas at Austin. The protons were accelerated from the rear surface of a thin target membrane using the target-normal-sheath-acceleration mechanism. The neutrons were generated in nuclear reactions caused by the subsequent proton bombardment of a pure lithium foil of natural isotopic abundance. The neutron energy ranged up to 2.9 MeV. The total yield was estimated to be 1.6 × 10{sup 7} neutrons per steradian. An extreme ultra-violet light camera, usedmore » to image the target rear surface, correlated variations in the proton yield and peak energy to target rear surface ablation. Calculations using the hydrodynamics code FLASH indicated that the ablation resulted from a laser pre-pulse of prolonged intensity. The ablation severely limited the proton acceleration and neutron yield.« less

  12. Neutron Source from Laser Plasma Acceleration

    NASA Astrophysics Data System (ADS)

    Jiao, Xuejing; Shaw, Joseph; McCary, Eddie; Downer, Mike; Hegelich, Bjorn

    2016-10-01

    Laser driven electron beams and ion beams were utilized to produce neutron sources via different mechanism. On the Texas Petawatt laser, deuterized plastic, gold and DLC foil targets of varying thickness were shot with 150 J , 150 fs laser pulses at a peak intensity of 2 ×1021W /cm2 . Ions were accelerated by either target normal sheath acceleration or Breakout Afterburner acceleration. Neutrons were produced via the 9Be(d,n) and 9Be(p,n) reactions when accelerated ions impinged on a Beryllium converter as well as by deuteron breakup reactions. We observed 2 ×1010 neutron per shot in average, corresponding to 5 ×1018n /s . The efficiencies for different targets are comparable. In another experiment, 38fs , 0.3 J UT3 laser pulse interacted with mixed gas target. Electrons with energy 40MeV were produced via laser wakefield acceleration. Neutron flux of 2 ×106 per shot was generated through bremsstrahlung and subsequent photoneutron reactions on a Copper converter.

  13. Theory and tests of a thermal ion detector sensitive only at Near-normal incidence

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.

    1981-01-01

    Measurements of thermal ions are influenced by factors such as spacecraft potential, velocity, angle of attack, and sheath size. A theory is presented for the response of an instrument which accepts ions only within a small angle of incidence from normal. Although a more general theory is available and forms the basis of this one, the small angle restriction allows a simpler formulation which does not depend on sheath size. Furthermore, practical instruments are easily designed around this restriction. Laboratory tests verify that such instruments respond as expected and they illustrate how design details influence perturbations from the ideal response characteristics.

  14. Localization of cells containing sedimented amyloplasts in the shoots of normal and lazy rice seedlings.

    PubMed

    Abe, K; Takahashi, H; Suge, H

    1994-12-01

    We have examined the localization of the cells containing sedimented amyloplasts (putative statocytes) and its relation to the graviresponding sites in the shoots of normal and lazy rice seedlings. All graviresponsive organs of the shoots of normal rice seedlings, the mesocotyl, the coleoptile and the leaf-sheath base, were found to possess the statocytes. This is the first indication that mesocotyl senses gravity by its own cells in inducing gravitropic bending in rice seedlings. In lazy-Kamenoo, although the shoots lost their gravitropic response with the advance of age, sedimentation of amyloplasts itself might not be attributable to the agravitropic growth of the shoots, because, including those of the leaf-sheath bases that had lost their response to gravity, sedimented amyloplasts appeared to be identical to those of normal Kamenoo and of younger seedlings of lazy-Kamenoo whose gravitropism is still apparent.

  15. Flow characteristics in the airways of a COPD patient with a saber-sheath trachea

    NASA Astrophysics Data System (ADS)

    Jin, Dohyun; Choi, Haecheon; Lee, Changhyun; Choi, Jiwoong; Kim, Kwanggi

    2016-11-01

    The chronic obstructive pulmonary disease (COPD) is a lung disease characterized by the irreversible airflow limitation caused by the damaged small airways and air sacs. Although COPD is not a disease of the trachea, many patients with COPD have saber-sheath tracheas. The effects of this morphological change in the trachea geometry on airflow are investigated in the present study. An unstructured finite volume method is used for the simulations during tidal breathing in normal and COPD airways, respectively. During inspiration, local large pressure drop is observed in the saber-sheath region of the COPD patient. During expiration, vortical structures are observed at the right main bronchus of the COPD airway, while the flow in the normal airway remains nearly laminar. High wall shear stress exists at convex regions of both airways during inspiration and expiration. However, due to the morphological changes in the COPD airway, relatively higher wall shear stress is observed in the patient airways.

  16. Sock Shaped Internal Strength Member for Towed Arrays

    DTIC Science & Technology

    hose -shaped sheath. The member has a plurality of longitudinally extending high strength cords formed of braids or strands of high tensile strength...interfering with the sensors’ acoustic sensing capabilities. The hose -shaped sheath contains the tubular-shaped strength member in a non-compressive...relationship to reduce the problems normally associated with flow noise. The cords are braided together in an eye-splice where they are wrapped about

  17. Transport and energy selection of laser generated protons for postacceleration with a compact linac

    NASA Astrophysics Data System (ADS)

    Sinigardi, Stefano; Turchetti, Giorgio; Londrillo, Pasquale; Rossi, Francesco; Giove, Dario; De Martinis, Carlo; Sumini, Marco

    2013-03-01

    Laser accelerated proton beams have a considerable potential for various applications including oncological therapy. However, the most consolidated target normal sheath acceleration regime based on irradiation of solid targets provides an exponential energy spectrum with a significant divergence. The low count number at the cutoff energy seriously limits at present its possible use. One realistic scenario for the near future is offered by hybrid schemes. The use of transport lines for collimation and energy selection has been considered. We present here a scheme based on a high field pulsed solenoid and collimators which allows one to select a beam suitable for injection at 30 MeV into a compact linac in order to double its energy while preserving a significant intensity. The results are based on a fully 3D simulation starting from laser acceleration.

  18. FlaA proteins in Leptospira interrogans are essential for motility and virulence but are not required for formation of the flagellum sheath.

    PubMed

    Lambert, Ambroise; Picardeau, Mathieu; Haake, David A; Sermswan, Rasana W; Srikram, Amporn; Adler, Ben; Murray, Gerald A

    2012-06-01

    Spirochetes have periplasmic flagella composed of a core surrounded by a sheath. The pathogen Leptospira interrogans has four flaB (proposed core subunit) and two flaA (proposed sheath subunit) genes. The flaA genes are organized in a locus with flaA2 immediately upstream of flaA1. In this study, flaA1 and flaA2 mutants were constructed by transposon mutagenesis. Both mutants still produced periplasmic flagella. The flaA1 mutant did not produce FlaA1 but continued to produce FlaA2 and retained normal morphology and virulence in a hamster model of infection but had reduced motility. The flaA2 mutant did not produce either the FlaA1 or the FlaA2 protein. Cells of the flaA2 mutant lacked the distinctive hook-shaped ends associated with L. interrogans and lacked translational motility in liquid and semisolid media. These observations were confirmed with a second, independent flaA2 mutant. The flaA2 mutant failed to cause disease in animal models of acute infection. Despite lacking FlaA proteins, the flagella of the flaA2 mutant were of the same thickness as wild-type flagella, as measured by electron microscopy, and exhibited a normal flagellum sheath, indicating that FlaA proteins are not essential for the synthesis of the flagellum sheath, as observed for other spirochetes. This study shows that FlaA subunits contribute to leptospiral translational motility, cellular shape, and virulence.

  19. Thin liquid sheet target capabilities for ultra-intense laser acceleration of ions at a kHz repetition rate

    NASA Astrophysics Data System (ADS)

    Klim, Adam; Morrison, J.; Orban, C.; Chowdhury, E.; Frische, K.; Feister, S.; Roquemore, M.

    2017-10-01

    The success of laser-accelerated ion experiments depends crucially on a number of factors including how thin the targets can be created. We present experimental results demonstrating extremely thin (under 200 nm) glycol sheet targets that can be used for ultra-intense laser-accelerated ion experiments conducted at the Air Force Research Laboratory at Wright-Patterson Air Force Base. Importantly, these experiments operate at a kHz repetition rate and the recovery time of the liquid targets is fast enough to allow the laser to interact with a refreshed, thin target on every shot. These thin targets can be used to produce energetic electrons, light ions, and neutrons as well as x-rays, we present results from liquid glycol targets which are useful for proton acceleration experiments via the mechanism of Target Normal Sheath Acceleration (TNSA). In future work, we will create thin sheets from deuterated water in order to perform laser-accelerated deuteron experiments. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the AFOSR, under the management of Dr. Enrique Parra, and support from the DOD HPCMP Internship Program.

  20. 3D visualization of sheath folds in Ancient Roman marble wall coverings from Ephesos, Turkey

    NASA Astrophysics Data System (ADS)

    Wex, Sebastian; Passchier, Cees W.; de Kemp, Eric A.; İlhan, Sinan

    2014-10-01

    Archaeological excavations and restoration of a palatial Roman housing complex in Ephesos, Turkey yielded 40 wall-decorating plates of folded mylonitic marble (Cipollino verde), derived from the internal Hellenides near Karystos, Greece. Cipollino verde was commonly used for decoration purposes in Roman buildings. The plates were serial-sectioned from a single quarried block of 1,25 m3 and provided a research opportunity for detailed reconstruction of the 3D geometry of meterscale folds in mylonitized marble. A GOCAD model is used to visualize the internal fold structures of the marble, comprising curtain folds and multilayered sheath folds. The sheath folds are unusual in that they have their intermediate axis normal to the parent layering. This agrees with regional tectonic studies, which suggest that Cipollino verde structures formed by local constrictional non-coaxial flow. Sheath fold cross-section geometry, exposed on the surface of a plate or outcrop, is found to be independent of the intersection angle of the fold structure with the studied plane. Consequently, a single surface cannot be used as an indicator of the three-dimensional geometry of transected sheath folds.

  1. Evolutionary sheath structure in magnetized collisionless plasma with electron inertia

    NASA Astrophysics Data System (ADS)

    Gohain, M.; Karmakar, P. K.

    2017-09-01

    A classical hydrodynamic model is methodologically formulated to see the equilibrium properties of a planar plasma sheath in two-component magnetized bounded plasma. It incorporates the weak but finite electron inertia instead of asymptotically inertialess electrons. The effects of the externally applied oblique (relative to the bulk plasma flow) magnetic field are judiciously accented. It is, for the sake of simplicity, assumed that the relevant physical parameters (plasma density, electrostatic potential, and flow velocity) vary only in a direction normal to the confining wall boundary. It is noticed for the first time that the derived Bohm condition for sheath formation is modified conjointly by the electron inertia, magnetic field, and field orientation. It is manifested that the electron inertia in the presence of plasma gyrokinetic effects slightly enhances the ion Mach threshold value (typically, M i0 ≥ 1.139) toward the sheath entrance. This flow supercriticality is in contrast with the heuristic formalism ( M i0 ≥ 1) for the zero-inertia electrons. A numerical illustrative scheme on the parametric sheath features on diverse nontrivial apposite arguments is constructed alongside ameliorative scope.

  2. A computer-controlled apparatus for Seebeck inhomogeneity testing of sheathed thermocouples

    NASA Technical Reports Server (NTRS)

    Burkett, Cecil G., Jr.; Bauserman, Willard A., Jr.

    1993-01-01

    Mineral-insulated metal-sheathed (MIMS) thermocouple assemblies are used throughout industry and research facilities as a method of temperature measurement where requirements for either harsh environmental conditions exist, or where rigidity of the measurement probe is required. Seebeck inhomogeneity is the abnormal variation of the Seebeck coefficient from point to point in a material. It is not disclosed in conventional calibration. A standardized method of measuring thermoelectric inhomogeneity along the thermocouple probe length is not available. Therefore, calibration for sheathed probes normally does not include testing of probe inhomogeneity. The measurement accuracy would be severely impacted if significant inhomogeneity and a temperature gradient were present in the same region of the probe. A computer-controlled system for determining inhomogeneities was designed, fabricated, and tested. This system provides an accurate method for the identification of the location of inhomogeneity along the length of a sheathed thermocouple and for the quantification of the inhomogeneity. This paper will discuss the apparatus and procedure used to perform these tests and will present data showing tests performed on sheathed thermocouple probes.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yuanbin; Pálffy, Adriana, E-mail: yuanbin.wu@mpi-hd.mpg.de, E-mail: Palffy@mpi-hd.mpg.de

    Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario heremore » and calculate the reaction events for the astrophysically relevant reaction {sup 13}C({sup 4}He, n ){sup 16}O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.« less

  4. Determination of Plasma Screening Effects for Thermonuclear Reactions in Laser-generated Plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Yuanbin; Pálffy, Adriana

    2017-03-01

    Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario here and calculate the reaction events for the astrophysically relevant reaction 13C(4He, n)16O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.

  5. Attic construction with sheathing-applied insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, W.B.

    1995-12-31

    Two years of study at a building research laboratory have been applied to cathedralized residential attic construction. Cathedralized attics are rafter-framed or truss-framed attics with flat ceilings in which the insulation is placed against the underside of the roof sheathing rather than on top of the ceiling drywall. The potential benefits of sheathing-applied insulation are considerable and are due to the fact that the attic space becomes part of the conditioned volume. Concern is often expressed that moisture damage may occur in the sheathing. The intent of the current study was to address those concerns. This study allowed an assessmentmore » of the performance of cathedralized ceilings, given the following construction variables: (1) ventilation vs. no ventilation, (2) continuous air chute construction vs. stuffed insulation construction, and (3) opens joints in exposed kraft facing vs. taped joints. The results were compared to a concurrent study of the performance of cathedral ceilings with sloped ceiling drywall. The results show that having an air chute that ensures an air gap between the sheathing and the top of the insulation is the critical factor. Ventilation and the taping of joints were minor determinants of the moisture performance of the sheathing. These results are consistent with the results of normal cathedral ceiling construction performance.« less

  6. A salivary sheath protein essential for the interaction of the brown planthopper with rice plants.

    PubMed

    Huang, Hai-Jian; Liu, Cheng-Wen; Cai, Ye-Fang; Zhang, Min-Zhu; Bao, Yan-Yuan; Zhang, Chuan-Xi

    2015-11-01

    Salivary secretions, including gel saliva and watery saliva, play crucial roles in the interaction between the insect and plant during feeding. In this study, we identified a salivary gland-specific gene encoding a salivary sheath protein (NlShp) in Nilaparvata lugens. NlShp has two alternative splicing variants; both are expressed at high levels during the nymph and adult stages. Immunohistochemical staining showed that the NlShp were synthesized in the principal gland cells of the salivary gland. LC-MS/MS and western blot analysis confirmed that NlShp was one of the components of the salivary sheath. Simultaneously knocking down the two NlShp variants by RNA interference inhibited both salivary flange and salivary sheath formation and resulted in a lethal phenotype within four days for the brown planthopper (BPH) feeding on rice plants, indicating that the salivary sheath and salivary flanges were essential for plant-associated feeding. Despite the salivary sheath deficiency, no obvious phenotype was observed in the NlShp-knockdown BPHs fed on artificial diet. The electrical penetration graph (EPG) results showed that salivary sheath-deficient BPHs exhibited a prolonged nonpenetration period, scarce sap period, and increased stylet movement on rice plants and eventually starved to death. Our results provided evidence that the interaction between the salivary sheath and host plant might be a critical step in successful BPH feeding. According to present research, we propose a salivary sheath required feeding model for piercing-sucking insects and provide a potential target for rice planthopper management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Immunohistochemical study of calretinin in normal skin and cutaneous adnexal proliferations.

    PubMed

    González-Guerra, Elena; Kutzner, Heinz; Rutten, Arno; Requena, Luis

    2012-07-01

    Calretinin is a calcium-binding protein member of the EF-hand family. The presence of calretinin has been demonstrated in certain stages of the cellular cycle in a wide variety of normal and neoplastic tissues. The main aims of our study were (1) to investigate what structures of the normal skin and cutaneous adnexal proliferations express immunoreactivity for calretinin and (2) to determine the value of immunohistochemical expression for calretinin as a marker for follicular, sebaceous, apocrine, and eccrine differentiation in cutaneous adnexal proliferations. We studied 139 biopsy specimens, including 10 cases of normal skin of different locations and 129 benign and malignant cutaneous adnexal proliferations. In normal skin, we found that calretinin is expressed in the innermost cell layer of the outer root sheath in anagen hair follicle, in both the duct and sebolemma of the sebaceous gland, in the secretory portion of eccrine glands, and in mast cells of the stroma. In cutaneous adnexal proliferations, we found strong immunoreactivity for calretinin in tricholemmal cysts, tricholemmomas/inverted follicular keratoses, tumors of follicular infundibulum, and in some basal cell carcinomas. Focal positivity was also seen in trichoadenomas, trichoblastomas/trichoepitheliomas, pilomatricomas, proliferating tricholemmal tumors, pilar sheath acanthomas, trichofolliculomas, follicular hybrid cysts, cutaneous mixed tumors, steatocystomas, sebaceous hyperplasias, and sebaceomas. These results demonstrate that immunohistochemical study for calretinin may be helpful to identify the innermost cell layer of the outer root sheath in anagen hair follicle and the cutaneous adnexal proliferations showing differentiation toward this structure. Calretinin immunoreactivity supports eccrine differentiation in some sweat gland neoplasms, and it is also useful in identifying neoplasms with ductal sebaceous differentiation.

  8. Trichohyalin is a potential major autoantigen in human alopecia areata.

    PubMed

    Leung, Man Ching; Sutton, Chris W; Fenton, David A; Tobin, Desmond J

    2010-10-01

    Several lines of evidence support an autoimmune basis for alopecia areata (AA), a common putative autoimmune hair loss disorder. However, definitive support is lacking largely because the identity of hair follicle (HF) autoantigen(s) involved in its pathogenesis remains unknown. Here, we isolated AA-reactive HF-specific antigens from normal human scalp anagen HF extracts by immunoprecipitation using serum antibodies from 10 AA patients. Samples were analyzed by LC-MALDI-TOF/TOF mass spectrometry, which indicated strong reactivity to the hair growth phase-specific structural protein trichohyalin in all AA sera. Keratin 16 (K16) was also identified as another potential AA-relevant target HF antigen. Double immunofluorescence studies using AA (and control sera) together with a monoclonal antibody to trichohyalin revealed that AA sera contained immunoreactivity that colocalized with trichohyalin in the growth phase-specific inner root sheath of HF. Furthermore, a partial colocalization of AA serum reactivity with anti-K16 antibody was observed in the outer root sheath of the HF. In summary, this study supports the involvement of an immune response to anagen-specific HFs antigens in AA and specifically suggests that an immune response to trichohyalin and K16 may have a role in the pathogenesis of the enigmatic disorder.

  9. High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Krygier, A. G.; Ahmed, H.; Morrison, J. T.; Clarke, R. J.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.; Kar, S.

    2017-06-01

    A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (˜200 J, ˜750 fs) at peak intensity ˜ 2× {10}20 {{W}} {{cm}}-2. The neutrons were preferentially produced in a beam of ˜70° FWHM cone along the ion beam forward direction, with maximum energy up to ˜40 MeV and a peak flux along the axis ˜ 2× {10}9 {{n}} {{sr}}-1 for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.

  10. Influence of micromachined targets on laser accelerated proton beam profiles

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran

    2018-03-01

    High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

  11. Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, M.; CEA, DAM, DIF, 91297 Arpajon; Lévy, A.

    2014-01-15

    It was recently shown that a promising way to accelerate protons in the forward direction to high energies is to use under-dense or near-critical density targets instead of solids. Simulations have revealed that the acceleration process depends on the density gradients of the plasma target. Indeed, under certain conditions, the most energetic protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We report here the results of a recent experiment dedicated to the study of longitudinal ion acceleration in partially exploded foils using a high intensity (∼5 × 10{sup 18} W/cm{sup 2}) picosecond laser pulse. Wemore » show that protons accelerated using targets having moderate front and rear plasma gradients (up to ∼8 μm gradient length) exhibit similar maximum proton energy and number compared to proton beams that are produced, in similar laser conditions, from solid targets, in the well-known target normal sheath acceleration regime. Particle-In-Cell simulations, performed in the same conditions as the experiment and consistent with the measurements, allow laying a path for further improvement of this acceleration scheme.« less

  12. Ras-Driven Transcriptome Analysis Identifies Aurora Kinase A as a Potential Malignant Peripheral Nerve Sheath Tumor Therapeutic Target

    PubMed Central

    Patel, Ami V.; Eaves, David; Jessen, Walter J.; Rizvi, Tilat A.; Ecsedy, Jeffrey A.; Qian, Mark G.; Aronow, Bruce J.; Perentesis, John P.; Serra, Eduard; Cripe, Timothy P.; Miller, Shyra J.; Ratner, Nancy

    2013-01-01

    Purpose Patients with Neurofibromatosis Type 1 (NF1) develop malignant peripheral nerve sheath tumors (MPNST) which are often inoperable and do not respond well to current chemotherapies or radiation. The goal of this study was to utilize comprehensive gene expression analysis to identify novel therapeutic targets. Experimental Design Nerve Schwann cells and/or their precursors are the tumorigenic cell types in MPNST due to the loss of the NF1 gene, which encodes the RasGAP protein neurofibromin. Therefore, we created a transgenic mouse model, CNP-HRas12V, expressing constitutively-active HRas in Schwann cells and defined a Ras-induced gene expression signature to drive a Bayesian factor regression model analysis of differentially expressed genes in mouse and human neurofibromas and MPNSTs. We tested functional significance of Aurora kinase over-expression in MPNST in vitro and in vivo using Aurora kinase shRNAs and compounds that inhibit Aurora kinase. Results We identified 2000 genes with probability of linkage to nerve Ras signaling of which 339 were significantly differentially expressed in mouse and human NF1-related tumor samples relative to normal nerves, including Aurora kinase A (AURKA). AURKA was dramatically over-expressed and genomically amplified in MPNSTs but not neurofibromas. Aurora kinase shRNAs and Aurora kinase inhibitors blocked MPNST cell growth in vitro. Furthermore, an AURKA selective inhibitor, MLN8237, stabilized tumor volume and significantly increased survival of mice with MPNST xenografts. Conclusion Integrative cross-species transcriptome analyses combined with preclinical testing has provided an effective method for identifying candidates for molecular-targeted therapeutics. Blocking Aurora kinases may be a viable treatment platform for MPNST. PMID:22811580

  13. A perturbative correction for electron-inertia in magnetized sheath structures

    NASA Astrophysics Data System (ADS)

    Gohain, Munmi; Karmakar, Pralay K.

    2016-10-01

    We propose a hydrodynamic model to study the equilibrium properties of planar plasma sheaths in two-component quasi-neutral magnetized plasmas. It includes weak but finite electron-inertia incorporated via a regular perturbation of the electronic fluid dynamics only relative to a new smallness parameter, δ, assessing the weak inertial-to-electromagnetic strengths. The zeroth-order perturbation around δ leads to the usual Boltzmann distribution law, which describes inertialess thermalized electrons. The forthwith next higher-order yields the modified Boltzmann law describing the putative lowest-order electron-inertial correction, which is applied meticulously to derive the local Bohm criterion for sheath formation. It is found to be influenced jointly by electron-inertial corrective effects, magnetic field and field orientation relative to the bulk plasma flow. We establish that the mutualistic action of electron-inertia amid gyro-kinetic effects slightly enhances the ion-flow Mach threshold value (typically, M i0 ⩾ 1.140), against the normal value of unity, confrontationally towards the sheath entrance. A numerical illustrative scheme is methodically constructed to see the parametric dependence of the new sheath properties on diverse problem arguments. The merits and demerits are highlighted in the light of the existing results conjointly with clear indication to future ameliorations.

  14. Epicardial phrenic nerve displacement during catheter ablation of atrial and ventricular arrhythmias: procedural experience and outcomes.

    PubMed

    Kumar, Saurabh; Barbhaiya, Chirag R; Baldinger, Samuel H; Koplan, Bruce A; Maytin, Melanie; Epstein, Laurence M; John, Roy M; Michaud, Gregory F; Tedrow, Usha B; Stevenson, William G

    2015-08-01

    Arrhythmia origin in close proximity to the phrenic nerve (PN) can hinder successful catheter ablation. We describe our approach with epicardial PN displacement in such instances. PN displacement via percutaneous pericardial access was attempted in 13 patients (age 49±16 years, 9 females) with either atrial tachycardia (6 patients) or atrial fibrillation triggered from a superior vena cava focus (1 patient) adjacent to the right PN or epicardial ventricular tachycardia origin adjacent to the left PN (6 patients). An epicardially placed steerable sheath/4 mm-catheter combination (5 patients) or a vascular or an esophageal balloon (8 patients) was ultimately successful. Balloon placement was often difficult requiring manipulation via a steerable sheath. In 2 ventricular tachycardia cases, absence of PN capture was achieved only once the balloon was directly over the ablation catheter. In 3 atrial tachycardia patients, PN displacement was not possible with a balloon; however, a steerable sheath/catheter combination was ultimately successful. PN displacement allowed acute abolishment of all targeted arrhythmias. No PN injury occurred acutely or in follow up. Two patients developed acute complications (pleuro-pericardial fistula 1 and pericardial bleeding 1). Survival free of target arrhythmia was achieved in all atrial tachycardia patients; however, a nontargeted ventricular tachycardia recurred in 1 patient at a median of 13 months' follow up. Arrhythmias originating in close proximity to the PN can be targeted successfully with PN displacement with an epicardially placed steerable sheath/catheter combination, or balloon, but this strategy can be difficult to implement. Better tools for phrenic nerve protection are desirable. © 2015 American Heart Association, Inc.

  15. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    NASA Astrophysics Data System (ADS)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  16. Axonal abnormalities in vanishing white matter.

    PubMed

    Klok, Melanie D; Bugiani, Marianna; de Vries, Sharon I; Gerritsen, Wouter; Breur, Marjolein; van der Sluis, Sophie; Heine, Vivi M; Kole, Maarten H P; Baron, Wia; van der Knaap, Marjo S

    2018-04-01

    We aimed to study the occurrence and development of axonal pathology and the influence of astrocytes in vanishing white matter. Axons and myelin were analyzed using electron microscopy and immunohistochemistry on Eif2b4 and Eif2b5 single- and double-mutant mice and patient brain tissue. In addition, astrocyte-forebrain co-culture studies were performed. In the corpus callosum of Eif2b5- mutant mice, myelin sheath thickness, axonal diameter, and G-ratio developed normally up to 4 months. At 7 months, however, axons had become thinner, while in control mice axonal diameters had increased further. Myelin sheath thickness remained close to normal, resulting in an abnormally low G-ratio in Eif2b5- mutant mice. In more severely affected Eif2b4-Eif2b5 double-mutants, similar abnormalities were already present at 4 months, while in milder affected Eif2b4 mutants, few abnormalities were observed at 7 months. Additionally, from 2 months onward an increased percentage of thin, unmyelinated axons and increased axonal density were present in Eif2b5 -mutant mice. Co-cultures showed that Eif2b5 mutant astrocytes induced increased axonal density, also in control forebrain tissue, and that control astrocytes induced normal axonal density, also in mutant forebrain tissue. In vanishing white matter patient brains, axons and myelin sheaths were thinner than normal in moderately and severely affected white matter. In mutant mice and patients, signs of axonal transport defects and cytoskeletal abnormalities were minimal. In vanishing white matter, axons are initially normal and atrophy later. Astrocytes are central in this process. If therapy becomes available, axonal pathology may be prevented with early intervention.

  17. Laser-ion accelerators: State-of-the-art and scaling laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borghesi, M.; Kar, S.; Margarone, D.

    2013-07-26

    A significant amount of experimental work has been devoted over the last decade to the development and optimization of proton acceleration based on the so-called Target Normal Sheath acceleration mechanism. Several studies have been dedicated to the determination of scaling laws for the maximum energy of the protons as a function of the parameters of the irradiating pulses, studies based on experimental results and on models of the acceleration process. We briefly summarize the state of the art in this area, and review some of the scaling studies presented in the literature. We also discuss some recent results, and projectedmore » scalings, related to a different acceleration mechanism for ions, based on the Radiation Pressure of an ultraintense laser pulse.« less

  18. Formation of compact myelin is required for maturation of the axonal cytoskeleton

    NASA Technical Reports Server (NTRS)

    Brady, S. T.; Witt, A. S.; Kirkpatrick, L. L.; de Waegh, S. M.; Readhead, C.; Tu, P. H.; Lee, V. M.

    1999-01-01

    Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.

  19. The plasma-wall transition layers in the presence of collisions with a magnetic field parallel to the wall

    NASA Astrophysics Data System (ADS)

    Moritz, J.; Faudot, E.; Devaux, S.; Heuraux, S.

    2018-01-01

    The plasma-wall transition is studied by means of a particle-in-cell (PIC) simulation in the configuration of a parallel to the wall magnetic field (B), with collisions between charged particles vs. neutral atoms taken into account. The investigated system consists of a plasma bounded by two absorbing walls separated by 200 electron Debye lengths (λd). The strength of the magnetic field is chosen such as the ratio λ d / r l , with rl being the electron Larmor radius, is smaller or larger than unity. Collisions are modelled with a simple operator that reorients randomly ion or electron velocity, keeping constant the total kinetic energy of both the neutral atom (target) and the incident charged particle. The PIC simulations show that the plasma-wall transition consists in a quasi-neutral region (pre-sheath), from the center of the plasma towards the walls, where the electric potential or electric field profiles are well described by an ambipolar diffusion model, and in a second region at the vicinity of the walls, called the sheath, where the quasi-neutrality breaks down. In this peculiar geometry of B and for a certain range of the mean-free-path, the sheath is found to be composed of two charged layers: the positive one, close to the walls, and the negative one, towards the plasma and before the neutral pre-sheath. Depending on the amplitude of B, the spatial variation of the electric potential can be non-monotonic and presents a maximum within the sheath region. More generally, the sheath extent as well as the potential drop within the sheath and the pre-sheath is studied with respect to B, the mean-free-path, and the ion and electron temperatures.

  20. The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics.

    PubMed

    Sade, Nir; Shatil-Cohen, Arava; Attia, Ziv; Maurel, Christophe; Boursiac, Yann; Kelly, Gilor; Granot, David; Yaaran, Adi; Lerner, Stephen; Moshelion, Menachem

    2014-11-01

    Our understanding of the cellular role of aquaporins (AQPs) in the regulation of whole-plant hydraulics, in general, and extravascular, radial hydraulic conductance in leaves (K(leaf)), in particular, is still fairly limited. We hypothesized that the AQPs of the vascular bundle sheath (BS) cells regulate K(leaf). To examine this hypothesis, AQP genes were silenced using artificial microRNAs that were expressed constitutively or specifically targeted to the BS. MicroRNA sequences were designed to target all five AQP genes from the PLASMA MEMBRANE-INTRINSIC PROTEIN1 (PIP1) subfamily. Our results show that the constitutively silenced PIP1 (35S promoter) plants had decreased PIP1 transcript and protein levels and decreased mesophyll and BS osmotic water permeability (P(f)), mesophyll conductance of CO2, photosynthesis, K(leaf), transpiration, and shoot biomass. Plants in which the PIP1 subfamily was silenced only in the BS (SCARECROW:microRNA plants) exhibited decreased mesophyll and BS Pf and decreased K(leaf) but no decreases in the rest of the parameters listed above, with the net result of increased shoot biomass. We excluded the possibility of SCARECROW promoter activity in the mesophyll. Hence, the fact that SCARECROW:microRNA mesophyll exhibited reduced P(f), but not reduced mesophyll conductance of CO2, suggests that the BS-mesophyll hydraulic continuum acts as a feed-forward control signal. The role of AQPs in the hierarchy of the hydraulic signal pathway controlling leaf water status under normal and limited-water conditions is discussed. © 2014 American Society of Plant Biologists. All Rights Reserved.

  1. Review of ion energy and angular distributions in capacitively coupled RF plasma reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, E.; Lieberman, M.A.; Birdsall, C.K.

    1995-12-31

    The authors present a historical review and discussion of previous works on ion energy and angular distributions (IED and IAD) arriving at the target in the collisionless regime. This regime is of great interest to experimentalists and modelers studying the new generation of high density sources in which the sheath is much thinner than in the conventional RIE systems. The purpose of the review is to asses what has been done so far, and to clarify some issues about sheaths in high density systems. Having determined the important parameters, the authors show some particle-in-cell simulation results of a dually excitedmore » capacitively coupled plasma in which the sheath ions roughly see the scaling as in high density sources. The results show that when {tau}{sub ion}/{tau}{sub rf} < 1, the oscillating voltage and width of the rf sheath significantly affect the IEDs, where {tau}{sub ion} is the ion transit-time and {tau}{sub rf} is rf period.« less

  2. Dusty Plasma Dynamics Near Surfaces in Space

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.; Robertson, S.; Horanyi, M.; Nahra, Henry (Technical Monitor)

    1998-01-01

    The investigation 'Dusty Plasma Dynamics Near Surfaces in Space' is an experimental and theoretical study of the dynamics of dust particles on airless bodies in the solar system in the presence of a photoelectron sheath generated by solar ultraviolet light impinging on the surface. Solar UV illumination of natural and manmade surfaces in space produces photoelectrons which form a plasma sheath near the surface. Dust particles on the surface acquire a charge and may be transported by electric fields in the photoelectron sheath generated by inhomogeneities in the surface or the illumination (such as shadows). The sheath itself has a finite vertical extent leading to (at least) an electric field normal to the illuminated surface. If dust particles are launched from the surface by some other process, such as meteoroid impact, or spacecraft activity on the surface, these grains become charged and move under the influence of gravity and the electric field. This can give rise to suspension of the particles above the surface, loss from the parent body entirely (if accelerated beyond escape velocity), and a different distribution of dust ejecta from what would be expected with purely gravitational dynamics.

  3. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obst, Lieselotte; Gode, Sebastian; Rehwald, Martin

    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (Ø 5 μm) and planar (20 μm × 2 μm). In bothmore » cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. As a result, this is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.« less

  4. Efficient laser-driven proton acceleration from cylindrical and planar cryogenic hydrogen jets

    DOE PAGES

    Obst, Lieselotte; Gode, Sebastian; Rehwald, Martin; ...

    2017-08-31

    We report on recent experimental results deploying a continuous cryogenic hydrogen jet as a debris-free, renewable laser-driven source of pure proton beams generated at the 150 TW ultrashort pulse laser Draco. Efficient proton acceleration reaching cut-off energies of up to 20 MeV with particle numbers exceeding 109 particles per MeV per steradian is demonstrated, showing for the first time that the acceleration performance is comparable to solid foil targets with thicknesses in the micrometer range. Two different target geometries are presented and their proton beam deliverance characterized: cylindrical (Ø 5 μm) and planar (20 μm × 2 μm). In bothmore » cases typical Target Normal Sheath Acceleration emission patterns with exponential proton energy spectra are detected. Significantly higher proton numbers in laser-forward direction are observed when deploying the planar jet as compared to the cylindrical jet case. As a result, this is confirmed by two-dimensional Particle-in-Cell (2D3V PIC) simulations, which demonstrate that the planar jet proves favorable as its geometry leads to more optimized acceleration conditions.« less

  5. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease.

    PubMed

    Gao, Yue; Zhang, Chong; Han, Xiao; Wang, Zi Yuan; Ma, Lai; Yuan, De Peng; Wu, Jing Ni; Zhu, Xiao Feng; Liu, Jing Miao; Li, Dao Pin; Hu, Yi Bing; Xuan, Yuan Hu

    2018-04-16

    Pathogen-host interaction is a complicated process; pathogens mainly infect host plants to acquire nutrients, especially sugars. Rhizoctonia solani, the causative agent of sheath blight disease, is a major pathogen of rice. However, it is not known, as to how this pathogen obtains sugar from rice plants. In this study, we found that the rice sugar transporter, OsSWEET11 is involved in the pathogenesis of sheath blight disease. qRT-PCR and β-d-glucuronidase expression analyses showed that R. solani infection significantly enhanced OsSWEET11 expression in leaves among the clade III SWEET members. The analyses of transgenic plants revealed that Ossweet11 mutants were less susceptible, whereas plants overexpressing OsSWEET11 were more susceptible to sheath blight compared to wild-type controls, but the yield of OsSWEET11 mutants and overexpressors was reduced. SWEETs become active upon oligomerization. Split-ubiquitin yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that mutated-OsSWEET11 interacted with normal OsSWEET11. In addition, expressing conserved residue mutated-AtSWEET1 inhibits normal AtSWEET1 activity. To analyze whether inhibition of OsSWEET11 function in mesophyll cells is related to defense against this disease, mutated- OsSWEET11 was expressed under the control of Rubisco promoter, which is specific for green tissues. The resistance of transgenic plants to sheath blight disease, but not other disease was improved, while yield production was not evidently affected. Overall, these results suggest that R. solani might acquire sugar from rice leaves by activating OsSWEET11 expression. The plants can be protected from infection by manipulating the expression of OsSWEET11 without affecting the crop yield. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  6. Primary MPNST in Childhood- A Rare Case Report

    PubMed Central

    Kudesia, Sandip; Bhardwaj, Aparna; Kishore, Sanjeev; Bahal, Neelima

    2014-01-01

    Malignant peripheral nerve sheath tumour usually occurs between 20-50 years of age, comprising about 5-10% of soft tissue sarcomas. Only 1.7% of them have been reported to occur in children < 5 months of age according to the literature. Here, we are describing 18 mnth old male child presented with a swelling in the lower back. MRI showed a sacrcoccygeal swelling extending to and communicating with CSF at lower sacral level. Birth history of the child was normal with normal apgar score. The histological diagnosis was malignant peripheral nerve sheath tumour. IHC showed focal positivity of GFAP and S100. Primary spinal MPNST in children are rarer. A careful neurological examination is warranted in children. Early diagnosis and referral to multidisciplinary team are important in ensuring the best diagnosis and optimal therapy in this young age. PMID:25584230

  7. Proton acceleration by a pair of successive ultraintense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ferri, J.; Senje, L.; Dalui, M.; Svensson, K.; Aurand, B.; Hansson, M.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Gremillet, L.; Siminos, E.; DuBois, T. C.; Yi, L.; Martins, J. L.; Fülöp, T.

    2018-04-01

    We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at a relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. When the full-energy laser pulse is temporally split into two identical half-energy pulses, and using target thicknesses of 3 and 6 μm, we observe experimentally that the second half-pulse boosts the maximum energy and charge of the proton beam produced by the first half-pulse for time delays below ˜0.6-1 ps. Using two-dimensional particle-in-cell simulations, we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.

  8. Shock-wave proton acceleration from a hydrogen gas jet

    NASA Astrophysics Data System (ADS)

    Cook, Nathan; Pogorelsky, Igor; Polyanskiy, Mikhail; Babzien, Marcus; Tresca, Olivier; Maharjan, Chakra; Shkolnikov, Peter; Yakimenko, Vitaly

    2013-04-01

    Typical laser acceleration experiments probe the interaction of intense linearly-polarized solid state laser pulses with dense metal targets. This interaction generates strong electric fields via Transverse Normal Sheath Acceleration and can accelerate protons to high peak energies but with a large thermal spectrum. Recently, the advancement of high pressure amplified CO2 laser technology has allowed for the creation of intense (10^16 Wcm^2) pulses at λ˜10 μm. These pulses may interact with reproducible, high rep. rate gas jet targets and still produce plasmas of critical density (nc˜10^19 cm-3), leading to the transference of laser energy via radiation pressure. This acceleration mode has the advantage of producing narrow energy spectra while scaling well with pulse intensity. We observe the interaction of an intense CO2 laser pulse with an overdense hydrogen gas jet. Using two pulse optical probing in conjunction with interferometry, we are able to obtain density profiles of the plasma. Proton energy spectra are obtained using a magnetic spectrometer and scintillating screen.

  9. Morphological manifestations of freezing and thawing injury in bacteriophage T4Bo.

    PubMed Central

    Steele, P. R.

    1976-01-01

    Electron microscopic observation of negatively stained preparations of frozen and thawed suspensions of T4Bo phage clearly separated the morphological changes produced produced by low-temperature salt denaturation from those produced by eutectic phase changes. Salt denaturation caused contraction of tail sheaths. Eutectic phase changes appeared to cause two separate lesions. Firstly the tail sheath was disjointed 18-22 nm. below the collar and the tail core was disjointed at 40-60 nm. below the collar, giving rise to separated heads with a small tail remnant, and separated tails in which the sheath remarkably remained in its extended form. Secondly, tears were seen in the head membranes of particles with collapsed empty heads. In all the experiments the percentage of normal phage particles counted electron-microscopically was close to the percentage of viable phage as determined by plaque assay. Images Plate 1 PMID:1068189

  10. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock

    PubMed Central

    Lleras Forero, Laura; Narayanan, Rachna; Huitema, Leonie FA; VanBergen, Maaike; Apschner, Alexander; Peterson-Maduro, Josi; Logister, Ive; Valentin, Guillaume

    2018-01-01

    Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord. PMID:29624170

  11. Method of making V.sub.3 Ga superconductors

    DOEpatents

    Dew-Hughes, David

    1980-01-01

    An improved method for producing a vanadium-gallium superconductor wire having aluminum as a component thereof is disclosed, said wire being encased in a gallium bearing copper sheath. The superconductors disclosed herein may be fabricated under normal atmospheres and room temperatures by forming a tubular shaped billet having a core composed of an alloy of vanadium and aluminum and an outer sheath composed of an alloy of copper, gallium and aluminum. Thereafter the entire billet is swage reduced to form a wire therefrom and heat treated to form a layer of V.sub.3 Ga in the interior of the wire.

  12. Extender for securing a closure

    DOEpatents

    Thomas, II, Patrick A.

    2012-10-02

    An apparatus for securing a closure such as door or a window that opens and closes by movement relative to a fixed structure such as a wall or a floor. Many embodiments provide a device for relocating a padlock from its normal location where it secures a fastener (such as a hasp) to a location for the padlock that is more accessible for locking and unlocking the padlock. Typically an extender is provided, where the extender has a hook at a first end that is disposed through the eye of the staple of the hasp, and at an opposing second end the extender has an annulus, such as a hole in the extender or a loop or ring affixed to the extender. The shackle of the padlock may be disposed through the annulus and may be disposed through the eye of a second staple to secure the door or window in a closed or open position. Some embodiments employ a rigid sheath to enclose at least a portion of the extender. Typically the rigid sheath has an open state where the hook is exposed outside the sheath and a closed state where the hook is disposed within the sheath.

  13. [Endoscopic realignment with drainage via a peel-away sheath for the treatment of urethral rupture: A report of 21 cases].

    PubMed

    Han, Cong-Xiang; Xu, Wei-Jie; Li, Wei; Yu, Zhong-Ying; Li, Jin-Yu; Lin, Xia-Cong; Zhao, Li

    2016-07-01

    To study the clinical effect endoscopic realignment with drainage via a peel-away sheath in the treatment of urethral rupture. We treated 21 urethral rupture patients by endoscopic realignment with drainage via a peel-away sheath using normal saline for irrigation under the normal nephroscope or Li Xun nephroscope, followed by analysis of the clinical results. The operation was successfully accomplished in 20 cases but failed in 1 and none experienced urinary extravasation. In the 14 cases of bulbar urethral rupture, the mean operation time was (5.1±1.6) min and the mean Foley catheter indwelling time was (26.0±5.1) d. Urethral stricture developed in 57.1% (8/14) of the cases after catheter removal, of which 1 was cured by internal urethrotomy and the other 7 by urethral sound dilation, with an average maximum urinary flow rate of (18.8±1.8) ml/s at 12 months after operation. In the 6 cases of posterior urethral rupture, the mean operation time was (15.8±7.5) min and the mean Foley catheter indwelling time was 8 weeks. Urethral stricture developed in all the 6 cases after catheter removal, of which 3 cases were cured by urethral dilation, 1 by internal urethrotomy, and 2 by open urethroplasty. The average maxium urinary flow rate of the 4 cases exempt from open surgery was (17.9±1.9) ml/s at 12 months after operation. Endoscopic realignment with drainage via a peel-away sheath can keep the operative field clear, avoid intraoperative rinse extravasation, shorten the operation time, improve the operation success rate, and achieve satisfactory early clinical outcomes in the treatment of either bulbar or posterior urethral rupture.

  14. Modelling of radio frequency sheath and fast wave coupling on the realistic ion cyclotron resonant antenna surroundings and the outer wall

    NASA Astrophysics Data System (ADS)

    Lu, L.; Colas, L.; Jacquot, J.; Després, B.; Heuraux, S.; Faudot, E.; Van Eester, D.; Crombé, K.; Křivská, A.; Noterdaeme, J.-M.; Helou, W.; Hillairet, J.

    2018-03-01

    In order to model the sheath rectification in a realistic geometry over the size of ion cyclotron resonant heating (ICRH) antennas, the self-consistent sheaths and waves for ICH (SSWICH) code couples self-consistently the RF wave propagation and the DC SOL biasing via nonlinear RF and DC sheath boundary conditions applied at plasma/wall interfaces. A first version of SSWICH had 2D (toroidal and radial) geometry, rectangular walls either normal or parallel to the confinement magnetic field B 0 and only included the evanescent slow wave (SW) excited parasitically by the ICRH antenna. The main wave for plasma heating, the fast wave (FW) plays no role on the sheath excitation in this version. A new version of the code, 2D SSWICH-full wave, was developed based on the COMSOL software, to accommodate full RF field polarization and shaped walls tilted with respect to B 0 . SSWICH-full wave simulations have shown the mode conversion of FW into SW occurring at the sharp corners where the boundary shape varies rapidly. It has also evidenced ‘far-field’ sheath oscillations appearing at the shaped walls with a relatively long magnetic connection length to the antenna, that are only accessible to the propagating FW. Joint simulation, conducted by SSWICH-full wave within a multi-2D approach excited using the 3D wave coupling code (RAPLICASOL), has recovered the double-hump poloidal structure measured in the experimental temperature and potential maps when only the SW is modelled. The FW contribution on the potential poloidal structure seems to be affected by the 3D effects, which was ignored in the current stage. Finally, SSWICH-full wave simulation revealed the left-right asymmetry that has been observed extensively in the unbalanced strap feeding experiments, suggesting that the spatial proximity effects in RF sheath excitation, studied for SW only previously, is still important in the vicinity of the wave launcher under full wave polarizations.

  15. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Babaei, J.; Gizzi, L. A.; Londrillo, P.; Mirzanejad, S.; Rovelli, T.; Sinigardi, S.; Turchetti, G.

    2017-04-01

    The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uniform foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse configuration, are comparable. This suggests that parametric scans can be performed with 2D simulations since 3D ones are computationally very expensive, delegating their role only to a correspondence check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the target thickness L and the incidence angle α, with a fixed a0 = 3. A monotonic dependence, on L for normal incidence and on α for fixed L, is found, as in the experimental results for high temporal contrast pulses.

  16. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  17. Frequency of inflammatory-like MR imaging findings in asymptomatic fingers of healthy volunteers.

    PubMed

    Agten, Christoph A; Rosskopf, Andrea B; Jonczy, Maciej; Brunner, Florian; Pfirrmann, Christian W A; Buck, Florian M

    2018-02-01

    To describe the frequency of inflammatory-like findings on MR imaging in asymptomatic volunteers and compare them with patients with known rheumatoid arthritis and psoriatic arthritis. MR images of fingers in 42 asymptomatic volunteers and 33 patients with rheumatoid/psoriatic arthritis were analyzed. The Outcome Measures in Rheumatology Clinical Trials (OMERACT) Rheumatoid/Psoriatic Arthritis MRI Scoring System (RAMRIS/PsAMRIS) and tenosynovitis scoring system were used to assess: bone marrow edema (BME), erosions, tendon sheath fluid/tenosynovitis, joint effusion, and soft-tissue edema. Findings and scores were compared between volunteers and patients. Inter-reader agreement was calculated (intraclass correlation coefficients, ICC). In volunteers, tendon sheath fluid was very common in at least one location (42/42 volunteers for reader 1, 34/42 volunteers for reader 2). BME, erosions, joint effusion, and soft-tissue edema were absent (except one BME in the 3rd proximal phalanx for reader 1). Tendon sheath fluid scores in volunteers and tenosynovitis scores in patients were high (reader 1, 7.17 and 5.39; reader 2, 2.31 and 5.45). Overall, inter-reader agreement was substantial (ICC = 0.696-0.844), except for tendon sheath fluid (ICC = 0.258). Fluid in the finger flexor tendon sheaths may be a normal finding and without gadolinium administration should not be interpreted as tenosynovitis. Bone marrow edema, erosions, joint effusion, and soft-tissue edema in the fingers most likely reflect pathology if present.

  18. TssA forms a gp6-like ring attached to the type VI secretion sheath.

    PubMed

    Planamente, Sara; Salih, Osman; Manoli, Eleni; Albesa-Jové, David; Freemont, Paul S; Filloux, Alain

    2016-08-01

    The type VI secretion system (T6SS) is a supra-molecular bacterial complex that resembles phage tails. It is a killing machine which fires toxins into target cells upon contraction of its TssBC sheath. Here, we show that TssA1 is a T6SS component forming dodecameric ring structures whose dimensions match those of the TssBC sheath and which can accommodate the inner Hcp tube. The TssA1 ring complex binds the T6SS sheath and impacts its behaviour in vivo In the phage, the first disc of the gp18 sheath sits on a baseplate wherein gp6 is a dodecameric ring. We found remarkable sequence and structural similarities between TssA1 and gp6 C-termini, and propose that TssA1 could be a baseplate component of the T6SS Furthermore, we identified similarities between TssK1 and gp8, the former interacting with TssA1 while the latter is found in the outer radius of the gp6 ring. These observations, combined with similarities between TssF and gp6N-terminus or TssG and gp53, lead us to propose a comparative model between the phage baseplate and the T6SS. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Effects of dimensionality on kinetic simulations of laser-ion acceleration in the transparency regime

    NASA Astrophysics Data System (ADS)

    Stark, D. J.; Yin, L.; Albright, B. J.; Guo, F.

    2017-05-01

    A particle-in-cell study of laser-ion acceleration mechanisms in the transparency regime illustrates how two-dimensional (2D) S and P simulations (laser polarization in and out of the simulation plane, respectively) capture different physics characterizing these systems, visible in their entirety often in cost-prohibitive three-dimensional (3D) simulations. The electron momentum anisotropy induced in the target by a laser pulse is dramatically different in the two 2D cases, manifested in differences in target expansion timescales, electric field strengths, and density thresholds for the onset of relativistically induced transparency. In particular, 2D-P simulations exhibit dramatically greater electron heating in the simulation plane, whereas 2D-S ones show a much more isotropic energy distribution, similar to 3D. An ion trajectory analysis allows one to isolate the fields responsible for ion acceleration and to characterize the acceleration regimes in time and space. The artificial longitudinal electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration into its dominant acceleration mechanism throughout the laser-plasma interaction, whereas 2D-S and 3D both have sizable populations accelerated preferentially during transparency.

  20. Effects of dimensionality on kinetic simulations of laser-ion acceleration in the transparency regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, David James; Yin, Lin; Albright, Brian James

    2017-05-03

    A particle-in-cell study of laser-ion acceleration mechanisms in the transparency regime illustrates how two-dimensional (2D) S and P simulations (laser polarization in and out of the simulation plane, respectively) capture different physics characterizing these systems, visible in their entirety in often cost-prohibitive three-dimensional (3D) simulations. The electron momentum anisotropy induced in the target by the laser pulse is dramatically different in the two 2D cases, manifested in differences in target expansion timescales, electric field strengths, and density thresholds for the onset of relativistically induced transparency. In particular, 2D-P simulations exhibit dramatically greater electron heating in the simulation plane, whereas 2D-Smore » ones show a much more isotropic energy distribution, similar to 3D. An ion trajectory analysis allows one to isolate the fields responsible for ion acceleration and to characterize the acceleration regimes in time and space. The artificial longitudinal electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration into its dominant acceleration mechanism throughout the laser-plasma interaction, whereas 2D-S and 3D both have sizable populations accelerated preferentially during transparency.« less

  1. Two-stage acceleration of protons from relativistic laser-solid interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Jinlu; Sheng, Z. M.; Zheng, J.

    2012-12-21

    A two-stage proton acceleration scheme using present-day intense lasers and a unique target design is proposed. The target system consists of a hollow cylinder, inside which is a hollow cone, which is followed by the main target with a flat front and dish-like flared rear surface. At the center of the latter is a tapered proton layer, which is surrounded by outer proton layers at an angle to it. In the first acceleration stage, protons in both layers are accelerated by target normal sheath acceleration. The center-layer protons are accelerated forward along the axis and the side protons are acceleratedmore » and focused towards them. As a result, the side-layer protons radially compress as well as axially further accelerate the front part of the accelerating center-layer protons in the second stage, which are also radially confined and guided by the field of the fast electrons surrounding them. Two-dimensional particle-incell simulation shows that a 79fs 8.5 Multiplication-Sign 10{sup 20} W/cm{sup 2} laser pulse can produce a proton bunch with {approx} 267MeV maximum energy and {approx} 9.5% energy spread, which may find many applications, including cancer therapy.« less

  2. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock.

    PubMed

    Lleras Forero, Laura; Narayanan, Rachna; Huitema, Leonie Fa; VanBergen, Maaike; Apschner, Alexander; Peterson-Maduro, Josi; Logister, Ive; Valentin, Guillaume; Morelli, Luis G; Oates, Andrew C; Schulte-Merker, Stefan

    2018-04-06

    Segmentation of the axial skeleton in amniotes depends on the segmentation clock, which patterns the paraxial mesoderm and the sclerotome. While the segmentation clock clearly operates in teleosts, the role of the sclerotome in establishing the axial skeleton is unclear. We severely disrupt zebrafish paraxial segmentation, yet observe a largely normal segmentation process of the chordacentra. We demonstrate that axial entpd5+ notochord sheath cells are responsible for chordacentrum mineralization, and serve as a marker for axial segmentation. While autonomous within the notochord sheath, entpd5 expression and centrum formation show some plasticity and can respond to myotome pattern. These observations reveal for the first time the dynamics of notochord segmentation in a teleost, and are consistent with an autonomous patterning mechanism that is influenced, but not determined by adjacent paraxial mesoderm. This behavior is not consistent with a clock-type mechanism in the notochord. © 2018, Lleras Forero et al.

  3. Insulin-induced upregulation of lipoprotein lipase in Schwann cells during diabetic peripheral neuropathy.

    PubMed

    Rachana, Kuruvanthe S; Manu, Mallahalli S; Advirao, Gopal M

    2018-03-17

    Diabetic peripheral neuropathy (DPN) is one of the major complications associated with diabetes. It is characterized by the degeneration of the myelin sheath around axons, referred to as demyelination. Such demyelinations are often caused by reduced lipid component of the myelin sheath. Since, lipoprotein lipase (LPL) provides the lipid for myelin sheath by hydrolysing the triglyceride rich lipoproteins, and also helps in the uptake of lipids by the Schwann cells (SCs) for its utilization, LPL is considered as the important factor in the regeneration of myelin sheath during diabetic neuropathy. Earlier reports from our laboratory have provided the insights of insulin and its receptor in SCs during diabetic neuropathy. In order to evaluate the long term effect of insulin on lipid metabolism during diabetic neuropathy, in this study, we analyzed the expression of LPL in SCs under normal, high glucose and insulin treated conditions. A decrease in the expression of LPL was observed in SCs of high glucose condition and it was reversed upon insulin treatment. Histochemical observations of sciatic nerve of insulin treated neuropathy subjects showed the improved nerve morphology, signifying the importance of insulin in restoring the pathophysiology of diabetic neuropathy. Copyright © 2018 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  4. Evidence for a Role for NAD(P)H Dehydrogenase in Concentration of CO2 in the Bundle Sheath Cell of Zea mays.

    PubMed

    Peterson, Richard B; Schultes, Neil P; McHale, Neil A; Zelitch, Israel

    2016-05-01

    Prior studies with Nicotiana and Arabidopsis described failed assembly of the chloroplastic NDH [NAD(P)H dehydrogenase] supercomplex by serial mutation of several subunit genes. We examined the properties of Zea mays leaves containing Mu and Ds insertions into nuclear gene exons encoding the critical o- and n-subunits of NDH, respectively. In vivo reduction of plastoquinone in the dark was sharply diminished in maize homozygous mutant compared to normal leaves but not to the extreme degree observed for the corresponding lesions in Arabidopsis. The net carbon assimilation rate (A) at high irradiance and saturating CO2 levels was reduced by one-half due to NDH mutation in maize although no genotypic effect was evident at very low CO2 levels. Simultaneous assessment of chlorophyll fluorescence and A in maize at low (2% by volume) and high (21%) O2 levels indicated the presence of a small, yet detectable, O2-dependent component of total linear photosynthetic electron transport in 21% O2 This O2-dependent component decreased with increasing CO2 level indicative of photorespiration. Photorespiration was generally elevated in maize mutant compared to normal leaves. Quantification of the proportion of total electron transport supporting photorespiration enabled estimation of the bundle sheath cell CO2 concentration (Cb) using a simple kinetic model of ribulose bisphosphate carboxylase/oxygenase function. The A versus Cb relationships overlapped for normal and mutant lines consistent with occurrence of strictly CO2-limited photosynthesis in the mutant bundle sheath cell. The results are discussed in terms of a previously reported CO2 concentration model [Laisk A, Edwards GE (2000) Photosynth Res 66: 199-224]. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development

    PubMed Central

    Shin, Jimann; Padmanabhan, Arun; de Groh, Eric D.; Lee, Jeong-Soo; Haidar, Sam; Dahlberg, Suzanne; Guo, Feng; He, Shuning; Wolman, Marc A.; Granato, Michael; Lawson, Nathan D.; Wolfe, Scot A.; Kim, Seok-Hyung; Solnica-Krezel, Lilianna; Kanki, John P.; Ligon, Keith L.; Epstein, Jonathan A.; Look, A. Thomas

    2012-01-01

    SUMMARY Neurofibromatosis type 1 (NF1) is a common, dominantly inherited genetic disorder that results from mutations in the neurofibromin 1 (NF1) gene. Affected individuals demonstrate abnormalities in neural-crest-derived tissues that include hyperpigmented skin lesions and benign peripheral nerve sheath tumors. NF1 patients also have a predisposition to malignancies including juvenile myelomonocytic leukemia (JMML), optic glioma, glioblastoma, schwannoma and malignant peripheral nerve sheath tumors (MPNSTs). In an effort to better define the molecular and cellular determinants of NF1 disease pathogenesis in vivo, we employed targeted mutagenesis strategies to generate zebrafish harboring stable germline mutations in nf1a and nf1b, orthologues of NF1. Animals homozygous for loss-of-function alleles of nf1a or nf1b alone are phenotypically normal and viable. Homozygous loss of both alleles in combination generates larval phenotypes that resemble aspects of the human disease and results in larval lethality between 7 and 10 days post fertilization. nf1-null larvae demonstrate significant central and peripheral nervous system defects. These include aberrant proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), dysmorphic myelin sheaths and hyperplasia of Schwann cells. Loss of nf1 contributes to tumorigenesis as demonstrated by an accelerated onset and increased penetrance of high-grade gliomas and MPNSTs in adult nf1a+/−; nf1b−/−; p53e7/e7 animals. nf1-null larvae also demonstrate significant motor and learning defects. Importantly, we identify and quantitatively analyze a novel melanophore phenotype in nf1-null larvae, providing the first animal model of the pathognomonic pigmentation lesions of NF1. Together, these findings support a role for nf1a and nf1b as potent tumor suppressor genes that also function in the development of both central and peripheral glial cells as well as melanophores in zebrafish. PMID:22773753

  6. Electron heating enhancement by frequency-chirped laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic fieldmore » is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.« less

  7. Laser-ablation-based ion source characterization and manipulation for laser-driven ion acceleration

    NASA Astrophysics Data System (ADS)

    Sommer, P.; Metzkes-Ng, J.; Brack, F.-E.; Cowan, T. E.; Kraft, S. D.; Obst, L.; Rehwald, M.; Schlenvoigt, H.-P.; Schramm, U.; Zeil, K.

    2018-05-01

    For laser-driven ion acceleration from thin foils (∼10 μm–100 nm) in the target normal sheath acceleration regime, the hydro-carbon contaminant layer at the target surface generally serves as the ion source and hence determines the accelerated ion species, i.e. mainly protons, carbon and oxygen ions. The specific characteristics of the source layer—thickness and relevant lateral extent—as well as its manipulation have both been investigated since the first experiments on laser-driven ion acceleration using a variety of techniques from direct source imaging to knife-edge or mesh imaging. In this publication, we present an experimental study in which laser ablation in two fluence regimes (low: F ∼ 0.6 J cm‑2, high: F ∼ 4 J cm‑2) was applied to characterize and manipulate the hydro-carbon source layer. The high-fluence ablation in combination with a timed laser pulse for particle acceleration allowed for an estimation of the relevant source layer thickness for proton acceleration. Moreover, from these data and independently from the low-fluence regime, the lateral extent of the ion source layer became accessible.

  8. Generation and acceleration of neutral atoms in intense laser plasma experiments

    NASA Astrophysics Data System (ADS)

    Tata, Sheroy; Mondal, Angana; Sarkar, Shobhik; Ved, Yash; Lad, Amit D.; Pasley, John; Colgan, James; Krishnamurthy, M.

    2017-10-01

    The interaction of a high intensity (>=1018 W/cm2), high contrast (>=109), ultra-short (30fs) laser with solid targets generates a highly dense hot plasma. The quasi-static electric fields in such plasmas are well known for ion acceleration via the target normal sheath acceleration process. Under such conditions charge reduction to generate fast neutral atoms is almost inhibited. Improvised Thomson parabola spectrometry with improved signal to noise ratio has enabled us to measure the signals of fast neutral atoms and negative ions having energies in excess of tens of keV. A study on the neutralization of accelerated protons in plasma shows that the neutral atom to all particle ratio rises sharply from a few percent at the highest detectable energy to 50 % at 15 keV. Using usual charge transfer reactions the generation of neutral atoms can not be explained, thus we conjecture that the neutralization of the accelerated ions is not from the hot dense region of the plasma but neutral atom formation takes place by co-propagating ions with low energy electrons enhancing the effective neutral ratio.

  9. Resonant interaction of electromagnetic wave with plasma layer and overcoming the radiocommunication blackout problem

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Klenov, N. V.; Tereshonok, M. V.; Adjemov, S. S.; Popov, A. M.

    2018-05-01

    We present an analysis of the possibility of penetrating electromagnetic waves through opaque media using an optical-mechanical analogy. As an example, we consider the plasma sheath surrounding the vehicle as a potential barrier and analyze the overcoming of radiocommunication blackout problem. The idea is to embed a «resonator» between the surface on the vehicle and plasma sheath which is supposed to provide an effective tunneling of the signal to the receiving antenna. We discuss the peculiarities of optical mechanical analogy applicability and analyze the radio frequency wave tunneling regime in detail. The cases of normal and oblique incidence of radiofrequency waves on the vehicle surface are studied.

  10. Interaction of magnetized electrons with a boundary sheath: investigation of a specular reflection model

    NASA Astrophysics Data System (ADS)

    Krüger, Dennis; Brinkmann, Ralf Peter

    2017-11-01

    This publication reports analytical and numerical results concerning the interaction of gyrating electrons with a plasma boundary sheath, with focus on partially magnetized technological plasmas. It is assumed that the electron Debye length {λ }{{D}} is much smaller than the electron gyroradius {r}{{L}}, and {r}{{L}} in turn much smaller than the mean free path λ and the gradient length L of the fields. Focusing on the scale of the gyroradius, the sheath is assumed as infinitesimally thin ({λ }{{D}}\\to 0), collisions are neglected (λ \\to ∞ ), the magnetic field is taken as homogeneous, and electric fields (=potential gradients) in the bulk are neglected (L\\to ∞ ). The interaction of an electron with the electric field of the plasma boundary sheath is represented by a specular reflection {v}\\to {v}-2{v}\\cdot {{e}}z {{e}}z of the velocity {v} at the plane z = 0 of a naturally oriented Cartesian coordinate system (x,y,z). The electron trajectory is then given as sequences of helical sections, with the kinetic energy ɛ and the canonical momenta p x and p y conserved, but not the position of the axis (base point {{R}}0), the slope (pitch angle χ), and the phase (gyrophase φ). A ‘virtual interaction’ which directly maps the incoming electrons to the outgoing ones is introduced and studied in dependence of the angle γ between the field and the sheath normal {{e}}z. The corresponding scattering operator is constructed, mathematically characterized, and given as an infinite matrix. An equivalent boundary condition for a transformed kinetic model is derived.

  11. Commissioning of a compact laser-based proton beam line for high intensity bunches around 10Â MeV

    NASA Astrophysics Data System (ADS)

    Busold, S.; Schumacher, D.; Deppert, O.; Brabetz, C.; Kroll, F.; Blažević, A.; Bagnoud, V.; Roth, M.

    2014-03-01

    We report on the first results of experiments with a new laser-based proton beam line at the GSI accelerator facility in Darmstadt. It delivers high current bunches at proton energies around 9.6 MeV, containing more than 109 particles in less than 10 ns and with tunable energy spread down to 2.7% (ΔE/E0 at FWHM). A target normal sheath acceleration stage serves as a proton source and a pulsed solenoid provides for beam collimation and energy selection. Finally a synchronous radio frequency (rf) field is applied via a rf cavity for energy compression at a synchronous phase of -90 deg. The proton bunch is characterized at the end of the very compact beam line, only 3 m behind the laser matter interaction point, which defines the particle source.

  12. Investigating the ability of solar coronal shocks to accelerate solar energetic particles

    NASA Astrophysics Data System (ADS)

    Kwon, R. Y.; Vourlidas, A.

    2017-12-01

    We estimate the density compression ratio of shocks associated with coronal mass ejections (CMEs) and investigate whether they can accelerate solar energetic particles (SEPs). Using remote-sensing, multi-viewpoint coronagraphic observations, we have developed a method to extract the sheath electron density profiles along the shock normal and estimate the density compression ratio. Our method uses the ellipsoid model to derive the 3D geometry of the sheaths, including the line-of-sight (LOS) depth. The sheath density profiles along the shock normal are modeled with double-Gaussian functions, and the modeled densities are integrated along the LOSs to be compared with the observed brightness in STEREO COR2-Ahead. The upstream densities are derived from either the pB-inversion of the brightness in a pre-event image or an empirical model. We analyze two fast halo CMEs observed on 2011 March 7 and 2014 February 25 that are associated with SEP events detected by multiple spacecraft located over a broad range of heliolongitudes. We find that the density compression peaks around the CME nose and decreases at larger position angles. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes) than past reports. This finding implies that CME shocks may be capable of accelerating energetic particles in the corona over extended spatial and temporal scales and may, therefore, be responsible for the wide longitudinal distribution of these particles in the inner heliosphere.

  13. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-01

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a `test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude φ0 (normalized to a characteristic length for transverse transport and to the local temperature). A `peaking factor' is built from the DC peak potential normalized to φ0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the `peaking factor' for ITER will be presented for a given configuration.

  14. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-26

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially amore » Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.« less

  15. Bohm criterion and plasma particle/power exhaust to and recycling at the wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xianzhu; Guo, Zehua

    The plasma particle and power exhaust to the divertor surface drives both particle and power recycling at the surface, which in return constrains the plasma density and temperature at the target and their profile further upstream. Both particle and power exhaust fluxes are mediated by the plasma sheath next to the divertor surface. In particular, the Bohm criterion constrains the ion exit flow speed, which enters directly into the particle flux and the kinetic flow energy component of the ion power flux, and indirectly into the electron power flux through the sheath potential drop. Here we give an overview onmore » how the Bohm speed is set in a general plasma and how it enters power exhaust and power recycling at the divertor surface, and the implication on the correct implementation of sheath boundary conditions in numerical codes. The cases of ideal and non-ideal Bohm speed are distinguished as a result of the physics discussion.« less

  16. Bohm criterion and plasma particle/power exhaust to and recycling at the wall

    DOE PAGES

    Tang, Xianzhu; Guo, Zehua

    2017-06-07

    The plasma particle and power exhaust to the divertor surface drives both particle and power recycling at the surface, which in return constrains the plasma density and temperature at the target and their profile further upstream. Both particle and power exhaust fluxes are mediated by the plasma sheath next to the divertor surface. In particular, the Bohm criterion constrains the ion exit flow speed, which enters directly into the particle flux and the kinetic flow energy component of the ion power flux, and indirectly into the electron power flux through the sheath potential drop. Here we give an overview onmore » how the Bohm speed is set in a general plasma and how it enters power exhaust and power recycling at the divertor surface, and the implication on the correct implementation of sheath boundary conditions in numerical codes. The cases of ideal and non-ideal Bohm speed are distinguished as a result of the physics discussion.« less

  17. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    DTIC Science & Technology

    2016-08-19

    New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser ...Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser -plasma,mass-limited, fast electrons, sheath...field Abstract Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron

  18. Effects of Heparin and Lisofylline on Pulmonary Function Following Smoke Inhalation Injury in an Ovine Model

    DTIC Science & Technology

    2002-03-01

    25 mg/kg intravenously). One radiopaque sheath introducer, through which a pulmonary artery flotation catheter was placed, was inserted into an...the tracheobronchoepithelial damage score was as follows: 0, normal; 1, some loss of cilia, loss of apical epithelium; 2, marked attenuation of epi...limited to the left apical lobe be- cause bronchoalveolar lavage was done in the other lobes. The lung parenchymal damage score was as follows: 0, normal; 1

  19. A novel NF1 mutation in a Chinese patient with giant café-au-lait macule in neurofibromatosis type 1 associated with a malignant peripheral nerve sheath tumor and bone abnormality.

    PubMed

    Tong, H-X; Li, M; Zhang, Y; Zhu, J; Lu, W-Q

    2012-08-29

    Neurofibromatosis type 1 (NF1; OMIM#162200) is a common neurocutaneous disorder that is characterized by multiple café-au-lait, skinfold freckling, Lisch nodules, and neurofibromas. Mutations in the NF1 gene, which encodes the neurofibromin protein, have been identified as the pathogenic gene of NF1. In this study, we present a clinical and molecular study of a Chinese patient with giant café-au-lait in NF1. The patient showed >6 café-au-lait spots on the body, axillary freckling, and multiple subcutaneous neurofibromas. He also had a malignant peripheral nerve sheath tumor and bone abnormalities. The germline mutational analysis of the NF1 gene revealed a novel missense mutation in exon 13. It is a novel heterozygous nucleotide G>A transition at position 2241 of the NF1 gene. We found no mutation in malignant peripheral nerve sheath tumor DNA from this patient. This expands the database for NF1 gene mutations in NF1. Its absence in the normal chromosomes suggests that it is responsible for the NF1 phenotype. To our knowledge, this is the first case of giant café-au-lait macule in NF1 associated with a malignant peripheral nerve sheath tumor and bone abnormality.

  20. Examination of a demyelinated fiber by action-potential-encoded second harmonic generation

    NASA Astrophysics Data System (ADS)

    Chen, Xin-guang; Luo, Zhi-hui; Yang, Hong-qin; Huang, Yi-mei; Xie, Shu-sen

    2012-03-01

    Axonal demyelination is a common phenomenon in the nervous system in human. Conventional measured approaches such as surface recording electrode and diffusion tensor imaging, are hard to fast and accurately determine the demyelinated status of a fiber. In this study, we first presented a mathematical model of nerve fiber demyelination, and it was combined with second harmonic generation(SHG) technique to study the characteristics of action-potential-encoded SHG and analyze the sensitivity of SHG signals responded to membrane potential. And then, we used this approach to fast examine the injured myelin sheaths resulted from demyelination. Each myelin sheath of a fiber was examined simultaneously by this approach. The results showed that fiber demyelination led to observable attenuation of action potential amplitude. The delay of action potential conduction would be markedly observed when the fiber demyelination was more than 80%. Furthermore, the normal and injured myelin sheaths of a myelinated fiber could be distinguished via the changes of SHG signals, which revealed the possibility of SHG technique in the examination of a demyelinated fiber. Our study shows that this approach may have potential application values in clinic.

  1. Ultrafast high-power microwave window breakdown: nonlinear and postpulse effects.

    PubMed

    Chang, C; Verboncoeur, J; Guo, M N; Zhu, M; Song, W; Li, S; Chen, C H; Bai, X C; Xie, J L

    2014-12-01

    The time- and space-dependent optical emissions of nanosecond high-power microwave discharges near a dielectric-air interface have been observed by nanosecond-response four-framing intensified-charged-coupled device cameras. The experimental observations indicate that plasma developed more intensely at the dielectric-air interface than at the free-space region with a higher electric-field amplitude. A thin layer of intense light emission above the dielectric was observed after the microwave pulse. The mechanisms of the breakdown phenomena are analyzed by a three-dimensional electromagnetic-field modeling and a two-dimensional electromagnetic particle-in-cell simulation, revealing the formation of a space-charge microwave sheath near the dielectric surface, accelerated by the normal components of the microwave field, significantly enhancing the local-field amplitude and hence ionization near the dielectric surface. The nonlinear positive feedback of ionization, higher electron mobility, and ultraviolet-driven photoemission due to the elevated electron temperature are crucial for achieving the ultrafast discharge. Following the high-power microwave pulse, the sheath sustains a glow discharge until the sheath collapses.

  2. Niobium-titanium superconductors produced by powder metallurgy having artificial flux pinning centers

    DOEpatents

    Jablonski, Paul D.; Larbalestier, David C.

    1993-01-01

    Superconductors formed by powder metallurgy have a matrix of niobium-titanium alloy with discrete pinning centers distributed therein which are formed of a compatible metal. The artificial pinning centers in the Nb-Ti matrix are reduced in size by processing steps to sizes on the order of the coherence length, typically in the range of 1 to 10 nm. To produce the superconductor, powders of body centered cubic Nb-Ti alloy and the second phase flux pinning material, such as Nb, are mixed in the desired percentages. The mixture is then isostatically pressed, sintered at a selected temperature and selected time to produce a cohesive structure having desired characteristics without undue chemical reaction, the sintered billet is reduced in size by deformation, such as by swaging, the swaged sample receives heat treatment and recrystallization and additional swaging, if necessary, and is then sheathed in a normal conducting sheath, and the sheathed material is drawn into a wire. The resulting superconducting wire has second phase flux pinning centers distributed therein which provide enhanced J.sub.ct due to the flux pinning effects.

  3. L-carnitine alleviates sciatic nerve crush injury in rats: functional and electron microscopy assessments

    PubMed Central

    Avsar, Ümmü Zeynep; Avsar, Umit; Aydin, Ali; Yayla, Muhammed; Ozturkkaragoz, Berna; Un, Harun; Saritemur, Murat; Mercantepe, Tolga

    2014-01-01

    Several studies have demonstrated that L-carnitine exhibits neuroprotective effects on injured sciatic nerve of rats with diabetes mellitus. It is hypothesized that L-carnitine exhibits neuroprotective effects on injured sciatic nerve of rats. Rat sciatic nerve was crush injured by a forceps and exhibited degenerative changes. After intragastric administration of 50 and 100 mg/kg L-carnitine for 30 days, axon area, myelin sheath area, axon diameter, myelin sheath diameter, and numerical density of the myelinated axons of injured sciatic nerve were similar to normal, and the function of injured sciatic nerve also improved significantly. These findings suggest that L-carnitine exhibits neuroprotective effects on sciatic nerve crush injury in rats. PMID:25206754

  4. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice.

    PubMed

    Karthiba, Loganathan; Saveetha, Kandasamy; Suresh, Seetharaman; Raguchander, Thiruvengadam; Saravanakumar, Duraisamy; Samiyappan, Ramasamy

    2010-05-01

    The biological control of plant pests and diseases using a single organism has been reported to give inconsistent and poor performance. To improve the efficacy, bioformulations were developed possessing mixtures of bioagents. Bioformulations combining Pseudomonas fluorescens Migula strains Pf1 and AH1 and Beauveria bassiana (Balsamo) Vuill. isolate B2 were developed and tested for their efficacy against leaffolder pest and sheath blight disease on rice under glasshouse and field conditions. The combination of Pf1, AH1 and B2 effectively reduced the incidence of leaffolder insect and sheath blight disease on rice compared with other treatments. An in vitro assay of leaffolder preference to rice leaf tissues treated with Pf1 + AH1 + B2 biformulation showed variation from normal growth and development of leaffolder larvae. Plants treated with the Pf1 + AH1 + B2 combination showed a greater accumulation of enzymes, lipoxygenase and chitinase activity against leaffolder insect compared with other treatments. Similarly, the plants showed a higher accumulation of defence enzymes, peroxidase and polyphenol oxidase activity against sheath blight pathogen in Pf1 + AH1 + B2 treatment compared with the untreated control. The bioformulation mixture attracted the natural enemy population of leaffolder under field conditions. In addition, a significant increase in rice grain yield was observed in Pf1 + AH1 + B2 treatment compared with the untreated control. The combination of P. fluorescens strains and B. bassiana isolate effectively reduced the incidence of leaffolder insect and sheath blight disease on rice plants and showed the possibility of controlling both pest and disease using a single bioformulation.

  5. Recent High-Intensity Experiments at the Trident Laser

    NASA Astrophysics Data System (ADS)

    Cobble, James; Palaniyappan, Sasikumar; Gautier, Cort; Kim, Yongho; Huang, Chengkun

    2014-10-01

    With near-diffraction-limited irradiance of 2 × 1020 W/cm2 on target and prelase contrast better than 10-8, we have accessed the regime of relativistic transparency (RT) at the Trident Laser. The goal was to assess electron debris emitted from the target rear surface with phase-contrast imaging (PCI) and current density measurements (hence, the total electron current). Companion diagnostics show whether the experiments are in the target-normal-sheath-acceleration mode or in the RT regime. The superb laser contrast allows us to shoot targets as thin as 50 nm. PCI at 527 nm is temporally resolved to 600 fs. It has shown the evolution of electron behavior over tens of ps, including thermal electrons accompanying the ion jet, accelerated to many tens of MeV earlier in time. Faraday-cup measurements indicate the transfer of many microC of charge during the laser drive. As a ride-along experiment using a gas Cherenkov detector (GCD), we have detected gamma rays of energy >5 MeV. This radiation has a prompt component and a lesser source, driven by accelerated ions, that is time resolved by the GCD. The ion time of flight is compared to Thomson parabola data. Electron energy spectra are also collected. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under Contract DE-AC52-06NA25396.

  6. Relativistic Transparency Experiments at the Trident Laser

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Palaniyappan, S.; Gautier, D. C.; Kim, Y. H.; Clark, D. D.; Johnson, R. P.; Shimada, T.; Fernandez, J. C.; Herrmann, H. W.

    2013-10-01

    With near-diffraction-limited irradiance of 3 × 1020 W/cm2 on target and prelase contrast better than 10-9, we have accessed the regime of relativistic transparency (RT) at the Trident Laser. The goal was to assess electron debris emitted from the target rear surface with phase-contrast imaging (PCI) and current density measurements (hence, the total electron current). Companion diagnostics show whether the experiments are in the target-normal-sheath-acceleration mode or in the RT regime. The superb laser contrast allows us to shoot targets as thin as 50 nm. PCI at 527 nm is temporally resolved to 600 fs. It has shown the evolution of electron behavior over tens of ps, including thermal electrons accompanying the ion jet, accelerated to many tens of MeV earlier in time. Faraday-cup measurements indicate the transfer of many uC of charge during the laser drive. As a ride-along experiment using a gas Cherenkov detector (GCD), we have detected gamma rays of energy >5 MeV. This radiation has a prompt component and a lesser source, driven by accelerated ions, that is time resolved by the GCD. The ion time of flight is compared to Thomson parabola data. Electron energy spectra are also collected. This work has been performed under the auspices of the US DOE contract number DE-AC52-06NA25396.

  7. Prediction of scaling physics laws for proton acceleration with extended parameter space of the NIF ARC

    NASA Astrophysics Data System (ADS)

    Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  8. Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and In Vitro Testing for Sustained and Targeted Therapy

    PubMed Central

    Iqbal, Sakib; Rashid, Mohammad H.; Arbab, Ali S.; Khan, Mujibur

    2017-01-01

    We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19–23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50–160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22–90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52–53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%. PMID:28845137

  9. Encapsulation of Anticancer Drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) Nanofibers and In Vitro Testing for Sustained and Targeted Therapy.

    PubMed

    Iqbal, Sakib; Rashid, Mohammad H; Arbab, Ali S; Khan, Mujibur

    2017-04-01

    We report a continuous nanoscale encapsulation of cancer drugs 5-Fluorouracil (FU) and Paclitaxel into biocompatible polycaprolactone (PCL) nanofibers (NFs) using core-sheath electrospinning process. A high potential electric field of 19-23.2 kV was used to draw a compound solution jet from a specialized coaxial spinneret. Using of DMF in both core and Sheath resulted in NFs within 50-160 nm along with large beaded structures. Addition of Trichloromethane (TCM) or Trifluoroethanol (TFE) in sheath turned NFs in more uniform and thin fiber structure. The diameter range for paclitaxel encapsulated fibers was 22-90 nm with encapsulation efficiency of 77.5% and the amount of drug was only 4 to 5% of sheath polymer. Addition of PVA within core resulted drug nanocrystal formation outside of sheath and poor encapsulation efficiency (52%) with rapid initial release (52-53%) in first 3 days. Drug release test of NFs in different pH exhibited increase of release rate with the decrease of media pH. In-vitro cell viability test with FU encapsulated NFs in human prostatic cancer PC3 cells exhibited 38% alive cells at 5 μM concentration while in pristine FU 43% cells were alive. Paclitaxel encapsulated NFs with breast cancer cells also exhibited increased efficacy in comparison to pristine anticancer drugs. Continuous decrease of cell density indicated the slow release of cancer drugs from the NFs. Both PCL+Paclitaxel and PCL+5FU treated conditions caused breast cancer cell death between 40% to 50%.

  10. Gravimorphism in rice and barley: promotion of leaf elongation by vertical inversion in agravitropically growing plants.

    PubMed

    Abe, K; Takahashi, H; Suge, H

    1998-12-01

    We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2-15 of both elongated and non-elongated internodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11-15 only elongated internodes but not at nodes 2-10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants of serpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.

  11. Retrobulbar pigmented peripheral nerve sheath tumor in a dog.

    PubMed

    Curto, Elizabeth; Clode, Alison B; Durrant, Jessica; Montgomery, Keith W; Gilger, Brian C

    2016-11-01

    A 1-year-old male castrated Pug was referred for unilateral exophthalmos unresponsive to oral antibiotic and anti-inflammatory therapy. Clinical findings included exophthalmos of the left eye with lateral strabismus, resistance to retropulsion, and an elevated nictitans. Hematologic and biochemical analyses were within normal limits. Findings following computed tomography (CT) of the head included an expansile retrobulbar soft tissue mass with bony lysis extending into the left nasal cavity and nasopharynx. Ultrasound-guided fine-needle aspirates and biopsy samples obtained via rhinoscopy were nondiagnostic. Palliative exenteration was elected; the patient was euthanized 13 weeks following exenteration due to development of neurologic signs and perceived poor quality of life. The histopathologic diagnosis was a malignant pigmented peripheral nerve sheath tumor. © 2015 American College of Veterinary Ophthalmologists.

  12. Mutation of the OsSAC1 Gene, which Encodes an Endoplasmic Reticulum Protein with an Unknown Function, Causes Sugar Accumulation in Rice Leaves.

    PubMed

    Zhu, Xiaoyan; Shen, Wenqiang; Huang, Junyang; Zhang, Tianquan; Zhang, Xiaobo; Cui, Yuanjiang; Sang, Xianchun; Ling, Yinghua; Li, Yunfeng; Wang, Nan; Zhao, Fangmin; Zhang, Changwei; Yang, Zhenglin; He, Guanghua

    2018-03-01

    Sugars are the most abundant organic compounds produced by plants, and can be used to build carbon skeletons and generate energy. The sugar accumulation 1 (OsSAC1) gene encodes a protein with an unknown function that exhibits four N-terminal transmembrane regions and two conserved domains of unknown function, DUF4220 and DUF594. OsSAC1 was found to be poorly and specifically expressed at the bottoms of young leaves and in the developing leaf sheaths. Subcellular location results showed that OsSAC1 was co-localized with ER:mCherry and targeted the endoplasmic reticulum (ER). OsSAC1 has been found to affect sugar partitioning in rice (Oryza sativa). I2/KI starch staining, ultrastructure observations and starch content measurements indicated that more and larger starch granules accumulated in ossac1 source leaves than in wild-type (WT) source leaves. Additionally, higher sucrose and glucose concentrations accumulated in the ossac1 source leaves than in WT source leaves, whereas lower sucrose and glucose concentrations were observed in the ossac1 young leaves and developing leaf sheaths than in those of the WT. Much greater expression of OsAGPL1 and OsAGPS1 (responsible for starch synthesis) and significantly less expression of OscFBP1, OscFBP2, OsSPS1 and OsSPS11 (responsible for sucrose synthesis) and OsSWEET11, OsSWEET14 and OsSUT1 (responsible for sucrose loading) occurred in ossac1 source leaves than in WT source leaves. A greater amount of the rice plasmodesmatal negative regulator OsGSD1 was detected in ossac1 young leaves and developing leaf sheaths than in those of the WT. These results suggest that ER-targeted OsSAC1 may indirectly regulate sugar partitioning in carbon-demanding young leaves and developing leaf sheaths.

  13. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification.

    PubMed

    Baccou, C; Yahia, V; Depierreux, S; Neuville, C; Goyon, C; Consoli, F; De Angelis, R; Ducret, J E; Boutoux, G; Rafelski, J; Labaune, C

    2015-08-01

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detector for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.

  14. CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baccou, C., E-mail: claire.baccou@polytechnique.edu; Yahia, V.; Labaune, C.

    Laser-accelerated ion beams can be used in many applications and, especially, to initiate nuclear reactions out of thermal equilibrium. We have experimentally studied aneutronic fusion reactions induced by protons accelerated by the Target Normal Sheath Acceleration mechanism, colliding with a boron target. Such experiments require a rigorous method to identify the reaction products (alpha particles) collected in detectors among a few other ion species such as protons or carbon ions, for example. CR-39 track detectors are widely used because they are mostly sensitive to ions and their efficiency is near 100%. We present a complete calibration of CR-39 track detectormore » for protons, alpha particles, and carbon ions. We give measurements of their track diameters for energy ranging from hundreds of keV to a few MeV and for etching times between 1 and 8 h. We used these results to identify alpha particles in our experiments on proton-boron fusion reactions initiated by laser-accelerated protons. We show that their number clearly increases when the boron fuel is preformed in a plasma state.« less

  15. Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-12-01

    A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.

  16. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE PAGES

    Kohno, H.; Myra, J. R.

    2017-07-24

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  17. A finite element procedure for radio-frequency sheath–plasma interactions based on a sheath impedance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, H.; Myra, J. R.

    A finite element code that solves self-consistent radio-frequency (RF) sheath-plasma interaction problems is improved by incorporating a generalized sheath boundary condition in the macroscopic solution scheme. This sheath boundary condition makes use of a complex sheath impedance including both the sheath capacitance and resistance, which enables evaluation of not only the RF voltage across the sheath but also the power dissipation in the sheath. The newly developed finite element procedure is applied to cases where the background magnetic field is perpendicular to the sheath surface in one- and two-dimensional domains filled by uniform low- and high-density plasmas. The numerical resultsmore » are compared with those obtained by employing the previous capacitive sheath model at a typical frequency for ion cyclotron heating used in fusion experiments. It is shown that for sheaths on the order of 100 V in a high-density plasma, localized RF power deposition can reach a level which causes material damage. It is also shown that the sheath-plasma wave resonances predicted by the capacitive sheath model do not occur when parameters are such that the generalized sheath impedance model substantially modifies the capacitive character of the sheath. Here, possible explanations for the difference in the maximum RF sheath voltage depending on the plasma density are also discussed.« less

  18. The neuropeptide galanin is a novel inhibitor of human hair growth.

    PubMed

    Holub, B S; Kloepper, J E; Tóth, B I; Bíro, T; Kofler, B; Paus, R

    2012-07-01

    Galanin is a trophic factor of the central and peripheral nervous system that shows widespread distribution in human skin. However, the exact localization and the role of galanin in the hair follicle (HF) remain to be clarified. To characterize galanin expression in human scalp HFs and to examine the effects of galanin on normal human scalp HF growth in organ culture. Immunohistochemistry was performed on cryosections of human female scalp skin. Anagen HFs were microdissected and cultured up to 9 days and treated with 100 nmol L(-1) galanin. Staining for Ki-67, TUNEL and Masson-Fontana were used to analyse proliferation, apoptosis and hair cycle staging of the HFs. Functional effects of galanin were tested in serum-free HF organ culture. Galanin-like immunoreactivity was detected in the outer root sheath (ORS) and inner root sheath. Additionally, galanin mRNA was detected in ORS keratinocytes and all HF samples tested. Galanin receptor transcripts (GalR2, GalR3) were also detected in selected samples. Galanin reduced proliferation of hair matrix keratinocytes in situ compared with vehicle-treated controls, shortened the hair growth phase (anagen) in vitro and reduced hair shaft elongation. This was accompanied by the premature development of a catagen-like morphology of galanin-treated HFs. We present the first evidence that human HFs are both a source and a functionally relevant target of galanin. Due to its hair growth-inhibitory properties in vitro, galanin application deserves further exploration as a potential new treatment strategy for unwanted hair growth (hirsutism, hypertrichosis). © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  19. Advanced Design Concepts for Dense Plasma Focus Devices at LLNL

    NASA Astrophysics Data System (ADS)

    Povilus, Alexander; Podpaly, Yuri; Cooper, Christopher; Shaw, Brian; Chapman, Steve; Mitrani, James; Anderson, Michael; Pearson, Aric; Anaya, Enrique; Koh, Ed; Falabella, Steve; Link, Tony; Schmidt, Andrea

    2017-10-01

    The dense plasma focus (DPF) is a z-pinch device where a plasma sheath is accelerated down a coaxial railgun and ends in a radial implosion, pinch phase. During the pinch phase, the plasma generates intense, transient electric fields through physical mechanisms, similar to beam instabilities, that can accelerate ions in the plasma sheath to MeV-scale energies on millimeter length scales. Using kinetic modeling techniques developed at LLNL, we have gained insight into the formation of these accelerating fields and are using these observations to optimize the behavior of the generated ion beam for producing neutrons via beam-target interactions for kilojoule to megajoule-scale devices. Using a set of DPF's, both in operation and in development at LLNL, we have explored critical aspects of these devices, including plasma sheath formation behavior, power delivery to the plasma, and instability seeding during the implosion in order to improve the absolute yield and stability of the device. Prepared by LLNL under Contract DE-AC52-07NA27344. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  20. Orbital and Intracranial Effects of Microgravity: 3T MRI Findings

    NASA Technical Reports Server (NTRS)

    Kramer, L. A.; Sargsyan, A.; Hasan, K. M.; Polk, J. D.; Hamilton, D. R.

    2012-01-01

    Goals and Objectives of this presentation are: 1. To briefly describe a newly discovered clinical entity related to space flight. 2. To describe normal anatomy and pathologic changes of the optic nerve, posterior globe, optic nerve sheath and pituitary gland related to exposure to microgravity. 3. To correlate imaging findings with known signs of intracranial hypertension.

  1. Composition of the sheath produced by the green alga Chlorella sorokiniana.

    PubMed

    Watanabe, K; Imase, M; Sasaki, K; Ohmura, N; Saiki, H; Tanaka, H

    2006-05-01

    To investigate the chemical characterization of the mucilage sheath produced by Chlorella sorokiniana. Algal mucilage sheath was hydrolysed with NaOH, containing EDTA. The purity of the hydrolysed sheath was determined by an ATP assay. The composition of polysaccharide in the sheath was investigated by high-performance anion-exchange chromatography with pulsed amperometric detection. Sucrose, galacturonic acid, xylitol, inositol, ribose, mannose, arabinose, galactose, rhamnose and fructose were detected in the sheath as sugar components. Magnesium was detected in the sheath as a divalent cation using inductively coupled argon plasma. The sheath matrix also contained protein. It appears that the sheath is composed of sugars and metals. Mucilage sheath contains many kinds of saccharides that are produced as photosynthetic metabolites and divalent cations that are contained in the culture medium. This is the first report on chemical characterization of the sheath matrix produced by C. sorokiniana.

  2. Dissociation and Re-Aggregation of Multicell-Ensheathed Fragments Responsible for Rapid Production of Massive Clumps of Leptothrix Sheaths

    PubMed Central

    Kunoh, Tatsuki; Nagaoka, Noriyuki; McFarlane, Ian R.; Tamura, Katsunori; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Species of the Fe/Mn-oxidizing bacteria Leptothrix produce tremendous amounts of microtubular, Fe/Mn-encrusted sheaths within a few days in outwells of groundwater that can rapidly clog water systems. To understand this mode of rapid sheath production and define the timescales involved, behaviors of sheath-forming Leptothrix sp. strain OUMS1 were examined using time-lapse video at the initial stage of sheath formation. OUMS1 formed clumps of tangled sheaths. Electron microscopy confirmed the presence of a thin layer of bacterial exopolymer fibrils around catenulate cells (corresponding to the immature sheath). In time-lapse videos, numerous sheath filaments that extended from the periphery of sheath clumps repeatedly fragmented at the apex of the same fragment, the fragments then aggregated and again elongated, eventually forming a large sheath clump comprising tangled sheaths within two days. In this study, we found that fast microscopic fragmentation, dissociation, re-aggregation and re-elongation events are the basis of the rapid, massive production of Leptothrix sheaths typically observed at macroscopic scales. PMID:27490579

  3. RF sheaths for arbitrary B field angles

    NASA Astrophysics Data System (ADS)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  4. The beat in laser-accelerated ion beams

    NASA Astrophysics Data System (ADS)

    Schnürer, M.; Andreev, A. A.; Abicht, F.; Bränzel, J.; Koschitzki, Ch.; Platonov, K. Yu.; Priebe, G.; Sandner, W.

    2013-10-01

    Regular modulation in the ion velocity distribution becomes detectable if intense femtosecond laser pulses with very high temporal contrast are used for target normal sheath acceleration of ions. Analytical and numerical analysis of the experimental observation associates the modulation with the half-cycle of the driving laser field period. In processes like ion acceleration, the collective and laser-frequency determined electron dynamics creates strong fields in plasma to accelerate the ions. Even the oscillatory motion of electrons and its influence on the acceleration field can dominate over smoothing effects in plasma if a high temporal contrast of the driving laser pulse is given. Acceleration parameters can be directly concluded out of the experimentally observed modulation period in ion velocity spectra. The appearance of the phenomenon at a temporal contrast of ten orders between the intensity of the pulse peak and the spontaneous amplified emission background as well as remaining intensity wings at picosecond time-scale might trigger further parameter studies with even higher contrast.

  5. Evaluation of chronic inflammatory demyelinating polyneuropathy: 3D nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging (3D SHINKEI).

    PubMed

    Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Kikuchi, Kazufumi; Ogata, Hidenori; Yamasaki, Ryo; Yoneyama, Masami; Kira, Jun-Ichi; Honda, Hiroshi

    2017-02-01

    To evaluate the usefulness of 3D nerve-sheath signal increased with inked rest-tissue rapid acquisition of relaxation enhancement imaging (SHINKEI) in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). This institutional review board-approved retrospective study included 14 CIDP patients and nine normal subjects. The signal-to-noise ratio (SNR), contrast ratio (CR), and the size of the cervical ganglions and roots were measured by two raters. The SNRs of the ganglions and roots were larger in patients with CIDP (9.55 ± 3.87 and 9.81 ± 3.64) than in normal subjects (7.21 ± 2.42 and 5.70 ± 2.14, P < 0.0001, respectively). The CRs of the ganglions and roots were larger in patients with CIDP (0.77 ± 0.08 and 0.68 ± 0.12) than in normal subjects (0.72 ± 0.07 and 0.53 ± 0.11, P < 0.0001, respectively). The sizes of the ganglions and the roots were larger in patients with CIDP (6.44 ± 1.61 mm and 4.89 ± 1.94 mm) than in normal subjects (5.24 ± 1.02 mm and 3.39 ± 0.80 mm, P < 0.0001, respectively). Patients with CIDP could be distinguished from controls on 3D SHINKEI. • 3D SHINKEI could visualize brachial plexus with high spatial resolution. • CIDP patients showed increased SNR, CR, and the size of brachial plexus. • 3D SHINKEI could discriminate CIDP patients from normal subjects.

  6. Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution

    NASA Astrophysics Data System (ADS)

    Borgohain, Dima Rani; Saharia, K.

    2018-03-01

    Electronegative plasma sheath is addressed in a collisional unmagnetized plasma consisting of q-nonextensive electrons, Boltzmann distributed negative ions and cold fluid positive ions. Considering the positive ion-neutral collisions and ignoring the effects of ionization and collisions between negative species and positive ions (neutrals), a modified Bohm sheath criterion and hence floating potential are derived by using multifluid model. Using the modified Bohm sheath criterion, the sheath characteristics such as spatial profiles of density, potential and net space charge density have been numerically investigated. It is found that increasing values of q-nonextensivity, electronegativity and collisionality lead to a decrease of the sheath thickness and an increase of the sheath potential and the net space charge density. With increasing values of the electron temperature to negative ion temperature ratio, the sheath thickness increases and the sheath potential as well as the net space charge density in the sheath region decreases.

  7. Computed tomographic contrast tenography of the digital flexor tendon sheath of the equine hindlimb.

    PubMed

    Agass, Rachel; Dixon, Jonathon; Fraser, Barny

    2018-05-01

    Pre-surgical investigation of digital flexor tendon sheath pathology remains challenging with current standard imaging techniques. The aim of this prospective, anatomical, pilot study was to describe the anatomy of the equine hind limb digital flexor tendon sheath using a combination of computed tomography (CT) and computed tomographic contrast tenography in clinically normal cadaver limbs. Ten pairs of hind limbs with no external abnormalities were examined from the level of the tarsometatarsal joint distally. Limbs initially underwent non-contrast CT examination using 120 kVp, 300 mAs, and 1.5 mm slice thickness. Sixty millilitres of ioversol iodinated contrast media and saline (final concentration 100 mg/ml) were injected using a basilar sesamoidean approach. The computed tomographic contrast tenography examination was then repeated, before dissection of the specimens to compare gross and imaging findings. The combined CT and computed tomographic contrast tenography examinations provided excellent anatomical detail of intra-thecal structures. The borders of the superficial and deep digital flexor tendons, and the manica flexoria were consistently identifiable in all limbs. Detailed anatomy including that of the mesotenons, two of which are previously undescribed, and the plantar annular ligament were also consistently identifiable. Dissection of all 10 pairs of limbs revealed there to be no pathology, in accordance with the imaging findings. In conclusion, the combination of CT and computed tomographic contrast tenography may be useful adjunctive diagnostic techniques to define digital flexor tendon sheath pathology prior to surgical exploration in horses. © 2017 American College of Veterinary Radiology.

  8. Is there a role for small-diameter ureteral access sheaths? Impact on irrigant flow and intrapelvic pressures.

    PubMed

    Monga, Manoj; Bodie, Joshua; Ercole, Barbara

    2004-09-01

    To evaluate irrigant flows and intrapelvic pressures with small-diameter access sheaths. Ureteral access sheaths improve irrigant flow and decrease intrarenal pelvic pressures during flexible ureteroscopy. However, no comparisons of individual sheaths have been conducted. Previous studies have demonstrated more favorable results with the 12F sheath than with the 10F sheath. Ureteral access sheaths were tested ex vivo in porcine kidneys. An 18F angiocatheter was placed in the renal pelvis and connected to a Hewlett Packard Gauss Pressure transducer. Irrigant was maintained at 100 mm Hg pressure. Irrigant flow and intrapelvic pressures were measured with three flexible ureteroscopes at baseline and using each of four 10F sheaths, with the sheaths positioned in the middle ureter and the ureteroscopes positioned in the renal pelvis. The pressure at which irrigant efflux through the sheath occurred and the rate of irrigant efflux through the access sheath were measured. Intrapelvic pressures measured greater than 40 mm Hg, and irrigant flows remained at less than 15 mL/min when the Olympus URF-P3 and Storz 11274AAU flexible ureteroscopes were tested with all four sheaths. The intrapelvic pressures, irrigant inflow, and irrigant efflux with the Wolf 7325.172 (7.5F) flexible ureteroscope were optimized in combination with the Cook Peelaway 10F and Applied Access 10F sheaths. Small ureteral access sheaths should be used only with the Wolf 7325.172 flexible ureteroscope. The Cook Peelaway (10F) and Applied Access (10F) sheaths offered the greatest increase in irrigant flow and decrease in intrapelvic pressures.

  9. The flush-mounted rail Langmuir probe array designed for the Alcator C-Mod vertical target plate divertor

    NASA Astrophysics Data System (ADS)

    Kuang, A. Q.; Brunner, D.; LaBombard, B.; Leccacorvi, R.; Vieira, R.

    2018-04-01

    An array of flush-mounted and toroidally elongated Langmuir probes (henceforth called rail probes) have been specifically designed for the Alcator C-Mod's vertical target plate divertor and operated over multiple campaigns. The "flush" geometry enables the tungsten electrodes to survive high heat flux conditions in which traditional "proud" tungsten electrodes suffer damage from melting. The toroidally elongated rail-like geometry reduces the influence of sheath expansion, which is an important effect to consider in the design and interpretation of flush-mounted Langmuir probes. The new rail probes successfully operated during C-Mod's FY2015 and FY2016 experimental campaigns with no evidence of damage, despite being regularly subjected to heat flux densities parallel to the magnetic field exceeding ˜1 GW m-2 for short periods of time. A comparison between rail and proud probe data indicates that sheath expansion effects were successfully mitigated by the rail design, extending the use of these Langmuir probes to incident magnetic field line angles as low as 0.5°.

  10. The scaling of electron and positron generation in intense laser-solid interactions

    DOE PAGES

    Chen, Hui; Link, A.; Sentoku, Y.; ...

    2015-05-27

    This study presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10 18–10 20 W cm -2). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E L 2) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has amore » pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. Finally, the measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.« less

  11. The scaling of electron and positron generation in intense laser-solid interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hui; Link, A.; Fiuza, F.

    2015-05-15

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10{sup 18}–10{sup 20} W cm{sup −2}). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E{sub L}{sup 2}) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronouncedmore » peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syuhada, O. Nurfarahana; Kalaivani, N.

    Sheath blight disease, caused by Rhizoctonia solani 1802/KB was screened on two rice varieties, Oryza sativaindica cultivar MR219 and Oryza sativa indica cultivar UKMRC9. The disease symptom was severe in MR219 compared to UKMRC9. Total RNA from R. solani 1802/KB, infected rice leaves of MR219 and infected rice leaves of UKMRC9 were extracted using TRIzol reagent, purified and sent for small RNA sequencing. Three miRNA libraries were generated and analyzed. The libraries generated 65 805, 78 512 and 81 325 known miRNAs respectively. The structure of miRNA of these samples was predicted. The up-regulated and down-regulated of miRNAs target genemore » prediction and its target functions were discovered and were mainly related to the growth and development of metabolism, protein transport, transcriptional regulation, stress response, and hormone signaling and electron transfer. Sheath blight-induced differential expression of known miRNAs tends to targetMYB transcription factor, F-box proteins, NBS-LRR, leucine-rich repeat receptor protein kinases and zinc finger proteins. Detecting new miRNAs and measuring the expression profiles of known miRNAs is an important tasks required for a better understanding of various biological conditions. Therefore, further analysis using Gene Ontology Slim will be conducted to deduce some biological information from the datasets obtained.« less

  13. A detailed examination of laser-ion acceleration mechanisms in the relativistic transparency regime using tracers

    NASA Astrophysics Data System (ADS)

    Stark, David J.; Yin, Lin; Albright, Brian J.; Nystrom, William; Bird, Robert

    2018-04-01

    We present a particle-in-cell study of linearly polarized laser-ion acceleration systems, in which we use both two-dimensional (2D) and three-dimensional (3D) simulations to characterize the ion acceleration mechanisms in targets which become transparent to the laser pulse during irradiation. First, we perform a target length scan to optimize the peak ion energies in both 2D and 3D, and the predictive capabilities of 2D simulations are discussed. Tracer analysis allows us to isolate the acceleration into stages of target normal sheath acceleration (TNSA), hole boring (HB), and break-out afterburner (BOA) acceleration, which vary in effectiveness based on the simulation parameters. The thinnest targets reveal that enhanced TNSA is responsible for accelerating the most energetic ions, whereas the thickest targets have ions undergoing successive phases of HB and TNSA (in 2D) or BOA and TNSA (in 3D); HB is not observed to be a dominant acceleration mechanism in the 3D simulations. It is in the intermediate optimal regime, both when the laser breaks through the target with appreciable amplitude and when there is enough plasma to form a sustained high density flow, that BOA is most effective and is responsible for the most energetic ions. Eliminating the transverse laser spot size effects by performing a plane wave simulation, we can isolate with greater confidence the underlying physics behind the ion dynamics we observe. Specifically, supplemented by wavelet and FFT analyses, we match the post-transparency BOA acceleration with a wave-particle resonance with a high-amplitude low-frequency electrostatic wave of increasing phase velocity, consistent with that predicted by the Buneman instability.

  14. Microstructured snow targets for high energy quasi-monoenergetic proton acceleration

    NASA Astrophysics Data System (ADS)

    Schleifer, E.; Nahum, E.; Eisenmann, S.; Botton, M.; Baspaly, A.; Pomerantz, I.; Abricht, F.; Branzel, J.; Priebe, G.; Steinke, S.; Andreev, A.; Schnuerer, M.; Sandner, W.; Gordon, D.; Sprangle, P.; Ledingham, K. W. D.; Zigler, A.

    2013-05-01

    Compact size sources of high energy protons (50-200MeV) are expected to be key technology in a wide range of scientific applications 1-8. One promising approach is the Target Normal Sheath Acceleration (TNSA) scheme 9,10, holding record level of 67MeV protons generated by a peta-Watt laser 11. In general, laser intensity exceeding 1018 W/cm2 is required to produce MeV level protons. Another approach is the Break-Out Afterburner (BOA) scheme which is a more efficient acceleration scheme but requires an extremely clean pulse with contrast ratio of above 10-10. Increasing the energy of the accelerated protons using modest energy laser sources is a very attractive task nowadays. Recently, nano-scale targets were used to accelerate ions 12,13 but no significant enhancement of the accelerated proton energy was measured. Here we report on the generation of up to 20MeV by a modest (5TW) laser system interacting with a microstructured snow target deposited on a Sapphire substrate. This scheme relax also the requirement of high contrast ratio between the pulse and the pre-pulse, where the latter produces the highly structured plasma essential for the interaction process. The plasma near the tip of the snow target is subject to locally enhanced laser intensity with high spatial gradients, and enhanced charge separation is obtained. Electrostatic fields of extremely high intensities are produced, and protons are accelerated to MeV-level energies. PIC simulations of this targets reproduce the experimentally measured energy scaling and predict the generation of 150 MeV protons from laser power of 100TW laser system18.

  15. Optic Nerve Sheath Mechanics in VIIP Syndrome

    NASA Technical Reports Server (NTRS)

    Raykin, Julia; Forte, Taylor E.; Wang, Roy; Feola, Andrew; Samuels, Brian; Myers, Jerry; Nelson, Emily; Gleason, Rudy; Ethier, C. Ross

    2016-01-01

    Visual Impairment Intracranial Pressure (VIIP) syndrome is a major concern in current space medicine research. While the exact pathology of VIIP is not yet known, it is hypothesized that the microgravity-induced cephalad fluid shift increases intracranial pressure (ICP) and drives remodeling of the optic nerve sheath. To investigate this possibility, we are culturing optic nerve sheath dura mater samples under different pressures and investigating changes in tissue composition. To interpret results from this work, it is essential to first understand the biomechanical response of the optic nerve sheath dura mater to loading. Here, we investigated the effects of mechanical loading on the porcine optic nerve sheath.Porcine optic nerves (number: 6) were obtained immediately after death from a local abattoir. The optic nerve sheath (dura mater) was isolated from the optic nerve proper, leaving a hollow cylinder of connective tissue that was used for biomechanical characterization. We developed a custom mechanical testing system that allowed for unconfined lengthening, twisting, and circumferential distension of the dura mater during inflation and under fixed axial loading. To determine the effects of variations in ICP, the sample was inflated (0-60 millimeters Hg) and circumferential distension was simultaneously recorded. These tests were performed under variable axial loads (0.6 grams - 5.6 grams at increments of 1 gram) by attaching different weights to one end of the dura mater. Results and Conclusions: The samples demonstrated nonlinear behavior, similar to other soft connective tissue (Figure 1). Large increases in diameter were observed at lower transmural pressures (approximately 0 to 5 millimeters Hg), whereas only small diameter changes were observed at higher pressures. Particularly interesting was the existence of a cross-over point at a pressure of approximately 11 millimeters Hg. At this pressure, the same diameter is obtained for all axial loads applied to the tissue; i.e., as the axial load is varied, the diameter of the dura mater remains constant. This cross-over in the pressure-diameter curves occurred in all optic nerve sheaths that were tested, and may correspond with in vivo ICP levels for pigs. These data suggest that diameter of the dura mater of the optic nerve remains nearly constant in vivo despite being stretched axially. This may be a homeostatic mechanism aimed at maintaining target stresses/strains on the cells in the dura mater, and deviations from these stresses may play an important role in optic nerve sheath remodeling. Future studies will involve subjecting the dura mater to varying pressures and axial tensions for extended periods of time, while monitoring changes in the biomechanical properties. The data can then be used to study the effects of changes in ICP on the remodeling of the dura mater.

  16. Sheath energy transmission in a collisional plasma with collisionless sheath

    DOE PAGES

    Tang, Xian-Zhu; Guo, Zehua

    2015-10-16

    Sheath energy transmission governs the plasma energy exhaust onto a material surface. The ion channel is dominated by convection, but the electron channel has a significant thermal conduction component, which is dominated by the Knudsen layer effect in the presence of an absorbing wall. First-principle kinetic simulations also reveal a robustly supersonic sheath entry flow. The ion sheath energy transmission and the sheath potential are accurately predicted by a sheath model of truncated bi-Maxwellian electron distribution. The electron energy transmission is further enhanced by a parallel heat flux of the perpendicular degrees of freedom.

  17. Modeling of dynamic bipolar plasma sheaths

    NASA Astrophysics Data System (ADS)

    Grossmann, J. M.; Swanekamp, S. B.; Ottinger, P. F.

    1991-08-01

    The behavior of a one dimensional plasma sheath is described in regimes where the sheath is not in equilibrium because it carries current densities that are either time dependent, or larger than the bipolar Child-Langmuir level determined from the injected ion flux. Earlier models of dynamic bipolar sheaths assumed that ions and electrons evolve in a series of quasi-equilibria. In addition, sheath growth was described by the equation Zenoxs = (ji)-Zenouo, where xs is the velocity of the sheath edge, ji is the ion current density, nouo is the injected ion flux density, and Ze is the ion charge. In this paper, a generalization of the bipolar electron-to-ion current density ratio formula is derived to study regimes where ions are not in equilibrium. A generalization of the above sheath growth equation is also developed which is consistent with the ion continuity equation and which reveals new physics of sheath behavior associated with the emitted electrons and their evolution. Based on these findings, two new models of dynamic bipolar sheaths are developed. Larger sheath sizes and potentials than those of earlier models are found. In certain regimes, explosive sheath growth is predicted.

  18. Establishment of dermal sheath cell line from Cashmere goat and characterizing cytokeratin 13 as its novel biomarker.

    PubMed

    Zhu, Bing; Guo, Zhili; Jin, Muzi; Bai, Yujuan; Yang, Wenliang; Hui, Lihua

    2018-05-01

    To establish a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from Cashmere goat and clarify the similarities and differences among them. We established a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from the pelage skin hair follicles of Cashmere goat. The growth rate of dermal sheath cells was intermediate between that of dermal papilla cells and outer root sheath cells. Immunofluorescence experiments and reverse transcription-polymerase chain reaction analysis showed that at both the transcriptional and translational levels, the dermal sheath cells were alpha-smooth muscle actin (α-SMA) + /cytokeratin 13 + , while the dermal papilla cells were α-SMA + /cytokeratin 13 - and the outer root sheath cells were α-SMA - /cytokeratin 13 + . Patterns of cytokeratin 13 expression could distinguish the dermal sheath cells from the dermal papilla cells. These results suggest that cytokeratin 13 could serve as a novel biomarker for dermal sheath cells of Cashmere goat, and should prove useful for researchers investigating dermal stem cells or interaction of different types of cells during hair cycle.

  19. Radio frequency sheaths in an oblique magnetic field

    DOE PAGES

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less

  20. Numerical investigation of trichel pulse of negative corona discharge in N2-O2 mixture

    NASA Astrophysics Data System (ADS)

    Xia, Qing; Zhang, Yu; Jiang, Zhaorui; Wang, Ronggang; Ouyang, Jiting

    2017-12-01

    Trichel pulse of negative corona discharge in atmospheric air is investigated numerically using a 2D fluid model. The model consists of a hyperbolic cathode tip and a plane anode, and considers 11 kinds of particles and the most important interactions among them. The spatio-temporal evolution of charged species and the electric field are evaluated during the pulse process. During the pulse rising edge, the positive ions accumulate ahead of the tip forming the temporal cathode sheath, significantly enhancing the local field. In the pulse decay edge, the temporal sheath collapses and the discharge falls back to a low-current mode. In the pulse interval, the discharge does not cease but sustains weakly until the next pulse. The location of the temporal sheath is independent of the averaged value during the Trichel pulse regime and also the same with that in a normal glow regime, which determines a nearly constant pulse rising time at given configurations. However, a smaller tip radius will lead to their decrease. The effect of negative ions on the pulse process is studied by adjusting the attachment rates. It indicates that the negative ions are actually not necessary in the Trichel pulse process, but will influence the pulse waveform significantly.

  1. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  2. Rectus sheath block: successful use in the chronic pain management of pediatric abdominal wall pain.

    PubMed

    Skinner, Adam V; Lauder, Gillian R

    2007-12-01

    Seven pediatric patients (aged 11-16 years) with chronic abdominal wall pain are presented who gained significant relief from a rectus sheath block (RSB). We describe the case histories and review the relevant literature for this technique. The etiology of the abdominal wall pain was considered to be abdominal cutaneous nerve entrapment, iatrogenic peripheral nerve injury, myofascial pain syndrome or was unknown. All patients showed significant initial improvement in pain and quality of life. Three patients required only the RSB to enable them to be pain-free and return to normal schooling and physical activities. Two children received complete relief for more than 1 year. In the majority of cases, the procedure was carried out under general anesthesia as a daycase procedure. Local anesthetic and steroids were used. This is the first report of the successful use of this technique in the chronic pain management setting in children.

  3. Unilateral Loss of Spontaneous Venous Pulsations in an Astronaut

    NASA Technical Reports Server (NTRS)

    Mader, Thomas H.; Gibson, C. Robert; Lee, Andrew G.; Patel, Nimesh; Hart, Steven; Pettit, Donald R.

    2014-01-01

    Spontaneous venous pulsations seen on the optic nerve head (optic disc) are presumed to be caused by fluctuations in the pressure gradient between the intraocular and retrolaminar venous systems. The disappearance of previously documented spontaneous venous pulsations is a well-recognized clinical sign usually associated with a rise in intracranial pressure and a concomitant bilateral elevation of pressure in the subarachnoid space surrounding the optic nerves. In this correspondence we report the unilateral loss of spontaneous venous pulsations in an astronaut 5 months into a long duration space flight. We documented a normal lumbar puncture opening pressure 8 days post mission. The spontaneous venous pulsations were also documented to be absent 21 months following return to Earth.. We hypothesize that these changes may have resulted from a chronic unilateral rise in optic nerve sheath pressure caused by a microgravity-induced optic nerve sheath compartment syndrome.

  4. Effects of dimensionality and laser polarization on kinetic simulations of laser-ion acceleration in the transparency regime

    NASA Astrophysics Data System (ADS)

    Stark, David; Yin, Lin; Albright, Brian; Guo, Fan

    2017-10-01

    The often cost-prohibitive nature of three-dimensional (3D) kinetic simulations of laser-plasma interactions has resulted in heavy use of two-dimensional (2D) simulations to extract physics. However, depending on whether the polarization is modeled as 2D-S or 2D-P (laser polarization in and out of the simulation plane, respectively), different results arise. In laser-ion acceleration in the transparency regime, VPIC particle-in-cell simulations show that 2D-S and 2D-P capture different physics that appears in 3D simulations. The electron momentum distribution is virtually two-dimensional in 2D-P, unlike the more isotropic distributions in 2D-S and 3D, leading to greater heating in the simulation plane. As a result, target expansion time scales and density thresholds for the onset of relativistic transparency differ dramatically between 2D-S and 2D-P. The artificial electron heating in 2D-P exaggerates the effectiveness of target-normal sheath acceleration (TNSA) into its dominant acceleration mechanism, whereas 2D-S and 3D both have populations accelerated preferentially during transparency to higher energies than those of TNSA. Funded by the LANL Directed Research and Development Program.

  5. Targeting the ECM to Enhance Drug Delivery in Nf1-Associated Nerve Sheath Tumors

    DTIC Science & Technology

    2016-10-01

    Neurofibromatosis Conference (sponsored by the Children’s Tumor Foundation) in Austin, Texas on June 21, 2016. § What do you plan to do during the next...Keller at the 2016 Neurofibromatosis Conference (sponsored by the Children’s Tumor Foundation) in Austin, Texas on June 21, 2016. § Journal

  6. Studies on the transmission of sub-THz waves in magnetized inhomogeneous plasma sheath

    NASA Astrophysics Data System (ADS)

    Yuan, Kai; Shen, Linfang; Yao, Ming; Deng, Xiaohua; Chen, Zhou; Hong, Lujun

    2018-01-01

    There have been many studies on the sub-terahertz (sub-THz) wave transmission in reentry plasma sheaths. However, only some of them have paid attention to the transmission of sub-THz waves in magnetized plasma sheaths. In this paper, the transmission of sub-THz waves in both unmagnetized and magnetized reentry plasma sheaths was investigated. The impacts of temporal evolution of the plasma sheath on the wave transmission were studied. The transmission of "atmospheric window" frequencies in a magnetized plasma sheath was discussed in detail. According to the study, the power transmission rates (Tp) for the left hand circular (LHC) and the right hand circular modes in the magnetized plasma sheath are obviously higher and lower than those in the unmagnetized plasma sheath, respectively. The Tp of LHC mode increases with both wave frequency and external magnetic field strength. Also, the Tp of LHC mode in both magnetized and unmagnetized plasma sheaths varies with time due to the temporal evolution of the plasma sheath. Moreover, the performance of sub-THz waves in magnetized plasma sheath hints at a new approach to the "blackout" problem. The new approach, which is in the capability of modern technology, is to utilize the communication system operating at 140 GHz with an onboard magnet installed near the antenna.

  7. Fibrin sheaths in central venous port catheters: treatment with low-dose, single injection of urokinase on an outpatient basis.

    PubMed

    Chang, De-Hua; Mammadov, Kamal; Hickethier, Tilman; Borggrefe, Jan; Hellmich, Martin; Maintz, David; Kabbasch, Christoph

    2017-01-01

    Evaluation of the efficacy of single-shot, low-dose urokinase administration for the treatment of port catheter-associated fibrin sheaths. Forty-six patients were retrospectively evaluated for 54 episodes of port catheter dysfunction. The presence of a fibrin sheath was detected by angiographic contrast examinations. On an outpatient basis, patients subsequently received thrombolysis consisting of a single injection of urokinase (15.000 IU in 1.5 mL normal saline) through the port system. A second attempt was made in cases of treatment failure. Patients were followed up for technical success, complications and long-term outcome. Port dysfunction occurred at a median of 117 days after implantation (range: 7-825 days). The technical success after first port dysfunction by thrombolysis was 87% (40/46); thereof, initial thrombolysis was effective in 78% (36/46). Nine patients (20%) received a second dose of urokinase after previous treatment failure. Follow-up was available for 26 of 40 patients after successful thrombolysis. In 8 of these, rethrombosis occurred after a median of 98 days (range: 21-354 days), whereby rethrombolysis was effective in 5 of 7 (63%) patients. The overall success of all thrombolyses performed was 70% (45/64). No procedure-related technical or clinical complications occurred. After first favorable thrombolysis, a Kaplan-Meier analysis yielded a 30-, 90- and 180-day probability of patency of 96%, 87% and 81%. Thrombolytic therapy on an outpatient basis appears to be a safe and efficient. Three-month patency rates are comparable to more invasive treatment options, including catheter exchange over a guide wire and percutaneous fibrin sheath stripping.

  8. Fibrin sheaths in central venous port catheters: treatment with low-dose, single injection of urokinase on an outpatient basis

    PubMed Central

    Chang, De-Hua; Mammadov, Kamal; Hickethier, Tilman; Borggrefe, Jan; Hellmich, Martin; Maintz, David; Kabbasch, Christoph

    2017-01-01

    Purpose Evaluation of the efficacy of single-shot, low-dose urokinase administration for the treatment of port catheter-associated fibrin sheaths. Methods Forty-six patients were retrospectively evaluated for 54 episodes of port catheter dysfunction. The presence of a fibrin sheath was detected by angiographic contrast examinations. On an outpatient basis, patients subsequently received thrombolysis consisting of a single injection of urokinase (15.000 IU in 1.5 mL normal saline) through the port system. A second attempt was made in cases of treatment failure. Patients were followed up for technical success, complications and long-term outcome. Results Port dysfunction occurred at a median of 117 days after implantation (range: 7–825 days). The technical success after first port dysfunction by thrombolysis was 87% (40/46); thereof, initial thrombolysis was effective in 78% (36/46). Nine patients (20%) received a second dose of urokinase after previous treatment failure. Follow-up was available for 26 of 40 patients after successful thrombolysis. In 8 of these, rethrombosis occurred after a median of 98 days (range: 21–354 days), whereby rethrombolysis was effective in 5 of 7 (63%) patients. The overall success of all thrombolyses performed was 70% (45/64). No procedure-related technical or clinical complications occurred. After first favorable thrombolysis, a Kaplan–Meier analysis yielded a 30-, 90- and 180-day probability of patency of 96%, 87% and 81%. Conclusion Thrombolytic therapy on an outpatient basis appears to be a safe and efficient. Three-month patency rates are comparable to more invasive treatment options, including catheter exchange over a guide wire and percutaneous fibrin sheath stripping. PMID:28182117

  9. Gene Expression Profiling of the Intact Dermal Sheath Cup of Human Hair Follicles.

    PubMed

    Niiyama, Shiro; Ishimatsu-Tsuji, Yumiko; Nakazawa, Yosuke; Yoshida, Yuzo; Soma, Tsutomu; Ideta, Ritsuro; Mukai, Hideki; Kishimoto, Jiro

    2018-04-24

    Cells that constitute the dermal papillae of hair follicles might be derived from the dermal sheath, the peribulbar component of which is the dermal sheath cup. The dermal sheath cup is thought to include the progenitor cells of the dermal papillae and possesses hair inductive potential; however, it has not yet been well characterized. This study investigated the gene expression profile of the intact dermal sheath cup, and identified dermal sheath cup signature genes, including extracellular matrix components and BMP-binding molecules, as well as TGF-b1 as an upstream regulator. Among these, GREM2, a member of the BMP antagonists, was found by in situ hybridization to be highly specific to the dermal sheath cup, implying that GREM2 is a key molecule contributing to maintenance of the properties of the dermal sheath cup.

  10. Identification of gibberellin acid-responsive proteins in rice leaf sheath using proteomics.

    PubMed

    Gu, Jia-Yu; Wang, Ye; Zhang, Xu; Zhang, Shi-Hua; Gao, Yin; An, Cheng-Cai

    2010-06-01

    The phytohormone gibberellin acid (GA) controls many aspects of plant development. In this study, we identified proteins that are differentially expressed between the rice (Oryza sativa L.) GA-deficient cultivar, Aijiaonante, and its parental line, Nante. Proteins were extracted from rice leaf sheath and examined by 2DGE. Among more than 1200 protein spots reproducibly detected on each gel, 29 were found to be highly up-regulated by GAs in Nante, and 6 were down-regulated by GAs in Aijiaonante. These 35 proteins were identified by MALDI-TOF MS and were classified into three groups based on their putative function in metabolism, stress/defense processes and signal transduction. These data suggest that metabolic pathways are the main target of regulation by GAs during rice development. Our results provide new information about the involvement of GAs in rice development.

  11. Are two plasma equilibrium states possible when the emission coefficient exceeds unity?

    NASA Astrophysics Data System (ADS)

    Campanell, M. D.; Umansky, M. V.

    2017-05-01

    Two floating sheath solutions with strong electron emission in planar geometry have been proposed, a "space-charge limited" (SCL) sheath and an "inverse" sheath. SCL and inverse models contain different assumptions about conditions outside the sheath (e.g., the velocity of ions entering the sheath). So it is not yet clear whether both sheaths are possible in practice, or only one. Here we treat the global presheath-sheath problem for a plasma produced volumetrically between two planar walls. We show that all equilibrium requirements (a) floating condition, (b) plasma shielding, and (c) presheath force balance, can indeed be satisfied in two different ways when the emission coefficient γ > 1. There is one solution with SCL sheaths and one with inverse sheaths, each with sharply different presheath distributions. As we show for the first time in 1D-1V simulations, a SCL and inverse equilibrium are both possible in plasmas with the same upstream properties (e.g., same N and Te). However, maintaining a true SCL equilibrium requires no ionization or charge exchange collisions in the sheath, or else cold ion accumulation in the SCL's "dip" forces a transition to the inverse. This suggests that only a monotonic inverse type sheath potential should exist at any plasma-facing surface with strong emission, whether be a divertor plate, emissive probe, dust grain, Hall thruster channel wall, sunlit object in space, etc. Nevertheless, SCL sheaths might still be possible if the ions in the dip can escape. Our simulations demonstrate ways in which SCL and inverse regimes might be distinguished experimentally based on large-scale presheath effects, without having to probe inside the sheath.

  12. Are two plasma equilibrium states possible when the emission coefficient exceeds unity?

    DOE PAGES

    Campanell, Michael D.; Umansky, M. V.

    2017-02-28

    Two floating sheath solutions with strong electron emission in planar geometry have been proposed, a “space-charge limited” (SCL) sheath and an “inverse” sheath. SCL and inverse models contain different assumptions about conditions outside the sheath (e.g., the velocity of ions entering the sheath). So it is not yet clear whether both sheaths are possible in practice, or only one. Here we treat the global presheath-sheath problem for a plasma produced volumetrically between two planar walls. We show that all equilibrium requirements (a) floating condition, (b) plasma shielding, and (c) presheath force balance, can indeed be satisfied in two different waysmore » when the emission coefficient γ > 1. There is one solution with SCL sheaths and one with inverse sheaths, each with sharply different presheath distributions. As we show for the first time in 1D-1V simulations, a SCL and inverse equilibrium are both possible in plasmas with the same upstream properties (e.g., same N and Te). However, maintaining a true SCL equilibrium requires no ionization or charge exchange collisions in the sheath, or else cold ion accumulation in the SCL's “dip” forces a transition to the inverse. This suggests that only a monotonic inverse type sheath potential should exist at any plasma-facing surface with strong emission, whether be a divertor plate, emissive probe, dust grain, Hall thruster channel wall, sunlit object in space, etc. Nevertheless, SCL sheaths might still be possible if the ions in the dip can escape. Finally, our simulations demonstrate ways in which SCL and inverse regimes might be distinguished experimentally based on large-scale presheath effects, without having to probe inside the sheath.« less

  13. Co-electrospinning fabrication and photocatalytic performance of TiO{sub 2}/SiO{sub 2} core/sheath nanofibers with tunable sheath thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Houbao, E-mail: caohoubao66@163.com; Du, Pingfan; Song, Lixin

    2013-11-15

    Graphical abstract: - Highlights: • The core–sheath TiO{sub 2}/SiO{sub 2} nanofibers were fabricated by co-electrospinning technique. • The catalytic property of nanofibers with different sheath thickness was studied. • The potential methods of improving catalytic efficiency are suggested. - Abstract: In this paper, core/sheath TiO{sub 2}/SiO{sub 2} nanofibers with tunable sheath thickness were directly fabricated via a facile co-electrospinning technique with subsequent calcination at 500 °C. The morphologies and structures of core/sheath TiO{sub 2}/SiO{sub 2} nanofibers were characterized by TGA, FESEM, TEM, FTIR, XPS and BET. It was found that the 1D core/sheath nanofibers are made up of anatase–rutile TiO{submore » 2} core and amorphous SiO{sub 2} sheath. The influences of SiO{sub 2} sheath and its thickness on the photoreactivity were evaluated by observing photo-degradation of methylene blue aqueous solution under the irradiation of UV light. Compared with pure TiO{sub 2} nanofibers, the core/sheath TiO{sub 2}/SiO{sub 2} nanofibers performed a better catalytic performance. That was attributed to not only efficient separation of hole–electron pairs resulting from the formation of heterojunction but also larger surface area and surface silanol group which will be useful to provide higher capacity for oxygen adsorption to generate more hydroxyl radicals. And the optimized core/sheath TiO{sub 2}/SiO{sub 2} nanofibers with a sheath thickness of 37 nm exhibited the best photocatalytic performance.« less

  14. Benchmarking sheath subgrid boundary conditions for macroscopic-scale simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, T. G.; Smithe, D. N.

    2015-02-01

    The formation of sheaths near metallic or dielectric-coated wall materials in contact with a plasma is ubiquitous, often giving rise to physical phenomena (sputtering, secondary electron emission, etc) which influence plasma properties and dynamics both near and far from the material interface. In this paper, we use first-principles PIC simulations of such interfaces to formulate a subgrid sheath boundary condition which encapsulates fundamental aspects of the sheath behavior at the interface. Such a boundary condition, based on the capacitive behavior of the sheath, is shown to be useful in fluid simulations wherein sheath scale lengths are substantially smaller than scale lengths for other relevant physical processes (e.g. radiofrequency wavelengths), in that it enables kinetic processes associated with the presence of the sheath to be numerically modeled without explicit resolution of spatial and temporal sheath scales such as electron Debye length or plasma frequency.

  15. APPARATUS FOR SHEATHING RODS

    DOEpatents

    Ford, W.K.; Wyatt, M.; Plail, S.

    1961-08-01

    An arrangement is described for sealing a solid body of nuclear fuel, such as a uranium metal rod, into a closelyfitting thin metallic sheath with an internal atmosphere of inert gas. The sheathing process consists of subjecting the sheath, loaded with the nuclear fuel body, to the sequential operations of evacuation, gas-filling, drawing (to entrap inert gas and secure close contact between sheath and body), and sealing. (AEC)

  16. The structure of the cornified claw sheath in the domesticated cat (Felis catus): implications for the claw-shedding mechanism and the evolution of cornified digital end organs

    PubMed Central

    Homberger, Dominique G; Ham, Kyungmin; Ogunbakin, Tolulope; Bonin, Jonathan A; Hopkins, Brooke A; Osborn, Michelle L; Hossain, Imtiaz; Barnett, Heath A; Matthews, Kenneth L; Butler, Leslie G; Bragulla, Hermann H

    2009-01-01

    The morphology of cornified structures is notoriously difficult to analyse because of the extreme range of hardness of their component tissues. Hence, a correlative approach using light microscopy, scanning electron microscopy, three-dimensional reconstructions based on x-ray computed tomography data, and graphic modeling was applied to study the morphology of the cornified claw sheath of the domesticated cat as a model for cornified digital end organs. The highly complex architecture of the cornified claw sheath is generated by the living epidermis that is supported by the dermis and distal phalanx. The latter is characterized by an ossified unguicular hood, which overhangs the bony articular base and unguicular process of the distal phalanx and creates an unguicular recess. The dermis covers the complex surface of the bony distal phalanx but also creates special structures, such as a dorsal dermal papilla that points distally and a curved ledge on the medial and lateral sides of the unguicular process. The hard-cornified external coronary horn and proximal cone horn form the root of the cornified claw sheath within the unguicular recess, which is deeper on the dorsal side than on the medial and lateral sides. As a consequence, their rate of horn production is greater dorsally, which contributes to the overall palmo-apical curvature of the cornified claw sheath. The external coronary and proximal cone horn is worn down through normal use as it is pushed apically. The hard-cornified apical cone horn is generated by the living epidermis enveloping the base and free part of the dorsal dermal papilla. It forms nested horn cones that eventually form the core of the hardened tip of the cornified claw. The sides of the cornified claw sheath are formed by the newly described hard-cornified blade horn, which originates from the living epidermis located on the slanted face of the curved ledge. As the blade horn is moved apically, it entrains and integrates the hard-cornified parietal horn on its internal side. It is covered by the external coronary and proximal cone horn on its external side. The soft-cornified terminal horn extends distally from the parietal horn and covers the dermal claw bed at the tip of the uniguicular process, thereby filling the space created by the converging apical cone and blade horn. The soft-cornified sole horn fills the space between the cutting edges of blade horn on the palmar side of the cornified claw sheath. The superficial soft-cornified perioplic horn is produced on the internal side of the unguicular pleat, which surrounds the root of the cornified claw sheath. The shedding of apical horn caps is made possible by the appearance of microcracks in the superficial layers of the external coronary and proximal cone horn in the course of deformations of the cornified claw sheath, which is subjected to tensile forces during climbing or prey catching. These microcracks propagate tangentially through the coronary horn and do not injure the underlying living epidermal and dermal tissues. This built-in shedding mechanism maintains sharp claw tips and ensures the freeing of the claws from the substrate. PMID:19422432

  17. Effects of sodium hyaluronate on tendon healing and adhesion formation in horses.

    PubMed

    Gaughan, E M; Nixon, A J; Krook, L P; Yeager, A E; Mann, K A; Mohammed, H; Bartel, D L

    1991-05-01

    Sodium hyaluronate reduces adhesions after tendon repair in rodents and dogs, and has been used in limited clinical trials in people. To evaluate its effect on tendon healing and adhesion formation in horses and to compare these effects with those of a compound of similar visco-elastic properties, a study was performed in horses, using a model of collagenase injection in the flexor tendons within the digital sheath. Eight clinically normal horses were randomly allotted to 2 groups. Adhesion formation between the deep digital flexor tendon and the tendon sheath at the pastern region was induced in the forelimbs of all horses. Using tenoscopic control, a 20-gauge needle was inserted into the deep digital flexor tendon of horses under general anesthesia and 0.2 ml of collagenase (2.5 mg/ml) was injected. The procedure was repeated proximally at 2 other sites, spaced 1.5 cm apart. A biopsy forceps was introduced, and a 5-mm tendon defect was created at each injection site. Group-A horses had 120 mg of sodium hyaluronate (NaHA) gel injected into the tendon sheath of one limb. Group-B horses had methylcellulose gel injected at the same sites. The contralateral limbs of horses in both groups served as surgical, but noninjected, controls. Horses were euthanatized after 8 weeks of stall rest. Ultrasonographic evaluation revealed improved tendon healing after NaHa injection, but no difference in peritendinous adhesion formation. Tendon sheath fluid volume and hyaluronic acid (HA) content were greater in NaHA-treated limbs. Gross pathologic examination revealed considerably fewer and smaller adhesions when limbs were treated with NaHA. However, significant difference in pull-out strengths was not evident between NaHA-treated and control limbs. Histologically, the deep digital flexor tendon from the NaHA-treated limbs had reduced inflammatory cell infiltration, improved tendon structure, and less intratendinous hemorrhage. Treatment with methylcullulose had no significant effect on tendon healing, adhesion size, quantity, or strength or on the volume and composition of the tendon sheath fluid. Sodium hyaluronate, administered intrathecally, appears to have a pharmaceutically beneficial action in this collagenase-induced tendinitis and adhesion model in horses.

  18. Tendon sheath fibroma in the thigh.

    PubMed

    Moretti, Vincent M; Ashana, Adedayo O; de la Cruz, Michael; Lackman, Richard D

    2012-04-01

    Tendon sheath fibromas are rare, benign soft tissue tumors that are predominantly found in the fingers, hands, and wrists of young adult men. This article describes a tendon sheath fibroma that developed in the thigh of a 70-year-old man, the only known tendon sheath fibroma to form in this location. Similar to tendon sheath fibromas that develop elsewhere, our patient's lesion presented as a painless, slow-growing soft tissue nodule. Physical examination revealed a firm, nontender mass with no other associated signs or symptoms. Although the imaging appearance of tendon sheath fibromas varies, our patient's lesion appeared dark on T1- and bright on T2-weighted magnetic resonance imaging. It was well marginated and enhanced with contrast.Histologically, tendon sheath fibromas are composed of dense fibrocollagenous stromas with scattered spindle-shaped fibroblasts and narrow slit-like vascular spaces. Most tendon sheath fibromas can be successfully removed by marginal excision, although 24% of lesions recur. No lesions have metastasized. Our patient's tendon sheath fibroma was removed by marginal excision, and the patient remained disease free 35 months postoperatively. Despite its rarity, tendon sheath fibroma should be included in the differential diagnosis of a thigh mass on physical examination or imaging, especially if it is painless, nontender, benign appearing, and present in men. Copyright 2012, SLACK Incorporated.

  19. Nerve sheath myxoma: report of a rare case.

    PubMed

    Bhat, Amoolya; Narasimha, Apaparna; C, Vijaya; Vk, Sundeep

    2015-04-01

    Nerve sheath myxoma defined by Harkin and Reed is an uncommon benign neoplasm with nerve sheath like features. It has several cytological and histological differential diagnoses. One such lesion is neurothekeoma, which can be differentiated using immunohistochemistry. In most of the previous reports nerve sheath myxoma and neurothekeoma were considered synonymous and were often confused for one another. This case report separates the two using immunohistochemistry. Also, the cytological features of nerve sheath myxoma are not well documented in the past. This case report attempts to display the cyto-morphology of nerve sheath myxoma. We report a rare case of nerve sheath myxoma diagnosed on cytological features confirmed by histopathology and immunohistochemistry in a 32-year-old lady who presented with an asymptomatic nodule over the left cervical area and discuss its cyto-histological mimics.

  20. Hot wire needle probe for thermal conductivity detection

    DOEpatents

    Condie, Keith Glenn; Rempe, Joy Lynn; Knudson, Darrell lee; Daw, Joshua Earl; Wilkins, Steven Curtis; Fox, Brandon S.; Heng, Ban

    2015-11-10

    An apparatus comprising a needle probe comprising a sheath, a heating element, a temperature sensor, and electrical insulation that allows thermal conductivity to be measured in extreme environments, such as in high-temperature irradiation testing. The heating element is contained within the sheath and is electrically conductive. In an embodiment, the heating element is a wire capable of being joule heated when an electrical current is applied. The temperature sensor is contained within the sheath, electrically insulated from the heating element and the sheath. The electrical insulation electrically insulates the sheath, heating element and temperature sensor. The electrical insulation fills the sheath having electrical resistance capable of preventing electrical conduction between the sheath, heating element, and temperature sensor. The control system is connected to the heating element and the temperature sensor.

  1. Characteristics of Electronegative Plasma Sheath with q-Nonextensive Electron Distribution

    NASA Astrophysics Data System (ADS)

    Borgohain, D. R.; Saharia, K.

    2018-01-01

    The characteristics of sheath in a plasma system containing q-nonextensive electrons, cold fluid ions, and Boltzmann-distributed negative ions are investigated. A modified Bohm sheath criterion is derived by using the Sagdeev pseudopotential technique. It is found that the proposed Bohm velocity depends on the degree of nonextensivity ( q), negative ion temperature to nonextensive electron temperature ratio (σ), and negative ion density ( B). Using the modified Bohm sheath criterion, the sheath characteristics, such as the spatial distribution of the potential, positive ion velocity, and density profile, have been numerically investigated, which clearly shows the effect of negative ions, as well as the nonextensive distribution of electrons. It is found that, as the nonextensivity parameter and the electronegativity increases, the electrostatic sheath potential increases sharply and the sheath width decreases.

  2. Topical mitomycin-C for recalcitrant esophageal strictures: a novel endoscopic/fluoroscopic technique for safe endoluminal delivery.

    PubMed

    Heran, Manraj K S; Baird, Robert; Blair, Geoffrey K; Skarsgard, Erik D

    2008-05-01

    Nonsurgical treatment of recalcitrant pediatric esophageal strictures is challenging. The chemotherapy drug mitomycin-C, which reduces collagen synthesis and scar formation, shows anecdotal promise in the topical treatment of these strictures. Mitomycin-C is cytotoxic, and a safe endoluminal delivery system that avoids inadvertent application to adjacent mucosa has not yet been described. We have treated 2 patients with a combined endoscopic/fluoroscopic technique that ensures protected delivery of a mitomycin-soaked pledget directly to the targeted site. Following pneumatic balloon dilation of the stricture under fluoroscopy, flexible esophagoscopy is performed to the disrupted stricture. Through the gastrostomy tract, a 12F to 16F semirigid sheath is introduced over a guide wire and passed retrograde up the esophagus to the stricture. A grasping forceps introduced through the instrument channel of the esophagoscope is advanced through the sheath and grasps a mitomycin-C-soaked pledget. The pledget is drawn back through the sheath up to the stricture where timed, serial radial applications to the stricture are performed without any contamination of the rest of the esophagus or stomach. We describe a novel technique of endoluminal delivery and focused application of mitomycin-C to an esophageal stricture that avoids inadvertent topical application to adjacent mucosa.

  3. Glancing angle RF sheaths

    NASA Astrophysics Data System (ADS)

    D'Ippolito, D. A.; Myra, J. R.

    2013-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries. The sheath plays an important role in determining the efficiency of ICRF heating, the impurity influxes from the edge plasma, and the plasma-facing component damage. An important parameter in sheath theory is the angle θ between the equilibrium B field and the wall. Recent work with 1D and 2D sheath models has shown that the rapid variation of θ around a typical limiter can lead to enhanced sheath potentials and localized power deposition (hot spots) when the B field is near glancing incidence. The physics model used to obtain these results does not include some glancing-angle effects, e.g. possible modification of the angular dependence of the Child-Langmuir law and the role of the magnetic pre-sheath. Here, we report on calculations which explore these effects, with the goal of improving the fidelity of the rf sheath BC used in analytical and numerical calculations. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  4. Repeat region of Brugia malayi sheath protein (Shp-1) carries Dominant B epitopes recognized in filarial endemic population.

    PubMed

    Jawaharlal, Jeya Prita Parasurama; Madhumathi, Jayaprakasam; Prince, Rajaiah Prabhu; Kaliraj, Perumal

    2014-09-01

    Transmission of lymphatic filariasis is mediated through microfilariae (L1 stage of the parasite) which is encased in an eggshell called sheath. The sheath protein Shp-1 stabilizes the structure due to the unique repeat region with Met-Pro-Pro-Gln-Gly sequences. Microfilarial proteins could be used as transmission blocking vaccines. Since the repeat region of Shp-1 was predicted to carry putative B epitopes, this region was used to analyze its reactivity with clinical samples towards construction of peptide vaccine. In silico analysis of Shp-1 showed the presence of B epitopes in the region 49-107. The polypeptide epitopic region Shp-149-107 was cloned and expressed in Escherichia coli. Antibody reactivity of the Shp-149-107 construct was evaluated in filarial endemic population by ELISA. Putatively immune endemic normals (EN) showed significantly high reactivity (P < 0.05) when compared to all the other categories. Antibody reactivity of Shp-1 repeat region was similar to that of whole protein proving that this region carries B epitopes responsible for its humoral response in humans. Thus this can be employed for inducing anti-microfilarial immunity in the infected population that may lead to reduction in transmission intensity and also it could be used along with other epitopes from different stages of the parasite in order to manage the disease effectively.

  5. High resolution transbulbar sonography in children with suspicion of increased intracranial pressure.

    PubMed

    Steinborn, Marc; Friedmann, Melanie; Makowski, Christine; Hahn, Helmut; Hapfelmeier, Alexander; Juenger, Hendrik

    2016-04-01

    To evaluate the accuracy of high resolution transbulbar sonography for the estimation of intracranial pressure (ICP) in children. In children and adolescents with acute neurologic symptoms of various origin, transbulbar sonography was performed. Besides measurement of the optic nerve sheath diameter (ONSD), the ultrastructure of the subarachnoid space of the optic nerve sheath was evaluated. The results of transbulbar sonography were correlated with clinical data based on cross-sectional imaging, ICP measurement, and ophthalmologic examination. Eighty-one patients (age 3-17.8 years, mean 11.7 years) were included. In 25 children, cross-sectional imaging and ICP measurement revealed increased intracranial pressure. The mean ONSD was 6.85 ± 0.81 mm. Twenty patients (20/25, 80 %) had a microcystic appearance of the subarachnoid space of the optic nerve. In 56 children without evidence of increased intracranial pressure, the mean ONSD was 5.77 ± 0.48 mm. Forty-nine patients (49/56, 87.5 %) had a normal homogenous appearance of the subarachnoid space. The ONSD in children with increased intracranial pressure was significantly higher than in patients without (p < 0.001). High resolution transbulbar sonography of the optic nerve is a useful technique for the rapid and non-invasive estimation of intracranial pressure in children. Besides measurement of the optic nerve sheath diameter, evaluation of the ultrastructure of the subarachnoid space of the optic nerve is a helpful parameter.

  6. An analytical investigation: Effect of solar wind on lunar photoelectron sheath

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Misra, Shikha

    2018-02-01

    The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.

  7. Retrieval of a detached transseptal sheath tip from a right pulmonary artery branch following catheter ablation.

    PubMed

    Schricker, Amir A; Feld, Gregory K; Tsimikas, Sotirios

    2015-11-15

    Transseptal introducer sheaths are being used with increasing frequency for left-sided arrhythmia ablations and structural heart disease interventions. Sheath tip detachment and embolization is an uncommon but known complication, and several sheaths have been recalled due to such complications. We report a unique case of a fractured transseptal sheath tip that embolized to a branch of the right pulmonary artery in a patient who had undergone ablation of a left-sided atypical atrial flutter. During final removal of one of the two long 8.5-French SL1 transseptal sheaths used routinely as part of the ablation, the radiopaque tip of the sheath fractured and first embolized to the right atrium and subsequently to a secondary right pulmonary artery branch. Using techniques derived from percutaneous interventional approaches, including a multipurpose catheter, coronary guidewire, and monorail angioplasty balloon, the sheath tip was successfully wired through its inner lumen, trapped from the inside with the balloon, and removed from the body via a large femoral vein sheath, without complications. The approach detailed in this case may guide future cases and circumvent urgent surgical intervention. © 2015 Wiley Periodicals, Inc.

  8. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOEpatents

    Dale, Steinar J.

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode.

  9. Laser Acceleration of Ions for Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki; Habs, Dietrich; Yan, Xueqing

    Ion beam therapy for cancer has proven to be a successful clinical approach, affording as good a cure as surgery and a higher quality of life. However, the ion beam therapy installation is large and expensive, limiting its availability for public benefit. One of the hurdles is to make the accelerator more compact on the basis of conventional technology. Laser acceleration of ions represents a rapidly developing young field. The prevailing acceleration mechanism (known as target normal sheath acceleration, TNSA), however, shows severe limitations in some key elements. We now witness that a new regime of coherent acceleration of ions by laser (CAIL) has been studied to overcome many of these problems and accelerate protons and carbon ions to high energies with higher efficiencies. Emerging scaling laws indicate possible realization of an ion therapy facility with compact, cost-efficient lasers. Furthermore, dense particle bunches may allow the use of much higher collective fields, reducing the size of beam transport and dump systems. Though ultimate realization of a laser-driven medical facility may take many years, the field is developing fast with many conceptual innovations and technical progress.

  10. Nerve Sheath Myxoma: Report of A Rare Case

    PubMed Central

    Bhat, Amoolya; C, Vijaya; VK, Sundeep

    2015-01-01

    Nerve sheath myxoma defined by Harkin and Reed is an uncommon benign neoplasm with nerve sheath like features. It has several cytological and histological differential diagnoses. One such lesion is neurothekeoma, which can be differentiated using immunohistochemistry. In most of the previous reports nerve sheath myxoma and neurothekeoma were considered synonymous and were often confused for one another. This case report separates the two using immunohistochemistry. Also, the cytological features of nerve sheath myxoma are not well documented in the past. This case report attempts to display the cyto-morphology of nerve sheath myxoma. We report a rare case of nerve sheath myxoma diagnosed on cytological features confirmed by histopathology and immunohistochemistry in a 32-year-old lady who presented with an asymptomatic nodule over the left cervical area and discuss its cyto-histological mimics. PMID:26023558

  11. Lung biopsy with a 12-gauge cutting needle is possible using an insertion sheath in animal models.

    PubMed

    Izumi, Yotaro; Oyama, Takahiko; Kawamura, Masafumi; Kobayashi, Koichi

    2004-11-01

    The volume of lung tumor core biopsy specimens has been restricted because of concerns for complications such as bleeding and air leakage. In this animal experiment, we investigated the possibility of larger bore biopsies through the peripheral lung parenchyma. Lung biopsy was done in male domestic pigs (n= 4) under thoracotomy. A single biopsy using a 12-gauge cutting biopsy needle was done with sheath (sheath group, eight biopsies) or without sheath (nonsheath group, eight biopsies). After biopsy, bleeding time, bleeding amount, and positive airway pressure causing air leakage from the insertion site was compared between groups (Mann-Whitney U test). To observe long-term effects in closed-chest animals, percutaneous lung biopsy with the use of a sheath was carried out percutaneously in male beagles (n = 9). The animals were observed for 3 weeks. In the pigs (sheath group) after biopsy, bleeding flowed through the sheath and formed a sheath-molded fibrin plug that secured the insertion site. Bleeding time and amount decreased significantly in the sheath group compared with the nonsheath group (115 +/- 108 versus 295 +/- 150 seconds, P = .018, and 37 +/- 41 versus 98 +/- 72 grams, P= .027, respectively). Air leakage pressure was significantly higher in the sheath group compared with the nonsheath group (37 +/- 6 versus 18 +/- 5 cmH2O, P = .001). In the beagles, no complications such as pneumothorax, hemothorax, or airway bleeding was apparent. Although we have not evaluated lung tumor biopsy per se, lung tumor biopsy with a 12-gauge cutting needle may be possible with a use of a sheath.

  12. A microflow cytometer on a chip

    NASA Astrophysics Data System (ADS)

    Golden, Joel P.; Kim, Jason; Anderson, George P.; Hashemi, Nastaran; Howell, Peter J.; Ligler, Frances S.

    2010-02-01

    A rapid, automated, multi-analyte Microflow Cytometer is being developed as a portable, field-deployable sensor for onsite diagnosis of biothreat agent exposure and environmental monitoring. The technology relies on a unique method for ensheathing a sample stream in continuous flow past an interrogation region where optical fibers provide excitation and collect emission. This approach efficiently focuses particles in the interrogation region of the fluidic channel, avoids clogging and provides for subsequent separation of the core and sheath fluids in order to capture the target for confirmatory assays and recycling of the sheath fluid. Fluorescently coded microspheres provide the capability for highly multiplexed assays. Optical analysis at four different wavelengths identified six sets of the coded microspheres recognizing Escherichia coli, Listeria, and Salmonella as well as cholera toxin, staphylococcal enterotoxin B (SEB), and ricin, and assay results were compared with those of a commercial Luminex analysis system.

  13. Hydrodynamic Assists Magnetophoreses Rare Cancer cells Separation in Microchannel Simulation and Experimental Verifications

    NASA Astrophysics Data System (ADS)

    Saeed, O.; Duru, L.; Yulin, D.

    2018-05-01

    A proposed microfluidic design has been fabricated and simulated using COMSOL Multiphysics software, based on two physical models included in this design. The device’s ability to create a narrow stream of the core sample by controlling the sheath flow rates Qs1 and Qs2 in both peripheral channels was investigated. The main target of this paper is to study the possibility of combing the hydrodynamic and magnetic techniques, in order to achieve a high rate of cancer cells separation from a cell mixture and/or buffer sample. The study has been conducted in two stages, firstly, the effects of the sheath flow rates (Qs1 and Qs2) on the sample stream focusing were studied, to find the proposed device effectiveness optimal conditions and its capability in cell focusing, and then the magnetic mechanism has been utilized to finalize the pre-labelled cells separation process.

  14. 46 CFR 111.05-7 - Armored and metallic sheathed cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Armored and metallic sheathed cable. 111.05-7 Section 111.05-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Armored and metallic sheathed cable. When installed, the metallic armor or sheath must meet the...

  15. 46 CFR 111.05-7 - Armored and metallic sheathed cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Armored and metallic sheathed cable. 111.05-7 Section 111.05-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Armored and metallic sheathed cable. When installed, the metallic armor or sheath must meet the...

  16. 46 CFR 111.05-7 - Armored and metallic sheathed cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Armored and metallic sheathed cable. 111.05-7 Section 111.05-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Armored and metallic sheathed cable. When installed, the metallic armor or sheath must meet the...

  17. 46 CFR 111.05-7 - Armored and metallic sheathed cable.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Armored and metallic sheathed cable. 111.05-7 Section 111.05-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Armored and metallic sheathed cable. When installed, the metallic armor or sheath must meet the...

  18. 46 CFR 111.05-7 - Armored and metallic sheathed cable.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Armored and metallic sheathed cable. 111.05-7 Section 111.05-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Armored and metallic sheathed cable. When installed, the metallic armor or sheath must meet the...

  19. Transient sheath overvoltages in armored power cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, B.; Sletbak, J.

    1996-07-01

    This paper is concerned with methods of limiting the build-up of transient voltages between sheath and armor in long armored power cables. Calculations by a frequency dependent cable model demonstrate that this voltage can be efficiently limited to an acceptable level by introducing sheath-armor bondings at regular intervals, or by using a semiconductive sheath-armor interlayer. The paper investigates the required minimum length between bondings, as well as the required conductivity of the sheath-armor interlayer if the use of bondings is to be avoided.

  20. Particle trap with dielectric barrier for use in gas insulated transmission lines

    DOEpatents

    Dale, S.J.

    1982-06-15

    A gas-insulated transmission line includes an outer sheath, an inner conductor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping electrode is disposed within the outer sheath, and the electrode has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the apertured electrode. 7 figs.

  1. What is the size of a floating sheath? An answer

    NASA Astrophysics Data System (ADS)

    Voigt, Farina; Naggary, Schabnam; Brinkmann, Ralf Peter

    2016-09-01

    The formation of a non-neutral boundary sheath in front of material surfaces is universal plasma phenomenon. Despite several decades of research, however, not all related issues are fully clarified. In a recent paper, Chabert pointed out that this lack of clarity applies even to the seemingly innocuous question ``What the size of a floating sheath?'' This contribution attempts to provide an answer that is not arbitrary: The size of a floating sheath is defined as the plate separation of an equivalent parallel plate capacitor. The consequences of the definition are explored with the help of a self-consistent sheath model, and a comparison is made with other sheath size definitions. Deutsche Forschungsgemeinschaft within SFB TR 87.

  2. Model and particle-in-cell simulation of ion energy distribution in collisionless sheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Zhuwen, E-mail: zzwwdxy@gznc.edu.cn; Key Laboratory of Photoelectron Materials Design and Simulation in Guizhou Province, Guiyang 550018; Scientific Research Innovation Team in Plasma and Functional Thin Film Materials in Guizhou Province, Guiyang 550018

    2015-06-15

    In this paper, we propose a self-consistent theoretical model, which is described by the ion energy distributions (IEDs) in collisionless sheaths, and the analytical results for different combined dc/radio frequency (rf) capacitive coupled plasma discharge cases, including sheath voltage errors analysis, are compared with the results of numerical simulations using a one-dimensional plane-parallel particle-in-cell (PIC) simulation. The IEDs in collisionless sheaths are performed on combination of dc/rf voltage sources electrodes discharge using argon as the process gas. The incident ions on the grounded electrode are separated, according to their different radio frequencies, and dc voltages on a separated electrode, themore » IEDs, and widths of energy in sheath and the plasma sheath thickness are discussed. The IEDs, the IED widths, and sheath voltages by the theoretical model are investigated and show good agreement with PIC simulations.« less

  3. The Relation of Carbon Dioxide Compensation and Chlorenchymatous Vascular Bundle Sheaths in Leaves of Dicots

    PubMed Central

    Crookston, R. Kent; Moss, Dale N.

    1970-01-01

    Low CO2 compensation points have been found to be associated with several unusual characteristics related to photosynthesis. One such characteristic is a prominent, chlorenchymatous vascular bundle sheath in the leaves. It has been suggested that the presence of this sheath in dicotyledons can serve as a means of detecting low CO2-compensating species. We collected 88 dicotyledon species from 22 families reported to have chlorenchymatous sheaths. Of the 88, only three, Tribulus terrestris, L., Boerhaavia paniculata, L. C. Rich, and Trianthema portulacastrum L., had low CO2 compensation points. Cross sections of the leaves of the other species revealed that they did have chlorenchymatous vascular bundle sheaths. However, these sheath cells contained chloroplasts which were not specialized for starch formation as were the bundle sheath chloroplasts of the low CO2-compensating species. Images PMID:16657506

  4. Ion Dynamics Model for Collisionless Radio Frequency Sheaths

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Govindan, T.R.; Meyyappan, M.

    2000-01-01

    Full scale reactor model based on fluid equations is widely used to analyze high density plasma reactors. It is well known that the submillimeter scale sheath in front of a biased electrode supporting the wafer is difficult to resolve in numerical simulations, and the common practice is to use results for electric field from some form of analytical sheath model as boundary conditions for full scale reactor simulation. There are several sheath models in the literature ranging from Child's law to a recent unified sheath model [P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997)l. In the present work, the cold ion fluid equations in the radio frequency sheath are solved numerically to show that the spatiotemporal variation of ion flux inside the sheath, commonly ignored in analytical models, is important in determining the electric field and ion energy at the electrode. Consequently, a semianalytical model that includes the spatiotemporal variation of ion flux is developed for use as boundary condition in reactor simulations. This semianalytical model is shown to yield results for sheath properties in close agreement with numerical solutions.

  5. The effects of secondary emission on the sheath structure in an electrostatic dusty plasma containing energetic electrons and charged nanoparticles

    NASA Astrophysics Data System (ADS)

    Jalilpour, P.; Foroutan, G.

    2018-03-01

    Multi-fluid numerical simulations are utilized to explore the effects of secondary emission by nanosize dust particles on the structure of a dusty plasma sheath in the presence of a beam of fast, mono-energetic electrons. It was found that the sheath dynamics depends strongly on the magnitude of the secondary emission yield δm. For δm smaller than unity, the secondary emission is weak, and the sheath width always increases with increasing beam flux, such that it experiences a sharp transition from the regime of thin sheath to the regime of thick sheath, at a given beam flux. For δm larger than unity, the secondary emission dominates the dust dynamics, and the sheath width always decreases with increasing beam flux. The sheath thickness decreases very quickly with the secondary emission yield, but increases with Em, the characteristic energy corresponding to the maximum secondary emission. As δm is increased, the absolute dust charge and hence the accelerating ion drag force are reduced. Then, the dust is decelerated and as a result the dust number density is enhanced. Increasing the dust radius and/or the dust number density leads to an enhanced secondary emission effect and thus to a narrower sheath width.

  6. Community Structure of Filamentous, Sheath-Building Sulfur Bacteria, Thioploca spp., off the Coast of Chile.

    PubMed

    Schulz, H N; Jorgensen, B B; Fossing, H A; Ramsing, N B

    1996-06-01

    The filamentous sulfur bacteria Thioploca spp. produce dense bacterial mats in the shelf area off the coast of Chile and Peru. The mat consists of common sheaths, shared by many filaments, that reach 5 to 10 cm down into the sediment. The structure of the Thioploca communities off the Bay of Concepcion was investigated with respect to biomass, species distribution, and three-dimensional orientation of the sheaths. Thioploca sheaths and filaments were found across the whole shelf area within the oxygen minimum zone. The maximum wet weight of sheaths, 800 g m(sup-2), was found at a depth of 90 m. The bacterial filaments within the sheaths contributed about 10% of this weight. The highest density of filaments was found within the uppermost 1 cm of the mat. On the basis of diameter classes, it was possible to distinguish populations containing only Thioploca spp. from mixed populations containing Beggiatoa spp. Three distinct size classes of Thioploca spp. were found, two of which have been described previously as Thioploca araucae and Thioploca chileae. Many Thioploca filaments did not possess a visible sheath, and about 20% of the sheaths contained more than one Thioploca species. The three-dimensional sheath structure showed that Thioploca filaments can move from the surface and deep into the sediment.

  7. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    DOEpatents

    Hershkowitz, Noah [Madison, WI; Longmier, Benjamin [Madison, WI; Baalrud, Scott [Madison, WI

    2009-03-03

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  8. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    NASA Technical Reports Server (NTRS)

    Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)

    2011-01-01

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  9. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    NASA Technical Reports Server (NTRS)

    Hershkowitz, Noah (Inventor); Longmier, Benjamin (Inventor); Baalrud, Scott (Inventor)

    2009-01-01

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  10. A Cytochemical Study of Extracellular Sheaths Associated with Rigidoporus lignosus during Wood Decay

    PubMed Central

    Nicole, M.; Chamberland, H.; Rioux, D.; Lecours, N.; Rio, B.; Geiger, J. P.; Ouellette, G. B.

    1993-01-01

    An ultrastructural and cytochemical investigation of the development of Rigidoporus lignosus, a white-rot fungus inoculated into wood blocks, was carried out to gain better insight into the structure and role of the extracellular sheaths produced by this fungus during wood degradation. Fungal sheaths had a dense or loose fibrillar appearance and were differentiated from the fungal cell wall early after wood inoculation. Close association between extracellular fibrils and wood cell walls was observed at both early and advanced stages of wood alteration. Fungal sheaths were often seen deep in host cell walls, sometimes enclosing residual wood fragments. Specific gold probes were used to investigate the chemical nature of R. lignosus sheaths. While labeling of chitin, pectin, β-1,4- and β-1,3-glucans, β-glucosides, galactosamine, mannose, sialic acid, RNA, fucose, and fimbrial proteins over fungal sheaths did not succeed, galactose residues and laccase (a fungal phenoloxidase) were found to be present. The positive reaction of sheaths with the PATAg test indicates that polysaccharides such as β-1,6-glucans are important components. Our data suggest that extracellular sheaths produced by R. lignosus during host cell colonization play an important role in wood degradation. Transportation of lignin-degrading enzymes by extracellular fibrils indicates that alteration of plant polymers may occur within fungal sheaths. It is also proposed that R. lignosus sheaths may be involved in recognition mechanisms in fungal cell-wood surface interactions. Images PMID:16349017

  11. Ultrasound guided injection inside the common sheath of the sciatic nerve at division level has a higher success rate than an injection outside the sheath.

    PubMed

    Lopez, A M; Sala-Blanch, X; Castillo, R; Hadzic, A

    2014-01-01

    The recommendations for the level of injection and ideal placement of the needle tip required for successful ultrasound-guided sciatic popliteal block vary among authors. A hypothesis was made that, when the local anesthetic is injected at the division of the sciatic nerve within the common connective tissue sheath, the block has a higher success rate than an injection outside the sheath. Thirty-four patients scheduled for hallux valgus repair surgery were randomized to receive either a sub-sheath block (n=16) or a peri-sheath block (n=18) at the level of the division of the sciatic nerve at the popliteal fossa. For the sub-sheath block, the needle was advanced out of plane until the tip was positioned between the tibial and peroneal nerves, and local anesthetic was then injected without moving the needle. For the peri-sheath block, the needle was advanced out of plane both sides of the sciatic nerve, to surround the sheath. Mepivacaine 1.5% and levobupivacaine 0.5% 30mL were used in both groups. The progression of motor and sensory block was assessed at 5min intervals. Duration of block was recorded. Adequate surgical block was achieved in all patients in the subsheath group (100%) compared to 12 patients (67%) in the peri-sheath group at 30min. Sensory block was achieved faster in the subsheath than peri-sheath (9.1±7.4min vs. 19.0±4.0; p<.001). Our study suggests that for successful sciatic popliteal block in less than 30min, local anesthetic should be injected within the sheath. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  12. Plasma-Sheath Model

    NASA Astrophysics Data System (ADS)

    Riemann, Karl-Ulrich

    2012-10-01

    In typical gas discharges a quasineutral plasma is shielded from a negativ absorbing wall by a thin positive sheath that is nearly planar and collision-free. The subdivision of ``plasma'' and ``sheath'' was introduced by Langmuir and is based on a small ratio of the electron Debye lenghth λD to the dominant competing characteristic plasma length l. Depending on the special conditions, l may represent, e.g., the plasma extension, the ionization length, the ion mean free path, the ion gyro radius, or a geometric length. Strictly speaking, this subdivion is possible only in the asymptotic limit λD/l->0. The asymptotic analysis results in singularities at the ``sheath edge'' closely related to the ``Bohm criterion.'' Due to these singularities a direct smooth matching of the separate plasma and sheath soltions is not possible. To obtain a consistent smooth transition, the singular sheath edge must be bridged by an additinal narrow ``intermediate'' model zone accounting both for plasma processes (e.g., collisions) and for the first build up of space charge. Due to this complexity and to different interpretations of the ``classical'' papers by Langmuir and Bohm, the asymptotic plasma-sheath concept and the definition of the sheath edge were questioned and resulted in controversies during the last two decades. We discuss attempts to re-define the sheath edge, to account for finite values of λD/l in the Bohm criterion, and demonstrate the consistent matching of plasma and sheath. The investigations of the plasma-sheath transition discussed so far are based on a simplified fluid analysis that cannot account for the essential inhomogeneity of the boundary layer and for the dominant role of slow ions in space charge formation. Therefore we give special emphasis to the kinetic theory of the plasma-sheath transition. Unfortunately this approach results in an additional mathematical difficulty caused by ions with zero velocity. We discuss attempts to avoid this singularity by a modification of the kinetic Bohm criterion and investigate the influence of slow ions on the structure of the plasma-sheath transition. The most important conclusions are illustrated with selected examples.

  13. Physics of collisionless scrape-off-layer plasma during normal and off-normal Tokamak operating conditions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanein, A.; Konkashbaev, I.

    1999-03-15

    The structure of a collisionless scrape-off-layer (SOL) plasma in tokamak reactors is being studied to define the electron distribution function and the corresponding sheath potential between the divertor plate and the edge plasma. The collisionless model is shown to be valid during the thermal phase of a plasma disruption, as well as during the newly desired low-recycling normal phase of operation with low-density, high-temperature, edge plasma conditions. An analytical solution is developed by solving the Fokker-Planck equation for electron distribution and balance in the SOL. The solution is in good agreement with numerical studies using Monte-Carlo methods. The analytical solutionsmore » provide an insight to the role of different physical and geometrical processes in a collisionless SOL during disruptions and during the enhanced phase of normal operation over a wide range of parameters.« less

  14. Gibberellins and Gravitropism in Maize Shoots 1

    PubMed Central

    Rood, Stewart B.; Kaufman, Peter B.; Abe, Hiroshi; Pharis, Richard P.

    1987-01-01

    [3H]Gibberellin A20 (GA20) of high specific radioactivity (49.9 gigabecquerel per millimole) was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old gravistimulated and vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [3H]GA20 to [3H]GA1− and [3H]GA29-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [3H]GA1, [3H]GA29, and [3H]GA8. The tentative identification of these putative [3H]GA glucosyl conjugates was further supported by the release of the free [3H]GA moiety after cleavage with cellulase. Within 12 hours of the [3H]GA20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheath pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [3H]GA20, especially [3H]GA1, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the `Tanginbozu' dwarf rice microdrop assay. Lower halves contained consistently higher total levels of GA-like activity. The qualitative elution profile of GA-like substances differed consistently, upper halves containing principally a GA20-like substance and lower halves containing mainly GA1-like and GA19-like substances. Gibberellins A1 (10 nanograms per gram) and A20 (5 nanograms per gram) were identified from these lower leaf sheath pulvini by capillary gas chromatography-selected ion monitoring. Results from all of these experiments are consistent with a role for GAs in the differential shoot growth that follows gravitropism, although the results do not eliminate the possibility that the redistribution of GAs results from the gravitropic response. Images Fig. 1 PMID:11539033

  15. Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of [3H]Gibberellin A20

    NASA Technical Reports Server (NTRS)

    Rood, S. B.; Kaufman, P. B.; Abe, H.; Pharis, R. P.

    1987-01-01

    [3H]Gibberellin A20 (GA20) of high specific radioactivity (49.9 gigabecquerel per millimole) was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old gravistimulated and vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [3H]GA20 to [3H]GA1- and [3H]GA29-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [3H]GA1, [3H]GA29, and [3H]GA8. The tentative identification of these putative [3H]GA glucosyl conjugates was further supported by the release of the free [3H]GA moiety after cleavage with cellulase. Within 12 hours of the [3H]GA20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheath pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [3H]GA20, especially [3H]GA1, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the "Tanginbozu" dwarf rice microdrop assay. Lower halves contained consistently higher total levels of GA-like activity. The qualitative elution profile of GA-like substances differed consistently, upper halves containing principally a GA20-like substance and lower halves containing principally a GA20-like substance and lower halves containing mainly GA1-like and GA19-like substances. Gibberellins A1 (10 nanograms per gram) and A20 (5 nanograms per gram) were identified from these lower leaf sheath pulvini by capillary gas chromatography-selected ion monitoring. Results from all of these experiments are consistent with a role for GAs in the differential shoot growth that follows gravitropism, although the results do not eliminate the possibility that the redistribution of GAs results from the gravitropic response.

  16. Do counts of salivary sheath flanges predict food consumption in herbivorous stink bugs [Hemiptera: Pentatomidae]?

    USDA-ARS?s Scientific Manuscript database

    For Pentatomid stink bug agricultural pests, the number of salivary sheaths and sheath flanges—the portion of the sheath visible on the exterior surface of a food item—are good predictors of the loss of crop yield or quality from stink bug feeding. As the often assumed relationship between salivary ...

  17. 30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...

  18. 30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...

  19. 30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...

  20. 30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...

  1. 30 CFR 15.32 - Tolerances for weight of explosive, sheath, wrapper, and specific gravity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., wrapper, and specific gravity. 15.32 Section 15.32 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... explosive, sheath, wrapper, and specific gravity. (a) The weight of the explosive, the sheath, and the outer.... (c) The specific gravity of the explosive and sheath shall be within ±7.5 percent of that specified...

  2. Gold ink coating of thermocouple sheaths

    DOEpatents

    Ruhl, H. Kenneth

    1992-01-01

    A method is provided for applying a gold ink coating to a thermocouple sheath which includes the steps of electropolishing and oxidizing the surface of the thermocouple sheath, then dipping the sheath into liquid gold ink, and finally heat curing the coating. The gold coating applied in this manner is highly reflective and does not degrade when used for an extended period of time in an environment having a temperature over 1000.degree. F. Depending on the application, a portion of the gold coating covering the tip of the thermocouple sheath is removed by abrasion.

  3. Particle trap to sheath contact for a gas-insulated transmission line having a corrugated outer conductor

    DOEpatents

    Fischer, William H.; Cookson, Alan H.; Yoon, Kue H.

    1984-04-10

    A particle trap to outer elongated conductor or sheath contact for gas-insulated transmission lines. The particle trap to outer sheath contact of the invention is applicable to gas-insulated transmission lines having either corrugated or non-corrugated outer sheaths. The contact of the invention includes an electrical contact disposed on a lever arm which in turn is rotatably disposed on the particle trap and biased in a direction to maintain contact between the electrical contact and the outer sheath.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zi-an; Ma, J. X., E-mail: jxma@ustc.edu.cn

    Ion sheaths formed in the up- and downstream sides of a negatively biased metal plate/mesh in an ion-beam-background-plasma system were experimentally investigated in a double plasma device. Measured potential profiles near the plate exhibit asymmetric structure, showing thicker sheath in the downstream side. The presence of the ion beam causes the shrink of the sheaths on both sides. The sheath thickness decreases with the increase of beam energy and density. Furthermore, the sheaths near the mesh are substantially thinner than that near the plate because of the partial transmission of the mesh to the ions. In addition, the increase ofmore » neutral gas pressure leads to the reduction of the beam energy and density, resulting in the increase of the sheath thickness.« less

  5. Comprehensive Study of Plasma-Wall Sheath Transport Phenomena

    DTIC Science & Technology

    2016-10-26

    function of the applied thermo-mechanical stress. An experiment was designed to test whether and how the process of plasma erosion might depend on ...of exposed surface, a, b) pretest height and laser image, c, d) post - test height and laser image. For the following analysis, a curve fit of the...normal to the ion beam. However, even with a one -dimensional simulation, features of a similar depth and profile to the post - test surface develop

  6. Plasma Theory and Simulation Group Annual Progress Report for 1991

    DTIC Science & Technology

    1991-12-31

    beam formation analitically : i) the resistance of the (low-density) to the final, high-density cylindrical wall can be approximated by the regime...model is developed that predicts the ion angular distribution function in a highly collisional sheath. In a previous study2, the normal ion velocity...gets a linear dispersion relation of the form W2 = k 2 (T + Ti/m. + m,), (40) which predicts ion acoustic waves. These waves have the highest frequency

  7. Sheaths: A Comparison of Magnetospheric, ICME, and Heliospheric Sheaths

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Richardson, J. D.; Liu, W.

    2007-01-01

    When a supersonic flow encounters an obstacles, shocks form to divert the flow around the obstacle. The region between the shock and the obstacle is the sheath, where the supersonic flow is compressed, heated, decelerated, and deflected. Supersonic flows, obstacles, and thus sheaths are observed on many scales throughout the Universe. We compare three examples seen in the heliosphere, illustrating the interaction of the solar wind with obstacles of three very different scales lengths. Magnetosheaths form behind planetary bow shocks on scales ranging from tens to 100 planetary radii. ICME sheath form behind shocks driven by solar disturbances on scale lengths of a few to tens of AU. The heliosheath forms behind the termination shock due to the obstacle presented by the interstellar medium on scale lengths of tens to a hundred AU. Despite this range in scales some common features have been observed. Magnetic holes, possibly due to mirror mode waves, have been observed in all three of these sheaths. Plasma depletion layers are observed in planetary and ICME sheaths. Other features observed in some sheaths are wave activity (ion cyclotron, plasma), energetic particles, transmission of Alfven waves/shocks, tangential discontinuities turbulence behind quasi-parallel shocks, standing slow mode waves, and reconnection on the obstacle boundary. We compare these sheath regions, discussing similarities and differences and how these may relate to the scale lengths of these regions.

  8. Insights into the Saliva of the Brown Marmorated Stink Bug Halyomorpha halys (Hemiptera: Pentatomidae)

    PubMed Central

    Peiffer, Michelle; Felton, Gary W.

    2014-01-01

    We examined the salivary gland structure of the brown marmorated stink bug (Pentatomidae: Halyomorpha halys) and developed methods for independent collection of watery saliva and sheath saliva. This stink bug has become a serious invasive pest of agriculture in the United States and its saliva is largely responsible for the damage it causes. We determined by protein gel analysis and shotgun proteomics that the suite of proteins comprising the sheath and watery saliva are very distinct. Our results indicate that a substantial amount of sheath proteins are derived from tomato when stink bugs feed on tomato fruit. Consequently, the sheath saliva is comprised of both insect and plant-derived proteins. Both sheath and watery saliva possessed amylase activities, but polyphenol oxidase and glucose oxidase activities were not detected in either saliva. Peroxidase activity was only detected in salivary sheaths, but only when stink bugs fed on tomato. Proteomic analysis indicated that the peroxidase was likely of plant origin. We also determined that sheath saliva, but not watery saliva elicited the jasmonate inducible defense gene proteinase inhibitor 2 (Pin2), but this induction was only observed when sheaths had been collected from tomato. This indicates that the eliciting factor of the saliva is likely of plant origin. Lastly, neither watery or sheath saliva affected the expression of the salicylate inducible gene pathogenesis related gene (Pr1a-P4). PMID:24586332

  9. Double copper sheath multiconductor instrumentation cable is durable and easily installed in high thermal or nuclear radiation area

    NASA Technical Reports Server (NTRS)

    Mc Crae, A. W., Jr.

    1967-01-01

    Multiconductor instrumentation cable in which the conducting wires are routed through two concentric copper tube sheaths, employing a compressed insulator between the conductors and between the inner and outer sheaths, is durable and easily installed in high thermal or nuclear radiation area. The double sheath is a barrier against moisture, abrasion, and vibration.

  10. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  11. Farris-Tang retractor in optic nerve sheath decompression surgery.

    PubMed

    Spiegel, Jennifer A; Sokol, Jason A; Whittaker, Thomas J; Bernard, Benjamin; Farris, Bradley K

    2016-01-01

    Our purpose is to introduce the use of the Farris-Tang retractor in optic nerve sheath decompression surgery. The procedure of optic nerve sheath fenestration was reviewed at our tertiary care teaching hospital, including the use of the Farris-Tang retractor. Pseudotumor cerebri is a syndrome of increased intracranial pressure without a clear cause. Surgical treatment can be effective in cases in which medical therapy has failed and disc swelling with visual field loss progresses. Optic nerve sheath decompression surgery (ONDS) involves cutting slits or windows in the optic nerve sheath to allow cerebrospinal fluid to escape, reducing the pressure around the optic nerve. We introduce the Farris-Tang retractor, a retractor that allows for excellent visualization of the optic nerve sheath during this surgery, facilitating the fenestration of the sheath and visualization of the subsequent cerebrospinal fluid egress. Utilizing a medial conjunctival approach, the Farris-Tang retractor allows for easy retraction of the medial orbital tissue and reduces the incidence of orbital fat protrusion through Tenon's capsule. The Farris-Tang retractor allows safe, easy, and effective access to the optic nerve with good visualization in optic nerve sheath decompression surgery. This, in turn, allows for greater surgical efficiency and positive patient outcomes.

  12. The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids*

    PubMed Central

    Dueholm, Morten S.; Larsen, Poul; Finster, Kai; Stenvang, Marcel R.; Christiansen, Gunna; Vad, Brian S.; Bøggild, Andreas; Otzen, Daniel E.; Nielsen, Per Halkjær

    2015-01-01

    Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold. PMID:26109065

  13. Plasma driven neutron/gamma generator

    DOEpatents

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  14. Hybrid particle traps and conditioning procedure for gas insulated transmission lines

    DOEpatents

    Dale, Steinar J.; Cookson, Alan H.

    1982-01-01

    A gas insulated transmission line includes an outer sheath, an inner condor within the outer sheath, insulating supports supporting the inner conductor within the outer sheath, and an insulating gas electrically insulating the inner conductor from the outer sheath. An apertured particle trapping ring is disposed within the outer sheath, and the trapping ring has a pair of dielectric members secured at each longitudinal end thereof, with the dielectric members extending outwardly from the trapping ring along an arc. A support sheet having an adhesive coating thereon is secured to the trapping ring and disposed on the outer sheath within the low field region formed between the trapping ring and the outer sheath. A conditioning method used to condition the transmission line prior to activation in service comprises applying an AC voltage to the inner conductor in a plurality of voltage-time steps, with the voltage-time steps increasing in voltage magnitude while decreasing in time duration.

  15. Radial and ulnar bursae of the wrist: cadaveric investigation of regional anatomy with ultrasonographic-guided tenography and MR imaging.

    PubMed

    Aguiar, Rodrigo O C; Gasparetto, Emerson L; Escuissato, Dante L; Marchiori, Edson; Trudell, Debbie J; Haghighi, Parviz; Resnick, Donald

    2006-11-01

    To demonstrate the anatomy of the radial and ulnar bursae of the wrist using MR and US images. Ultrasonographic-guided tenography of the tendon sheath of flexor pollicis longus (FPL) and the common tendon sheath of the flexor digitorum of the fifth digit (FD5) of ten cadaveric hands was performed, followed by magnetic resonance imaging and gross anatomic correlation. Patterns of communication were observed between these tendon sheaths and the radial and ulnar bursae of the wrist. The tendon sheath of the FPL communicated with the radial bursa in 100% (10/10) of cases, and the tendon sheath of the FD5 communicated with the ulnar bursa in 80% (8/10). Communication of the radial and ulnar bursae was evident in 100% (10/10), and presented an "hourglass" configuration in the longitudinal plane. The ulnar and radial bursae often communicate. The radial bursa communicates with the FPL tendon sheath, and the ulnar bursa may communicate with the FD5 tendon sheath.

  16. Spontaneous Rectus Sheath Hematoma: an Overview of 4-Year Single Center Experience.

    PubMed

    Aktürk, Okan Murat; Kayılıoğlu, Selami Ilgaz; Aydoğan, İhsan; Dinç, Tolga; Yildiz, Baris; Cete, Mükerrem; Erdoğan, Ahmet; Coşkun, Faruk

    2015-12-01

    Rectus sheath hematoma is a clinical entity characterized by the presence of blood within rectus abdominis muscle sheath. The aim of this study was to analyze clinical characteristics, diagnostic approach, treatment strategy, and outcomes of patients with rectus sheath hematoma. Patients diagnosed and treated for spontaneous rectus sheath hematoma between March 2010 and March 2014 were included in the study. A total of 10 patients were diagnosed as spontaneous rectus sheath hematoma. The mean age was 66.5 ± 16.9 years, and the mean hospital stay was 4.4 ± 1.8 days. There was no mortality. Six patients were using anticoagulant or antiplatelet agents. Eight patients recovered after conservative treatment. Two patients underwent surgery. Spontaneous rectus sheath hematoma is associated with anticoagulant therapy. Cases with abdominal pain and a non-pulsatile abdominal mass particularly in elderly women should be kept in mind. Treatment is mostly based on supportive care to preserve hemodynamic stability.

  17. Ion and electron sheath characteristics in a low density and low temperature plasma

    NASA Astrophysics Data System (ADS)

    Borgohain, Binita; Bailung, H.

    2017-11-01

    Ion and electron sheath characteristics in a low electron temperature (Te ˜ 0.25-0.40 eV) and density (ne ˜ 106-107 cm-3) plasma are described. The plasma is produced in the experimental volume through diffusion from a hot cathode discharge plasma source by using a magnetic filter. The electron energy distribution function in the experimental plasma volume is measured to be a narrow Maxwellian distribution indicating the absence of primary and energetic electrons which are decoupled in the source side by the cusp magnetic field near the filter. An emissive probe is used to measure the sheath potential profiles in front of a metal plate biased negative and positive with respect to the plasma potential. For a positive plate bias, the electron density decreases considerably and the electron sheath expands with a longer presheath region compared to the ion sheath. The sheath potential structures are found to follow the Debye sheath model.

  18. Gas insulated transmission line having low inductance intercalated sheath

    DOEpatents

    Cookson, Alan H.

    1978-01-01

    A gas insulated transmission line including an outer sheath, an inner conductor disposed within the outer sheath, and an insulating gas between the inner conductor and the outer sheath. The outer sheath comprises an insulating tube having first and second ends, and having interior and exterior surfaces. A first electrically conducting foil is secured to the interior surface of the insulating tube, is spirally wound from one tube end to the second tube end, and has a plurality of overlapping turns. A second electrically conducting foil is secured to the exterior surface of the insulating tube, and is spirally wound in the opposite direction from the first electrically conducting foil. By winding the foils in opposite directions, the inductances within the intercalated sheath will cancel each other out.

  19. Effect of collisions on photoelectron sheath in a gas

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Mishra, S. K.

    2016-02-01

    This paper presents a study of the effect of the collision of electrons with atoms/molecules on the structure of a photoelectron sheath. Considering the half Fermi-Dirac distribution of photo-emitted electrons, an expression for the electron density in the sheath has been derived in terms of the electric potential and the structure of the sheath has been investigated by incorporating Poisson's equation in the analysis. The method of successive approximations has been used to solve Poisson's equation with the solution for the electric potential in the case of vacuum, obtained earlier [Sodha and Mishra, Phys. Plasmas 21, 093704 (2014)], being used as the zeroth order solution for the present analysis. The inclusion of collisions influences the photoelectron sheath structure significantly; a reduction in the sheath width with increasing collisions is obtained.

  20. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  1. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamate, Eugen, E-mail: eust@dtu.dk; Venture Business Laboratory, Nagoya University, C3-1, Chikusa-ku, Nagoya 464-8603; Yamaguchi, Masahito

    2015-08-31

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulationsmore » are found to be in very good agreement with experiments.« less

  2. Enhanced proton acceleration by intense laser interaction with an inverse cone target

    NASA Astrophysics Data System (ADS)

    Bake, Muhammad Ali; Aimidula, Aimierding; Xiaerding, Fuerkaiti; Rashidin, Reyima

    2016-08-01

    The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.

  3. Enhanced proton acceleration by intense laser interaction with an inverse cone target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bake, Muhammad Ali; Aimidula, Aimierding, E-mail: amir@mail.bnu.edu.cn; Xiaerding, Fuerkaiti

    The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface inducemore » a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.« less

  4. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1989-01-01

    An apparatus and method for sampling a gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extend in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  5. Gas sampling system for reactive gas-solid mixtures

    DOEpatents

    Daum, Edward D.; Downs, William; Jankura, Bryan J.; McCoury, Jr., John M.

    1990-01-01

    An apparatus and method for sampling gas containing a reactive particulate solid phase flowing through a duct and for communicating a representative sample to a gas analyzer. A sample probe sheath 32 with an angular opening 34 extends vertically into a sample gas duct 30. The angular opening 34 is opposite the gas flow. A gas sampling probe 36 concentrically located within sheath 32 along with calibration probe 40 partly extends in the sheath 32. Calibration probe 40 extends further in the sheath 32 than gas sampling probe 36 for purging the probe sheath area with a calibration gas during calibration.

  6. Parametric computational study of sheaths in multicomponent Ar/O2 plasma

    NASA Astrophysics Data System (ADS)

    Hromadka, J.; Ibehej, T.; Hrach, R.

    2018-02-01

    Our study is devoted to sheath structures emerging in Ar/O2 plasma. By means of two dimensional PIC/MCC computer model two configurations were investigated - sheath structure in the vicinity of a cylindrical Langmuir probe for two different biases and changes of the sheath structure when a cylindrical probe passes into a semi-planar probe. It was shown that O+ ions play important role in shielding out negative bias of a solid immersed in Ar/O2 plasma and edge effects of a semi-planar probe on its sheath structure were evaluated.

  7. Ultrasound-guided Combined Fascial Plane Blocks as an Intervention for Pain Management after Laparoscopic Cholecystectomy: A Randomized Control Study

    PubMed Central

    Ramkiran, Seshadri; Jacob, Mathews; Honwad, Manish; Vivekanand, Desiraju; Krishnakumar, Mathangi; Patrikar, Seema

    2018-01-01

    Background: Pain associated with laparoscopic cholecystectomy is most severe during the first 24 h and the port sites are the most painful. Recent multimodal approaches target incisional pain instead of visceral pain which has led to the emergence of abdominal fascial plane blocks. This study embraces a novel combination of two independently effective fascial plane blocks, namely rectus sheath block and subcostal transversus abdominis plane (TAP) block to alleviate postoperative pain. Study Objective: The aim is to evaluate the effectiveness of the combination of rectus sheath block and subcostal TAP block, to compare its efficacy with that of subcostal TAP block alone and with conventional port site infiltration (PSI) in alleviating postoperative pain in patients undergoing laparoscopic cholecystectomy. Methodology: This prospective, randomized control, pilot study included 61 patients scheduled for elective laparoscopic cholecystectomy and distributed among three groups, namely Group 1: Combined subcostal TAP block with rectus sheath block (n = 20); Group 2: Oblique subcostal TAP block alone (n = 21); and Group 3: PSI group as an active control (n = 20). Results: Combined group had significantly lower pain scores, higher satisfaction scores, and reduced rescue analgesia both in early and late postoperative periods than the conventional PSI group. Conclusion: Ultrasound-guided combined fascial plane blocks is a novel intervention in pain management of patients undergoing laparoscopic cholecystectomy and should become the standard of care. PMID:29628547

  8. Analytical solutions and particle simulations of cross-field plasma sheaths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerver, M.J.; Parker, S.E.; Theilhaber, K.

    1989-08-30

    Particles simulations have been made of an infinite plasma slab, bounded by absorbing conducting walls, with a magnetic field parallel to the walls. The simulations have been either 1-D, or 2-D, with the magnetic field normal to the simulation plane. Initially, the plasma has a uniform density between the walls, and there is a uniform source of ions and electrons to replace particles lost to the walls. In the 1-D case, there is no diffusion of the particle guiding centers, and the plasma remains uniform in density and potential over most of the slab, with sheaths about a Debye lengthmore » wide where the potential rises to the wall potential. In the 2-D case, the density profile becomes parabolic, going almost to zero at the walls, and there is a quasineutral presheath in the bulk of the plasma, in addition to sheaths near the walls. Analytic expressions are found for the density and potential profiles in both cases, including, in the 2-D case, the magnetic presheath due to finite ion Larmor radius, and the effects of the guiding center diffusion rate being either much less than or much grater than the energy diffusion rate. These analytic expressions are shown to agree with the simulations. A 1-D simulation with Monte Carlo guiding center diffusion included gives results that are good agreement with the much more expensive 2-D simulation. 17 refs., 10 figs.« less

  9. The Impact of Preoperative α-Adrenergic Antagonists on Ureteral Access Sheath Insertion Force and the Upper Limit of Force Required to Avoid Ureteral Mucosal Injury: A Randomized Controlled Study.

    PubMed

    Koo, Kyo Chul; Yoon, Jun-Ho; Park, No-Cheol; Lee, Hye Sun; Ahn, Hyun Kyu; Lee, Kwang Suk; Kim, Do Kyung; Cho, Kang Su; Chung, Byung Ha; Hong, Chang Hee

    2018-06-01

    Excessive bulking force during primary access of the ureteral access sheath may induce ureteral injury. We investigated the efficacy of preoperative α-blockade to reduce ureteral access sheath insertion force and determine the upper limit required to avoid ureteral injury. In this randomized controlled trial 135 patients from a single institution who had ureteropelvic junction or renal pelvis stones and were scheduled to undergo retrograde intrarenal surgery were prospectively enrolled from December 2015 to January 2017. Of the patients 41 and 42 were randomly assigned to the control and experimental groups, respectively. The experimental group received α-blockade preoperatively. The 21 patients who were pre-stented were assessed separately. We developed a homemade device to measure maximal ureteral access sheath insertion force. Our ureteral access sheath insertion force measurement device showed excellent reproducibility. Higher insertion velocity resulted in greater maximal sheath insertion force. Maximal insertion force in the α-blockade group was significantly lower than in the control group at the ureterovesical junction (p = 0.008) and the proximal ureter (p = 0.036). Maximal insertion force in the α-blockade group was comparable to that in pre-stented patients. Female patients and patients 70 years old or older showed a lower maximal ureteral access sheath insertion force than their counterparts. The rate of grade 2 or greater ureteral injury was lower in the α-blockade group than in controls (p = 0.038). No injury occurred in any case in which ureteral access sheath insertion force did not exceed 600 G. Preoperative α-blockade and slow sheath placement may reduce maximal ureteral access sheath insertion force. If the force exceeds 600 G, a smaller diameter sheath may be an alternative. Alternatively the procedure can be terminated and followed later by pre-stented retrograde intrarenal surgery. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Theory of the electron sheath and presheath

    DOE PAGES

    Scheiner, Brett; Baalrud, Scott D.; Yee, Benjamin T.; ...

    2015-12-30

    Here, electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the electron velocity distribution function (EVDF). This work provides a dedicated theory of electron sheaths, which suggests that they are not so simple. Motivated by EVDFs observed in particle-in-cell(PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the model, under low temperaturemore » plasma conditions (T e >> T i), an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. It is found that in many situations, under common plasma conditions, the electron presheath extends much further into the plasma than an analogous ion presheath. PIC simulations reveal that the ion density in the electron presheath is determined by a flow around the electron sheath and that this flow is due to 2D aspects of the sheath geometry. Simulations also indicate the presence of ion acoustic instabilities excited by the differential flow between electrons and ions in the presheath, which result in sheath edge fluctuations. The 1D model and time averaged PIC simulations are compared and it is shown that the model provides a good description of the electron sheath and presheath.« less

  11. Accounting for Debye sheath expansion for proud Langmuir probes in magnetic confinement fusion plasmas.

    PubMed

    Tsui, C K; Boedo, J A; Stangeby, P C

    2018-01-01

    A Child-Langmuir law-based method for accounting for Debye sheath expansion while fitting the current-voltage I-V characteristic of proud Langmuir probes (electrodes that extend into the volume of the plasma) is described. For Langmuir probes of a typical size used in tokamak plasmas, these new estimates of electron temperature and ion saturation current density values decreased by up to 60% compared to methods that did not account for sheath expansion. Changes to the collection area are modeled using the Child-Langmuir law and effective expansion perimeter l p , and the model is thus referred to as the "perimeter sheath expansion method." l p is determined solely from electrode geometry, so the method may be employed without prior measurement of the magnitude of the sheath expansion effects for a given Langmuir probe and can be used for electrodes of different geometries. This method correctly predicts the non-saturating ΔI/ΔV slope for cold, low-density plasmas where sheath-expansion effects are strong, as well as for hot plasmas where ΔI/ΔV ∼ 0, though it is shown that the sheath can still significantly affect the collection area in these hot conditions. The perimeter sheath expansion method has several advantages compared to methods where the non-saturating current is fitted: (1) It is more resilient to scatter in the I-V characteristics observed in turbulent plasmas. (2) It is able to separate the contributions to the ΔI/ΔV slope from sheath expansion to that of the high energy electron tail in high Te conditions. (3) It calculates the change in the collection area due to the Debye sheath for conditions where ΔI/ΔV ∼ 0 and for V = V f .

  12. Accounting for Debye sheath expansion for proud Langmuir probes in magnetic confinement fusion plasmas

    NASA Astrophysics Data System (ADS)

    Tsui, C. K.; Boedo, J. A.; Stangeby, P. C.; TCV Team

    2018-01-01

    A Child-Langmuir law-based method for accounting for Debye sheath expansion while fitting the current-voltage I-V characteristic of proud Langmuir probes (electrodes that extend into the volume of the plasma) is described. For Langmuir probes of a typical size used in tokamak plasmas, these new estimates of electron temperature and ion saturation current density values decreased by up to 60% compared to methods that did not account for sheath expansion. Changes to the collection area are modeled using the Child-Langmuir law and effective expansion perimeter lp, and the model is thus referred to as the "perimeter sheath expansion method." lp is determined solely from electrode geometry, so the method may be employed without prior measurement of the magnitude of the sheath expansion effects for a given Langmuir probe and can be used for electrodes of different geometries. This method correctly predicts the non-saturating ΔI/ΔV slope for cold, low-density plasmas where sheath-expansion effects are strong, as well as for hot plasmas where ΔI/ΔV ˜ 0, though it is shown that the sheath can still significantly affect the collection area in these hot conditions. The perimeter sheath expansion method has several advantages compared to methods where the non-saturating current is fitted: (1) It is more resilient to scatter in the I-V characteristics observed in turbulent plasmas. (2) It is able to separate the contributions to the ΔI/ΔV slope from sheath expansion to that of the high energy electron tail in high Te conditions. (3) It calculates the change in the collection area due to the Debye sheath for conditions where ΔI/ΔV ˜ 0 and for V = Vf.

  13. Impact of steerable sheaths on contact forces and reconnection sites in ablation for persistent atrial fibrillation.

    PubMed

    Ullah, Waqas; Hunter, Ross J; McLean, Ailsa; Dhinoja, Mehul; Earley, Mark J; Sporton, Simon; Schilling, Richard J

    2015-03-01

    In preclinical studies, catheter contact force (CF) during radiofrequency ablation correlates with the subsequent lesion size. We investigated the impact of steerable sheaths on ablation CF, its consistency, and wide area circumferential ablation (WACA) line reconnection sites. Five thousand and sixty-four ablations were analyzed across 60 patients undergoing first-time ablation for persistent AF using a CF-sensing catheter: 19 manual nonsteerable sheath (Manual-NSS), 11 manual steerable sheath, and 30 robotic steerable sheath (Sensei, Hansen Medical Inc.) procedures were studied. Ablation CFs were higher in the steerable sheath groups for all left atrial ablations and also WACA ablations specifically (P < 0.006), but less consistent per WACA segment (P < 0.005). There were significant differences in the CFs around both WACAs by group: in the left WACA CFs were lower with Manual-NSS, other than at the anterior-inferior and posterior-superior regions, and lower in the right WACA, other than the anterior-superior region. There was a difference in the proportion of segments chronically reconnecting across groups: Manual-NSS 26.5%, manual steerable sheath 4.6%, robotic 12% (P < 0.0005). The left atrial appendage/PV ridge and right posterior wall were common sites of reconnection in all groups. Steerable sheaths increased ablation CF; however, there were region-specific heterogeneities in the extent of increment, with some segments where they failed to increase CF. Steerable sheath use was associated with reduced WACA-segment reconnection. It may be that the benefits of steerable sheath use in terms of higher CFs could be translated to improved clinical outcomes if regional weaknesses of this technology are taken into account during ablation procedures. © 2014 Wiley Periodicals, Inc.

  14. The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksyuk, Anastasia A.; Leiman, Petr G.; Kurochkina, Lidia P.

    2009-07-22

    The contractile tail of bacteriophage T4 is a molecular machine that facilitates very high viral infection efficiency. Its major component is a tail sheath, which contracts during infection to less than half of its initial length. The sheath consists of 138 copies of the tail sheath protein, gene product (gp) 18, which surrounds the central non-contractile tail tube. The contraction of the sheath drives the tail tube through the outer membrane, creating a channel for the viral genome delivery. A crystal structure of about three quarters of gp18 has been determined and was fitted into cryo-electron microscopy reconstructions of themore » tail sheath before and after contraction. It was shown that during contraction, gp18 subunits slide over each other with no apparent change in their structure.« less

  15. Physics-based parametrization of the surface impedance for radio frequency sheaths

    DOE PAGES

    Myra, J. R.

    2017-07-07

    The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less

  16. Physics-based parametrization of the surface impedance for radio frequency sheaths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, J. R.

    The properties of sheaths near conducting surfaces are studied for the case where both magnetized plasma and intense radio frequency (rf) waves coexist. The work is motivated primarily by the need to understand, predict and control ion cyclotron range of frequency (ICRF) interactions with tokamak scrape-off layer plasmas, and is expected to be useful in modeling rf sheath interactions in global ICRF codes. Here, employing a previously developed model for oblique angle magnetized rf sheaths [J. R. Myra and D. A. D’Ippolito, Phys. Plasmas 22, 062507 (2015)], an investigation of the four-dimensional parameter space governing these sheath is carried out.more » By combining numerical and analytical results, a parametrization of the surface impedance and voltage rectification for rf sheaths in the entire four-dimensional space is obtained.« less

  17. Compensation of the sheath effects in cylindrical floating probes

    NASA Astrophysics Data System (ADS)

    Park, Ji-Hwan; Chung, Chin-Wook

    2018-05-01

    In cylindrical floating probe measurements, the plasma density and electron temperature are overestimated due to sheath expansion and oscillation. To reduce these sheath effects, a compensation method based on well-developed floating sheath theories is proposed and applied to the floating harmonic method. The iterative calculation of the Allen-Boyd-Reynolds equation can derive the floating sheath thickness, which can be used to calculate the effective ion collection area; in this way, an accurate ion density is obtained. The Child-Langmuir law is used to calculate the ion harmonic currents caused by sheath oscillation of the alternating-voltage-biased probe tip. Accurate plasma parameters can be obtained by subtracting these ion harmonic currents from the total measured harmonic currents. Herein, the measurement principles and compensation method are discussed in detail and an experimental demonstration is presented.

  18. The Presence of Turbulent and Ordered Local Structure within the ICME Shock-sheath and Its Contribution to Forbush Decrease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaikh, Zubair; Bhaskar, Ankush; Raghav, Anil, E-mail: raghavanil1984@gmail.com

    The transient interplanetary disturbances evoke short-time cosmic-ray flux decrease, which is known as Forbush decrease. The traditional model and understanding of Forbush decrease suggest that the sub-structure of an interplanetary counterpart of coronal mass ejection (ICME) independently contributes to cosmic-ray flux decrease. These sub-structures, shock-sheath, and magnetic cloud (MC) manifest as classical two-step Forbush decrease. The recent work by Raghav et al. has shown multi-step decreases and recoveries within the shock-sheath. However, this cannot be explained by the ideal shock-sheath barrier model. Furthermore, they suggested that local structures within the ICME’s sub-structure (MC and shock-sheath) could explain this deviation ofmore » the FD profile from the classical FD. Therefore, the present study attempts to investigate the cause of multi-step cosmic-ray flux decrease and respective recovery within the shock-sheath in detail. A 3D-hodogram method is utilized to obtain more details regarding the local structures within the shock-sheath. This method unambiguously suggests the formation of small-scale local structures within the ICME (shock-sheath and even in MC). Moreover, the method could differentiate the turbulent and ordered interplanetary magnetic field (IMF) regions within the sub-structures of ICME. The study explicitly suggests that the turbulent and ordered IMF regions within the shock-sheath do influence cosmic-ray variations differently.« less

  19. Effect of phase assemblage of precursor on the fabrication process and properties of Bi2223 tape sheathed with Ag-alloy

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Shioiri, T.; Kurihara, C.; Machida, T.; Inada, R.; Oota, A.

    2008-09-01

    The use of alloy sheath is effective to increase the strength of Ag-sheathed Bi2223 tapes. However, the Jc value of alloy sheathed tapes was not high enough since the undesired reaction to form impurity phases and the change in formation rate of Bi2223 were disturbed by the microstructure of the filaments . In this study, the effect of 2223 contents in precursor on the formation and property of Bi2223 tapes sheathed with Ag-Mg alloy was investigated. The conversion rate of Bi2223 from Bi2212 was increased by the addition of Bi2223 phase in precursor but the conversion rate in Ag-Mg alloy sheathed tapes was slower than that in the Ag-Cu alloy sheathed tapes. This reduction of conversion speed of Bi2223 may be attributed to the decrease in the growth rate of Bi2223 crystals in Ag-Mg alloy sheath. Since the tapes with small Bi2223 crystals after first sintering showed many outgrowths after final sintering, the formation of outgrowth would be caused in the case of small crystal size. The Jc value of 2.2 × 10 4 A/cm 2 was achieved in the samples using the precursor with 10 wt.% 2223. The high Jc value can be achieved by the proper control of precursor condition including the contents of Bi2223 and corresponding heat treatment pattern in Ag-Mg alloy sheathed tapes.

  20. Hertwig's Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars.

    PubMed

    Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2015-06-29

    To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis.

  1. Hertwig’s Epithelial Root Sheath Fate during Initial Cellular Cementogenesis in Rat Molars

    PubMed Central

    Yamamoto, Tsuneyuki; Yamada, Tamaki; Yamamoto, Tomomaya; Hasegawa, Tomoka; Hongo, Hiromi; Oda, Kimimitsu; Amizuka, Norio

    2015-01-01

    To elucidate the fate of the epithelial root sheath during initial cellular cementogenesis, we examined developing maxillary first molars of rats by immunohistochemistry for keratin, vimentin, and tissue non-specific alkaline phosphatase (TNALP) and by TdT-mediated dUTP nick end labeling (TUNEL). The advancing root end was divided into three sections, which follow three distinct stages of initial cellular cementogenesis: section 1, where the epithelial sheath is intact; section 2, where the epithelial sheath becomes fragmented; and section 3, where initial cellular cementogenesis begins. After fragmentation of the epithelial sheath, many keratin-positive epithelial sheath cells were embedded in the rapidly growing cellular cementum. A few unembedded epithelial cells located on the cementum surface. Dental follicle cells, precementoblasts, and cementoblasts showed immunoreactivity for vimentin and TNALP. In all three sections, there were virtually no cells possessing double immunoreactivity for vimentin-keratin or TNALP-keratin and only embedded epithelial cells showed TUNEL reactivity. Taken together, these findings suggest that: (1) epithelial sheath cells divide into two groups; one group is embedded in the cementum and thereafter dies by apoptosis, and the other survives on the cementum surface as epithelial cell rests of Malassez; and (2) epithelial sheath cells do not undergo epithelial-mesenchymal transition during initial cellular cementogenesis. PMID:26160988

  2. The Tubular Sheaths Encasing Methanosaeta thermophila Filaments Are Functional Amyloids.

    PubMed

    Dueholm, Morten S; Larsen, Poul; Finster, Kai; Stenvang, Marcel R; Christiansen, Gunna; Vad, Brian S; Bøggild, Andreas; Otzen, Daniel E; Nielsen, Per Halkjær

    2015-08-14

    Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Morphogenesis of the fibrous sheath in the marsupial spermatozoon

    PubMed Central

    Ricci, M; Breed, WG

    2005-01-01

    The spermatozoon fibrous sheath contains longitudinal columns and circumferential ribs. It surrounds the axoneme of the principal piece of the mammalian sperm tail, and may be important in sperm stability and motility. Here we describe its assembly during spermiogenesis in a marsupial, the brush-tail possum, and compare its structural organization with that of eutherian mammals, birds and reptiles. Transmission electron microscopy showed that possum fibrous sheath assembly is a multistep process extending in a distal-to-proximal direction along the axoneme from steps 4 to 14 of spermiogenesis. For the most part, assembly of the longitudinal columns occurs before that of the circumferential ribs. Immunohistochemical and immunogold labelling showed that fibrous sheath proteins are first present in the spermatid cytoplasm; at least some of the proteins of the sheath precursors differ from those in the mature fibrous sheath. That immunoreactivity develops after initiation of chromatin condensation suggests that fibrous sheath proteins, or their mRNAs, are stored within the spermatid cytoplasmic lobule prior to their assembly along the axoneme. These findings are similar to those in laboratory rats, and thus suggests that the mode of fibrous sheath assembly evolved in a common ancestor over 125 million years ago, prior to the divergence of marsupial and eutherian lineages. PMID:16050902

  4. Plaque-Like Pilar Sheath Acanthoma: Histopathologic and Immunohistochemical Study of 3 Unusual Cases.

    PubMed

    Jo-Velasco, Margarita; Corrales-Rodríguez, Araceli; Francés-Rodríguez, Laura; Alegría-Landa, Victoria; Eraña-Tomás, Itziar; Rütten, Arno; Requena, Luis

    2018-02-01

    Pilar sheath acanthoma is an uncommon, benign follicular neoplasm that frequently presents as a solitary lesion. This neoplasm usually appears on the skin around the upper lip of elderly patients. Histopathologically, the neoplasm usually shows a cystic configuration with epithelial lobules resembling to those of the outer root sheath of the hair follicle at the level of the isthmus emanating radially from the cyst wall. We present 3 peculiar cases of a pilar sheath acanthoma showing a plaque-like architecture because the lesions exhibited a horizontal configuration. To our knowledge, there are no previously reported examples of plaque-like pilar sheath acanthoma.

  5. Preparation of Drosophila central neurons for in situ patch clamping.

    PubMed

    Ryglewski, Stefanie; Duch, Carsten

    2012-10-15

    Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker(1,2). Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain(3,4) and ventral nerve cord of embryonic(5,6), larval(7,8,9,10), and adult Drosophila(11,12,13,14). A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN5(15)), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself.

  6. A STRUCTURAL ANALYSIS OF THE MYELIN SHEATH IN THE CENTRAL NERVOUS SYSTEM

    PubMed Central

    Hirano, Asao; Dembitzer, Herbert M.

    1967-01-01

    The cerebral white matter of rats subjected to a variety of noxious experimental conditions was examined in the electron microscope. Several unusual configurations of the myelin sheath are identified in addition to the usual configuration. These variations include the presence of (a) formed organelles within the inner and outer loops, (b) isolated islands of cytoplasm in unfused portions of the major dense lines, (c) apparently unconnected cell processes between the sheath and the axon, and (d) concentric, double myelin sheaths. A generalized model of the myelin sheath based on a hypothetical unrolling of the sheath is described. It consists of a shovel-shaped myelin sheet surrounded by a continuous thickened rim of cytoplasm. Most of the unusual myelin configurations are explained as simple variations on this basic theme. With the help of this model, an explanation of the formation of the myelin sheath is offered. This explanation involves the concept that myelin formation can occur at all cytoplasmic areas adjacent to the myelin proper and that adjacent myelin lamellae can move in relation to each other. PMID:6035645

  7. Influence of the axial magnetic field on sheath development after current zero in a vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe

    2017-06-01

    After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.

  8. Monoenergetic acceleration of a target foil by circularly polarized laser pulse in RPA regime without thermal heating

    NASA Astrophysics Data System (ADS)

    Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G.

    2012-12-01

    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.

  9. Simplified Methods for Improving the Blast Resistance of Cold-Formed Steel Walls

    DTIC Science & Technology

    2011-01-01

    sheathing products such as oriented strand board ( OSB ) offer a level of blast resistance that may be effective in mitigating lower-level blast...considered in order to keep designs to a minimum cost. Standard sheathing materials such as OSB , gypsum and plywood— as well as specially selected sheathing...commercially available clip connectors. Sheathing materials such as gypsum and OSB are brittle and have significantly lower capacity than sheet steel

  10. An Everting Ureteral Access Sheath: Concepts and In Vitro Testing

    NASA Astrophysics Data System (ADS)

    Lee, Keith L.; Stoller, Marshall L.

    2007-04-01

    Ureteral access sheaths have been a recent innovation in facilitating ureteral stone surgery. Once properly placed, access sheaths allow the movement of ureteroscopes and other instruments through the ureter with minimal injury to the urothelium. However, there are shortcomings of the current device designs. Initial sheath placement requires significant force, and shear stress can injure the ureter. In addition, inadvertent advancement of the outer sheath without the inner introducer stylet can tear and avulse the ureter. A novel eversion design incorporating a lubricous film provides marked improvement over current access sheaths. In bench top and animal models, the eversion shealths require less force during advancement, cause less injury to the urothelial tissue, and have a lower potential of introducing extraneous materials (e.g., microbes) into a simulated urinary tract. While, the everting design provides important advantages over traditional non-everting designs, further preclinical and clinical trials are required.

  11. MAVEN Observations of Partially Developed Kelvin-Helmholtz Vortices at Mars.

    NASA Technical Reports Server (NTRS)

    Ruhunusiri, Suranga; Halekas, J. S.; McFadden, J. P.; Connerney, J. E. P.; Espley, J. R.; Harada, Y.; Livi, R.; Seki, C.; Mazelle, C.; Brain, D.

    2016-01-01

    We present preliminary results and interpretations for Mars Atmospheric and Volatile EvolutioN,(MAVEN) observations of magnetosheath-ionospheric boundary oscillations at Mars. Using centrifugal force arguments, we first predict that a signature of fully rolled up Kelvin-Helmholtz vortices at Mars is sheath ions that have a bulk motion toward the Sun. The sheath ions adjacent to a vortex should also accelerate to speeds higher than the mean sheath velocity. We also predict that while the ionospheric ions that are in the vortex accelerate antisunward, they never attain speeds exceeding that of the sheath ions, in stark contrast to KH vortices that arise at the Earths magnetopause. We observe accelerated sheath and ionospheric ions, but we do not observe sheath ions that have a bulk motion toward the Sun. Thus, we interpret these observations as KH vortices that have not fully rolled up.

  12. Spine Patterning Is Guided by Segmentation of the Notochord Sheath.

    PubMed

    Wopat, Susan; Bagwell, Jennifer; Sumigray, Kaelyn D; Dickson, Amy L; Huitema, Leonie F A; Poss, Kenneth D; Schulte-Merker, Stefan; Bagnat, Michel

    2018-02-20

    The spine is a segmented axial structure made of alternating vertebral bodies (centra) and intervertebral discs (IVDs) assembled around the notochord. Here, we show that, prior to centra formation, the outer epithelial cell layer of the zebrafish notochord, the sheath, segments into alternating domains corresponding to the prospective centra and IVD areas. This process occurs sequentially in an anteroposterior direction via the activation of Notch signaling in alternating segments of the sheath, which transition from cartilaginous to mineralizing domains. Subsequently, osteoblasts are recruited to the mineralized domains of the notochord sheath to form mature centra. Tissue-specific manipulation of Notch signaling in sheath cells produces notochord segmentation defects that are mirrored in the spine. Together, our findings demonstrate that notochord sheath segmentation provides a template for vertebral patterning in the zebrafish spine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Analytical model for the radio-frequency sheath

    NASA Astrophysics Data System (ADS)

    Czarnetzki, Uwe

    2013-12-01

    A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.

  14. Analytical model for the radio-frequency sheath.

    PubMed

    Czarnetzki, Uwe

    2013-12-01

    A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.

  15. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    NASA Astrophysics Data System (ADS)

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu

    2013-07-01

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  16. Refluxed electrons direct laser acceleration in ultrahigh laser and relativistic critical density plasma interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Zhao, Z. Q.

    2015-01-15

    Refluxed electrons direct laser acceleration is proposed so as to generate a high-charge energetic electron beam. When a laser pulse is incident on a relativistic critical density target, the rising edge of the pulse heats the target and the sheath fields on the both sides of the target reflux some electrons inside the expanding target. These electrons can be trapped and accelerated due to the self-transparency and the negative longitudinal electrostatic field in the expanding target. Some of the electrons can be accelerated to energies exceeding the ponderomotive limit 1/2a{sub 0}{sup 2}mc{sup 2}. Effective temperature significantly above the ponderomotive scalingmore » is observed. Furthermore, due to the limited expanding length, the laser propagating instabilities are suppressed in the interaction. Thus, high collimated beams with tens of μC charge can be generated.« less

  17. Biosorption of metal elements by exopolymer nanofibrils excreted from Leptothrix cells.

    PubMed

    Kunoh, Tatsuki; Nakanishi, Makoto; Kusano, Yoshihiro; Itadani, Atsushi; Ando, Kota; Matsumoto, Syuji; Tamura, Katsunori; Kunoh, Hitoshi; Takada, Jun

    2017-10-01

    Leptothrix species, aquatic Fe-oxidizing bacteria, excrete nano-scaled exopolymer fibrils. Once excreted, the fibrils weave together and coalesce to form extracellular, microtubular, immature sheaths encasing catenulate cells of Leptothrix. The immature sheaths, composed of aggregated nanofibrils with a homogeneous-looking matrix, attract and bind aqueous-phase inorganics, especially Fe, P, and Si, to form seemingly solid, mature sheaths of a hybrid organic-inorganic nature. To verify our assumption that the organic skeleton of the sheaths might sorb a broad range of other metallic and nonmetallic elements, we examined the sorption potential of chemically and enzymatically prepared protein-free organic sheath remnants for 47 available elements. The sheath remnants were found by XRF to sorb each of the 47 elements, although their sorption degree varied among the elements: >35% atomic percentages for Ti, Y, Zr, Ru, Rh, Ag, and Au. Electron microscopy, energy dispersive x-ray spectroscopy, electron and x-ray diffractions, and Fourier transform infrared spectroscopy analyses of sheath remnants that had sorbed Ag, Cu, and Pt revealed that (i) the sheath remnants comprised a 5-10 nm thick aggregation of fibrils, (ii) the test elements were distributed almost homogeneously throughout the fibrillar aggregate, (iii) the nanofibril matrix sorbing the elements was nearly amorphous, and (iv) these elements plausibly were bound to the matrix by ionic binding, especially via OH. The present results show that the constitutive protein-free exopolymer nanofibrils of the sheaths can contribute to creating novel filtering materials for recovering and recycling useful and/or hazardous elements from the environment. Copyright © 2017. Published by Elsevier Ltd.

  18. Can using a peel-away sheath in shunt implantation prevent ventricular catheter obstruction?

    PubMed

    Camlar, Mahmut; Ersahin, Yusuf; Ozer, Fusun Demirçivi; Sen, Fatih; Orman, Mehmet

    2011-02-01

    Shunt obstruction is the most common shunt complication. In 2003, Kehler et al. used peel-away sheath while implanting the ventricular catheter in 20 patients. They found less revision rate in the peel-away sheath group. We aimed to test the efficacy of this technique in cadavers. We used 100 fresh brains obtained from medicolegal autopsies. Posterior parietal and frontal approaches were used to puncture the lateral ventricle in each cerebral hemisphere. The ventricle is punctured with a peel-away sheath system. After the ventricle is reached, the mandarin is retracted and the ventricular catheter is introduced through the opening. The ventricular catheter was removed from the ventricle, the opening at the tip of the ventricular catheter was checked out for obstruction, and the number of patent and plugged openings was recorded. This procedure was repeated four times for each location with and without using peel-away sheath. The control group consisted of the procedures done without using peel-away sheath. The number of the plugged openings in the peel-away sheath group was significantly smaller than the control group. There was no significant difference between the two groups in terms of gender and left and right cerebral hemispheres. The obstruction rate was significantly lower in the posterior parietal approach. Pearson's correlation showed that increasing age was associated with less obstruction rate. Peel-away sheath decreases the number of plugged openings of the ventricular catheter. A clinical cooperative study is needed to prove that a peel-away sheath should be included in the ventricular shunt systems in the market.

  19. Ultrasound-guided steroid tendon sheath injections in juvenile idiopathic arthritis: a 10-year single-center retrospective study.

    PubMed

    Peters, Shannon E; Laxer, Ronald M; Connolly, Bairbre L; Parra, Dimitri A

    2017-04-11

    The aims of this study were to: (a) Identify tendon sheaths most commonly treated with steroid injections in a pediatric patient population with Juvenile Idiopathic Arthritis (JIA); (b) Describe technical aspects of the procedure; (c) Characterize sonographic appearance of tenosynovitis in JIA; (d) Assess agreement between clinical request and sites injected. This was a 10 year single-center retrospective study (May 2006-April 2016) of patients with JIA referred by Rheumatology for ultrasound-guided tendon sheath injections. Patient demographics, clinical referral information, sonographic appearance of the tendon sheaths and technical aspects of the procedure were analyzed. There were 308 procedures of 244 patients (75% female, mean age 9.6 years) who underwent a total of 926 tendon sheath injections. Ankle tendons were most commonly injected (84.9%), specifically the tendon sheaths of tibialis posterior (22.3%), peroneus longus (20%) and brevis (19.7%). The majority of treated sites (91.9%) showed peritendinous fluid and sheath thickening on ultrasound. There were 2 minor intra-procedure complications without sequelae. A good agreement between clinical request and sites injected was observed. Ultrasound-guided tendon sheath injections with steroids are used frequently to treat patients with JIA. It is a safe intervention with a high technical success rate. The ankle region, specifically the medial compartment, is the site most commonly injected in this group of patients. The most common sonographic finding is peritendinous fluid and sheath thickening. These findings might assist clinicians and radiologists to characterize and more effectively manage tenosynovitis in patients with JIA.

  20. Fibrin Sheath Angioplasty: A Technique to Prevent Superior Vena Cava Stenosis Secondary to Dialysis Catheters

    PubMed Central

    Hacker, Robert I.; Garcia, Lorena De Marco; Chawla, Ankur; Panetta, Thomas F.

    2012-01-01

    Fibrin sheaths are a heterogeneous matrix of cells and debris that form around catheters and are a known cause of central venous stenosis and catheter failure. A total of 50 cases of central venous catheter fibrin sheath angioplasty (FSA) after catheter removal or exchange are presented. A retrospective review of an outpatient office database identified 70 eligible patients over a 19-month period. After informed consent was obtained, the dialysis catheter exiting the skin was clamped, amputated, and a wire was inserted. The catheter was then removed and a 9-French sheath was inserted into the superior vena cava, a venogram was performed. If a fibrin sheath was present, angioplasty was performed using an 8 × 4 or 10 × 4 balloon along the entire length of the fibrin sheath. A completion venogram was performed to document obliteration of the sheath. During the study, 50 patients were diagnosed with a fibrin sheath, and 43 had no pre-existing central venous stenosis. After FSA, 39 of the 43 patient's (91%) central systems remained patent without the need for subsequent interventions; 3 patients (7%) developed subclavian stenoses requiring repeat angioplasty and stenting; 1 patent (2.3%) developed an occlusion requiring a reintervention. Seven patients with prior central stenosis required multiple angioplasties; five required stenting of their central lesions. Every patient had follow-up fistulograms to document long-term patency. We propose that FSA is a prudent and safe procedure that may help reduce the risk of central venous stenosis from fibrin sheaths due to central venous catheters. PMID:23997555

  1. MEMS Gate Structures for Electric Propulsion Applications

    DTIC Science & Technology

    2006-07-12

    distance between gates of dual gate system V = grid voltage Dsheath = sheath thickness Va = anode voltage E = electric field Vemitter = emitter voltage Es...minutes. A hot pressed boron nitride target (4N) in the hexagonal phase (h- BN) was sputtered in a RF magnetron sputtering gun. To promote the nucleation...and nanoFETs. This paper concludes with a discussion on using MEMS gates for dual -grid electron field emission applications. II. Gate Design I I

  2. Ponderomotive ion acceleration in dense magnetized laser-irradiated thick target plasmas

    NASA Astrophysics Data System (ADS)

    Sinha, Ujjwal; Kaw, Predhiman

    2012-03-01

    When a circularly polarized laser pulse falls on an overdense plasma, it displaces the electrons via ponderomotive force creating a double layer. The double layer constitutes of an ion and electron sheath with in which the electrostatic field present is responsible for ion acceleration. In this paper, we have analyzed the effect a static longitudinal magnetic field has over the ion acceleration mechanism. The longitudinal magnetic field changes the plasma dielectric constant due to cyclotron effects which in turn enhances or reduces the ponderomotive force exerted by the laser depending on whether the laser is left or right circularly polarized. Also, the analysis of the ion space charge region present behind the ion sheath of the laser piston that undergoes coulomb explosion has been explored for the first time. We have studied the interaction of an incoming ion beam with the laser piston and the ion space charge. It has been found that the exploding ion space charge has the ability to act as an energy amplifier for incoming ion beams.

  3. Renal Fenestration Closure Technique in Fenestrated Endovascular Repair for Pararenal Aortic Aneurysm.

    PubMed

    Gallitto, Enrico; Gargiulo, Mauro; Faggioli, Gianluca; Sonetto, Alessia; Mascoli, Chiara; Pini, Rodolfo; Abualhin, Mohamhed; Stella, Andrea

    2018-05-01

    To describe an endovascular technique to close a renal artery fenestration during fenestrated endograft implant for a pararenal abdominal aortic aneurysm (p-AAA) without interfering with other visceral vessels. A 76-year-old man with p-AAA underwent repair by a 4 fenestrations custom-made endograft. At the intraprocedural angiography, the right renal artery was occluded. To avoid a high-flow endoleak from fenestration, we performed the following technique: a 9F-steerable sheath was used to advance a 7F sheath through the fenestration into aneurism. A balloon-expandable covered stent was deployed across the fenestration and then occluded by 2 vascular plugs. At the completion angiography, there was no endoleak from the right renal fenestration, and at 6-month period, p-AAA remained completely excluded. The present technique can be a safe and effective therapeutic option to propose in cases of impossible target visceral vessels cannulation during p-AAA repair using a custom-made device to avoid the aneurysmal sac perfusion. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. A Semianalytical Ion Current Model for Radio Frequency Driven Collisionless Sheaths

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2001-01-01

    We propose a semianalytical ion dynamics model for a collisionless radio frequency biased sheath. The model uses bulk plasma conditions and electrode boundary condition to predict ion impact energy distribution and electrical properties of the sheath. The proposed model accounts for ion inertia and ion current modulation at bias frequencies that are of the same order of magnitude as the ion plasma frequency. A relaxation equation for ion current oscillations is derived which is coupled with a damped potential equation in order to model ion inertia effects. We find that inclusion of ion current modulation in the sheath model shows marked improvements in the predictions of sheath electrical properties and ion energy distribution function.

  5. Joint mice migration into the deep digital flexor tendon sheath in dogs. Clinical cases and anatomical study.

    PubMed

    Post, C; Guerrero, T; Ohlerth, S; Hässig, M; Voss, K; Montavon, P M

    2008-01-01

    This study describes the appearance of 'joint mice' in the sheath of the deep digital flexor muscle tendon (DDFT) due to osteochondritis dissecans (OCD) lesions in the talocrural joint of 12 dogs. Surgical excision of all free fragments in the DDFT sheath was performed in five dogs, and their clinical progression was documented. The excision of free fragments from the DDFT sheath, but not arthro-tomy, proved clinically beneficial despite the presence of degenerative joint disease. The anatomical communication between the talocrural joint and the DDFT sheath and its dimensions are further illustrated with the use of contrast media and dissection of cadaver limbs.

  6. Development of a core sheath process for production of oxide fibers

    NASA Technical Reports Server (NTRS)

    Freske, S.

    1972-01-01

    Improvements were sought in an oxide fiber of a core sheath configuration intended for structural applications at 2000 F (1093 C). Discontinuities in the core were eliminated by using core materials other than pure alumina, and continuous core sheath fibers were produced. In the case of some core materials, the continuous sections were sufficiently long for applications in short fiber composites. Creep at 2000 F (1093 C) was found to be due, in most cases, to breaks in the core, allowing the glass sheath to creep. Evidence was obtained indicating that a closer match between the thermal expansion coefficient of the sheath and the core would greatly improve the strength.

  7. [Ultrasound-guided rectus sheath block for upper abdominal surgery].

    PubMed

    Osaka, Yoshimune; Kashiwagi, Masanori; Nagatsuka, Yukio; Oosaku, Masayoshi; Hirose, Chikako

    2010-08-01

    Upper abdominal surgery leads to severe postoperative pain. Insufficient postoperative analgesia accompanies a high incidence of complications. Therefore, postoperative analgesia is very important. The epidural analgesia has many advantages. However it has a high risk of epidural hematoma in anticoagulated patients. Rectus sheath block provided safer and more reliable analgesia in recent years, by the development of ultrasound tools. We experienced two cases of the rectus sheath block in upper abdominal surgery under ultrasound guidance. Ultrasound guided rectus sheath block can reduce the risk of peritoneal puncture, bleeding, and other complications. Rectus sheath block is very effective to reduce postoperative pain in upper abdominal surgery as an alternative method to epidural anesthesia in anticoagulated patients.

  8. Onset of normal and inverse homoclinic bifurcation in a double plasma system near a plasma fireball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Vramori; Sarma, Bornali; Sarma, Arun

    Plasma fireballs are generated due to a localized discharge and appear as a luminous glow with a sharp boundary, which suggests the presence of a localized electric field such as electrical sheath or double layer structure. The present work reports the observation of normal and inverse homoclinic bifurcation phenomena in plasma oscillations that are excited in the presence of fireball in a double plasma device. The controlling parameters for these observations are the ratio of target to source chamber (n{sub T}/n{sub S}) densities and applied electrode voltage. Homoclinic bifurcation is noticed in the plasma potential fluctuations as the system evolvesmore » from narrow to long time period oscillations and vice versa with the change of control parameter. The dynamical transition in plasma fireball is demonstrated by spectral analysis, recurrence quantification analysis (RQA), and statistical measures, viz., skewness and kurtosis. The increasing trend of normalized variance reflects that enhancing n{sub T}/n{sub S} induces irregularity in plasma dynamics. The exponential growth of the time period is strongly indicative of homoclinic bifurcation in the system. The gradual decrease of skewness and increase of kurtosis with the increase of n{sub T}/n{sub S} also reflect growing complexity in the system. The visual change of recurrence plot and gradual enhancement of RQA variables DET, L{sub max}, and ENT reflects the bifurcation behavior in the dynamics. The combination of RQA and spectral analysis is a clear evidence that homoclinic bifurcation occurs due to the presence of plasma fireball with different density ratios. However, inverse bifurcation takes place due to the change of fireball voltage. Some of the features observed in the experiment are consistent with a model that describes the dynamics of ionization instabilities.« less

  9. Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Profiling of Benign and Malignant Nerve Sheath

    DTIC Science & Technology

    2007-05-01

    Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients PRINCIPAL INVESTIGATOR: Matt van de Rijn, M.D., Ph.D. Torsten...Annual 3. DATES COVERED 1 May 2006 –30 Apr 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Genomic and Expression Profiling of Benign and Malignant Nerve...Award Number: DAMD17-03-1-0297 Title: Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis

  10. Research on stress distribution regularity of cement sheaths of radial well based on ABAQUS

    NASA Astrophysics Data System (ADS)

    Shi, Jihui; Cheng, Yuanfang; Li, Xiaolong; Xiao, Wen; Li, Menglai

    2017-12-01

    To ensure desirable outcome of hydraulic fracturing based on ultra-short radius radial systems, it is required to investigate the stress distribution regularity and stability of the cement sheath. On the basis of the theoretical model of the cement sheath stress distribution, a reservoir mechanical model was built using the finite element software, ABAQUS, according to the physical property of a certain oil reservoir of the Shengli oilfield. The stress distribution of the casing-cement-sheath-formation system under the practical condition was simulated, based on which analyses were conducted from multiple points of view. Results show that the stress on the internal interface of the cement sheath exceeds that on the external interface, and fluctuates with higher amplitudes, which means that the internal interface is the most failure-prone. The unevenness of the cement sheath stress distribution grows with the increasing horizontal principal stress ratio, and so does the variation magnitude. This indicates that higher horizontal principal stress ratios are unfavourable for the structural stability of the cement sheath. Both the wellbore quantity of the URRS and the physical property of the material can affect the cement sheath distribution. It is suggested to optimize the quantity of the radial wellbore and use cement with a lower elastic modulus and higher Poisson’s ratio. At last, the impact level of the above factor was analysed, with the help of the grey correlation analysis.

  11. 3D geometry and kinematic evolution of the Wadi Mayh sheath fold, Oman, using detailed mapping from high-resolution photography

    NASA Astrophysics Data System (ADS)

    Cornish, Sam; Searle, Mike

    2017-08-01

    The Wadi Mayh sheath fold in north-eastern Oman is one of the largest and best-exposed sheath folds known, and presents a unique opportunity to better understand this somewhat enigmatic style of deformation. We undertook high-resolution photographic surveying along Wadi Mayh to document the sheath fold in 61 georeferenced panoramic photomerges. Here we present ten such images that provide a structural interpretation of the sheath fold and surrounding structure. We resolve this structure in a simplified three-dimensional model and in two orthogonal cross sections, and propose a kinematic evolution to explain the geometry. The Wadi Mayh sheath fold is the most prominent example within what we suggest is a composite sequence of sheath folds, which is itself enclosed within a SSW-closing recumbent syncline at the base of the major Saih Hatat nappe. Sheath folding is accommodated within Permian Saiq Formation limestones showing carpholite assemblages (6-8 kbar; 275-375 °C). A major discontinuity separates this sequence from enveloping older rock units. The sequence formed during progressive top-to-north, ductile shearing as the overlying nappe migrated northwards with respect to the underthrusting Hulw unit. This process occurred during SSW-directed exhumation of partially subducted continental crust in NE Oman, approximately 15 Ma after obduction of the Oman ophiolite initiated.

  12. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrailh, P.; LAPLACE, CNRS, F-31062 Toulouse; Schneider Electric, Centre de Recherche 38 TEC, 38050 Grenoble Cedex 09

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion inmore » this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.« less

  13. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Sandolache, G.; Rowe, S.

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.

  14. Autoantibodies against vinculin in patients with chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Beppu, Minako; Sawai, Setsu; Satoh, Mamoru; Mori, Masahiro; Kazami, Takahiro; Misawa, Sonoko; Shibuya, Kazumoto; Ishibashi, Masumi; Sogawa, Kazuyuki; Kado, Sayaka; Kodera, Yoshio; Nomura, Fumio; Kuwabara, Satoshi

    2015-10-15

    To identify the target molecules of chronic inflammatory demyelinating polyneuropathy (CIDP), we used proteomic-based approach in the extracted proteins from porcine cauda equina. Two of 31 CIDP patients had markedly elevated serum autoantibodies against vinculin, a cell adhesion protein. Both of the patients with anti-vinculin antibodies had similar clinical manifestation, which are compatible with those of "typical" CIDP. Immunocytochemistry showed that vinculin was stained at the myelin sheath of the sciatic nerves by serum samples. Our results suggest that vinculin is a possible immunological target molecule in a subpopulation of typical CIDP patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Highly intensified emission of laser-accelerated electrons from a foil target through an additional rear laser plasma

    NASA Astrophysics Data System (ADS)

    Inoue, Shunsuke; Nakamiya, Yoshihide; Teramoto, Kensuke; Hashida, Masaki; Sakabe, Shuji

    2018-04-01

    Intensification of electrons escaping from an intense laser-produced plasma is demonstrated by using double femtosecond laser pulses. The electron density distribution at the rear surface of a laser-irradiated foil target is controlled by preirradiation to suppress sheath field growth and to expand the plasma into which the fast electrons are released. Consequently, the number of electrons escaping from the plasma that have an energy of 380 keV increases by a factor of 7. The experimental results are well explained by numerical simulations of a foil plasma with a preformed plasma and analytical evaluations considering the plasma expansion.

  16. Time-Resolved Tandem Faraday Cup Development for High Energy TNSA Particles

    NASA Astrophysics Data System (ADS)

    Padalino, S.; Simone, A.; Turner, E.; Ginnane, M. K.; Glisic, M.; Kousar, B.; Smith, A.; Sangster, C.; Regan, S.

    2015-11-01

    MTW and OMEGA EP Lasers at LLE utilize ultra-intense laser light to produce high-energy ion pulses through Target Normal Sheath Acceleration (TNSA). A Time Resolved Tandem Faraday Cup (TRTF) was designed and built to collect and differentiate protons from heavy ions (HI) produced during TNSA. The TRTF includes a replaceable thickness absorber capable of stopping a range of user-selectable HI emitted from TNSA plasma. HI stop within the primary cup, while less massive particles continue through and deposit their remaining charge in the secondary cup, releasing secondary electrons in the process. The time-resolved beam current generated in each cup will be measured on a fast storage scope in multiple channels. A charge-exchange foil at the TRTF entrance modifies the charge state distribution of HI to a known distribution. Using this distribution and the time of flight of the HI, the total HI current can be determined. Initial tests of the TRTF have been made using a proton beam produced by SUNY Geneseo's 1.7 MV Pelletron accelerator. A substantial reduction in secondary electron production, from 70% of the proton beam current at 2MeV down to 0.7%, was achieved by installing a pair of dipole magnet deflectors which successfully returned the electrons to the cups in the TRTF. Ultimately the TRTF will be used to normalize a variety of nuclear physics cross sections and stopping power measurements. Based in part upon work supported by a DOE NNSA Award#DE-NA0001944.

  17. Comparison of 2 Kinds of Methods for the Treatment of Bladder Calculi.

    PubMed

    Jia, Qilei; Jin, Tao; Wang, Kunjie; Zheng, ZeGui; Deng, Jiafu; Wang, Haibo

    2018-04-01

    To evaluate the safety and efficacy of sheath (JQL sheath) in the treatment of bladder calculi. We used the novel sheath that we have invented. The water sealing cap can only be passed through the ureteroscope without water leakage, and the diameters of the side hole and the sheath are sufficiently large. The clinical data of the 2 groups of patients include 45 cases of the novel sheath group and 41 cases in the control group. The overall success rate of the 2 groups was 94.79%. The success rate of the new stone sheath group was 97.78% and that of the control group was 90.24%. The operation times were 25.8 ± 12.5 and 46.6 ± 26.3 minutes for the new stone sheath and control groups, respectively. The stones were divided into 3 groups according to their sizes: less than 1.5, 1.5-2.5, and greater than 2.5 cm. The durations of the novel sheath groups were 12.5 ± 6.5, 24.5 ± 9.5, and 37.5 ± 11.5 minutes, whereas those of the control groups were 17.6 ± 6.5, 39.5 ± 18.5, and 49.5 ± 20.5 minutes. Five patients with unsuccessful endovascular treatment were treated with open surgery. Among the 5 cases, 1 case belongs to the novel sheath group and 4 cases to the control group. The novel sheath, whose production is simple and low cost, improves the efficiency of transurethral treatment of bladder calculi and shortens the operation time; furthermore, it involves skills that can be easily mastered and presents clinical application value. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Ion temperature profiles in front of a negative planar electrode studied by a one-dimensional two-fluid model

    NASA Astrophysics Data System (ADS)

    Gyergyek, T.; Kovačič, J.

    2016-06-01

    Plasma-wall transition is studied by a one-dimensional steady state two-fluid model. Continuity and momentum exchange equations are used for the electrons, while the continuity, momentum exchange, and energy transport equation are used for the ions. Electrons are assumed to be isothermal. The closure of ion equations is made by the assumption that the heat flux is zero. The model equations are solved for potential, ion and electron density, and velocity and ion temperature as independent variables. The model includes coulomb collisions between ions and electrons and charge exchange collisions between ions and neutral atoms of the same species and same mass. The neutral atoms are assumed to be essentially at rest. The model is solved for finite ratio ɛ = /λ D L between the Debye length and λD and ionization length L in the pre-sheath and in the sheath at the same time. Charge exchange collisions heat the ions in the sheath and the pre-sheath. Even a small increase of the frequency of charge exchange collisions causes a substantial increase of ion temperature. Coulomb collisions have negligible effect on ion temperature in the pre-sheath, while in the sheath they cause a small cooling of ions. The increase of ɛ causes the increase of ion temperature. From the ion density and temperature profiles, the polytropic function κ is calculated according to its definition given by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)]. The obtained profiles of κ indicate that the ion flow is isothermal only in a relatively narrow region in the pre-sheath, while close to the sheath edge and in the sheath it is closer to adiabatic. The ion sound velocity is space dependent and exhibits a maximum. This maximum indicates the location of the sheath edge only in the limit ɛ → 0 .

  19. Protective sheath for a continuous measurement thermocouple

    DOEpatents

    Phillippi, R.M.

    1991-12-03

    Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device. 4 figures.

  20. Protective sheath for a continuous measurement thermocouple

    DOEpatents

    Phillippi, R. Michael

    1991-01-01

    Disclosed is a protective thermocouple sheath of a magnesia graphite refractory material for use in continuous temperature measurements of molten metal in a metallurgical ladle and having a basic slag layer thereon. The sheath includes an elongated torpedo-shaped sheath body formed of a refractory composition and having an interior borehole extending axially therethrough and adapted to receive a thermocouple. The sheath body includes a lower end which is closed about the borehole and forms a narrow, tapered tip. The sheath body also includes a first body portion integral with the tapered tip and having a relatively constant cross section and providing a thin wall around the borehole. The sheath body also includes a second body portion having a relatively constant cross section larger than the cross section of the first body portion and providing a thicker wall around the borehole. The borehole terminates in an open end at the second body portion. The tapered tip is adapted to penetrate the slag layer and the thicker second body portion and its magnesia constituent material are adapted to withstand chemical attack thereon from the slag layer. The graphite constituent improves thermal conductivity of the refractory material and, thus, enhances the thermal responsiveness of the device.

  1. Current sheath behavior and its velocity enhancement in a low energy Mather-type plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghamir, F. M.; Behbahani, R. A.

    The dynamics of the plasma sheath layer and its velocity enhancement have been studied in a low energy (4.9 kJ) Mather-type plasma focus device. Experiments were performed to study the effect of the Lorentz force variation on the current sheath expansion and movement, as well as the existence of traction between all parts of the sheath layer. Two different shape of anodes (cylindrical and step) along with an axial magnetic probe were used to investigate the effects of various experimental conditions, namely different charging voltages and gas pressures. In order to explore the upper limit of the current sheath velocity,more » a comparison has been made between the experimental data gathered by the probe and the Lee's computational model. The limitations governing the enhancement of the current sheath velocity that can lead to the deterioration of a good focusing phenomenon were also investigated. The increase of the current sheath velocity due to the usage of the step anode on ion generation and hard x-ray emissions have been demonstrated by means of an ion collector and a hard x-ray detector.« less

  2. Modeling RF-induced Plasma-Surface Interactions with VSim

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.

    2014-10-01

    An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.

  3. Dual mTORC1/2 inhibition induces anti-proliferative effect in NF1-associated plexiform neurofibroma and malignant peripheral nerve sheath tumor cells

    PubMed Central

    Hivelin, Mikael; Nusbaum, Patrick; Hubas, Arnaud; Laurendeau, Ingrid; Lantieri, Laurent; Wolkenstein, Pierre; Vidaud, Michel; Pasmant, Eric; Chapuis, Nicolas; Parfait, Béatrice

    2016-01-01

    Approximately 30-50% of individuals with Neurofibromatosis type 1 develop benign peripheral nerve sheath tumors, called plexiform neurofibromas (PNFs). PNFs can undergo malignant transformation to highly metastatic malignant peripheral nerve sheath tumors (MPNSTs) in 5-10% of NF1 patients, with poor prognosis. No effective systemic therapy is currently available for unresectable tumors. In tumors, the NF1 gene deficiency leads to Ras hyperactivation causing the subsequent activation of the AKT/mTOR and Raf/MEK/ERK pathways and inducing multiple cellular responses including cell proliferation. In this study, three NF1-null MPNST-derived cell lines (90-8, 88-14 and 96-2), STS26T sporadic MPNST cell line and PNF-derived primary Schwann cells were used to test responses to AZD8055, an ATP-competitive “active-site” mTOR inhibitor. In contrast to rapamycin treatment which only partially affected mTORC1 signaling, AZD8055 induced a strong inhibition of mTORC1 and mTORC2 signaling in MPNST-derived cell lines and PNF-derived Schwann cells. AZD8055 induced full blockade of mTORC1 leading to an efficient decrease of global protein synthesis. A higher cytotoxic effect was observed with AZD8055 compared to rapamycin in the NF1-null MPNST-derived cell lines with IC50 ranging from 70 to 140 nM and antiproliferative effect was confirmed in PNF-derived Schwann cells. Cell migration was impaired by AZD8055 treatment and cell cycle analysis showed a G0/G1 arrest. Combined effects of AZD8055 and PD0325901 MEK inhibitor as well as BRD4 (BromoDomain-containing protein 4) inhibitors showed a synergistic antiproliferative effect. These data suggest that NF1-associated peripheral nerve sheath tumors are an ideal target for AZD8055 as a single molecule or in combined therapies. PMID:26840085

  4. Ultrasonographic assessment of the equine palmar tendons

    PubMed Central

    Padaliya, N. R.; Ranpariya, J. J.; Kumar, Dharmendra; Javia, C. B.; Barvalia, D. R.

    2015-01-01

    Aim: The present study was conducted to evaluate the equine palmar tendon by ultrasonography (USG) in standing the position. Materials and Methods: USG of palmar tendons was performed in 40 adult horses using linear transducer having frequency of 10-18 MHz (e-soate, My Lab FIVE) and L52 linear array transducer (Titan, SonoSite) with frequencies ranging from 8 to 10 MHz. Palmar tendon was divided into 7 levels from distal to accessory carpal bone up to ergot in transverse scanning and 3 levels in longitudinal scanning. Results: The USG evaluation was very useful for diagnosis of affections of the conditions such as chronic bowed tendon, suspensory ligament desmitis, carpal sheath tenosynovitis and digital sheath effusions. The mean cross-sectional area (cm2) of affected tendons was significantly increased in affected than normal tendons. The echogenicity was also found reduced in affected tendons and ligaments along with disorganization of fiber alignment depending on the severity of lesion and injury. Conclusion: USG proved ideal diagnostic tool for diagnosis and post-treatment healing assessment of tendon injuries in horses. PMID:27047074

  5. Adaptation of the ammoniacal silver reaction to cytochemical demonstration of myelin basic protein.

    PubMed

    Staykova, M; Jordanov, J; Goranov, I

    1978-01-01

    A modification of Black and Ansley's ammoniacal silver reaction (ASR) for histones is proposed for visualizing myelin basic protien (MBP) in the nervous system. The reaction is performed on histological sections of tissues fixed in neutralized formalin-alcohol and delipidized in the course of the routine paraffin embedding. The deparaffinized sections are again treated with formalin in order to make the "unmasked" by the delipidization basic groups of MBP reactive to ammoniacal silver. After treatment with this reagent MBP of the myelin sheaths of the nerve fibres is impregnated brownish-black. Deparaffinized sections subjected to an extraction of MBP with hydrochloric acid exhibit a negative reaction at the level of the myelin sheaths the same reaction being preserved at the level of the nuclear histones. The reaction is positive in paper spots of nervous tissue extracts obtained with the same acid. These assays indicate the specificity of the modified ASR. The method can be used for studies on the processes of myelination and demylination in normal histogenesis and in pathology of the nervous tissue.

  6. Broadening the spectrum of SMARCB1-associated malignant tumors: a case of uterine leiomyosarcoma in a patient with schwannomatosis.

    PubMed

    Paganini, Irene; Sestini, Roberta; Cacciatore, Matilde; Capone, Gabriele L; Candita, Luisa; Paolello, Concetta; Sbaraglia, Marta; Dei Tos, Angelo P; Rossi, Sabrina; Papi, Laura

    2015-08-01

    Schwannomatosis is a tumor predisposition syndrome characterized by development of multiple intracranial, spinal, and peripheral schwannomas. Constitutional alterations in either SMARCB1 or LZTR1 on 22q are responsible of the phenotype. We describe a 34-year-old woman who developed multiple benign peripheral sheath tumors and a uterine leiomyosarcoma. The patient carried a de novo constitutional alteration in exon 8 of SMARCB1, c.1118G > A, which destroyed the splice donor site of intron 8. Two schwannomas and the leiomyosarcoma of the patient retained the SMARCB1 mutation; in addition, the tumors showed loss of the normal chromosome 22. In conclusion, our findings enlarged the spectrum of SMARCB1-predisposing tumors and demonstrated, for the first time, the association of a malignant smooth muscle tumor to schwannomatosis. Therefore, clinicians should definitely be aware that a constitutional SMARCB1 mutation, which mainly predisposes to benign nerve sheath tumors, may also predispose to aggressive neoplasms throughout life, within an unexpected spectrum. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Comprehensive analysis of microRNA-Seq and target mRNAs of rice sheath blight pathogen provides new insights into pathogenic regulatory mechanisms.

    PubMed

    Lin, Runmao; He, Liye; He, Jiayu; Qin, Peigang; Wang, Yanran; Deng, Qiming; Yang, Xiaoting; Li, Shuangcheng; Wang, Shiquan; Wang, Wenming; Liu, Huainian; Li, Ping; Zheng, Aiping

    2016-07-03

    MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNAs that regulate gene expression by targeting mRNAs for degradation or inhibiting protein translation. To investigate whether miRNAs regulate the pathogenesis in necrotrophic fungus Rhizoctonia solani AG1 IA, which causes significant yield loss in main economically important crops, and to determine the regulatory mechanism occurring during pathogenesis, we constructed hyphal small RNA libraries from six different infection periods of the rice leaf. Through sequencing and analysis, 177 miRNA-like small RNAs (milRNAs) were identified, including 15 candidate pathogenic novel milRNAs predicted by functional annotations of their target mRNAs and expression patterns of milRNAs and mRNAs during infection. Reverse transcription-quantitative polymerase chain reaction results for randomly selected milRNAs demonstrated that our novel comprehensive predictions had a high level of accuracy. In our predicted pathogenic protein-protein interaction network of R. solani, we added the related regulatory milRNAs of these core coding genes into the network, and could understand the relationships among these regulatory factors more clearly at the systems level. Furthermore, the putative pathogenic Rhi-milR-16, which negatively regulates target gene expression, was experimentally validated to have regulatory functions by a dual-luciferase reporter assay. Additionally, 23 candidate rice miRNAs that may involve in plant immunity against R. solani were discovered. This first study on novel pathogenic milRNAs of R. solani AG1 IA and the recognition of target genes involved in pathogenicity, as well as rice miRNAs, participated in defence against R. solani could provide new insights into revealing the pathogenic mechanisms of the severe rice sheath blight disease. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. Theory of ion-matrix-sheath dynamics

    NASA Astrophysics Data System (ADS)

    Kos, L.; Tskhakaya, D. D.

    2018-01-01

    The time evolution of a one-dimensional, uni-polar ion sheath (an "ion matrix sheath") is investigated. The analytical solutions for the ion-fluid and Poisson's equations are found for an arbitrary time dependence of the wall-applied negative potential. In the case that the wall potential is large and remains constant after its ramp-up application, the explicit time dependencies of the sheath's parameters during the initial stage of the process are given. The characteristic rate of approaching the stationary state, satisfying the Child-Langmuir law, is determined.

  9. The in-process control of PVC sheath of a double core cable

    NASA Astrophysics Data System (ADS)

    Galeeva, N. S.; Redko, V. V.; Redko, L. A.

    2018-01-01

    In this work the possibility of the sheath hermiticity testing by measuring of the cable capacity per unit length variation during spark testing is considered. The research object is 2×0.75 HO3VVH2-F cable. According to the physical modelling it is proved that such defect of sheath as pinhole through the whole thickness of sheath can be registered for the test length 10 cm with test voltage frequencies 1kHz and 10kHz.

  10. Side-welded fast response sheathed thermocouple

    DOEpatents

    Carr, K.R.

    A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4 to 5 times faster and the thermal shock and cycling capabilities are substantially improved.

  11. Kinetic model for the collisionless sheath of a collisional plasma

    DOE PAGES

    Tang, Xian-Zhu; Guo, Zehua

    2016-08-04

    Collisional plasmas typically have mean-free-path still much greater than the Debye length, so the sheath is mostly collisionless. Once the plasma density, temperature, and flow are specified at the sheath entrance, the profile variation of electron and ion density, temperature, flow speed, and conductive heat fluxes inside the sheath is set by collisionless dynamics, and can be predicted by an analytical kinetic model distribution. Finally, these predictions are contrasted in this paper with direct kinetic simulations, showing good agreement.

  12. Side-welded fast response sheathed thermocouple

    DOEpatents

    Carr, Kenneth R.

    1981-01-01

    A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4-5 times faster and the thermal shock and cycling capabilities are substantially improved.

  13. Oligodendrogenesis in the normal and pathological central nervous system

    PubMed Central

    El Waly, Bilal; Macchi, Magali; Cayre, Myriam; Durbec, Pascale

    2014-01-01

    Oligodendrocytes (OLGs) are generated late in development and myelination is thus a tardive event in the brain developmental process. It is however maintained whole life long at lower rate, and myelin sheath is crucial for proper signal transmission and neuronal survival. Unfortunately, OLGs present a high susceptibility to oxidative stress, thus demyelination often takes place secondary to diverse brain lesions or pathologies. OLGs can also be the target of immune attacks, leading to primary demyelination lesions. Following oligodendrocytic death, spontaneous remyelination may occur to a certain extent. In this review, we will mainly focus on the adult brain and on the two main sources of progenitor cells that contribute to oligodendrogenesis: parenchymal oligodendrocyte precursor cells (OPCs) and subventricular zone (SVZ)-derived progenitors. We will shortly come back on the main steps of oligodendrogenesis in the postnatal and adult brain, and summarize the key factors involved in the determination of oligodendrocytic fate. We will then shed light on the main causes of demyelination in the adult brain and present the animal models that have been developed to get insight on the demyelination/remyelination process. Finally, we will synthetize the results of studies searching for factors able to modulate spontaneous myelin repair. PMID:24971048

  14. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  15. Posterior rectus sheath hernia causing intermittent small bowel obstruction.

    PubMed

    Lenobel, Scott; Lenobel, Robert; Yu, Joseph

    2014-09-01

    A posterior rectus sheath hernia is an abdominal wall hernia that is rarely encountered. Owing to its rarity, it can be easily overlooked in the setting of a patient presenting with abdominal pain. We report a case of a posterior rectus sheath hernia that caused intermittent small bowel obstruction. The unusual aspects of this case are that the defect was large, measuring 6 cm in the transverse diameter, and that it contained small bowel within a large portion of the rectus sheath. Because the defect was large and affected nearly the entire posterior rectus sheath, it was difficult to discern on computed tomography until a small bowel obstruction developed. In this case, a limited awareness of this clinical entity contributed to the delay in diagnosis.

  16. Sheathless focusing and separation of microparticles using tilted angle travelling surface acoustic waves.

    PubMed

    Ahmed, Husnain; Destgeer, Ghulam; Park, Jinsoo; Afzal, Muhammad; Sung, Hyung Jin

    2018-06-18

    The sheathless focusing and separation of microparticles is an important pre-processing step in various biochemical assays in which enriched sample isolation is critical. Most previous microfluidic particle separation techniques have used a sheath flow to achieve efficient sample focusing. The sheath flow diluted the analyte, and required additional microchannels and accurate flow control. We demonstrated a tilted angle travelling surface acoustic wave (taTSAW)-based sheathless focusing and separation of particles in a continuous flow. The proposed device consisted of a piezoelectric substrate with a pair of interdigitated transducers (IDTs) deposited at two different angles relative to the flow direction. A Y-shaped polydimethylsiloxane (PDMS) microchannel having one inlet and two outlet ports was positioned on top of the IDTs such that the acoustic energy coupling into the fluid was maximized and wave attenuation by the PDMS walls was minimized. The two IDTs independently produced high-frequency taTSAWs, which propagated at ±30° with respect to the flow direction and imparted a direct acoustic radiation force onto the target particles. A sample mixture containing 4.8 and 3.2 µm particles was focused and then separated by the actuation of the IDTs at 194 and 136 MHz frequencies, respectively, without using an additional sheath flow. The proposed taTSAW-based particle separation device offered a high purity > 99% at the both outlets over a wide range of flow speeds (up to 83.3 mm/s).

  17. Structural Conservation of the Myoviridae Phage Tail Sheath Protein Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aksyuk, Anastasia A.; Kurochkina, Lidia P.; Fokine, Andrei

    2012-02-21

    Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450 {angstrom} diameter icosahedral head and a 2000 {angstrom}-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4 {angstrom} resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3 {angstrom} resolution. Despite low sequence identity between these proteins, all ofmore » these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.« less

  18. Composite pheochromocytoma with a malignant peripheral nerve sheath tumor: Case report and review of the literature.

    PubMed

    Namekawa, Takeshi; Utsumi, Takanobu; Imamoto, Takashi; Kawamura, Koji; Oide, Takashi; Tanaka, Tomoaki; Nihei, Naoki; Suzuki, Hiroyoshi; Nakatani, Yukio; Ichikawa, Tomohiko

    2016-07-01

    Adrenal tumors with more than one cellular component are uncommon. Furthermore, an adrenal tumor composed of a pheochromocytoma and a malignant peripheral nerve sheath tumor is extremely rare. A composite pheochromocytoma with malignant peripheral nerve sheath tumor in a 42-year-old man is reported here. After adequate preoperative control, left adrenalectomy was performed simultaneously with resection of the ipsilateral kidney for spontaneous rupture of the left adrenal tumor. Pathological findings demonstrated pheochromocytoma and malignant peripheral nerve sheath tumor in a ruptured adrenal tumor. To date, there have been only four reported cases of composite pheochromocytoma with malignant peripheral nerve sheath tumor, so the present case is only the fifth case in the world. Despite the very poor prognosis of patients with pheochromocytoma and malignant peripheral nerve sheath tumors reported in the literature, the patient remains well without evidence of recurrence or new metastatic lesions at 36 months postoperatively. Copyright © 2012. Published by Elsevier Taiwan.

  19. Thermocouple shield

    DOEpatents

    Ripley, Edward B [Knoxville, TN

    2009-11-24

    A thermocouple shield for use in radio frequency fields. In some embodiments the shield includes an electrically conductive tube that houses a standard thermocouple having a thermocouple junction. The electrically conductive tube protects the thermocouple from damage by an RF (including microwave) field and mitigates erroneous temperature readings due to the microwave or RF field. The thermocouple may be surrounded by a ceramic sheath to further protect the thermocouple. The ceramic sheath is generally formed from a material that is transparent to the wavelength of the microwave or RF energy. The microwave transparency property precludes heating of the ceramic sheath due to microwave coupling, which could affect the accuracy of temperature measurements. The ceramic sheath material is typically an electrically insulating material. The electrically insulative properties of the ceramic sheath help avert electrical arcing, which could damage the thermocouple junction. The electrically conductive tube is generally disposed around the thermocouple junction and disposed around at least a portion of the ceramic sheath. The concepts of the thermocouple shield may be incorporated into an integrated shielded thermocouple assembly.

  20. RF Models for Plasma-Surface Interactions in VSim

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, D. N.; Pankin, A. Y.; Roark, C. M.; Zhou, C. D.; Stoltz, P. H.; Kruger, S. E.

    2014-10-01

    An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath physics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath, can thus be simulated in complex geometries. Generalizations of the model to include sputtering, secondary electron emission, and effects from multiple ion species and background magnetic fields are summarized; related numerical results are also presented. In addition, improved tools for plasma chemistry and IEDF/EEDF visualization and modeling are discussed, as well as our initial efforts toward the development of hybrid fluid/kinetic transition capabilities within VSim. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling industrial plasma processes. Supported by US DoE SBIR-I/II Award DE-SC0009501.

  1. The influence of the breakdown electric field in the configuration of lightning corona sheath on charge distribution in the channel

    NASA Astrophysics Data System (ADS)

    Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje

    2014-11-01

    A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the boundary condition for total electric field is fulfilled. The new density of space charge and the new radius of channel corona envelope, immediately before the return stroke stage, are calculated. The obtained results indicate a strong dependence of channel charge distribution on the breakdown electric field value. Among the compared return stroke models, transmission-line-type models have exhibited a good agreement with the predictions of the Gauss' law regarding total breakdown electric field on the corona sheath's outer surface. The generalized lightning traveling current source return stroke model gives similar results if the adjustment of the space charge density inside the corona sheath is performed.

  2. A novel platform to study magnetized high-velocity collisionless shocks

    DOE PAGES

    Higginson, D. P.; Korneev, Ph; Béard, J.; ...

    2014-12-13

    An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less

  3. A novel platform to study magnetized high-velocity collisionless shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginson, D. P.; Korneev, Ph; Béard, J.

    An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less

  4. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...

  5. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. [Statutory Provisions] All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically...

  6. Pathologic changes in the cytokeratin pericanalicular sheath in experimental cholestasis and alcoholic fatty liver.

    PubMed

    Ohta, M; Marceau, N; French, S W

    1988-07-01

    The architectural framework of the pericanalicular sheath composed of cytokeratin intermediate filaments (IFs) was examined after phalloidin treatment, bile duct ligation, and alcoholic fatty liver in rats to assess the role of IFs in experimental cholestasis. Electron microscopy examination of whole mount unembedded extracted liver slices was employed to visualize the cytoskeleton. Immunofluorescence staining and immunoelectron microscopy of the sheath were also performed using monoclonal antibodies to rat hepatocyte cytokeratins CK49 and CK55. The thickness of the wall and the diameter of the lumens were measured. In the phalloidin-treated rats, the pericanalicular sheath was markedly dilated and thickened. Immunofluorescence staining showed that the CK49 and CK55 IFs were localized in the pericanalicular region, particularly in the pericentral area. Immunoelectron microscopy documented that the IFs at the thickened pericanalicular sheath consisted of both CK49 and CK55, which means that the thickening of the bile canaliculus was in part due to an increase of IFs and not just due to an increase in actin filaments. In the livers where the bile duct was ligated, the pericanalicular sheath was irregularly dilated and some parts of the sheath appeared thinned out or missing. The belt desmosome also appeared absent focally in the pericanalicular sheath. Immunofluorescence studies showed that the staining for CK49 and CK55 was reduced focally in the pericanalicular region. The CK55 antibody stained the cytoplasm of hepatocytes in the periportal area more intensely when compared with the controls. These results indicated that the pericanalicular sheath and the belt desmosome were focally disrupted in response to extrahepatic bile duct obstruction. In the ethanol-fed rats, the pericanalicular sheath was dilated, thickened and tortuous, and appeared focally flattened by large fat droplets. IFs in the cytoplasm were pushed to the cell periphery and were compressed against each other by the fat droplets. CK55 and CK49 appeared increased as indicated by the observed immunofluorescence at the pericanalicular region. Immunoelectron microscopy showed that IFs of the thickened pericanalicular sheath were composed of CK55 and CK49. It is suggested that the pericanalicular sheath functions to mechanically provide a scaffolding for the bile canaliculus which is vulnerable to the different forces involved in cholestasis of different pathogenesis such as focal compression and distortion by fat, hypertrophy in response to increased F actin and focal destruction by increased intracanalicular pressure.

  7. ICME-driven sheath regions deplete the outer radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Hietala, H.; Kilpua, E. K.; Turner, D. L.

    2013-12-01

    It is an outstanding question in space weather and solar wind-magnetosphere interaction studies, why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the storm drivers. Traditionally drivers have been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, an 'ICME event' is a complex structure: The core is a magnetic cloud (MC; a clear flux rope structure). If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the MC. While both the sheath and the MC feature elevated solar wind speed, their other properties are very different. For instance, the sheath region has typically a much higher dynamic pressure than the magnetic cloud. Moreover, the sheath region has a high power in magnetic field and dynamic pressure Ultra Low Frequency (ULF) range fluctuations, while the MC is characterised by an extremely smooth magnetic field. Magnetic clouds have been recognised as important drivers magnetospheric activity since they can comprise long periods of very large southward Interplanetary Magnetic Field (IMF). Nevertheless, previous studies have shown that sheath regions can also act as storm drivers. In this study, we analyse the effects of ICME-driven sheath regions on the relativistic electron fluxes observed by GOES satellites on the geostationary orbit. We perform a superposed epoch analysis of 31 sheath regions from solar cycle 23. Our results show that the sheaths cause an approximately one order of magnitude decrease in the 24h-averaged electron fluxes. Typically the fluxes also stay below the pre-event level for more than two days. Further analysis reveals that the decrease does not depend on, e.g., whether the sheath interval contains predominantly northward or southward IMF. The main controlling factors of the loss seem to be the dynamic pressure jump at the shock and the level of solar wind dynamic pressure ULF fluctuations within the sheath. We also discuss the superposed epoch time series of the Dst index and the stand-off distance of the magnetopause during these intervals. Based on our results we suggest that the separation of the effects from different parts of the ICME (sheath, MC) will be crucial for understanding how radiation belt electrons react to the CME impact.

  8. Plasma-Sheath-Surface Dynamics

    DTIC Science & Technology

    1990-09-01

    Particle Simulations of Cross-Field Plasma Sheaths," Phys. Fluids B, pp 1069- 1082 , May 1990. IJ. Morey and C.K. Birdsall, "Traveling Wave-Tube Simulation...Theilhaber, "Analytic Solutions and Particle Simulations of Cross-Field Plasma Sheaths," Phys. Fluids B, pp 1069- 1082 , May 1990. S.E. Parker, and C.K

  9. Allelic analysis of sheath blight resistance with association mapping in rice

    USDA-ARS?s Scientific Manuscript database

    Sheath blight is one of the most devastating diseases world-wide in rice. For the first time, we adopted association mapping to identify quantitative trait loci for sheath blight resistance from the USDA rice mini-core collection. The phenotyping was conducted with a newly developed micro-chamber me...

  10. High-Temperature, Bellows Hybrid Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)

    1994-01-01

    A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.

  11. Electric/magnetic field sensor

    DOEpatents

    Schill, Jr., Robert A.; Popek, Marc [Las Vegas, NV

    2009-01-27

    A UNLV novel electric/magnetic dot sensor includes a loop of conductor having two ends to the loop, a first end and a second end; the first end of the conductor seamlessly secured to a first conductor within a first sheath; the second end of the conductor seamlessly secured to a second conductor within a second sheath; and the first sheath and the second sheath positioned adjacent each other. The UNLV novel sensor can be made by removing outer layers in a segment of coaxial cable, leaving a continuous link of essentially uncovered conductor between two coaxial cable legs.

  12. Abduction of Arm Facilitates Correction of Kinked Peel-Away Sheath During Subclavian Central Line Placement.

    PubMed

    Kim, Sunghoon

    2015-12-01

    A tunneled central line catheter placement using a subclavian vein approach can be complicated by an occurrence of peel-away sheath kink which prevents the advancement of the catheter through the sheath. The kink is created due to the angular junction of subclavian and brachiocephalic veins which meet at 90 degree angle. A technique is described which corrects the peel-away sheath kink by extending the subclavian/brachiocephalic vein angle to greater than 90 degrees by abducting the patient's arm. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Porous protective solid phase micro-extractor sheath

    DOEpatents

    Andresen, Brian D.; Randich, Erik

    2005-03-29

    A porous protective sheath for active extraction media used in solid phase microextraction (SPME). The sheath permits exposure of the media to the environment without the necessity of extending a fragile coated fiber from a protective tube or needle. Subsequently, the sheath can pierce and seal with GC-MS septums, allowing direct injection of samples into inlet ports of analytical equipment. Use of the porous protective sheath, within which the active extraction media is contained, mitigates the problems of: 1) fiber breakage while the fiber is extended during sampling, 2) active media coating loss caused by physical contact of the bare fiber with the sampling environment; and 3) coating slough-off during fiber extension and retraction operations caused by rubbing action between the fiber and protective needle or tube.

  14. Posterior Rectus Sheath Hernia Causing Intermittent Small Bowel Obstruction

    PubMed Central

    Lenobel, Scott; Lenobel, Robert; Yu, Joseph

    2014-01-01

    A posterior rectus sheath hernia is an abdominal wall hernia that is rarely encountered. Owing to its rarity, it can be easily overlooked in the setting of a patient presenting with abdominal pain. We report a case of a posterior rectus sheath hernia that caused intermittent small bowel obstruction. The unusual aspects of this case are that the defect was large, measuring 6 cm in the transverse diameter, and that it contained small bowel within a large portion of the rectus sheath. Because the defect was large and affected nearly the entire posterior rectus sheath, it was difficult to discern on computed tomography until a small bowel obstruction developed. In this case, a limited awareness of this clinical entity contributed to the delay in diagnosis. PMID:25426248

  15. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  16. Experimental study on the fire protection properties of PVC sheath for old and new cables.

    PubMed

    Xie, Qiyuan; Zhang, Heping; Tong, Lin

    2010-07-15

    The objective of the present study is to analyze the fire protection properties of old and new cables through TG, FTIR and MCC experiments. The results show that the mass loss of old cable sheath is clearly larger than the new one when the temperature is higher than 550 K in air or nitrogen atmosphere. It suggests that the old cable sheath starts to pyrolyze generally at the same temperature based on the analysis of the onset temperatures of mass loss. The results also show that there is a main peak DTG for the old and new cable sheath under each condition. However, the main peak DTG of old cable sheath is larger than that of the new cable sheath, especially in air atmosphere. The FTIR experiments show that the HCl is released by the new cable later but more quickly than the old cable. The MCC experiments suggest that compared with the new one, the peak heat release rate is larger for the old cable. It illustrates that the old cable sheath generally pyrolyzes and combusts more strongly and completely than the new one. Namely, the fire protection properties of the old cable in old buildings are relatively weak. 2010 Elsevier B.V. All rights reserved.

  17. Atomic Structure of Type VI Contractile Sheath from Pseudomonas aeruginosa.

    PubMed

    Salih, Osman; He, Shaoda; Planamente, Sara; Stach, Lasse; MacDonald, James T; Manoli, Eleni; Scheres, Sjors H W; Filloux, Alain; Freemont, Paul S

    2018-02-06

    Pseudomonas aeruginosa has three type VI secretion systems (T6SSs), H1-, H2-, and H3-T6SS, each belonging to a distinct group. The two T6SS components, TssB/VipA and TssC/VipB, assemble to form tubules that conserve structural/functional homology with tail sheaths of contractile bacteriophages and pyocins. Here, we used cryoelectron microscopy to solve the structure of the H1-T6SS P. aeruginosa TssB1C1 sheath at 3.3 Å resolution. Our structure allowed us to resolve some features of the T6SS sheath that were not resolved in the Vibrio cholerae VipAB and Francisella tularensis IglAB structures. Comparison with sheath structures from other contractile machines, including T4 phage and R-type pyocins, provides a better understanding of how these systems have conserved similar functions/mechanisms despite evolution. We used the P. aeruginosa R2 pyocin as a structural template to build an atomic model of the TssB1C1 sheath in its extended conformation, allowing us to propose a coiled-spring-like mechanism for T6SS sheath contraction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Novel everting urologic access sheath: decreased axial forces during insertion.

    PubMed

    Rubenstein, Jonathan N; Garcia, Maurice; Camargo, Affonso H L A; Joel, Andrew B; Stoller, Marshall L

    2005-12-01

    Advancement of urologic instruments through the genitourinary tract is associated with significant axial forces that likely contribute to patient discomfort, even after injection of a local anesthetic, and may lead to mucosal trauma, postprocedural dysuria and hematuria, and increased susceptibility to infection and strictures. Placing an everting urethral sheath prior to instrumentation may decrease these problems. Two 7-cm-long, 5-mm diameter urethral luminal models were created, one with and one without an artificial stricture. We measured the forces generated during advancement of a novel everting access sheath (Cystoglide; Percutaneous Systems, Mountain View, CA) through the models in comparison with a representative cystoscope and a urologic dilator simulating a traditional access sheath. The mean force generated during advancement of the everting sheath was significantly less than that of both the representative cystoscope (P<0.01) and the traditional access sheath (P<0.01). This held true for the urethral models both with and without an artificial stricture (P<0.01) and with and without lubrication (P<0.01). This novel introduction sheath markedly decreased the axial forces applied to an artificial urethral luminal wall. It is possible that the clinical use of this technology will decrease the discomfort and potential complications associated with lower urinary-tract endoscopy.

  19. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.

    2017-10-01

    Recent advances in finite-difference time-domain (FDTD) modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers) are much smaller than the wavelengths of fast (tens of cm) and slow (millimeter) waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC) models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core) FDTD/PIC simulations of Alcator C-Mod antenna operation.

  20. Laser Diagnostic Method for Plasma Sheath Potential Mapping

    NASA Astrophysics Data System (ADS)

    Walsh, Sean P.

    Electric propulsion systems are gaining popularity in the aerospace field as a viable option for long term positioning and thrusting applications. In particular, Hall thrusters have shown promise as the primary propulsion engine for space probes during interplanetary journeys. However, the interaction between propellant xenon ions and the ceramic channel wall continues to remain a complex issue. The most significant source of power loss in Hall thrusters is due to electron and ion currents through the sheath to the channel wall. A sheath is a region of high electric field that separates a plasma from a wall or surface in contact. Plasma electrons with enough energy to penetrate the sheath may result emission of a secondary electron from the wall. With significant secondary electron emission (SEE), the sheath voltage is reduced and so too is the electron retarding electric field. Therefore, a lower sheath voltage further increases the particle loss to the wall of a Hall thruster and leads to plasma cooling and lower efficiency. To further understand sheath dynamics, laser-induced fluorescence is employed to provide a non-invasive, in situ, and spatially resolved technique for measuring xenon ion velocity. By scanning the laser wavelength over an electronic transition of singly ionized xenon and collecting the resulting fluorescence, one can determine the ion velocity from the Doppler shifted absorption. Knowing the velocity at multiple points in the sheath, it can be converted to a relative electric potential profile which can reveal a lot about the plasma-wall interaction and the severity of SEE. The challenge of adequately measuring sheath potential profiles is optimizing the experiment to maximize the signal-to-noise ratio. A strong signal with low noise, enables high resolution measurements and increases the depth of measurement in the sheath, where the signal strength is lowest. Many improvements were made to reduce the background luminosity, increase the fluorescence intensity and collection efficiency, and optimize the signal processing equipment. Doing so has allowed for a spatial resolution of 60 microns and a maximum depth of measurement of 2 mm depending on conditions. Sheaths surrounding common Hall thruster ceramics at various plasma conditions were measured in an attempt to determine the effect of SEE and a numerical analysis of the plasma-wall interactions was conducted to further understand the phenomena and compare against obtained data.

  1. Comparison of the analgesic efficacy of ultrasound-guided rectus sheath block and local anesthetic infiltration for laparoscopic percutaneous extraperitoneal closure in children.

    PubMed

    Uchinami, Yuka; Sakuraya, Fumika; Tanaka, Nobuhiro; Hoshino, Koji; Mikami, Eri; Ishikawa, Taro; Fujii, Hitomi; Ishikawa, Takehiko; Morimoto, Yuji

    2017-05-01

    Ultrasound-guided rectus sheath block and local anesthetic infiltration are the standard options to improve postoperative pain for children undergoing surgery with a midline incision. However, there is no study comparing the effect of ultrasound-guided rectus sheath block with local anesthetic infiltration for children undergoing laparoscopic surgery. The aim of this trial was to compare the onset of ultrasound-guided rectus sheath block with that of local anesthetic infiltration for laparoscopic percutaneous extraperitoneal closure in children. We performed an observer-blinded, randomized, prospective trial. Enrolled patients were assigned to either an ultrasound-guided rectus sheath block group or a local anesthetic infiltration group. The ultrasound-guided rectus sheath block group (n = 17) received ultrasound-guided rectus sheath block with 0.2 ml·kg -1 of 0.375% ropivacaine per side in the posterior rectus sheath compartment. The local anesthetic infiltration group (n = 17) received local anesthetic infiltration with 0.2 ml·kg -1 of 0.75% ropivacaine. The Face, Legs, Activity, Cry, and Consolability (FLACC) pain scores were recorded at 0, 30, 60 min after arrival at the postanesthesia care unit. Of the 37 patients enrolled in this study, 34 completed the study protocol. A significant difference in the pain scale between the ultrasound-guided rectus sheath block group and local anesthetic infiltration group was found at 0 min (median: 0, interquartile range [IQR]: 0-1.5, vs median: 1, IQR 0-5, confidence interval of median [95% CI]: 0-3, P = 0.048), but no significant difference was found at 30 min (median: 1, IQR: 0-4 vs median: 6, IQR: 0-7, 95% CI: 0-5, P = 0.061), or 60 min (median: 0, IQR: 0-2 vs median: 1, IQR: 0-3, 95% CI: -1 to 1, P = 0.310). No significant difference was found in anesthesia time between the ultrasound-guided rectus sheath block and local anesthetic infiltration groups. No procedure-related complications were observed in either group. Ultrasound-guided rectus sheath block is a quicker way to control postoperative pain for pediatric patients undergoing laparoscopic extraperitoneal closure than local anesthetic infiltration, and thus may provide a clinical benefit. © 2017 John Wiley & Sons Ltd.

  2. Mice with GFAP-targeted loss of neurofibromin demonstrate increased axonal MET expression with aging.

    PubMed

    Su, Weiping; Xing, Rubing; Guha, Abhijit; Gutmann, David H; Sherman, Larry S

    2007-05-01

    Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1. (c) 2007 Wiley-Liss, Inc.

  3. The Biology of Bone and Ligament Healing.

    PubMed

    Cottrell, Jessica A; Turner, Jessica Cardenas; Arinzeh, Treena Livingston; O'Connor, J Patrick

    2016-12-01

    This review describes the normal healing process for bone, ligaments, and tendons, including primary and secondary healing as well as bone-to-bone fusion. It depicts the important mediators and cell types involved in the inflammatory, reparative, and remodeling stages of each healing process. It also describes the main challenges for clinicians when trying to repair bone, ligaments, and tendons with a specific emphasis on Charcot neuropathy, fifth metatarsal fractures, arthrodesis, and tendon sheath and adhesions. Current treatment options and research areas are also reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Factors Affecting the Geo-effectiveness of Shocks and Sheaths at 1 AU

    PubMed Central

    Lugaz, N.; Farrugia, C. J.; Winslow, R. M.; Al-Haddad, N.; Kilpua, E. K. J.; Riley, P.

    2018-01-01

    We identify all fast-mode forward shocks, whose sheath regions resulted in a moderate (56 cases) or intense (38 cases) geomagnetic storm during 18.5 years from January 1997 to June 2015. We study their main properties, interplanetary causes and geo-effects. We find that half (49/94) such shocks are associated with interacting coronal mass ejections (CMEs), as they are either shocks propagating into a preceding CME (35 cases) or a shock propagating into the sheath region of a preceding shock (14 cases). About half (22/45) of the shocks driven by isolated transients and which have geo-effective sheaths compress pre-existing southward Bz. Most of the remaining sheaths appear to have planar structures with southward magnetic fields, including some with planar structures consistent with field line draping ahead of the magnetic ejecta. A typical (median) geo-effective shock-sheath structure drives a geomagnetic storm with peak Dst of −88 nT, pushes the subsolar magnetopause location to 6.3 RE, i.e. below geosynchronous orbit and is associated with substorms with a peak AL-index of −1350 nT. There are some important differences between sheaths associated with CME-CME interaction (stronger storms) and those associated with isolated CMEs (stronger compression of the magnetosphere). We detail six case studies of different types of geo-effective shock-sheaths, as well as two events for which there was no geomagnetic storm but other magnetospheric effects. Finally, we discuss our results in terms of space weather forecasting, and potential effects on Earth’s radiation belts. PMID:29629250

  5. Factors Affecting the Geo-effectiveness of Shocks and Sheaths at 1 AU.

    PubMed

    Lugaz, N; Farrugia, C J; Winslow, R M; Al-Haddad, N; Kilpua, E K J; Riley, P

    2016-11-01

    We identify all fast-mode forward shocks, whose sheath regions resulted in a moderate (56 cases) or intense (38 cases) geomagnetic storm during 18.5 years from January 1997 to June 2015. We study their main properties, interplanetary causes and geo-effects. We find that half (49/94) such shocks are associated with interacting coronal mass ejections (CMEs), as they are either shocks propagating into a preceding CME (35 cases) or a shock propagating into the sheath region of a preceding shock (14 cases). About half (22/45) of the shocks driven by isolated transients and which have geo-effective sheaths compress pre-existing southward B z . Most of the remaining sheaths appear to have planar structures with southward magnetic fields, including some with planar structures consistent with field line draping ahead of the magnetic ejecta. A typical (median) geo-effective shock-sheath structure drives a geomagnetic storm with peak Dst of -88 nT, pushes the subsolar magnetopause location to 6.3 R E , i.e. below geosynchronous orbit and is associated with substorms with a peak AL-index of -1350 nT. There are some important differences between sheaths associated with CME-CME interaction (stronger storms) and those associated with isolated CMEs (stronger compression of the magnetosphere). We detail six case studies of different types of geo-effective shock-sheaths, as well as two events for which there was no geomagnetic storm but other magnetospheric effects. Finally, we discuss our results in terms of space weather forecasting, and potential effects on Earth's radiation belts.

  6. Theory and Simulation of Electron Sheaths and Anode Spots in Low Pressure Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Scheiner, Brett Stanford

    Electrodes in low pressure laboratory plasmas have a multitude of possible sheath structures when biased at a large positive potential. When the size of the electrode is small enough the electrode bias can be above the plasma potential. When this occurs an electron-rich sheath called an electron sheath is present at the electrode. Electron sheaths are most commonly found near Langmuir probes and other electrodes collecting the electron saturation current. Such electrodes have applications in the control of plasma parameters, dust confinement and circulation, control of scrape off layer plasmas, RF plasmas, and in plasma contactors and tethered space probes. The electron sheaths in these various systems most directly influence the plasma by determining how electron current is lost from the system. An understanding of how the electron sheath interfaces with the bulk plasma is necessary for understanding the behavior induced by positively biased electrodes in these plasmas. This thesis provides a dedicated theory of electron sheaths. Motivated by electron velocity distribution functions (EVDFs) observed in particle-in-cell (PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the presheath model, an electron pressure gradient accelerates electrons to near the electron thermal speed by the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. Using PIC simulations, the form of a sheath near a small electrode with bias near the plasma potential is also studied. When the electrode is biased near the plasma potential, the EVDFs exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, instead the plasma remains quasineutral up to the electrode. Once the bias exceeds the plasma potential an electron sheath is present. In this case, 2D EVDFs indicate that the flow moment has comparable contributions from the flow shift and loss-cone truncation. The case of an electrode at large positive bias relative to the plasma potential is also studied. Here, the rate of electron impact ionization of neutrals increases near the electrode. If this ionization rate is great enough a double layer forms. This double layer can move outward separating a high potential plasma at the electrode surface from the bulk plasma. This phenomenon is known as an anode spot. Informed by observations from the first PIC simulations of an anode spot, a model has been developed describing the onset in which ionization leads to the buildup of positive space charge and the formation of a potential well that traps electrons near the electrode surface. A model for steady-state properties based on current loss, power, and particle balance of the anode spot plasma is also presented.

  7. Theoretical and computational studies of the sheath of a planar wall

    NASA Astrophysics Data System (ADS)

    Giraudo, Martina; Camporeale, Enrico; Delzanno, Gian Luca; Lapenta, Giovanni

    2012-03-01

    We present an investigation of the stability and nonlinear evolution of the sheath of a planar wall. We focus on the electrostatic limit. The stability analysis is conducted with a fluid model where continuity and momentum equations for the electrons and ions are coupled through Poisson's equation. The effect of electron emission from the wall is studied parametrically. Our results show that a sheath instability associated with the emitted electrons can exist. Following Ref. [1], it is interpreted as a Rayleigh-Taylor instability driven by the favorable combination of the sheath electron density gradient and electric field. Fully kinetic Particle-In-Cell (PIC) simulations will also be presented to investigate whether this instability indeed exists and to study the nonlinear effect of electron emission on the sheath profiles. The simulations will be conducted with CPIC, a new electrostatic PIC code that couples the standard PIC algorithm with strategies for generation and adaptation of the computational grid. [4pt] [1] G.L. Delzanno, ``A paradigm for the stability of the plasma sheath against fluid perturbations,'' Phys. Plasmas 18, 103508 (2011).

  8. The divergence characteristics of constrained-sheath optics systems for use with 5-eV atomic oxygen sources

    NASA Technical Reports Server (NTRS)

    Anderson, John R.; Wilbur, Paul J.

    1989-01-01

    The potential usefulness of the constrained sheath optics concept as a means of controlling the divergence of low energy, high current density ion beams is examined numerically and experimentally. Numerical results demonstrate that some control of the divergence of typical ion beamlets can be achieved at perveance levels of interest by contouring the surface of the constrained sheath properly. Experimental results demonstrate that a sheath can be constrained by a wire mesh attached to the screen plate of the ion optics system. The numerically predicted beamlet divergence characteristics are shown to depart from those measured experimentally, and additional numerical analysis is used to demonstrate that this departure is probably due to distortions of the sheath caused by the fact that it attempts to conform to the individual wires that make up the sheath constraining mesh. The concept is considered potentially useful in controlling the divergence of ion beamlets in applications where low divergence, low energy, high current density beamlets are being sought, but more work is required to demonstrate this for net beam ion energies as low as 5 eV.

  9. Bedside Optic Nerve Sheath Diameter Assessment in the Identification of Increased Intracranial Pressure in Suspected Idiopathic Intracranial Hypertension.

    PubMed

    Irazuzta, Jose E; Brown, Martha E; Akhtar, Javed

    2016-01-01

    We determined whether the bedside assessment of the optic nerve sheath diameter could identify elevated intracranial pressure in individuals with suspected idiopathic intracranial hypertension. This was a single-center, prospective, rater-blinded study performed in a freestanding pediatric teaching hospital. Patients aged 12 to 18 years scheduled for an elective lumbar puncture with the suspicion of idiopathic intracranial hypertension were eligible to participate. Optic nerve sheath diameter was measured via ultrasonography before performing a sedated lumbar puncture for measuring cerebrospinal fluid opening pressure. Abnormal measurements were predefined as optic nerve sheath diameter ≥4.5 mm and a cerebrospinal fluid opening pressure greater than 20 cmH2O. Thirteen patients participated in the study, 10 of whom had elevated intracranial pressure. Optic nerve sheath diameter was able to predict or rule out elevated intracranial pressure in all patients. Noninvasive assessment of the optic nerve sheath diameter could help to identify patients with elevated intracranial pressure when idiopathic intracranial hypertension is suspected. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The fibrous flexor sheaths of the fingers.

    PubMed Central

    Jones, M M; Amis, A A

    1988-01-01

    The structure of the digital fibrous flexor sheath was examined by dissection and histology. The presence of a specific system of named fibrous tissue bands, forming annular and cruciate pulleys, was noted confirming details which are well established in the surgical literature although not detailed by the anatomical texts. These pulleys were linked by thin parts of the sheath. When the inner aspect of the sheath was examined, it was found that it was not a continuous smooth surface, as depicted in both anatomical and surgical texts. The thin parts of the sheath often overlapped the free edges of the pulleys before attaching to their superficial aspects, so that the pulleys possessed free edges within the sheath. Forty eight cadaveric fingers were examined in order to determine the frequency of occurrence and sizes of these overlaps. The largest and most frequent overlap was found at the distal end of the A2 pulley (which attaches to the proximal phalanx). Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 (cont.) Fig. 7 Fig. 8 Fig. 9 PMID:3417546

  11. The characteristics of RF modulated plasma boundary sheaths: An analysis of the standard sheath model

    NASA Astrophysics Data System (ADS)

    Naggary, Schabnam; Brinkmann, Ralf Peter

    2015-09-01

    The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.

  12. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides.

    PubMed

    Weiller, Florent; Moore, John P; Young, Philip; Driouich, Azeddine; Vivier, Melané A

    2017-03-01

    Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana , have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1-4) have previously been characterized from Heliophila coronopifolia , a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia . Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1-4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. The Brassicaceae species Heliophila coronopifolia produces root border-like cells that protect the root tip and secrete defensin peptides

    PubMed Central

    Weiller, Florent; Young, Philip; Driouich, Azeddine; Vivier, Melané A.

    2017-01-01

    Background and Aims Root border cells and border-like cells (BLCs), the latter originally described in Arabidopsis thaliana, have been described as cells released at the root tips of the species in which they occur. BLCs are thought to provide protection to root meristems similar to classical root border cells. In addition, four defensin peptides (Hc-AFP1–4) have previously been characterized from Heliophila coronopifolia, a South African semi-desert flower, and found to be strongly antifungal. This provided an opportunity to evaluate if the BLCs of H. coronopifolia indeed produce these defensins, which would provide evidence towards a defence role for BLCs. Methods Fluorescence microscopy, using live-cell-imaging technology, was used to characterize the BLCs of H. coronopifolia. Quantitative real-time PCR (qRT-PCR) analysis and immunofluorescence microscopy was used to characterize these defensin peptides. Key Results BLCs originated at the root apical meristem and formed a protective sheath at the tip and along the sides as the root elongated in solid medium. BLCs have a cellulose-enriched cell wall, intact nuclei and are embedded in a layer of pectin-rich mucilage. Pectinase treatments led to the dissolution of the sheath and dissociation of the root BLCs. Hc-AFP1–4 genes were all expressed in root tissues, but Hc-AFP3 transcripts were the most abundant in these tissues as measured by qRT-PCR. A polyclonal antibody that was cross-reactive with all four defensins, and probably recognizing a general plant defensin epitope, was used in fluorescence microscopy analysis to examine the presence of the peptides in the root tip and BLCs. Data confirmed the peptides present in the root tip tissues, the mucilage sheath and the BLCs. Conclusions This study provides a link between defensin peptides and BLCs, both embedded in a protective pectin mucilage sheath, during normal plant growth and development. The presence of the Hc-AFP3 defensin peptides in the BLCs suggests a role for these cells in root protection. PMID:27481828

  14. Particle flows to shape and voltage surface discontinuities in the electron sheath surrounding a high voltage solar array in LEO

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1991-01-01

    This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.

  15. Enhancing resolution of free-flow zone electrophoresis via a simple sheath-flow sample injection.

    PubMed

    Yang, Ying; Kong, Fan-Zhi; Liu, Ji; Li, Jun-Min; Liu, Xiao-Ping; Li, Guo-Qing; Wang, Ju-Fang; Xiao, Hua; Fan, Liu-Yin; Cao, Cheng-Xi; Li, Shan

    2016-07-01

    In this work, a simple and novel sheath-flow sample injection method (SFSIM) is introduced to reduce the band broadening of free-flow zone electrophoresis separation in newly developed self-balance free-flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C-phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free-flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath-flow sample injection method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Discontinuous model with semi analytical sheath interface for radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Miyashita, Masaru

    2016-09-01

    Sumitomo Heavy Industries, Ltd. provide many products utilizing plasma. In this study, we focus on the Radio Frequency (RF) plasma source by interior antenna. The plasma source is expected to be high density and low metal contamination. However, the sputtering the antenna cover by high energy ion from sheath voltage still have been problematic. We have developed the new model which can calculate sheath voltage wave form in the RF plasma source for realistic calculation time. This model is discontinuous that electronic fluid equation in plasma connect to usual passion equation in antenna cover and chamber with semi analytical sheath interface. We estimate the sputtering distribution based on calculated sheath voltage waveform by this model, sputtering yield and ion energy distribution function (IEDF) model. The estimated sputtering distribution reproduce the tendency of experimental results.

  17. The structure and development of the starch sheath in pea epicotyls

    NASA Technical Reports Server (NTRS)

    Sack, D. F.

    1985-01-01

    Graviperception in plant stems is thought to occur in endodermal cells differentiated as a starch sheath, but little is known about the ultrastructure of these cells in dicots. The structure of the pea starch sheath was studied with respect to gravity and to development in order to determine whether symplastic or apoplastic blockages exist and to describe any intracellular polarity. Amyloplasts increase in size towards the base of the epicotyl hook but are not consistently sedimented until the cells enter the zone exhibiting gravicurvature below the hook. The starch sheath cells are connected to each other and to cells of the cortex and the stele by plasmodesmata. A casparian strip exists in older endodermal cells but not at the stage that the endodermis is differentiated as a starch sheath. Amyloplasts were frequently observed in apparent contact with endoplasmic reticulum.

  18. Rectus sheath hematoma: three case reports

    PubMed Central

    Kapan, Selin; Turhan, Ahmet N; Alis, Halil; Kalayci, Mustafa U; Hatipoglu, Sinan; Yigitbas, Hakan; Aygun, Ersan

    2008-01-01

    Introduction Rectus sheath hematoma is an uncommon cause of acute abdominal pain. It is an accumulation of blood in the sheath of the rectus abdominis, secondary to rupture of an epigastric vessel or muscle tear. It could occur spontaneously or after trauma. They are usually located infraumblically and often misdiagnosed as acute abdomen, inflammatory diseases or tumours of the abdomen. Case presentation We reported three cases of rectus sheath hematoma presenting with a mass in the abdomen and diagnosed by computerized tomography. The patients recovered uneventfully after bed rest, intravenous fluid replacement, blood transfusion and analgesic treatment. Conclusion Rectus sheath hematoma is a rarely seen pathology often misdiagnosed as acute abdomen that may lead to unnecessary laparotomies. Computerized tomography must be chosen for definitive diagnosis since ultrasonography is subject to error due to misinterpretation of the images. Main therapy is conservative management. PMID:18221529

  19. Self-consistent simulation of high-frequency driven plasma sheaths

    NASA Astrophysics Data System (ADS)

    Shihab, Mohammed; Eremin, Denis; Mussenbrock, Thomas; Brinkmann, Ralf

    2011-10-01

    Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. The financial support from the Federal Ministry of Education and Research within the frame of the project ``Plasma-Technology-Grid'' and the support of the DFG via the collaborative research center SFB-TR87 is gratefully acknowledged.

  20. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology 1

    PubMed Central

    Edwards, Gerald E.; Black, Clanton C.

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given. The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C4-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO2 enters a leaf about 85% is fixed by the C4-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells. A technique also is given for the isolation of mesophyll cells from spinach leaves. Images PMID:16657571

  1. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2015-09-01

    Using the OMNI data for period 1976-2000, we investigate the temporal profiles of 20 plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS). To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide. As the analyzed SW types can interact with each other and change parameters as a result of such interaction, we investigate separately eights sequences of SW types: (1) CIR, (2) IS/CIR, (3) Ejecta, (4) Sheath/Ejecta, (5) IS/Sheath/Ejecta, (6) MC, (7) Sheath/MC, and (8) IS/Sheath/MC. The main conclusion is that the behavior of parameters in Sheath and in CIR are very similar both qualitatively and quantitatively. Both the high-speed stream (HSS) and the fast ICME play a role of pistons which push the plasma located ahead them. The increase of speed in HSS and ICME leads at first to formation of compression regions (CIR and Sheath, respectively) and then to IS. The occurrence of compression regions and IS increases the probability of growth of magnetospheric activity.

  2. Applicability of the Child-Langmuir laws versions for describing the glow discharge cathode sheath in CO2

    NASA Astrophysics Data System (ADS)

    Lisovskiy, Valeriy; Krol, Hennadii; Osmayev, Ruslan; Yegorenkov, Vladimir

    2016-09-01

    This work is devoted to the determination of the law that may be applicable to the description of the cathode sheath in CO2. To this end three versions of the Child-Langmuir law have been considered - a collision free one (for the ions moving through a cathode sheath without collisions with gas molecules) as well as two collision- related versions- one for a constant mean free path of positive ions and one for a constant mobility of positive ions. The current-voltage characteristics and the cathode sheath thickness of the glow discharge in carbon oxide have been simultaneously measured in the pressure range from 0.05 to 1 Torr and with the discharge current values up to 80 mA. The inter-electrode distance has been chosen such that the discharge consists only of the cathode sheath and a small portion of the negative glow, i.e. the experiments have been performed in short tubes. In this case the voltage drop across the cathode sheath is equal approximately to the voltage drop across the electrodes. In the whole range of the discharge conditions we have studied the cathode sheath characteristics are found to obey correctly only to the Child-Langmuir law version with a constant ion mobility. The reason for this phenomenon may be related with a significant conversion of carbon dioxide molecules.

  3. Addition of rectus sheath relaxation incisions to emergency midline laparotomy for peritonitis to prevent fascial dehiscence.

    PubMed

    Marwah, Sanjay; Marwah, Nisha; Singh, Mandeep; Kapoor, Ajay; Karwasra, Rajender Kumar

    2005-02-01

    The incidence of fascial dehiscence and incisional hernia after two methods for abdominal wound closure (rectus sheath relaxation incisions and conventional mass closure) was studied in a randomized prospective clinical trial in a consecutive series of 100 patients undergoing midline laparotomy for peritonitis. The two groups were well matched for etiologies of peritonitis, the surgical procedures performed, and the presence of known risk factors for fascial dehiscence. Fifty patients each were randomized either to the conventional continuous mass closure procedure or the rectus sheath relaxation incision technique (designed to increase wound elasticity and decrease tension in the suture line) using identical polypropylene sutures. The incidence of postoperative complications such as duration of ileus, chest infection, and wound infection were not statistically different between the two groups. The intensity of postoperative pain in the rectus sheath relaxation incision group was significantly less. The incidence of wound hematoma was significantly increased in the rectus sheath relaxation incision group. The incidences of fascial dehiscence (16% vs,28%; p < 0.05) and incisional hernia (18% vs, 30%; p < 0.05) were significantly lower after rectus sheath relaxation incisions compared to conventional mass closure. Closure of the midline laparotomy wound in cases of peritonitis using the rectus sheath relaxation technique is safe and less painful, provides increased wound elasticity and decreased tension on the suture line, and significantly decreases the incidence of wound dehiscence.

  4. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology.

    PubMed

    Edwards, G E; Black, C C

    1971-01-01

    A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given.The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C(4)-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO(2) enters a leaf about 85% is fixed by the C(4)-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells.A technique also is given for the isolation of mesophyll cells from spinach leaves.

  5. Using dust as probes to determine sheath extent and structure

    NASA Astrophysics Data System (ADS)

    Douglass, Angela; Land, V.; Qiao, K.; Matthews, L.; Hyde, T.

    2016-08-01

    Two in situ experimental methods are presented in which dust particles are used to determine the extent of the sheath and gain information about the time-averaged electric force profile within a radio frequency (RF) plasma sheath. These methods are advantageous because they are not only simple and quick to carry out, but they also can be performed using standard dusty plasma experimental equipment. In the first method, dust particles are tracked as they fall through the plasma towards the lower electrode. These trajectories are then used to determine the electric force on the particle as a function of height as well as the extent of the sheath. In the second method, dust particle levitation height is measured across a wide range of RF voltages. Similarities were observed between the two experiments, but in order to understand the underlying physics behind these observations, the same conditions were replicated using a self-consistent fluid model. Through comparison of the fluid model and experimental results, it is shown that the particles exhibiting a levitation height that is independent of RF voltage indicate the sheath edge - the boundary between the quasineutral bulk plasma and the sheath. Therefore, both of these simple and inexpensive, yet effective, methods can be applied across a wide range of experimental parameters in any ground-based RF plasma chamber to gain useful information regarding the sheath, which is needed for interpretation of dusty plasma experiments.

  6. FUEL ELEMENT AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.

    1961-04-25

    A nuclear fuel element in the form of a wire is reported. A bar of uranium is enclosed in a thin layer of aluminum and the composite is sheathed in beryllium, zirconium, or stainnless steel. The sheathed article is then drawn to wire form, heated to alloy the aluminum with both uranium and sheath, and finally cold worked.

  7. Quasineutral plasma expansion into infinite vacuum as a model for parallel ELM transport

    NASA Astrophysics Data System (ADS)

    Moulton, D.; Ghendrih, Ph; Fundamenski, W.; Manfredi, G.; Tskhakaya, D.

    2013-08-01

    An analytic solution for the expansion of a plasma into vacuum is assessed for its relevance to the parallel transport of edge localized mode (ELM) filaments along field lines. This solution solves the 1D1V Vlasov-Poisson equations for the adiabatic (instantaneous source), collisionless expansion of a Gaussian plasma bunch into an infinite space in the quasineutral limit. The quasineutral assumption is found to hold as long as λD0/σ0 ≲ 0.01 (where λD0 is the initial Debye length at peak density and σ0 is the parallel length of the Gaussian filament), a condition that is physically realistic. The inclusion of a boundary at x = L and consequent formation of a target sheath is found to have a negligible effect when L/σ0 ≳ 5, a condition that is physically plausible. Under the same condition, the target flux densities predicted by the analytic solution are well approximated by the ‘free-streaming’ equations used in previous experimental studies, strengthening the notion that these simple equations are physically reasonable. Importantly, the analytic solution predicts a zero heat flux density so that a fluid approach to the problem can be used equally well, at least when the source is instantaneous. It is found that, even for JET-like pedestal parameters, collisions can affect the expansion dynamics via electron temperature isotropization, although this is probably a secondary effect. Finally, the effect of a finite duration, τsrc, for the plasma source is investigated. As is found for an instantaneous source, when L/σ0 ≳ 5 the presence of a target sheath has a negligible effect, at least up to the explored range of τsrc = L/cs (where cs is the sound speed at the initial temperature).

  8. A smart core-sheath nanofiber that captures and releases red blood cells from the blood

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Hou, J.; Zhao, C.; Xin, Z.; Jin, J.; Li, C.; Wong, S.-C.; Yin, J.

    2016-01-01

    A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells.A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells. Electronic supplementary information (ESI) available: Electrospinning of polymer nanofibers; FTIR spectra and XPS spectra of PCL, PNIPAAm and PCL/PNIPAAm nanofibers; SEM images of PCL/PNIPAAm nanofibers with varied composition; PNIPAAm content on the sheath of nanofibers; stability of core-sheath PCL/PNIPAAm nanofibers. Platelet adhesion on the PCL/PNIPAAm nanofibers in the presence of NK; Protein adsorption on nanofibers. See DOI: 10.1039/c5nr07070h

  9. Ultrasound-guided rectus sheath block in children with umbilical hernia: Case series.

    PubMed

    Alsaeed, Abdul Hamid; Thallaj, Ahmed; Khalil, Nancy; Almutaq, Nada; Aljazaeri, Ayman

    2013-10-01

    Umbilical hernia repair, a common day-case surgery procedure in children, is associated with a significant postoperative pain. The most popular peripheral nerve blocks used in umbilical hernia repair are rectus sheath infiltration and caudal block. The rectus sheath block may offer improved pain relief following umbilical hernia repair with no undesired effects such as lower limb motor weakness or urinary retention seen with caudal block which might delay discharge from the hospital. Ultrasound guidance of peripheral nerve blocks has reduced the number of complications and improved the quality of blocks. The aim of this case series is to assess the post rectus sheath block pain relief in pediatric patients coming for umbilical surgery. Twenty two (22) children (age range: 1.5-8 years) scheduled for umbilical hernia repair were included in the study. Following the induction of general anesthesia, the ultrasonographic anatomy of the umbilical region was studied with a 5-16 MHz 50 mm linear probe. An ultrasound-guided posterior rectus sheath block of both rectus abdominis muscles (RMs) was performed (total of 44 punctures). An in-plain technique using Stimuplex A insulated facet tip needle 22G 50mm. Surgical conditions, intraoperative hemodynamic parameters, and postoperative analgesia by means of the modified CHEOPS scale were evaluated. ultrasonograghic visualization of the posterior sheath was possible in all patients. The ultrasound guided rectus sheath blockade provided sufficient analgesia in all children with no need for additional analgesia except for one patient who postoperatively required morphine 0.1 mg/kg intravenously. There were no complications. Ultrasound guidance enables performances of an effective rectus sheath block for umbilical hernia. Use of the Stimuplex A insulated facet tip needle 22G 50mm provides easy, less traumatic skin and rectus muscle penetration and satisfactory needle visualiza.

  10. LLE Review Quarterly Report (October - December 2007). Volume 113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuegel, Jonathan D.

    2007-12-01

    This volume of the LLE Review, covering October–December 2007, features “High-Intensity Laser–Plasma Interactions in the Refluxing Limit,” by P. M. Nilson, W. Theobald, J. Myatt, C. Stoeckl, M. Storm, O. V. Gotchev, J. D. Zuegel, R. Betti, D. D. Meyerhofer, and T. C. Sangster. In this article (p. 1), the authors report on target experiments using the Multi-Terawatt (MTW) Laser Facility to study isochoric heating of solid-density targets by fast electrons produced from intense, short-pulse laser irradiation. Electron refluxing occurs due to target-sheath field effects and contains most of the fast electrons within the target volume. This efficiently heats themore » solid-density plasma through collisions. X-ray spectroscopic measurements of absolute K α (x-radiation) photon yields and variations of the K β/K α b emission ratio both indicate that laser energy couples to fast electrons with a conversion efficiency of approximately 20%. Bulk electron temperatures of at least 200 eV are inferred for the smallest mass targets.« less

  11. A radio-frequency sheath model for complex waveforms

    NASA Astrophysics Data System (ADS)

    Turner, M. M.; Chabert, P.

    2014-04-01

    Plasma sheaths driven by radio-frequency voltages occur in contexts ranging from plasma processing to magnetically confined fusion experiments. An analytical understanding of such sheaths is therefore important, both intrinsically and as an element in more elaborate theoretical structures. Radio-frequency sheaths are commonly excited by highly anharmonic waveforms, but no analytical model exists for this general case. We present a mathematically simple sheath model that is in good agreement with earlier models for single frequency excitation, yet can be solved for arbitrary excitation waveforms. As examples, we discuss dual-frequency and pulse-like waveforms. The model employs the ansatz that the time-averaged electron density is a constant fraction of the ion density. In the cases we discuss, the error introduced by this approximation is small, and in general it can be quantified through an internal consistency condition of the model. This simple and accurate model is likely to have wide application.

  12. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grin, A.; Lstiburek, J.

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues weremore » discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.« less

  13. Bundle-sheath thylakoids from NADP-malic enzyme-type C4 plants require an exogenous electron donor for enzyme light activation.

    PubMed

    Lavergne, D; Droux, M; Jacquot, J P; Miginiac-Maslow, M; Champigny, M L; Gadal, P

    1985-10-01

    Light activation of either NADP-malate dehydrogenase (EC 1.1.1.82) or fructose-1,6-bisphosphate phosphatase (EC 3.1.3.11) was assayed in a reconstituted chloroplastic, system comprising the isolated proteins of the ferredoxin-thioredoxin light-activation system and thylakoids from either mesophyll or bundle-sheath tissues of different C4 plants. While C4-plant thylakoids functionned almost equally well with C3-or C4-plant proteins, the photosyntem-II-deficient bundle-sheath thylakoids from the NADP-malic enzyme type, were unable to perform enzyme photoactivation unless supplemented with an electron donor to photosystem I. Bundle-sheath thylakoids isolated from plants showing no photosystem-II deficiency did not require such an addition. The results are discussed with respect to a possible requirement for a physiological reductant of ferredoxin for enzyme light activation in bundle-sheath, tissues.

  14. Benign Peripheral Nerve Sheath Tumor in a Wild Toco Toucan ( Ramphastos toco ).

    PubMed

    Carvalho, Marcelo P N; Fernandes, Natalia C C A; Nemer, Viviane C; Neto, Ramiro N Dias; Teixeira, Rodrigo H F; Miranda, Bruna S; Mamprim, Maria J; Catão-Dias, José L; Réssio, Rodrigo A

    2016-09-01

    Peripheral nerve sheath tumors are a heterogeneous group of neoplasms that comprise neurofibromas, schwannomas, neurilemmomas, and perineuromas. In animals, peripheral nerve sheath neoplasms are most commonly diagnosed in dogs and cattle, followed by horses, goats, and cats, but their occurrence is uncommon in birds. An adult, free-living, male toco (common) toucan ( Ramphastos toco ) was admitted to the zoo animal clinic with weight loss, dehydration, and presence of a soft nodule adhered to the medial portion of the left pectoral muscle. Clinical, cytologic, and computed tomography scan results were indicative of a neoplasm. The toucan died during surgical resection of the mass. Necropsy, histopathologic, and immunohistochemical findings confirmed the diagnosis of benign peripheral nerve sheath tumor. To our knowledge, benign peripheral nerve sheath tumor has not previously been reported in a toucan or any other species in the order Piciformes.

  15. Ion extraction from a plasma. Ph.D. Thesis. Progress Report, 1 Dec. 1979 - 1 Dec. 1980

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1980-01-01

    An experimental investigation of the physical processes governing ion extraction from a plasma is presented. The screen hole plasma sheath of a multiaperture ion accelerator system is defined by equipotential plots for a variety of accelerator system geometries and operating conditions. A sheath thickness of at least fifteen Debye lengths is shown to be typical. The electron density variation within the sheath satisfies a Maxwell Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary to Maxwellian electron density ratio. Plasma ion flow up to and through the sheath is predominately one dimensional and the ions enter the sheath with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.

  16. The endomembrane sheath: a key structure for understanding the plant cell?

    NASA Technical Reports Server (NTRS)

    Reuzeau, C.; McNally, J. G.; Pickard, B. G.

    1997-01-01

    Recent evidence suggests that integrin is abundant in endomembranes of plant cells, and the endomembranes are clad by a sheath of cytoskeleton including F-actin. A role for endomembrane integrin and the endomembrane sheath is proposed: this system might orchestrate metabolic regulation by providing and modulating loci for channelling, and might accelerate channeling as needed by dragging the endoplasmic reticulum (ER) and organelles through the cytoplasm. To accomplish this "streaming", F-actin might lever against the rest of the endomembrane sheath and the ER might also lever against adhesion sites (i.e., plasmodesmata and plasmalemmal control centers). As an important agent in the control of cellular activities, according to this model, the endomembrane sheath would play a major part in responses to diverse signals and stresses, and under extreme stress cell survival would depend on the ability of the system to maintain enough integrity to direct critical syntheses and degradations.

  17. Stability of the Tonks–Langmuir discharge pre-sheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tskhakaya, D. D.; Kos, L.; Tskhakaya, D.

    The article formulates the stability problem of the plasma sheath in the Tonks–Langmuir discharge. Using the kinetic description of the ion gas, i.e., the stability of the potential shape in the quasi-neutral pre-sheath regarding the high and low frequency, the perturbations are investigated. The electrons are assumed to be Maxwell–Boltzmann distributed. Regarding high-frequency perturbations, the pre-sheath is shown to be stable. The stability problem regarding low-frequency perturbations can be reduced to an analysis of the “diffusion like” equation, which results in the instability of the potential distribution in the pre-sheath. By means of the Particle in Cell simulations, also themore » nonlinear stage of low frequency oscillations is investigated. Comparing the figure obtained with the figure for linear stage, one can find obvious similarity in the spatial-temporal behavior of the potential.« less

  18. Electromagnetic Particle-In-Cell simulation on the impedance of a dipole antenna surrounded by an ion sheath

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Kojima, H.; Omura, Y.; Matsumoto, H.

    2008-06-01

    We have newly developed a numerical tool for the analysis of antenna impedance in plasma environment by making use of electromagnetic Particle-In-Cell (PIC) plasma simulations. To validate the developed tool, we first examined the antenna impedance in a homogeneous kinetic plasma and confirmed that the obtained results basically agree with the conventional theories. We next applied the tool to examine an ion-sheathed dipole antenna. The results confirmed that the inclusion of the ion-sheath effects reduces the capacitance below the electron plasma frequency. The results also revealed that the signature of impedance resonance observed at the plasma frequency is modified by the presence of the sheath. Since the sheath dynamics can be solved by the PIC scheme throughout the antenna analysis in a self-consistent manner, the developed tool has feasibility to perform more practical and complicated antenna analyses that will be necessary in real space missions.

  19. Observation of an abrupt electron heating mode transition in capacitive single radio frequency discharges

    NASA Astrophysics Data System (ADS)

    Wilczek, Sebastian; Trieschmann, Jan; Schulze, Julian; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Derzsi, Aranka; Korolov, Ihor; Donkó, Zoltan

    2013-09-01

    The electron heating in capacitive discharges at very low pressures (~1 Pa) is dominated by stochastic heating. In this regime electrons are accelerated by the oscillating sheaths, traverse through the plasma bulk and interact with the opposite sheath. By varying the driving frequency or the gap size of the discharge, energetic electrons reach the sheath edge at different temporal phases, i.e., the collapsing or expanding phase, or the moment of minimum sheath width. This work reports numerical experiments based on Particle-In-Cell simulations which show that at certain frequencies the discharge switches abruptly from a low density mode in a high density mode. The inverse transition is also abrupt, but shows a significant hysteresis. This behavior is explained by the complex interaction of the bulk and the sheath. This work is supported by the German Research Foundation in the frame of TRR 87.

  20. Construction of an artificial symbiotic community using a Chlorella–symbiont association as a model

    PubMed Central

    Imase, Masato; Watanabe, Keiji; Aoyagi, Hideki; Tanaka, Hideo

    2008-01-01

    Chlorella sorokiniana IAM C-212 produces a polysaccharide gel, termed a sheath, under photoautotrophic conditions. The C. sorokiniana sheath is a suitable habitat for several symbiotic microorganisms because it ensures close proximity between the C. sorokiniana and symbionts. In this study, we established a method for increasing the volume of the sheath produced by C. sorokiniana, and proposed a method for constructing artificial communities of Chlorella and symbiotic microorganisms. The C. sorokiniana sheath was increased by addition of calcium chloride solution. The sheath resulted in coflocculation of C. sorokiniana and the associated symbiotic bacteria, thus strengthening the bacterial–Chlorella symbiotic association. An application of this technique was demonstrated by constructing a complex of C. sorokiniana and a propionate-degrading bacterium (PDS1). Although propionate inhibited the growth of axenic C. sorokiniana, the C. sorokiniana–PDS1 complex showed good growth in a medium containing a high concentration of propionate. PMID:18269632

  1. Development of Diagnostics for the Livermore DPF Devices

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Prasad, Rahul R.; Podpaly, Yuri A.; Cooper, Christopher M.; Chapman, Steven F.; Shaw, Brian H.; Povilus, Alexander P.; Schmidt, Andrea

    2017-10-01

    LLNL is commissioning several new diagnostics to understand and optimize ion and neutron production in their dense plasma focus (DPF) systems. Gas fills used in DPF devices at LLNL are Deuterium (D2) and He accelerated onto a Be target, for production of neutrons. Neutron yields are currently measured with Helium-3 tubes, and development of yttrium-based activation detectors is currently underway. Neutron time-of-flight (nTOF) signals from prompt neutrons will be measured with gadolinium-doped liquid scintillators. An ion energy analyzer will be used to diagnose energy distribution of D + and He +2 ions. Additionally, a fast frame ICCD camera has been applied to image the plasma sheath during the rundown and pinch phases. Sheath velocity will be measured with an array of discrete photodiodes with ns time responses. A discussion of our results will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344, and supported by the Laboratory Directed Research and Development Program (15-ERD-034) at LLNL and the Office of Defense Nuclear Nonproliferation Research and Development within U.S. Department of Energy.

  2. IGFBP-7 inhibits the differentiation of oligodendrocyte precursor cells via regulation of Wnt/β-Catenin signaling.

    PubMed

    Li, Nan; Han, Jinfeng; Tang, Jing; Ying, Yanqin

    2018-06-01

    Oligodendrocytes (OLs) are glial cells that form myelin sheaths in the central nervous system. Myelin sheath plays important role in nervous system and loss of it in neurodegenerative diseases can lead to impairment of movement. Understanding the signals and factors that regulate OL differentiation can help to address novel strategies for improving myelin repair in neurodegenerative diseases. The aim of this study was to investigate the role of insulin-like growth factor-binding proteins 7 (IGFBP-7) in differentiating OL precursor cells (OPCs). It was found that oligodendrocyte precursors undergoing differentiation were accompanied by selective expression of IGFBP-7. In addition, knockdown of IGFBP-7 promoted differentiation of oligodendrocytes and increased formation of myelin in cultured cells. In contrast, excessive expression of IGFBP-7 inhibited differentiation of oligodendrocytes. Furthermore, overexpression of IGFBP-7 in oligodendrocyte precursor cells increased transcription of Wnt target genes and promoted β-Catenin nuclear translocation. These findings suggest that IGFBP-7 negatively regulates differentiation of oligodendrocyte precursor cells via regulation of Wnt/β-Catenin signaling. © 2017 Wiley Periodicals, Inc.

  3. DLC coating on a micro-trench by bipolar PBII&D and analysis of plasma behaviour

    NASA Astrophysics Data System (ADS)

    Park, Wonsoon; Tokioka, Hideyuki; Tanaka, Masaaki; Choi, Junho

    2014-08-01

    Bipolar plasma-based ion implantation and deposition (bipolar PBII&D) has been recognized as a promising technique for coating deposition on complex three-dimensional targets. As the target is fully immersed in the plasma throughout the process, the plasma sheath can be formed with quite high conformability around the target. In this study, diamond-like carbon (DLC) coating was deposited on a micro-trench pattern by using bipolar PBII&D, and the structure of the DLC film across the overall surface region of the trench was examined by making use of their corresponding Raman spectra. The two types of negative high voltage pulses were applied to the targets for comparison: -0.5 and -15 kV. The scale of the micro-trench used in the study is much smaller than that of the plasma sheath produced under these negative voltages (about 1 cm and 14 cm for -0.5 kV and -15 kV, respectively). The plasma behaviour (i.e., ion flux, impact angle and energy) in the surrounding of the micro-trench was calculated with the particle-in-cell Monte Carlo collision method (PIC-MCCM). As a result, DLC film was successfully coated on the overall surface of the trench. When the applied negative voltage was -0.5 kV, the structure of DLC film coated on the sidewall of the trench became a more polymer-like carbon (PLC) than those of the top and bottom surfaces. This, as indicated by the simulation results, is because the ions, which strike the sidewall, tend to have less incident energy. Whereas in the case of -15 kV, the DLC film on the sidewall was a more graphite-like carbon (GLC) film, despite its smaller incident ion energy in comparison to those of the top and bottom surfaces. This phenomenon is attributed to the sputtering effect from the bottom surface of the trench, as evidenced by the plasma simulation.

  4. Biology of a Pine Needle Sheath Midge, Contarinia Acuta Gagne (Diptera: Cecidomyiidae), on Loblolly Pine

    Treesearch

    Julie C. Weatherby; John C. Moser; Raymond J. Gagné; Huey N. Wallace

    1989-01-01

    The biology of a pine needle sheath midge, Contarinia acuta Gagné is described for a new host in Louisiana. This midge was found feeding within the needle sheath on elongating needles of loblolly pine, P. taeda L. Needle droop and partial defoliation were evident on heavily infested trees. Overwintering C. acuta...

  5. An effective and practical fire-protection system. [for aircraft fuel storage and transport

    NASA Technical Reports Server (NTRS)

    Mansfield, J. A.; Riccitiello, S. R.; Fewell, L. L.

    1975-01-01

    A high-performance sandwich-type fire protection system comprising a steel outer sheath and insulation combined in various configurations is described. An inherent advantage of the sheath system over coatings is that it eliminates problems of weatherability, materials strength, adhesion, and chemical attack. An experimental comparison between the protection performance of state-of-the-art coatings and the sheath system is presented, with emphasis on the protection of certain types of steel tanks for fuel storage and transport. Sheath systems are thought to be more expensive than coatings in initial implementation, although they are less expensive per year for sufficiently long applications.

  6. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  7. Laminated magnet field coil sheath

    DOEpatents

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  8. The quantitative role of flexor sheath incision in correcting Dupuytren proximal interphalangeal joint contractures.

    PubMed

    Blazar, P E; Floyd, E W; Earp, B E

    2016-07-01

    Controversy exists regarding intra-operative treatment of residual proximal interphalangeal joint contractures after Dupuytren's fasciectomy. We test the hypothesis that a simple release of the digital flexor sheath can correct residual fixed flexion contracture after subtotal fasciectomy. We prospectively enrolled 19 patients (22 digits) with Dupuytren's contracture of the proximal interphalangeal joint. The average pre-operative extension deficit of the proximal interphalangeal joints was 58° (range 30-90). The flexion contracture of the joint was corrected to an average of 28° after fasciectomy. In most digits (20 of 21), subsequent incision of the flexor sheath further corrected the contracture by an average of 23°, resulting in correction to an average flexion contracture of 4.7° (range 0-40). Our results support that contracture of the tendon sheath is a contributor to Dupuytren's contracture of the joint and that sheath release is a simple, low morbidity addition to correct Dupuytren's contractures of the proximal interphalangeal joint. Additional release of the proximal interphalangeal joint after fasciectomy, after release of the flexor sheath, is not necessary in many patients. IV (Case Series, Therapeutic). © The Author(s) 2015.

  9. Structural analysis of sheath folds in the Sylacauga Marble Group, Talladega slate belt, southern Appalachians

    USGS Publications Warehouse

    Mies, J.W.

    1993-01-01

    Remnant blocks of marble from the Moretti-Harrah dimension-stone quarry provide excellent exposure of meter-scale sheath folds. Tubular structures with elliptical cross-sections (4 ???Ryz ??? 5) are the most common expression of the folds. The tubes are elongate subparallel to stretching lineation and are defined by centimeter-scale layers of schist. Eccentrically nested elliptical patterns and opposing asymmetry of folds ('S' and 'Z') are consistent with the sheath-fold interpretation. Sheath folds are locally numerous in the Moretti-Harrah quarry but are not widely distributed in the Sylacauga Marble Group; reconnaissance in neighboring quarries provided no additional observations. The presence of sheath folds in part of the Talladega slate belt indicates a local history of plastic, non-coaxial deformation. Such a history of deformation is substantiated by petrographic study of an extracted hinge from the Moretti-Harrah quarry. The sheath folds are modeled as due to passive amplification of initial structures during simple shear, using both analytic geometry and graphic simulation. As indicated by these models, relatively large shear strains (y ??? 9) and longitudinal initial structures are required. The shear strain presumably relates to NW-directed displacement of overlying crystalline rocks during late Paleozoic orogeny. ?? 1993.

  10. Experimental Study of RF Sheaths due to Shear Alfv'en Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, Michael; van Compernolle, Bart; Carter, Troy; Gekelman, Walter; Pribyl, Patrick; D'Ippolito, Daniel A.; Myra, James R.

    2012-10-01

    Ion cyclotron resonance frequency (ICRF) heating is an important tool in current fusion experiments and will be an essential part of the heating power in ITER. A current limitation of ICRF heating is impurity generation through the formation of radiofrequency (RF) sheaths, both near-field (at the antenna) and far-field (e.g. in the divertor region). Far-field sheaths are thought to be generated through the direct launch of or mode conversion to shear Alfv'en waves. Shear Alfv'en waves have an electric field component parallel to the background magnetic field near the wall that drives an RF sheath.footnotetextD. A. D'Ippolito and J. R. Myra, Phys. Plasmas 19, 034504 (2012) In this study we directly launch the shear Alfv'en wave and measure the plasma potential oscillations and DC potential in the bulk plasma of the LAPD using emissive and Langmuir probes. Measured changes in the DC plasma potential can serve as an indirect measurement of the formation of an RF sheath because of rectification. These measurements will be useful in guiding future experiments to measure the plasma potential profile inside RF sheaths as part of an ongoing campaign.

  11. Far-Field RF Sheaths due to Shear Alfvén Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Carter, Troy; D'Ippolito, Daniel A.; Myra, James R.

    2013-10-01

    Ion cyclotron resonance heating (ICRH) is an important tool in current fusion experiments and will be an essential heating component in ITER. ICRH could be limited by deleterious effects due to the formation of radio frequency (RF) sheaths in the near-field (at the antenna) and in the far-field (e.g. in the divertor region). Far-field sheaths are thought to be caused by the direct launch of or mode conversion to a shear Alfvén wave with an electric field component parallel to the background magnetic field at the wall. In this experiment a limiter plate was inserted into a cylindrical plasma in the LAPD (ne ~ 1010-11 cm-3, Te ~ 5 eV, B0 = 1.2 kG) and RF sheaths were created by directly launching the shear Alfven wave. Plasma potential measurements were made with an emissive probe. DC plasma potential rectification was observed along field lines connected to the plate, serving as an indirect measure of RF sheath formation. 2-D maps of plasma properties and rectified plasma potential will be presented. This research is part of an ongoing campaign to study the formation and structure of RF sheaths.

  12. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  13. Redefinition of the self-bias voltage in a dielectrically shielded thin sheath RF discharge

    NASA Astrophysics Data System (ADS)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    In a geometrically asymmetric capacitively coupled discharge where the powered electrode is shielded from the plasma by a layer of dielectric material, the self-bias manifests as a nonuniform negative charging in the dielectric rather than on the blocking capacitor. In the thin sheath regime where the ion transit time across the powered sheath is on the order of or less than the Radiofrequency (RF) period, the plasma potential is observed to respond asymmetrically to extraneous impedances in the RF circuit. Consequently, the RF waveform on the plasma-facing surface of the dielectric is unknown, and the behaviour of the powered sheath is not easily predictable. Sheath circuit models become inadequate for describing this class of discharges, and a comprehensive fluid, electrical, and plasma numerical model is employed to accurately quantify this behaviour. The traditional definition of the self-bias voltage as the mean of the RF waveform is shown to be erroneous in this regime. Instead, using the maxima of the RF waveform provides a more rigorous definition given its correlation with the ion dynamics in the powered sheath. This is supported by a RF circuit model derived from the computational fluid dynamics and plasma simulations.

  14. Transvaginal photoacoustic imaging probe and system based on a multiport fiber-optic beamsplitter and a real time imager for ovarian cancer detection

    NASA Astrophysics Data System (ADS)

    Kumavor, Patrick D.; Alqasemi, Umar; Tavakoli, Behnoosh; Li, Hai; Yang, Yi; Zhu, Quing

    2013-03-01

    This paper presents a real-time transvaginal photoacoustic imaging probe for imaging human ovaries in vivo. The probe consists of a high-throughput (up to 80%) fiber-optic 1 x 19 beamsplitters, a commercial array ultrasound transducer, and a fiber protective sheath. The beamsplitter has a 940-micron core diameter input fiber and 240-micron core diameter output fibers numbering 36. The 36 small-core output fibers surround the ultrasound transducer and delivers light to the tissue during imaging. A protective sheath, modeled in the form of the transducer using a 3-D printer, encloses the transducer with array of fibers. A real-time image acquisition system collects and processes the photoacoustic RF signals from the transducer, and displays the images formed on a monitor in real time. Additionally, the system is capable of coregistered pulse-echo ultrasound imaging. In this way, we obtain both morphological and functional information from the ovarian tissue. Photoacousitc images of malignant human ovaries taken ex vivo with the probe revealed blood vascular and networks that was distinguishable from normal ovaries, making the probe potential useful for characterizing ovarian tissue.

  15. Uncertainty analysis of thermocouple measurements used in normal and abnormal thermal environment experiments at Sandia's Radiant Heat Facility and Lurance Canyon Burn Site.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakos, James Thomas

    2004-04-01

    It would not be possible to confidently qualify weapon systems performance or validate computer codes without knowing the uncertainty of the experimental data used. This report provides uncertainty estimates associated with thermocouple data for temperature measurements from two of Sandia's large-scale thermal facilities. These two facilities (the Radiant Heat Facility (RHF) and the Lurance Canyon Burn Site (LCBS)) routinely gather data from normal and abnormal thermal environment experiments. They are managed by Fire Science & Technology Department 09132. Uncertainty analyses were performed for several thermocouple (TC) data acquisition systems (DASs) used at the RHF and LCBS. These analyses apply tomore » Type K, chromel-alumel thermocouples of various types: fiberglass sheathed TC wire, mineral-insulated, metal-sheathed (MIMS) TC assemblies, and are easily extended to other TC materials (e.g., copper-constantan). Several DASs were analyzed: (1) A Hewlett-Packard (HP) 3852A system, and (2) several National Instrument (NI) systems. The uncertainty analyses were performed on the entire system from the TC to the DAS output file. Uncertainty sources include TC mounting errors, ANSI standard calibration uncertainty for Type K TC wire, potential errors due to temperature gradients inside connectors, extension wire uncertainty, DAS hardware uncertainties including noise, common mode rejection ratio, digital voltmeter accuracy, mV to temperature conversion, analog to digital conversion, and other possible sources. Typical results for 'normal' environments (e.g., maximum of 300-400 K) showed the total uncertainty to be about {+-}1% of the reading in absolute temperature. In high temperature or high heat flux ('abnormal') thermal environments, total uncertainties range up to {+-}2-3% of the reading (maximum of 1300 K). The higher uncertainties in abnormal thermal environments are caused by increased errors due to the effects of imperfect TC attachment to the test item. 'Best practices' are provided in Section 9 to help the user to obtain the best measurements possible.« less

  16. Ion sheath dynamics in a plasma for plasma-based ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatsuzuka, M.; Miki, S.; Azuma, K.

    1999-07-01

    Spatial and temporal growth and collapse of ion sheath around an electrode of a negative high-voltage pulse (voltage: {minus}10 kV, pulse duration: 10 {micro}s) have been studied in a plasma for plasma-based ion implantation. A spherical electrode of 1.9 cm in a diameter is immersed in a nitrogen plasma with the plasma density range of 10{sup 9} to 10{sup 10} cm{sup {minus}3}, the electron temperature of 1.4 eV and the gas pressure of 8x10{sup {minus}4} Torr. The transient sheath dynamics was observed by the measurement of electron saturation current to a Langmuir probe, where a depletion of electron saturation currentmore » indicates the arrival time of sheath edge at the probe position. The expanding speed of sheath edge is higher than the ion acoustic speed until the sheath length reaches the steady-state extent determined by Child-Langmuir law. In the region beyond the steady-state extent, the rarefying disturbance produced by sheath expansion continues to propagate into the plasma at the ion acoustic peed. After the pulse voltage is returned to zero (more exactly, the floating potential), the electron current begins to recover. When the pulse fall time is shorter than the plasma transit time, the electron saturation current overshoots the steady-state saturation current at once, resulting in an excess of plasma density which propagates like a tidal wave into the plasma at the ion acoustic speed.« less

  17. Physics of the intermediate layer between a plasma and a collisionless sheath and mathematical meaning of the Bohm criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, N. A.; Benilov, M. S.

    A transformation of the ion momentum equation simplifies a mathematical description of the transition layer between a quasi-neutral plasma and a collisionless sheath and clearly reveals the physics involved. Balance of forces acting on the ion fluid is delicate in the vicinity of the sonic point and weak effects come into play. For this reason, the passage of the ion fluid through the sonic point, which occurs in the transition layer, is governed not only by inertia and electrostatic force but also by space charge and ion-atom collisions and/or ionization. Occurrence of different scenarios of asymptotic matching in the plasma-sheathmore » transition is analyzed by means of simple mathematical examples, asymptotic estimates, and numerical calculations. In the case of a collisionless sheath, the ion speed distribution plotted on the logarithmic scale reveals a plateau in the intermediate region between the sheath and the presheath. The value corresponding to this plateau has the meaning of speed with which ions leave the presheath and enter the sheath; the Bohm speed. The plateau is pronounced reasonably well provided that the ratio of the Debye length to the ion mean free path is of the order of 10{sup -3} or smaller. There is no such plateau if the sheath is collisional and hence no sense in talking of a speed with which ions enter the sheath.« less

  18. Amino group in Leptothrix sheath skeleton is responsible for direct deposition of Fe(III) minerals onto the sheaths.

    PubMed

    Kunoh, Tatsuki; Matsumoto, Syuji; Nagaoka, Noriyuki; Kanashima, Shoko; Hino, Katsuhiko; Uchida, Tetsuya; Tamura, Katsunori; Kunoh, Hitoshi; Takada, Jun

    2017-07-26

    Leptothrix species produce microtubular organic-inorganic materials that encase the bacterial cells. The skeleton of an immature sheath, consisting of organic exopolymer fibrils of bacterial origin, is formed first, then the sheath becomes encrusted with inorganic material. Functional carboxyl groups of polysaccharides in these fibrils are considered to attract and bind metal cations, including Fe(III) and Fe(III)-mineral phases onto the fibrils, but the detailed mechanism remains elusive. Here we show that NH 2 of the amino-sugar-enriched exopolymer fibrils is involved in interactions with abiotically generated Fe(III) minerals. NH 2 -specific staining of L. cholodnii OUMS1 detected a terminal NH 2 on its sheath skeleton. Masking NH 2 with specific reagents abrogated deposition of Fe(III) minerals onto fibrils. Fe(III) minerals were adsorbed on chitosan and NH 2 -coated polystyrene beads but not on cellulose and beads coated with an acetamide group. X-ray photoelectron spectroscopy at the N1s edge revealed that the terminal NH 2 of OUMS1 sheaths, chitosan and NH 2 -coated beads binds to Fe(III)-mineral phases, indicating interaction between the Fe(III) minerals and terminal NH 2 . Thus, the terminal NH 2 in the exopolymer fibrils seems critical for Fe encrustation of Leptothrix sheaths. These insights should inform artificial synthesis of highly reactive NH 2 -rich polymers for use as absorbents, catalysts and so on.

  19. A Novel External Carotid Arterial Sheath System for Intra-arterial Infusion Chemotherapy of Head and Neck Cancer.

    PubMed

    Ii, Noriko; Fuwa, Nobukazu; Toyomasu, Yutaka; Takada, Akinori; Nomura, Miwako; Kawamura, Tomoko; Sakuma, Hajime; Nomoto, Yoshihito

    2017-07-01

    The purpose of this study was to describe a novel system for treating advanced head and neck cancer consisting of an external carotid arterial sheath (ECAS) and a microcatheter to inject drugs retrogradely into multiple feeding arteries through the superficial temporal artery (STA). Four consecutive patients with head and neck cancer that had more than one feeding artery were enrolled in this study. The ECAS was made of polyurethane and surface-coated with heparin resin to prevent thrombus formation, allowing it to remain in place for a prolonged period of time. The ECAS was inserted through the STA, and its tip was placed between the maxillary artery and facial artery. The tumor-feeding arteries were selected using a hooked-shaped microcatheter through the ECAS. A total of 13 target arteries were selected in the four patients. The microcatheter inserted via the ECAS was used to catheterize ten arteries (five lingual arteries and five facial arteries). The remaining three lingual arteries were directly selected by the catheter without ECAS. All of the target arteries were able to be catheterized superselectively. The technical success rate was 100%. Vascular occlusion, which might have been caused by the ECAS, was observed in one patient. No neurologic toxicities occurred. This ECAS system is a new approach for retrograde superselective intra-arterial chemotherapy that covers the entire tumor with anticancer drugs. It has the potential to increase the effectiveness of therapy for advanced head and neck cancer. Level 4, Case Series.

  20. CONTROLLED NUCLEAR FUSION REACTOR

    DOEpatents

    Tuck, J.L.; Kruskal, M.; Colgate, S.A.; Rosenbluth, M.N.

    1962-01-01

    A plasma generating and heating device is described which comprises a ceramic torus with exterior layers of a thick metal membrane and a metallic coil. In operation, the coil generates a B/sub z/ field prior to the formation of an enclosing plasma sheath. Diffusion of the trapped magnetic field outward through the plasma sheath causes enhanced heating, particularly after the sheath has been pinched. (D.L.C.)

  1. Dynamics of a lightning corona sheath—A constant field approach using the generalized traveling current source return stroke model

    NASA Astrophysics Data System (ADS)

    Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Radosavljevic, Radovan; Osmokrovic, Predrag

    2012-11-01

    A generalized lightning traveling current source return stroke model has been used to examine the characteristics of the lightning channel corona sheath surrounding a thin channel core. A model of the lightning channel consisting of a charged corona sheath and a narrow, highly conducting central core that conducts the main current flow is assumed. Strong electric field, with a predominant radial direction, has been created during the return stroke between the channel core and the outer channel sheath containing the negative charge. The return stroke process is modeled with the positive charge coming from the channel core discharging the negative leader charge in the corona sheath. The corona sheath model that predicts the charge motion in the sheath is used to derive the expressions of the sheath radius vs. time during the return stroke. According to the corona sheath model proposed earlier by Maslowski and Rakov (2006) and Maslowski et al. (2009), it consists of three zones, zone 1 (surrounding channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (outer zone representing the virgin air without charges). We adopted the assumption of a constant electric field inside zone 1 of the corona sheath observed in the experimental research of corona discharges in a coaxial geometry by Cooray (2000). This assumption seems to be more realistic than the assumption of a uniform corona space charge density used previously in the study of Maslowski and Rakov (2006), Marjanovic and Cvetic (2009), and Tausanovic et al. (2010). Applying the Gauss' law on the infinitesimally small cylindrical section of the channel the expressions for time-dependence of the radii of zones 1 and 2 during the return stroke are derived. The calculations have shown that the overall channel dynamics concerning electrical discharge is roughly 50% slower and the maximum radius of zone 1 is about 33% smaller compared to the corresponding values calculated in the study of Tausanovic et al. (2010).

  2. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    2017-06-01

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  3. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 2: 2x4 Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochkin, V.; Wiehagen, J.

    Part 2 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides straightforward and cost-effective strategies to construct durable, energy-efficient walls. It addresses walls constructed with 2x4 wood frame studs, wood structural panel (WSP) sheathing as wall bracing and added backing for foam sheathing, a layer of rigid foam sheathing insulation up to 1.5 inches thick over the WSP, and a cladding system installed over the foam sheathing in low-rise residential buildings up to three stories high. Walls with 2x6 framing are addressed in Part 1 of the Guide.

  4. Fast semi-analytical method for precise prediction of ion energy distribution functions and sheath electric field in multi-frequency capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Wencong; Zhang, Xi; Diao, Dongfeng

    2018-05-01

    We propose a fast semi-analytical method to predict ion energy distribution functions and sheath electric field in multi-frequency capacitively coupled plasmas, which are difficult to measure in commercial plasma reactors. In the intermediate frequency regime, the ion density within the sheath is strongly modulated by the low-frequency sheath electric field, making the time-independent ion density assumption employed in conventional models invalid. Our results are in a good agreement with experimental measurements and computer simulations. The application of this method will facilitate the understanding of ion–material interaction mechanisms and development of new-generation plasma etching devices.

  5. Scattering characteristics of electromagnetic waves in time and space inhomogeneous weakly ionized dusty plasma sheath

    NASA Astrophysics Data System (ADS)

    Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua

    2018-05-01

    The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.

  6. Rectus sheath hematoma of the abdomen. Case report.

    PubMed

    Villena-Tovar, José Francisco

    2010-01-01

    Rectus sheath hematoma in the vast number of cases is due to an inferior epigastric artery tear occasionally due to trauma (not considered serious) or alterations in coagulation or use of anticoagulant therapy. It is an unlikely and difficult to diagnose pathology. We present the case of a 61-year-old female patient. The patient presented in emergency service with sudden abdominal pain caused by coughing as a result of an upper respiratory tract infection. The culmination was a spontaneous rectus sheath hematoma. Rectus sheath hematoma is a diagnosis to consider in a previously asymptomatic patient who presents with clinical features of acute pain and appearance of increase of volume in the abdominal wall involving the rectus muscles.

  7. Rectus sheath haematoma: a rare masquerader for abdominal pain.

    PubMed

    Changal, Khalid Hamid; Saleem, Saad; Ghous, Ghulam

    2017-04-13

    Rectus sheath haematoma is a rare cause of abdominal pain. It can be easily confused for other causes of acute abdomen and may even lead to unnecessary laparotomies. Our patient has the rectus sheath haematoma because of violent coughing and on presentation had no obvious clinical sign pointing to the same. Diagnosis was made by a CT scan of the abdomen, and patient was treated conservatively. Rectus sheath haematomas are usually present on the posterior aspect of the rectus muscles and thus may not be clinically appreciable. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Brief reports: plasma ropivacaine concentrations after ultrasound-guided rectus sheath block in patients undergoing lower abdominal surgery.

    PubMed

    Wada, Morito; Kitayama, Masato; Hashimoto, Hiroshi; Kudo, Tsuyoshi; Kudo, Mihoko; Takada, Norikazu; Hirota, Kazuyoshi

    2012-01-01

    A rectus sheath block can provide postoperative analgesia for midline incisions. However, information regarding the pharmacokinetics of local anesthetics used in this block is lacking. In this study, we detail the time course of ropivacaine concentrations after this block. Thirty-nine patients undergoing elective lower abdominal surgery were assigned to 3 groups receiving rectus sheath block with 20 mL of different concentrations of ropivacaine. Peak plasma concentrations were dose dependent, and there were no significant differences in the times to peak plasma concentrations. The present data also suggested a slower absorption kinetics profile for ropivacaine after rectus sheath block than other compartment blocks.

  9. Generation of Demyelination Models by Targeted Ablation of Oligodendrocytes in the Zebrafish CNS

    PubMed Central

    Chung, Ah-Young; Kim, Pan-Soo; Kim, Suhyun; Kim, Eunmi; Kim, Dohyun; Jeong, Inyoung; Kim, Hwan-Ki; Ryu, Jae-Ho; Kim, Cheol-Hee; Choi, June; Seo, Jin-Ho; Park, Hae-Chul

    2013-01-01

    Demyelination is the pathological process by which myelin sheaths are lost from around axons, and is usually caused by a direct insult targeted at the oligodendrocytes in the vertebrate central nervous system (CNS). A demyelinated CNS is usually remyelinated by a population of oligodendrocyte progenitor cells, which are widely distributed throughout the adult CNS. However, myelin disruption and remyelination failure affect the normal function of the nervous system, causing human diseases such as multiple sclerosis. In spite of numerous studies aimed at understanding the remyelination process, many questions still remain unanswered. Therefore, to study remyelination mechanisms in vivo, a demyelination animal model was generated using a transgenic zebrafish system in which oligodendrocytes are conditionally ablated in the larval and adult CNS. In this transgenic system, bacterial nitroreductase enzyme (NTR), which converts the prodrug metronidazole (Mtz) into a cytotoxic DNA cross-linking agent, is expressed in oligodendrocyte lineage cells under the control of the mbp and sox10 promoter. Exposure of transgenic zebrafish to Mtz-containing media resulted in rapid ablation of oligodendrocytes and CNS demyelination within 48 h, but removal of Mtz medium led to efficient remyelination of the demyelinated CNS within 7 days. In addition, the demyelination and remyelination processes could be easily observed in living transgenic zebrafish by detecting the fluorescent protein, mCherry, indicating that this transgenic system can be used as a valuable animal model to study the remyelination process in vivo, and to conduct high-throughput primary screens for new drugs that facilitate remyelination. PMID:23807048

  10. Characterization of tail sheath protein of giant bacteriophage phiKZ Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurochkina, Lidia P., E-mail: lpk@ibch.r; Aksyuk, Anastasia A.; Sachkova, Maria Yu.

    2009-12-20

    The tail sheath protein of giant bacteriophage phiKZ Pseudomonas aeruginosa encoded by gene 29 was identified and its expression system was developed. Localization of the protein on the virion was confirmed by immunoelectron microscopy. Properties of gene product (gp) 29 were studied by electron microscopy, immunoblotting and limited trypsinolysis. Recombinant gp29 assembles into the regular tubular structures (polysheaths) of variable length. Trypsin digestion of gp29 within polysheaths or extended sheath of virion results in specific cleavage of the peptide bond between Arg135 and Asp136. However, this cleavage does not affect polymeric structure of polysheaths, sheaths and viral infectivity. Digestion bymore » trypsin of the C-truncated gp29 mutant, lacking the ability to self-assemble, results in formation of a stable protease-resistant fragment. Although there is no sequence homology of phiKZ proteins to proteins of other bacteriophages, some characteristic biochemical properties of gp29 revealed similarities to the tail sheath protein of bacteriophage T4.« less

  11. Ion extraction from a plasma

    NASA Technical Reports Server (NTRS)

    Aston, G.; Wilbur, P. J.

    1981-01-01

    The physical processes governing ion extraction from a plasma have been examined experimentally. The screen hole plasma sheath (the transition region wherein significant ion acceleration and complete electron retardation occurs) has been defined by equipotential plots for a variety of ion accelerator system geometries and operating conditions. It was found that the screen hole plasma sheath extends over a large distance, and influences ion and electron trajectories at least 15 Debye lengths within the discharge chamber. The electron density variation within the screen hole plasma sheath satisfied a Maxwell-Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary-to-Maxwellian electron density ratio. Plasma ion flow up to and through the sheath was predominantly one-dimensional, and the ions entered the sheath region with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio were found to give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.

  12. Fabrication of (Ba,K)Fe2As2 tapes by ex situ PIT process using Ag-Sn alloy single sheath

    NASA Astrophysics Data System (ADS)

    Togano, K.; Gao, Z.; Matsumoto, A.; Kikuchi, A.; Kumakura, H.

    2017-01-01

    Instead of ordinal pure Ag, Ag-based Sn binary alloys (up to 7.5 at%Sn) with higher mechanical strength are used for the sheath material of ex situ powder-in-tube (PIT)-processed (Ba,K)Fe2As2(Ba-122) tapes. We found that the use of the Ag-Sn alloy enhances the densification and texturing of the Ba-122 core, resulting in higher transport, J c. Moreover, the optimum heat treatment temperature for a high J c can be lowered by around 100 °C due to the higher packing density of the Ba-122 core prior to the final heat treatment. We also found that the smoothness of the interface between the sheath and Ba-122 core is significantly improved by using the Ag-Sn binary alloy sheaths. These results show that the Ag-Sn alloy is promising as a sheath material in PIT-processed Ba-122 superconducting wires.

  13. Effects of a reentry plasma sheath on the beam pointing properties of an array antenna

    NASA Astrophysics Data System (ADS)

    Bai, Bowen; Liu, Yanming; Lin, Xiaofang; Li, Xiaoping

    2018-03-01

    The reduction in the gain of an on-board antenna caused by a reentry plasma sheath is an important effect that contributes to the reentry "blackout" problem. Using phased array antenna and beamforming technology could provide higher gain and an increase in the communication signal intensity. The attenuation and phase delay of the electromagnetic (EM) waves transmitting through the plasma sheath are direction-dependent, and the radiation pattern of the phased array antenna is affected, leading to a deviation in the beam pointing. In this paper, the far-field pattern of a planar array antenna covered by a plasma sheath is deduced analytically by considering both refraction and mutual coupling effects. A comparison between the analytic results and the results from an electromagnetic simulation is carried out. The effect of the plasma sheath on the radiation pattern and the beam pointing errors of the phased array antenna is studied systematically, and the derived results could provide useful information for the correction of pointing errors.

  14. Bounds imposed on the sheath velocity of a dense plasma focus by conservation laws and ionization stability condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auluck, S. K. H., E-mail: skhauluck@gmail.com, E-mail: skauluck@barc.gov.in

    2014-09-15

    Experimental data compiled over five decades of dense plasma focus research are consistent with the snowplow model of sheath propagation, based on the hypothetical balance between magnetic pressure driving the plasma into neutral gas ahead and “wind pressure” resisting its motion. The resulting sheath velocity, or the numerically proportional “drive parameter,” is known to be approximately constant for devices optimized for neutron production over 8 decades of capacitor bank energy. This paper shows that the validity of the snowplow hypothesis, with some correction, as well as the non-dependence of sheath velocity on device parameters, have their roots in local conservationmore » laws for mass, momentum, and energy coupled with the ionization stability condition. Both upper and lower bounds on sheath velocity are shown to be related to material constants of the working gas and independent of the device geometry and capacitor bank impedance.« less

  15. Identification and characterization of a gibberellin-regulated protein, which is ASR5, in the basal region of rice leaf sheaths.

    PubMed

    Takasaki, Hironori; Mahmood, Tariq; Matsuoka, Makoto; Matsumoto, Hiroshi; Komatsu, Setsuko

    2008-04-01

    Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.

  16. The Social Amoeba Polysphondylium pallidum Loses Encystation and Sporulation, but Can Still Erect Fruiting Bodies in the Absence of Cellulose

    PubMed Central

    Du, Qingyou; Schaap, Pauline

    2014-01-01

    Amoebas and other freely moving protists differentiate into walled cysts when exposed to stress. As cysts, amoeba pathogens are resistant to biocides, preventing treatment and eradication. Lack of gene modification procedures has left the mechanisms of encystation largely unexplored. Genetically tractable Dictyostelium discoideum amoebas require cellulose synthase for formation of multicellular fructifications with cellulose-rich stalk and spore cells. Amoebas of its distant relative Polysphondylium pallidum (Ppal), can additionally encyst individually in response to stress. Ppal has two cellulose synthase genes, DcsA and DcsB, which we deleted individually and in combination. Dcsa- mutants formed fruiting bodies with normal stalks, but their spore and cyst walls lacked cellulose, which obliterated stress-resistance of spores and rendered cysts entirely non-viable. A dcsa-/dcsb- mutant made no walled spores, stalk cells or cysts, although simple fruiting structures were formed with a droplet of amoeboid cells resting on an sheathed column of decaying cells. DcsB is expressed in prestalk and stalk cells, while DcsA is additionally expressed in spores and cysts. We conclude that cellulose is essential for encystation and that cellulose synthase may be a suitable target for drugs to prevent encystation and render amoeba pathogens susceptible to conventional antibiotics. PMID:25113829

  17. Characterization of >100 T magnetic fields associated with relativistic Weibel instability in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Ruyer, Charles; Goede, Sebastian; Roedel, Christian; Gauthier, Maxence; Zeil, Karl; Schramm, Ulrich; Glenzer, Siegfried; Fiuza, Frederico

    2016-10-01

    Weibel-type instabilities can occur in weakly magnetized and anisotropic plasmas of relevance to a wide range of astrophysical and laboratory scenarios. It leads to the conversion of a significant fraction of the kinetic energy of the plasma into magnetic energy. We will present a detailed numerical study, using 2D and 3D PIC simulations of the Weibel instability in relativistic laser-solid interactions. In this case, the instability develops due to the counter-streaming of laser-heated electrons and the background return current. We show that the growth rate of the instability is maximized near the critical density region on the rear side of the expanded plasma, producing up to 400 MG magnetic fields for Hydrogen plasmas. We have found that this strong field can be directly probed by energetic protons accelerated in rear side of the plasma by Target Normal Sheath Acceleration (TNSA). This allows the experimental characterization of the instability from the analysis of the spatial modulation of the detected protons. Our numerical results are compared with recent laser experiments with Hydrogen jets and show good agreement with the proton modulations observed experimentally. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  18. Convection-Enhanced Delivery (CED) in an Animal Model of Malignant Peripheral Nerve Sheath (MPNST) Tumors and Plexiform Neurofibromas (PN)

    DTIC Science & Technology

    2012-09-01

    TITLE: Convection-Enhanced Delivery ( CED ) in an Animal Model of Malignant Peripheral Nerve Sheath ( MPNST ) Tumors and Plexiform Neurofibromas (PN...within the sciatic nerve. 15. SUBJECT TERMS Convection-Enhanced Delivery ( CED ), Malignant Peripheral Nerve Sheath ( MPNST ), Plexiform Neurofibromas...determine the distribution of macromolecules delivered to intraneural PNs and MPNST via CED . Design: Orthotopic xenograft models of sciatic intraneural

  19. Method for forming a thermocouple

    DOEpatents

    Metz, Hugh J.

    1979-01-01

    A method is provided for producing a fast response, insulated junction thermocouple having a uniform diameter outer sheath in the region of the measuring junction. One step is added to the usual thermocouple fabrication process that consists in expanding the thermocouple sheath following the insulation removal step. This makes it possible to swage the sheath back to the original diameter and compact the insulation to the desired high density in the final fabrication step.

  20. An Analysis of Quality in the Modular Housing Industry.

    DTIC Science & Technology

    1991-12-01

    finishing, Station 5, installs rough plumbing and applies the first coat of drywall joint compound . The unit continues to ceiling/roof setting, Station...with I joint compound and drywall or plywood plates. 3 14. Rigid waferboard, oriented strand board, or plywood is used for exterior wall sheathing to...completed and tested, the second coat of joint compound is placed, and windows and doors are set. Insulation, exterior sheathing, roof sheathing

  1. Rectus sheath hematoma with low molecular weight heparin administration: a case series.

    PubMed

    Sullivan, Laura E J; Wortham, Dale C; Litton, Kayleigh M

    2014-09-01

    Rectus sheath hematoma is an uncommon but potentially serious bleeding complication that can occur spontaneously or as a result of anticoagulation administration. Case number one: A 62 year old chronically ill Caucasian female develops a rectus sheath hematoma seven days after hospital discharge. The previous hospitalization included low molecular weight heparin administration for deep vein thrombosis prophylaxis. The patient ultimately chooses comfort care and expires due to sepsis and respiratory failure. Case number two: A 79 year old Caucasian male develops a rectus sheath hematoma during hospital admission where LMWH is used for deep vein thrombosis prophylaxis. He is managed conservatively; however, his hematocrit drops from 46 to 25.8%. Case number three: A 44 year old chronically ill Caucasian female is treated with therapeutic low molecular weight heparin for recent deep vein thrombosis during a hospital admission. She develops a large rectus sheath hematoma requiring embolization as well as blood transfusion. We believe this reflects an underreported significant cause of morbidity and mortality with low molecular weight heparin administration. We review the pathophysiology of rectus sheath hematoma as well as its presentation, diagnosis, and treatment. We identify at-risk populations and proposed contributing factors. We also discuss factors leading to underreporting as well as preventive strategies implemented at our institution.

  2. Coronal mass ejections and their sheath regions in interplanetary space

    NASA Astrophysics Data System (ADS)

    Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.

    2017-11-01

    Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  3. An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming

    2018-01-01

    The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.

  4. Effect of sheath gas in atmospheric-pressure plasma jet for potato sprouting suppression

    NASA Astrophysics Data System (ADS)

    Nishiyama, S.; Monma, M.; Sasaki, K.

    2016-09-01

    Recently, low-temperature atmospheric-pressure plasma jets (APPJs) attract much interest for medical and agricultural applications. We try to apply APPJs for the suppression of potato sprouting in the long-term storage. In this study, we investigated the effect of sheath gas in APPJ on the suppression efficiency of the potato sprouting. Our APPJ was composed of an insulated thin wire electrode, a glass tube, a grounded electrode which was wound on the glass tube, and a sheath gas nozzle which was attached at the end of the glass tube. The wire electrode was connected to a rectangular-waveform power supply at a frequency of 3 kHz and a voltage of +/- 7 kV. Helium was fed through the glass tube, while we tested dry nitrogen, humid nitrogen, and oxygen as the sheath gas. Eyes of potatoes were irradiated by APPJ for 60 seconds. The sprouting probability was evaluated at two weeks after the plasma irradiation. The sprouting probability was 28% when we employed no sheath gases, whereas an improved probability of 10% was obtained when we applied dry nitrogen as the sheath gas. Optical emission spectroscopy was carried out to diagnose the plasma jet. It was suggested that reactive species originated from nitrogen worked for the efficient suppression of the potato sprouting.

  5. Estimation of sheath potentials in front of ASDEX upgrade ICRF antenna with SSWICH asymptotic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Křivská, A., E-mail: alena.krivska@rma.ac.be; Bobkov, V.; Jacquot, J.

    Multi-megawatt Ion Cyclotron Range of Frequencies (ICRF) heating became problematic in ASDEX Upgrade (AUG) tokamak after coating of ICRF antenna limiters and other plasma facing components by tungsten. Strong impurity influx was indeed produced at levels of injected power markedly lower than in the previous experiments. It is assumed that the impurity production is mainly driven by parallel component of Radio-Frequency (RF) antenna electric near-field E// that is rectified in sheaths. In this contribution we estimate poloidal distribution of sheath Direct Current (DC) potential in front of the ICRF antenna and simulate its relative variations over the parametric scans performedmore » during experiments, trying to reproduce some of the experimental observations. In addition, relative comparison between two types of AUG ICRF antenna configurations, used for experiments in 2014, has been performed. For this purpose we use the Torino Polytechnic Ion Cyclotron Antenna (TOPICA) code and asymptotic version of the Self-consistent Sheaths and Waves for Ion Cyclotron Heating (SSWICH) code. Further, we investigate correlation between amplitudes of the calculated oscillating sheath voltages and the E// fields computed at the lateral side of the antenna box, in relation with a heuristic antenna design strategy at IPP Garching to mitigate RF sheaths.« less

  6. Lymphocyte migration in the micro-channel of splenic sheathed capillaries in Chinese soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Zhang, Qian; Ullah, Shakeeb; Liu, Yi; Yang, Ping; Chen, Bing; Waqas, Yasir; Bao, Huijun; Hu, Lisi; Li, Quanfu; Chen, Qiusheng

    2016-01-01

    The structural characteristics of the splenic sheathed capillary were investigated using light microscopy and transmission electron microscopy (TEM). This study mainly focused on lymphocyte migration to the splenic white pulp via micro-channels in Chinese soft-shelled turtles, Pelodiscus sinensis. The results showed that the sheathed capillaries in the turtle spleen were high endothelial venule (HEV)-like vessels. These capillaries consist of micro-channels that facilitate lymphocyte migration to the splenic white pulp. The micro-channel is a dynamic structure comprising processes of endothelial cells, supporting cells, and ellipsoid-associated cells (EACs), which provides a microenvironment for lymphocyte migration. The pattern of lymphocyte migration in the micro-channel of the turtle spleen includes the following steps: (i) lymphocyte first adheres to the endothelium of the sheathed capillary, passes through the endothelial cells, and traverses through the basement membrane of the sheathed capillary; (ii) it then enters into the ellipsoid combined with supporting cells and EACs; and (iii) lymphocyte migrates from the ellipsoid to the periellipsoidal lymphatic sheath (PELS) via the micro-channel. This study provides morphological evidence for lymphocyte migration in the micro-channels of turtle spleens and also an insight into the mechanism of lymphocyte homing to the splenic white pulp of reptiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Space plasma contactor research, 1987

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1988-01-01

    A simple model describing the process of electron collection from a low pressure ambient plasma in the absence of magnetic field and contactor velocity effects is presented. Experimental measurments of the plasma surrounding the contactor are used to demonstrate that a double-sheath generally develops and separates the ambient plasma from a higher density, anode plasma located adjacent to the contactor. Agreement between the predictions of the model and experimental measurements obtained at the electron collection current levels ranging to 1 A suggests the surface area at the ambient plasma boundary of the double-sheath is equal to the electron current being collected divided by the ambient plasma random electron current density; the surface area of the higher density anode plasma boundary of the double-sheath is equal to the ion current being emitted across this boundary divided by the ion current density required to sustain a stable sheath; and the voltage drop across the sheath is determined by the requirement that the ion and electron currents counterflowing across the boundaries be at space-charge limited levels. The efficiency of contactor operation is shown to improve when significant ionization and excitation is induced by electrons that stream from the ambient plasma through the double-sheath and collide with neutral atoms being supplied through the hollow cathode.

  8. Elongation growth of the leaf sheath base of Avena sativa seedlings: regulation by hormones and sucrose

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Kaufman, P. B.

    1991-01-01

    The leaf sheath base of the seedling of Avena sativa was characterized for growth response to hormones and sucrose. Six day old plants, raised under a 10:14 hr light:dark cycle, were excised at the coleoptilar node and 1 cm above the node for treatment. The growth of the leaf sheath base was promoted by gibberellic acid (GA3) and this response was dose dependent. The lag to response initiation was approximately 4 hr. Growth with or without GA3 (10 micromoles) was transient, diminishing appreciably after 48 hr. The addition of 10 mM sucrose greatly prolonged growth; the effect of GA3 and sucrose was additive. Neither indole-3-acetic acid (IAA) nor the cytokinin N6-benzyladenine (BA), alone or in combination, promoted the growth of leaf sheath bases. However, both significantly inhibited the action of GA3. The inhibitory effect of IAA was dose dependent and was not affected by the addition of BA or sucrose. These results indicate that the growth of leaf sheath bases of Avena sativa is promoted specifically by gibberellin, that this action depends on the availability of carbohydrates from outside of the leaf sheath base, and that the promotional effect of GA3 can be modified by either auxins or cytokinins.

  9. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Shibata, Kazunari

    2017-03-01

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation” (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.

  10. Magnetic nanofibers with core (Fe 3O 4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Sung, Yun Kyung; Ahn, Byung Wook; Kang, Tae Jin

    2012-03-01

    One-dimensional magnetic nanostructures have recently attracted much attention because of their intriguing properties that are not realized by their bulk or particle form. These nanostructures are potentially useful for the application to ultrahigh-density data storages, sensors and bulletproof vest. The magnetic particles in magnetic nanofibers of blend types cannot fully align along the external magnetic field because magnetic particles are arrested in solid polymer matrix. To improve the mobility of magnetic particles, we used magneto-rheological fluid (MRF), which has the good mobility and dispersibility. Superparamagnetic core/sheath composite nanofibers were obtained with MRF and poly (ethylene terephthalate) (PET) solution via a coaxial electrospinning technique. Coaxial electrospinning is suited for fabricating core/sheath nanofibers encapsulating MRF materials within a polymer sheath. The magnetic nanoparticles in MRF were dispersed within core part of the nanofibers. The core/sheath magnetic composite nanofibers exhibited superparamagnetic behavior at room temperature and the magnetic nanoparticles in MRF well responded to an applied magnetic field. Also, the mechanical properties of the nanofiber were improved in the magnetic field. This study aimed to fabricate core/sheath magnetic composite nanofibers using coaxial electrospinning and characterize the magnetic as well as mechanical properties of composite nanofibers.

  11. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    NASA Astrophysics Data System (ADS)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  12. The urogenital-hypogastric sheath: an anatomical observation on the relationship between the inferomedial extension of renal fascia and the hypogastric nerves.

    PubMed

    Yang, X F; Luo, G H; Ding, Z H; Li, G X; Chen, X W; Zhong, S Z

    2014-11-01

    The study aimed to perform an anatomical observation on the inferomedial extension of the renal fascia (RF) to the pelvis and explore its relationship with the hypogastric nerves (HGNs). Gross anatomy was performed on 12 formalin-fixed and 12 fresh cadavers. Sectional anatomy was performed on four formalin-fixed cadavers. Different from the traditional concept, both the anterior and posterior RF included the outer and inner layer with different inferomedial extensions. The multiple layers of RF extended downward to form a sandwich-like and compound fascia sheath with potential and expandable spaces which was named as "the urogenital-hypogastric sheath." Below the level of the origin of the inferior mesenteric artery, the bilateral urogenital-hypogastric sheath communicated with the counterpart in front of the great vessels in the midline and the superior hypogastric plexus ran into the urogenital-hypogastric sheath which carried the HGNs, ureters, and genital vessels downward to their terminations in the pelvis. In the retrorectal space, the urogenital-hypogastric sheath surrounded the fascia propria of the rectum posterolaterally as a layer of coat containing HGNs. The multiple layers of RF with different extensions are the anatomical basis of the formation of the urogenital-hypogastric sheath. As a special fascial structure in the retroperitoneal space and the pelvis, emphasis on its formation and morphology may be helpful for not only unifying the controversies about the relationship between the pelvic fascia and HGNs but also improving the intraoperative preservation of the HGNs by dissecting in the correct surgical plane.

  13. Utility of rapid on-site cytologic evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions.

    PubMed

    Izumo, Takehiro; Matsumoto, Yuji; Sasada, Shinji; Chavez, Christine; Nakai, Toshiyuki; Tsuchida, Takaaki

    2017-03-01

    The utility of rapid on-site evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions is unclear. The aim of this study was to evaluate the role of rapid on-site evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions. Consecutive patients who underwent endobronchial ultrasound with a guide sheath for the diagnosis of peripheral pulmonary lesions at our hospital between September 2012 and July 2014 were included in this retrospective study. Cytology slides were air-dried, and modified Giemsa (Diff-Quik) staining was used for rapid on-site evaluation. Additional smears were prepared for Papanicolaou staining and tissue samples were placed in formalin for histologic evaluation. The results of rapid on-site evaluation were compared with the final diagnoses of endobronchial ultrasound with a guide sheath. A total of 718 cases were included in the study population. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of rapid on-site evaluation during endobronchial ultrasound with a guide sheath for peripheral pulmonary lesions was 88.6%, 65.9%, 81.2%, 77.7% and 80.1%, respectively. There were no procedure-related deaths. Rapid on-site evaluation during endobronchial ultrasound with a guide sheath had high sensitivity for peripheral pulmonary lesions. When carrying out rapid on-site evaluation of transbronchial biopsy samples from peripheral pulmonary lesions, careful interpretation and clinical correlation are necessary. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    NASA Astrophysics Data System (ADS)

    Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun

    2016-05-01

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.

  15. Coronal Axis Measurement of the Optic Nerve Sheath Diameter Using a Linear Transducer.

    PubMed

    Amini, Richard; Stolz, Lori A; Patanwala, Asad E; Adhikari, Srikar

    2015-09-01

    The true optic nerve sheath diameter cutoff value for detecting elevated intracranial pressure is variable. The variability may stem from the technique used to acquire sonographic measurements of the optic nerve sheath diameter as well as sonographic artifacts inherent to the technique. The purpose of this study was to compare the traditional visual axis technique to an infraorbital coronal axis technique for assessing the optic nerve sheath diameter using a high-frequency linear array transducer. We conducted a cross-sectional study at an academic medical center. Timed optic nerve sheath diameter measurements were obtained on both eyes of healthy adult volunteers with a 10-5-MHz broadband linear array transducer using both traditional visual axis and coronal axis techniques. Optic nerve sheath diameter measurements were obtained by 2 sonologists who graded the difficulty of each technique and were blinded to each other's measurements for each participant. A total of 42 volunteers were enrolled, yielding 84 optic nerve sheath diameter measurements. There were no significant differences in the measurements between the techniques on either eye (P = .23 [right]; P = .99 [left]). Additionally, there was no difference in the degree of difficulty obtaining the measurements between the techniques (P = .16). There was a statistically significant difference in the time required to obtain the measurements between the traditional and coronal techniques (P < .05). Infraorbital coronal axis measurements are similar to measurements obtained in the traditional visual axis. The infraorbital coronal axis technique is slightly faster to perform and is not technically challenging. © 2015 by the American Institute of Ultrasound in Medicine.

  16. Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC, and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes*

    PubMed Central

    Förster, Andreas; Planamente, Sara; Manoli, Eleni; Lossi, Nadine S.; Freemont, Paul S.; Filloux, Alain

    2014-01-01

    The type VI secretion system (T6SS) is a bacterial nanomachine for the transport of effector molecules into prokaryotic and eukaryotic cells. It involves the assembly of a tubular structure composed of TssB and TssC that is similar to the tail sheath of bacteriophages. The sheath contracts to provide the energy needed for effector delivery. The AAA+ ATPase ClpV disassembles the contracted sheath, which resets the systems for reassembly of an extended sheath that is ready to fire again. This mechanism is crucial for T6SS function. In Vibrio cholerae, ClpV binds the N terminus of TssC within a hydrophobic groove. In this study, we resolved the crystal structure of the N-terminal domain of Pseudomonas aeruginosa ClpV1 and observed structural alterations in the hydrophobic groove. The modification in the ClpV1 groove is matched by a change in the N terminus of TssC, suggesting the existence of distinct T6SS classes. An accessory T6SS component, TagJ/HsiE, exists predominantly in one of the classes. Using bacterial two-hybrid approaches, we showed that the P. aeruginosa homolog HsiE1 interacts strongly with ClpV1. We then resolved the crystal structure of HsiE1 in complex with the N terminus of HsiB1, a TssB homolog and component of the contractile sheath. Phylogenetic analysis confirmed that these differences distinguish T6SS classes that resulted from a functional co-evolution between TssB, TssC, TagJ/HsiE, and ClpV. The interaction of TagJ/HsiE with the sheath as well as with ClpV suggests an alternative mode of disassembly in which HsiE recruits the ATPase to the sheath. PMID:25305017

  17. Myoarchitecture and connective tissue in hearts with tricuspid atresia

    PubMed Central

    Sanchez-Quintana, D; Climent, V; Ho, S; Anderson, R

    1999-01-01

    Objective—To compare the atrial and ventricular myoarchitecture in the normal heart and the heart with tricuspid atresia, and to investigate changes in the three dimensional arrangement of collagen fibrils.
Methods—Blunt dissection and cell maceration with scanning electron microscopy were used to study the architecture of the atrial and ventricular musculature and the arrangement of collagen fibrils in three specimens with tricuspid atresia and six normal human hearts.
Results—There were significant modifications in the myoarchitecture of the right atrium and the left ventricle, both being noticeably hypertrophied. The middle layer of the ventricle in the abnormal hearts was thicker than in the normal hearts. The orientation of the superficial layer in the left ventricle in hearts with tricuspid atresia was irregular compared with the normal hearts. Scanning electron microscopy showed coarser endomysial sheaths and denser perimysial septa in hearts with tricuspid atresia than in normal hearts.
Conclusions—The overall architecture of the muscle fibres and its connective tissue matrix in hearts with tricuspid atresia differed from normal, probably reflecting modelling of the myocardium that is inherent to the malformation. This is in concordance with clinical observations showing deterioration in pump function of the dominant left ventricle from very early in life.

 Keywords: tricuspid atresia; congenital heart defects; connective tissue; fibrosis PMID:9922357

  18. Injector design for liner-on-target gas-puff experiments

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  19. Injector design for liner-on-target gas-puff experiments.

    PubMed

    Valenzuela, J C; Krasheninnikov, I; Conti, F; Wessel, F; Fadeev, V; Narkis, J; Ross, M P; Rahman, H U; Ruskov, E; Beg, F N

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ∼1 cm radius gas profile that satisfies the theoretical requirement for best performance on ∼1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  20. Electrostatic ion thruster optics calculations

    NASA Technical Reports Server (NTRS)

    Whealton, John H.; Kirkman, David A.; Raridon, R. J.

    1992-01-01

    Calculations have been performed which encompass both a self-consistent ion source extraction plasma sheath and the primary ion optics including sheath and electrode-induced aberrations. Particular attention is given to the effects of beam space charge, accelerator geometry, and properties of the downstream plasma sheath on the position of the electrostatic potential saddle point near the extractor electrode. The electron blocking potential blocking is described as a function of electrode thickness and secondary plasma processes.

  1. Intramuscular Contact Lead Filled With Conductive Solution

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Hendrickson, James A.

    1991-01-01

    Proposed sheath for braided-wire intramuscular conductor preserves electrical continuity even if wire breaks. Plastic sheath surrounds conductive solution in which braided wire immersed. At end of cable, wire and sheath crimped together and press-fit in porous titanium electrode. Implanted surgically with aid of device resembling catheter. Used to deliver electrical stimuli to muscles in biomedical research on human and animal physiology, development of prostheses, regeneration of nerves and muscles, and artificial implants.

  2. Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients

    DTIC Science & Technology

    2008-05-01

    DAMD17-03-1-0297 Title: Genomic and Expression Pr ofiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients...have determined the gene expression signature for benign and malignant peripheral nerve sheath tumors and found that the major trend in transformation...However, EGFR data in soft tissue neoplasms is limited. Using a variety of benign and malignant spindle cell neoplasms, we assessed EGFR status by

  3. In-situ formation of multiphase electron beam physical vapor deposited barrier coatings for turbine components

    DOEpatents

    Subramanian, Ramesh

    2001-01-01

    A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32' or 34') covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.

  4. Formation of stable inverse sheath in ion–ion plasma by strong negative ion emission

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Wu, Bang; Yang, Shali; Zhang, Ya; Chen, Dezhi; Fan, Mingwu; Jiang, Wei

    2018-06-01

    The effect of strong charged particle emission on plasma–wall interactions is a classical, yet unresolved question in plasma physics. Previous studies on secondary electron emission have shown that with different emission coefficients, there are classical, space-charge-limited, and inverse sheaths. In this letter, we demonstrate that a stable ion–ion inverse sheath and ion–ion plasma are formed with strong surface emission of negative ions. The continuous space-charge-limited to inverse ion–ion sheath transition is observed, and the plasma near the surface consequently transforms into pure ion–ion plasma. The results may explain the long-puzzled experimental observation that the density of negative ions depends on only charge not mass in negative ion sources.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sotiriadis, Charalampos; Hajdu, Steven David; Degrauwe, Sophie

    With the increased use of implanted venous access devices (IVADs) for continuous long-term venous access, several techniques such as percutaneous endovascular fibrin sheath removal, have been described, to maintain catheter function. Most standard techniques do not capture the stripped fibrin sheath, which is subsequently released in the pulmonary circulation and may lead to symptomatic pulmonary embolism. The presented case describes an endovascular technique which includes stripping, capture, and removal of fibrin sheath using a novel filter device. A 64-year-old woman presented with IVAD dysfunction. Stripping was performed using a co-axial snare to the filter to capture the fibrin sheath. Themore » captured fragment was subsequently removed for visual and pathological verification. No immediate complication was observed and the patient was discharged the day of the procedure.« less

  6. A novel approach to reduce radial artery occlusion after transradial catheterization: postprocedural/prehemostasis intra-arterial nitroglycerin.

    PubMed

    Dharma, Surya; Kedev, Sasko; Patel, Tejas; Kiemeneij, Ferdinand; Gilchrist, Ian C

    2015-04-01

    To evaluate whether administration of nitroglycerin through the sheath at the end of a transradial procedure might preserve the patency of the radial artery. Despite the increasing acceptance of transradial approach, radial artery occlusion (RAO) continues to be a vexing problem of transradial access and limits utility of the radial artery as an access site in the future. We conducted a multicenter, prospective, randomized, placebo-controlled, operator-blinded trial and enrolled 1,706 patients who underwent transradial catheterization in three experienced radial centers. Patients were randomized to receive either 500 µg nitroglycerin (n=853) or placebo (n=853), given intra-arterially through the sheath at the end of the radial procedure. The primary outcome was the incidence of RAO as confirmed by absence of antegrade flow at one day after the transradial procedure evaluated by duplex ultrasound of the radial artery. The use of nitroglycerin, as compared with placebo, reduced the risk of the primary outcome [8.3% vs. 11.7%; odds ratio, 0.62; 95% confidence interval (CI), 0.44-0.87; P=0.006]. From a multivariable analysis, duration of hemostasis was a predictor of RAO (odds ratio, (odds ratio, 3.11; 95% CI, 1.66 to 5.82; P<0.001). There were no significant differences between the groups with respect to the sheath size (P=0.311), number of puncture attempts (P=0.941), duration of hemostasis (P=0.379) and procedural time (P=0.095). The administration of nitroglycerin at the end of a transradial catheterization, reduced the incidence of RAO, examined 1 day after the radial procedure by ultrasound. Postprocedural/prehemostasis pharmacologic regimens may represent a novel target for further investigation to reduce RAO. © 2014 Wiley Periodicals, Inc.

  7. Sheath formation in low-pressure discharges, the Bohm criterion and the consequences of collisions

    NASA Astrophysics Data System (ADS)

    Valentini, H.-B.; Kaiser, D.

    2014-02-01

    The space charge density in low-pressure discharges results from the generation of charged particles, the momentum transfer from these particles to the neutral gas and the electric field. A simplified model is used to treat this process analytically and numerically across the whole plasma. The effect of the electric field alone can cause the formation of the space charge sheath if the ion drift velocity υi to the wall exceeds the modified Bohm velocity υC = υB × (ni/ne)1/2, where υB is the Bohm velocity and ni and ne are the number densities of the ions and the electrons, respectively. However, a domain with υi ⩾ υC can occur only if the effect of collisions is weak. This domain is very narrow and does not come up to the wall. Limits of the electric field strength determining the sheath formation are given. It is shown that the electric field strength cannot be set equal to zero at υi = υB or υC under collisional conditions. The sheath extends from the region near the wall towards the centre and a result of that is to lower υi with respect to υB as the collisionality rises. These results are used to take into consideration various sheath criteria. The Bohm criterion takes into account the effect of the electric field only and reveals a well-defined sheath edge at υi = υB. This criterion remains a useful approximation of the sheath edge in almost collisionless plasmas as well. Under collisional conditions the definition of the sheath edge becomes more difficult and a little arbitrary. This paper takes into account new sheath criteria modified for the case of finite collisionality. The divergence between the densities of the ions and the electrons, the gradients of the space charge density and of the generalized Bohm speed υC are studied as functions of υi or the distance from the wall. These criteria are compared with the collisionally modified Bohm criteria proposed by Godyak (1982 Phys. Lett. A 89 80), Valentini (1996 Phys. Plasmas 3 1459), Chen (1998 Phys. Plasmas 5 804) and Brinkmann (2011 J. Phys. D: Appl. Phys. 44 042002).

  8. Relationship between subscapularis tears and injuries to the biceps pulley.

    PubMed

    Godenèche, Arnaud; Nové-Josserand, Laurent; Audebert, Stéphane; Toussaint, Bruno; Denard, Patrick J; Lädermann, Alexandre

    2017-07-01

    The purpose of this study was to analyse the relationship between long head of the biceps brachii (LHBT) lesions and subscapularis tears. The hypothesis was that a bicipital pulley might remain intact, even in the case of a subscapularis tear. Between 2010 and 2011, all patients who had a primary arthroscopic repair of a subscapularis tear were potentially included in this prospective study. The outcome of interest was the prevalence and type of arthroscopic lesions of the LHBT and bicipital pulley. Furthermore, the supposed pathomechanics of injury and the treatment proposed (conservative, pulley repair, tenodesis, tenotomy, etc.) was recorded. The following baseline characteristics were assessed: age, sex, shoulder side, and limb dominance. Of the 218 patients, the superior glenohumeral ligament/coracohumeral ligament (SGHL/CHL) complex was normal in 54 patients (25%), stretched in 84 patients (39%), and absent in 77 patients (35%). Below the SGHL/CHL complex in the bicipital groove, the medial wall of the LHBT sheath was normal in 25%, partially torn in 39%, and completely torn in 35%. In 25 of the 218 patients (11%), a pathologic LHBT with an intact SGHL/CHL complex was observed. In these cases, the medial wall of the bicipital sheath was torn in 92%. The biceps pulley system, including the SGHL/CHL complex and subscapularis tendon, merits recognition as an important anatomical structure, and its lesions contribute to shoulder pathology. The subscapularis tendon is very important for the stability of the LHBT and should be included in the pulley system. In cases of a tear associated with a lesion of the SGHL/CHL complex, the LHBT is nearly always unstable and pathologic. II.

  9. Using SPOT-5 images in rice farming for detecting BPH (Brown Plant Hopper)

    NASA Astrophysics Data System (ADS)

    Ghobadifar, F.; Wayayok, A.; Shattri, M.; Shafri, H.

    2014-06-01

    Infestation of rice plant-hopper such as Brown Plant Hopper (BPH) (Nilaparvata lugens) is one of the most notable risk in rice yield in tropical areas especially in Asia. In order to use visible and infrared images to detect stress in rice production caused by BPH infestation, several remote sensing techniques have been developed. Initial recognition of pest infestation by means of remote sensing will spreads, for precision farming practice. To address this issue, detection of sheath blight in rice farming was examined by using SPOT-5 images. Specific image indices such as Normalized decrease food production costs, limit environmental hazards, and enhance natural pest control before the problem Normalized Difference Vegetation Index (NDVI), Standard difference indices (SDI) and Ratio Vegetation Index (RVI) were used for analyses using ENVI 4.8 and SPSS software. Results showed that all the indices to recognize infected plants are significant at α = 0.01. Examination of the association between the disease indices indicated that band 3 (near infrared) and band 4 (mid infrared) have a relatively high correlation. The selected indices declared better association for detecting healthy plants from diseased ones. Consequently, these sorts of indices especially NDVI could be valued as indicators for developing techniques for detecting the sheath blight of rice by using remote sensing. This infers that they are useful for crop disease detection but the spectral resolution is probably not sufficient to distinguish plants with light infections (low severity level). Using the index as an indicator can clarify the threshold for zoning the outbreaks. Quick assessment information is very useful in precision farming to practice site specific management such as pesticide application.

  10. Influence of residual plasma drift velocity on the post-arc sheath expansion of vacuum circuit breakers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli

    The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process wasmore » rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.« less

  11. Blazar Sheath Illumination of the Outer Molecular Torus: A Resolution of the Seed Photon Problem for the Far-GeV Blazar Flares

    NASA Astrophysics Data System (ADS)

    Breiding, Peter; Georganopoulos, Markos; Meyer, Eileen T.

    2018-01-01

    Recent multiwavelength work led by the Boston University blazar group (e.g., Marscher et al.) strongly suggests that a fraction of the blazar flares seen by the Fermi Large Area Telescope (LAT) take place a few to several pc away from the central engine. However, at such distances from the central engine, there is no adequate external photon field to provide the seed photons required for producing the observed GeV emission under leptonic inverse Compton (IC) models. A possible solution is a spine-sheath geometry for the emitting region (MacDonald et al., but see Nalewajko et al.). Here we use the current view of the molecular torus (e.g., Elitzur; Netzer), in which the torus extends a few pc beyond the dust sublimation radius with dust clouds distributed with a declining density for decreasing polar angle. We show that for a spine-sheath blazar jet embedded in the torus, the wide beaming pattern of the synchrotron radiation of the relatively slow sheath will heat molecular clouds with subsequent IR radiation that will be highly boosted in the spine comoving frame, and that under reasonable conditions this photon field can dominate over the sheath photons directly entering the spine. If the sheath is sufficiently luminous it will sublimate the dust, and if the sheath synchrotron radiation extends to optical-UV energies (as may happen during flares), this will illuminate the sublimated dust clouds to produce emission lines that will vary in unison with the optical-UV continuum, as has been very recently reported for blazar CTA 102 (Jorstad et al.).

  12. Sheathless Size-Based Acoustic Particle Separation

    PubMed Central

    Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang

    2012-01-01

    Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502

  13. Saber-sheath trachea as a marker of severe airflow obstruction in chronic obstructive pulmonary disease.

    PubMed

    Ciccarese, Federica; Poerio, Antonio; Stagni, Silvia; Attinà, Domenico; Fasano, Luca; Carbonara, Paolo; Bacchi Reggiani, Maria Letizia; Zompatori, Maurizio

    2014-02-01

    Saber-sheath trachea is a specific radiographic parameter for chronic obstructive pulmonary disease (COPD), which consists of marked coronal narrowing associated with sagittal widening (tracheal index <2/3-0.67). The aim of this study was to investigate the correlation between saber-sheath trachea and clinical-radiological findings in a group of patients with COPD of varying severity. We evaluated the chest radiographs of 71 patients with COPD distributed as follows: GOLD class I, 8/71 (11.3 %); class II, 34/71 (47.9 %); class III, 16/71(22.5 %); class IV, 13/71 (18.3 %). In 52/71 (73.2 %) patients we also evaluated chest computed tomography (CT) scans. We analyzed the prevalence of saber-sheath trachea and its correlation with the Tiffenau index, GOLD stage and radiological signs of COPD. Moreover, we evaluated the sensitivity, specificity and accuracy of chest radiography as compared to CT taken as the gold standard, and the correlation between the radiographic and CT tracheal index. Saber-sheath trachea was found in 18/71 (25.4 %) patients, with a greater prevalence in patients with lower Tiffenau Index (p = 0.02), GOLD stages III-IV and visual severity score 3 (severe) on chest CT. Saber-sheath trachea was not found to be related to other radiological signs of COPD. The sensitivity, specificity and accuracy values of radiography were 72.2, 97.0 and 88.5 %, with perfect concordance between the radiographic and CT tracheal index (p < 0.00001). Saber-sheath trachea is linked to the functional severity of airway obstruction, but not to other radiological signs of COPD. Thus, evaluation of the trachea at chest radiography is strongly recommended.

  14. Scattering of magnetized electrons at the boundary of low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Krüger, Dennis; Trieschmann, Jan; Brinkmann, Ralf Peter

    2018-02-01

    Magnetized technological plasmas with magnetic fields of 10-200 mT, plasma densities of 1017-1019 m-3, gas pressures of less than 1 Pa, and electron energies from a few to (at most) a few hundred electron volts are characterized by electron Larmor radii r L, that are small compared to all other length scales of the system, including the spatial scale L of the magnetic field and the collisional mean free path λ. In this regime, the classical drift approximation applies. In the boundary sheath of these discharges, however, that approximation breaks down: The sheath penetration depth of electrons (a few to some ten Debye length λ D; depending on the kinetic energy; typically much smaller than the sheath thickness of tens/hundreds of λ D) is even smaller than r L. For a model description of the electron dynamics, an appropriate boundary condition for the plasma/sheath interface is required. To develop such, the interaction of magnetized electrons with the boundary sheath is investigated using a 3D kinetic single electron model that sets the larger scales L and λ to infinity, i.e. neglects magnetic field gradients, the electric field in the bulk, and collisions. A detailed comparison of the interaction for a Bohm sheath (which assumes a finite Debye length) and a hard wall model (representing the limit {λ }{{D}}\\to 0; also called the specular reflection model) is conducted. Both models are found to be in remarkable agreement with respect to the sheath-induced drift. It is concluded that the assumption of specular reflection can be used as a valid boundary condition for more realistic kinetic models of magnetized technological plasmas.

  15. Novel Therapeutic Development of NF1-Associated Malignant Peripheral Nerve Sheath Tumor (MPNST)

    DTIC Science & Technology

    2016-08-01

    peripheral nerve sheath tumor (MPSNT)”, 11/5/2015, SARC-CTOS (Connective Tissue Oncology Society) Symposium, Salt Lake City, Utah b) “PRC2 loss in...of malignant peripheral nerve sheath tumor (MPSNT)”, 11/5/2015, SARC-CTOS (Connective Tissue Oncology Society) Symposium, Salt Lake City, Utah 2...Medical Oncology Service FROM: Roger S Wilson, MD Chairman, Institutional Review Board/Privacy Board-A DATE: 02/11/2016 RE: Protocol # 16-052 Your

  16. Mass-resolved ion energy measurements at both electrodes of a 13.56 MHz plasma in CF4

    NASA Astrophysics Data System (ADS)

    Snijkers, R. J. M. M.; van Sambeek, M. J. M.; Hoppenbrouwers, M. B.; Kroesen, G. M. W.; de Hoog, F. J.

    1996-06-01

    The ion energy distributions (IEDs) at the electrodes in a capacitively coupled 13.56 MHz plasma in CF4 have been measured mass resolved with a Balzers quadrupole in combination with a home-built energy analyzer. Mass-resolved determination offers the possibility to compare the IED of different ions achieved in the same sheath. The IEDs have been determined at both the largest and the smallest electrode. Apart from the IEDs of the CF4 species, the IEDs of ionic species in plasmas in argon and nitrogen also were determined. Apart from the CF4 ionic species CF+3, CF+2, CF+, and F+, CHF+2 ions also are present in the CF4 plasma due to residual water in the reactor. Because the CHF+2 ions are not produced in the sheath and because we do not detect elastically scattered ions, the IEDs of these ions show the typical bimodal distribution for rf plasmas which corresponds to an IED of ions which have not collided in the sheath. From these IEDs we can obtain the sheath characteristics, such as the averaged sheath potential. From the IEDs of CF+n ions one can conclude that, in the sheath of the CF4 plasma, a large number of chemical reactions takes place between the CF+n ions and the neutrals.

  17. Impurity migration pattern under RF sheath potential in tokamak and the response of Plasma to RMP

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaotao; Gui, Bin; Xia, Tianyang; Xu, Xueqiao; Sun, Youwen

    2017-10-01

    The migration pattern of impurity sputtered from RF guarder limiter, is simulated by a test particle module. The electric potential with RF sheath boundary condition on the guard limiter and the thermal sheath boundary condition on the divertor surface are used. The turbulence transport is implemented by random walk model. It is found the RF sheath potential enhances the impurity percentage lost at low filed side middle plane, and decreases impurity percentage drifting into core region. This beneficial effect is stronger when sheath potential is large. When turbulence transport is strong enough, their migration pattern will be dominated by transport, not by sheath potential. The Resonant Magnetic field Perturbation (RMP) is successfully applied in EAST experiment and the suppression and mitigation effect on ELM is obtained. A two field fluid model is used to simulate the plasma response to RMP in EAST geometry. The current sheet on the resonance surface is obtained initially and the resonant component of radial magnetic field is suppressed there. With plasma rotation, the Alfven resonance occurs and the current is separated into two current sheets. The simulation result will be integrated with the ELM simulations to study the effects of RMP on ELM. Prepared by LLNL under Contract DE-AC52-07NA27344 and the China Natural Science Foundation under Contract No. 11405215, 11505236 and 11675217.

  18. Analysis of electromagnetic scattering characteristics of plasma sheath surrounding a hypersonic aerocraft based on high-order auxiliary differential equation finite-difference time-domain

    NASA Astrophysics Data System (ADS)

    Sun, Hao-yu; Cui, Zhiwei; Wang, Jiajie; Han, Yiping; Sun, Peng; Shi, Xiaowei

    2018-06-01

    A numerical analysis of electromagnetic (EM) scattering characteristics of a hypersonic aerocraft enveloped by a plasma sheath is presented. The flow field parameters around a hypersonic aerocraft are derived by numerically solving the Navier-Stokes equations. Through multiphysics coupling of flow field and electromagnetic field, distributions of plasma frequency and collision frequency in plasma sheaths are obtained. A high-order auxiliary differential equation finite-difference time-domain algorithm is employed to investigate the EM wave scattering properties of the aerocraft covered by a plasma sheath. The backward radar cross sections (RCSs) of a blunt cone in the hypersonic flows at different velocities and altitudes with frequencies from 0.1 GHz to 18 GHz are studied. Numerical results show that, for the cases of altitude ranging from 50 km to 55 km and velocity ranging from 18 Ma to 20 Ma, the plasma sheath enhances the backscattering of the blunt cone when frequencies are below 1.5 GHz, and it reduces the backward RCSs of the blunt cone as frequency ranges from 1.5 GHz to 13.5 GHz. The plasma sheath has a larger attenuation effect for frequency lying in the range of 2 GHz to 6 GHz, but it has little influence on the backward electromagnetic scattering characteristics when frequencies are above 14 GHz.

  19. Ontogeny of the sheathing leaf base in maize (Zea mays).

    PubMed

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. The contribution of radio-frequency rectification to field-aligned losses of high-harmonic fast wave power to the divertor in the National Spherical Torus eXperiment

    DOE PAGES

    Perkins, R. J.; Hosea, J. C.; Jaworski, M. A.; ...

    2015-04-13

    The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. We demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heatmore » flux transmission coefficient in the presence of the RF field. Though the precise comparison between computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. Our work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.« less

  1. Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya; Shibata, Kazunari, E-mail: takahasi@kusastro.kyoto-u.ac.jp

    Fast interplanetary coronal mass ejections (ICMEs) are the drivers of strong space weather storms such as solar energetic particle events and geomagnetic storms. The connection between the space-weather-impacting solar wind disturbances associated with fast ICMEs at Earth and the characteristics of causative energetic CMEs observed near the Sun is a key question in the study of space weather storms, as well as in the development of practical space weather prediction. Such shock-driving fast ICMEs usually expand at supersonic speeds during the propagation, resulting in the continuous accumulation of shocked sheath plasma ahead. In this paper, we propose a “sheath-accumulating propagation”more » (SAP) model that describes the coevolution of the interplanetary sheath and decelerating ICME ejecta by taking into account the process of upstream solar wind plasma accumulation within the sheath region. Based on the SAP model, we discuss (1) ICME deceleration characteristics; (2) the fundamental condition for fast ICMEs at Earth; (3) the thickness of interplanetary sheaths; (4) arrival time prediction; and (5) the super-intense geomagnetic storms associated with huge solar flares. We quantitatively show that not only the speed but also the mass of the CME are crucial for discussing the above five points. The similarities and differences between the SAP model, the drag-based model, and the“snow-plow” model proposed by Tappin are also discussed.« less

  2. Mechanics of anesthetic needle penetration into human sciatic nerve.

    PubMed

    Pichamuthu, Joseph E; Maiti, Spandan; Gan, Maria G; Verdecchia, Nicole M; Orebaugh, Steven L; Vorp, David A

    2018-06-06

    Nerve blocks are frequently performed by anesthesiologists to control pain. For sciatic nerve blocks, the optimal placement of the needle tip between its paraneural sheath and epineurial covering is challenging, even under ultrasound guidance, and frequently results in nerve puncture. We performed needle penetration tests on cadaveric isolated paraneural sheath (IPS), isolated nerve (IN), and the nerve with overlying paraneural sheath (NPS), and quantified puncture force requirement and fracture toughness of these specimens to assess their role in determining the clinical risk of nerve puncture. We found that puncture force (123 ± 17 mN) and fracture toughness (45.48 ± 9.72 J m -2 ) of IPS was significantly lower than those for NPS (1440 ± 161 mN and 1317.46 ± 212.45 Jm -2 , respectively), suggesting that it is not possible to push the tip of the block needle through the paraneural sheath only, without pushing it into the nerve directly, when the sheath is lying directly over the nerve. Results of this study provide a physical basis for tangential placement of the needle as the ideal situation for local anesthetic deposition, as it allows for the penetration of the sheath along the edge of the nerve without entering the epineurium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A scanning electron microscopy study of early development in vitro of Contracaecum multipapillatum s.l. (Nematoda: Anisakidae) from a brown pelican (Pelecanus occidentalis) from the Gulf of California, Mexico.

    PubMed

    Molina-Fernández, Dolores; Valles-Vega, Isabel; Hernández-Trujillo, Sergio; Adroher, Francisco Javier; Benítez, Rocío

    2017-10-01

    Eggs obtained from the uteri of female nematodes, genetically identified as Contracaecum multipapillatum s.l., found in a brown pelican (Pelecanus occidentalis) from Bahía de La Paz, Gulf of California, Mexico, were used to study the early developmental stages of this anisakid by scanning electron microscopy (SEM). Egg dimensions were approximately 54 × 45 μm measured by SEM. Observation of the eggs revealed an outer surface of fibrous appearance. The newly hatched larvae were ensheathed and highly motile. Observation with SEM showed that the sheaths of the larvae were striated and revealed an excretory pore and a cleft near the anterior end of the sheath, presumably to facilitate the opening of the sheath for the emergence of the larva. The hatched larvae were placed in nutritive culture medium, where they grew within their sheath, some exsheathing completely 2 weeks later. The surface patterns of the sheath and the cuticle of the exsheathed larvae were clearly different. Although they did not moult during culture, SEM revealed a morphology typical of third-stage larvae of Contracaecum from fish, as previously observed by optical microscopy. Thus, we suggest that newly hatched larvae from eggs of C. multipapillatum are third larval stage but with sheath of the second larval stage, as occuring in other anisakids.

  4. The influence of the cathode array and the pressure variations on the current sheath dynamics of a small plasma focus device in the presence of an axial magnetic probe

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Javadi, S.; Mahabadi, T. D.; Yousefi, H. R.; Salar Elahi, A.; Ghoranneviss, M.

    2017-04-01

    In this research, the influence of the cathode array and the pressure variations on the current sheath dynamics of a small plasma focus device (450 J) was investigated. For this purpose, the signals of an axial magnetic probe for two different gases (argon and nitrogen) were studied. The magnetic probe signals showed the slower movement of the current sheath layer when the number of cathode rods decreased. This was related to the increase in the circuit inductance, which caused the longer discharge time of the capacitor bank followed by the creation of runaway electrons. These electrons in turn produced the impurities that led to the appearance of the instabilities inside the plasma. On the other hand, in order to investigate the effect of the cathode array variation on the instabilities produced inside the plasma, the wavelet technique was used. With the aid of frequency analysis, this technique showed the increase in these instabilities, which was due to the non-uniform formation of the current sheath layer during the breakdown phase, and finally, the higher values of the pressure caused the slower movement of the current sheath due to the inverse relation of the current sheath velocity to the square root of the pressure.

  5. Conductive cable fibers with insulating surface prepared by co-axial electrospinning of multi-walled nanotubes and cellulose

    PubMed Central

    Miyauchi, Minoru; Miao, Jianjun; Simmons, Trevor J.; Lee, Jong-Won; Doherty, Thomas V.; Dordick, Jonathan S.; Linhardt, Robert J.

    2010-01-01

    A core-sheath of multi-walled carbon nanotube (MWNT)-cellulose fibers of diameters from several hundreds nm to several µm were prepared by co-axial electrospinning from a non-valatile, non-flammable ionic liquid (IL) solvent, 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]). MWNTs were dispersed in IL to form a gel solution. This gel core solution was electrospun surrounded by a sheath solution of cellulose disolved in the same IL. Electrospun fibers were collected in a coagulation bath containing ethanol-water to completely remove the IL and dried to form a core-sheath MWNT-cellulose fibers having a cable structure with a conductive core and insulating sheath. Enzymatic treatment of a portion of a mat of these fibers with cellulase selectively removed the cellulose sheath exposing the MWNT core for connection to an electrode. These MWNT-cellulose fiber mats demonstrated excellent conductivity due to a conductive pathway of bundleled MWNTs. Fiber mat conductivity increased with increasing ratio of MWNT in the fibers with a maximum conductivity of 10.7 S/m obtained at 45 wt% MWNT loading. PMID:20690644

  6. Conductive cable fibers with insulating surface prepared by coaxial electrospinning of multiwalled nanotubes and cellulose.

    PubMed

    Miyauchi, Minoru; Miao, Jianjun; Simmons, Trevor J; Lee, Jong-Won; Doherty, Thomas V; Dordick, Jonathan S; Linhardt, Robert J

    2010-09-13

    Core-sheath multiwalled carbon nanotube (MWNT)-cellulose fibers of diameters from several hundreds of nanometers to several micrometers were prepared by coaxial electrospinning from a nonvolatile, nonflammable ionic liquid (IL) solvent, 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]). MWNTs were dispersed in IL to form a gel solution. This gel core solution was electrospun surrounded by a sheath solution of cellulose dissolved in the same IL. Electrospun fibers were collected in a coagulation bath containing ethanol-water to remove the IL completely and dried to form core-sheath MWNT-cellulose fibers having a cable structure with a conductive core and insulating sheath. Enzymatic treatment of a portion of a mat of these fibers with cellulase selectively removed the cellulose sheath exposing the MWNT core for connection to an electrode. These MWNT-cellulose fiber mats demonstrated excellent conductivity because of a conductive pathway of bundled MWNTs. Fiber mat conductivity increased with increasing ratio of MWNT in the fibers with a maximum conductivity of 10.7 S/m obtained at 45 wt % MWNT loading.

  7. Emilin3 is required for notochord sheath integrity and interacts with Scube2 to regulate notochord-derived Hedgehog signals.

    PubMed

    Corallo, Diana; Schiavinato, Alvise; Trapani, Valeria; Moro, Enrico; Argenton, Francesco; Bonaldo, Paolo

    2013-11-01

    The notochord is a transient and essential structure that provides both mechanical and signaling cues to the developing vertebrate embryo. In teleosts, the notochord is composed of a core of large vacuolated cells and an outer layer of cells that secrete the notochord sheath. In this work, we have identified the extracellular matrix glycoprotein Emilin3 as a novel essential component of the zebrafish notochord sheath. The development of the notochord sheath is impaired in Emilin3 knockdown embryos. The patterning activity of the notochord is also affected by Emilin3, as revealed by the increase of Hedgehog (Hh) signaling in Emilin3-depleted embryos and the decreased Hh signaling in embryos overexpressing Emilin3 in the notochord. In vitro and in vivo experiments indicate that Emilin3 modulates the availability of Hh ligands by interacting with the permissive factor Scube2 in the notochord sheath. Overall, this study reveals a new role for an EMILIN protein and reinforces the concept that structure and function of the notochord are strictly linked.

  8. Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry

    NASA Astrophysics Data System (ADS)

    Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.

    2018-02-01

    The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.

  9. Floating potential of emitting surfaces in plasmas with respect to the space potential

    DOE PAGES

    Kraus, B. F.; Raitses, Y.

    2018-03-19

    The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less

  10. Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex

    PubMed Central

    Bigirimana, Vincent de P.; Hua, Gia K. H.; Nyamangyoku, Obedi I.; Höfte, Monica

    2015-01-01

    Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is now getting momentum and is considered as an important emerging rice production threat. The disease can lead to variable yield losses, which can be as high as 85%. This review aims at improving our understanding of the disease etiology of rice sheath rot and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, pathogenicity determinants, interactions among the various pathogens, epidemiology, geographical distribution, and control options will be discussed. PMID:26697031

  11. A smart core-sheath nanofiber that captures and releases red blood cells from the blood.

    PubMed

    Shi, Q; Hou, J; Zhao, C; Xin, Z; Jin, J; Li, C; Wong, S-C; Yin, J

    2016-01-28

    A smart core-sheath nanofiber for non-adherent cell capture and release is demonstrated. The nanofibers are fabricated by single-spinneret electrospinning of poly(N-isopropylacrylamide) (PNIPAAm), polycaprolactone (PCL) and nattokinase (NK) solution blends. The self-assembly of PNIPAAm and PCL blends during the electrospinning generates the core-sheath PCL/PNIPAAm nanofibers with PNIPAAm as the sheath. The PNIPAAm-based core-sheath nanofibers are switchable between hydrophobicity and hydrophilicity with temperature change and enhance stability in the blood. When the nanofibers come in contact with blood, the NK is released from the nanofibers to resist platelet adhesion on the nanofiber surface, facilitating the direct capture and isolation of red blood cells (RBCs) from the blood above phase-transition temperature of PNIPAAm. Meanwhile, the captured RBCs are readily released from the nanofibers with temperature stimuli in an undamaged manner. The release efficiency of up to 100% is obtained while maintaining cellular integrity and function. This work presents promising nanofibers to effectively capture non-adherent cells and release for subsequent molecular analysis and diagnosis of single cells.

  12. On the upper bound in the Bohm sheath criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotelnikov, I. A., E-mail: I.A.Kotelnikov@inp.nsk.su; Skovorodin, D. I., E-mail: D.I.Skovorodin@inp.nsk.su

    2016-02-15

    The question is discussed about the existence of an upper bound in the Bohm sheath criterion, according to which the Debye sheath at the interface between plasma and a negatively charged electrode is stable only if the ion flow velocity in plasma exceeds the ion sound velocity. It is stated that, with an exception of some artificial ionization models, the Bohm sheath criterion is satisfied as an equality at the lower bound and the ion flow velocity is equal to the speed of sound. In the one-dimensional theory, a supersonic flow appears in an unrealistic model of a localized ionmore » source the size of which is less than the Debye length; however, supersonic flows seem to be possible in the two- and three-dimensional cases. In the available numerical codes used to simulate charged particle sources with a plasma emitter, the presence of the upper bound in the Bohm sheath criterion is not supposed; however, the correspondence with experimental data is usually achieved if the ion flow velocity in plasma is close to the ion sound velocity.« less

  13. Some Observations on the Fine Structure of the Giant Nerve Fibers of the Earthworm, Eisenia foetida

    PubMed Central

    Hama, Kiyoshi

    1959-01-01

    Sectioned dorsal giant fibers of the earthworm Eisenia foetida have been studied with the electron microscope. The giant axon is surrounded by a Schwannian sheath in which the lamellae are arranged spirally. They can be traced from the outer surface of the Schwann cell to the axon-Schwann membranes. Irregularities in the spiral arrangement are frequently observed. Desmosome-like attachment areas occur on the giant fiber nerve sheath. These structures appear to be arranged bilaterally in columns which are oriented slightly obliquely to the long axis of the giant fiber and aligned linearly from the axon to the periphery of the sheath. At these sites they bind together apposing portions of Schwann cell membrane comprising the sheath. Longitudinal or oblique sections of the nerve sheath attachment areas are reminiscent of the Schmidt-Lantermann clefts of vertebrate peripheral nerve. Septa of the giant fibers have been examined. They are symmetrical or non-polarized and consist of the two plasma membranes of adjacent nerve units. Characteristic vesicular and tubular structures are associated with both cytoplasmic surfaces of these septa. PMID:13673048

  14. Floating potential of emitting surfaces in plasmas with respect to the space potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, B. F.; Raitses, Y.

    The potential difference between a floating emitting surface and the plasma surrounding it has been described by several sheath models, including the space-charge-limited sheath, the electron sheath with high emission current, and the inverse sheath produced by charge-exchange ion trapping. Our measurements reveal that each of these models has its own regime of validity. We determine the potential of an emissive filament relative to the plasma potential, emphasizing variations in emitted current density and neutral particle density. The potential of a filament in a diffuse plasma is first shown to vanish, consistent with the electron sheath model and increasing electronmore » emission. In a denser plasma with ample neutral pressure, the floating filament potential is positive, as predicted by a derived ion trapping condition. In conclusion, the filament floated negatively in a third plasma, where flowing ions and electrons and nonnegligible electric fields may have disrupted ion trapping. Depending on the regime chosen, emitting surfaces can float positively or negatively with respect to the plasma potential.« less

  15. Quadriceps Contusion

    MedlinePlus

    ... An intramuscular contusion , which is when a muscle tears within the sheath (lining) that surrounds it. An ... the muscle and the sheath surrounding it both tear. Quadriceps contusions are common in sports that involve ...

  16. Applicability of Child-Langmuir collision laws for describing a dc cathode sheath in N2O

    NASA Astrophysics Data System (ADS)

    Lisovskiy, V. A.; Artushenko, E. P.; Yegorenkov, V. D.; Yegorenkov

    2014-06-01

    It is established which of the Child-Langmuir collision law versions are most appropriate for describing the processes in the cathode sheath in the N2O. At low pressure (up to 0.3 Torr), the Child-Langmuir law version relating to the constant ion mobility holds. At N2O pressure values starting from 0.75 Torr and above, one has to employ the law version for which it is assumed that the ion mean free path within the cathode sheath is constant. In the intermediate pressure range (between 0.3 and 0.75 Torr), neither of the Child-Langmuir law versions gives a correct description of the cathode sheath of the glow discharge in the N2O.

  17. Photovoltaic sheathing element with a flexible connector assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langmaid, Joseph A; Keenihan, James R; Mills, Michael E

    2016-07-12

    The present invention is premised upon an assembly including at least a photovoltaic sheathing element capable of being affixed on a building structure, the sheathing element including at least: a photovoltaic cell assembly, a body portion attached to one or more portions of the photovoltaic cell assembly; at least a first and a second connector assembly disposed on opposing sides of the sheathing element and capable of directly or indirectly electrically connecting the photovoltaic cell assembly to at least two adjoining devices that are affixed to the building structure and wherein at least one of the connector assemblies includes amore » flexible portion; one or more connector pockets disposed in the body portion the pockets capable of receiving at least a portion of the connector assembly.« less

  18. Liquid level detector

    DOEpatents

    Tshishiku, Eugene M [Augusta, GA

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  19. Rectus Sheath Hematoma Associated with Apixaban.

    PubMed

    Gunasekaran, Kulothungan; Winans, Amanda R McFee; Murthi, Swetha; Ahmad, Mudassar Raees; Kaatz, Scott

    2017-06-07

    Apixaban is an oral anticoagulant that directly inhibits Factor Xa and is indicated for the prophylaxis and treatment of deep venous thrombosis and stroke prevention in non-valvular atrial fibrillation. Rectus sheath hematoma is a rare, life-threatening complication of anticoagulant treatment. We describe a case of an elderly patient on apixaban for the treatment of deep venous thrombosis who developed severe abdominal pain during hospitalization. Computed tomography of the abdomen revealed left rectus sheath hematoma. Apixaban was discontinued and the patient was monitored for extension of the hematoma. After 2 days she was discharged home. Outpatient computed tomography 1 month later showed complete resolution of the rectus sheath hematoma. We recommend that clinicians become aware of the potential for rare and serious bleeding complications of anticoagulants and identify the need for early recognition and prompt management.

  20. Semi-analytical model for a static sheath including a weakly collisional presheath

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Denpoh, Kazuki

    2018-06-01

    A semi-analytical static sheath (SASS) model can provide a spatial potential profile on a biased surface with microstructures, which can be used for predicting ion trajectories on the surface. However, two- or three-dimensional SASS models require a search procedure for a sheath edge equipotential profile, at which ions have the Bohm velocity, as the starting positions for calculating ion trajectories. This procedure can be troublesome when surface microstructures have complex structures. This difficulty is due to the fact that the SASS model cannot handle a presheath region. In this work, we propose a modified SASS model that can handle a presheath region. By using the modified SASS model, ion trajectories can be calculated from edges with arbitrary geometry without searching for the equipotential profile corresponding to sheath edges.

Top