Sample records for target position estimation

  1. Experimental verification of an interpolation algorithm for improved estimates of animal position

    NASA Astrophysics Data System (ADS)

    Schell, Chad; Jaffe, Jules S.

    2004-07-01

    This article presents experimental verification of an interpolation algorithm that was previously proposed in Jaffe [J. Acoust. Soc. Am. 105, 3168-3175 (1999)]. The goal of the algorithm is to improve estimates of both target position and target strength by minimizing a least-squares residual between noise-corrupted target measurement data and the output of a model of the sonar's amplitude response to a target at a set of known locations. Although this positional estimator was shown to be a maximum likelihood estimator, in principle, experimental verification was desired because of interest in understanding its true performance. Here, the accuracy of the algorithm is investigated by analyzing the correspondence between a target's true position and the algorithm's estimate. True target position was measured by precise translation of a small test target (bead) or from the analysis of images of fish from a coregistered optical imaging system. Results with the stationary spherical test bead in a high signal-to-noise environment indicate that a large increase in resolution is possible, while results with commercial aquarium fish indicate a smaller increase is obtainable. However, in both experiments the algorithm provides improved estimates of target position over those obtained by simply accepting the angular positions of the sonar beam with maximum output as target position. In addition, increased accuracy in target strength estimation is possible by considering the effects of the sonar beam patterns relative to the interpolated position. A benefit of the algorithm is that it can be applied ``ex post facto'' to existing data sets from commercial multibeam sonar systems when only the beam intensities have been stored after suitable calibration.

  2. Multiple Target Laser Designator (MTLD)

    DTIC Science & Technology

    2007-03-01

    Optimized Liquid Crystal Scanning Element Optimize the Nonimaging Predictive Algorithm for Target Ranging, Tracking, and Position Estimation...commercial potential. 3.0 PROGRESS THIS QUARTER 3.1 Optimization of Nonimaging Holographic Antenna for Target Tracking and Position Estimation (Task 6) In

  3. On the internal target model in a tracking task

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Baron, S.

    1981-01-01

    An optimal control model for predicting operator's dynamic responses and errors in target tracking ability is summarized. The model, which predicts asymmetry in the tracking data, is dependent on target maneuvers and trajectories. Gunners perception, decision making, control, and estimate of target positions and velocity related to crossover intervals are discussed. The model provides estimates for means, standard deviations, and variances for variables investigated and for operator estimates of future target positions and velocities.

  4. Optimization of training periods for the estimation model of three-dimensional target positions using an external respiratory surrogate.

    PubMed

    Iramina, Hiraku; Nakamura, Mitsuhiro; Iizuka, Yusuke; Mitsuyoshi, Takamasa; Matsuo, Yukinori; Mizowaki, Takashi; Kanno, Ikuo

    2018-04-19

    During therapeutic beam irradiation, an unvisualized three-dimensional (3D) target position should be estimated using an external surrogate with an estimation model. Training periods for the developed model with no additional imaging during beam irradiation were optimized using clinical data. Dual-source 4D-CBCT projection data for 20 lung cancer patients were used for validation. Each patient underwent one to three scans. The actual target positions of each scan were equally divided into two equal parts: one for the modeling and the other for the validating session. A quadratic target position estimation equation was constructed during the modeling session. Various training periods for the session-i.e., modeling periods (T M )-were employed: T M  ∈ {5,10,15,25,35} [s]. First, the equation was used to estimate target positions in the validating session of the same scan (intra-scan estimations). Second, the equation was then used to estimate target positions in the validating session of another temporally different scan (inter-scan estimations). The baseline drift of the surrogate and target between scans was corrected. Various training periods for the baseline drift correction-i.e., correction periods (T C s)-were employed: T C  ∈ {5,10,15; T C  ≤ T M } [s]. Evaluations were conducted with and without the correction. The difference between the actual and estimated target positions was evaluated by the root-mean-square error (RMSE). The range of mean respiratory period and 3D motion amplitude of the target was 2.4-13.0 s and 2.8-34.2 mm, respectively. On intra-scan estimation, the median 3D RMSE was within 1.5-2.1 mm, supported by previous studies. On inter-scan estimation, median elapsed time between scans was 10.1 min. All T M s exhibited 75th percentile 3D RMSEs of 5.0-6.4 mm due to baseline drift of the surrogate and the target. After the correction, those for each T M s fell by 1.4-2.3 mm. The median 3D RMSE for both the 10-s T M and the T C period was 2.4 mm, which plateaued when the two training periods exceeded 10 s. A widely-applicable estimation model for the 3D target positions during beam irradiation was developed. The optimal T M and T C for the model were both 10 s, to allow for more than one respiratory cycle. UMIN000014825 . Registered: 11 August 2014.

  5. Improvement in Visual Target Tracking for a Mobile Robot

    NASA Technical Reports Server (NTRS)

    Kim, Won; Ansar, Adnan; Madison, Richard

    2006-01-01

    In an improvement of the visual-target-tracking software used aboard a mobile robot (rover) of the type used to explore the Martian surface, an affine-matching algorithm has been replaced by a combination of a normalized- cross-correlation (NCC) algorithm and a template-image-magnification algorithm. Although neither NCC nor template-image magnification is new, the use of both of them to increase the degree of reliability with which features can be matched is new. In operation, a template image of a target is obtained from a previous rover position, then the magnification of the template image is based on the estimated change in the target distance from the previous rover position to the current rover position (see figure). For this purpose, the target distance at the previous rover position is determined by stereoscopy, while the target distance at the current rover position is calculated from an estimate of the current pose of the rover. The template image is then magnified by an amount corresponding to the estimated target distance to obtain a best template image to match with the image acquired at the current rover position.

  6. Accuracy of parameter estimates for closely spaced optical targets using multiple detectors

    NASA Astrophysics Data System (ADS)

    Dunn, K. P.

    1981-10-01

    In order to obtain the cross-scan position of an optical target, more than one scanning detector is used. As expected, the cross-scan position estimation performance degrades when two nearby optical targets interfere with each other. Theoretical bounds on the two-dimensional parameter estimation performance for two closely spaced optical targets are found. Two particular classes of scanning detector arrays, namely, the crow's foot and the brickwall (or mosaic) patterns, are considered.

  7. Moving target parameter estimation of SAR after two looks cancellation

    NASA Astrophysics Data System (ADS)

    Gan, Rongbing; Wang, Jianguo; Gao, Xiang

    2005-11-01

    Moving target detection of synthetic aperture radar (SAR) by two looks cancellation is studied. First, two looks are got by the first and second half of the synthetic aperture. After two looks cancellation, the moving targets are reserved and stationary targets are removed. After that, a Constant False Alarm Rate (CFAR) detector detects moving targets. The ground range velocity and cross-range velocity of moving target can be got by the position shift between the two looks. We developed a method to estimate the cross-range shift due to slant range moving. we estimate cross-range shift by Doppler frequency center. Wigner-Ville Distribution (WVD) is used to estimate the Doppler frequency center (DFC). Because the range position and cross range before correction is known, estimation of DFC is much easier and efficient. Finally experiments results show that our algorithms have good performance. With the algorithms we can estimate the moving target parameter accurately.

  8. Maximum angular accuracy of pulsed laser radar in photocounting limit.

    PubMed

    Elbaum, M; Diament, P; King, M; Edelson, W

    1977-07-01

    To estimate the angular position of targets with pulsed laser radars, their images may be sensed with a fourquadrant noncoherent detector and the image photocounting distribution processed to obtain the angular estimates. The limits imposed on the accuracy of angular estimation by signal and background radiation shot noise, dark current noise, and target cross-section fluctuations are calculated. Maximum likelihood estimates of angular positions are derived for optically rough and specular targets and their performances compared with theoretical lower bounds.

  9. A game theory approach to target tracking in sensor networks.

    PubMed

    Gu, Dongbing

    2011-02-01

    In this paper, we investigate a moving-target tracking problem with sensor networks. Each sensor node has a sensor to observe the target and a processor to estimate the target position. It also has wireless communication capability but with limited range and can only communicate with neighbors. The moving target is assumed to be an intelligent agent, which is "smart" enough to escape from the detection by maximizing the estimation error. This adversary behavior makes the target tracking problem more difficult. We formulate this target estimation problem as a zero-sum game in this paper and use a minimax filter to estimate the target position. The minimax filter is a robust filter that minimizes the estimation error by considering the worst case noise. Furthermore, we develop a distributed version of the minimax filter for multiple sensor nodes. The distributed computation is implemented via modeling the information received from neighbors as measurements in the minimax filter. The simulation results show that the target tracking algorithm proposed in this paper provides a satisfactory result.

  10. Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus

    PubMed Central

    Ma, Rui; Cui, He; Lee, Sang-Hun; Anastasio, Thomas J.

    2013-01-01

    Intercepting momentarily invisible moving objects requires internally generated estimations of target trajectory. We demonstrate here that the parabigeminal nucleus (PBN) encodes such estimations, combining sensory representations of target location, extrapolated positions of briefly obscured targets, and eye position information. Cui and Malpeli (Cui H, Malpeli JG. J Neurophysiol 89: 3128–3142, 2003) reported that PBN activity for continuously visible tracked targets is determined by retinotopic target position. Here we show that when cats tracked moving, blinking targets the relationship between activity and target position was similar for ON and OFF phases (400 ms for each phase). The dynamic range of activity evoked by virtual targets was 94% of that of real targets for the first 200 ms after target offset and 64% for the next 200 ms. Activity peaked at about the same best target position for both real and virtual targets. PBN encoding of target position takes into account changes in eye position resulting from saccades, even without visual feedback. Since PBN response fields are retinotopically organized, our results suggest that activity foci associated with real and virtual targets at a given target position lie in the same physical location in the PBN, i.e., a retinotopic as well as a rate encoding of virtual-target position. We also confirm that PBN activity is specific to the intended target of a saccade and is predictive of which target will be chosen if two are offered. A Bayesian predictor-corrector model is presented that conceptually explains the differences in the dynamic ranges of PBN neuronal activity evoked during tracking of real and virtual targets. PMID:23365185

  11. Decentralized cooperative TOA/AOA target tracking for hierarchical wireless sensor networks.

    PubMed

    Chen, Ying-Chih; Wen, Chih-Yu

    2012-11-08

    This paper proposes a distributed method for cooperative target tracking in hierarchical wireless sensor networks. The concept of leader-based information processing is conducted to achieve object positioning, considering a cluster-based network topology. Random timers and local information are applied to adaptively select a sub-cluster for the localization task. The proposed energy-efficient tracking algorithm allows each sub-cluster member to locally estimate the target position with a Bayesian filtering framework and a neural networking model, and further performs estimation fusion in the leader node with the covariance intersection algorithm. This paper evaluates the merits and trade-offs of the protocol design towards developing more efficient and practical algorithms for object position estimation.

  12. Fusion-based multi-target tracking and localization for intelligent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2008-04-01

    In this paper, we have presented two approaches addressing visual target tracking and localization in complex urban environment. The two techniques presented in this paper are: fusion-based multi-target visual tracking, and multi-target localization via camera calibration. For multi-target tracking, the data fusion concepts of hypothesis generation/evaluation/selection, target-to-target registration, and association are employed. An association matrix is implemented using RGB histograms for associated tracking of multi-targets of interests. Motion segmentation of targets of interest (TOI) from the background was achieved by a Gaussian Mixture Model. Foreground segmentation, on other hand, was achieved by the Connected Components Analysis (CCA) technique. The tracking of individual targets was estimated by fusing two sources of information, the centroid with the spatial gating, and the RGB histogram association matrix. The localization problem is addressed through an effective camera calibration technique using edge modeling for grid mapping (EMGM). A two-stage image pixel to world coordinates mapping technique is introduced that performs coarse and fine location estimation of moving TOIs. In coarse estimation, an approximate neighborhood of the target position is estimated based on nearest 4-neighbor method, and in fine estimation, we use Euclidean interpolation to localize the position within the estimated four neighbors. Both techniques were tested and shown reliable results for tracking and localization of Targets of interests in complex urban environment.

  13. An Improved Compressive Sensing and Received Signal Strength-Based Target Localization Algorithm with Unknown Target Population for Wireless Local Area Networks.

    PubMed

    Yan, Jun; Yu, Kegen; Chen, Ruizhi; Chen, Liang

    2017-05-30

    In this paper a two-phase compressive sensing (CS) and received signal strength (RSS)-based target localization approach is proposed to improve position accuracy by dealing with the unknown target population and the effect of grid dimensions on position error. In the coarse localization phase, by formulating target localization as a sparse signal recovery problem, grids with recovery vector components greater than a threshold are chosen as the candidate target grids. In the fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively refined by using the minimum residual error rule and the least-squares technique. When all the candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery vector is re-estimated. Threshold-based detection is employed again to determine the target grids and hence the target population. As a consequence, both the target population and the position estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed approach achieves the best accuracy among all the algorithms compared.

  14. Disruption of State Estimation in the Human Lateral Cerebellum

    PubMed Central

    Miall, R. Chris; Christensen, Lars O. D; Cain, Owen; Stanley, James

    2007-01-01

    The cerebellum has been proposed to be a crucial component in the state estimation process that combines information from motor efferent and sensory afferent signals to produce a representation of the current state of the motor system. Such a state estimate of the moving human arm would be expected to be used when the arm is rapidly and skillfully reaching to a target. We now report the effects of transcranial magnetic stimulation (TMS) over the ipsilateral cerebellum as healthy humans were made to interrupt a slow voluntary movement to rapidly reach towards a visually defined target. Errors in the initial direction and in the final finger position of this reach-to-target movement were significantly higher for cerebellar stimulation than they were in control conditions. The average directional errors in the cerebellar TMS condition were consistent with the reaching movements being planned and initiated from an estimated hand position that was 138 ms out of date. We suggest that these results demonstrate that the cerebellum is responsible for estimating the hand position over this time interval and that TMS disrupts this state estimate. PMID:18044990

  15. Estimation of Target Angular Position Under Mainbeam Jamming Conditions,

    DTIC Science & Technology

    1995-12-01

    technique, Multiple Signal Classification ( MUSIC ), is used to estimate the target Direction Of Arrival (DOA) from the processed data vectors. The model...used in the MUSIC technique takes into account the fact that the jammer has been cancelled in the target data vector. The performance of this algorithm

  16. An Accurate and Fault-Tolerant Target Positioning System for Buildings Using Laser Rangefinders and Low-Cost MEMS-Based MARG Sensors

    PubMed Central

    Zhao, Lin; Guan, Dongxue; Landry, René Jr.; Cheng, Jianhua; Sydorenko, Kostyantyn

    2015-01-01

    Target positioning systems based on MEMS gyros and laser rangefinders (LRs) have extensive prospects due to their advantages of low cost, small size and easy realization. The target positioning accuracy is mainly determined by the LR’s attitude derived by the gyros. However, the attitude error is large due to the inherent noises from isolated MEMS gyros. In this paper, both accelerometer/magnetometer and LR attitude aiding systems are introduced to aid MEMS gyros. A no-reset Federated Kalman Filter (FKF) is employed, which consists of two local Kalman Filters (KF) and a Master Filter (MF). The local KFs are designed by using the Direction Cosine Matrix (DCM)-based dynamic equations and the measurements from the two aiding systems. The KFs can estimate the attitude simultaneously to limit the attitude errors resulting from the gyros. Then, the MF fuses the redundant attitude estimates to yield globally optimal estimates. Simulation and experimental results demonstrate that the FKF-based system can improve the target positioning accuracy effectively and allow for good fault-tolerant capability. PMID:26512672

  17. Addressing Loss of Efficiency Due to Misclassification Error in Enriched Clinical Trials for the Evaluation of Targeted Therapies Based on the Cox Proportional Hazards Model.

    PubMed

    Tsai, Chen-An; Lee, Kuan-Ting; Liu, Jen-Pei

    2016-01-01

    A key feature of precision medicine is that it takes individual variability at the genetic or molecular level into account in determining the best treatment for patients diagnosed with diseases detected by recently developed novel biotechnologies. The enrichment design is an efficient design that enrolls only the patients testing positive for specific molecular targets and randomly assigns them for the targeted treatment or the concurrent control. However there is no diagnostic device with perfect accuracy and precision for detecting molecular targets. In particular, the positive predictive value (PPV) can be quite low for rare diseases with low prevalence. Under the enrichment design, some patients testing positive for specific molecular targets may not have the molecular targets. The efficacy of the targeted therapy may be underestimated in the patients that actually do have the molecular targets. To address the loss of efficiency due to misclassification error, we apply the discrete mixture modeling for time-to-event data proposed by Eng and Hanlon [8] to develop an inferential procedure, based on the Cox proportional hazard model, for treatment effects of the targeted treatment effect for the true-positive patients with the molecular targets. Our proposed procedure incorporates both inaccuracy of diagnostic devices and uncertainty of estimated accuracy measures. We employed the expectation-maximization algorithm in conjunction with the bootstrap technique for estimation of the hazard ratio and its estimated variance. We report the results of simulation studies which empirically investigated the performance of the proposed method. Our proposed method is illustrated by a numerical example.

  18. Interaction between gaze and visual and proprioceptive position judgements.

    PubMed

    Fiehler, Katja; Rösler, Frank; Henriques, Denise Y P

    2010-06-01

    There is considerable evidence that targets for action are represented in a dynamic gaze-centered frame of reference, such that each gaze shift requires an internal updating of the target. Here, we investigated the effect of eye movements on the spatial representation of targets used for position judgements. Participants had their hand passively placed to a location, and then judged whether this location was left or right of a remembered visual or remembered proprioceptive target, while gaze direction was varied. Estimates of position of the remembered targets relative to the unseen position of the hand were assessed with an adaptive psychophysical procedure. These positional judgements significantly varied relative to gaze for both remembered visual and remembered proprioceptive targets. Our results suggest that relative target positions may also be represented in eye-centered coordinates. This implies similar spatial reference frames for action control and space perception when positions are coded relative to the hand.

  19. Neural mechanisms of limb position estimation in the primate brain.

    PubMed

    Shi, Ying; Buneo, Christopher A

    2011-01-01

    Understanding the neural mechanisms of limb position estimation is important both for comprehending the neural control of goal directed arm movements and for developing neuroprosthetic systems designed to replace lost limb function. Here we examined the role of area 5 of the posterior parietal cortex in estimating limb position based on visual and somatic (proprioceptive, efference copy) signals. Single unit recordings were obtained as monkeys reached to visual targets presented in a semi-immersive virtual reality environment. On half of the trials animals were required to maintain their limb position at these targets while receiving both visual and non-visual feedback of their arm position, while on the other trials visual feedback was withheld. When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons modulated their firing rates based on the presence/absence of visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level.

  20. Flexor bias of joint position in humans during spaceflight

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Goulet, C.; Boorman, G. I.; Roy, R. R.; Edgerton, V. R.

    2003-01-01

    The ability to estimate ankle and elbow joint position was tested before, during, and after a 17-day spaceflight. Subjects estimated targeted joint angles during isovelocity (IsoV) joint movements with agonist muscle groups either active or relaxed. These movements included elbow extension (EE) and elbow flexion (EF), and plantarflexion (PF) and dorsiflexion (DF) of the ankle. Subjects also estimated these joint positions while moving the dynamometer at their chosen (variable) velocity (VarV) during EE and PF. For IsoV tests, no differences were observed between active and passive movements for either the ankle or elbow. Compared with those of pre-flight test days, estimates of targeted elbow joint angles were approximately 5 degrees to 15 degrees more flexed in-flight, and returned toward the pre-flight values during recovery. The spaceflight effects for the ankle were inconsistent and less prevalent than those for the elbow. The VarV PF test condition for the 120 degrees target angle at the ankle exhibited approximately 5 degrees to 7 degrees more DF target angle estimates in-flight compared with those pre- or post-flight. In contrast, during IsoV PF there was a tendency for ankle estimates to be approximately 2 degrees to 3 degrees more PF after 2-3 days exposure to spaceflight. These data indicate that during spaceflight the perception of elbow extension is greater than actuality, and are consistent with the interpretation that microgravity induced a flexor bias in the estimation of the actual elbow joint position. Moreover, these effects in joint proprioception during spaceflight were observed in individual isolated single-joint movements during tasks in which vestibular function in maintaining posture were minimal.

  1. Flexor bias of joint position in humans during spaceflight.

    PubMed

    McCall, G E; Goulet, C; Boorman, G I; Roy, R R; Edgerton, V R

    2003-09-01

    The ability to estimate ankle and elbow joint position was tested before, during, and after a 17-day spaceflight. Subjects estimated targeted joint angles during isovelocity (IsoV) joint movements with agonist muscle groups either active or relaxed. These movements included elbow extension (EE) and elbow flexion (EF), and plantarflexion (PF) and dorsiflexion (DF) of the ankle. Subjects also estimated these joint positions while moving the dynamometer at their chosen (variable) velocity (VarV) during EE and PF. For IsoV tests, no differences were observed between active and passive movements for either the ankle or elbow. Compared with those of pre-flight test days, estimates of targeted elbow joint angles were approximately 5 degrees to 15 degrees more flexed in-flight, and returned toward the pre-flight values during recovery. The spaceflight effects for the ankle were inconsistent and less prevalent than those for the elbow. The VarV PF test condition for the 120 degrees target angle at the ankle exhibited approximately 5 degrees to 7 degrees more DF target angle estimates in-flight compared with those pre- or post-flight. In contrast, during IsoV PF there was a tendency for ankle estimates to be approximately 2 degrees to 3 degrees more PF after 2-3 days exposure to spaceflight. These data indicate that during spaceflight the perception of elbow extension is greater than actuality, and are consistent with the interpretation that microgravity induced a flexor bias in the estimation of the actual elbow joint position. Moreover, these effects in joint proprioception during spaceflight were observed in individual isolated single-joint movements during tasks in which vestibular function in maintaining posture were minimal.

  2. Non-Cooperative Target Imaging and Parameter Estimation with Narrowband Radar Echoes.

    PubMed

    Yeh, Chun-mao; Zhou, Wei; Lu, Yao-bing; Yang, Jian

    2016-01-20

    This study focuses on the rotating target imaging and parameter estimation with narrowband radar echoes, which is essential for radar target recognition. First, a two-dimensional (2D) imaging model with narrowband echoes is established in this paper, and two images of the target are formed on the velocity-acceleration plane at two neighboring coherent processing intervals (CPIs). Then, the rotating velocity (RV) is proposed to be estimated by utilizing the relationship between the positions of the scattering centers among two images. Finally, the target image is rescaled to the range-cross-range plane with the estimated rotational parameter. The validity of the proposed approach is confirmed using numerical simulations.

  3. Pose estimation and tracking of non-cooperative rocket bodies using Time-of-Flight cameras

    NASA Astrophysics Data System (ADS)

    Gómez Martínez, Harvey; Giorgi, Gabriele; Eissfeller, Bernd

    2017-10-01

    This paper presents a methodology for estimating the position and orientation of a rocket body in orbit - the target - undergoing a roto-translational motion, with respect to a chaser spacecraft, whose task is to match the target dynamics for a safe rendezvous. During the rendezvous maneuver the chaser employs a Time-of-Flight camera that acquires a point cloud of 3D coordinates mapping the sensed target surface. Once the system identifies the target, it initializes the chaser-to-target relative position and orientation. After initialization, a tracking procedure enables the system to sense the evolution of the target's pose between frames. The proposed algorithm is evaluated using simulated point clouds, generated with a CAD model of the Cosmos-3M upper stage and the PMD CamCube 3.0 camera specifications.

  4. Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Hyekyun

    Purpose: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy. Most vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. The authors have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT projection images using interdimensional correlation modeling. Methods: Because the superior–inferior (SI) motion of a target can be easily analyzed on projection images of a gantry-mounted CBCT system, the authors investigated the interdimensional correlation ofmore » the SI motion with left–right and anterior–posterior (AP) movements while the gantry is rotating. A simple linear model and a state-augmented model were implemented and applied to the interdimensional correlation analysis, and their performance was compared. The parameters of the interdimensional correlation models were determined by least-square estimation of the 2D error between the actual and estimated projected target position. The method was validated using 160 3D tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. The authors’ simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy (VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 20 s. Results: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly simulations, prior projections over more than 60° appear to be necessary for reliable estimations. The mean 3D RMSE during beam delivery after the simple linear model had established with a prior 90° projection data was 0.42 mm for VMAT and 0.45 mm for IMRT. Conclusions: The proposed method does not require any internal/external correlation or statistical modeling to estimate the target trajectory and can be used for both retrospective image-guided radiotherapy with CBCT projection images and real-time target position monitoring for respiratory gating or tracking.« less

  5. Self-position estimation using terrain shadows for precise planetary landing

    NASA Astrophysics Data System (ADS)

    Kuga, Tomoki; Kojima, Hirohisa

    2018-07-01

    In recent years, the investigation of moons and planets has attracted increasing attention in several countries. Furthermore, recently developed landing systems are now expected to reach more scientifically interesting areas close to hazardous terrain, requiring precise landing capabilities within a 100 m range of the target point. To achieve this, terrain-relative navigation (capable of estimating the position of a lander relative to the target point on the ground surface is actively being studied as an effective method for achieving highly accurate landings. This paper proposes a self-position estimation method using shadows on the terrain based on edge extraction from image processing algorithms. The effectiveness of the proposed method is validated through numerical simulations using images generated from a digital elevation model of simulated terrains.

  6. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    PubMed

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  7. A minimalist approach to bias estimation for passive sensor measurements with targets of opportunity

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov

    2013-09-01

    In order to carry out data fusion, registration error correction is crucial in multisensor systems. This requires estimation of the sensor measurement biases. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. This paper provides a solution for bias estimation for the minimum number of passive sensors (two), when only targets of opportunity are available. The sensor measurements are assumed time-coincident (synchronous) and perfectly associated. Since these sensors provide only line of sight (LOS) measurements, the formation of a single composite Cartesian measurement obtained from fusing the LOS measurements from different sensors is needed to avoid the need for nonlinear filtering. We evaluate the Cramer-Rao Lower Bound (CRLB) on the covariance of the bias estimate, i.e., the quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.

  8. Bias estimation for moving optical sensor measurements with targets of opportunity

    NASA Astrophysics Data System (ADS)

    Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov

    2014-06-01

    Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.

  9. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB) Radar Systems

    PubMed Central

    Kocur, Dušan; Švecová, Mária; Rovňáková, Jana

    2013-01-01

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered. PMID:24021968

  10. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    PubMed

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-09-09

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  11. Talker Localization Based on Interference between Transmitted and Reflected Audible Sound

    NASA Astrophysics Data System (ADS)

    Nakayama, Masato; Nakasako, Noboru; Shinohara, Toshihiro; Uebo, Tetsuji

    In many engineering fields, distance to targets is very important. General distance measurement method uses a time delay between transmitted and reflected waves, but it is difficult to estimate the short distance. On the other hand, the method using phase interference to measure the short distance has been known in the field of microwave radar. Therefore, we have proposed the distance estimation method based on interference between transmitted and reflected audible sound, which can measure the distance between microphone and target with one microphone and one loudspeaker. In this paper, we propose talker localization method based on distance estimation using phase interference. We expand the distance estimation method using phase interference into two microphones (microphone array) in order to estimate talker position. The proposed method can estimate talker position by measuring the distance and direction between target and microphone array. In addition, talker's speech is regarded as a noise in the proposed method. Therefore, we also propose combination of the proposed method and CSP (Cross-power Spectrum Phase analysis) method which is one of the DOA (Direction Of Arrival) estimation methods. We evaluated the performance of talker localization in real environments. The experimental result shows the effectiveness of the proposed method.

  12. Optical Tracking Data Validation and Orbit Estimation for Sparse Observations of Satellites by the OWL-Net.

    PubMed

    Choi, Jin; Jo, Jung Hyun; Yim, Hong-Suh; Choi, Eun-Jung; Cho, Sungki; Park, Jang-Hyun

    2018-06-07

    An Optical Wide-field patroL-Network (OWL-Net) has been developed for maintaining Korean low Earth orbit (LEO) satellites' orbital ephemeris. The OWL-Net consists of five optical tracking stations. Brightness signals of reflected sunlight of the targets were detected by a charged coupled device (CCD). A chopper system was adopted for fast astrometric data sampling, maximum 50 Hz, within a short observation time. The astrometric accuracy of the optical observation data was validated with precise orbital ephemeris such as Consolidated Prediction File (CPF) data and precise orbit determination result with onboard Global Positioning System (GPS) data from the target satellite. In the optical observation simulation of the OWL-Net for 2017, an average observation span for a single arc of 11 LEO observation targets was about 5 min, while an average optical observation separation time was 5 h. We estimated the position and velocity with an atmospheric drag coefficient of LEO observation targets using a sequential-batch orbit estimation technique after multi-arc batch orbit estimation. Post-fit residuals for the multi-arc batch orbit estimation and sequential-batch orbit estimation were analyzed for the optical measurements and reference orbit (CPF and GPS data). The post-fit residuals with reference show few tens-of-meters errors for in-track direction for multi-arc batch and sequential-batch orbit estimation results.

  13. The Extended-Image Tracking Technique Based on the Maximum Likelihood Estimation

    NASA Technical Reports Server (NTRS)

    Tsou, Haiping; Yan, Tsun-Yee

    2000-01-01

    This paper describes an extended-image tracking technique based on the maximum likelihood estimation. The target image is assume to have a known profile covering more than one element of a focal plane detector array. It is assumed that the relative position between the imager and the target is changing with time and the received target image has each of its pixels disturbed by an independent additive white Gaussian noise. When a rotation-invariant movement between imager and target is considered, the maximum likelihood based image tracking technique described in this paper is a closed-loop structure capable of providing iterative update of the movement estimate by calculating the loop feedback signals from a weighted correlation between the currently received target image and the previously estimated reference image in the transform domain. The movement estimate is then used to direct the imager to closely follow the moving target. This image tracking technique has many potential applications, including free-space optical communications and astronomy where accurate and stabilized optical pointing is essential.

  14. Pose estimation of industrial objects towards robot operation

    NASA Astrophysics Data System (ADS)

    Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu

    2017-10-01

    With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.

  15. Target-depth estimation in active sonar: Cramer-Rao bounds for a bilinear sound-speed profile.

    PubMed

    Mours, Alexis; Ioana, Cornel; Mars, Jérôme I; Josso, Nicolas F; Doisy, Yves

    2016-09-01

    This paper develops a localization method to estimate the depth of a target in the context of active sonar, at long ranges. The target depth is tactical information for both strategy and classification purposes. The Cramer-Rao lower bounds for the target position as range and depth are derived for a bilinear profile. The influence of sonar parameters on the standard deviations of the target range and depth are studied. A localization method based on ray back-propagation with a probabilistic approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally validated on data in an experimental tank.

  16. Sensor networks for optimal target localization with bearings-only measurements in constrained three-dimensional scenarios.

    PubMed

    Moreno-Salinas, David; Pascoal, Antonio; Aranda, Joaquin

    2013-08-12

    In this paper, we address the problem of determining the optimal geometric configuration of an acoustic sensor network that will maximize the angle-related information available for underwater target positioning. In the set-up adopted, a set of autonomous vehicles carries a network of acoustic units that measure the elevation and azimuth angles between a target and each of the receivers on board the vehicles. It is assumed that the angle measurements are corrupted by white Gaussian noise, the variance of which is distance-dependent. Using tools from estimation theory, the problem is converted into that of minimizing, by proper choice of the sensor positions, the trace of the inverse of the Fisher Information Matrix (also called the Cramer-Rao Bound matrix) to determine the sensor configuration that yields the minimum possible covariance of any unbiased target estimator. It is shown that the optimal configuration of the sensors depends explicitly on the intensity of the measurement noise, the constraints imposed on the sensor configuration, the target depth and the probabilistic distribution that defines the prior uncertainty in the target position. Simulation examples illustrate the key results derived.

  17. Performance Analysis for Joint Target Parameter Estimation in UMTS-Based Passive Multistatic Radar with Antenna Arrays Using Modified Cramér-Rao Lower Bounds.

    PubMed

    Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-10-18

    In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with N t UMTS-based transmit station of L t antenna elements and N r receive stations of L r antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance.

  18. Performance Analysis for Joint Target Parameter Estimation in UMTS-Based Passive Multistatic Radar with Antenna Arrays Using Modified Cramér-Rao Lower Bounds

    PubMed Central

    Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-01-01

    In this study, the modified Cramér-Rao lower bounds (MCRLBs) on the joint estimation of target position and velocity is investigated for a universal mobile telecommunication system (UMTS)-based passive multistatic radar system with antenna arrays. First, we analyze the log-likelihood redfunction of the received signal for a complex Gaussian extended target. Then, due to the non-deterministic transmitted data symbols, the analytically closed-form expressions of the MCRLBs on the Cartesian coordinates of target position and velocity are derived for a multistatic radar system with Nt UMTS-based transmit station of Lt antenna elements and Nr receive stations of Lr antenna elements. With the aid of numerical simulations, it is shown that increasing the number of receiving elements in each receive station can reduce the estimation errors. In addition, it is demonstrated that the MCRLB is not only a function of signal-to-noise ratio (SNR), the number of receiving antenna elements and the properties of the transmitted UMTS signals, but also a function of the relative geometric configuration between the target and the multistatic radar system.The analytical expressions for MCRLB will open up a new dimension for passive multistatic radar system by aiding the optimal placement of receive stations to improve the target parameter estimation performance. PMID:29057805

  19. Automated target recognition using passive radar and coordinated flight models

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.; Lanterman, Aaron D.

    2003-09-01

    Rather than emitting pulses, passive radar systems rely on illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. These systems are particularly attractive since they allow receivers to operate without emitting energy, rendering them covert. Many existing passive radar systems estimate the locations and velocities of targets. This paper focuses on adding an automatic target recognition (ATR) component to such systems. Our approach to ATR compares the Radar Cross Section (RCS) of targets detected by a passive radar system to the simulated RCS of known targets. To make the comparison as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. The estimated positions become inputs for an algorithm that uses a coordinated flight model to compute probable aircraft orientation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of several potential target classes as they execute the estimated maneuvers. The RCS is then scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so that the RCS can be further scaled. The Rician model compares the RCS of the illuminated aircraft with those of the potential targets. This comparison results in target identification.

  20. Estimating Accurate Relative Spacecraft Angular Position from DSN VLBI Phases Using X-Band Telemetry or DOR Tones

    NASA Technical Reports Server (NTRS)

    Bagri, Durgadas S.; Majid, Walid

    2009-01-01

    At present spacecraft angular position with Deep Space Network (DSN) is determined using group delay estimates from very long baseline interferometer (VLBI) phase measurements employing differential one way ranging (DOR) tones. As an alternative to this approach, we propose estimating position of a spacecraft to half a fringe cycle accuracy using time variations between measured and calculated phases as the Earth rotates using DSN VLBI baseline(s). Combining fringe location of the target with the phase allows high accuracy for spacecraft angular position estimate. This can be achieved using telemetry signals of at least 4-8 MSamples/sec data rate or DOR tones.

  1. Visual object tracking by correlation filters and online learning

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Xia, Gui-Song; Lu, Qikai; Shen, Weiming; Zhang, Liangpei

    2018-06-01

    Due to the complexity of background scenarios and the variation of target appearance, it is difficult to achieve high accuracy and fast speed for object tracking. Currently, correlation filters based trackers (CFTs) show promising performance in object tracking. The CFTs estimate the target's position by correlation filters with different kinds of features. However, most of CFTs can hardly re-detect the target in the case of long-term tracking drifts. In this paper, a feature integration object tracker named correlation filters and online learning (CFOL) is proposed. CFOL estimates the target's position and its corresponding correlation score using the same discriminative correlation filter with multi-features. To reduce tracking drifts, a new sampling and updating strategy for online learning is proposed. Experiments conducted on 51 image sequences demonstrate that the proposed algorithm is superior to the state-of-the-art approaches.

  2. Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints

    NASA Astrophysics Data System (ADS)

    Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea

    2018-05-01

    This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.

  3. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  4. Stereo-vision-based cooperative-vehicle positioning using OCC and neural networks

    NASA Astrophysics Data System (ADS)

    Ifthekhar, Md. Shareef; Saha, Nirzhar; Jang, Yeong Min

    2015-10-01

    Vehicle positioning has been subjected to extensive research regarding driving safety measures and assistance as well as autonomous navigation. The most common positioning technique used in automotive positioning is the global positioning system (GPS). However, GPS is not reliably accurate because of signal blockage caused by high-rise buildings. In addition, GPS is error prone when a vehicle is inside a tunnel. Moreover, GPS and other radio-frequency-based approaches cannot provide orientation information or the position of neighboring vehicles. In this study, we propose a cooperative-vehicle positioning (CVP) technique by using the newly developed optical camera communications (OCC). The OCC technique utilizes image sensors and cameras to receive and decode light-modulated information from light-emitting diodes (LEDs). A vehicle equipped with an OCC transceiver can receive positioning and other information such as speed, lane change, driver's condition, etc., through optical wireless links of neighboring vehicles. Thus, the target vehicle position that is too far away to establish an OCC link can be determined by a computer-vision-based technique combined with the cooperation of neighboring vehicles. In addition, we have devised a back-propagation (BP) neural-network learning method for positioning and range estimation for CVP. The proposed neural-network-based technique can estimate target vehicle position from only two image points of target vehicles using stereo vision. For this, we use rear LEDs on target vehicles as image points. We show from simulation results that our neural-network-based method achieves better accuracy than that of the computer-vision method.

  5. Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.

    PubMed

    Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian

    2016-03-16

    To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

  6. Study of a Terrain-Based Motion Estimation Model to Predict the Position of a Moving Target to Enhance Weapon Probability of Kill

    DTIC Science & Technology

    2017-09-01

    target is modeled based on the kinematic constraints for the type of vehicle and the type of path on which it is traveling . The discrete- time position...is modeled based on the kinematic constraints for the type of vehicle and the type of path on which it is traveling . The discrete- time position...49 A. TRAVELING TIME COMPUTATION ............................................. 49 B. CONVERSION TO

  7. Adaptive and Collaborative Exploitation of 3 Dimensional Environmental Acoustics in Distributed Undersea Networks

    DTIC Science & Technology

    2015-09-30

    experiment was conducted in Broad Sound of Massachusetts Bay using the AUV Unicorn, a 147dB omnidirectional Lubell source, and an open-ended steel pipe... steel pipe target (Figure C) was dropped at an approximate local coordinate position of (x,y)=(170,155). The location was estimated using ship...position when the target was dropped, but was only accurate within 10-15m. The orientation of the target was unknown. Figure C: Open-ended steel

  8. Trajectory prediction for ballistic missiles based on boost-phase LOS measurements

    NASA Astrophysics Data System (ADS)

    Yeddanapudi, Murali; Bar-Shalom, Yaakov

    1997-10-01

    This paper addresses the problem of the estimation of the trajectory of a tactical ballistic missile using line of sight (LOS) measurements from one or more passive sensors (typically satellites). The major difficulties of this problem include: the estimation of the unknown time of launch, incorporation of (inaccurate) target thrust profiles to model the target dynamics during the boost phase and an overall ill-conditioning of the estimation problem due to poor observability of the target motion via the LOS measurements. We present a robust estimation procedure based on the Levenberg-Marquardt algorithm that provides both the target state estimate and error covariance taking into consideration the complications mentioned above. An important consideration in the defense against tactical ballistic missiles is the determination of the target position and error covariance at the acquisition range of a surveillance radar in the vicinity of the impact point. We present a systematic procedure to propagate the target state and covariance to a nominal time, when it is within the detection range of a surveillance radar to obtain a cueing volume. Mont Carlo simulation studies on typical single and two sensor scenarios indicate that the proposed algorithms are accurate in terms of the estimates and the estimator calculated covariances are consistent with the errors.

  9. Adaptation of an articulated fetal skeleton model to three-dimensional fetal image data

    NASA Astrophysics Data System (ADS)

    Klinder, Tobias; Wendland, Hannes; Wachter-Stehle, Irina; Roundhill, David; Lorenz, Cristian

    2015-03-01

    The automatic interpretation of three-dimensional fetal images poses specific challenges compared to other three-dimensional diagnostic data, especially since the orientation of the fetus in the uterus and the position of the extremities is highly variable. In this paper, we present a comprehensive articulated model of the fetal skeleton and the adaptation of the articulation for pose estimation in three-dimensional fetal images. The model is composed out of rigid bodies where the articulations are represented as rigid body transformations. Given a set of target landmarks, the model constellation can be estimated by optimization of the pose parameters. Experiments are carried out on 3D fetal MRI data yielding an average error per case of 12.03+/-3.36 mm between target and estimated landmark positions.

  10. Estimated number of infants detected and missed by critical congenital heart defect screening.

    PubMed

    Ailes, Elizabeth C; Gilboa, Suzanne M; Honein, Margaret A; Oster, Matthew E

    2015-06-01

    In 2011, the US Secretary of Health and Human Services recommended universal screening of newborns for critical congenital heart defects (CCHDs), yet few estimates of the number of infants with CCHDs likely to be detected through universal screening exist. Our objective was to estimate the number of infants with nonsyndromic CCHDs in the United States likely to be detected (true positives) and missed (false negatives) through universal newborn CCHD screening. We developed a simulation model based on estimates of birth prevalence, prenatal diagnosis, late detection, and sensitivity of newborn CCHD screening through pulse oximetry to estimate the number of true-positive and false-negative nonsyndromic cases of the 7 primary and 5 secondary CCHD screening targets identified through screening. We estimated that 875 (95% uncertainty interval [UI]: 705-1060) US infants with nonsyndromic CCHDs, including 470 (95% UI: 360-585) infants with primary CCHD screening targets, will be detected annually through newborn CCHD screening. An additional 880 (UI: 700-1080) false-negative screenings, including 280 (95% UI: 195-385) among primary screening targets, are expected. We estimated that similar numbers of CCHDs would be detected under scenarios comparing "lower" (∼19%) and "higher" (∼41%) than current prenatal detection prevalences. A substantial number of nonsyndromic CCHD cases are likely to be detected through universal CCHD screening; however, an equal number of false-negative screenings, primarily among secondary targets of screening, are likely to occur. Future efforts should document the true impact of CCHD screening in practice. Copyright © 2015 by the American Academy of Pediatrics.

  11. A long-term target detection approach in infrared image sequence

    NASA Astrophysics Data System (ADS)

    Li, Hang; Zhang, Qi; Wang, Xin; Hu, Chao

    2016-10-01

    An automatic target detection method used in long term infrared (IR) image sequence from a moving platform is proposed. Firstly, based on POME(the principle of maximum entropy), target candidates are iteratively segmented. Then the real target is captured via two different selection approaches. At the beginning of image sequence, the genuine target with litter texture is discriminated from other candidates by using contrast-based confidence measure. On the other hand, when the target becomes larger, we apply online EM method to estimate and update the distributions of target's size and position based on the prior detection results, and then recognize the genuine one which satisfies both the constraints of size and position. Experimental results demonstrate that the presented method is accurate, robust and efficient.

  12. The effect of aborting ongoing movements on end point position estimation.

    PubMed

    Itaguchi, Yoshihiro; Fukuzawa, Kazuyoshi

    2013-11-01

    The present study investigated the impact of motor commands to abort ongoing movement on position estimation. Participants carried out visually guided reaching movements on a horizontal plane with their eyes open. By setting a mirror above their arm, however, they could not see the arm, only the start and target points. They estimated the position of their fingertip based solely on proprioception after their reaching movement was stopped before reaching the target. The participants stopped reaching as soon as they heard an auditory cue or were mechanically prevented from moving any further by an obstacle in their path. These reaching movements were carried out at two different speeds (fast or slow). It was assumed that additional motor commands to abort ongoing movement were required and that their magnitude was high, low, and zero, in the auditory-fast condition, the auditory-slow condition, and both the obstacle conditions, respectively. There were two main results. (1) When the participants voluntarily stopped a fast movement in response to the auditory cue (the auditory-fast condition), they showed more underestimates than in the other three conditions. This underestimate effect was positively related to movement velocity. (2) An inverted-U-shaped bias pattern as a function of movement distance was observed consistently, except in the auditory-fast condition. These findings indicate that voluntarily stopping fast ongoing movement created a negative bias in the position estimate, supporting the idea that additional motor commands or efforts to abort planned movement are involved with the position estimation system. In addition, spatially probabilistic inference and signal-dependent noise may explain the underestimate effect of aborting ongoing movement.

  13. Piloting Systems Reset Path Integration Systems during Position Estimation

    ERIC Educational Resources Information Center

    Zhang, Lei; Mou, Weimin

    2017-01-01

    During locomotion, individuals can determine their positions with either idiothetic cues from movement (path integration systems) or visual landmarks (piloting systems). This project investigated how these 2 systems interact in determining humans' positions. In 2 experiments, participants studied the locations of 5 target objects and 1 single…

  14. Object motion perception is shaped by the motor control mechanism of ocular pursuit.

    PubMed

    Schweigart, G; Mergner, T; Barnes, G R

    2003-02-01

    It is still a matter of debate whether the control of smooth pursuit eye movements involves an internal drive signal from object motion perception. We measured human target velocity and target position perceptions and compared them with the presumed pursuit control mechanism (model simulations). We presented normal subjects (Ns) and vestibular loss patients (Ps) with visual target motion in space. Concurrently, a visual background was presented, which was kept stationary or was moved with or against the target (five combinations). The motion stimuli consisted of smoothed ramp displacements with different dominant frequencies and peak velocities (0.05, 0.2, 0.8 Hz; 0.2-25.6 degrees /s). Subjects always pursued the target with their eyes. In a first experiment they gave verbal magnitude estimates of perceived target velocity in space and of self-motion in space. The target velocity estimates of both Ns and Ps tended to saturate at 0.8 Hz and with peak velocities >3 degrees /s. Below these ranges the velocity estimates showed a pronounced modulation in relation to the relative target-to-background motion ('background effect'; for example, 'background with'-motion decreased and 'against'-motion increased perceived target velocity). Pronounced only in Ps and not in Ns, there was an additional modulation in relation to the relative head-to-background motion, which co-varied with an illusion of self-motion in space (circular vection, CV) in Ps. In a second experiment, subjects performed retrospective reproduction of perceived target start and end positions with the same stimuli. Perceived end position was essentially veridical in both Ns and Ps (apart from a small constant offset). Reproduced start position showed an almost negligible background effect in Ns. In contrast, it showed a pronounced modulation in Ps, which again was related to CV. The results were compared with simulations of a model that we have recently presented for velocity control of eye pursuit. We found that the main features of target velocity perception (in terms of dynamics and modulation by background) closely correspond to those of the internal drive signal for target pursuit, compatible with the notion of a common source of both the perception and the drive signal. In contrast, the eye pursuit movement is almost free of the background effect. As an explanation, we postulate that the target-to-background component in the target pursuit drive signal largely neutralises the background-to-eye retinal slip signal (optokinetic reflex signal) that feeds into the eye premotor mechanism as a competitor of the target retinal slip signal. An extension of the model allowed us to simulate also the findings of the target position perception. It is assumed to be represented in a perceptual channel that is distinct from the velocity perception, building on an efference copy of the essentially accurate eye position. We hold that other visuomotor behaviour, such as target reaching with the hand, builds mainly on this target position percept and therefore is not contaminated by the background effect in the velocity percept. Generally, the coincidence of an erroneous velocity percept and an almost perfect eye pursuit movement during background motion is discussed as an instructive example of an action-perception dissociation. This dissociation cannot be taken to indicate that the two functions are internally represented in separate brain control systems, but rather reflects the intimate coupling between both functions.

  15. Accuracy of Robotic Radiosurgical Liver Treatment Throughout the Respiratory Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, Jeff D.; Wong, Raimond; Swaminath, Anand

    Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management. Methods and Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning. Verification and update of this internal–external correlation model was achieved using periodic x-ray images collected throughout treatment. To quantify random uncertainties in targeting, we analyzed logged tracking information and isolated x-ray images collected immediately beforemore » beam delivery. For translational correlation errors, we quantified the difference between correlation model–estimated target position and actual position determined by periodic x-ray imaging. To quantify prediction errors, we computed the mean absolute difference between the predicted coordinates and actual modeled position calculated 115 milliseconds later. We estimated overall random uncertainty by quadratically summing correlation, prediction, and end-to-end targeting errors. We also investigated relationships between tracking errors and motion amplitude using linear regression. Results: The 95th percentile absolute correlation errors in each direction were 2.1 mm left–right, 1.8 mm anterior–posterior, 3.3 mm cranio–caudal, and 3.9 mm 3-dimensional radial, whereas 95th percentile absolute radial prediction errors were 0.5 mm. Overall 95th percentile random uncertainty was 4 mm in the radial direction. Prediction errors were strongly correlated with modeled target amplitude (r=0.53-0.66, P<.001), whereas only weak correlations existed for correlation errors. Conclusions: Study results demonstrate that model correlation errors are the primary random source of uncertainty in Cyberknife liver treatment and, unlike prediction errors, are not strongly correlated with target motion amplitude. Aggregate 3-dimensional radial position errors presented here suggest the target will be within 4 mm of the target volume for 95% of the beam delivery.« less

  16. Incorporate Imaging Characteristics Into an Arteriovenous Malformation Radiosurgery Plan Evaluation Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Pengpeng; Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY; Wu, Leester

    Purpose: To integrate imaging performance characteristics, specifically sensitivity and specificity, of magnetic resonance angiography (MRA) and digital subtraction angiography (DSA) into arteriovenous malformation (AVM) radiosurgery planning and evaluation. Methods and Materials: Images of 10 patients with AVMs located in critical brain areas were analyzed in this retrospective planning study. The image findings were first used to estimate the sensitivity and specificity of MRA and DSA. Instead of accepting the imaging observation as a binary (yes or no) mapping of AVM location, our alternative is to translate the image into an AVM probability distribution map by incorporating imagers' sensitivity and specificity,more » and to use this map as a basis for planning and evaluation. Three sets of radiosurgery plans, targeting the MRA and DSA positive overlap, MRA positive, and DSA positive were optimized for best conformality. The AVM obliteration rate (ORAVM) and brain complication rate served as endpoints for plan comparison. Results: In our 10-patient study, the specificities and sensitivities of MRA and DSA were estimated to be (0.95, 0.74) and (0.71, 0.95), respectively. The positive overlap of MRA and DSA accounted for 67.8% {+-} 4.9% of the estimated true AVM volume. Compared with plans targeting MRA and DSA-positive overlap, plans targeting MRA-positive or DSA-positive improved ORAVM by 4.1% {+-} 1.9% and 15.7% {+-} 8.3%, while also increasing the complication rate by 1.0% {+-} 0.8% and 4.4% {+-} 2.3%, respectively. Conclusions: The impact of imagers' quality should be quantified and incorporated in AVM radiosurgery planning and evaluation to facilitate clinical decision making.« less

  17. Estimation and Fusion for Tracking Over Long-Haul Links Using Artificial Neural Networks

    DOE PAGES

    Liu, Qiang; Brigham, Katharine; Rao, Nageswara S. V.

    2017-02-01

    In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as tracking and/or monitoring of one or more dynamic targets. A remote fusion center fuses the information provided by these sensors so that a final estimate of certain target characteristics – such as the position – is expected to possess much improved quality. In this paper, we pursue learning-based approaches for estimation and fusion of target states in longhaul sensor networks. In particular, we consider learning based on various implementations of artificial neural networks (ANNs). Finally, the joint effect of (i)more » imperfect communication condition, namely, link-level loss and delay, and (ii) computation constraints, in the form of low-quality sensor estimates, on ANN-based estimation and fusion, is investigated by means of analytical and simulation studies.« less

  18. Estimation and Fusion for Tracking Over Long-Haul Links Using Artificial Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qiang; Brigham, Katharine; Rao, Nageswara S. V.

    In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as tracking and/or monitoring of one or more dynamic targets. A remote fusion center fuses the information provided by these sensors so that a final estimate of certain target characteristics – such as the position – is expected to possess much improved quality. In this paper, we pursue learning-based approaches for estimation and fusion of target states in longhaul sensor networks. In particular, we consider learning based on various implementations of artificial neural networks (ANNs). Finally, the joint effect of (i)more » imperfect communication condition, namely, link-level loss and delay, and (ii) computation constraints, in the form of low-quality sensor estimates, on ANN-based estimation and fusion, is investigated by means of analytical and simulation studies.« less

  19. Localization of Ferromagnetic Target with Three Magnetic Sensors in the Movement Considering Angular Rotation

    PubMed Central

    Gao, Xiang; Yan, Shenggang; Li, Bin

    2017-01-01

    Magnetic detection techniques have been widely used in many fields, such as virtual reality, surgical robotics systems, and so on. A large number of methods have been developed to obtain the position of a ferromagnetic target. However, the angular rotation of the target relative to the sensor is rarely studied. In this paper, a new method for localization of moving object to determine both the position and rotation angle with three magnetic sensors is proposed. Trajectory localization estimation of three magnetic sensors, which are collinear and noncollinear, were obtained by the simulations, and experimental results demonstrated that the position and rotation angle of ferromagnetic target having roll, pitch or yaw in its movement could be calculated accurately and effectively with three noncollinear vector sensors. PMID:28892006

  20. Automatic detection of multiple UXO-like targets using magnetic anomaly inversion and self-adaptive fuzzy c-means clustering

    NASA Astrophysics Data System (ADS)

    Yin, Gang; Zhang, Yingtang; Fan, Hongbo; Ren, Guoquan; Li, Zhining

    2017-12-01

    We have developed a method for automatically detecting UXO-like targets based on magnetic anomaly inversion and self-adaptive fuzzy c-means clustering. Magnetic anomaly inversion methods are used to estimate the initial locations of multiple UXO-like sources. Although these initial locations have some errors with respect to the real positions, they form dense clouds around the actual positions of the magnetic sources. Then we use the self-adaptive fuzzy c-means clustering algorithm to cluster these initial locations. The estimated number of cluster centroids represents the number of targets and the cluster centroids are regarded as the locations of magnetic targets. Effectiveness of the method has been demonstrated using synthetic datasets. Computational results show that the proposed method can be applied to the case of several UXO-like targets that are randomly scattered within in a confined, shallow subsurface, volume. A field test was carried out to test the validity of the proposed method and the experimental results show that the prearranged magnets can be detected unambiguously and located precisely.

  1. Rapid estimation of high-parameter auditory-filter shapes

    PubMed Central

    Shen, Yi; Sivakumar, Rajeswari; Richards, Virginia M.

    2014-01-01

    A Bayesian adaptive procedure, the quick-auditory-filter (qAF) procedure, was used to estimate auditory-filter shapes that were asymmetric about their peaks. In three experiments, listeners who were naive to psychoacoustic experiments detected a fixed-level, pure-tone target presented with a spectrally notched noise masker. The qAF procedure adaptively manipulated the masker spectrum level and the position of the masker notch, which was optimized for the efficient estimation of the five parameters of an auditory-filter model. Experiment I demonstrated that the qAF procedure provided a convergent estimate of the auditory-filter shape at 2 kHz within 150 to 200 trials (approximately 15 min to complete) and, for a majority of listeners, excellent test-retest reliability. In experiment II, asymmetric auditory filters were estimated for target frequencies of 1 and 4 kHz and target levels of 30 and 50 dB sound pressure level. The estimated filter shapes were generally consistent with published norms, especially at the low target level. It is known that the auditory-filter estimates are narrower for forward masking than simultaneous masking due to peripheral suppression, a result replicated in experiment III using fewer than 200 qAF trials. PMID:25324086

  2. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network.

    PubMed

    Qi, Jun; Liu, Guo-Ping

    2017-11-06

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μ s. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal.

  3. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  4. Polarization-based index of refraction and reflection angle estimation for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Voelz, David G.; Creusere, Charles D.

    2007-10-01

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  5. Informing Investment to Reduce Inequalities: A Modelling Approach.

    PubMed

    McAuley, Andrew; Denny, Cheryl; Taulbut, Martin; Mitchell, Rory; Fischbacher, Colin; Graham, Barbara; Grant, Ian; O'Hagan, Paul; McAllister, David; McCartney, Gerry

    2016-01-01

    Reducing health inequalities is an important policy objective but there is limited quantitative information about the impact of specific interventions. To provide estimates of the impact of a range of interventions on health and health inequalities. Literature reviews were conducted to identify the best evidence linking interventions to mortality and hospital admissions. We examined interventions across the determinants of health: a 'living wage'; changes to benefits, taxation and employment; active travel; tobacco taxation; smoking cessation, alcohol brief interventions, and weight management services. A model was developed to estimate mortality and years of life lost (YLL) in intervention and comparison populations over a 20-year time period following interventions delivered only in the first year. We estimated changes in inequalities using the relative index of inequality (RII). Introduction of a 'living wage' generated the largest beneficial health impact, with modest reductions in health inequalities. Benefits increases had modest positive impacts on health and health inequalities. Income tax increases had negative impacts on population health but reduced inequalities, while council tax increases worsened both health and health inequalities. Active travel increases had minimally positive effects on population health but widened health inequalities. Increases in employment reduced inequalities only when targeted to the most deprived groups. Tobacco taxation had modestly positive impacts on health but little impact on health inequalities. Alcohol brief interventions had modestly positive impacts on health and health inequalities only when strongly socially targeted, while smoking cessation and weight-reduction programmes had minimal impacts on health and health inequalities even when socially targeted. Interventions have markedly different effects on mortality, hospitalisations and inequalities. The most effective (and likely cost-effective) interventions for reducing inequalities were regulatory and tax options. Interventions focused on individual agency were much less likely to impact on inequalities, even when targeted at the most deprived communities.

  6. Adaptive AOA-aided TOA self-positioning for mobile wireless sensor networks.

    PubMed

    Wen, Chih-Yu; Chan, Fu-Kai

    2010-01-01

    Location-awareness is crucial and becoming increasingly important to many applications in wireless sensor networks. This paper presents a network-based positioning system and outlines recent work in which we have developed an efficient principled approach to localize a mobile sensor using time of arrival (TOA) and angle of arrival (AOA) information employing multiple seeds in the line-of-sight scenario. By receiving the periodic broadcasts from the seeds, the mobile target sensors can obtain adequate observations and localize themselves automatically. The proposed positioning scheme performs location estimation in three phases: (I) AOA-aided TOA measurement, (II) Geometrical positioning with particle filter, and (III) Adaptive fuzzy control. Based on the distance measurements and the initial position estimate, adaptive fuzzy control scheme is applied to solve the localization adjustment problem. The simulations show that the proposed approach provides adaptive flexibility and robust improvement in position estimation.

  7. An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars.

    PubMed

    Huang, Jiyan; Zhang, Ying; Luo, Shan

    2017-12-15

    Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The simulation results verified the proposed method.

  8. An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars

    PubMed Central

    Zhang, Ying; Luo, Shan

    2017-01-01

    Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer–Rao lower bound (CRLB) are derived. The simulation results verified the proposed method. PMID:29244727

  9. Infrared dim-small target tracking via singular value decomposition and improved Kernelized correlation filter

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Zhou, Huixin; Rong, Shenghui; Wang, Bingjian; Cheng, Kuanhong

    2017-05-01

    Infrared small target tracking plays an important role in applications including military reconnaissance, early warning and terminal guidance. In this paper, an effective algorithm based on the Singular Value Decomposition (SVD) and the improved Kernelized Correlation Filter (KCF) is presented for infrared small target tracking. Firstly, the super performance of the SVD-based algorithm is that it takes advantage of the target's global information and obtains a background estimation of an infrared image. A dim target is enhanced by subtracting the corresponding estimated background with update from the original image. Secondly, the KCF algorithm is combined with Gaussian Curvature Filter (GCF) to eliminate the excursion problem. The GCF technology is adopted to preserve the edge and eliminate the noise of the base sample in the KCF algorithm, helping to calculate the classifier parameter for a small target. At last, the target position is estimated with a response map, which is obtained via the kernelized classifier. Experimental results demonstrate that the presented algorithm performs favorably in terms of efficiency and accuracy, compared with several state-of-the-art algorithms.

  10. Using a Regression Method for Estimating Performance in a Rapid Serial Visual Presentation Target-Detection Task

    DTIC Science & Technology

    2017-12-01

    values designating each stimulus as a target ( true ) or nontarget (false). Both stim_time and stim_label should have length equal to the number of...position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or...depend strongly on the true values of hit rate and false-alarm rate. Based on its better estimation of hit rate and false-alarm rate, the regression

  11. A long-term target detection approach in infrared image sequence

    NASA Astrophysics Data System (ADS)

    Li, Hang; Zhang, Qi; Li, Yuanyuan; Wang, Liqiang

    2015-12-01

    An automatic target detection method used in long term infrared (IR) image sequence from a moving platform is proposed. Firstly, based on non-linear histogram equalization, target candidates are coarse-to-fine segmented by using two self-adapt thresholds generated in the intensity space. Then the real target is captured via two different selection approaches. At the beginning of image sequence, the genuine target with litter texture is discriminated from other candidates by using contrast-based confidence measure. On the other hand, when the target becomes larger, we apply online EM method to iteratively estimate and update the distributions of target's size and position based on the prior detection results, and then recognize the genuine one which satisfies both the constraints of size and position. Experimental results demonstrate that the presented method is accurate, robust and efficient.

  12. MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples.

    PubMed

    Sivaganesan, Mano; Siefring, Shawn; Varma, Manju; Haugland, Richard A

    2011-12-01

    DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from different studies by this approach, either a consistent source of calibrator cells must be used or the estimates must account for any differences in target sequence recoveries from different sources of calibrator cells. In this report we describe two methods for estimating target sequence recoveries from whole cell calibrator samples based on qPCR analyses of their serially diluted DNA extracts and most probable number (MPN) calculation. The first method employed a traditional MPN calculation approach. The second method employed a Bayesian hierarchical statistical modeling approach and a Monte Carlo Markov Chain (MCMC) simulation method to account for the uncertainty in these estimates associated with different individual samples of the cell preparations, different dilutions of the DNA extracts and different qPCR analytical runs. The two methods were applied to estimate mean target sequence recoveries per cell from two different lots of a commercially available source of enumerated Enterococcus cell preparations. The mean target sequence recovery estimates (and standard errors) per cell from Lot A and B cell preparations by the Bayesian method were 22.73 (3.4) and 11.76 (2.4), respectively, when the data were adjusted for potential false positive results. Means were similar for the traditional MPN approach which cannot comparably assess uncertainty in the estimates. Cell numbers and estimates of recoverable target sequences in calibrator samples prepared from the two cell sources were also used to estimate cell equivalent and target sequence quantities recovered from surface water samples in a comparative Ct method. Our results illustrate the utility of the Bayesian method in accounting for uncertainty, the high degree of precision attainable by the MPN approach and the need to account for the differences in target sequence recoveries from different calibrator sample cell sources when they are used in the comparative Ct method. Published by Elsevier B.V.

  13. Stochastic formulation of patient positioning using linac-mounted cone beam imaging with prior knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegele, W.; Loeschel, R.; Dobler, B.

    2011-02-15

    Purpose: In this work, a novel stochastic framework for patient positioning based on linac-mounted CB projections is introduced. Based on this formulation, the most probable shifts and rotations of the patient are estimated, incorporating interfractional deformations of patient anatomy and other uncertainties associated with patient setup. Methods: The target position is assumed to be defined by and is stochastically determined from positions of various features such as anatomical landmarks or markers in CB projections, i.e., radiographs acquired with a CB-CT system. The patient positioning problem of finding the target location from CB projections is posed as an inverse problem withmore » prior knowledge and is solved using a Bayesian maximum a posteriori (MAP) approach. The prior knowledge is three-fold and includes the accuracy of an initial patient setup (such as in-room laser and skin marks), the plasticity of the body (relative shifts between target and features), and the feature detection error in CB projections (which may vary depending on specific detection algorithm and feature type). For this purpose, MAP estimators are derived and a procedure of using them in clinical practice is outlined. Furthermore, a rule of thumb is theoretically derived, relating basic parameters of the prior knowledge (initial setup accuracy, plasticity of the body, and number of features) and the parameters of CB data acquisition (number of projections and accuracy of feature detection) to the expected estimation accuracy. Results: MAP estimation can be applied to arbitrary features and detection algorithms. However, to experimentally demonstrate its applicability and to perform the validation of the algorithm, a water-equivalent, deformable phantom with features represented by six 1 mm chrome balls were utilized. These features were detected in the cone beam projections (XVI, Elekta Synergy) by a local threshold method for demonstration purposes only. The accuracy of estimation (strongly varying for different plasticity parameters of the body) agreed with the rule of thumb formula. Moreover, based on this rule of thumb formula, about 20 projections for 6 detectable features seem to be sufficient for a target estimation accuracy of 0.2 cm, even for relatively large feature detection errors with standard deviation of 0.5 cm and spatial displacements of the features with standard deviation of 0.5 cm. Conclusions: The authors have introduced a general MAP-based patient setup algorithm accounting for different sources of uncertainties, which are utilized as the prior knowledge in a transparent way. This new framework can be further utilized for different clinical sites, as well as theoretical developments in the field of patient positioning for radiotherapy.« less

  14. Time-Resolved Intrafraction Target Translations and Rotations During Stereotactic Liver Radiation Therapy: Implications for Marker-based Localization Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertholet, Jenny, E-mail: jennbe@rm.dk; Worm, Esben S.; Fledelius, Walther

    Purpose: Image guided liver stereotactic body radiation therapy (SBRT) often relies on implanted fiducial markers. The target localization accuracy decreases with increased marker-target distance. This may occur partly because of liver rotations. The aim of this study was to examine time-resolved translations and rotations of liver marker constellations and investigate if time-resolved intrafraction rotational corrections can improve localization accuracy in liver SBRT. Methods and Materials: Twenty-nine patients with 3 implanted markers received SBRT in 3 to 6 fractions. The time-resolved trajectory of each marker was estimated from the projections of 1 to 3 daily cone beam computed tomography scans andmore » used to calculate the translation and rotation of the marker constellation. In all cone beam computed tomography projections, the time-resolved position of each marker was predicted from the position of another surrogate marker by assuming that the marker underwent either (1) the same translation as the surrogate marker; or (2) the same translation as the surrogate marker corrected by the rotation of the marker constellation. The localization accuracy was quantified as the root-mean-square error (RMSE) between the estimated and the actual marker position. For comparison, the RMSE was also calculated when the marker's position was estimated as its mean position for all the projections. Results: The mean translational and rotational range (2nd-98th percentile) was 2.0 mm/3.9° (right-left), 9.2 mm/2.9° (superior-inferior), 4.0 mm/4.0° (anterior-posterior), and 10.5 mm (3-dimensional). Rotational corrections decreased the mean 3-dimensional RMSE from 0.86 mm to 0.54 mm (P<.001) and halved the RMSE increase per millimeter increase in marker distance. Conclusions: Intrafraction rotations during liver SBRT reduce the accuracy of marker-guided target localization. Rotational correction can improve the localization accuracy with a factor of approximately 2 for large marker-target distances.« less

  15. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network

    PubMed Central

    Qi, Jun; Liu, Guo-Ping

    2017-01-01

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μs. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal. PMID:29113126

  16. Joint sparsity based heterogeneous data-level fusion for target detection and estimation

    NASA Astrophysics Data System (ADS)

    Niu, Ruixin; Zulch, Peter; Distasio, Marcello; Blasch, Erik; Shen, Dan; Chen, Genshe

    2017-05-01

    Typical surveillance systems employ decision- or feature-level fusion approaches to integrate heterogeneous sensor data, which are sub-optimal and incur information loss. In this paper, we investigate data-level heterogeneous sensor fusion. Since the sensors monitor the common targets of interest, whose states can be determined by only a few parameters, it is reasonable to assume that the measurement domain has a low intrinsic dimensionality. For heterogeneous sensor data, we develop a joint-sparse data-level fusion (JSDLF) approach based on the emerging joint sparse signal recovery techniques by discretizing the target state space. This approach is applied to fuse signals from multiple distributed radio frequency (RF) signal sensors and a video camera for joint target detection and state estimation. The JSDLF approach is data-driven and requires minimum prior information, since there is no need to know the time-varying RF signal amplitudes, or the image intensity of the targets. It can handle non-linearity in the sensor data due to state space discretization and the use of frequency/pixel selection matrices. Furthermore, for a multi-target case with J targets, the JSDLF approach only requires discretization in a single-target state space, instead of discretization in a J-target state space, as in the case of the generalized likelihood ratio test (GLRT) or the maximum likelihood estimator (MLE). Numerical examples are provided to demonstrate that the proposed JSDLF approach achieves excellent performance with near real-time accurate target position and velocity estimates.

  17. Poor drug distribution as a possible explanation for the results of the PRECISE trial.

    PubMed

    Sampson, John H; Archer, Gary; Pedain, Christoph; Wembacher-Schröder, Eva; Westphal, Manfred; Kunwar, Sandeep; Vogelbaum, Michael A; Coan, April; Herndon, James E; Raghavan, Raghu; Brady, Martin L; Reardon, David A; Friedman, Allan H; Friedman, Henry S; Rodríguez-Ponce, M Inmaculada; Chang, Susan M; Mittermeyer, Stephan; Croteau, David; Puri, Raj K

    2010-08-01

    Convection-enhanced delivery (CED) is a novel intracerebral drug delivery technique with considerable promise for delivering therapeutic agents throughout the CNS. Despite this promise, Phase III clinical trials employing CED have failed to meet clinical end points. Although this may be due to inactive agents or a failure to rigorously validate drug targets, the authors have previously demonstrated that catheter positioning plays a major role in drug distribution using this technique. The purpose of the present work was to retrospectively analyze the expected drug distribution based on catheter positioning data available from the CED arm of the PRECISE trial. Data on catheter positioning from all patients randomized to the CED arm of the PRECISE trial were available for analyses. BrainLAB iPlan Flow software was used to estimate the expected drug distribution. Only 49.8% of catheters met all positioning criteria. Still, catheter positioning score (hazard ratio 0.93, p = 0.043) and the number of optimally positioned catheters (hazard ratio 0.72, p = 0.038) had a significant effect on progression-free survival. Estimated coverage of relevant target volumes was low, however, with only 20.1% of the 2-cm penumbra surrounding the resection cavity covered on average. Although tumor location and resection cavity volume had no effect on coverage volume, estimations of drug delivery to relevant target volumes did correlate well with catheter score (p < 0.003), and optimally positioned catheters had larger coverage volumes (p < 0.002). Only overall survival (p = 0.006) was higher for investigators considered experienced after adjusting for patient age and Karnofsky Performance Scale score. The potential efficacy of drugs delivered by CED may be severely constrained by ineffective delivery in many patients. Routine use of software algorithms and alternative catheter designs and infusion parameters may improve the efficacy of drugs delivered by CED.

  18. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study.

    PubMed

    Shtark, Tomer; Gurfil, Pini

    2017-03-31

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control.

  19. Tracking a Non-Cooperative Target Using Real-Time Stereovision-Based Control: An Experimental Study

    PubMed Central

    Shtark, Tomer; Gurfil, Pini

    2017-01-01

    Tracking a non-cooperative target is a challenge, because in unfamiliar environments most targets are unknown and unspecified. Stereovision is suited to deal with this issue, because it allows to passively scan large areas and estimate the relative position, velocity and shape of objects. This research is an experimental effort aimed at developing, implementing and evaluating a real-time non-cooperative target tracking methods using stereovision measurements only. A computer-vision feature detection and matching algorithm was developed in order to identify and locate the target in the captured images. Three different filters were designed for estimating the relative position and velocity, and their performance was compared. A line-of-sight control algorithm was used for the purpose of keeping the target within the field-of-view. Extensive analytical and numerical investigations were conducted on the multi-view stereo projection equations and their solutions, which were used to initialize the different filters. This research shows, using an experimental and numerical evaluation, the benefits of using the unscented Kalman filter and the total least squares technique in the stereovision-based tracking problem. These findings offer a general and more accurate method for solving the static and dynamic stereovision triangulation problems and the concomitant line-of-sight control. PMID:28362338

  20. A Mixed Approach to Similarity Metric Selection in Affinity Propagation-Based WiFi Fingerprinting Indoor Positioning.

    PubMed

    Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella

    2015-10-30

    The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms.

  1. A Mixed Approach to Similarity Metric Selection in Affinity Propagation-Based WiFi Fingerprinting Indoor Positioning

    PubMed Central

    Caso, Giuseppe; de Nardis, Luca; di Benedetto, Maria-Gabriella

    2015-01-01

    The weighted k-nearest neighbors (WkNN) algorithm is by far the most popular choice in the design of fingerprinting indoor positioning systems based on WiFi received signal strength (RSS). WkNN estimates the position of a target device by selecting k reference points (RPs) based on the similarity of their fingerprints with the measured RSS values. The position of the target device is then obtained as a weighted sum of the positions of the k RPs. Two-step WkNN positioning algorithms were recently proposed, in which RPs are divided into clusters using the affinity propagation clustering algorithm, and one representative for each cluster is selected. Only cluster representatives are then considered during the position estimation, leading to a significant computational complexity reduction compared to traditional, flat WkNN. Flat and two-step WkNN share the issue of properly selecting the similarity metric so as to guarantee good positioning accuracy: in two-step WkNN, in particular, the metric impacts three different steps in the position estimation, that is cluster formation, cluster selection and RP selection and weighting. So far, however, the only similarity metric considered in the literature was the one proposed in the original formulation of the affinity propagation algorithm. This paper fills this gap by comparing different metrics and, based on this comparison, proposes a novel mixed approach in which different metrics are adopted in the different steps of the position estimation procedure. The analysis is supported by an extensive experimental campaign carried out in a multi-floor 3D indoor positioning testbed. The impact of similarity metrics and their combinations on the structure and size of the resulting clusters, 3D positioning accuracy and computational complexity are investigated. Results show that the adoption of metrics different from the one proposed in the original affinity propagation algorithm and, in particular, the combination of different metrics can significantly improve the positioning accuracy while preserving the efficiency in computational complexity typical of two-step algorithms. PMID:26528984

  2. State estimation with incomplete nonlinear constraint

    NASA Astrophysics Data System (ADS)

    Huang, Yuan; Wang, Xueying; An, Wei

    2017-10-01

    A problem of state estimation with a new constraints named incomplete nonlinear constraint is considered. The targets are often move in the curve road, if the width of road is neglected, the road can be considered as the constraint, and the position of sensors, e.g., radar, is known in advance, this info can be used to enhance the performance of the tracking filter. The problem of how to incorporate the priori knowledge is considered. In this paper, a second-order sate constraint is considered. A fitting algorithm of ellipse is adopted to incorporate the priori knowledge by estimating the radius of the trajectory. The fitting problem is transformed to the nonlinear estimation problem. The estimated ellipse function is used to approximate the nonlinear constraint. Then, the typical nonlinear constraint methods proposed in recent works can be used to constrain the target state. Monte-Carlo simulation results are presented to illustrate the effectiveness proposed method in state estimation with incomplete constraint.

  3. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer

    USDA-ARS?s Scientific Manuscript database

    An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis, and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in r...

  4. Optimization methods for locating lightning flashes using magnetic direction finding networks

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.

    1989-01-01

    Techniques for producing best point estimates of target position using direction finder bearing information are reviewed. The use of an algorithm that calculates the cloud-to-ground flash location given multiple bearings is illustrated and the position errors are described. This algorithm can be used to analyze direction finder network performance.

  5. Construction of Genetically Engineered Streptococcus gordonii Strains to Provide Control in QPCR Assays for Assessing Microbiological Quality in Recreational Water.

    EPA Science Inventory

    Quantitative PCR (QPCR) methods for beach monitoring by estimating abundance of Enterococcus spp. in recreational waters use internal, positive controls which address only the amplification of target DNA. In this study two internal, positive controls were developed to control for...

  6. Machine Vision for Relative Spacecraft Navigation During Approach to Docking

    NASA Technical Reports Server (NTRS)

    Chien, Chiun-Hong; Baker, Kenneth

    2011-01-01

    This paper describes a machine vision system for relative spacecraft navigation during the terminal phase of approach to docking that: 1) matches high contrast image features of the target vehicle, as seen by a camera that is bore-sighted to the docking adapter on the chase vehicle, to the corresponding features in a 3d model of the docking adapter on the target vehicle and 2) is robust to on-orbit lighting. An implementation is provided for the case of the Space Shuttle Orbiter docking to the International Space Station (ISS) with quantitative test results using a full scale, medium fidelity mock-up of the ISS docking adapter mounted on a 6-DOF motion platform at the NASA Marshall Spaceflight Center Flight Robotics Laboratory and qualitative test results using recorded video from the Orbiter Docking System Camera (ODSC) during multiple orbiter to ISS docking missions. The Natural Feature Image Registration (NFIR) system consists of two modules: 1) Tracking which tracks the target object from image to image and estimates the position and orientation (pose) of the docking camera relative to the target object and 2) Acquisition which recognizes the target object if it is in the docking camera Field-of-View and provides an approximate pose that is used to initialize tracking. Detected image edges are matched to the 3d model edges whose predicted location, based on the pose estimate and its first time derivative from the previous frame, is closest to the detected edge1 . Mismatches are eliminated using a rigid motion constraint. The remaining 2d image to 3d model matches are used to make a least squares estimate of the change in relative pose from the previous image to the current image. The changes in position and in attitude are used as data for two Kalman filters whose outputs are smoothed estimate of position and velocity plus attitude and attitude rate that are then used to predict the location of the 3d model features in the next image.

  7. Visual gravitational motion and the vestibular system in humans

    PubMed Central

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-01-01

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity. PMID:24421761

  8. Visual gravitational motion and the vestibular system in humans.

    PubMed

    Lacquaniti, Francesco; Bosco, Gianfranco; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Moscatelli, Alessandro; Zago, Myrka

    2013-12-26

    The visual system is poorly sensitive to arbitrary accelerations, but accurately detects the effects of gravity on a target motion. Here we review behavioral and neuroimaging data about the neural mechanisms for dealing with object motion and egomotion under gravity. The results from several experiments show that the visual estimates of a target motion under gravity depend on the combination of a prior of gravity effects with on-line visual signals on target position and velocity. These estimates are affected by vestibular inputs, and are encoded in a visual-vestibular network whose core regions lie within or around the Sylvian fissure, and are represented by the posterior insula/retroinsula/temporo-parietal junction. This network responds both to target motions coherent with gravity and to vestibular caloric stimulation in human fMRI studies. Transient inactivation of the temporo-parietal junction selectively disrupts the interception of targets accelerated by gravity.

  9. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions

    NASA Astrophysics Data System (ADS)

    Biondi, Gabriele; Mauro, Stefano; Pastorelli, Stefano; Sorli, Massimo

    2018-05-01

    One of the key functionalities required by an Active Debris Removal mission is the assessment of the target kinematics and inertial properties. Passive sensors, such as stereo cameras, are often included in the onboard instrumentation of a chaser spacecraft for capturing sequential photographs and for tracking features of the target surface. A plenty of methods, based on Kalman filtering, are available for the estimation of the target's state from feature positions; however, to guarantee the filter convergence, they typically require continuity of measurements and the capability of tracking a fixed set of pre-defined features of the object. These requirements clash with the actual tracking conditions: failures in feature detection often occur and the assumption of having some a-priori knowledge about the shape of the target could be restrictive in certain cases. The aim of the presented work is to propose a fault-tolerant alternative method for estimating the angular velocity and the relative magnitudes of the principal moments of inertia of the target. Raw data regarding the positions of the tracked features are processed to evaluate corrupted values of a 3-dimentional parameter which entirely describes the finite screw motion of the debris and which primarily is invariant on the particular set of considered features of the object. Missing values of the parameter are completely restored exploiting the typical periodicity of the rotational motion of an uncontrolled satellite: compressed sensing techniques, typically adopted for recovering images or for prognostic applications, are herein used in a completely original fashion for retrieving a kinematic signal that appears sparse in the frequency domain. Due to its invariance about the features, no assumptions are needed about the target's shape and continuity of the tracking. The obtained signal is useful for the indirect evaluation of an attitude signal that feeds an unscented Kalman filter for the estimation of the global rotational state of the target. The results of the computer simulations showed a good robustness of the method and its potential applicability for general motion conditions of the target.

  10. Informing Investment to Reduce Inequalities: A Modelling Approach

    PubMed Central

    McAuley, Andrew; Denny, Cheryl; Taulbut, Martin; Mitchell, Rory; Fischbacher, Colin; Graham, Barbara; Grant, Ian; O’Hagan, Paul; McAllister, David; McCartney, Gerry

    2016-01-01

    Background Reducing health inequalities is an important policy objective but there is limited quantitative information about the impact of specific interventions. Objectives To provide estimates of the impact of a range of interventions on health and health inequalities. Materials and Methods Literature reviews were conducted to identify the best evidence linking interventions to mortality and hospital admissions. We examined interventions across the determinants of health: a ‘living wage’; changes to benefits, taxation and employment; active travel; tobacco taxation; smoking cessation, alcohol brief interventions, and weight management services. A model was developed to estimate mortality and years of life lost (YLL) in intervention and comparison populations over a 20-year time period following interventions delivered only in the first year. We estimated changes in inequalities using the relative index of inequality (RII). Results Introduction of a ‘living wage’ generated the largest beneficial health impact, with modest reductions in health inequalities. Benefits increases had modest positive impacts on health and health inequalities. Income tax increases had negative impacts on population health but reduced inequalities, while council tax increases worsened both health and health inequalities. Active travel increases had minimally positive effects on population health but widened health inequalities. Increases in employment reduced inequalities only when targeted to the most deprived groups. Tobacco taxation had modestly positive impacts on health but little impact on health inequalities. Alcohol brief interventions had modestly positive impacts on health and health inequalities only when strongly socially targeted, while smoking cessation and weight-reduction programmes had minimal impacts on health and health inequalities even when socially targeted. Conclusions Interventions have markedly different effects on mortality, hospitalisations and inequalities. The most effective (and likely cost-effective) interventions for reducing inequalities were regulatory and tax options. Interventions focused on individual agency were much less likely to impact on inequalities, even when targeted at the most deprived communities. PMID:27486857

  11. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81 motion traces from 19 liver patients and was found to have sub-mm and sub-degree accuracy.

  12. Catch-up saccades in head-unrestrained conditions reveal that saccade amplitude is corrected using an internal model of target movement

    PubMed Central

    Daye, Pierre M.; Blohm, Gunnar; Lefèvre, Phillippe

    2014-01-01

    This study analyzes how human participants combine saccadic and pursuit gaze movements when they track an oscillating target moving along a randomly oriented straight line with the head free to move. We found that to track the moving target appropriately, participants triggered more saccades with increasing target oscillation frequency to compensate for imperfect tracking gains. Our sinusoidal paradigm allowed us to show that saccade amplitude was better correlated with internal estimates of position and velocity error at saccade onset than with those parameters 100 ms before saccade onset as head-restrained studies have shown. An analysis of saccadic onset time revealed that most of the saccades were triggered when the target was accelerating. Finally, we found that most saccades were triggered when small position errors were combined with large velocity errors at saccade onset. This could explain why saccade amplitude was better correlated with velocity error than with position error. Therefore, our results indicate that the triggering mechanism of head-unrestrained catch-up saccades combines position and velocity error at saccade onset to program and correct saccade amplitude rather than using sensory information 100 ms before saccade onset. PMID:24424378

  13. Ground moving target geo-location from monocular camera mounted on a micro air vehicle

    NASA Astrophysics Data System (ADS)

    Guo, Li; Ang, Haisong; Zheng, Xiangming

    2011-08-01

    The usual approaches to unmanned air vehicle(UAV)-to-ground target geo-location impose some severe constraints to the system, such as stationary objects, accurate geo-reference terrain database, or ground plane assumption. Micro air vehicle(MAV) works with characteristics including low altitude flight, limited payload and onboard sensors' low accuracy. According to these characteristics, a method is developed to determine the location of ground moving target which imaged from the air using monocular camera equipped on MAV. This method eliminates the requirements for terrain database (elevation maps) and altimeters that can provide MAV's and target's altitude. Instead, the proposed method only requires MAV flight status provided by its inherent onboard navigation system which includes inertial measurement unit(IMU) and global position system(GPS). The key is to get accurate information on the altitude of the ground moving target. First, Optical flow method extracts background static feature points. Setting a local region around the target in the current image, The features which are on the same plane with the target in this region are extracted, and are retained as aided features. Then, inverse-velocity method calculates the location of these points by integrated with aircraft status. The altitude of object, which is calculated by using position information of these aided features, combining with aircraft status and image coordinates, geo-locate the target. Meanwhile, a framework with Bayesian estimator is employed to eliminate noise caused by camera, IMU and GPS. Firstly, an extended Kalman filter(EKF) provides a simultaneous localization and mapping solution for the estimation of aircraft states and aided features location which defines the moving target local environment. Secondly, an unscented transformation(UT) method determines the estimated mean and covariance of target location from aircraft states and aided features location, and then exports them for the moving target Kalman filter(KF). Experimental results show that our method can instantaneously geo-locate the moving target by operator's single click and can reach 15 meters accuracy for an MAV flying at 200 meters above the ground.

  14. A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets.

    PubMed

    Savitski, Mikhail M; Wilhelm, Mathias; Hahne, Hannes; Kuster, Bernhard; Bantscheff, Marcus

    2015-09-01

    Calculating the number of confidently identified proteins and estimating false discovery rate (FDR) is a challenge when analyzing very large proteomic data sets such as entire human proteomes. Biological and technical heterogeneity in proteomic experiments further add to the challenge and there are strong differences in opinion regarding the conceptual validity of a protein FDR and no consensus regarding the methodology for protein FDR determination. There are also limitations inherent to the widely used classic target-decoy strategy that particularly show when analyzing very large data sets and that lead to a strong over-representation of decoy identifications. In this study, we investigated the merits of the classic, as well as a novel target-decoy-based protein FDR estimation approach, taking advantage of a heterogeneous data collection comprised of ∼19,000 LC-MS/MS runs deposited in ProteomicsDB (https://www.proteomicsdb.org). The "picked" protein FDR approach treats target and decoy sequences of the same protein as a pair rather than as individual entities and chooses either the target or the decoy sequence depending on which receives the highest score. We investigated the performance of this approach in combination with q-value based peptide scoring to normalize sample-, instrument-, and search engine-specific differences. The "picked" target-decoy strategy performed best when protein scoring was based on the best peptide q-value for each protein yielding a stable number of true positive protein identifications over a wide range of q-value thresholds. We show that this simple and unbiased strategy eliminates a conceptual issue in the commonly used "classic" protein FDR approach that causes overprediction of false-positive protein identification in large data sets. The approach scales from small to very large data sets without losing performance, consistently increases the number of true-positive protein identifications and is readily implemented in proteomics analysis software. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A framework for organ dose estimation in x-ray angiography and interventional radiology based on dose-related data in DICOM structured reports

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Bujila, Robert; Fransson, Annette; Andreo, Pedro; Poludniowski, Gavin

    2016-04-01

    Although interventional x-ray angiography (XA) procedures involve relatively high radiation doses that can lead to deterministic tissue reactions in addition to stochastic effects, convenient and accurate estimation of absorbed organ doses has traditionally been out of reach. This has mainly been due to the absence of practical means to access dose-related data that describe the physical context of the numerous exposures during an XA procedure. The present work provides a comprehensive and general framework for the determination of absorbed organ dose, based on non-proprietary access to dose-related data by utilizing widely available DICOM radiation dose structured reports. The framework comprises a straightforward calculation workflow to determine the incident kerma and reconstruction of the geometrical relation between the projected x-ray beam and the patient’s anatomy. The latter is difficult in practice, as the position of the patient on the table top is unknown. A novel patient-specific approach for reconstruction of the patient position on the table is presented. The proposed approach was evaluated for 150 patients by comparing the estimated position of the primary irradiated organs (the target organs) with their position in clinical DICOM images. The approach is shown to locate the target organ position with a mean (max) deviation of 1.3 (4.3), 1.8 (3.6) and 1.4 (2.9) cm for neurovascular, adult and paediatric cardiovascular procedures, respectively. To illustrate the utility of the framework for systematic and automated organ dose estimation in routine clinical practice, a prototype implementation of the framework with Monte Carlo simulations is included.

  16. 3D ultrasound-based patient positioning for radiotherapy

    NASA Astrophysics Data System (ADS)

    Wang, Michael H.; Rohling, Robert N.; Archip, Neculai; Clark, Brenda G.

    2006-03-01

    A new 3D ultrasound-based patient positioning system for target localisation during radiotherapy is described. Our system incorporates the use of tracked 3D ultrasound scans of the target anatomy acquired using a dedicated 3D ultrasound probe during both the simulation and treatment sessions, fully automatic 3D ultrasound-toultrasound registration, and OPTOTRAK IRLEDs for registering simulation CT to ultrasound data. The accuracy of the entire radiotherapy treatment process resulting from the use of our system, from simulation to the delivery of radiation, has been validated on a phantom. The overall positioning error is less than 5mm, which includes errors from estimation of the irradiated region location in the phantom.

  17. Estimating respiratory rate from FBG optical sensors by using signal quality measurement.

    PubMed

    Yongwei Zhu; Maniyeri, Jayachandran; Fook, Victor Foo Siang; Haihong Zhang

    2015-08-01

    Non-intrusiveness is one of the advantages of in-bed optical sensor device for monitoring vital signs, including heart rate and respiratory rate. Estimating respiratory rate reliably using such sensors, however, is challenging, due to body movement, signal variation according to different subjects or body positions, etc. This paper presents a method for reliable respiratory rate estimation for FBG optical sensors by introducing signal quality estimation. The method estimates the quality of the signal waveform by detecting regularly repetitive patterns using proposed spectrum and cepstrum analysis. Multiple window sizes are used to cater for a wide range of target respiratory rates. Furthermore, the readings of multiple sensors are fused to derive a final respiratory rate. Experiments with 12 subjects and 2 body positions were conducted using polysomnography belt signal as groundtruth. The results demonstrated the effectiveness of the method.

  18. Position estimation and driving of an autonomous vehicle by monocular vision

    NASA Astrophysics Data System (ADS)

    Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.

    2007-04-01

    Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.

  19. Autonomous proximity operations using machine vision for trajectory control and pose estimation

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Sternberg, Stanley R.

    1991-01-01

    A machine vision algorithm was developed which permits guidance control to be maintained during autonomous proximity operations. At present this algorithm exists as a simulation, running upon an 80386 based personal computer, using a ModelMATE CAD package to render the target vehicle. However, the algorithm is sufficiently simple, so that following off-line training on a known target vehicle, it should run in real time with existing vision hardware. The basis of the algorithm is a sequence of single camera images of the target vehicle, upon which radial transforms were performed. Selected points of the resulting radial signatures are fed through a decision tree, to determine whether the signature matches that of the known reference signatures for a particular view of the target. Based upon recognized scenes, the position of the maneuvering vehicle with respect to the target vehicles can be calculated, and adjustments made in the former's trajectory. In addition, the pose and spin rates of the target satellite can be estimated using this method.

  20. Lightweight, Miniature Inertial Measurement System

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  1. Evaluation of GPS position and attitude determination for automated rendezvous and docking missions. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Diprinzio, Marc D.; Tolson, Robert H.

    1994-01-01

    The use of the Global Positioning System for position and attitude determination is evaluated for an automated rendezvous and docking mission. The typical mission scenario involves the chaser docking with the target for resupply or repair purposes, and is divided into three sections. During the homing phase, the chaser utilizes coarse acquisition pseudorange data to approach the target; guidance laws for this stage are investigated. In the second phase, differential carrier phase positioning is utilized. The chaser must maintain a quasiconstant distance from the target, in order to resolve the initial integer ambiguities. Once the ambiguities are determined, the terminal phase is entered, and the rendezvous is completed with continuous carrier phase tracking. Attitude knowledge is maintained in all phases through the use of the carrier phase observable. A Kalman filter is utilized to estimate all states from the noisy measurement data. The effects of selective availability and cycle slips are also investigated.

  2. Design of Operation Parameters to Resolve Two Targets using Proximity Sensors

    DTIC Science & Technology

    2010-07-01

    network,” in MOBIHOC, EPF Lausanne, Switzerland, 2002. [12] V. Cevher and L. Kaplan, “Acoustic sensor net- work design for position estimation,” ACM Trans- actions on Sensor Networks, vol. 4, 2009.

  3. Exploration of Extended-Area Treatment Effects in FACE-2 Using Satellite Imagery.

    NASA Astrophysics Data System (ADS)

    Meití, José G.; Woodley, William L.; Flueck, John A.

    1984-01-01

    The second phase of the Florida Area Cumulus Experiment (FACE-2) has been completed and an exploratory analysis has been conducted to investigate the possibility that cloud seeding may have affected the rainfall outside the intended target. Rainfall was estimated over a 3.5×105 km2 area centered on the target using geosynchronous, infrared satellite imagery and the Griffith-Woodley rain estimation technique. This technique was derived in South Florida by calibrating infrared images using raingage and radar observations to produce an empirical, diagnostic (a posteriori), satellite rain estimation technique. The satellite rain estimates for the extended area were adjusted based on comparisons of raingage and satellite rainfall estimates for the entire FACE target (1.3×104 km2). All daily rainfall estimates were composited in two ways: 1) in the original coordinate system and 2) in a relative coordinate system that rotates the research area as a function of wind direction. After compositing, seeding effects were sought as a function of space and time.The results show more rainfall (in the mean) on seed than no seed days both in and downwind of the target but lesser rainfall upwind. All differences (averaging 20% downwind and 10% upwind) are confined in space to within 200 km of the center of the FACE target and in time to the 8 h period after initial treatment. In addition, the positive correlation between untreated upwind rainfall and target rainfall is degraded on seed days, suggesting possible intermittent negative effects of seeding upwind. Although the development of these differences in space and time suggests that seeding may have been partially responsible for their generation, the results do not have strong inferential (P-value) support.

  4. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment.

    PubMed

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-06

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target's radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.

  5. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers.

    PubMed

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-12-09

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time.

  6. An Accurate Non-Cooperative Method for Measuring Textureless Spherical Target Based on Calibrated Lasers

    PubMed Central

    Wang, Fei; Dong, Hang; Chen, Yanan; Zheng, Nanning

    2016-01-01

    Strong demands for accurate non-cooperative target measurement have been arising recently for the tasks of assembling and capturing. Spherical objects are one of the most common targets in these applications. However, the performance of the traditional vision-based reconstruction method was limited for practical use when handling poorly-textured targets. In this paper, we propose a novel multi-sensor fusion system for measuring and reconstructing textureless non-cooperative spherical targets. Our system consists of four simple lasers and a visual camera. This paper presents a complete framework of estimating the geometric parameters of textureless spherical targets: (1) an approach to calibrate the extrinsic parameters between a camera and simple lasers; and (2) a method to reconstruct the 3D position of the laser spots on the target surface and achieve the refined results via an optimized scheme. The experiment results show that our proposed calibration method can obtain a fine calibration result, which is comparable to the state-of-the-art LRF-based methods, and our calibrated system can estimate the geometric parameters with high accuracy in real time. PMID:27941705

  7. Neural network fusion capabilities for efficient implementation of tracking algorithms

    NASA Astrophysics Data System (ADS)

    Sundareshan, Malur K.; Amoozegar, Farid

    1997-03-01

    The ability to efficiently fuse information of different forms to facilitate intelligent decision making is one of the major capabilities of trained multilayer neural networks that is now being recognized. While development of innovative adaptive control algorithms for nonlinear dynamical plants that attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. We describe the capabilities and functionality of neural network algorithms for data fusion and implementation of tracking filters. To discuss details and to serve as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target- tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The innovation lies in the way the fusion of multisensor data is accomplished to facilitate improved estimation without increasing the computational complexity of the dynamical state estimator itself.

  8. Improved Spatial Registration and Target Tracking Method for Sensors on Multiple Missiles.

    PubMed

    Lu, Xiaodong; Xie, Yuting; Zhou, Jun

    2018-05-27

    Inspired by the problem that the current spatial registration methods are unsuitable for three-dimensional (3-D) sensor on high-dynamic platform, this paper focuses on the estimation for the registration errors of cooperative missiles and motion states of maneuvering target. There are two types of errors being discussed: sensor measurement biases and attitude biases. Firstly, an improved Kalman Filter on Earth-Centered Earth-Fixed (ECEF-KF) coordinate algorithm is proposed to estimate the deviations mentioned above, from which the outcomes are furtherly compensated to the error terms. Secondly, the Pseudo Linear Kalman Filter (PLKF) and the nonlinear scheme the Unscented Kalman Filter (UKF) with modified inputs are employed for target tracking. The convergence of filtering results are monitored by a position-judgement logic, and a low-pass first order filter is selectively introduced before compensation to inhibit the jitter of estimations. In the simulation, the ECEF-KF enhancement is proven to improve the accuracy and robustness of the space alignment, while the conditional-compensation-based PLKF method is demonstrated to be the optimal performance in target tracking.

  9. Visuospatial information processing load and the ratio between parietal cue and target P3 amplitudes in the Attentional Network Test.

    PubMed

    Abramov, Dimitri M; Pontes, Monique; Pontes, Adailton T; Mourao-Junior, Carlos A; Vieira, Juliana; Quero Cunha, Carla; Tamborino, Tiago; Galhanone, Paulo R; deAzevedo, Leonardo C; Lazarev, Vladimir V

    2017-04-24

    In ERP studies of cognitive processes during attentional tasks, the cue signals containing information about the target can increase the amplitude of the parietal cue P3 in relation to the 'neutral' temporal cue, and reduce the subsequent target P3 when this information is valid, i.e. corresponds to the target's attributes. The present study compared the cue-to-target P3 ratios in neutral and visuospatial cueing, in order to estimate the contribution of valid visuospatial information from the cue to target stages of the task performance, in terms of cognitive load. The P3 characteristics were also correlated with the results of individuals' performance of the visuospatial tasks, in order to estimate the relationship of the observed ERP with spatial reasoning. In 20 typically developing boys, aged 10-13 years (11.3±0.86), the intelligence quotient (I.Q.) was estimated by the Block Design and Vocabulary subtests from the WISC-III. The subjects performed the Attentional Network Test (ANT) accompanied by EEG recording. The cued two-choice task had three equiprobable cue conditions: No cue, with no information about the target; Neutral (temporal) cue, with an asterisk in the center of the visual field, predicting the target onset; and Spatial cues, with an asterisk in the upper or lower hemifield, predicting the onset and corresponding location of the target. The ERPs were estimated for the mid-frontal (Fz) and mid-parietal (Pz) scalp derivations. In the Pz, the Neutral cue P3 had a lower amplitude than the Spatial cue P3; whereas for the target ERPs, the P3 of the Neutral cue condition was larger than that of the Spatial cue condition. However, the sums of the magnitudes of the cue and target P3 were equal in the spatial and neutral cueing, probably indicating that in both cases the equivalent information processing load is included in either the cue or the target reaction, respectively. Meantime, in the Fz, the analog ERP components for both the cue and target stimuli did not depend on the cue condition. The results show that, in the parietal site, the spatial cue P3 reflects the processing of visuospatial information regarding the target position. This contributes to the subsequent "decision-making", thus reducing the information processing load on the target response, which is probably reflected in the lower P3. This finding is consistent with the positive correlation of parietal cue P3 with the individual's ability to perform spatial tasks as scored by the Block Design subtest. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Estimating Single and Multiple Target Locations Using K-Means Clustering with Radio Tomographic Imaging in Wireless Sensor Networks

    DTIC Science & Technology

    2015-03-26

    dB) Lx, Ly, Lz Number of Pixels or Voxels in Respective Cartesian Dimension λ Width of Weighting Ellipse (ft) λi Diagonal Entries of Λ (Square Root...Barrett, and L. R. Furenlid, “Calibration Method for ML Estimation of 3D Interaction Position in a Thick Gamma-Ray Detector ,” IEEE Transactions on

  11. Project for the development of the linac based NCT facility in University of Tsukuba.

    PubMed

    Kumada, H; Matsumura, A; Sakurai, H; Sakae, T; Yoshioka, M; Kobayashi, H; Matsumoto, H; Kiyanagi, Y; Shibata, T; Nakashima, H

    2014-06-01

    A project team headed by University of Tsukuba launched the development of a new accelerator based BNCT facility. In the project, we have adopted Radio-Frequency Quadrupole (RFQ)+Drift Tube Linac (DTL) type linac as proton accelerators. Proton energy generated from the linac was set to 8MeV and average current was 10mA. The linac tube has been constructed by Mitsubishi Heavy Industry Co. For neutron generator device, beryllium is selected as neutron target material; high intensity neutrons are generated by the reaction with beryllium and the 80kW proton beam. Our team chose beryllium as the neutron target material. At present beryllium target system is being designed with Monte-Carlo estimations and heat analysis with ANSYS. The neutron generator consists of moderator, collimator and shielding. It is being designed together with the beryllium target system. We also acquired a building in Tokai village; the building has been renovated for use as BNCT treatment facility. It is noteworthy that the linac tube had been installed in the facility in September 2012. In BNCT procedure, several medical devices are required for BNCT treatment such as treatment planning system, patient positioning device and radiation monitors. Thus these are being developed together with the linac based neutron source. For treatment planning system, we are now developing a new multi-modal Monte-Carlo treatment planning system based on JCDS. The system allows us to perform dose estimation for BNCT as well as particle radiotherapy and X-ray therapy. And the patient positioning device can navigate a patient to irradiation position quickly and properly. Furthermore the device is able to monitor movement of the patient׳s position during irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Estimating the ROI for Recruitment Marketing and Advertising Expenditure for the Australian Defence Force

    DTIC Science & Technology

    2012-03-01

    but requires a minimum of $1.4 million monthly spend. Additionally, every 0.1% increase in the unemployment rate above 6.7% generates 3,422...enlistments targets, national monthly youth unemployment rates and quarterly propensity to enlist in the ADF. Advertising expenditure was found to be...expenditure would increase applications by 1.3%. Youth national unemployment and enlistment targets were positively related to enlistments, while

  13. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments

    PubMed Central

    Mossel, Annette

    2015-01-01

    In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388

  14. Rapid decrement in the effects of the Ponzo display dissociates action and perception.

    PubMed

    Whitwell, Robert L; Buckingham, Gavin; Enns, James T; Chouinard, Philippe A; Goodale, Melvyn A

    2016-08-01

    It has been demonstrated that pictorial illusions have a smaller influence on grasping than they do on perceptual judgments. Yet to date this work has not considered the reduced influence of an illusion as it is measured repeatedly. Here we studied this decrement in the context of a Ponzo illusion to further characterize the dissociation between vision for perception and for action. Participants first manually estimated the lengths of single targets in a Ponzo display with their thumb and index finger, then actually grasped these targets in another series of trials, and then manually estimated the target lengths again in a final set of trials. The results showed that although the perceptual estimates and grasp apertures were equally sensitive to real differences in target length on the initial trials, only the perceptual estimates remained biased by the illusion over repeated measurements. In contrast, the illusion's effect on the grasps decreased rapidly, vanishing entirely after only a few trials. Interestingly, a closer examination of the grasp data revealed that this initial effect was driven largely by undersizing the grip aperture for the display configuration in which the target was positioned between the diverging background lines (i.e., when the targets appeared to be shorter than they really were). This asymmetry between grasping apparently shorter and longer targets suggests that the sensorimotor system may initially treat the edges of the configuration as obstacles to be avoided. This finding highlights the sensorimotor system's ability to rapidly update motor programs through error feedback, manifesting as an immunity to the effects of illusion displays even after only a few trials.

  15. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment

    PubMed Central

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR), target’s radar cross section (RCS) and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component. PMID:27929433

  16. Optical Probes for Laser Induced Shocks

    DTIC Science & Technology

    1992-03-01

    target by the strong water. As the shock passes the material interface, it is pressure transients. only partially transmitted. The shock pressure is...T. Swimm , J. Appl. Phys. 61, evaporated, t1137(1987). vapor flow substantially. The coupling coefficient thus de- 3 v. A. Batanov and V. B. Fedorov...Waist-Surface Distance [mm] isurface on the drilling mechanismC Positive ( negative ) To roughly estimate the total recoil momentum positions

  17. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar.

    PubMed

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-09-09

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar's estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method.

  18. Multiple confidence estimates as indices of eyewitness memory.

    PubMed

    Sauer, James D; Brewer, Neil; Weber, Nathan

    2008-08-01

    Eyewitness identification decisions are vulnerable to various influences on witnesses' decision criteria that contribute to false identifications of innocent suspects and failures to choose perpetrators. An alternative procedure using confidence estimates to assess the degree of match between novel and previously viewed faces was investigated. Classification algorithms were applied to participants' confidence data to determine when a confidence value or pattern of confidence values indicated a positive response. Experiment 1 compared confidence group classification accuracy with a binary decision control group's accuracy on a standard old-new face recognition task and found superior accuracy for the confidence group for target-absent trials but not for target-present trials. Experiment 2 used a face mini-lineup task and found reduced target-present accuracy offset by large gains in target-absent accuracy. Using a standard lineup paradigm, Experiments 3 and 4 also found improved classification accuracy for target-absent lineups and, with a more sophisticated algorithm, for target-present lineups. This demonstrates the accessibility of evidence for recognition memory decisions and points to a more sensitive index of memory quality than is afforded by binary decisions.

  19. Saccadic interception of a moving visual target after a spatiotemporal perturbation.

    PubMed

    Fleuriet, Jérome; Goffart, Laurent

    2012-01-11

    Animals can make saccadic eye movements to intercept a moving object at the right place and time. Such interceptive saccades indicate that, despite variable sensorimotor delays, the brain is able to estimate the current spatiotemporal (hic et nunc) coordinates of a target at saccade end. The present work further tests the robustness of this estimate in the monkey when a change in eye position and a delay are experimentally added before the onset of the saccade and in the absence of visual feedback. These perturbations are induced by brief microstimulation in the deep superior colliculus (dSC). When the microstimulation moves the eyes in the direction opposite to the target motion, a correction saccade brings gaze back on the target path or very near. When it moves the eye in the same direction, the performance is more variable and depends on the stimulated sites. Saccades fall ahead of the target with an error that increases when the stimulation is applied more caudally in the dSC. The numerous cases of compensation indicate that the brain is able to maintain an accurate and robust estimate of the location of the moving target. The inaccuracies observed when stimulating the dSC that encodes the visual field traversed by the target indicate that dSC microstimulation can interfere with signals encoding the target motion path. The results are discussed within the framework of the dual-drive and the remapping hypotheses.

  20. Three-Dimensional ISAR Imaging Method for High-Speed Targets in Short-Range Using Impulse Radar Based on SIMO Array.

    PubMed

    Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei

    2016-03-11

    This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile's rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm.

  1. Correlation Techniques as Applied to Pose Estimation in Space Station Docking

    NASA Technical Reports Server (NTRS)

    Rollins, J. Michael; Juday, Richard D.; Monroe, Stanley E., Jr.

    2002-01-01

    The telerobotic assembly of space-station components has become the method of choice for the International Space Station (ISS) because it offers a safe alternative to the more hazardous option of space walks. The disadvantage of telerobotic assembly is that it does not provide for direct arbitrary views of mating interfaces for the teleoperator. Unless cameras are present very close to the interface positions, such views must be generated graphically, based on calculated pose relationships derived from images. To assist in this photogrammetric pose estimation, circular targets, or spots, of high contrast have been affixed on each connecting module at carefully surveyed positions. The appearance of a subset of spots essentially must form a constellation of specific relative positions in the incoming digital image stream in order for the docking to proceed. Spot positions are expressed in terms of their apparent centroids in an image. The precision of centroid estimation is required to be as fine as 1I20th pixel, in some cases. This paper presents an approach to spot centroid estimation using cross correlation between spot images and synthetic spot models of precise centration. Techniques for obtaining sub-pixel accuracy and for shadow, obscuration and lighting irregularity compensation are discussed.

  2. An evaluation of talker localization based on direction of arrival estimation and statistical sound source identification

    NASA Astrophysics Data System (ADS)

    Nishiura, Takanobu; Nakamura, Satoshi

    2002-11-01

    It is very important to capture distant-talking speech for a hands-free speech interface with high quality. A microphone array is an ideal candidate for this purpose. However, this approach requires localizing the target talker. Conventional talker localization algorithms in multiple sound source environments not only have difficulty localizing the multiple sound sources accurately, but also have difficulty localizing the target talker among known multiple sound source positions. To cope with these problems, we propose a new talker localization algorithm consisting of two algorithms. One is DOA (direction of arrival) estimation algorithm for multiple sound source localization based on CSP (cross-power spectrum phase) coefficient addition method. The other is statistical sound source identification algorithm based on GMM (Gaussian mixture model) for localizing the target talker position among localized multiple sound sources. In this paper, we particularly focus on the talker localization performance based on the combination of these two algorithms with a microphone array. We conducted evaluation experiments in real noisy reverberant environments. As a result, we confirmed that multiple sound signals can be identified accurately between ''speech'' or ''non-speech'' by the proposed algorithm. [Work supported by ATR, and MEXT of Japan.

  3. Large Scale Mass Spectrometry-based Identifications of Enzyme-mediated Protein Methylation Are Subject to High False Discovery Rates*

    PubMed Central

    Hart-Smith, Gene; Yagoub, Daniel; Tay, Aidan P.; Pickford, Russell; Wilkins, Marc R.

    2016-01-01

    All large scale LC-MS/MS post-translational methylation site discovery experiments require methylpeptide spectrum matches (methyl-PSMs) to be identified at acceptably low false discovery rates (FDRs). To meet estimated methyl-PSM FDRs, methyl-PSM filtering criteria are often determined using the target-decoy approach. The efficacy of this methyl-PSM filtering approach has, however, yet to be thoroughly evaluated. Here, we conduct a systematic analysis of methyl-PSM FDRs across a range of sample preparation workflows (each differing in their exposure to the alcohols methanol and isopropyl alcohol) and mass spectrometric instrument platforms (each employing a different mode of MS/MS dissociation). Through 13CD3-methionine labeling (heavy-methyl SILAC) of Saccharomyces cerevisiae cells and in-depth manual data inspection, accurate lists of true positive methyl-PSMs were determined, allowing methyl-PSM FDRs to be compared with target-decoy approach-derived methyl-PSM FDR estimates. These results show that global FDR estimates produce extremely unreliable methyl-PSM filtering criteria; we demonstrate that this is an unavoidable consequence of the high number of amino acid combinations capable of producing peptide sequences that are isobaric to methylated peptides of a different sequence. Separate methyl-PSM FDR estimates were also found to be unreliable due to prevalent sources of false positive methyl-PSMs that produce high peptide identity score distributions. Incorrect methylation site localizations, peptides containing cysteinyl-S-β-propionamide, and methylated glutamic or aspartic acid residues can partially, but not wholly, account for these false positive methyl-PSMs. Together, these results indicate that the target-decoy approach is an unreliable means of estimating methyl-PSM FDRs and methyl-PSM filtering criteria. We suggest that orthogonal methylpeptide validation (e.g. heavy-methyl SILAC or its offshoots) should be considered a prerequisite for obtaining high confidence methyl-PSMs in large scale LC-MS/MS methylation site discovery experiments and make recommendations on how to reduce methyl-PSM FDRs in samples not amenable to heavy isotope labeling. Data are available via ProteomeXchange with the data identifier PXD002857. PMID:26699799

  4. Nonlinear optimization-based device-free localization with outlier link rejection.

    PubMed

    Xiao, Wendong; Song, Biao; Yu, Xiting; Chen, Peiyuan

    2015-04-07

    Device-free localization (DFL) is an emerging wireless technique for estimating the location of target that does not have any attached electronic device. It has found extensive use in Smart City applications such as healthcare at home and hospitals, location-based services at smart spaces, city emergency response and infrastructure security. In DFL, wireless devices are used as sensors that can sense the target by transmitting and receiving wireless signals collaboratively. Many DFL systems are implemented based on received signal strength (RSS) measurements and the location of the target is estimated by detecting the changes of the RSS measurements of the wireless links. Due to the uncertainty of the wireless channel, certain links may be seriously polluted and result in erroneous detection. In this paper, we propose a novel nonlinear optimization approach with outlier link rejection (NOOLR) for RSS-based DFL. It consists of three key strategies, including: (1) affected link identification by differential RSS detection; (2) outlier link rejection via geometrical positional relationship among links; (3) target location estimation by formulating and solving a nonlinear optimization problem. Experimental results demonstrate that NOOLR is robust to the fluctuation of the wireless signals with superior localization accuracy compared with the existing Radio Tomographic Imaging (RTI) approach.

  5. Auditory risk estimates for youth target shooting

    PubMed Central

    Meinke, Deanna K.; Murphy, William J.; Finan, Donald S.; Lankford, James E.; Flamme, Gregory A.; Stewart, Michael; Soendergaard, Jacob; Jerome, Trevor W.

    2015-01-01

    Objective To characterize the impulse noise exposure and auditory risk for youth recreational firearm users engaged in outdoor target shooting events. The youth shooting positions are typically standing or sitting at a table, which places the firearm closer to the ground or reflective surface when compared to adult shooters. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 26 firearm/ammunition configurations representing rifles, shotguns, and pistols used by youth. Measurements were obtained relative to a youth shooter’s left ear. Results All firearms generated peak levels that exceeded the 120 dB peak limit suggested by the WHO for children. In general, shooting from the seated position over a tabletop increases the peak levels, LAeq8 and reduces the unprotected maximum permissible exposures (MPEs) for both rifles and pistols. Pistols pose the greatest auditory risk when fired over a tabletop. Conclusion Youth should utilize smaller caliber weapons, preferably from the standing position, and always wear hearing protection whenever engaging in shooting activities to reduce the risk for auditory damage. PMID:24564688

  6. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis.

    PubMed

    Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro

    2017-09-01

    To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. Bayesian Estimation and Inference Using Stochastic Electronics

    PubMed Central

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326

  8. Bayesian Estimation and Inference Using Stochastic Electronics.

    PubMed

    Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André

    2016-01-01

    In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.

  9. Handling target obscuration through Markov chain observations

    NASA Astrophysics Data System (ADS)

    Kouritzin, Michael A.; Wu, Biao

    2008-04-01

    Target Obscuration, including foliage or building obscuration of ground targets and landscape or horizon obscuration of airborne targets, plagues many real world filtering problems. In particular, ground moving target identification Doppler radar, mounted on a surveillance aircraft or unattended airborne vehicle, is used to detect motion consistent with targets of interest. However, these targets try to obscure themselves (at least partially) by, for example, traveling along the edge of a forest or around buildings. This has the effect of creating random blockages in the Doppler radar image that move dynamically and somewhat randomly through this image. Herein, we address tracking problems with target obscuration by building memory into the observations, eschewing the usual corrupted, distorted partial measurement assumptions of filtering in favor of dynamic Markov chain assumptions. In particular, we assume the observations are a Markov chain whose transition probabilities depend upon the signal. The state of the observation Markov chain attempts to depict the current obscuration and the Markov chain dynamics are used to handle the evolution of the partially obscured radar image. Modifications of the classical filtering equations that allow observation memory (in the form of a Markov chain) are given. We use particle filters to estimate the position of the moving targets. Moreover, positive proof-of-concept simulations are included.

  10. Chronic Viral Hepatitis in Malaysia: "Where are we now?"

    PubMed

    Raihan, Ruksana; Mohamed, Rosmawati; Radzi Abu Hassan, Muhammad; Md Said, Rosaida

    2017-01-01

    Malaysia is a country where an estimated 1 million people are chronically infected with hepatitis B virus (HBV) and an estimated 2.5% of the adult population are positive for antibody to hepatitis C virus (HCV). Effective nationwide vaccine coverage seems to be a highly effective measure to prevent new HBV infection. Treatment of HCV infection is also a regular practice in Malaysia. These measures highlight the possibility to reach the World Health Organization elimination target by 2030. To achieve this target, the Health Ministry and other nongovernmental organizations, such as My Commitment to Cure (MyC2C) are working together to develop a strategic road map to reach the global elimination target in Malaysia by 2030. How to cite this article: Raihan R, Mohamed R, Hasan MRA, Rosaida MS. Chronic Viral Hepatitis in Malaysia: "Where are we now?" Euroasian J Hepato-Gastroenterol 2017;7(1):65-67.

  11. Three-Dimensional ISAR Imaging Method for High-Speed Targets in Short-Range Using Impulse Radar Based on SIMO Array

    PubMed Central

    Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei

    2016-01-01

    This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile’s rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm. PMID:26978372

  12. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera

    PubMed Central

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-01-01

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556

  13. A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.

    PubMed

    Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo

    2016-03-25

    In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots.

  14. Ancestry estimation and control of population stratification for sequence-based association studies.

    PubMed

    Wang, Chaolong; Zhan, Xiaowei; Bragg-Gresham, Jennifer; Kang, Hyun Min; Stambolian, Dwight; Chew, Emily Y; Branham, Kari E; Heckenlively, John; Fulton, Robert; Wilson, Richard K; Mardis, Elaine R; Lin, Xihong; Swaroop, Anand; Zöllner, Sebastian; Abecasis, Gonçalo R

    2014-04-01

    Estimating individual ancestry is important in genetic association studies where population structure leads to false positive signals, although assigning ancestry remains challenging with targeted sequence data. We propose a new method for the accurate estimation of individual genetic ancestry, based on direct analysis of off-target sequence reads, and implement our method in the publicly available LASER software. We validate the method using simulated and empirical data and show that the method can accurately infer worldwide continental ancestry when used with sequencing data sets with whole-genome shotgun coverage as low as 0.001×. For estimates of fine-scale ancestry within Europe, the method performs well with coverage of 0.1×. On an even finer scale, the method improves discrimination between exome-sequenced study participants originating from different provinces within Finland. Finally, we show that our method can be used to improve case-control matching in genetic association studies and to reduce the risk of spurious findings due to population structure.

  15. Target Tracking Using SePDAF under Ambiguous Angles for Distributed Array Radar

    PubMed Central

    Long, Teng; Zhang, Honggang; Zeng, Tao; Chen, Xinliang; Liu, Quanhua; Zheng, Le

    2016-01-01

    Distributed array radar can improve radar detection capability and measurement accuracy. However, it will suffer cyclic ambiguity in its angle estimates according to the spatial Nyquist sampling theorem since the large sparse array is undersampling. Consequently, the state estimation accuracy and track validity probability degrades when the ambiguous angles are directly used for target tracking. This paper proposes a second probability data association filter (SePDAF)-based tracking method for distributed array radar. Firstly, the target motion model and radar measurement model is built. Secondly, the fusion result of each radar’s estimation is employed to the extended Kalman filter (EKF) to finish the first filtering. Thirdly, taking this result as prior knowledge, and associating with the array-processed ambiguous angles, the SePDAF is applied to accomplish the second filtering, and then achieving a high accuracy and stable trajectory with relatively low computational complexity. Moreover, the azimuth filtering accuracy will be promoted dramatically and the position filtering accuracy will also improve. Finally, simulations illustrate the effectiveness of the proposed method. PMID:27618058

  16. PSMA-Based [(18)F]DCFPyL PET/CT Is Superior to Conventional Imaging for Lesion Detection in Patients with Metastatic Prostate Cancer.

    PubMed

    Rowe, Steven P; Macura, Katarzyna J; Mena, Esther; Blackford, Amanda L; Nadal, Rosa; Antonarakis, Emmanuel S; Eisenberger, Mario; Carducci, Michael; Fan, Hong; Dannals, Robert F; Chen, Ying; Mease, Ronnie C; Szabo, Zsolt; Pomper, Martin G; Cho, Steve Y

    2016-06-01

    Current standard of care conventional imaging modalities (CIM) such as X-ray computed tomography (CT) and bone scan can be limited for detection of metastatic prostate cancer and therefore improved imaging methods are an unmet clinical need. We evaluated the utility of a novel second-generation low molecular weight radiofluorinated prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) radiotracer, [(18)F]DCFPyL, in patients with metastatic prostate cancer. Nine patients with suspected prostate cancer recurrence, eight with CIM evidence of metastatic prostate cancer and one with biochemical recurrence, were imaged with [(18)F]DCFPyL PET/CT. Eight of the patients had contemporaneous CIM for comparison. A lesion-by-lesion comparison of the detection of suspected sites of metastatic prostate cancer was carried out between PET and CIM. Statistical analysis for estimated proportions of inter-modality agreement for detection of metastatic disease was calculated accounting for intra-patient correlation using general estimating equation (GEE) intercept-only regression models. One hundred thirty-nine sites of PET positive [(18)F]DCFPyL uptake (138 definite, 1 equivocal) for metastatic disease were detected in the eight patients with available comparison CIM. By contrast, only 45 lesions were identified on CIM (30 definite, 15 equivocal). When lesions were negative or equivocal on CIM, it was estimated that a large portion of these lesions or 0.72 (95 % confidence interval (CI) 0.55-0.84) would be positive on [(18)F]DCFPyL PET. Conversely, of those lesions negative or equivocal on [(18)F]DCFPyL PET, it was estimated that only a very small proportion or 0.03 (95 % CI 0.01-0.07) would be positive on CIM. Delayed 2-h-post-injection time point PET yielded higher tumor radiotracer uptake and higher tumor-to-background ratios than an earlier 1-h-post-injection time point. A novel PSMA-targeted PET radiotracer, [(18)F]DCFPyL, was able to a large number of suspected sites of prostate cancer, many of which were occult or equivocal by CIM. This study provides strong preliminary evidence for the use of this second-generation PSMA-targeted PET radiotracer for detection of metastatic prostate cancer and lends further support for the importance of PSMA-targeted PET imaging in prostate cancer.

  17. Diagnosing and Correcting Mass Accuracy and Signal Intensity Error Due to Initial Ion Position Variations in a MALDI TOFMS

    NASA Astrophysics Data System (ADS)

    Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.

    2018-02-01

    Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days.

  18. Diagnosing and Correcting Mass Accuracy and Signal Intensity Error Due to Initial Ion Position Variations in a MALDI TOFMS

    NASA Astrophysics Data System (ADS)

    Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.

    2017-12-01

    Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days. [Figure not available: see fulltext.

  19. Demand for Colonoscopy in Colorectal Cancer Screening Using a Quantitative Fecal Immunochemical Test and Age/Sex-Specific Thresholds for Test Positivity.

    PubMed

    Chen, Sam Li-Sheng; Hsu, Chen-Yang; Yen, Amy Ming-Fang; Young, Graeme P; Chiu, Sherry Yueh-Hsia; Fann, Jean Ching-Yuan; Lee, Yi-Chia; Chiu, Han-Mo; Chiou, Shu-Ti; Chen, Hsiu-Hsi

    2018-06-01

    Background: Despite age and sex differences in fecal hemoglobin (f-Hb) concentrations, most fecal immunochemical test (FIT) screening programs use population-average cut-points for test positivity. The impact of age/sex-specific threshold on FIT accuracy and colonoscopy demand for colorectal cancer screening are unknown. Methods: Using data from 723,113 participants enrolled in a Taiwanese population-based colorectal cancer screening with single FIT between 2004 and 2009, sensitivity and specificity were estimated for various f-Hb thresholds for test positivity. This included estimates based on a "universal" threshold, receiver-operating-characteristic curve-derived threshold, targeted sensitivity, targeted false-positive rate, and a colonoscopy-capacity-adjusted method integrating colonoscopy workload with and without age/sex adjustments. Results: Optimal age/sex-specific thresholds were found to be equal to or lower than the universal 20 μg Hb/g threshold. For older males, a higher threshold (24 μg Hb/g) was identified using a 5% false-positive rate. Importantly, a nonlinear relationship was observed between sensitivity and colonoscopy workload with workload rising disproportionately to sensitivity at 16 μg Hb/g. At this "colonoscopy-capacity-adjusted" threshold, the test positivity (colonoscopy workload) was 4.67% and sensitivity was 79.5%, compared with a lower 4.0% workload and a lower 78.7% sensitivity using 20 μg Hb/g. When constrained on capacity, age/sex-adjusted estimates were generally lower. However, optimizing age/-sex-adjusted thresholds increased colonoscopy demand across models by 17% or greater compared with a universal threshold. Conclusions: Age/sex-specific thresholds improve FIT accuracy with modest increases in colonoscopy demand. Impact: Colonoscopy-capacity-adjusted and age/sex-specific f-Hb thresholds may be useful in optimizing individual screening programs based on detection accuracy, population characteristics, and clinical capacity. Cancer Epidemiol Biomarkers Prev; 27(6); 704-9. ©2018 AACR . ©2018 American Association for Cancer Research.

  20. Neural network fusion capabilities for efficient implementation of tracking algorithms

    NASA Astrophysics Data System (ADS)

    Sundareshan, Malur K.; Amoozegar, Farid

    1996-05-01

    The ability to efficiently fuse information of different forms for facilitating intelligent decision-making is one of the major capabilities of trained multilayer neural networks that is being recognized int eh recent times. While development of innovative adaptive control algorithms for nonlinear dynamical plants which attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. In this paper we describe the capabilities and functionality of neural network algorithms for data fusion and implementation of nonlinear tracking filters. For a discussion of details and for serving as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes form the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. Such an approach results in an overall nonlinear tracking filter which has several advantages over the popular efforts at designing nonlinear estimation algorithms for tracking applications, the principle one being the reduction of mathematical and computational complexities. A system architecture that efficiently integrates the processing capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described in this paper.

  1. Representational change and strategy use in children's number line estimation during the first years of primary school.

    PubMed

    White, Sonia L J; Szűcs, Dénes

    2012-01-04

    The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.

  2. Representational change and strategy use in children's number line estimation during the first years of primary school

    PubMed Central

    2012-01-01

    Background The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods Typically developing children (n = 67) from Years 1-3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice. PMID:22217191

  3. The small low SNR target tracking using sparse representation information

    NASA Astrophysics Data System (ADS)

    Yin, Lifan; Zhang, Yiqun; Wang, Shuo; Sun, Chenggang

    2017-11-01

    Tracking small targets, such as missile warheads, from a remote distance is a difficult task since the targets are "points" which are similar to sensor's noise points. As a result, traditional tracking algorithms only use the information contained in point measurement, such as the position information and intensity information, as characteristics to identify targets from noise points. But in fact, as a result of the diffusion of photon, any small target is not a point in the focal plane array and it occupies an area which is larger than one sensor cell. So, if we can take the geometry characteristic into account as a new dimension of information, it will be of helpful in distinguishing targets from noise points. In this paper, we use a novel method named sparse representation (SR) to depict the geometry information of target intensity and define it as the SR information of target. Modeling the intensity spread and solving its SR coefficients, the SR information is represented by establishing its likelihood function. Further, the SR information likelihood is incorporated in the conventional Probability Hypothesis Density (PHD) filter algorithm with point measurement. To illustrate the different performances of algorithm with or without the SR information, the detection capability and estimation error have been compared through simulation. Results demonstrate the proposed method has higher estimation accuracy and probability of detecting target than the conventional algorithm without the SR information.

  4. Mixture-Tuned, Clutter Matched Filter for Remote Detection of Subpixel Spectral Signals

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Mandrake, Lukas; Green, Robert O.

    2013-01-01

    Mapping localized spectral features in large images demands sensitive and robust detection algorithms. Two aspects of large images that can harm matched-filter detection performance are addressed simultaneously. First, multimodal backgrounds may thwart the typical Gaussian model. Second, outlier features can trigger false detections from large projections onto the target vector. Two state-of-the-art approaches are combined that independently address outlier false positives and multimodal backgrounds. The background clustering models multimodal backgrounds, and the mixture tuned matched filter (MT-MF) addresses outliers. Combining the two methods captures significant additional performance benefits. The resulting mixture tuned clutter matched filter (MT-CMF) shows effective performance on simulated and airborne datasets. The classical MNF transform was applied, followed by k-means clustering. Then, each cluster s mean, covariance, and the corresponding eigenvalues were estimated. This yields a cluster-specific matched filter estimate as well as a cluster- specific feasibility score to flag outlier false positives. The technology described is a proof of concept that may be employed in future target detection and mapping applications for remote imaging spectrometers. It is of most direct relevance to JPL proposals for airborne and orbital hyperspectral instruments. Applications include subpixel target detection in hyperspectral scenes for military surveillance. Earth science applications include mineralogical mapping, species discrimination for ecosystem health monitoring, and land use classification.

  5. Targeted erlotinib for first-line treatment of advanced non-small cell lung cancer: a budget impact analysis.

    PubMed

    Bajaj, Preeti S; Veenstra, David L; Goertz, Hans-Peter; Carlson, Josh J

    2014-08-01

    A recent phase III trial showed that patients with advanced non-small cell lung cancer (NSCLC) whose tumors harbor specific EGFR mutations significantly benefit from first-line treatment with erlotinib compared to chemotherapy. This study sought to estimate the budget impact if coverage for EGFR testing and erlotinib as first-line therapy were provided in a hypothetical 500,000-member managed care plan. The budget impact model was developed from a US health plan perspective to evaluate administration of the EGFR test and treatment with erlotinib for EGFR-positive patients, compared to non-targeted treatment with chemotherapy. The eligible patient population was estimated from age-stratified SEER incidence data. Clinical data were derived from key randomized controlled trials. Costs related to drug, administration, and adverse events were included. Sensitivity analyses were conducted to assess uncertainty. In a plan of 500,000 members, it was estimated there would be 91 newly diagnosed advanced NSCLC patients annually; 11 are expected to be EGFR-positive. Based on the testing and treatment assumptions, it was estimated that 3 patients in Scenario 1 and 6 patients in Scenario 2 receive erlotinib. Overall health plan expenditures would increase by $0.013 per member per month (PMPM). This increase is largely attributable to erlotinib drug costs, in part due to lengthened progression-free survival and treatment periods experienced in erlotinib-treated patients. EGFR testing contributes slightly, whereas adverse event costs mitigate the budget impact. The budget impact did not exceed $0.019 PMPM in sensitivity analyses. Coverage for targeted first-line erlotinib therapy in NSCLC likely results in a small budget impact for US health plans. The estimated impact may vary by plan, or if second-line or maintenance therapy, dose changes/interruptions, or impact on patients' quality-of-life were included.

  6. Comparison of several maneuvering target tracking models

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory A.; Hintz, Kenneth J.

    1998-07-01

    The tracking of maneuvering targets is complicated by the fact that acceleration is not directly observable or measurable. Additionally, acceleration can be induced by a variety of sources including human input, autonomous guidance, or atmospheric disturbances. The approaches to tracking maneuvering targets can be divided into two categories both of which assume that the maneuver input command is unknown. One approach is to model the maneuver as a random process. The other approach assumes that the maneuver is not random and that it is either detected or estimated in real time. The random process models generally assume one of two statistical properties, either white noise or an autocorrelated noise. The multiple-model approach is generally used with the white noise model while a zero-mean, exponentially correlated acceleration approach is used with the autocorrelated noise model. The nonrandom approach uses maneuver detection to correct the state estimate or a variable dimension filter to augment the state estimate with an extra state component during a detected maneuver. Another issue with the tracking of maneuvering target is whether to perform the Kalman filter in Polar or Cartesian coordinates. This paper will examine and compare several exponentially correlated acceleration approaches in both Polar and Cartesian coordinates for accuracy and computational complexity. They include the Singer model in both Polar and Cartesian coordinates, the Singer model in Polar coordinates converted to Cartesian coordinates, Helferty's third order rational approximation of the Singer model and the Bar-Shalom and Fortmann model. This paper shows that these models all provide very accurate position estimates with only minor differences in velocity estimates and compares the computational complexity of the models.

  7. Machine vision guided sensor positioning system for leaf temperature assessment

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Ling, P. P.; Janes, H. W. (Principal Investigator)

    2001-01-01

    A sensor positioning system was developed for monitoring plants' well-being using a non-contact sensor. Image processing algorithms were developed to identify a target region on a plant leaf. A novel algorithm to recover view depth was developed by using a camera equipped with a computer-controlled zoom lens. The methodology has improved depth recovery resolution over a conventional monocular imaging technique. An algorithm was also developed to find a maximum enclosed circle on a leaf surface so the conical field-of-view of an infrared temperature sensor could be filled by the target without peripheral noise. The center of the enclosed circle and the estimated depth were used to define the sensor 3-D location for accurate plant temperature measurement.

  8. A centrally generated primary care physician audit report does not improve colonoscopy uptake after a positive result on a fecal occult blood test in Ontario's ColonCancerCheck program.

    PubMed

    Stock, D; Rabeneck, L; Baxter, N N; Paszat, L F; Sutradhar, R; Yun, L; Tinmouth, J

    2017-02-01

    Timely follow-up of fecal occult blood screening with colonoscopy is essential for achieving colorectal cancer mortality reduction. In the present study, we evaluated the effectiveness of centrally generated, physician-targeted audit and feedback to improve colonoscopy uptake after a positive fecal occult blood test (fobt) result within Ontario's population-wide ColonCancerCheck Program. This prospective cohort study used data sets from Ontario's ColonCancerCheck Program (2008-2011) that were linked to provincial administrative health databases. Cox proportional hazards regression was used to estimate the effect of centralized, physician-targeted audit and feedback on colonoscopy uptake in an Ontario-wide fobt-positive cohort. A mailed physician audit and feedback report identifying individuals outstanding for colonoscopy for 3 or more months after a positive fobt result did not increase the likelihood of colonoscopy uptake (hazard ratio: 0.95; 95% confidence interval: 0.79 to 1.13). Duration of positive fobt status was strongly inversely associated with the hazard of follow-up colonoscopy ( p for linear trend: <0.001). In a large population-wide setting, centralized tracking in the form of physician-targeted mailed audit and feedback reports does not improve colonoscopy uptake for screening participants with a positive fobt result outstanding for 3 or more months. Mailed physician-targeted screening audit and feedback reports alone are unlikely to improve compliance with follow-up colonoscopy in Ontario. Other interventions such as physician audits or automatic referrals, demonstrated to be effective in other jurisdictions, might be warranted.

  9. Accurate position estimation methods based on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.

  10. High-density convergent plasma sputtering device for a liquid metal target using an unheated glass plate

    NASA Astrophysics Data System (ADS)

    Motomura, T.; Tabaru, T.

    2018-06-01

    A high-density convergent plasma sputtering device has been developed for a liquid metal target, using an unheated glass plate. The convergent magnetic field lines, which are produced by an external solenoid coil and a permanent magnet positioned behind the liquid metal target, effectively transport high-density plasmas near the target. In this study, a liquid gallium target was sputtered with nitrogen plasmas, without additive gas required for depositing gallium nitride films on the unheated substrates. The deposition rate of the GaN film was estimated at ˜13 nm/min at a gas pressure of 0.2 Pa. A strong diffraction peak was observed along the GaN (002) axis, with the use of an unheated glass plate and a target-substrate distance of ˜45 mm.

  11. The Influence of Conditional Cash Transfers on Eligible Children and Their Siblings

    ERIC Educational Resources Information Center

    Lincove, Jane Arnold; Parker, Adam

    2016-01-01

    Conditional cash transfers (CCTs) are used to reduce poverty while incentivizing investments in children. Targeting CCTs to certain groups of children can improve efficiency, but positive effects on eligible children may be offset by reductions in investments for ineligible siblings. Using data from Nicaragua, we estimate program effects on…

  12. Passive polarimetric imagery-based material classification robust to illumination source position and viewpoint.

    PubMed

    Thilak Krishna, Thilakam Vimal; Creusere, Charles D; Voelz, David G

    2011-01-01

    Polarization, a property of light that conveys information about the transverse electric field orientation, complements other attributes of electromagnetic radiation such as intensity and frequency. Using multiple passive polarimetric images, we develop an iterative, model-based approach to estimate the complex index of refraction and apply it to target classification.

  13. Unsupervised markerless 3-DOF motion tracking in real time using a single low-budget camera.

    PubMed

    Quesada, Luis; León, Alejandro J

    2012-10-01

    Motion tracking is a critical task in many computer vision applications. Existing motion tracking techniques require either a great amount of knowledge on the target object or specific hardware. These requirements discourage the wide spread of commercial applications based on motion tracking. In this paper, we present a novel three degrees of freedom motion tracking system that needs no knowledge on the target object and that only requires a single low-budget camera that can be found installed in most computers and smartphones. Our system estimates, in real time, the three-dimensional position of a nonmodeled unmarked object that may be nonrigid, nonconvex, partially occluded, self-occluded, or motion blurred, given that it is opaque, evenly colored, enough contrasting with the background in each frame, and that it does not rotate. Our system is also able to determine the most relevant object to track in the screen. Our proposal does not impose additional constraints, therefore it allows a market-wide implementation of applications that require the estimation of the three position degrees of freedom of an object.

  14. The role of differential delays in integrating transient visual and proprioceptive information

    PubMed Central

    Cameron, Brendan D.; de la Malla, Cristina; López-Moliner, Joan

    2014-01-01

    Many actions involve limb movements toward a target. Visual and proprioceptive estimates are available online, and by optimally combining (Ernst and Banks, 2002) both modalities during the movement, the system can increase the precision of the hand estimate. The notion that both sensory modalities are integrated is also motivated by the intuition that we do not consciously perceive any discrepancy between the felt and seen hand's positions. This coherence as a result of integration does not necessarily imply realignment between the two modalities (Smeets et al., 2006). For example, the two estimates (visual and proprioceptive) might be different without either of them (e.g., proprioception) ever being adjusted after recovering the other (e.g., vision). The implication that the felt and seen positions might be different has a temporal analog. Because the actual feedback from the hand at a given instantaneous position reaches brain areas at different times for proprioception and vision (shorter for proprioception), the corresponding instantaneous unisensory position estimates will be different, with the proprioceptive one being ahead of the visual one. Based on the assumption that the system integrates optimally and online the available evidence from both senses, we introduce a temporal mechanism that explains the reported overestimation of hand positions when vision is occluded for active and passive movements (Gritsenko et al., 2007) without the need to resort to initial feedforward estimates (Wolpert et al., 1995). We set up hypotheses to test the validity of the model, and we contrast simulation-based predictions with empirical data. PMID:24550870

  15. Single-Command Approach and Instrument Placement by a Robot on a Target

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Cheng, Yang

    2005-01-01

    AUTOAPPROACH is a computer program that enables a mobile robot to approach a target autonomously, starting from a distance of as much as 10 m, in response to a single command. AUTOAPPROACH is used in conjunction with (1) software that analyzes images acquired by stereoscopic cameras aboard the robot and (2) navigation and path-planning software that utilizes odometer readings along with the output of the image-analysis software. Intended originally for application to an instrumented, wheeled robot (rover) in scientific exploration of Mars, AUTOAPPROACH could be adapted to terrestrial applications, notably including the robotic removal of land mines and other unexploded ordnance. A human operator generates the approach command by selecting the target in images acquired by the robot cameras. The approach path consists of multiple legs. Feature points are derived from images that contain the target and are thereafter tracked to correct odometric errors and iteratively refine estimates of the position and orientation of the robot relative to the target on successive legs. The approach is terminated when the robot attains the position and orientation required for placing a scientific instrument at the target. The workspace of the robot arm is then autonomously checked for self/terrain collisions prior to the deployment of the scientific instrument onto the target.

  16. Space-based IR tracking bias removal using background star observations

    NASA Astrophysics Data System (ADS)

    Clemons, T. M., III; Chang, K. C.

    2009-05-01

    This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.

  17. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  18. What is the limit to case detection under the DOTS strategy for tuberculosis control?

    PubMed

    Dye, Christopher; Watt, Catherine J; Bleed, Daniel M; Williams, Brian G

    2003-01-01

    In year 2000, the WHO DOTS strategy for tuberculosis (TB) control had been adopted by 148 out of 212 countries, but only 27% of all estimated sputum smear-positive patients were notified under DOTS in that year. Here we investigate the way in which gains in case detection under DOTS were made up until 2000 in an attempt to anticipate future progress towards the global target of 70% case detection. The analysis draws on annual reports of DOTS geographical coverage and case notifications, and focuses on the 22 high-burden countries (HBCs) that account for about 80% of new TB cases arising globally each year. Our principal observation is that, as TB programmes in the 22 HBCs have expanded geographically, the fraction of the estimated number of sputum smear-positive cases detected within designated DOTS areas has remained constant at 40-50% although there are significant differences between countries. This fraction is about the same as the percentage of all smear-positive cases notified annually to WHO via public health systems worldwide. The implication is that, unless the DOTS strategy can reach beyond traditional public health reporting systems, or unless these systems can be improved, case detection will not rise much above 40% in the 22 HBCs, or in the world as a whole, even when the geographical coverage of DOTS is nominally 100%. We estimate that, under full DOTS coverage, three-quarters of the undetected smear-positive cases will be living in India, China, Indonesia, Nigeria, Bangladesh and Pakistan. But case detection could also remain low in countries with smaller populations: in year 2000, over half of all smear-positive TB cases were living in 49 countries that detected less than 40% of cases within DOTS areas. Substantial efforts are therefore needed (a) to develop new case finding and management methods to bridge the gap between current and target case detection, and (b) to improve the accuracy of national estimates of TB incidence, above all by reinforcing and expanding routine surveillance.

  19. Predilection sites for Toxoplasma gondii in sheep tissues revealed by magnetic capture and real-time PCR detection.

    PubMed

    Juránková, Jana; Basso, Walter; Neumayerová, Helena; Frencová, Anita; Baláž, Vojtech; Deplazes, Peter; Koudela, Břetislav

    2015-12-01

    Undercooked lamb and mutton are common sources of Toxoplasma gondii infection for humans. A sequence specific magnetic capture technique in combination with quantitative real-time PCR targeting the 529 bp repeat element of T. gondii was used for estimation of the parasite burdens in various sheep tissues (n = 6) three months after peroral experimental inoculation with 10,000 T. gondii oocysts. Brain was the most frequently affected organ (positive in all 6 sheep) and showed the highest estimated parasite loads (0.5-30,913 parasites/g tissue). Lung samples were positive in three sheep, with load estimates of 36.3 to <1 parasite/g tissue. Heart tissue was positive in three sheep and kidney only in one animal with low parasite loads (<1 parasite/g tissue). Only few skeletal muscle samples in 2 animals showed positive results, with very low parasite burdens, while samples from further internal organs (i.e. liver and spleen) were negative in all animals. This study identified the brain as the most important predilection site and therefore the most appropriate tissue for T. gondii detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A novel gamma-fitting statistical method for anti-drug antibody assays to establish assay cut points for data with non-normal distribution.

    PubMed

    Schlain, Brian; Amaravadi, Lakshmi; Donley, Jean; Wickramasekera, Ananda; Bennett, Donald; Subramanyam, Meena

    2010-01-31

    In recent years there has been growing recognition of the impact of anti-drug or anti-therapeutic antibodies (ADAs, ATAs) on the pharmacokinetic and pharmacodynamic behavior of the drug, which ultimately affects drug exposure and activity. These anti-drug antibodies can also impact safety of the therapeutic by inducing a range of reactions from hypersensitivity to neutralization of the activity of an endogenous protein. Assessments of immunogenicity, therefore, are critically dependent on the bioanalytical method used to test samples, in which a positive versus negative reactivity is determined by a statistically derived cut point based on the distribution of drug naïve samples. For non-normally distributed data, a novel gamma-fitting method for obtaining assay cut points is presented. Non-normal immunogenicity data distributions, which tend to be unimodal and positively skewed, can often be modeled by 3-parameter gamma fits. Under a gamma regime, gamma based cut points were found to be more accurate (closer to their targeted false positive rates) compared to normal or log-normal methods and more precise (smaller standard errors of cut point estimators) compared with the nonparametric percentile method. Under a gamma regime, normal theory based methods for estimating cut points targeting a 5% false positive rate were found in computer simulation experiments to have, on average, false positive rates ranging from 6.2 to 8.3% (or positive biases between +1.2 and +3.3%) with bias decreasing with the magnitude of the gamma shape parameter. The log-normal fits tended, on average, to underestimate false positive rates with negative biases as large a -2.3% with absolute bias decreasing with the shape parameter. These results were consistent with the well known fact that gamma distributions become less skewed and closer to a normal distribution as their shape parameters increase. Inflated false positive rates, especially in a screening assay, shifts the emphasis to confirm test results in a subsequent test (confirmatory assay). On the other hand, deflated false positive rates in the case of screening immunogenicity assays will not meet the minimum 5% false positive target as proposed in the immunogenicity assay guidance white papers. Copyright 2009 Elsevier B.V. All rights reserved.

  1. A new scheme for processing noisy startracker measurements in spacecraft attitude determination systems

    NASA Technical Reports Server (NTRS)

    Polites, M. E.

    1991-01-01

    This paper presents a new approach to processing noisy startracker measurements in spacecraft attitude determination systems. It takes N measurements in each T-second interval and combines them to produce tracker outputs that are estimates of star position at the end of each interval, when the tracker outputs become available. This is an improvement over the standard method, measurement averaging, which generates outputs that are estimates of the average position of the star over each interval. This new scheme is superior to measurement averaging when the spacecraft has some rotation rate as in target tracking or earth pointing. Also, it is not just limited to startracker, but has potential application wherever measurement averaging of sensor outputs is used.

  2. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator

    PubMed Central

    Kager, Simone; Budhota, Aamani; Deshmukh, Vishwanath A.; Kuah, Christopher W. K.; Yam, Lester H. L.; Xiang, Liming; Chua, Karen S. G.; Masia, Lorenzo; Campolo, Domenico

    2017-01-01

    Proprioception is a critical component for motor functions and directly affects motor learning after neurological injuries. Conventional methods for its assessment are generally ordinal in nature and hence lack sensitivity. Robotic devices designed to promote sensorimotor learning can potentially provide quantitative precise, accurate, and reliable assessments of sensory impairments. In this paper, we investigate the clinical applicability and validity of using a planar 2 degrees of freedom robot to quantitatively assess proprioceptive deficits in post-stroke participants. Nine stroke survivors and nine healthy subjects participated in the study. Participants’ hand was passively moved to the target position guided by the H-Man robot (Criterion movement) and were asked to indicate during a second passive movement towards the same target (Matching movement) when they felt that they matched the target position. The assessment was carried out on a planar surface for movements in the forward and oblique directions in the contralateral and ipsilateral sides of the tested arm. The matching performance was evaluated in terms of error magnitude (absolute and signed) and its variability. Stroke patients showed higher variability in the estimation of the target position compared to the healthy participants. Further, an effect of target was found, with lower absolute errors in the contralateral side. Pairwise comparison between individual stroke participant and control participants showed significant proprioceptive deficits in two patients. The proposed assessment of passive joint position sense was inherently simple and all participants, regardless of motor impairment level, could complete it in less than 10 minutes. Therefore, the method can potentially be carried out to detect changes in proprioceptive deficits in clinical settings. PMID:29161264

  3. An Audit of Repeat Testing at an Academic Medical Center: Consistency of Order Patterns With Recommendations and Potential Cost Savings.

    PubMed

    Hueth, Kyle D; Jackson, Brian R; Schmidt, Robert L

    2018-05-31

    To evaluate the prevalence of potentially unnecessary repeat testing (PURT) and the associated economic burden for an inpatient population at a large academic medical facility. We evaluated all inpatient test orders during 2016 for PURT by comparing the intertest times to published recommendations. Potential cost savings were estimated using the Centers for Medicare & Medicaid Services maximum allowable reimbursement rate. We evaluated result positivity as a determinant of PURT through logistic regression. Of the evaluated 4,242 repeated target tests, 1,849 (44%) were identified as PURT, representing an estimated cost-savings opportunity of $37,376. Collectively, the association of result positivity and PURT was statistically significant (relative risk, 1.2; 95% confidence interval, 1.1-1.3; P < .001). PURT contributes to unnecessary health care costs. We found that a small percentage of providers account for the majority of PURT, and PURT is positively associated with result positivity.

  4. Consanguineous marriage and reproductive risk: attitudes and understanding of ethnic groups practising consanguinity in Western society.

    PubMed

    Teeuw, Marieke E; Loukili, Ghariba; Bartels, Edien Ac; ten Kate, Leo P; Cornel, Martina C; Henneman, Lidewij

    2014-04-01

    Consanguineous couples should be adequately informed about their increased reproductive risk and possibilities for genetic counselling. Information may only be effective if it meets the needs of the target group. This study aimed to gain more insight into: (1) attitudes of people belonging to ethnic groups in Western society towards consanguinity and their understanding of risk for offspring; and (2) their attitudes regarding reproductive information targeted at consanguineous couples. Dutch Moroccans and Turks were invited to complete an online questionnaire by snowball sampling and by placing a link on two popular Dutch Moroccan/Turkish forum websites between September and October 2011. The questionnaire was completed by 201 individuals who were, on average, neither positive nor negative towards consanguinity. Respondents with a consanguineous partner were more positive, estimated the risk for the offspring lower and were less positive about the provision of risk information to consanguineous couples when compared with respondents without a consanguineous partner. Participants of Turkish origin had a more negative attitude towards consanguinity and estimated the reproductive risk higher than Moroccan participants. More than half of the respondents thought that information should be given before marriage, whereas only 10% thought it should never be provided. The general practitioner was most often mentioned (54%) as the designated professional to inform people. Information about genetic risks related to consanguinity should be offered early, preferably before marriage. The diversity of the target population requires various strategies to disseminate information and reach consanguineous couples with the offer of genetic counselling.

  5. Consanguineous marriage and reproductive risk: attitudes and understanding of ethnic groups practising consanguinity in Western society

    PubMed Central

    Teeuw, Marieke E; Loukili, Ghariba; Bartels, Edien AC; ten Kate, Leo P; Cornel, Martina C; Henneman, Lidewij

    2014-01-01

    Consanguineous couples should be adequately informed about their increased reproductive risk and possibilities for genetic counselling. Information may only be effective if it meets the needs of the target group. This study aimed to gain more insight into: (1) attitudes of people belonging to ethnic groups in Western society towards consanguinity and their understanding of risk for offspring; and (2) their attitudes regarding reproductive information targeted at consanguineous couples. Dutch Moroccans and Turks were invited to complete an online questionnaire by snowball sampling and by placing a link on two popular Dutch Moroccan/Turkish forum websites between September and October 2011. The questionnaire was completed by 201 individuals who were, on average, neither positive nor negative towards consanguinity. Respondents with a consanguineous partner were more positive, estimated the risk for the offspring lower and were less positive about the provision of risk information to consanguineous couples when compared with respondents without a consanguineous partner. Participants of Turkish origin had a more negative attitude towards consanguinity and estimated the reproductive risk higher than Moroccan participants. More than half of the respondents thought that information should be given before marriage, whereas only 10% thought it should never be provided. The general practitioner was most often mentioned (54%) as the designated professional to inform people. Information about genetic risks related to consanguinity should be offered early, preferably before marriage. The diversity of the target population requires various strategies to disseminate information and reach consanguineous couples with the offer of genetic counselling. PMID:23921534

  6. Marginal Structural Models with Counterfactual Effect Modifiers.

    PubMed

    Zheng, Wenjing; Luo, Zhehui; van der Laan, Mark J

    2018-06-08

    In health and social sciences, research questions often involve systematic assessment of the modification of treatment causal effect by patient characteristics. In longitudinal settings, time-varying or post-intervention effect modifiers are also of interest. In this work, we investigate the robust and efficient estimation of the Counterfactual-History-Adjusted Marginal Structural Model (van der Laan MJ, Petersen M. Statistical learning of origin-specific statically optimal individualized treatment rules. Int J Biostat. 2007;3), which models the conditional intervention-specific mean outcome given a counterfactual modifier history in an ideal experiment. We establish the semiparametric efficiency theory for these models, and present a substitution-based, semiparametric efficient and doubly robust estimator using the targeted maximum likelihood estimation methodology (TMLE, e.g. van der Laan MJ, Rubin DB. Targeted maximum likelihood learning. Int J Biostat. 2006;2, van der Laan MJ, Rose S. Targeted learning: causal inference for observational and experimental data, 1st ed. Springer Series in Statistics. Springer, 2011). To facilitate implementation in applications where the effect modifier is high dimensional, our third contribution is a projected influence function (and the corresponding projected TMLE estimator), which retains most of the robustness of its efficient peer and can be easily implemented in applications where the use of the efficient influence function becomes taxing. We compare the projected TMLE estimator with an Inverse Probability of Treatment Weighted estimator (e.g. Robins JM. Marginal structural models. In: Proceedings of the American Statistical Association. Section on Bayesian Statistical Science, 1-10. 1997a, Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. 2000;11:561-570), and a non-targeted G-computation estimator (Robins JM. A new approach to causal inference in mortality studies with sustained exposure periods - application to control of the healthy worker survivor effect. Math Modell. 1986;7:1393-1512.). The comparative performance of these estimators is assessed in a simulation study. The use of the projected TMLE estimator is illustrated in a secondary data analysis for the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial where effect modifiers are subject to missing at random.

  7. Technical note: tree truthing: how accurate are substrate estimates in primate field studies?

    PubMed

    Bezanson, Michelle; Watts, Sean M; Jobin, Matthew J

    2012-04-01

    Field studies of primate positional behavior typically rely on ground-level estimates of substrate size, angle, and canopy location. These estimates potentially influence the identification of positional modes by the observer recording behaviors. In this study we aim to test ground-level estimates against direct measurements of support angles, diameters, and canopy heights in trees at La Suerte Biological Research Station in Costa Rica. After reviewing methods that have been used by past researchers, we provide data collected within trees that are compared to estimates obtained from the ground. We climbed five trees and measured 20 supports. Four observers collected measurements of each support from different locations on the ground. Diameter estimates varied from the direct tree measures by 0-28 cm (Mean: 5.44 ± 4.55). Substrate angles varied by 1-55° (Mean: 14.76 ± 14.02). Height in the tree was best estimated using a clinometer as estimates with a two-meter reference placed by the tree varied by 3-11 meters (Mean: 5.31 ± 2.44). We determined that the best support size estimates were those generated relative to the size of the focal animal and divided into broader categories. Support angles were best estimated in 5° increments and then checked using a Haglöf clinometer in combination with a laser pointer. We conclude that three major factors should be addressed when estimating support features: observer error (e.g., experience and distance from the target), support deformity, and how support size and angle influence the positional mode selected by a primate individual. individual. Copyright © 2012 Wiley Periodicals, Inc.

  8. Development of an optical three-dimensional laser tracker using dual modulated laser diodes and a signal detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung

    Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position ofmore » the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than {+-}0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between {+-}0.02% and {+-}0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.« less

  9. Development of an optical three-dimensional laser tracker using dual modulated laser diodes and a signal detector.

    PubMed

    Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung

    2011-03-01

    Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position of the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than ±0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between ±0.02% and ±0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.

  10. Development of an optical three-dimensional laser tracker using dual modulated laser diodes and a signal detector

    NASA Astrophysics Data System (ADS)

    Lee, Hau-Wei; Chen, Chieh-Li; Liu, Chien-Hung

    2011-03-01

    Laser trackers are widely used in industry for tasks such as the assembly of airplanes and automobiles, contour measurement, and robot calibration. However, laser trackers are expensive, and the corresponding solution procedure is very complex. The influence of measurement uncertainties is also significant. This study proposes a three-dimensional space position measurement system which consists of two tracking modules, a zero tracking angle return subsystem, and a target quadrant photodiode (QPD). The target QPD is placed on the object being tracked. The origin locking method is used to keep the rays on the origin of the target QPD. The position of the target QPD is determined using triangulation since the two laser rays are projected onto one QPD. Modulation and demodulation are utilized to separate the coupled positional values. The experiment results show that measurement errors in the X, Y, and Z directions are less than ±0.05% when the measured object was moved by 300, 300, and 200 mm in the X, Y, and Z axes, respectively. The theoretical measurement error estimated from the measurement model is between ±0.02% and ±0.07% within the defined measurable range. The proposed system can be applied to the measurements of machine tools and robot arms.

  11. Airborne target tracking algorithm against oppressive decoys in infrared imagery

    NASA Astrophysics Data System (ADS)

    Sun, Xiechang; Zhang, Tianxu

    2009-10-01

    This paper presents an approach for tracking airborne target against oppressive infrared decoys. Oppressive decoy lures infrared guided missile by its high infrared radiation. Traditional tracking algorithms have degraded stability even come to tracking failure when airborne target continuously throw out many decoys. The proposed approach first determines an adaptive tracking window. The center of the tracking window is set at a predicted target position which is computed based on uniform motion model. Different strategies are applied for determination of tracking window size according to target state. The image within tracking window is segmented and multi features of candidate targets are extracted. The most similar candidate target is associated to the tracking target by using a decision function, which calculates a weighted sum of normalized feature differences between two comparable targets. Integrated intensity ratio of association target and tracking target, and target centroid are examined to estimate target state in the presence of decoys. The tracking ability and robustness of proposed approach has been validated by processing available real-world and simulated infrared image sequences containing airborne targets and oppressive decoys.

  12. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement.

    PubMed

    Gao, Nuo; Zhu, S A; He, Bin

    2005-06-07

    We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.

  13. A Modified Magnetic Gradient Contraction Based Method for Ferromagnetic Target Localization

    PubMed Central

    Wang, Chen; Zhang, Xiaojuan; Qu, Xiaodong; Pan, Xiao; Fang, Guangyou; Chen, Luzhao

    2016-01-01

    The Scalar Triangulation and Ranging (STAR) method, which is based upon the unique properties of magnetic gradient contraction, is a high real-time ferromagnetic target localization method. Only one measurement point is required in the STAR method and it is not sensitive to changes in sensing platform orientation. However, the localization accuracy of the method is limited by the asphericity errors and the inaccurate value of position leads to larger errors in the estimation of magnetic moment. To improve the localization accuracy, a modified STAR method is proposed. In the proposed method, the asphericity errors of the traditional STAR method are compensated with an iterative algorithm. The proposed method has a fast convergence rate which meets the requirement of high real-time localization. Simulations and field experiments have been done to evaluate the performance of the proposed method. The results indicate that target parameters estimated by the modified STAR method are more accurate than the traditional STAR method. PMID:27999322

  14. Detecting targets hidden in random forests

    NASA Astrophysics Data System (ADS)

    Kouritzin, Michael A.; Luo, Dandan; Newton, Fraser; Wu, Biao

    2009-05-01

    Military tanks, cargo or troop carriers, missile carriers or rocket launchers often hide themselves from detection in the forests. This plagues the detection problem of locating these hidden targets. An electro-optic camera mounted on a surveillance aircraft or unmanned aerial vehicle is used to capture the images of the forests with possible hidden targets, e.g., rocket launchers. We consider random forests of longitudinal and latitudinal correlations. Specifically, foliage coverage is encoded with a binary representation (i.e., foliage or no foliage), and is correlated in adjacent regions. We address the detection problem of camouflaged targets hidden in random forests by building memory into the observations. In particular, we propose an efficient algorithm to generate random forests, ground, and camouflage of hidden targets with two dimensional correlations. The observations are a sequence of snapshots consisting of foliage-obscured ground or target. Theoretically, detection is possible because there are subtle differences in the correlations of the ground and camouflage of the rocket launcher. However, these differences are well beyond human perception. To detect the presence of hidden targets automatically, we develop a Markov representation for these sequences and modify the classical filtering equations to allow the Markov chain observation. Particle filters are used to estimate the position of the targets in combination with a novel random weighting technique. Furthermore, we give positive proof-of-concept simulations.

  15. Real-time classification of vehicles by type within infrared imagery

    NASA Astrophysics Data System (ADS)

    Kundegorski, Mikolaj E.; Akçay, Samet; Payen de La Garanderie, Grégoire; Breckon, Toby P.

    2016-10-01

    Real-time classification of vehicles into sub-category types poses a significant challenge within infra-red imagery due to the high levels of intra-class variation in thermal vehicle signatures caused by aspects of design, current operating duration and ambient thermal conditions. Despite these challenges, infra-red sensing offers significant generalized target object detection advantages in terms of all-weather operation and invariance to visual camouflage techniques. This work investigates the accuracy of a number of real-time object classification approaches for this task within the wider context of an existing initial object detection and tracking framework. Specifically we evaluate the use of traditional feature-driven bag of visual words and histogram of oriented gradient classification approaches against modern convolutional neural network architectures. Furthermore, we use classical photogrammetry, within the context of current target detection and classification techniques, as a means of approximating 3D target position within the scene based on this vehicle type classification. Based on photogrammetric estimation of target position, we then illustrate the use of regular Kalman filter based tracking operating on actual 3D vehicle trajectories. Results are presented using a conventional thermal-band infra-red (IR) sensor arrangement where targets are tracked over a range of evaluation scenarios.

  16. Combined line-of-sight error and angular position to generate feedforward control for a charge-coupled device-based tracking loop

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Cai, Huaxiang; Huang, Yongmei; Ren, Ge

    2015-10-01

    A feedforward control based on data fusion is proposed to enhance closed-loop performance. The target trajectory as the observed value of a Kalman filter is recovered by synthesizing line-of-sight error and angular position from the encoder. A Kalman filter based on a Singer acceleration model is employed to estimate the target velocity. In this control scheme, the control stability is influenced by the bandwidth of the Kalman filter and time misalignment. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability, which shows that the Kalman filter is the major factor that affects the control stability. The feedforward control proposed here is verified through simulations and experiments.

  17. The first clinical implementation of electromagnetic transponder-guided MLC tracking.

    PubMed

    Keall, Paul J; Colvill, Emma; O'Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T

    2014-02-01

    We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy.

  18. The first clinical implementation of electromagnetic transponder-guided MLC tracking

    PubMed Central

    Keall, Paul J.; Colvill, Emma; O’Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T.

    2014-01-01

    Purpose: We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. Methods: An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. Results: The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. Conclusions: The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy. PMID:24506591

  19. Information spreading by a combination of MEG source estimation and multivariate pattern classification.

    PubMed

    Sato, Masashi; Yamashita, Okito; Sato, Masa-Aki; Miyawaki, Yoichi

    2018-01-01

    To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of "information spreading" may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined.

  20. Information spreading by a combination of MEG source estimation and multivariate pattern classification

    PubMed Central

    Sato, Masashi; Yamashita, Okito; Sato, Masa-aki

    2018-01-01

    To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of “information spreading” may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined. PMID:29912968

  1. Navigation system for minimally invasive esophagectomy: experimental study in a porcine model.

    PubMed

    Nickel, Felix; Kenngott, Hannes G; Neuhaus, Jochen; Sommer, Christof M; Gehrig, Tobias; Kolb, Armin; Gondan, Matthias; Radeleff, Boris A; Schaible, Anja; Meinzer, Hans-Peter; Gutt, Carsten N; Müller-Stich, Beat-Peter

    2013-10-01

    Navigation systems potentially facilitate minimally invasive esophagectomy and improve patient outcome by improving intraoperative orientation, position estimation of instruments, and identification of lymph nodes and resection margins. The authors' self-developed navigation system is highly accurate in static environments. This study aimed to test the overall accuracy of the navigation system in a realistic operating room scenario and to identify the different sources of error altering accuracy. To simulate a realistic environment, a porcine model (n = 5) was used with endoscopic clips in the esophagus as navigation targets. Computed tomography imaging was followed by image segmentation and target definition with the medical imaging interaction toolkit software. Optical tracking was used for registration and localization of animals and navigation instruments. Intraoperatively, the instrument was displayed relative to segmented organs in real time. The target registration error (TRE) of the navigation system was defined as the distance between the target and the navigation instrument tip. The TRE was measured on skin targets with the animal in the 0° supine and 25° anti-Trendelenburg position and on the esophagus during laparoscopic transhiatal preparation. On skin targets, the TRE was significantly higher in the 25° position, at 14.6 ± 2.7 mm, compared with the 0° position, at 3.2 ± 1.3 mm. The TRE on the esophagus was 11.2 ± 2.4 mm. The main source of error was soft tissue deformation caused by intraoperative positioning, pneumoperitoneum, surgical manipulation, and tissue dissection. The navigation system obtained acceptable accuracy with a minimally invasive transhiatal approach to the esophagus in a realistic experimental model. Thus the system has the potential to improve intraoperative orientation, identification of lymph nodes and adequate resection margins, and visualization of risk structures. Compensation methods for soft tissue deformation may lead to an even more accurate navigation system in the future.

  2. Physics of giant electromagnetic pulse generation in short-pulse laser experiments.

    PubMed

    Poyé, A; Hulin, S; Bailly-Grandvaux, M; Dubois, J-L; Ribolzi, J; Raffestin, D; Bardon, M; Lubrano-Lavaderci, F; D'Humières, E; Santos, J J; Nicolaï, Ph; Tikhonchuk, V

    2015-04-01

    In this paper we describe the physical processes that lead to the generation of giant electromagnetic pulses (GEMPs) at powerful laser facilities. Our study is based on experimental measurements of both the charging of a solid target irradiated by an ultra-short, ultra-intense laser and the detection of the electromagnetic emission in the GHz domain. An unambiguous correlation between the neutralization current in the target holder and the electromagnetic emission shows that the source of the GEMP is the remaining positive charge inside the target after the escape of fast electrons accelerated by the ultra-intense laser. A simple model for calculating this charge in the thick target case is presented. From this model and knowing the geometry of the target holder, it becomes possible to estimate the intensity and the dominant frequencies of the GEMP at any facility.

  3. Drogue tracking using 3D flash lidar for autonomous aerial refueling

    NASA Astrophysics Data System (ADS)

    Chen, Chao-I.; Stettner, Roger

    2011-06-01

    Autonomous aerial refueling (AAR) is an important capability for an unmanned aerial vehicle (UAV) to increase its flying range and endurance without increasing its size. This paper presents a novel tracking method that utilizes both 2D intensity and 3D point-cloud data acquired with a 3D Flash LIDAR sensor to establish relative position and orientation between the receiver vehicle and drogue during an aerial refueling process. Unlike classic, vision-based sensors, a 3D Flash LIDAR sensor can provide 3D point-cloud data in real time without motion blur, in the day or night, and is capable of imaging through fog and clouds. The proposed method segments out the drogue through 2D analysis and estimates the center of the drogue from 3D point-cloud data for flight trajectory determination. A level-set front propagation routine is first employed to identify the target of interest and establish its silhouette information. Sufficient domain knowledge, such as the size of the drogue and the expected operable distance, is integrated into our approach to quickly eliminate unlikely target candidates. A statistical analysis along with a random sample consensus (RANSAC) is performed on the target to reduce noise and estimate the center of the drogue after all 3D points on the drogue are identified. The estimated center and drogue silhouette serve as the seed points to efficiently locate the target in the next frame.

  4. Modeling the Declining Positivity Rates for Human Immunodeficiency Virus Testing in New York State.

    PubMed

    Martin, Erika G; MacDonald, Roderick H; Smith, Lou C; Gordon, Daniel E; Lu, Tao; OʼConnell, Daniel A

    2015-01-01

    New York health care providers have experienced declining percentages of positive human immunodeficiency virus (HIV) tests among patients. Furthermore, observed positivity rates are lower than expected on the basis of the national estimate that one-fifth of HIV-infected residents are unaware of their infection. We used mathematical modeling to evaluate whether this decline could be a result of declining numbers of HIV-infected persons who are unaware of their infection, a measure that is impossible to measure directly. A stock-and-flow mathematical model of HIV incidence, testing, and diagnosis was developed. The model includes stocks for uninfected, infected and unaware (in 4 disease stages), and diagnosed individuals. Inputs came from published literature and time series (2006-2009) for estimated new infections, newly diagnosed HIV cases, living diagnosed cases, mortality, and diagnosis rates in New York. Primary model outcomes were the percentage of HIV-infected persons unaware of their infection and the percentage of HIV tests with a positive result (HIV positivity rate). In the base case, the estimated percentage of unaware HIV-infected persons declined from 14.2% in 2006 (range, 11.9%-16.5%) to 11.8% in 2010 (range, 9.9%-13.1%). The HIV positivity rate, assuming testing occurred independent of risk, was 0.12% in 2006 (range, 0.11%-0.15%) and 0.11% in 2010 (range, 0.10%-0.13%). The observed HIV positivity rate was more than 4 times the expected positivity rate based on the model. HIV test positivity is a readily available indicator, but it cannot distinguish causes of underlying changes. Findings suggest that the percentage of unaware HIV-infected New Yorkers is lower than the national estimate and that the observed HIV test positivity rate is greater than expected if infected and uninfected individuals tested at the same rate, indicating that testing efforts are appropriately targeting undiagnosed cases.

  5. A robust close-range photogrammetric target extraction algorithm for size and type variant targets

    NASA Astrophysics Data System (ADS)

    Nyarko, Kofi; Thomas, Clayton; Torres, Gilbert

    2016-05-01

    The Photo-G program conducted by Naval Air Systems Command at the Atlantic Test Range in Patuxent River, Maryland, uses photogrammetric analysis of large amounts of real-world imagery to characterize the motion of objects in a 3-D scene. Current approaches involve several independent processes including target acquisition, target identification, 2-D tracking of image features, and 3-D kinematic state estimation. Each process has its own inherent complications and corresponding degrees of both human intervention and computational complexity. One approach being explored for automated target acquisition relies on exploiting the pixel intensity distributions of photogrammetric targets, which tend to be patterns with bimodal intensity distributions. The bimodal distribution partitioning algorithm utilizes this distribution to automatically deconstruct a video frame into regions of interest (ROI) that are merged and expanded to target boundaries, from which ROI centroids are extracted to mark target acquisition points. This process has proved to be scale, position and orientation invariant, as well as fairly insensitive to global uniform intensity disparities.

  6. A real-time articulatory visual feedback approach with target presentation for second language pronunciation learning.

    PubMed

    Suemitsu, Atsuo; Dang, Jianwu; Ito, Takayuki; Tiede, Mark

    2015-10-01

    Articulatory information can support learning or remediating pronunciation of a second language (L2). This paper describes an electromagnetic articulometer-based visual-feedback approach using an articulatory target presented in real-time to facilitate L2 pronunciation learning. This approach trains learners to adjust articulatory positions to match targets for a L2 vowel estimated from productions of vowels that overlap in both L1 and L2. Training of Japanese learners for the American English vowel /æ/ that included visual training improved its pronunciation regardless of whether audio training was also included. Articulatory visual feedback is shown to be an effective method for facilitating L2 pronunciation learning.

  7. Estimation of Premature Deaths From Lack of Access to Anti-HER2 Therapy for Advanced Breast Cancer in the Brazilian Public Health System.

    PubMed

    Debiasi, Márcio; Reinert, Tomás; Kaliks, Rafael; Amorim, Gilberto; Caleffi, Maira; Sampaio, Carlos; Fernandes, Gustavo Dos Santos; Barrios, Carlos H

    2017-06-01

    Patients with human epidermal growth factor receptor 2 (HER2) -positive metastatic tumors treated in the public health system in Brazil do not have access to trastuzumab. This study aimed to estimate the impact of the lack of access to anti-HER2 therapies on the mortality of these patients. On the basis of published data, the number of patients with HER2-positive advanced breast cancer in 2016 who should receive anti-HER2 targeted therapy was estimated. Three different treatment groups were considered for this hypothetical cohort: chemotherapy alone, chemotherapy plus trastuzumab, and chemotherapy plus trastuzumab and pertuzumab. The number of patients alive after 2 years of follow-up was estimated on the basis of the efficacy results of the pivotal trials considering these interventions. It was calculated that 2,008 women will be diagnosed with advanced HER2-positive breast cancer in Brazil in 2016. It was estimated that only 808 women would be alive in 2018 if they receive only chemotherapy (which is the treatment offered by the public health system). On the other hand, the bar rises to 1,408 women alive in 2018 if they receive chemotherapy plus trastuzumab and 1,576 women alive in 2018 if they receive the gold standard of chemotherapy plus trastuzumab and pertuzumab. Trastuzumab is included in the WHO's list of essential medications, but the Brazilian public health system does not yet provide this treatment to its population with advanced disease. The introduction of trastuzumab and pertuzumab would have a positive effect, preventing premature deaths in women with metastatic HER2-positive breast cancer in Brazil.

  8. Estimation of Premature Deaths From Lack of Access to Anti-HER2 Therapy for Advanced Breast Cancer in the Brazilian Public Health System

    PubMed Central

    Debiasi, Márcio; Reinert, Tomás; Kaliks, Rafael; Amorim, Gilberto; Caleffi, Maira; Sampaio, Carlos; Fernandes, Gustavo dos Santos

    2017-01-01

    Purpose Patients with human epidermal growth factor receptor 2 (HER2) -positive metastatic tumors treated in the public health system in Brazil do not have access to trastuzumab. This study aimed to estimate the impact of the lack of access to anti-HER2 therapies on the mortality of these patients. Methods On the basis of published data, the number of patients with HER2-positive advanced breast cancer in 2016 who should receive anti-HER2 targeted therapy was estimated. Three different treatment groups were considered for this hypothetical cohort: chemotherapy alone, chemotherapy plus trastuzumab, and chemotherapy plus trastuzumab and pertuzumab. The number of patients alive after 2 years of follow-up was estimated on the basis of the efficacy results of the pivotal trials considering these interventions. Results It was calculated that 2,008 women will be diagnosed with advanced HER2-positive breast cancer in Brazil in 2016. It was estimated that only 808 women would be alive in 2018 if they receive only chemotherapy (which is the treatment offered by the public health system). On the other hand, the bar rises to 1,408 women alive in 2018 if they receive chemotherapy plus trastuzumab and 1,576 women alive in 2018 if they receive the gold standard of chemotherapy plus trastuzumab and pertuzumab. Conclusion Trastuzumab is included in the WHO’s list of essential medications, but the Brazilian public health system does not yet provide this treatment to its population with advanced disease. The introduction of trastuzumab and pertuzumab would have a positive effect, preventing premature deaths in women with metastatic HER2-positive breast cancer in Brazil. PMID:28717761

  9. An algorithm for automatic target recognition using passive radar and an EKF for estimating aircraft orientation

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.

    2005-07-01

    Rather than emitting pulses, passive radar systems rely on "illuminators of opportunity," such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, further scaling the RCS. A Rician likelihood model compares the scaled RCS of the illuminated aircraft with those of the potential targets. To improve the robustness of the result, the algorithm jointly optimizes over feasible orientation profiles and target types via dynamic programming.

  10. Ion propagation in an aluminum hollow cylinder target laser ion source

    NASA Astrophysics Data System (ADS)

    Saquilayan, Glynnis Mae Q.; Wada, Motoi

    2018-01-01

    Experimental results for the laser produced plasma in an aluminum hollow cylinder target are presented. Observing the plasma formation inside the cylinder, a high-speed camera captured the images of the plasma expanding towards the adjacent walls of target. The optical emission spectrum is obtained for the plasma inside the hollow cylinder and positive singly charged aluminum ions and neutrals are identified from emission spectral lines. Time dependent current signals of the Faraday cup displayed an enlarged signal intensity as the laser power density is increased up to 6.5 GW/cm2. Signal arrival times corresponding to fast ions appeared at the onset of the current waveforms when the laser power density exceeded 4.7 GW/cm2. For the mass analysis of plasma, an accelerating electric field was applied to separate the ions and the time-of-flight measurements showed positive ion signals with an identified peak to have an estimated mass of 350 amu.

  11. Assessing the Generalizability of Randomized Trial Results to Target Populations

    PubMed Central

    Stuart, Elizabeth A.; Bradshaw, Catherine P.; Leaf, Philip J.

    2014-01-01

    Recent years have seen increasing interest in and attention to evidence-based practices, where the “evidence” generally comes from well-conducted randomized trials. However, while those trials yield accurate estimates of the effect of the intervention for the participants in the trial (known as “internal validity”), they do not always yield relevant information about the effects in a particular target population (known as “external validity”). This may be due to a lack of specification of a target population when designing the trial, difficulties recruiting a sample that is representative of a pre-specified target population, or to interest in considering a target population somewhat different from the population directly targeted by the trial. This paper first provides an overview of existing design and analysis methods for assessing and enhancing the ability of a randomized trial to estimate treatment effects in a target population. It then provides a case study using one particular method, which weights the subjects in a randomized trial to match the population on a set of observed characteristics. The case study uses data from a randomized trial of School-wide Positive Behavioral Interventions and Supports (PBIS); our interest is in generalizing the results to the state of Maryland. In the case of PBIS, after weighting, estimated effects in the target population were similar to those observed in the randomized trial. The paper illustrates that statistical methods can be used to assess and enhance the external validity of randomized trials, making the results more applicable to policy and clinical questions. However, there are also many open research questions; future research should focus on questions of treatment effect heterogeneity and further developing these methods for enhancing external validity. Researchers should think carefully about the external validity of randomized trials and be cautious about extrapolating results to specific populations unless they are confident of the similarity between the trial sample and that target population. PMID:25307417

  12. Assessing the generalizability of randomized trial results to target populations.

    PubMed

    Stuart, Elizabeth A; Bradshaw, Catherine P; Leaf, Philip J

    2015-04-01

    Recent years have seen increasing interest in and attention to evidence-based practices, where the "evidence" generally comes from well-conducted randomized trials. However, while those trials yield accurate estimates of the effect of the intervention for the participants in the trial (known as "internal validity"), they do not always yield relevant information about the effects in a particular target population (known as "external validity"). This may be due to a lack of specification of a target population when designing the trial, difficulties recruiting a sample that is representative of a prespecified target population, or to interest in considering a target population somewhat different from the population directly targeted by the trial. This paper first provides an overview of existing design and analysis methods for assessing and enhancing the ability of a randomized trial to estimate treatment effects in a target population. It then provides a case study using one particular method, which weights the subjects in a randomized trial to match the population on a set of observed characteristics. The case study uses data from a randomized trial of school-wide positive behavioral interventions and supports (PBIS); our interest is in generalizing the results to the state of Maryland. In the case of PBIS, after weighting, estimated effects in the target population were similar to those observed in the randomized trial. The paper illustrates that statistical methods can be used to assess and enhance the external validity of randomized trials, making the results more applicable to policy and clinical questions. However, there are also many open research questions; future research should focus on questions of treatment effect heterogeneity and further developing these methods for enhancing external validity. Researchers should think carefully about the external validity of randomized trials and be cautious about extrapolating results to specific populations unless they are confident of the similarity between the trial sample and that target population.

  13. Evaluation of the Performance of the Distributed Phased-MIMO Sonar.

    PubMed

    Pan, Xiang; Jiang, Jingning; Wang, Nan

    2017-01-11

    A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments.

  14. Evaluation of the Performance of the Distributed Phased-MIMO Sonar

    PubMed Central

    Pan, Xiang; Jiang, Jingning; Wang, Nan

    2017-01-01

    A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments. PMID:28085071

  15. Adaptive Correlation Model for Visual Tracking Using Keypoints Matching and Deep Convolutional Feature.

    PubMed

    Li, Yuankun; Xu, Tingfa; Deng, Honggao; Shi, Guokai; Guo, Jie

    2018-02-23

    Although correlation filter (CF)-based visual tracking algorithms have achieved appealing results, there are still some problems to be solved. When the target object goes through long-term occlusions or scale variation, the correlation model used in existing CF-based algorithms will inevitably learn some non-target information or partial-target information. In order to avoid model contamination and enhance the adaptability of model updating, we introduce the keypoints matching strategy and adjust the model learning rate dynamically according to the matching score. Moreover, the proposed approach extracts convolutional features from a deep convolutional neural network (DCNN) to accurately estimate the position and scale of the target. Experimental results demonstrate that the proposed tracker has achieved satisfactory performance in a wide range of challenging tracking scenarios.

  16. Energy density of the Scottish diet estimated from food purchase data: relationship with socio-economic position and dietary targets.

    PubMed

    Barton, Karen L; Wrieden, Wendy L; Sherriff, Andrea; Armstrong, Julie; Anderson, Annie S

    2014-07-14

    Frequent consumption of energy-dense foods has been strongly implicated in the global increase of obesity. The World Cancer Research Fund suggests a population-level energy density (ED) goal for diets of 523 kJ/100 g (125 kcal/100 g) as desirable for reducing weight gain and related co-morbidities. However, there is limited information about the ED of diets of contemporary populations. The aims of the present study were to (1) estimate the mean ED of the Scottish diet, (2) assess differences in ED over time by socio-economic position, by household (HH) composition and for HH meeting dietary targets for fat and fruit and vegetables, and (3) assess the relationship between ED and the consumption of foods and nutrients, which are indicative of diet quality. ED of the diet was estimated from food (including milk) from UK food purchase survey data. The average ED of the Scottish diet was estimated as 718 kJ/100 g with no change between the survey periods 2001 and 2009. Individuals living in the most deprived areas had a higher mean ED than those living in the least deprived areas (737 v. 696 kJ/100 g). Single-parent HH had the highest mean ED (765 kJ/100 g) of all the HH surveyed. The mean ED of HH achieving dietary targets for fat and fruit and vegetables was 576 kJ/100 g compared with 731 kJ/100 g for non-achievers. HH within the lowest quintile of ED were, on average, closest to meeting most dietary guidelines. Food purchase data can be used to monitor the quality of the diet in terms of dietary ED of the population and subgroups defined by an area-based measure of socio-economic status.

  17. Sampling designs matching species biology produce accurate and affordable abundance indices

    PubMed Central

    Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which raised capture probabilities. The grid design was least biased (−10.5%), but imprecise (CV 21.2%), and used most effort (16,100 trap-nights). The targeted configuration was more biased (−17.3%), but most precise (CV 12.3%), with least effort (7,000 trap-nights). Targeted sampling generated encounter rates four times higher, and capture and recapture probabilities 11% and 60% higher than grid sampling, in a sampling frame 88% smaller. Bears had unequal probability of capture with both sampling designs, partly because some bears never had traps available to sample them. Hence, grid and targeted sampling generated abundance indices, not estimates. Overall, targeted sampling provided the most accurate and affordable design to index abundance. Targeted sampling may offer an alternative method to index the abundance of other species inhabiting expansive and inaccessible landscapes elsewhere, provided their attraction to resource concentrations. PMID:24392290

  18. Dynamics of different-sized solid-state nanocrystals as tracers for a drug-delivery system in the interstitium of a human tumor xenograft

    PubMed Central

    Kawai, Masaaki; Higuchi, Hideo; Takeda, Motohiro; Kobayashi, Yoshio; Ohuchi, Noriaki

    2009-01-01

    Introduction Recent anticancer drugs have been made larger to pass selectively through tumor vessels and stay in the interstitium. Understanding drug movement in association with its size at the single-molecule level and estimating the time needed to reach the targeted organ is indispensable for optimizing drug delivery because single cell-targeted therapy is the ongoing paradigm. This report describes the tracking of single solid nanoparticles in tumor xenografts and the estimation of arrival time. Methods Different-sized nanoparticles measuring 20, 40, and 100 nm were injected into the tail vein of the female Balb/c nu/nu mice bearing human breast cancer on their backs. The movements of the nanoparticles were visualized through the dorsal skin-fold chamber with the high-speed confocal microscopy that we manufactured. Results An analysis of the particle trajectories revealed diffusion to be inversely related to the particle size and position in the tumor, whereas the velocity of the directed movement was related to the position. The difference in the velocity was the greatest for 40-nm particles in the perivascular to the intercellular region: difference = 5.8 nm/s. The arrival time of individual nanoparticles at tumor cells was simulated. The estimated times for the 20-, 40-, and 100-nm particles to reach the tumor cells were 158.0, 218.5, and 389.4 minutes, respectively, after extravasation. Conclusions This result suggests that the particle size can be individually designed for each goal. These data and methods are also important for understanding drug pharmacokinetics. Although this method may be subject to interference by surface molecules attached on the particles, it has the potential to elucidate the pharmacokinetics involved in constructing novel drug-delivery systems involving cell-targeted therapy. PMID:19575785

  19. Daily quality assurance phantom for ultrasound image guided radiation therapy

    PubMed Central

    Drever, Laura

    2007-01-01

    A simple phantom was designed, constructed, tested, and clinically implemented for daily quality assurance (QA) of an ultrasound‐image‐guided radiation therapy (US‐IGRT) system, the Restitu Ultrasound system (Resonant Medical, Montreal, QC). The phantom consists of a high signal echogenic background gel surrounding a low signal hypoechoic egg‐shaped target. Daily QA checks involve ultrasound imaging of the phantom and segmenting of the embedded target using the automated tools available on the US‐IGRT system. This process serves to confirm system hardware and software functions and, in particular, accurate determination of the target position. Experiments were conducted to test the stability of the phantom at room temperature, its tissue‐mimicking properties, the reproducibility of target position measurements, and the usefulness of the phantom as a daily QA device. The phantom proved stable at room temperature, exhibited no evidence of bacterial or fungal invasion in 9 months, and showed limited desiccation (resulting in a monthly reduction in ultrasound‐measured volume of approximately 0.2 cm3). Furthermore, the phantom was shown to be nearly tissue‐mimicking, with speed of sound in the phantom estimated to be 0.8% higher than that assumed by the scanner calibration. The phantom performs well in a clinical setting, owing to its light weight and ease of operation. It provides reproducible measures of target position even with multiple users. At our center, the phantom is being used for daily QA of the US‐IGRT system with clinically acceptable tolerances of ±1 cm3 on target volume and ±2 mm on target position. For routine daily QA, this phantom is a good alternative to the manufacturer‐supplied calibration phantom, and we recommended that that larger phantom be reserved for less frequent, more detailed QA checks and system calibration. PACS numbers: 87.66.Xa, 87.63.Df

  20. Daily relations among affect, urge, targeted naltrexone, and alcohol use in young adults

    PubMed Central

    Bold, Krysten W.; Fucito, Lisa M.; Corbin, William R.; DeMartini, Kelly S.; Leeman, Robert F.; Kranzler, Henry R.; O’Malley, Stephanie S.

    2016-01-01

    Heavy drinking among young adults is a serious public health problem. Naltrexone, an opioid antagonist, has been shown to reduce drinking in young adults compared to placebo and can be taken on a targeted (i.e., as needed) basis. Understanding risk factors for drinking and naltrexone effects within-person in young adults may help to optimize the use of targeted naltrexone. The current study was a secondary analysis of daily diary data from 127 (n=40 female) young adults (age 18-25) enrolled in a double-blind clinical trial of daily (25 mg) plus targeted (25 mg) naltrexone versus placebo. Hierarchical linear models were used to examine the effects of daily affect, urge, and taking targeted medication on same-day risk of drinking to intoxication (defined as estimated blood-alcohol-concentration, BAC≥.08g%). Results indicated urge significantly mediated within-person positive affect–drinking relations on a daily level. Specifically, positive affect was associated with greater urge to drink, which in turn was associated with greater odds of BAC≥.08g%. Furthermore, days of greater positive affect and urge were associated with taking a targeted dose of medication, which reduced the likelihood of intoxication by nearly 23% in the naltrexone group compared to placebo. Gender and family history of alcohol dependence were examined as moderators of these daily level effects. These results provide further evidence of naltrexone’s ability to reduce alcohol consumption in young adults and identify potential within-person risk processes related to heavy drinking that could inform alcohol-related interventions for this population. PMID:27690505

  1. Design and Analysis of Map Relative Localization for Access to Hazardous Landing Sites on Mars

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew E.; Aaron, Seth; Cheng, Yang; Montgomery, James; Trawny, Nikolas; Tweddle, Brent; Vaughan, Geoffrey; Zheng, Jason

    2016-01-01

    Human and robotic planetary lander missions require accurate surface relative position knowledge to land near science targets or next to pre-deployed assets. In the absence of GPS, accurate position estimates can be obtained by automatically matching sensor data collected during descent to an on-board map. The Lander Vision System (LVS) that is being developed for Mars landing applications generates landmark matches in descent imagery and combines these with inertial data to estimate vehicle position, velocity and attitude. This paper describes recent LVS design work focused on making the map relative localization algorithms robust to challenging environmental conditions like bland terrain, appearance differences between the map and image and initial input state errors. Improved results are shown using data from a recent LVS field test campaign. This paper also fills a gap in analysis to date by assessing the performance of the LVS with data sets containing significant vertical motion including a complete data set from the Mars Science Laboratory mission, a Mars landing simulation, and field test data taken over multiple altitudes above the same scene. Accurate and robust performance is achieved for all data sets indicating that vertical motion does not play a significant role in position estimation performance.

  2. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination

    PubMed Central

    Fasano, Giancarmine; Grassi, Michele

    2017-01-01

    In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective-n-Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal. PMID:28946651

  3. Hardware in the Loop Performance Assessment of LIDAR-Based Spacecraft Pose Determination.

    PubMed

    Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele

    2017-09-24

    In this paper an original, easy to reproduce, semi-analytic calibration approach is developed for hardware-in-the-loop performance assessment of pose determination algorithms processing point cloud data, collected by imaging a non-cooperative target with LIDARs. The laboratory setup includes a scanning LIDAR, a monocular camera, a scaled-replica of a satellite-like target, and a set of calibration tools. The point clouds are processed by uncooperative model-based algorithms to estimate the target relative position and attitude with respect to the LIDAR. Target images, acquired by a monocular camera operated simultaneously with the LIDAR, are processed applying standard solutions to the Perspective- n -Points problem to get high-accuracy pose estimates which can be used as a benchmark to evaluate the accuracy attained by the LIDAR-based techniques. To this aim, a precise knowledge of the extrinsic relative calibration between the camera and the LIDAR is essential, and it is obtained by implementing an original calibration approach which does not need ad-hoc homologous targets (e.g., retro-reflectors) easily recognizable by the two sensors. The pose determination techniques investigated by this work are of interest to space applications involving close-proximity maneuvers between non-cooperative platforms, e.g., on-orbit servicing and active debris removal.

  4. Estimation of Microbial Concentration in Food Products from Qualitative, Microbiological Test Data with the MPN Technique.

    PubMed

    Fujikawa, Hiroshi

    2017-01-01

    Microbial concentration in samples of a food product lot has been generally assumed to follow the log-normal distribution in food sampling, but this distribution cannot accommodate the concentration of zero. In the present study, first, a probabilistic study with the most probable number (MPN) technique was done for a target microbe present at a low (or zero) concentration in food products. Namely, based on the number of target pathogen-positive samples in the total samples of a product found by a qualitative, microbiological examination, the concentration of the pathogen in the product was estimated by means of the MPN technique. The effects of the sample size and the total sample number of a product were then examined. Second, operating characteristic (OC) curves for the concentration of a target microbe in a product lot were generated on the assumption that the concentration of a target microbe could be expressed with the Poisson distribution. OC curves for Salmonella and Cronobacter sakazakii in powdered formulae for infants and young children were successfully generated. The present study suggested that the MPN technique and the Poisson distribution would be useful for qualitative microbiological test data analysis for a target microbe whose concentration in a lot is expected to be low.

  5. Population-level impact of an accelerated HIV response plan to reach the UNAIDS 90-90-90 target in Côte d'Ivoire: Insights from mathematical modeling.

    PubMed

    Maheu-Giroux, Mathieu; Vesga, Juan F; Diabaté, Souleymane; Alary, Michel; Baral, Stefan; Diouf, Daouda; Abo, Kouamé; Boily, Marie-Claude

    2017-06-01

    National responses will need to be markedly accelerated to achieve the ambitious target of the Joint United Nations Programme on HIV/AIDS (UNAIDS). This target aims for 90% of HIV-positive individuals to be aware of their status, for 90% of those aware to receive antiretroviral therapy (ART), and for 90% of those on treatment to have a suppressed viral load by 2020, with each individual target reaching 95% by 2030. We aimed to estimate the impact of various treatment-as-prevention scenarios in Côte d'Ivoire, one of the countries with the highest HIV incidence in West Africa, with unmet HIV prevention and treatment needs, and where key populations are important to the broader HIV epidemic. An age-stratified dynamic model was developed and calibrated to epidemiological and programmatic data using a Bayesian framework. The model represents sexual and vertical HIV transmission in the general population, female sex workers (FSW), and men who have sex with men (MSM). We estimated the impact of scaling up interventions to reach the UNAIDS targets, as well as the impact of 8 other scenarios, on HIV transmission in adults and children, compared to our baseline scenario that maintains 2015 rates of testing, ART initiation, ART discontinuation, treatment failure, and levels of condom use. In 2015, we estimated that 52% (95% credible intervals: 46%-58%) of HIV-positive individuals were aware of their status, 72% (57%-82%) of those aware were on ART, and 77% (74%-79%) of those on ART were virologically suppressed. Reaching the UNAIDS targets on time would avert 50% (42%-60%) of new HIV infections over 2015-2030 compared to 30% (25%-36%) if the 90-90-90 target is reached in 2025. Attaining the UNAIDS targets in FSW, their clients, and MSM (but not in the rest of the population) would avert a similar fraction of new infections (30%; 21%-39%). A 25-percentage-point drop in condom use from the 2015 levels among FSW and MSM would reduce the impact of reaching the UNAIDS targets, with 38% (26%-51%) of infections averted. The study's main limitation is that homogenous spatial coverage of interventions was assumed, and future lines of inquiry should examine how geographical prioritization could affect HIV transmission. Maximizing the impact of the UNAIDS targets will require rapid scale-up of interventions, particularly testing, ART initiation, and limiting ART discontinuation. Reaching clients of FSW, as well as key populations, can efficiently reduce transmission. Sustaining the high condom-use levels among key populations should remain an important prevention pillar.

  6. Population-level impact of an accelerated HIV response plan to reach the UNAIDS 90-90-90 target in Côte d’Ivoire: Insights from mathematical modeling

    PubMed Central

    Diabaté, Souleymane; Alary, Michel; Diouf, Daouda; Abo, Kouamé; Boily, Marie-Claude

    2017-01-01

    Background National responses will need to be markedly accelerated to achieve the ambitious target of the Joint United Nations Programme on HIV/AIDS (UNAIDS). This target aims for 90% of HIV-positive individuals to be aware of their status, for 90% of those aware to receive antiretroviral therapy (ART), and for 90% of those on treatment to have a suppressed viral load by 2020, with each individual target reaching 95% by 2030. We aimed to estimate the impact of various treatment-as-prevention scenarios in Côte d’Ivoire, one of the countries with the highest HIV incidence in West Africa, with unmet HIV prevention and treatment needs, and where key populations are important to the broader HIV epidemic. Methods and findings An age-stratified dynamic model was developed and calibrated to epidemiological and programmatic data using a Bayesian framework. The model represents sexual and vertical HIV transmission in the general population, female sex workers (FSW), and men who have sex with men (MSM). We estimated the impact of scaling up interventions to reach the UNAIDS targets, as well as the impact of 8 other scenarios, on HIV transmission in adults and children, compared to our baseline scenario that maintains 2015 rates of testing, ART initiation, ART discontinuation, treatment failure, and levels of condom use. In 2015, we estimated that 52% (95% credible intervals: 46%–58%) of HIV-positive individuals were aware of their status, 72% (57%–82%) of those aware were on ART, and 77% (74%–79%) of those on ART were virologically suppressed. Reaching the UNAIDS targets on time would avert 50% (42%–60%) of new HIV infections over 2015–2030 compared to 30% (25%–36%) if the 90-90-90 target is reached in 2025. Attaining the UNAIDS targets in FSW, their clients, and MSM (but not in the rest of the population) would avert a similar fraction of new infections (30%; 21%–39%). A 25-percentage-point drop in condom use from the 2015 levels among FSW and MSM would reduce the impact of reaching the UNAIDS targets, with 38% (26%–51%) of infections averted. The study’s main limitation is that homogenous spatial coverage of interventions was assumed, and future lines of inquiry should examine how geographical prioritization could affect HIV transmission. Conclusions Maximizing the impact of the UNAIDS targets will require rapid scale-up of interventions, particularly testing, ART initiation, and limiting ART discontinuation. Reaching clients of FSW, as well as key populations, can efficiently reduce transmission. Sustaining the high condom-use levels among key populations should remain an important prevention pillar. PMID:28617810

  7. Centroid stabilization in alignment of FOA corner cube: designing of a matched filter

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul; Wilhelmsen, Karl; Roberts, Randy; Leach, Richard; Miller Kamm, Victoria; Ngo, Tony; Lowe-Webb, Roger

    2015-02-01

    The current automation of image-based alignment of NIF high energy laser beams is providing the capability of executing multiple target shots per day. An important aspect of performing multiple shots in a day is to reduce additional time spent aligning specific beams due to perturbations in those beam images. One such alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retro-reflecting corner cubes to represent the beam center. The FOA houses the frequency conversion crystals for third harmonic generation as the beams enters the target chamber. Beam-to-beam variations and systematic beam changes over time in the FOA corner-cube images can lead to a reduction in accuracy as well as increased convergence durations for the template based centroid detector. This work presents a systematic approach of maintaining FOA corner cube centroid templates so that stable position estimation is applied thereby leading to fast convergence of alignment control loops. In the matched filtering approach, a template is designed based on most recent images taken in the last 60 days. The results show that new filter reduces the divergence of the position estimation of FOA images.

  8. Vision-based localization of the center of mass of large space debris via statistical shape analysis

    NASA Astrophysics Data System (ADS)

    Biondi, G.; Mauro, S.; Pastorelli, S.

    2017-08-01

    The current overpopulation of artificial objects orbiting the Earth has increased the interest of the space agencies on planning missions for de-orbiting the largest inoperative satellites. Since this kind of operations involves the capture of the debris, the accurate knowledge of the position of their center of mass is a fundamental safety requirement. As ground observations are not sufficient to reach the required accuracy level, this information should be acquired in situ just before any contact between the chaser and the target. Some estimation methods in the literature rely on the usage of stereo cameras for tracking several features of the target surface. The actual positions of these features are estimated together with the location of the center of mass by state observers. The principal drawback of these methods is related to possible sudden disappearances of one or more features from the field of view of the cameras. An alternative method based on 3D Kinematic registration is presented in this paper. The method, which does not suffer of the mentioned drawback, considers a preliminary reduction of the inaccuracies in detecting features by the usage of statistical shape analysis.

  9. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots.

    PubMed

    Sherwin, Tyrone; Easte, Mikala; Chen, Andrew Tzer-Yeu; Wang, Kevin I-Kai; Dai, Wenbin

    2018-02-14

    Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS) is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM) and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system.

  10. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots

    PubMed Central

    Sherwin, Tyrone; Easte, Mikala; Wang, Kevin I-Kai; Dai, Wenbin

    2018-01-01

    Location-aware services are one of the key elements of modern intelligent applications. Numerous real-world applications such as factory automation, indoor delivery, and even search and rescue scenarios require autonomous robots to have the ability to navigate in an unknown environment and reach mobile targets with minimal or no prior infrastructure deployment. This research investigates and proposes a novel approach of dynamic target localisation using a single RF emitter, which will be used as the basis of allowing autonomous robots to navigate towards and reach a target. Through the use of multiple directional antennae, Received Signal Strength (RSS) is compared to determine the most probable direction of the targeted emitter, which is combined with the distance estimates to improve the localisation performance. The accuracy of the position estimate is further improved using a particle filter to mitigate the fluctuating nature of real-time RSS data. Based on the direction information, a motion control algorithm is proposed, using Simultaneous Localisation and Mapping (SLAM) and A* path planning to enable navigation through unknown complex environments. A number of navigation scenarios were developed in the context of factory automation applications to demonstrate and evaluate the functionality and performance of the proposed system. PMID:29443906

  11. A comparison of foveated acquisition and tracking performance relative to uniform resolution approaches

    NASA Astrophysics Data System (ADS)

    Dubuque, Shaun; Coffman, Thayne; McCarley, Paul; Bovik, A. C.; Thomas, C. William

    2009-05-01

    Foveated imaging has been explored for compression and tele-presence, but gaps exist in the study of foveated imaging applied to acquisition and tracking systems. Results are presented from two sets of experiments comparing simple foveated and uniform resolution targeting (acquisition and tracking) algorithms. The first experiments measure acquisition performance when locating Gabor wavelet targets in noise, with fovea placement driven by a mutual information measure. The foveated approach is shown to have lower detection delay than a notional uniform resolution approach when using video that consumes equivalent bandwidth. The second experiments compare the accuracy of target position estimates from foveated and uniform resolution tracking algorithms. A technique is developed to select foveation parameters that minimize error in Kalman filter state estimates. Foveated tracking is shown to consistently outperform uniform resolution tracking on an abstract multiple target task when using video that consumes equivalent bandwidth. Performance is also compared to uniform resolution processing without bandwidth limitations. In both experiments, superior performance is achieved at a given bandwidth by foveated processing because limited resources are allocated intelligently to maximize operational performance. These findings indicate the potential for operational performance improvements over uniform resolution systems in both acquisition and tracking tasks.

  12. Respiration-induced movement correlation for synchronous noninvasive renal cancer surgery.

    PubMed

    Abhilash, Rakkunedeth H; Chauhan, Sunita

    2012-07-01

    Noninvasive surgery (NIS), such as high-intensity focused ultrasound (HIFU)-based ablation or radiosurgery, is used for treating tumors and cancers in various parts of the body. The soft tissue targets (usually organs) deform and move as a result of physiological processes such as respiration. Moreover, other deformations induced during surgery by changes in patient position, changes in physical properties caused by repeated exposures and uncertainties resulting from cavitation also occur. In this paper, we present a correlation-based movement prediction technique to address respiration-induced movement of the urological organs while targeting through extracorporeal trans-abdominal route access. Among other organs, kidneys are worst affected during respiratory cycles, with significant three-dimensional displacements observed on the order of 20 mm. Remote access to renal targets such as renal carcinomas and cysts during noninvasive surgery, therefore, requires a tightly controlled real-time motion tracking and quantitative estimate for compensation routine to synchronize the energy source(s) for precise energy delivery to the intended regions. The correlation model finds a mapping between the movement patterns of external skin markers placed on the abdominal access window and the internal movement of the targeted kidney. The coarse estimate of position is then fine-tuned using the Adaptive Neuro-Fuzzy Inference System (ANFIS), thereby achieving a nonlinear mapping. The technical issues involved in this tracking scheme are threefold: the model must have sufficient accuracy in mapping the movement pattern; there must be an image-based tracking scheme to provide the organ position within allowable system latency; and the processing delay resulting from modeling and tracking must be within the achievable prediction horizon to accommodate the latency in the therapeutic delivery system. The concept was tested on ultrasound image sequences collected from 20 healthy volunteers. The results indicate that the modeling technique can be practically integrated into an image-guided noninvasive robotic surgical system with an indicative targeting accuracy of more than 94%. A comparative analysis showed the superiority of this technique over conventional linear mapping and modelfree blind search techniques.

  13. Modeling guidance and recognition in categorical search: bridging human and computer object detection.

    PubMed

    Zelinsky, Gregory J; Peng, Yifan; Berg, Alexander C; Samaras, Dimitris

    2013-10-08

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery.

  14. Modeling guidance and recognition in categorical search: Bridging human and computer object detection

    PubMed Central

    Zelinsky, Gregory J.; Peng, Yifan; Berg, Alexander C.; Samaras, Dimitris

    2013-01-01

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery. PMID:24105460

  15. Voyager 1 Saturn targeting strategy

    NASA Technical Reports Server (NTRS)

    Cesarone, R. J.

    1980-01-01

    A trajectory targeting strategy for the Voyager 1 Saturn encounter has been designed to accomodate predicted uncertainties in Titan's ephemeris while maximizing spacecraft safety and science return. The encounter is characterized by a close Titan flyby 18 hours prior to Saturn periapse. Retargeting of the nominal trajectory to account for late updates in Titan's estimated position can disperse the ascending node location, which is nominally situated at a radius of low expected particle density in Saturn's ring plane. The strategy utilizes a floating Titan impact vector magnitude to minimize this dispersion. Encounter trajectory characteristics and optimal tradeoffs are presented.

  16. Multiview face detection based on position estimation over multicamera surveillance system

    NASA Astrophysics Data System (ADS)

    Huang, Ching-chun; Chou, Jay; Shiu, Jia-Hou; Wang, Sheng-Jyh

    2012-02-01

    In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real video sequences even under serious occlusion.

  17. SU-F-T-24: Impact of Source Position and Dose Distribution Due to Curvature of HDR Transfer Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A; Yue, N

    2016-06-15

    Purpose: Brachytherapy is a highly targeted from of radiotherapy. While this may lead to ideal dose distributions on the treatment planning system, a small error in source location can lead to change in the dose distribution. The purpose of this study is to quantify the impact on source position error due to curvature of the transfer tubes and the impact this may have on the dose distribution. Methods: Since the source travels along the midline of the tube, an estimate of the positioning error for various angles of curvature was determined using geometric properties of the tube. Based on themore » range of values a specific shift was chosen to alter the treatment plans for a number of cervical cancer patients who had undergone HDR brachytherapy boost using tandem and ovoids. Impact of dose to target and organs at risk were determined and checked against guidelines outlined by radiation oncologist. Results: The estimate of the positioning error was 2mm short of the expected position (the curved tube can only cause the source to not reach as far as with a flat tube). Quantitative impact on the dose distribution is still in the process of being analyzed. Conclusion: The accepted positioning tolerance for the source position of a HDR brachytherapy unit is plus or minus 1mm. If there is an additional 2mm discrepancy due to tube curvature, this can result in a source being 1mm to 3mm short of the expected location. While we do always attempt to keep the tubes straight, in some cases such as with tandem and ovoids, the tandem connector does not extend as far out from the patient so the ovoid tubes always contain some degree of curvature. The dose impact of this may be significant.« less

  18. Targeting an asteroid: The DSPSE encounter with asteroid 1620 Geographos

    NASA Technical Reports Server (NTRS)

    Yeomans, Donald K.

    1993-01-01

    Accurate targeting of the Deep Space Program Science Experiment (DSPSE) spacecraft to achieve a 100 km sunward flyby of asteroid 1620 Geographos will require that the ground-based ephemeris of Geographos be well known in advance of the encounter. Efforts are underway to ensure that precision optical and radar observations are available for the final asteroid orbit update that takes place several hours prior to the DSPSE flyby. Because the asteroid passes very close to the Earth six days prior to the DSPSE encounter, precision ground-based optical and radar observations should be available. These ground-based data could reduce the asteroid's position uncertainties (1-sigma) to about 10 km. This ground-based target ephemeris error estimate is far lower than for any previous comet or asteroid that has been under consideration as a mission target.

  19. Human long intrinsically disordered protein regions are frequent targets of positive selection.

    PubMed

    Afanasyeva, Arina; Bockwoldt, Mathias; Cooney, Christopher R; Heiland, Ines; Gossmann, Toni I

    2018-06-01

    Intrinsically disordered regions occur frequently in proteins and are characterized by a lack of a well-defined three-dimensional structure. Although these regions do not show a higher order of structural organization, they are known to be functionally important. Disordered regions are rapidly evolving, largely attributed to relaxed purifying selection and an increased role of genetic drift. It has also been suggested that positive selection might contribute to their rapid diversification. However, for our own species, it is currently unknown whether positive selection has played a role during the evolution of these protein regions. Here, we address this question by investigating the evolutionary pattern of more than 6600 human proteins with intrinsically disordered regions and their ordered counterparts. Our comparative approach with data from more than 90 mammalian genomes uses a priori knowledge of disordered protein regions, and we show that this increases the power to detect positive selection by an order of magnitude. We can confirm that human intrinsically disordered regions evolve more rapidly, not only within humans but also across the entire mammalian phylogeny. They have, however, experienced substantial evolutionary constraint, hinting at their fundamental functional importance. We find compelling evidence that disordered protein regions are frequent targets of positive selection and estimate that the relative rate of adaptive substitutions differs fourfold between disordered and ordered protein regions in humans. Our results suggest that disordered protein regions are important targets of genetic innovation and that the contribution of positive selection in these regions is more pronounced than in other protein parts. © 2018 Afanasyeva et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Do reference surfaces influence exocentric pointing?

    PubMed

    Doumen, M J A; Kappers, A M L; Koenderink, J J

    2008-06-01

    All elements of the visual field are known to influence the perception of the egocentric distances of objects. Not only the ground surface of a scene, but also the surface at the back or other objects in the scene can affect an observer's egocentric distance estimation of an object. We tested whether this is also true for exocentric direction estimations. We used an exocentric pointing task to test whether the presence of poster-boards in the visual scene would influence the perception of the exocentric direction between two test-objects. In this task the observer has to direct a pointer, with a remote control, to a target. We placed the poster-boards at various positions in the visual field to test whether these boards would affect the settings of the observer. We found that they only affected the settings when they directly served as a reference for orienting the pointer to the target.

  1. Imaging Ultrasound Guidance and on-line Estimation of Thermal Behavior in HIFU Exposed Targets

    NASA Astrophysics Data System (ADS)

    Chauhan, Sunita; Haryanto, Amir

    2006-05-01

    Elevated temperatures have been used for many years to combat several diseases including treatment of certain types of cancers/tumors. High Intensity Focused Ultrasound (HIFU) has emerged as a potential non-invasive modality for trackless targeting of deep-seated cancers of human body. For the procedures which require thermal elevation such as hyperthermia and tissue ablation, temperature becomes a parameter of vital importance in order to monitor the treatment on-line. Also, embedding invasive temperature probes for this purpose beats the supremacy of the non-invasive ablating modality. In this paper, we describe the use of a non-invasive and inexpensive conventional imaging ultrasound modality for lesion positioning and estimation of thermal behavior of the tissue on exposure to HIFU. Representative results of our online lesion tracking algorithm for discerning lesioning behavior using image capture, processing and phase-shift measurements are presented.

  2. Technical Note: Error metrics for estimating the accuracy of needle/instrument placement during transperineal magnetic resonance/ultrasound-guided prostate interventions.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Villarini, Barbara; Rodell, Rachael; Martin, Paul; Han, Lianghao; Donaldson, Ian; Ahmed, Hashim U; Moore, Caroline M; Emberton, Mark; Barratt, Dean C

    2018-04-01

    Image-guided systems that fuse magnetic resonance imaging (MRI) with three-dimensional (3D) ultrasound (US) images for performing targeted prostate needle biopsy and minimally invasive treatments for prostate cancer are of increasing clinical interest. To date, a wide range of different accuracy estimation procedures and error metrics have been reported, which makes comparing the performance of different systems difficult. A set of nine measures are presented to assess the accuracy of MRI-US image registration, needle positioning, needle guidance, and overall system error, with the aim of providing a methodology for estimating the accuracy of instrument placement using a MR/US-guided transperineal approach. Using the SmartTarget fusion system, an MRI-US image alignment error was determined to be 2.0 ± 1.0 mm (mean ± SD), and an overall system instrument targeting error of 3.0 ± 1.2 mm. Three needle deployments for each target phantom lesion was found to result in a 100% lesion hit rate and a median predicted cancer core length of 5.2 mm. The application of a comprehensive, unbiased validation assessment for MR/US guided systems can provide useful information on system performance for quality assurance and system comparison. Furthermore, such an analysis can be helpful in identifying relationships between these errors, providing insight into the technical behavior of these systems. © 2018 American Association of Physicists in Medicine.

  3. Estimating age-specific reproductive numbers-A comparison of methods.

    PubMed

    Moser, Carlee B; White, Laura F

    2016-01-01

    Large outbreaks, such as those caused by influenza, put a strain on resources necessary for their control. In particular, children have been shown to play a key role in influenza transmission during recent outbreaks, and targeted interventions, such as school closures, could positively impact the course of emerging epidemics. As an outbreak is unfolding, it is important to be able to estimate reproductive numbers that incorporate this heterogeneity and to use surveillance data that is routinely collected to more effectively target interventions and obtain an accurate understanding of transmission dynamics. There are a growing number of methods that estimate age-group specific reproductive numbers with limited data that build on methods assuming a homogenously mixing population. In this article, we introduce a new approach that is flexible and improves on many aspects of existing methods. We apply this method to influenza data from two outbreaks, the 2009 H1N1 outbreaks in South Africa and Japan, to estimate age-group specific reproductive numbers and compare it to three other methods that also use existing data from social mixing surveys to quantify contact rates among different age groups. In this exercise, all estimates of the reproductive numbers for children exceeded the critical threshold of one and in most cases exceeded those of adults. We introduce a flexible new method to estimate reproductive numbers that describe heterogeneity in the population.

  4. Decoding Trajectories from Posterior Parietal Cortex Ensembles

    PubMed Central

    Mulliken, Grant H.; Musallam, Sam; Andersen, Richard A.

    2009-01-01

    High-level cognitive signals in the posterior parietal cortex (PPC) have previously been used to decode the intended endpoint of a reach, providing the first evidence that PPC can be used for direct control of a neural prosthesis (Musallam et al., 2004). Here we expand on this work by showing that PPC neural activity can be harnessed to estimate not only the endpoint but also to continuously control the trajectory of an end effector. Specifically, we trained two monkeys to use a joystick to guide a cursor on a computer screen to peripheral target locations while maintaining central ocular fixation. We found that we could accurately reconstruct the trajectory of the cursor using a relatively small ensemble of simultaneously recorded PPC neurons. Using a goal-based Kalman filter that incorporates target information into the state-space, we showed that the decoded estimate of cursor position could be significantly improved. Finally, we tested whether we could decode trajectories during closed-loop brain control sessions, in which the real-time position of the cursor was determined solely by a monkey’s neural activity in PPC. The monkey learned to perform brain control trajectories at 80% success rate(for 8 targets) after just 4–5 sessions. This improvement in behavioral performance was accompanied by a corresponding enhancement in neural tuning properties (i.e., increased tuning depth and coverage of encoding parameter space) as well as an increase in off-line decoding performance of the PPC ensemble. PMID:19036985

  5. Preparation of 7Be targets for nuclear astrophysics research

    NASA Astrophysics Data System (ADS)

    Maugeri, E. A.; Heinitz, S.; Dressler, R.; Barbagallo, M.; Kivel, N.; Schumann, D.; Ayranov, M.; Musumarra, A.; Gai, M.; Colonna, N.; Paul, M.; Halfon, S.; Cosentino, L.; Finocchiaro, P.; Pappalardo, A.

    2017-02-01

    This work describes the preparation of three 7Be targets which were used in two independent measurements of the 7Be(n,α)4He cross section in the energy range of interest for the Big-Bang nucleosynthesis at the n\\_TOF-CERN facility and at Soreq-SARAF . A more precise value of this cross section could shed light on the long lasting "Cosmological Lithium problem". Two methods for target preparation were used. A target was obtained by deposition and subsequent air-drying of (24.50± 0.54) GBq of Be(NO3)2 droplets precisely positioned onto a stretched low density polyethylene film 0.635 μm thick. The thickness of the deposited Be(NO3)2 layer was deduced using Monte-Carlo simulations to be 0.36 μm. The energy loss of 8500 keV alpha particles passing through the target obtained by air-drying of 7Be(NO3)2 droplets was estimated to be 88 keV . Two other targets were prepared via molecular plating onto ~ 5 μm and 1 mm thick aluminium backings, respectively. The first was obtained by molecular plating (24.47± 0.53) GBq of 7Be, resulting in a deposited layer of Be(OH)2, 1.04 μm thick. The second molecular plated target was obtained depositing (3.95± 0.08) GBq of 7Be. The mean energy loss of 8500 keV alpha particles, passing through the molecular plated target with 5 μm thick aluminium backings was estimated as 814 keV . The energy loss by 8500 keV alpha particles in all the obtained targets is considered tolerable for the envisaged cross section measurements. The preparation and characterization of the targets is here described.

  6. Detection of multiple airborne targets from multisensor data

    NASA Astrophysics Data System (ADS)

    Foltz, Mark A.; Srivastava, Anuj; Miller, Michael I.; Grenander, Ulf

    1995-08-01

    Previously we presented a jump-diffusion based random sampling algorithm for generating conditional mean estimates of scene representations for the tracking and recongition of maneuvering airborne targets. These representations include target positions and orientations along their trajectories and the target type associated with each trajectory. Taking a Bayesian approach, a posterior measure is defined on the parameter space by combining sensor models with a sophisticated prior based on nonlinear airplane dynamics. The jump-diffusion algorithm constructs a Markov process which visits the elements of the parameter space with frequencies proportional to the posterior probability. It consititutes both the infinitesimal, local search via a sample path continuous diffusion transform and the larger, global steps through discrete jump moves. The jump moves involve the addition and deletion of elements from the scene configuration or changes in the target type assoviated with each target trajectory. One such move results in target detection by the addition of a track seed to the inference set. This provides initial track data for the tracking/recognition algorithm to estimate linear graph structures representing tracks using the other jump moves and the diffusion process, as described in our earlier work. Target detection ideally involves a continuous research over a continuum of the observation space. In this work we conclude that for practical implemenations the search space must be discretized with lattice granularity comparable to sensor resolution, and discuss how fast Fourier transforms are utilized for efficient calcuation of sufficient statistics given our array models. Some results are also presented from our implementation on a networked system including a massively parallel machine architecture and a silicon graphics onyx workstation.

  7. Identification of Buried Objects in GPR Using Amplitude Modulated Signals Extracted from Multiresolution Monogenic Signal Analysis

    PubMed Central

    Qiao, Lihong; Qin, Yao; Ren, Xiaozhen; Wang, Qifu

    2015-01-01

    It is necessary to detect the target reflections in ground penetrating radar (GPR) images, so that surface metal targets can be identified successfully. In order to accurately locate buried metal objects, a novel method called the Multiresolution Monogenic Signal Analysis (MMSA) system is applied in ground penetrating radar (GPR) images. This process includes four steps. First the image is decomposed by the MMSA to extract the amplitude component of the B-scan image. The amplitude component enhances the target reflection and suppresses the direct wave and reflective wave to a large extent. Then we use the region of interest extraction method to locate the genuine target reflections from spurious reflections by calculating the normalized variance of the amplitude component. To find the apexes of the targets, a Hough transform is used in the restricted area. Finally, we estimate the horizontal and vertical position of the target. In terms of buried object detection, the proposed system exhibits promising performance, as shown in the experimental results. PMID:26690146

  8. Pricise Target Geolocation Based on Integeration of Thermal Video Imagery and Rtk GPS in Uavs

    NASA Astrophysics Data System (ADS)

    Hosseinpoor, H. R.; Samadzadegan, F.; Dadras Javan, F.

    2015-12-01

    There are an increasingly large number of uses for Unmanned Aerial Vehicles (UAVs) from surveillance, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy which implicates that it cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using a linear Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors and Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process.

  9. Daily relations among affect, urge, targeted naltrexone, and alcohol use in young adults.

    PubMed

    Bold, Krysten W; Fucito, Lisa M; Corbin, William R; DeMartini, Kelly S; Leeman, Robert F; Kranzler, Henry R; O'Malley, Stephanie S

    2016-10-01

    Heavy drinking among young adults is a serious public health problem. Naltrexone, an opioid antagonist, has been shown to reduce drinking in young adults compared to placebo and can be taken on a targeted (i.e., as needed) basis. Understanding risk factors for drinking and naltrexone effects within-person in young adults may help to optimize the use of targeted naltrexone. The current study was a secondary analysis of daily diary data from 127 (n = 40 female) young adults (age 18-25) enrolled in a double-blind clinical trial of daily (25 mg) plus targeted (25 mg) naltrexone versus placebo. Hierarchical linear models were used to examine the effects of daily affect, urge, and taking targeted medication on same-day risk of drinking to intoxication (defined as estimated blood-alcohol-concentration, BAC ≥ .08 g%). Results indicated urge significantly mediated within-person positive affect-drinking relations on a daily level. Specifically, positive affect was associated with greater urge to drink, which in turn was associated with greater odds of BAC ≥ .08 g%. Furthermore, days of greater positive affect and urge were associated with taking a targeted dose of medication, which reduced the likelihood of intoxication by nearly 23% in the naltrexone group compared to placebo. Gender and family history of alcohol dependence were examined as moderators of these daily level effects. These results provide further evidence of naltrexone's ability to reduce alcohol consumption in young adults and identify potential within-person risk processes related to heavy drinking that could inform alcohol-related interventions for this population. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  11. Adaptive Robust Output Feedback Control for a Marine Dynamic Positioning System Based on a High-Gain Observer.

    PubMed

    Du, Jialu; Hu, Xin; Liu, Hongbo; Chen, C L Philip

    2015-11-01

    This paper develops an adaptive robust output feedback control scheme for dynamically positioned ships with unavailable velocities and unknown dynamic parameters in an unknown time-variant disturbance environment. The controller is designed by incorporating the high-gain observer and radial basis function (RBF) neural networks in vectorial backstepping method. The high-gain observer provides the estimations of the ship position and heading as well as velocities. The RBF neural networks are employed to compensate for the uncertainties of ship dynamics. The adaptive laws incorporating a leakage term are designed to estimate the weights of RBF neural networks and the bounds of unknown time-variant environmental disturbances. In contrast to the existing results of dynamic positioning (DP) controllers, the proposed control scheme relies only on the ship position and heading measurements and does not require a priori knowledge of the ship dynamics and external disturbances. By means of Lyapunov functions, it is theoretically proved that our output feedback controller can control a ship's position and heading to the arbitrarily small neighborhood of the desired target values while guaranteeing that all signals in the closed-loop DP control system are uniformly ultimately bounded. Finally, simulations involving two ships are carried out, and simulation results demonstrate the effectiveness of the proposed control scheme.

  12. CHAMP - Camera, Handlens, and Microscope Probe

    NASA Technical Reports Server (NTRS)

    Mungas, G. S.; Beegle, L. W.; Boynton, J.; Sepulveda, C. A.; Balzer, M. A.; Sobel, H. R.; Fisher, T. A.; Deans, M.; Lee, P.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe) is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As an arm-mounted imager, CHAMP supports stereo-imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision range-finding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. Currently designed with a filter wheel with 4 different filters, so that color and black and white images can be obtained over the entire Field-of-View, future designs will increase the number of filter positions to include 8 different filters. Finally, CHAMP incorporates controlled white and UV illumination so that images can be obtained regardless of sun position, and any potential fluorescent species can be identified so the most astrobiologically interesting samples can be identified.

  13. Breast cancer: updates and advances in 2016.

    PubMed

    Giordano, Sara B; Gradishar, William

    2017-02-01

    Approximately 1 in 8 US women (12%) will develop invasive breast cancer over the course of her lifetime. In 2016, an estimated 246,660 new cases of invasive breast cancer are expected to be diagnosed and approximately 40,450 would die as a result of it. The global burden of breast cancer exceeds all other cancers and the incidence is increasing. The heterogeneity of breast cancer makes it a challenging solid tumor to diagnose and treat. This review focuses on the recent advances in breast cancer therapy including hormonal treatment of metastatic breast cancer, targeting cyclin-dependent kinases (CDK) 4/6 in breast cancer, updates in targeting human epidermal growth factor receptor 2 (HER2) positive breast cancer, adaptive randomization trial design and cancer genetic risk assessment. Breast cancer is a heterogeneous disease and targeted therapy is improving the outcomes of women. The use of cyclin-dependent kinase inhibitors (CDK) 4/6 have demonstrated a substantial improvement in progression-free survival in the first line setting of metastatic hormone receptor positive breast cancer. And newer agents directed at HER2 continue to revolutionize HER2-positive breast cancer treatment. This review highlights the recent updates in breast cancer treatment, new concepts in clinical trial design and provides a current overview of cancer genetic risk assessment.

  14. Sensor management in RADAR/IRST track fusion

    NASA Astrophysics Data System (ADS)

    Hu, Shi-qiang; Jing, Zhong-liang

    2004-07-01

    In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.

  15. Study of moving object detecting and tracking algorithm for video surveillance system

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhang, Rongfu

    2010-10-01

    This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.

  16. Cost-effectiveness of precision medicine in the fourth-line treatment of metastatic lung adenocarcinoma: An early decision analytic model of multiplex targeted sequencing.

    PubMed

    Doble, Brett; John, Thomas; Thomas, David; Fellowes, Andrew; Fox, Stephen; Lorgelly, Paula

    2017-05-01

    To identify parameters that drive the cost-effectiveness of precision medicine by comparing the use of multiplex targeted sequencing (MTS) to select targeted therapy based on tumour genomic profiles to either no further testing with chemotherapy or no further testing with best supportive care in the fourth-line treatment of metastatic lung adenocarcinoma. A combined decision tree and Markov model to compare costs, life-years, and quality-adjusted life-years over a ten-year time horizon from an Australian healthcare payer perspective. Data sources included the published literature and a population-based molecular cohort study (Cancer 2015). Uncertainty was assessed using deterministic sensitivity analyses and quantified by estimating expected value of perfect/partial perfect information. Uncertainty due to technological/scientific advancement was assessed through a number of plausible future scenario analyses. Point estimate incremental cost-effective ratios indicate that MTS is not cost-effective for selecting fourth-line treatment of metastatic lung adenocarcinoma. Lower mortality rates during testing and for true positive patients, lower health state utility values for progressive disease, and targeted therapy resulting in reductions in inpatient visits, however, all resulted in more favourable cost-effectiveness estimates for MTS. The expected value to decision makers of removing all current decision uncertainty was estimated to be between AUD 5,962,843 and AUD 13,196,451, indicating that additional research to reduce uncertainty may be a worthwhile investment. Plausible future scenarios analyses revealed limited improvements in cost-effectiveness under scenarios of improved test performance, decreased costs of testing/interpretation, and no biopsy costs/adverse events. Reductions in off-label targeted therapy costs, when considered together with the other scenarios did, however, indicate more favourable cost-effectiveness of MTS. As more clinical evidence is generated for MTS, the model developed should be revisited and cost-effectiveness re-estimated under different testing scenarios to further understand the value of precision medicine and its potential impact on the overall health budget. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Statistical inference on censored data for targeted clinical trials under enrichment design.

    PubMed

    Chen, Chen-Fang; Lin, Jr-Rung; Liu, Jen-Pei

    2013-01-01

    For the traditional clinical trials, inclusion and exclusion criteria are usually based on some clinical endpoints; the genetic or genomic variability of the trial participants are not totally utilized in the criteria. After completion of the human genome project, the disease targets at the molecular level can be identified and can be utilized for the treatment of diseases. However, the accuracy of diagnostic devices for identification of such molecular targets is usually not perfect. Some of the patients enrolled in targeted clinical trials with a positive result for the molecular target might not have the specific molecular targets. As a result, the treatment effect may be underestimated in the patient population truly with the molecular target. To resolve this issue, under the exponential distribution, we develop inferential procedures for the treatment effects of the targeted drug based on the censored endpoints in the patients truly with the molecular targets. Under an enrichment design, we propose using the expectation-maximization algorithm in conjunction with the bootstrap technique to incorporate the inaccuracy of the diagnostic device for detection of the molecular targets on the inference of the treatment effects. A simulation study was conducted to empirically investigate the performance of the proposed methods. Simulation results demonstrate that under the exponential distribution, the proposed estimator is nearly unbiased with adequate precision, and the confidence interval can provide adequate coverage probability. In addition, the proposed testing procedure can adequately control the size with sufficient power. On the other hand, when the proportional hazard assumption is violated, additional simulation studies show that the type I error rate is not controlled at the nominal level and is an increasing function of the positive predictive value. A numerical example illustrates the proposed procedures. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Exploiting passive polarimetric imagery for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Vimal Thilak Krishna, Thilakam

    Polarization is a property of light or electromagnetic radiation that conveys information about the orientation of the transverse electric and magnetic fields. The polarization of reflected light complements other electromagnetic radiation attributes such as intensity, frequency, or spectral characteristics. A passive polarization based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. The polarization due to surface reflections from such objects contains information about the targets that can be exploited in remote sensing applications such as target detection, target classification, object recognition and shape extraction/recognition. In recent years, there has been renewed interest in the use of passive polarization information in remote sensing applications. The goal of our research is to design image processing algorithms for remote sensing applications by utilizing physics-based models that describe the polarization imparted by optical scattering from an object. In this dissertation, we present a method to estimate the complex index of refraction and reflection angle from multiple polarization measurements. This method employs a polarimetric bidirectional reflectance distribution function (pBRDF) that accounts for polarization due to specular scattering. The parameters of interest are derived by utilizing a nonlinear least squares estimation algorithm, and computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Furthermore, laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle. We also study the use of extracted index of refraction as a feature vector in designing two important image processing applications, namely image segmentation and material classification so that the resulting systems are largely invariant to illumination source location. This is in contrast to most passive polarization-based image processing algorithms proposed in the literature that employ quantities such as Stokes vectors and the degree of polarization and which are not robust to changes in illumination conditions. The estimated index of refraction, on the other hand, is invariant to illumination conditions and hence can be used as an input to image processing algorithms. The proposed estimation framework also is extended to the case where the position of the observer (camera) moves between measurements while that of the source remains fixed. Finally, we explore briefly the topic of parameter estimation for a generalized model that accounts for both specular and volumetric scattering. A combination of simulation and experimental results are provided to evaluate the effectiveness of the above methods.

  19. Application of Data-Driven Evidential Belief Functions to Prospectivity Mapping for Aquamarine-Bearing Pegmatites, Lundazi District, Zambia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carranza, E. J. M., E-mail: carranza@itc.nl; Woldai, T.; Chikambwe, E. M.

    A case application of data-driven estimation of evidential belief functions (EBFs) is demonstrated to prospectivity mapping in Lundazi district (eastern Zambia). Spatial data used to represent recognition criteria of prospectivity for aquamarine-bearing pegmatites include mapped granites, mapped faults/fractures, mapped shear zones, and radioelement concentration ratios derived from gridded airborne radiometric data. Data-driven estimates EBFs take into account not only (a) spatial association between an evidential map layer and target deposits but also (b) spatial relationships between classes of evidences in an evidential map layer. Data-driven estimates of EBFs can indicate which spatial data provide positive or negative evidence of prospectivity.more » Data-driven estimates of EBFs of only spatial data providing positive evidence of prospectivity were integrated according to Dempster's rule of combination. Map of integrated degrees of belief was used to delineate zones of relative degress of prospectivity for aquamarine-bearing pegmatites. The predictive map has at least 85% prediction rate and at least 79% success rate of delineating training and validation deposits, respectively. The results illustrate usefulness of data-driven estimation of EBFs in GIS-based predictive mapping of mineral prospectivity. The results also show usefulness of EBFs in managing uncertainties associated with evidential maps.« less

  20. Data-Driven Haptic Modeling and Rendering of Viscoelastic and Frictional Responses of Deformable Objects.

    PubMed

    Yim, Sunghoon; Jeon, Seokhee; Choi, Seungmoon

    2016-01-01

    In this paper, we present an extended data-driven haptic rendering method capable of reproducing force responses during pushing and sliding interaction on a large surface area. The main part of the approach is a novel input variable set for the training of an interpolation model, which incorporates the position of a proxy - an imaginary contact point on the undeformed surface. This allows us to estimate friction in both sliding and sticking states in a unified framework. Estimating the proxy position is done in real-time based on simulation using a sliding yield surface - a surface defining a border between the sliding and sticking regions in the external force space. During modeling, the sliding yield surface is first identified via an automated palpation procedure. Then, through manual palpation on a target surface, input data and resultant force data are acquired. The data are used to build a radial basis interpolation model. During rendering, this input-output mapping interpolation model is used to estimate force responses in real-time in accordance with the interaction input. Physical performance evaluation demonstrates that our approach achieves reasonably high estimation accuracy. A user study also shows plausible perceptual realism under diverse and extensive exploration.

  1. Effects of measurement unobservability on neural extended Kalman filter tracking

    NASA Astrophysics Data System (ADS)

    Stubberud, Stephen C.; Kramer, Kathleen A.

    2009-05-01

    An important component of tracking fusion systems is the ability to fuse various sensors into a coherent picture of the scene. When multiple sensor systems are being used in an operational setting, the types of data vary. A significant but often overlooked concern of multiple sensors is the incorporation of measurements that are unobservable. An unobservable measurement is one that may provide information about the state, but cannot recreate a full target state. A line of bearing measurement, for example, cannot provide complete position information. Often, such measurements come from passive sensors such as a passive sonar array or an electronic surveillance measure (ESM) system. Unobservable measurements will, over time, result in the measurement uncertainty to grow without bound. While some tracking implementations have triggers to protect against the detrimental effects, many maneuver tracking algorithms avoid discussing this implementation issue. One maneuver tracking technique is the neural extended Kalman filter (NEKF). The NEKF is an adaptive estimation algorithm that estimates the target track as it trains a neural network on line to reduce the error between the a priori target motion model and the actual target dynamics. The weights of neural network are trained in a similar method to the state estimation/parameter estimation Kalman filter techniques. The NEKF has been shown to improve target tracking accuracy through maneuvers and has been use to predict target behavior using the new model that consists of the a priori model and the neural network. The key to the on-line adaptation of the NEKF is the fact that the neural network is trained using the same residuals as the Kalman filter for the tracker. The neural network weights are treated as augmented states to the target track. Through the state-coupling function, the weights are coupled to the target states. Thus, if the measurements cause the states of the target track to be unobservable, then the weights of the neural network have unobservable modes as well. In recent analysis, the NEKF was shown to have a significantly larger growth in the eigenvalues of the error covariance matrix than the standard EKF tracker when the measurements were purely bearings-only. This caused detrimental effects to the ability of the NEKF to model the target dynamics. In this work, the analysis is expanded to determine the detrimental effects of bearings-only measurements of various uncertainties on the performance of the NEKF when these unobservable measurements are interlaced with completely observable measurements. This analysis provides the ability to put implementation limitations on the NEKF when bearings-only sensors are present.

  2. Third COS FUV Lifetime Position: FUV Target Acquisition Parameter Update {LENA3}

    NASA Astrophysics Data System (ADS)

    Penton, Steven

    2013-10-01

    Verify the ability of the Cycle 22 COS FSW to place an isolated point source at the center of the PSA, using FUV dispersed light target acquisition (TA) from the object and all three FUV gratings at the Third Lifetime Position (LP3). This program is modeled from the activity summary of LENA3.This program should be executed after the LP3 HV, XD spectral positions, aperture mechanism position, and focus are determined and updated. In addition, initial estimates of the LIFETIME=ALTERNATE TA FSW parameters and subarrays should be updated prior to execution of this program. After Visit 01, the subarrays will be updated. After Visit 2, the FUV WCA-to-PSA offsets will be updateded. Prior to Visit 6, LV56 will be installed will include new values for the LP3 FUV plate scales. VISIT 6 exposures use the default lifetime position (LP3).NUV imaging TAs have previously been used to determine the correct locations for FUV spectra. We follow the same procedure here.Note that the ETC runs here were made using ETC22.2 and are therefore valid for Mach 2014. Some TDS drop will likely have occured before these visits execute, but we have plenty of count to go what we need to do in this program.

  3. Pose estimation of teeth through crown-shape matching

    NASA Astrophysics Data System (ADS)

    Mok, Vevin; Ong, Sim Heng; Foong, Kelvin W. C.; Kondo, Toshiaki

    2002-05-01

    This paper presents a technique for determining a tooth's pose given a dental plaster cast and a set of generic tooth models. The ultimate goal of pose estimation is to obtain information about the sizes and positions of the roots, which lie hidden within the gums, without the use of X-rays, CT or MRI. In our approach, the tooth of interest is first extracted from the 3D dental cast image through segmentation. 2D views are then generated from the extracted tooth and are matched against a target view generated from the generic model with known pose. Additional views are generated in the vicinity of the best view and the entire process is repeated until convergence. Upon convergence, the generic tooth is superimposed onto the dental cast to show the position of the root. The results of applying the technique to canines demonstrate the excellent potential of the algorithm for generic tooth fitting.

  4. Pricise Target Geolocation and Tracking Based on Uav Video Imagery

    NASA Astrophysics Data System (ADS)

    Hosseinpoor, H. R.; Samadzadegan, F.; Dadrasjavan, F.

    2016-06-01

    There is an increasingly large number of applications for Unmanned Aerial Vehicles (UAVs) from monitoring, mapping and target geolocation. However, most of commercial UAVs are equipped with low-cost navigation sensors such as C/A code GPS and a low-cost IMU on board, allowing a positioning accuracy of 5 to 10 meters. This low accuracy cannot be used in applications that require high precision data on cm-level. This paper presents a precise process for geolocation of ground targets based on thermal video imagery acquired by small UAV equipped with RTK GPS. The geolocation data is filtered using an extended Kalman filter, which provides a smoothed estimate of target location and target velocity. The accurate geo-locating of targets during image acquisition is conducted via traditional photogrammetric bundle adjustment equations using accurate exterior parameters achieved by on board IMU and RTK GPS sensors, Kalman filtering and interior orientation parameters of thermal camera from pre-flight laboratory calibration process. The results of this study compared with code-based ordinary GPS, indicate that RTK observation with proposed method shows more than 10 times improvement of accuracy in target geolocation.

  5. Passive range estimation using dual baseline triangulation

    NASA Astrophysics Data System (ADS)

    Pieper, Ronald J.; Cooper, Alfred W.; Pelegris, G.

    1996-03-01

    Modern combat systems based on active radar sensing suffer disadvantages against low-flying targets in cluttered backgrounds. Use of passive infrared sensors with these systems, either in cooperation or as an alternative, shows potential for improving target detection and declaration range for targets crossing the horizon. Realization of this potential requires fusion of target position data from dissimilar sensors, or passive sensor measurement of target range. The availability of passive sensors that can supply both range and bearing data on such targets would significantly extend the robustness of an integrated ship self-defense system. This paper considers a new method of range determination with passive sensors based on the principle of triangulation, extending the principle to two orthogonal baselines. The performance of single or double baseline triangulation depends on sensor bearing precision and direction to target. An expression for maximum triangulation range at a required accuracy is derived as a function of polar angle relative to the center of the dual-baseline system. Limitations in the dual- baseline model due to the geometrically assessed horizon are also considered.

  6. Solution of the weighted symmetric similarity transformations based on quaternions

    NASA Astrophysics Data System (ADS)

    Mercan, H.; Akyilmaz, O.; Aydin, C.

    2017-12-01

    A new method through Gauss-Helmert model of adjustment is presented for the solution of the similarity transformations, either 3D or 2D, in the frame of errors-in-variables (EIV) model. EIV model assumes that all the variables in the mathematical model are contaminated by random errors. Total least squares estimation technique may be used to solve the EIV model. Accounting for the heteroscedastic uncertainty both in the target and the source coordinates, that is the more common and general case in practice, leads to a more realistic estimation of the transformation parameters. The presented algorithm can handle the heteroscedastic transformation problems, i.e., positions of the both target and the source points may have full covariance matrices. Therefore, there is no limitation such as the isotropic or the homogenous accuracy for the reference point coordinates. The developed algorithm takes the advantage of the quaternion definition which uniquely represents a 3D rotation matrix. The transformation parameters: scale, translations, and the quaternion (so that the rotation matrix) along with their covariances, are iteratively estimated with rapid convergence. Moreover, prior least squares (LS) estimation of the unknown transformation parameters is not required to start the iterations. We also show that the developed method can also be used to estimate the 2D similarity transformation parameters by simply treating the problem as a 3D transformation problem with zero (0) values assigned for the z-components of both target and source points. The efficiency of the new algorithm is presented with the numerical examples and comparisons with the results of the previous studies which use the same data set. Simulation experiments for the evaluation and comparison of the proposed and the conventional weighted LS (WLS) method is also presented.

  7. In flight image processing on multi-rotor aircraft for autonomous landing

    NASA Astrophysics Data System (ADS)

    Henry, Richard, Jr.

    An estimated $6.4 billion was spent during the year 2013 on developing drone technology around the world and is expected to double in the next decade. However, drone applications typically require strong pilot skills, safety, responsibilities and adherence to regulations during flight. If the flight control process could be safer and more reliable in terms of landing, it would be possible to further develop a wider range of applications. The objective of this research effort is to describe the design and evaluation of a fully autonomous Unmanned Aerial system (UAS), specifically a four rotor aircraft, commonly known as quad copter for precise landing applications. The full landing autonomy is achieved by image processing capabilities during flight for target recognition by employing the open source library OpenCV. In addition, all imaging data is processed by a single embedded computer that estimates a relative position with respect to the target landing pad. Results shows a reduction on the average offset error by 67.88% in comparison to the current return to lunch (RTL) method which only relies on GPS positioning. The present work validates the need for relying on image processing for precise landing applications instead of the inexact method of a commercial low cost GPS dependency.

  8. Experimental investigation of a general real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring.

    PubMed

    Cho, Byungchul; Poulsen, Per; Ruan, Dan; Sawant, Amit; Keall, Paul J

    2012-11-21

    The goal of this work was to experimentally quantify the geometric accuracy of a novel real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring for clinically realistic arc and static field treatment delivery and target motion conditions. A general method for real-time target localization using kV imaging and respiratory monitoring was developed. Each dimension of internal target motion T(x, y, z; t) was estimated from the external respiratory signal R(t) through the correlation between R(t(i)) and the projected marker positions p(x(p), y(p); t(i)) on kV images by a state-augmented linear model: T(x, y, z; t) = aR(t) + bR(t - τ) + c. The model parameters, a, b, c, were determined by minimizing the squared fitting error ∑‖p(x(p), y(p); t(i)) - P(θ(i)) · (aR(t(i)) + bR(t(i) - τ) + c)‖(2) with the projection operator P(θ(i)). The model parameters were first initialized based on acquired kV arc images prior to MV beam delivery. This method was implemented on a trilogy linear accelerator consisting of an OBI x-ray imager (operating at 1 Hz) and real-time position monitoring (RPM) system (30 Hz). Arc and static field plans were delivered to a moving phantom programmed with measured lung tumour motion from ten patients. During delivery, the localization method determined the target position and the beam was adjusted in real time via dynamic multileaf collimator (DMLC) adaptation. The beam-target alignment error was quantified by segmenting the beam aperture and a phantom-embedded fiducial marker on MV images and analysing their relative position. With the localization method, the root-mean-squared errors of the ten lung tumour traces ranged from 0.7-1.3 mm and 0.8-1.4 mm during the single arc and five-field static beam delivery, respectively. Without the localization method, these errors ranged from 3.1-7.3 mm. In summary, a general method for real-time target localization using kV imaging and respiratory monitoring has been experimentally investigated for arc and static field delivery. The average beam-target error was 1 mm.

  9. Experimental investigation of a general real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring

    NASA Astrophysics Data System (ADS)

    Cho, Byungchul; Poulsen, Per; Ruan, Dan; Sawant, Amit; Keall, Paul J.

    2012-11-01

    The goal of this work was to experimentally quantify the geometric accuracy of a novel real-time 3D target localization method using sequential kV imaging combined with respiratory monitoring for clinically realistic arc and static field treatment delivery and target motion conditions. A general method for real-time target localization using kV imaging and respiratory monitoring was developed. Each dimension of internal target motion T(x, y, z; t) was estimated from the external respiratory signal R(t) through the correlation between R(ti) and the projected marker positions p(xp, yp; ti) on kV images by a state-augmented linear model: T(x, y, z; t) = aR(t) + bR(t - τ) + c. The model parameters, a, b, c, were determined by minimizing the squared fitting error ∑‖p(xp, yp; ti) - P(θi) · (aR(ti) + bR(ti - τ) + c)‖2 with the projection operator P(θi). The model parameters were first initialized based on acquired kV arc images prior to MV beam delivery. This method was implemented on a trilogy linear accelerator consisting of an OBI x-ray imager (operating at 1 Hz) and real-time position monitoring (RPM) system (30 Hz). Arc and static field plans were delivered to a moving phantom programmed with measured lung tumour motion from ten patients. During delivery, the localization method determined the target position and the beam was adjusted in real time via dynamic multileaf collimator (DMLC) adaptation. The beam-target alignment error was quantified by segmenting the beam aperture and a phantom-embedded fiducial marker on MV images and analysing their relative position. With the localization method, the root-mean-squared errors of the ten lung tumour traces ranged from 0.7-1.3 mm and 0.8-1.4 mm during the single arc and five-field static beam delivery, respectively. Without the localization method, these errors ranged from 3.1-7.3 mm. In summary, a general method for real-time target localization using kV imaging and respiratory monitoring has been experimentally investigated for arc and static field delivery. The average beam-target error was 1 mm.

  10. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution, appendix 2

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1988-01-01

    This thesis reviews the technique established to clear channels in the Power Spectral Estimate by applying linear combinations of well known window functions to the autocorrelation function. The need for windowing the auto correlation function is due to the fact that the true auto correlation is not generally used to obtain the Power Spectral Estimate. When applied, the windows serve to reduce the effect that modifies the auto correlation by truncating the data and possibly the autocorrelation has on the Power Spectral Estimate. It has been shown in previous work that a single channel has been cleared, allowing for the detection of a small peak in the presence of a large peak in the Power Spectral Estimate. The utility of this method is dependent on the robustness of it on different input situations. We extend the analysis in this paper, to include clearing up to three channels. We examine the relative positions of the spikes to each other and also the effect of taking different percentages of lags of the auto correlation in the Power Spectral Estimate. This method could have application wherever the Power Spectrum is used. An example of this is beam forming for source location, where a small target can be located next to a large target. Other possibilities extend into seismic data processing. As the method becomes more automated other applications may present themselves.

  11. Timing of saccadic eye movements during visual search for multiple targets

    PubMed Central

    Wu, Chia-Chien; Kowler, Eileen

    2013-01-01

    Visual search requires sequences of saccades. Many studies have focused on spatial aspects of saccadic decisions, while relatively few (e.g., Hooge & Erkelens, 1999) consider timing. We studied saccadic timing during search for targets (thin circles containing tilted lines) located among nontargets (thicker circles). Tasks required either (a) estimating the mean tilt of the lines, or (b) looking at targets without a concurrent psychophysical task. The visual similarity of targets and nontargets affected both the probability of hitting a target and the saccade rate in both tasks. Saccadic timing also depended on immediate conditions, specifically, (a) the type of currently fixated location (dwell time was longer on targets than nontargets), (b) the type of goal (dwell time was shorter prior to saccades that hit targets), and (c) the ordinal position of the saccade in the sequence. The results show that timing decisions take into account the difficulty of finding targets, as well as the cost of delays. Timing strategies may be a compromise between the attempt to find and locate targets, or other suitable landing locations, using eccentric vision (at the cost of increased dwell times) versus a strategy of exploring less selectively at a rapid rate. PMID:24049045

  12. Visual Target Tracking in the Presence of Unknown Observer Motion

    NASA Technical Reports Server (NTRS)

    Williams, Stephen; Lu, Thomas

    2009-01-01

    Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.

  13. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation.

    PubMed

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-21

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δφ = 0.3 ± 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC = 0.66 ± 0.04), Positive Predictive Value (PPV  = 0.81 ± 0.06) and Sensitivity (Sen. = 0.49 ± 0.05). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol) = 40 ± 30, DSC = 0.71 ± 0.07 and PPV = 0.90 ± 0.13). High accuracy in target tracking position (ΔME) was obtained for experimental and clinical data (ΔME(exp) = 0 ± 3 mm; ΔME(clin) 0.3 ± 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.

  14. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation

    NASA Astrophysics Data System (ADS)

    Carles, Montserrat; Fechter, Tobias; Nemer, Ursula; Nanko, Norbert; Mix, Michael; Nestle, Ursula; Schaefer, Andrea

    2015-12-01

    PET/CT plays an important role in radiotherapy planning for lung tumors. Several segmentation algorithms have been proposed for PET tumor segmentation. However, most of them do not take into account respiratory motion and are not well validated. The aim of this work was to evaluate a semi-automated contrast-oriented algorithm (COA) for PET tumor segmentation adapted to retrospectively gated (4D) images. The evaluation involved a wide set of 4D-PET/CT acquisitions of dynamic experimental phantoms and lung cancer patients. In addition, segmentation accuracy of 4D-COA was compared with four other state-of-the-art algorithms. In phantom evaluation, the physical properties of the objects defined the gold standard. In clinical evaluation, the ground truth was estimated by the STAPLE (Simultaneous Truth and Performance Level Estimation) consensus of three manual PET contours by experts. Algorithm evaluation with phantoms resulted in: (i) no statistically significant diameter differences for different targets and movements (Δ φ =0.3+/- 1.6 mm); (ii) reproducibility for heterogeneous and irregular targets independent of user initial interaction and (iii) good segmentation agreement for irregular targets compared to manual CT delineation in terms of Dice Similarity Coefficient (DSC  =  0.66+/- 0.04 ), Positive Predictive Value (PPV  =  0.81+/- 0.06 ) and Sensitivity (Sen.  =  0.49+/- 0.05 ). In clinical evaluation, the segmented volume was in reasonable agreement with the consensus volume (difference in volume (%Vol)  =  40+/- 30 , DSC  =  0.71+/- 0.07 and PPV  =  0.90+/- 0.13 ). High accuracy in target tracking position (Δ ME) was obtained for experimental and clinical data (Δ ME{{}\\text{exp}}=0+/- 3 mm; Δ ME{{}\\text{clin}}=0.3+/- 1.4 mm). In the comparison with other lung segmentation methods, 4D-COA has shown the highest volume accuracy in both experimental and clinical data. In conclusion, the accuracy in volume delineation, position tracking and its robustness on highly irregular target movements, make this algorithm a useful tool for 4D-PET based volume definition for radiotherapy planning of lung cancer and may help to improve the reproducibility in PET quantification for therapy response assessment and prognosis.

  15. Segmentation, classification, and pose estimation of military vehicles in low resolution laser radar images

    NASA Astrophysics Data System (ADS)

    Neulist, Joerg; Armbruster, Walter

    2005-05-01

    Model-based object recognition in range imagery typically involves matching the image data to the expected model data for each feasible model and pose hypothesis. Since the matching procedure is computationally expensive, the key to efficient object recognition is the reduction of the set of feasible hypotheses. This is particularly important for military vehicles, which may consist of several large moving parts such as the hull, turret, and gun of a tank, and hence require an eight or higher dimensional pose space to be searched. The presented paper outlines techniques for reducing the set of feasible hypotheses based on an estimation of target dimensions and orientation. Furthermore, the presence of a turret and a main gun and their orientations are determined. The vehicle parts dimensions as well as their error estimates restrict the number of model hypotheses whereas the position and orientation estimates and their error bounds reduce the number of pose hypotheses needing to be verified. The techniques are applied to several hundred laser radar images of eight different military vehicles with various part classifications and orientations. On-target resolution in azimuth, elevation and range is about 30 cm. The range images contain up to 20% dropouts due to atmospheric absorption. Additionally some target retro-reflectors produce outliers due to signal crosstalk. The presented algorithms are extremely robust with respect to these and other error sources. The hypothesis space for hull orientation is reduced to about 5 degrees as is the error for turret rotation and gun elevation, provided the main gun is visible.

  16. The role of the vestibular system in manual target localization

    NASA Technical Reports Server (NTRS)

    Barry, Susan R.; Mueller, S. Alyssa

    1995-01-01

    Astronauts experience perceptual and sensory-motor disturbances during spaceflight and immediately after return to the 1-g environment of Earth. During spaceflight, sensory information from the eyes, limbs and vestibular organs is reinterpreted by the central nervous system so that astronauts can produce appropriate body movements in microgravity. Alterations in sensory-motor function may affect eye-head-hand coordination and, thus, the crewmember's ability to manually locate objects in extrapersonal space. Previous reports have demonstrated that crewmembers have difficulty in estimating joint and limb position and in pointing to memorized target positions on orbit and immediately postflight. One set of internal cues that may assist in the manual localization of objects is information from the vestibular system. This system contributes to our sense of the body's position in space by providing information on head position and movement and the orientation of the body with respect to gravity. Research on the vestibular system has concentrated on its role in oculo-motor control. Little is known about the role that vestibular information plays in manual motor control, such as reaching and pointing movements. Since central interpretation of vestibular information is altered in microgravity, it is important to determine its role in this process. This summer, we determined the importance of vestibular information in a subject's ability to point accurately toward a target in extrapersonal space. Subjects were passively rotated across the earth-vertical axis and then asked to point back to a previously-seen target. In the first paradigm, the subjects used both visual and vestibular cues for the pointing response, while, in the second paradigm, subjects used only vestibular information. Subjects were able to point with 85 percent accuracy to a target using vestibular information alone. We infer from this result that vestibular input plays a role in the spatial programming of manual responses.

  17. Horizon Based Orientation Estimation for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Bouyssounouse, X.; Nefian, A. V.; Deans, M.; Thomas, A.; Edwards, L.; Fong, T.

    2016-01-01

    Planetary rovers navigate in extreme environments for which a Global Positioning System (GPS) is unavailable, maps are restricted to relatively low resolution provided by orbital imagery, and compass information is often lacking due to weak or not existent magnetic fields. However, an accurate rover localization is particularly important to achieve the mission success by reaching the science targets, avoiding negative obstacles visible only in orbital maps, and maintaining good communication connections with ground. This paper describes a horizon solution for precise rover orientation estimation. The detected horizon in imagery provided by the on board navigation cameras is matched with the horizon rendered over the existing terrain model. The set of rotation parameters (roll, pitch yaw) that minimize the cost function between the two horizon curves corresponds to the rover estimated pose.

  18. Visible light communication and indoor positioning using a-SiCH device as receiver

    NASA Astrophysics Data System (ADS)

    Vieira, M. A.; Vieira, M.; Louro, P.; Vieira, P.; Fantoni, A.

    2017-08-01

    An indoor positioning system were trichromatic white LEDs are used both for illumination proposes and as transmitters and an optical processor, based on a-SiC:H technology, as mobile receiver is presented. OOK modulation scheme is used, and it provides a good trade-off between system performance and implementation complexity. The relationship between the transmitted data and the received digital output levels is decoded. The system topology for positioning is a self-positioning system in which the measuring unit is mobile. This unit receives the signals of several transmitters in known locations, and has the capability to compute its location based on the measured signals. LED bulbs work as transmitters, sending information together with different IDs related to their physical locations. A triangular topology for the unit cell is analysed. A 2D localization design, demonstrated by a prototype implementation is presented. Fine-grained indoor localization is tested. The received signal is used in coded multiplexing techniques for supporting communications and navigation concomitantly on the same channel. The position is estimated through the visible multilateration metodh using several non-collinear transmitters. The location and motion information is found by mapping position and estimates the location areas. Data analysis showed that by using a pinpin double photodiode based on a a-SiC:H heterostucture as receiver, and RBGLEDs as transmitters it is possible not only to determine the mobile target's position but also to infer the motion direction over time, along with the received information in each position.

  19. UXO Detection and Characterization using new Berkeley UXO Discriminator (BUD)

    NASA Astrophysics Data System (ADS)

    Gasperikova, E.; Morrison, H. F.; Smith, J. T.; Becker, A.

    2006-05-01

    An optimally designed active electromagnetic system (AEM), Berkeley UXO Discriminator, BUD, has been developed for detection and characterization of UXO in the 20 mm to 150 mm size range. The system incorporates three orthogonal transmitters, and eight pairs of differenced receivers. The transmitter-receiver assembly together with the acquisition box, as well as the battery power and GPS receiver, is mounted on a small cart to assure system mobility. BUD not only detects the object itself but also quantitatively determines its size, shape, orientation, and metal content (ferrous or non-ferrous, mixed metals). Moreover, the principal polarizabilities and size of a metallic target can be determined from a single position of the BUD platform. The search for UXO is a two-step process. The object must first be detected and its location determined then the parameters of the object must be defined. A satisfactory classification scheme is one that determines the principal dipole polarizabilities of a target. While UXO objects have a single major polarizability (principal moment) coincident with the long axis of the object and two equal transverse polarizabilities, the scrap metal has all three principal moments entirely different. This description of the inherent polarizabilities of a target is a major advance in discriminating UXO from irregular scrap metal. Our results clearly show that BUD can resolve the intrinsic polarizabilities of a target and that there are very clear distinctions between symmetric intact UXO and irregular scrap metal. Target properties are determined by an inversion algorithm, which at any given time inverts the response to yield the location (x, y, z) of the target, its attitude and its principal polarizabilities (yielding an apparent aspect ratio). Signal-to-noise estimates (or measurements) are interpreted in this inversion to yield error estimates on the location, attitude and polarizabilities. This inversion at a succession of times provides the polarizabilities as a function of time, which can in turn yield the size, true aspect ratio and estimates of the conductivity and permeability of the target. The accuracy of these property estimates depends on the time window over which the polarizability measurements, and their accuracies, are known. Initial tests at a local site over a variety of test objects and inert UXOs showed excellent detection and characterization results within the predicted size-depth range. This research was funded by the U.S. Department of Defense under ESTCP Project # UX-0437.

  20. Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites

    PubMed Central

    Grau, Jan; Wolf, Annett; Reschke, Maik; Bonas, Ulla; Posch, Stefan; Boch, Jens

    2013-01-01

    Transcription activator-like (TAL) effectors are injected into host plant cells by Xanthomonas bacteria to function as transcriptional activators for the benefit of the pathogen. The DNA binding domain of TAL effectors is composed of conserved amino acid repeat structures containing repeat-variable diresidues (RVDs) that determine DNA binding specificity. In this paper, we present TALgetter, a new approach for predicting TAL effector target sites based on a statistical model. In contrast to previous approaches, the parameters of TALgetter are estimated from training data computationally. We demonstrate that TALgetter successfully predicts known TAL effector target sites and often yields a greater number of predictions that are consistent with up-regulation in gene expression microarrays than an existing approach, Target Finder of the TALE-NT suite. We study the binding specificities estimated by TALgetter and approve that different RVDs are differently important for transcriptional activation. In subsequent studies, the predictions of TALgetter indicate a previously unreported positional preference of TAL effector target sites relative to the transcription start site. In addition, several TAL effectors are predicted to bind to the TATA-box, which might constitute one general mode of transcriptional activation by TAL effectors. Scrutinizing the predicted target sites of TALgetter, we propose several novel TAL effector virulence targets in rice and sweet orange. TAL-mediated induction of the candidates is supported by gene expression microarrays. Validity of these targets is also supported by functional analogy to known TAL effector targets, by an over-representation of TAL effector targets with similar function, or by a biological function related to pathogen infection. Hence, these predicted TAL effector virulence targets are promising candidates for studying the virulence function of TAL effectors. TALgetter is implemented as part of the open-source Java library Jstacs, and is freely available as a web-application and a command line program. PMID:23526890

  1. Estimation of salient regions related to chronic gastritis using gastric X-ray images.

    PubMed

    Togo, Ren; Ishihara, Kenta; Ogawa, Takahiro; Haseyama, Miki

    2016-10-01

    Since technical knowledge and a high degree of experience are necessary for diagnosis of chronic gastritis, computer-aided diagnosis (CAD) systems that analyze gastric X-ray images are desirable in the field of medicine. Therefore, a new method that estimates salient regions related to chronic gastritis/non-gastritis for supporting diagnosis is presented in this paper. In order to estimate salient regions related to chronic gastritis/non-gastritis, the proposed method monitors the distance between a target image feature and Support Vector Machine (SVM)-based hyperplane for its classification. Furthermore, our method realizes removal of the influence of regions outside the stomach by using positional relationships between the stomach and other organs. Consequently, since the proposed method successfully estimates salient regions of gastric X-ray images for which chronic gastritis and non-gastritis are unknown, visual support for inexperienced clinicians becomes feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Robust Spectral Unmixing of Sparse Multispectral Lidar Waveforms using Gamma Markov Random Fields

    DOE PAGES

    Altmann, Yoann; Maccarone, Aurora; McCarthy, Aongus; ...

    2017-05-10

    Here, this paper presents a new Bayesian spectral un-mixing algorithm to analyse remote scenes sensed via sparse multispectral Lidar measurements. To a first approximation, in the presence of a target, each Lidar waveform consists of a main peak, whose position depends on the target distance and whose amplitude depends on the wavelength of the laser source considered (i.e, on the target reflectivity). Besides, these temporal responses are usually assumed to be corrupted by Poisson noise in the low photon count regime. When considering multiple wavelengths, it becomes possible to use spectral information in order to identify and quantify the mainmore » materials in the scene, in addition to estimation of the Lidar-based range profiles. Due to its anomaly detection capability, the proposed hierarchical Bayesian model, coupled with an efficient Markov chain Monte Carlo algorithm, allows robust estimation of depth images together with abundance and outlier maps associated with the observed 3D scene. The proposed methodology is illustrated via experiments conducted with real multispectral Lidar data acquired in a controlled environment. The results demonstrate the possibility to unmix spectral responses constructed from extremely sparse photon counts (less than 10 photons per pixel and band).« less

  3. A Novel Ship-Tracking Method for GF-4 Satellite Sequential Images.

    PubMed

    Yao, Libo; Liu, Yong; He, You

    2018-06-22

    The geostationary remote sensing satellite has the capability of wide scanning, persistent observation and operational response, and has tremendous potential for maritime target surveillance. The GF-4 satellite is the first geostationary orbit (GEO) optical remote sensing satellite with medium resolution in China. In this paper, a novel ship-tracking method in GF-4 satellite sequential imagery is proposed. The algorithm has three stages. First, a local visual saliency map based on local peak signal-to-noise ratio (PSNR) is used to detect ships in a single frame of GF-4 satellite sequential images. Second, the accuracy positioning of each potential target is realized by a dynamic correction using the rational polynomial coefficients (RPCs) and automatic identification system (AIS) data of ships. Finally, an improved multiple hypotheses tracking (MHT) algorithm with amplitude information is used to track ships by further removing the false targets, and to estimate ships’ motion parameters. The algorithm has been tested using GF-4 sequential images and AIS data. The results of the experiment demonstrate that the algorithm achieves good tracking performance in GF-4 satellite sequential images and estimates the motion information of ships accurately.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altmann, Yoann; Maccarone, Aurora; McCarthy, Aongus

    Here, this paper presents a new Bayesian spectral un-mixing algorithm to analyse remote scenes sensed via sparse multispectral Lidar measurements. To a first approximation, in the presence of a target, each Lidar waveform consists of a main peak, whose position depends on the target distance and whose amplitude depends on the wavelength of the laser source considered (i.e, on the target reflectivity). Besides, these temporal responses are usually assumed to be corrupted by Poisson noise in the low photon count regime. When considering multiple wavelengths, it becomes possible to use spectral information in order to identify and quantify the mainmore » materials in the scene, in addition to estimation of the Lidar-based range profiles. Due to its anomaly detection capability, the proposed hierarchical Bayesian model, coupled with an efficient Markov chain Monte Carlo algorithm, allows robust estimation of depth images together with abundance and outlier maps associated with the observed 3D scene. The proposed methodology is illustrated via experiments conducted with real multispectral Lidar data acquired in a controlled environment. The results demonstrate the possibility to unmix spectral responses constructed from extremely sparse photon counts (less than 10 photons per pixel and band).« less

  5. Pharmacophore based design of some multi-targeted compounds targeted against pathways of diabetic complications.

    PubMed

    Chadha, Navriti; Silakari, Om

    2017-09-01

    Diabetic complications is a complex metabolic disorder developed primarily due to prolonged hyperglycemia in the body. The complexity of the disease state as well as the unifying pathophysiology discussed in the literature reports exhibited that the use of multi-targeted agents with multiple complementary biological activities may offer promising therapy for the intervention of the disease over the single-target drugs. In the present study, novel thiazolidine-2,4-dione analogues were designed as multi-targeted agents implicated against the molecular pathways involved in diabetic complications using knowledge based as well as in-silico approaches such as pharmacophore mapping, molecular docking etc. The hit molecules were duly synthesized and biochemical estimation of these molecules against aldose reductase (ALR2), protein kinase Cβ (PKCβ) and poly (ADP-ribose) polymerase 1 (PARP-1) led to identification of compound 2 that showed good potency against PARP-1 and ALR2 enzymes. These positive results support the progress of a low cost multi-targeted agent with putative roles in diabetic complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Simulation-Based Joint Estimation of Body Deformation and Elasticity Parameters for Medical Image Analysis

    PubMed Central

    Foskey, Mark; Niethammer, Marc; Krajcevski, Pavel; Lin, Ming C.

    2014-01-01

    Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound or MR images) and known external forces. Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation. PMID:22893381

  7. Nucleic acid amplification tests (NAATs) for gonorrhoea diagnosis in women: experience of a tertiary care hospital in north India.

    PubMed

    Sood, Seema; Verma, Rachna; Mir, Shazia Shaheen; Agarwal, Madhav; Singh, Neeta; Kar, Hemanta Kumar; Sharma, Vinod Kumar

    2014-11-01

    Gonorrhoea is among the most frequent of the estimated bacterial sexually transmitted infections (STIs) and has significant health implications in women. The use of nucleic acid amplification tests (NAATs) has been shown to provide enhanced diagnosis of gonorrhoea in female patients. However, it is recommended that an on-going assessment of the test assays should be performed to check for any probable sequence variation occurring in the targeted region. In this study, an in-house PCR targeting opa-gene of Neisseria gonorrhoeae was used in conjunction with 16S ribosomal PCR to determine the presence of gonorrhoea in female patients attending the tertiary care hospitals. Endocervical samples collected from 250 female patients with complaints of vaginal or cervical discharge or pain in lower abdomen were tested using opa and 16S ribosomal assay. The samples were also processed by conventional methods. Of the 250 female patients included in the study, only one was positive by conventional methods (microscopy and culture) whereas 17 patients were found to be positive based on PCR results. The clinical sensitivity of conventional methods for the detection of N. gonorrhoeae in female patients was low. The gonococcal detection rates increased when molecular method was used giving 16 additional positives. Studies should be done to find out other gene targets that may be used in the screening assays to detect the presence of gonorrhoea.

  8. Development of Vertical Cable Seismic System (3)

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of shot points and receiver points in the field include the errors. We use these data as initial guesses, we invert iteratively shot and receiver positions to match the travel time data. After several iterations we could finally estimate the most probable positions. Integration of the constraint of VCS hydrophone positions, such as the spacing is 10m, can accelerate the convergence of the iterative inversion and improve results. The accuracy of the estimated positions from the travel time date is enough for the VCS data processing.

  9. A Scalable Approach for Protein False Discovery Rate Estimation in Large Proteomic Data Sets

    PubMed Central

    Savitski, Mikhail M.; Wilhelm, Mathias; Hahne, Hannes; Kuster, Bernhard; Bantscheff, Marcus

    2015-01-01

    Calculating the number of confidently identified proteins and estimating false discovery rate (FDR) is a challenge when analyzing very large proteomic data sets such as entire human proteomes. Biological and technical heterogeneity in proteomic experiments further add to the challenge and there are strong differences in opinion regarding the conceptual validity of a protein FDR and no consensus regarding the methodology for protein FDR determination. There are also limitations inherent to the widely used classic target–decoy strategy that particularly show when analyzing very large data sets and that lead to a strong over-representation of decoy identifications. In this study, we investigated the merits of the classic, as well as a novel target–decoy-based protein FDR estimation approach, taking advantage of a heterogeneous data collection comprised of ∼19,000 LC-MS/MS runs deposited in ProteomicsDB (https://www.proteomicsdb.org). The “picked” protein FDR approach treats target and decoy sequences of the same protein as a pair rather than as individual entities and chooses either the target or the decoy sequence depending on which receives the highest score. We investigated the performance of this approach in combination with q-value based peptide scoring to normalize sample-, instrument-, and search engine-specific differences. The “picked” target–decoy strategy performed best when protein scoring was based on the best peptide q-value for each protein yielding a stable number of true positive protein identifications over a wide range of q-value thresholds. We show that this simple and unbiased strategy eliminates a conceptual issue in the commonly used “classic” protein FDR approach that causes overprediction of false-positive protein identification in large data sets. The approach scales from small to very large data sets without losing performance, consistently increases the number of true-positive protein identifications and is readily implemented in proteomics analysis software. PMID:25987413

  10. Quantitative assessment of hit detection and confirmation in single and duplicate high-throughput screenings.

    PubMed

    Wu, Zhijin; Liu, Dongmei; Sui, Yunxia

    2008-02-01

    The process of identifying active targets (hits) in high-throughput screening (HTS) usually involves 2 steps: first, removing or adjusting for systematic variation in the measurement process so that extreme values represent strong biological activity instead of systematic biases such as plate effect or edge effect and, second, choosing a meaningful cutoff on the calculated statistic to declare positive compounds. Both false-positive and false-negative errors are inevitable in this process. Common control or estimation of error rates is often based on an assumption of normal distribution of the noise. The error rates in hit detection, especially false-negative rates, are hard to verify because in most assays, only compounds selected in primary screening are followed up in confirmation experiments. In this article, the authors take advantage of a quantitative HTS experiment in which all compounds are tested 42 times over a wide range of 14 concentrations so true positives can be found through a dose-response curve. Using the activity status defined by dose curve, the authors analyzed the effect of various data-processing procedures on the sensitivity and specificity of hit detection, the control of error rate, and hit confirmation. A new summary score is proposed and demonstrated to perform well in hit detection and useful in confirmation rate estimation. In general, adjusting for positional effects is beneficial, but a robust test can prevent overadjustment. Error rates estimated based on normal assumption do not agree with actual error rates, for the tails of noise distribution deviate from normal distribution. However, false discovery rate based on empirically estimated null distribution is very close to observed false discovery proportion.

  11. Estimating the number of injecting drug users in Scotland's HCV-diagnosed population using capture-recapture methods.

    PubMed

    McDonald, S A; Hutchinson, S J; Schnier, C; McLeod, A; Goldberg, D J

    2014-01-01

    In countries maintaining national hepatitis C virus (HCV) surveillance systems, a substantial proportion of individuals report no risk factors for infection. Our goal was to estimate the proportion of diagnosed HCV antibody-positive persons in Scotland (1991-2010) who probably acquired infection through injecting drug use (IDU), by combining data on IDU risk from four linked data sources using log-linear capture-recapture methods. Of 25,521 HCV-diagnosed individuals, 14,836 (58%) reported IDU risk with their HCV diagnosis. Log-linear modelling estimated a further 2484 HCV-diagnosed individuals with IDU risk, giving an estimated prevalence of 83. Stratified analyses indicated variation across birth cohort, with estimated prevalence as low as 49% in persons born before 1960 and greater than 90% for those born since 1960. These findings provide public-health professionals with a more complete profile of Scotland's HCV-infected population in terms of transmission route, which is essential for targeting educational, prevention and treatment interventions.

  12. The emotional side of cognitive distraction: Implications for road safety.

    PubMed

    Chan, Michelle; Singhal, Anthony

    2013-01-01

    Driver distraction is estimated to be one of the leading causes of motor vehicle accidents. However, little is known about the role of emotional distraction on driving, despite evidence that attention is highly biased toward emotion. In the present study, we used a dual-task paradigm to examine the potential for driver distraction from emotional information presented on roadside billboards. This purpose was achieved using a driving simulator and three different types of emotional information: neutral words, negative emotional words, and positive emotional words. Participants also responded to target words while driving and completed a surprise free recall task of all the words at the end of the study. The findings suggest that driving performance is differentially affected by the valence (negative versus positive) of the emotional content. Drivers had lower mean speeds when there were emotional words compared to neutral words, and this slowing effect lasted longer when there were positive words. This may be due to distraction effects on driving behavior, which are greater for positive arousing stimuli. Moreover, when required to process non-emotional target stimuli, drivers had faster mean speeds in conditions where the targets were interspersed with emotional words compared to neutral words, and again, these effects lasted longer when there were positive words. On the other hand, negative information led to better memory recall. These unique effects may be due to separate processes in the human attention system, particularly related to arousal mechanisms and their interaction with emotion. We conclude that distraction that is emotion-based can modulate attention and decision-making abilities and have adverse impacts on driving behavior for several reasons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Chemical and genetic wrappers for improved phage and RNA display.

    PubMed

    Lamboy, Jorge A; Tam, Phillip Y; Lee, Lucie S; Jackson, Pilgrim J; Avrantinis, Sara K; Lee, Hye J; Corn, Robert M; Weiss, Gregory A

    2008-11-24

    An Achilles heel inherent to all molecular display formats, background binding between target and display system introduces false positives into screens and selections. For example, the negatively charged surfaces of phage, mRNA, and ribosome display systems bind with unacceptably high nonspecificity to positively charged target molecules, which represent an estimated 35% of proteins in the human proteome. Here we report the first systematic attempt to understand why a broad class of molecular display selections fail, and then solve the underlying problem for both phage and RNA display. Firstly, a genetic strategy was used to introduce a short, charge-neutralizing peptide into the solvent-exposed, negatively charged phage coat. The modified phage (KO7(+)) reduced or eliminated nonspecific binding to the problematic high-pI proteins. In the second, chemical approach, nonspecific interactions were blocked by oligolysine wrappers in the cases of phage and total RNA. For phage display applications, the peptides Lys(n) (where n=16 to 24) emerged as optimal for wrapping the phage. Lys(8), however, provided effective wrappers for RNA binding in assays against the RNA binding protein HIV-1 Vif. The oligolysine peptides blocked nonspecific binding to allow successful selections, screens, and assays with five previously unworkable protein targets.

  14. Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria.

    PubMed

    Omardien, Soraya; Brul, Stanley; Zaat, Sebastian A J

    2016-01-01

    Antimicrobial peptides (AMPs) have been proposed as a novel class of antimicrobials that could aid the fight against antibiotic resistant bacteria. The mode of action of AMPs as acting on the bacterial cytoplasmic membrane has often been presented as an enigma and there are doubts whether the membrane is the sole target of AMPs. Progress has been made in clarifying the possible targets of these peptides, which is reported in this review with as focus gram-positive vegetative cells and spores. Numerical estimates are discussed to evaluate the possibility that targets, other than the membrane, could play a role in susceptibility to AMPs. Concerns about possible resistance that bacteria might develop to AMPs are addressed. Proteomics, transcriptomics, and other molecular techniques are reviewed in the context of explaining the response of bacteria to the presence of AMPs and to predict what resistance strategies might be. Emergent mechanisms are cell envelope stress responses as well as enzymes able to degrade and/or specifically bind (and thus inactivate) AMPs. Further studies are needed to address the broadness of the AMP resistance and stress responses observed.

  15. Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria

    PubMed Central

    Omardien, Soraya; Brul, Stanley; Zaat, Sebastian A. J.

    2016-01-01

    Antimicrobial peptides (AMPs) have been proposed as a novel class of antimicrobials that could aid the fight against antibiotic resistant bacteria. The mode of action of AMPs as acting on the bacterial cytoplasmic membrane has often been presented as an enigma and there are doubts whether the membrane is the sole target of AMPs. Progress has been made in clarifying the possible targets of these peptides, which is reported in this review with as focus gram-positive vegetative cells and spores. Numerical estimates are discussed to evaluate the possibility that targets, other than the membrane, could play a role in susceptibility to AMPs. Concerns about possible resistance that bacteria might develop to AMPs are addressed. Proteomics, transcriptomics, and other molecular techniques are reviewed in the context of explaining the response of bacteria to the presence of AMPs and to predict what resistance strategies might be. Emergent mechanisms are cell envelope stress responses as well as enzymes able to degrade and/or specifically bind (and thus inactivate) AMPs. Further studies are needed to address the broadness of the AMP resistance and stress responses observed. PMID:27790614

  16. Exposure to UV radiation and risk of Hodgkin lymphoma: a pooled analysis

    PubMed Central

    Glaser, Sally L.; Schupp, Clayton W.; Ekström Smedby, Karin; de Sanjosé, Silvia; Kane, Eleanor; Melbye, Mads; Forétova, Lenka; Maynadié, Marc; Staines, Anthony; Becker, Nikolaus; Nieters, Alexandra; Brennan, Paul; Boffetta, Paolo; Cocco, Pierluigi; Glimelius, Ingrid; Clavel, Jacqueline; Hjalgrim, Henrik; Chang, Ellen T.

    2013-01-01

    Ultraviolet radiation (UVR) exposure has been inversely associated with Hodgkin lymphoma (HL) risk, but only inconsistently, only in a few studies, and without attention to HL heterogeneity. We conducted a pooled analysis of HL risk focusing on type and timing of UVR exposure and on disease subtypes by age, histology, and tumor-cell Epstein-Barr virus (EBV) status. Four case-control studies contributed 1320 HL cases and 6381 controls. We estimated lifetime, adulthood, and childhood UVR exposure and history of sunburn and sunlamp use. We used 2-stage estimation with mixed-effects models and weighted pooled effect estimates by inverse marginal variances. We observed statistically significant inverse associations with HL risk for UVR exposures during childhood and adulthood, sunburn history, and sunlamp use, but we found no significant dose-response relationships. Risks were significant only for EBV-positive HL (pooled odds ratio, 0.56; 95% confidence interval, 0.35 to 0.91 for the highest overall UVR exposure category), with a significant linear trend for overall exposure (P = .03). Pooled relative risk estimates were not heterogeneous across studies. Increased UVR exposure may protect against HL, particularly EBV-positive HL. Plausible mechanisms involving UVR induction of regulatory T cells or the cellular DNA damage response suggest opportunities for new prevention targets. PMID:24016459

  17. Kalman filter data assimilation: targeting observations and parameter estimation.

    PubMed

    Bellsky, Thomas; Kostelich, Eric J; Mahalov, Alex

    2014-06-01

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

  18. Kalman filter data assimilation: Targeting observations and parameter estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellsky, Thomas, E-mail: bellskyt@asu.edu; Kostelich, Eric J.; Mahalov, Alex

    2014-06-15

    This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly locatedmore » observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.« less

  19. Molecular Composition Analysis of Distant Targets

    NASA Technical Reports Server (NTRS)

    Hughes, Gary B.; Lubin, Philip

    2017-01-01

    This document is the Final Report for NASA Innovative Advanced Concepts (NIAC) Phase I Grant 15-NIAC16A-0145, titled Molecular Composition Analysis of Distant Targets. The research was focused on developing a system concept for probing the molecular composition of cold solar system targets, such as Asteroids, Comets, Planets and Moons from a distant vantage, for example from a spacecraft that is orbiting the target (Hughes et al., 2015). The orbiting spacecraft is equipped with a high-power laser, which is run by electricity from photovoltaic panels. The laser is directed at a spot on the target. Materials on the surface of the target are heated by the laser beam, and begin to melt and then evaporate, forming a plume of asteroid molecules in front of the heated spot. The heated spot glows, producing blackbody illumination that is visible from the spacecraft, via a path through the evaporated plume. As the blackbody radiation from the heated spot passes through the plume of evaporated material, molecules in the plume absorb radiation in a manner that is specific to the rotational and vibrational characteristics of the specific molecules. A spectrometer aboard the spacecraft is used to observe absorption lines in the blackbody signal. The pattern of absorption can be used to estimate the molecular composition of materials in the plume, which originated on the target. Focusing on a single spot produces a borehole, and shallow subsurface profiling of the targets bulk composition is possible. At the beginning of the Phase I research, the estimated Technology Readiness Level (TRL) of the system was TRL-1. During the Phase I research, an end-to-end theoretical model of the sensor system was developed from first principles. The model includes laser energy and optical propagation, target heating, melting and evaporation of target material, plume density, thermal radiation from the heated spot, molecular cross section of likely asteroid materials, and estimation of the absorption profile at a distant spectrometer. Results obtained by executing simulations based on the model provide compelling evidence that the concept of remote laser evaporative molecular absorption spectroscopy is feasible. In this document, technical details of the model are presented, and results of simulations are described that indicate the utility of the proposed sensor system. Additionally, an asteroid rendezvous mission is analyzed, with a survey of system requirements to accomplish molecular composition analysis of the asteroid. Based on positive theoretical results obtained during Phase I, the estimated TRL of the system is now TRL-2. This document also describes potential future research and experimentation that could push the system to TRL-4 within 2 years. Steps required for construction of a laboratory prototype are described. An experiment to test predictions of the theory is described, based on the laboratory prototype setup.

  20. Occlusion handling framework for tracking in smart camera networks by per-target assistance task assignment

    NASA Astrophysics Data System (ADS)

    Bo, Nyan Bo; Deboeverie, Francis; Veelaert, Peter; Philips, Wilfried

    2017-09-01

    Occlusion is one of the most difficult challenges in the area of visual tracking. We propose an occlusion handling framework to improve the performance of local tracking in a smart camera view in a multicamera network. We formulate an extensible energy function to quantify the quality of a camera's observation of a particular target by taking into account both person-person and object-person occlusion. Using this energy function, a smart camera assesses the quality of observations over all targets being tracked. When it cannot adequately observe of a target, a smart camera estimates the quality of observation of the target from view points of other assisting cameras. If a camera with better observation of the target is found, the tracking task of the target is carried out with the assistance of that camera. In our framework, only positions of persons being tracked are exchanged between smart cameras. Thus, communication bandwidth requirement is very low. Performance evaluation of our method on challenging video sequences with frequent and severe occlusions shows that the accuracy of a baseline tracker is considerably improved. We also report the performance comparison to the state-of-the-art trackers in which our method outperforms.

  1. Optimal Deployment of Sensor Nodes Based on Performance Surface of Underwater Acoustic Communication

    PubMed Central

    Choi, Jee Woong

    2017-01-01

    The underwater acoustic sensor network (UWASN) is a system that exchanges data between numerous sensor nodes deployed in the sea. The UWASN uses an underwater acoustic communication technique to exchange data. Therefore, it is important to design a robust system that will function even in severely fluctuating underwater communication conditions, along with variations in the ocean environment. In this paper, a new algorithm to find the optimal deployment positions of underwater sensor nodes is proposed. The algorithm uses the communication performance surface, which is a map showing the underwater acoustic communication performance of a targeted area. A virtual force-particle swarm optimization algorithm is then used as an optimization technique to find the optimal deployment positions of the sensor nodes, using the performance surface information to estimate the communication radii of the sensor nodes in each generation. The algorithm is evaluated by comparing simulation results between two different seasons (summer and winter) for an area located off the eastern coast of Korea as the selected targeted area. PMID:29053569

  2. Two antenna, two pass interferometric synthetic aperture radar

    DOEpatents

    Martinez, Ana; Doerry, Armin W.; Bickel, Douglas L.

    2005-06-28

    A multi-antenna, multi-pass IFSAR mode utilizing data driven alignment of multiple independent passes can combine the scaling accuracy of a two-antenna, one-pass IFSAR mode with the height-noise performance of a one-antenna, two-pass IFSAR mode. A two-antenna, two-pass IFSAR mode can accurately estimate the larger antenna baseline from the data itself and reduce height-noise, allowing for more accurate information about target ground position locations and heights. The two-antenna, two-pass IFSAR mode can use coarser IFSAR data to estimate the larger antenna baseline. Multi-pass IFSAR can be extended to more than two (2) passes, thereby allowing true three-dimensional radar imaging from stand-off aircraft and satellite platforms.

  3. 48 CFR 1852.216-84 - Estimated cost and incentive fee.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Provisions and Clauses 1852.216-84 Estimated cost and incentive fee. As prescribed in 1816.406-70(d), insert the following clause: Estimated Cost and Incentive Fee (OCT 1996) The target cost of this contract is $___. The target fee of this contract is $___. The total target cost and target fee as contemplated by the...

  4. The impact of urban regeneration programmes on health and health-related behaviour: Evaluation of the Dutch District Approach 6.5 years from the start.

    PubMed

    Ruijsbroek, Annemarie; Wong, Albert; Kunst, Anton E; van den Brink, Carolien; van Oers, Hans A M; Droomers, Mariël; Stronks, Karien

    2017-01-01

    Large-scale regeneration programmes to improve the personal conditions and living circumstances in deprived areas may affect health and the lifestyle of the residents. Previous evaluations concluded that a large-scale urban regeneration programme in the Netherlands had some positive effects within 3.5 years. The aim of the current study was to evaluate the effects at the longer run. With a quasi-experimental research design we assessed changes in the prevalence of general health, mental health, physical activity, overweight, obesity, and smoking between the pre-intervention (2003-04 -mid 2008) and intervention period (mid 2008-2013-14) in 40 deprived target districts and comparably deprived control districts. We used the Difference-in-Difference (DiD) to assess programme impact. Additionally, we stratified analyses by sex and by the intensity of the regeneration programme. Changes in health and health related behaviours from pre-intervention to the intervention period were about equally large in the target districts as in control districts. DiD impact estimates were inconsistent and not statistically significant. Sex differences in DiD estimates were not consistent or significant. Furthermore, DiD impact estimates were not consistently larger in target districts with more intensive intervention programmes. We found no evidence that this Dutch urban regeneration programme had an impact in the longer run on self-reported health and related behaviour at the area level.

  5. Setting Priorities in Behavioral Interventions: An Application to Reducing Phishing Risk.

    PubMed

    Canfield, Casey Inez; Fischhoff, Baruch

    2018-04-01

    Phishing risk is a growing area of concern for corporations, governments, and individuals. Given the evidence that users vary widely in their vulnerability to phishing attacks, we demonstrate an approach for assessing the benefits and costs of interventions that target the most vulnerable users. Our approach uses Monte Carlo simulation to (1) identify which users were most vulnerable, in signal detection theory terms; (2) assess the proportion of system-level risk attributable to the most vulnerable users; (3) estimate the monetary benefit and cost of behavioral interventions targeting different vulnerability levels; and (4) evaluate the sensitivity of these results to whether the attacks involve random or spear phishing. Using parameter estimates from previous research, we find that the most vulnerable users were less cautious and less able to distinguish between phishing and legitimate emails (positive response bias and low sensitivity, in signal detection theory terms). They also accounted for a large share of phishing risk for both random and spear phishing attacks. Under these conditions, our analysis estimates much greater net benefit for behavioral interventions that target these vulnerable users. Within the range of the model's assumptions, there was generally net benefit even for the least vulnerable users. However, the differences in the return on investment for interventions with users with different degrees of vulnerability indicate the importance of measuring that performance, and letting it guide interventions. This study suggests that interventions to reduce response bias, rather than to increase sensitivity, have greater net benefit. © 2017 Society for Risk Analysis.

  6. Cost effectiveness of EML4-ALK fusion testing and first-line crizotinib treatment for patients with advanced ALK-positive non-small-cell lung cancer.

    PubMed

    Djalalov, Sandjar; Beca, Jaclyn; Hoch, Jeffrey S; Krahn, Murray; Tsao, Ming-Sound; Cutz, Jean-Claude; Leighl, Natasha B

    2014-04-01

    ALK-targeted therapy with crizotinib offers significant improvement in clinical outcomes for the treatment of EML4-ALK fusion-positive non-small-cell lung cancer (NSCLC). We estimated the cost effectiveness of EML4-ALK fusion testing in combination with targeted first-line crizotinib treatment in Ontario. A cost-effectiveness analysis was conducted using a Markov model from the Canadian Public health (Ontario) perspective and a lifetime horizon in patients with stage IV NSCLC with nonsquamous histology. Transition probabilities and mortality rates were calculated from the Ontario Cancer Registry and Cancer Care Ontario New Drug Funding Program (CCO NDFP). Costs were obtained from the Ontario Case Costing Initiative, CCO NDFP, University Health Network, and literature. Molecular testing with first-line targeted crizotinib treatment in the population with advanced nonsquamous NSCLC resulted in a gain of 0.011 quality-adjusted life-years (QALYs) compared with standard care. The incremental cost was Canadian $2,725 per patient, and the incremental cost-effectiveness ratio (ICER) was $255,970 per QALY gained. Among patients with known EML4-ALK-positive advanced NSCLC, first-line crizotinib therapy provided 0.379 additional QALYs, cost an additional $95,043 compared with standard care, and produced an ICER of $250,632 per QALY gained. The major driver of cost effectiveness was drug price. EML4-ALK fusion testing in stage IV nonsquamous NSCLC with crizotinib treatment for ALK-positive patients is not cost effective in the setting of high drug costs and a low biomarker frequency in the population.

  7. Action-specific judgment, not perception: Fitts' law performance is related to estimates of target width only when participants are given a performance score.

    PubMed

    Zelaznik, Howard N; Forney, Laura A

    2016-08-01

    Proponents of the action-specific account of perception and action posit that participants perceive their environment relative to their capabilities. For example, softball players who batted well judge the ball as being larger compared to players who did not hit as well. In the present study, we examined this issue in the context of a well-known speed-accuracy movement task that can be examined in the laboratory, repetitive Fitts aiming. In the Fitts task, a performer moved as quickly and as accurately as possible between two targets, D units of distance apart (between 2.5 and 20.0 cm) and of W width (1.0 cm or less). In the Fitts task, we posited that individuals do not have access to performance quality. Thus, we asked whether individual differences in Fitts task performance was related to perception of target width. If Fitts task performance is related to perception of target width, then the action-specific effect on perception does not require explicit knowledge of performance and, furthermore, these effects reside during on-line visual control of the task. We show that only when subjects were provided with a performance score was there a relation between Fitts task performance and target width judgment error. We interpret this result to mean that action-specific effects do not occur during perceptual processing of the task, but action-specific effects are the result of postperformance evaluation processes.

  8. Mediators of effects of a selective family-focused violence prevention approach for middle school students.

    PubMed

    2012-02-01

    This study examined how parenting and family characteristics targeted in a selective prevention program mediated effects on key youth proximal outcomes related to violence perpetration. The selective intervention was evaluated within the context of a multi-site trial involving random assignment of 37 schools to four conditions: a universal intervention composed of a student social-cognitive curriculum and teacher training, a selective family-focused intervention with a subset of high-risk students, a condition combining these two interventions, and a no-intervention control condition. Two cohorts of sixth-grade students (total N = 1,062) exhibiting high levels of aggression and social influence were the sample for this study. Analyses of pre-post change compared to controls using intent-to-treat analyses found no significant effects. However, estimates incorporating participation of those assigned to the intervention and predicted participation among those not assigned revealed significant positive effects on student aggression, use of aggressive strategies for conflict management, and parental estimation of student's valuing of achievement. Findings also indicated intervention effects on two targeted family processes: discipline practices and family cohesion. Mediation analyses found evidence that change in these processes mediated effects on some outcomes, notably aggressive behavior and valuing of school achievement. Results support the notion that changing parenting practices and the quality of family relationships can prevent the escalation in aggression and maintain positive school engagement for high-risk youth.

  9. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing.

    PubMed

    Li, Jun; Lin, Qiu-Hua; Kang, Chun-Yu; Wang, Kai; Yang, Xiu-Ting

    2018-03-18

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets.

  10. In vivo estimation of target registration errors during augmented reality laparoscopic surgery.

    PubMed

    Thompson, Stephen; Schneider, Crispin; Bosi, Michele; Gurusamy, Kurinchi; Ourselin, Sébastien; Davidson, Brian; Hawkes, David; Clarkson, Matthew J

    2018-06-01

    Successful use of augmented reality for laparoscopic surgery requires that the surgeon has a thorough understanding of the likely accuracy of any overlay. Whilst the accuracy of such systems can be estimated in the laboratory, it is difficult to extend such methods to the in vivo clinical setting. Herein we describe a novel method that enables the surgeon to estimate in vivo errors during use. We show that the method enables quantitative evaluation of in vivo data gathered with the SmartLiver image guidance system. The SmartLiver system utilises an intuitive display to enable the surgeon to compare the positions of landmarks visible in both a projected model and in the live video stream. From this the surgeon can estimate the system accuracy when using the system to locate subsurface targets not visible in the live video. Visible landmarks may be either point or line features. We test the validity of the algorithm using an anatomically representative liver phantom, applying simulated perturbations to achieve clinically realistic overlay errors. We then apply the algorithm to in vivo data. The phantom results show that using projected errors of surface features provides a reliable predictor of subsurface target registration error for a representative human liver shape. Applying the algorithm to in vivo data gathered with the SmartLiver image-guided surgery system shows that the system is capable of accuracies around 12 mm; however, achieving this reliably remains a significant challenge. We present an in vivo quantitative evaluation of the SmartLiver image-guided surgery system, together with a validation of the evaluation algorithm. This is the first quantitative in vivo analysis of an augmented reality system for laparoscopic surgery.

  11. Synchronizing the tracking eye movements with the motion of a visual target: Basic neural processes.

    PubMed

    Goffart, Laurent; Bourrelly, Clara; Quinet, Julie

    2017-01-01

    In primates, the appearance of an object moving in the peripheral visual field elicits an interceptive saccade that brings the target image onto the foveae. This foveation is then maintained more or less efficiently by slow pursuit eye movements and subsequent catch-up saccades. Sometimes, the tracking is such that the gaze direction looks spatiotemporally locked onto the moving object. Such a spatial synchronism is quite spectacular when one considers that the target-related signals are transmitted to the motor neurons through multiple parallel channels connecting separate neural populations with different conduction speeds and delays. Because of the delays between the changes of retinal activity and the changes of extraocular muscle tension, the maintenance of the target image onto the fovea cannot be driven by the current retinal signals as they correspond to past positions of the target. Yet, the spatiotemporal coincidence observed during pursuit suggests that the oculomotor system is driven by a command estimating continuously the current location of the target, i.e., where it is here and now. This inference is also supported by experimental perturbation studies: when the trajectory of an interceptive saccade is experimentally perturbed, a correction saccade is produced in flight or after a short delay, and brings the gaze next to the location where unperturbed saccades would have landed at about the same time, in the absence of visual feedback. In this chapter, we explain how such correction can be supported by previous visual signals without assuming "predictive" signals encoding future target locations. We also describe the basic neural processes which gradually yield the synchronization of eye movements with the target motion. When the process fails, the gaze is driven by signals related to past locations of the target, not by estimates to its upcoming locations, and a catch-up is made to reinitiate the synchronization. © 2017 Elsevier B.V. All rights reserved.

  12. Radiance and atmosphere propagation-based method for the target range estimation

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan

    2012-06-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat system. However, the performance of such active sensor devices is degraded tremendously by jamming signal from the enemy. This paper proposes a simple range estimation method between the target and the sensor. Passive IR sensors measures infrared (IR) light radiance radiating from objects in dierent wavelength and this method shows robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and is attenuated by various factors, in particular the distance between the sensor and the target and atmosphere environment. MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the result from MODTRAN and measured radiance, the target range is estimated. To statistically analyze the performance of proposed method, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao Lower Bound (CRLB) via the probability density function of measured radiance. And we also compare CRLB and the variance of and ML estimation using Monte-Carlo.

  13. Topography of eye-position sensitivity of saccades evoked electrically from the cat's superior colliculus.

    PubMed

    McIlwain, J T

    1990-03-01

    Saccades evoked electrically from the deep layers of the superior colliculus have been examined in the alert cat with its head fixed. Amplitudes of the vertical and horizontal components varied linearly with the starting position of the eye. The slopes of the linear-regression lines provided an estimate of the sensitivity of these components to initial eye position. In observations on 29 sites in nine cats, the vertical and horizontal components of saccades evoked from a given site were rarely influenced to the same degree by initial eye position. For most sites, the horizontal component was more sensitive than the vertical component. Sensitivities of vertical and horizontal components were lowest near the representations of the horizontal and vertical meridians, respectively, of the collicular retinotopic map, but otherwise exhibited no systematic retinotopic dependence. Estimates of component amplitudes for saccades evoked from the center of the oculomotor range also diverged significantly from those predicted from the retinotopic map. The results of this and previous studies indicate that electrical stimulation of the cat's superior colliculus cannot yield a unique oculomotor map or one that is in register everywhere with the sensory retinotopic map. Several features of these observations suggest that electrical stimulation of the colliculus produces faulty activation of a saccadic control system that computes target position with respect to the head and that small and large saccades are controlled differently.

  14. Estimating Elevation Angles From SAR Crosstalk

    NASA Technical Reports Server (NTRS)

    Freeman, Anthony

    1994-01-01

    Scheme for processing polarimetric synthetic-aperture-radar (SAR) image data yields estimates of elevation angles along radar beam to target resolution cells. By use of estimated elevation angles, measured distances along radar beam to targets (slant ranges), and measured altitude of aircraft carrying SAR equipment, one can estimate height of target terrain in each resolution cell. Monopulselike scheme yields low-resolution topographical data.

  15. An Improved Method of Pose Estimation for Lighthouse Base Station Extension.

    PubMed

    Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang

    2017-10-22

    In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal.

  16. An Improved Method of Pose Estimation for Lighthouse Base Station Extension

    PubMed Central

    Yang, Yi; Weng, Dongdong; Li, Dong; Xun, Hang

    2017-01-01

    In 2015, HTC and Valve launched a virtual reality headset empowered with Lighthouse, the cutting-edge space positioning technology. Although Lighthouse is superior in terms of accuracy, latency and refresh rate, its algorithms do not support base station expansion, and is flawed concerning occlusion in moving targets, that is, it is unable to calculate their poses with a small set of sensors, resulting in the loss of optical tracking data. In view of these problems, this paper proposes an improved pose estimation algorithm for cases where occlusion is involved. Our algorithm calculates the pose of a given object with a unified dataset comprising of inputs from sensors recognized by all base stations, as long as three or more sensors detect a signal in total, no matter from which base station. To verify our algorithm, HTC official base stations and autonomous developed receivers are used for prototyping. The experiment result shows that our pose calculation algorithm can achieve precise positioning when a few sensors detect the signal. PMID:29065509

  17. Aerial vehicles collision avoidance using monocular vision

    NASA Astrophysics Data System (ADS)

    Balashov, Oleg; Muraviev, Vadim; Strotov, Valery

    2016-10-01

    In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.

  18. [Evaluation on the role of hepatitis A vaccine in the prevention and control of hepatitis A in Tianjin city].

    PubMed

    Zhang, Zhi-lun; Zhu, Xiang-jun; Ding, Ya-xing; Xie, Xiao-hua; Gao, Zhi-gang; Li, Yong-cheng; Zhang, Ying; Xia, Wei-dong; Liu, Yong

    2007-10-01

    To evaluate the effects of prevention and control strategies on hepatitis A. Surveillance data on hepatitis A from 1990 to 2006 in Tianjin was analyzed, and the coverage rate of hepatitis A vaccine among targeted population was estimated, to compare the anti-HAV IgG level of children younger than 15 years old in 1999 and in 2005. Results showed that a) the morbidity of hepatitis A decreased from 25.26/10(5) in 1990 to 0.82/10(5) in 2006; b) the ratio of hepatitis A in viral hepatitis decreased from 30.43% in 1990 to 1.05% in 2006; c) the estimated coverage rate was 72.7%; d) the positive rate of anti-HAV among children younger than 15 years old in 2005 was distinctly higher than that in 1999. Positive results showed that it was successful to use hepatitis A vaccine as the strategy to prevent and control hepatitis A in the past five years in Tianjin.

  19. Target Information Processing: A Joint Decision and Estimation Approach

    DTIC Science & Technology

    2012-03-29

    ground targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important...targets ( track - before - detect ) using computer cluster and graphics processing unit. Estimation and filtering theory is one of the most important

  20. Tracking Multiple Video Targets with an Improved GM-PHD Tracker

    PubMed Central

    Zhou, Xiaolong; Yu, Hui; Liu, Honghai; Li, Youfu

    2015-01-01

    Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art. PMID:26633422

  1. SU-E-T-422: Fast Analytical Beamlet Optimization for Volumetric Intensity-Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Kenny S K; Lee, Louis K Y; Xing, L

    2015-06-15

    Purpose: To implement a fast optimization algorithm on CPU/GPU heterogeneous computing platform and to obtain an optimal fluence for a given target dose distribution from the pre-calculated beamlets in an analytical approach. Methods: The 2D target dose distribution was modeled as an n-dimensional vector and estimated by a linear combination of independent basis vectors. The basis set was composed of the pre-calculated beamlet dose distributions at every 6 degrees of gantry angle and the cost function was set as the magnitude square of the vector difference between the target and the estimated dose distribution. The optimal weighting of the basis,more » which corresponds to the optimal fluence, was obtained analytically by the least square method. Those basis vectors with a positive weighting were selected for entering into the next level of optimization. Totally, 7 levels of optimization were implemented in the study.Ten head-and-neck and ten prostate carcinoma cases were selected for the study and mapped to a round water phantom with a diameter of 20cm. The Matlab computation was performed in a heterogeneous programming environment with Intel i7 CPU and NVIDIA Geforce 840M GPU. Results: In all selected cases, the estimated dose distribution was in a good agreement with the given target dose distribution and their correlation coefficients were found to be in the range of 0.9992 to 0.9997. Their root-mean-square error was monotonically decreasing and converging after 7 cycles of optimization. The computation took only about 10 seconds and the optimal fluence maps at each gantry angle throughout an arc were quickly obtained. Conclusion: An analytical approach is derived for finding the optimal fluence for a given target dose distribution and a fast optimization algorithm implemented on the CPU/GPU heterogeneous computing environment greatly reduces the optimization time.« less

  2. Centroid stabilization for laser alignment to corner cubes: designing a matched filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, Abdul A. S.; Bliss, Erlan; Brunton, Gordon

    2016-11-08

    Automation of image-based alignment of National Ignition Facility high energy laser beams is providing the capability of executing multiple target shots per day. One important alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retroreflecting corner cubes as centering references for each beam. Beam-to-beam variations and systematic beam changes over time in the FOA corner cube images can lead to a reduction in accuracy as well as increased convergence durations for the template-based position detector. A systematic approach is described that maintains FOA corner cube templates and guaranteesmore » stable position estimation.« less

  3. Characterization and modelling of the spatially- and spectrally-varying point-spread function in hyperspectral imaging systems for computational correction of axial optical aberrations

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.

  4. 48 CFR 1852.216-84 - Estimated cost and incentive fee.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the following clause: Estimated Cost and Incentive Fee (OCT 1996) The target cost of this contract is $___. The target fee of this contract is $___. The total target cost and target fee as contemplated by the...

  5. Shear wave arrival time estimates correlate with local speckle pattern.

    PubMed

    Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan

    2015-12-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared with the variation with axial position/ local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture.

  6. Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern

    PubMed Central

    McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan

    2016-01-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared to the variation with axial position/local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture. PMID:26670847

  7. A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks.

    PubMed

    Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek; You, Ilsun

    2017-11-29

    As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks' survivability, in terms of anti-interference, network energy saving, etc.

  8. A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks

    PubMed Central

    Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek

    2017-01-01

    As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks’ survivability, in terms of anti-interference, network energy saving, etc. PMID:29186072

  9. Post-Flight Estimation of Motion of Space Structures: Part 1

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Breckenridge, William

    2008-01-01

    A computer program estimates the relative positions and orientations of two space structures from data on the angular positions and distances of fiducial objects on one structure as measured by a target tracking electronic camera and laser range finders on another structure. The program is written specifically for determining the relative alignments of two antennas, connected by a long truss, deployed in outer space from a space shuttle. The program is based partly on transformations among the various coordinate systems involved in the measurements and on a nonlinear mathematical model of vibrations of the truss. The program implements a Kalman filter that blends the measurement data with data from the model. Using time series of measurement data from the tracking camera and range finders, the program generates time series of data on the relative position and orientation of the antennas. A similar program described in a prior NASA Tech Briefs article was used onboard for monitoring the structures during flight. The present program is more precise and designed for use on Earth in post-flight processing of the measurement data to enable correction, for antenna motions, of scientific data acquired by use of the antennas.

  10. Homography-based visual servo regulation of mobile robots.

    PubMed

    Fang, Yongchun; Dixon, Warren E; Dawson, Darren M; Chawda, Prakash

    2005-10-01

    A monocular camera-based vision system attached to a mobile robot (i.e., the camera-in-hand configuration) is considered in this paper. By comparing corresponding target points of an object from two different camera images, geometric relationships are exploited to derive a transformation that relates the actual position and orientation of the mobile robot to a reference position and orientation. This transformation is used to synthesize a rotation and translation error system from the current position and orientation to the fixed reference position and orientation. Lyapunov-based techniques are used to construct an adaptive estimate to compensate for a constant, unmeasurable depth parameter, and to prove asymptotic regulation of the mobile robot. The contribution of this paper is that Lyapunov techniques are exploited to craft an adaptive controller that enables mobile robot position and orientation regulation despite the lack of an object model and the lack of depth information. Experimental results are provided to illustrate the performance of the controller.

  11. Optimal Orbital Coverage of Theater Operations and Targets

    DTIC Science & Technology

    2007-03-01

    3.18). (3.18) 1.000140612 .016708617cos( ) .000139589cos(2 )r M= − − M The obliquity of the ecliptic (ε ) was determined using equation (3.19...estimated using equation (3.16). UT1357.5277233 35999.05034M T= + o (3.16) The ecliptic longitude ( eclipticλ ) was determined using equation (3.17...1.914666471 sin( ) .019994643sin(2 ) ecliptic M Mλ λ= + + o M (3.17) The magnitude of the position vector to the sun was solved for using equation

  12. Extraction of the pretzelosity distribution from experimental data

    DOE PAGES

    Lefky, Christopher; Prokudin, Alexei

    2015-02-13

    We attempt an extraction of the pretzelosity distribution (more » $$h^{\\perp}_{1T}$$) from preliminary COMPASS, HERMES, and JLAB experimental data on $$\\sin(3\\phi_h - \\phi_S)$$ asymmetry on proton and deuteron targets. The resulting distributions, albeit big errors, show tendency for up quark pretzelosity to be positive and down quark pretzelosity to be negative. A model relation of pretzelosity distribution and Orbital Angular Momentum of quarks is used to estimate contributions of up and down quarks.« less

  13. Optimal Estimation of Glider’s Underwater Trajectory with Depth-Dependent Correction Using the Navy Coastal Ocean Model with Application to Antisubmarine Warfare

    DTIC Science & Technology

    2014-09-01

    deployed simultaneously. For example, a fleet of gliders would be able to act as an intelligence network by gathering underwater target information ...and to verify our novel method, a glider’s real underwater trajectory information must be obtained by using additional sensors like ADCP or DVL (see...lacks of inexpensive and efficient localization sensors during its subsurface mission. Therefore, knowing its precise underwater position is a

  14. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079083 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson, Expedition 40 commander, enters data in a computer in preparation for a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  15. SPHERES-Vertigo experiment

    NASA Image and Video Library

    2014-07-25

    ISS040-E-080130 (25 July 2014) --- In the International Space Station?s Kibo laboratory, European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  16. Detection and tracking of a moving target using SAR images with the particle filter-based track-before-detect algorithm.

    PubMed

    Gao, Han; Li, Jingwen

    2014-06-19

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB.

  17. Detection and Tracking of a Moving Target Using SAR Images with the Particle Filter-Based Track-Before-Detect Algorithm

    PubMed Central

    Gao, Han; Li, Jingwen

    2014-01-01

    A novel approach to detecting and tracking a moving target using synthetic aperture radar (SAR) images is proposed in this paper. Achieved with the particle filter (PF) based track-before-detect (TBD) algorithm, the approach is capable of detecting and tracking the low signal-to-noise ratio (SNR) moving target with SAR systems, which the traditional track-after-detect (TAD) approach is inadequate for. By incorporating the signal model of the SAR moving target into the algorithm, the ambiguity in target azimuth position and radial velocity is resolved while tracking, which leads directly to the true estimation. With the sub-area substituted for the whole area to calculate the likelihood ratio and a pertinent choice of the number of particles, the computational efficiency is improved with little loss in the detection and tracking performance. The feasibility of the approach is validated and the performance is evaluated with Monte Carlo trials. It is demonstrated that the proposed approach is capable to detect and track a moving target with SNR as low as 7 dB, and outperforms the traditional TAD approach when the SNR is below 14 dB. PMID:24949640

  18. Burglar Target Selection

    PubMed Central

    Townsley, Michael; Bernasco, Wim; Ruiter, Stijn; Johnson, Shane D.; White, Gentry; Baum, Scott

    2015-01-01

    Objectives: This study builds on research undertaken by Bernasco and Nieuwbeerta and explores the generalizability of a theoretically derived offender target selection model in three cross-national study regions. Methods: Taking a discrete spatial choice approach, we estimate the impact of both environment- and offender-level factors on residential burglary placement in the Netherlands, the United Kingdom, and Australia. Combining cleared burglary data from all study regions in a single statistical model, we make statistical comparisons between environments. Results: In all three study regions, the likelihood an offender selects an area for burglary is positively influenced by proximity to their home, the proportion of easily accessible targets, and the total number of targets available. Furthermore, in two of the three study regions, juvenile offenders under the legal driving age are significantly more influenced by target proximity than adult offenders. Post hoc tests indicate the magnitudes of these impacts vary significantly between study regions. Conclusions: While burglary target selection strategies are consistent with opportunity-based explanations of offending, the impact of environmental context is significant. As such, the approach undertaken in combining observations from multiple study regions may aid criminology scholars in assessing the generalizability of observed findings across multiple environments. PMID:25866418

  19. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing

    PubMed Central

    2018-01-01

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets. PMID:29562642

  20. Relative range error evaluation of terrestrial laser scanners using a plate, a sphere, and a novel dual-sphere-plate target.

    PubMed

    Muralikrishnan, Bala; Rachakonda, Prem; Lee, Vincent; Shilling, Meghan; Sawyer, Daniel; Cheok, Geraldine; Cournoyer, Luc

    2017-12-01

    Terrestrial laser scanners (TLS) are a class of 3D imaging systems that produce a 3D point cloud by measuring the range and two angles to a point. The fundamental measurement of a TLS is range. Relative range error is one component of the overall range error of TLS and its estimation is therefore an important aspect in establishing metrological traceability of measurements performed using these systems. Target geometry is an important aspect to consider when realizing the relative range tests. The recently published ASTM E2938-15 mandates the use of a plate target for the relative range tests. While a plate target may reasonably be expected to produce distortion free data even at far distances, the target itself needs careful alignment at each of the relative range test positions. In this paper, we discuss relative range experiments performed using a plate target and then address the advantages and limitations of using a sphere target. We then present a novel dual-sphere-plate target that draws from the advantages of the sphere and the plate without the associated limitations. The spheres in the dual-sphere-plate target are used simply as fiducials to identify a point on the surface of the plate that is common to both the scanner and the reference instrument, thus overcoming the need to carefully align the target.

  1. TIde: a software for the systematic scanning of drug targets in kinetic network models

    PubMed Central

    Schulz, Marvin; Bakker, Barbara M; Klipp, Edda

    2009-01-01

    Background During the stages of the development of a potent drug candidate compounds can fail for several reasons. One of them, the efficacy of a candidate, can be estimated in silico if an appropriate ordinary differential equation model of the affected pathway is available. With such a model at hand it is also possible to detect reactions having a large effect on a certain variable such as a substance concentration. Results We show an algorithm that systematically tests the influence of activators and inhibitors of different type and strength acting at different positions in the network. The effect on a quantity to be selected (e.g. a steady state flux or concentration) is calculated. Moreover, combinations of two inhibitors or one inhibitor and one activator targeting different network positions are analysed. Furthermore, we present TIde (Target Identification), an open source, platform independent tool to investigate ordinary differential equation models in the common systems biology markup language format. It automatically assigns the respectively altered kinetics to the inhibited or activated reactions, performs the necessary calculations, and provides a graphical output of the analysis results. For illustration, TIde is used to detect optimal inhibitor positions in simple branched networks, a signalling pathway, and a well studied model of glycolysis in Trypanosoma brucei. Conclusion Using TIde, we show in the branched models under which conditions inhibitions in a certain pathway can affect a molecule concentrations in a different. In the signalling pathway we illuminate which inhibitions have an effect on the signalling characteristics of the last active kinase. Finally, we compare our set of best targets in the glycolysis model with a similar analysis showing the applicability of our tool. PMID:19840374

  2. A learning–based approach to artificial sensory feedback leads to optimal integration

    PubMed Central

    Dadarlat, Maria C.; O’Doherty, Joseph E.; Sabes, Philip N.

    2014-01-01

    Proprioception—the sense of the body’s position in space—plays an important role in natural movement planning and execution and will likewise be necessary for successful motor prostheses and Brain–Machine Interfaces (BMIs). Here, we demonstrated that monkeys could learn to use an initially unfamiliar multi–channel intracortical microstimulation (ICMS) signal, which provided continuous information about hand position relative to an unseen target, to complete accurate reaches. Furthermore, monkeys combined this artificial signal with vision to form an optimal, minimum–variance estimate of relative hand position. These results demonstrate that a learning–based approach can be used to provide a rich artificial sensory feedback signal, suggesting a new strategy for restoring proprioception to patients using BMIs as well as a powerful new tool for studying the adaptive mechanisms of sensory integration. PMID:25420067

  3. Motion prediction in MRI-guided radiotherapy based on interleaved orthogonal cine-MRI

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Paganelli, C.; Lee, D.; Greer, P. B.; Baroni, G.; Keall, P. J.; Riboldi, M.

    2016-01-01

    In-room cine-MRI guidance can provide non-invasive target localization during radiotherapy treatment. However, in order to cope with finite imaging frequency and system latencies between target localization and dose delivery, tumour motion prediction is required. This work proposes a framework for motion prediction dedicated to cine-MRI guidance, aiming at quantifying the geometric uncertainties introduced by this process for both tumour tracking and beam gating. The tumour position, identified through scale invariant features detected in cine-MRI slices, is estimated at high-frequency (25 Hz) using three independent predictors, one for each anatomical coordinate. Linear extrapolation, auto-regressive and support vector machine algorithms are compared against systems that use no prediction or surrogate-based motion estimation. Geometric uncertainties are reported as a function of image acquisition period and system latency. Average results show that the tracking error RMS can be decreased down to a [0.2; 1.2] mm range, for acquisition periods between 250 and 750 ms and system latencies between 50 and 300 ms. Except for the linear extrapolator, tracking and gating prediction errors were, on average, lower than those measured for surrogate-based motion estimation. This finding suggests that cine-MRI guidance, combined with appropriate prediction algorithms, could relevantly decrease geometric uncertainties in motion compensated treatments.

  4. Estimation of fish biomass using environmental DNA.

    PubMed

    Takahara, Teruhiko; Minamoto, Toshifumi; Yamanaka, Hiroki; Doi, Hideyuki; Kawabata, Zen'ichiro

    2012-01-01

    Environmental DNA (eDNA) from aquatic vertebrates has recently been used to estimate the presence of a species. We hypothesized that fish release DNA into the water at a rate commensurate with their biomass. Thus, the concentration of eDNA of a target species may be used to estimate the species biomass. We developed an eDNA method to estimate the biomass of common carp (Cyprinus carpio L.) using laboratory and field experiments. In the aquarium, the concentration of eDNA changed initially, but reached an equilibrium after 6 days. Temperature had no effect on eDNA concentrations in aquaria. The concentration of eDNA was positively correlated with carp biomass in both aquaria and experimental ponds. We used this method to estimate the biomass and distribution of carp in a natural freshwater lagoon. We demonstrated that the distribution of carp eDNA concentration was explained by water temperature. Our results suggest that biomass data estimated from eDNA concentration reflects the potential distribution of common carp in the natural environment. Measuring eDNA concentration offers a non-invasive, simple, and rapid method for estimating biomass. This method could inform management plans for the conservation of ecosystems.

  5. Estimation of Fish Biomass Using Environmental DNA

    PubMed Central

    Takahara, Teruhiko; Minamoto, Toshifumi; Yamanaka, Hiroki; Doi, Hideyuki; Kawabata, Zen'ichiro

    2012-01-01

    Environmental DNA (eDNA) from aquatic vertebrates has recently been used to estimate the presence of a species. We hypothesized that fish release DNA into the water at a rate commensurate with their biomass. Thus, the concentration of eDNA of a target species may be used to estimate the species biomass. We developed an eDNA method to estimate the biomass of common carp (Cyprinus carpio L.) using laboratory and field experiments. In the aquarium, the concentration of eDNA changed initially, but reached an equilibrium after 6 days. Temperature had no effect on eDNA concentrations in aquaria. The concentration of eDNA was positively correlated with carp biomass in both aquaria and experimental ponds. We used this method to estimate the biomass and distribution of carp in a natural freshwater lagoon. We demonstrated that the distribution of carp eDNA concentration was explained by water temperature. Our results suggest that biomass data estimated from eDNA concentration reflects the potential distribution of common carp in the natural environment. Measuring eDNA concentration offers a non-invasive, simple, and rapid method for estimating biomass. This method could inform management plans for the conservation of ecosystems. PMID:22563411

  6. On-Orbit 3-Dimensional Electrostatic Detumble for Generic Spacecraft Geometries

    NASA Astrophysics Data System (ADS)

    Bennett, Trevor J.

    In recent years, there is a growing interest in active debris removal and on-orbit servicing of Earth orbiting assets. The growing need for such approaches is often exemplified by the Iridium-Kosmos collision in 2009 that generated thousands of debris fragments. There exists a variety of active debris removal and on-orbit servicing technologies in development. Conventional docking mechanisms and mechanical capture by actuated manipulators, exemplified by NASA's Restore-L mission, require slow target tumble rates or more aggressive circumnavigation rate matching. The tumble rate limitations can be overcome with flexible capture systems such nets, harpoons, or tethers yet these systems require complex deployment, towing, and/or interfacing strategies to avoid servicer and target damage. Alternatively, touchless methods overcome the tumble rate limitations by provide detumble control prior to a mechanical interface. This thesis explores electrostatic detumble technology to touchlessly reduce large target rotation rates of Geostationary satellites and debris. The technical challenges preceding flight implementation largely reside in the long-duration formation flying guidance, navigation, and control of a servicer spacecraft equipped with electrostatic charge transfer capability. Leveraging prior research into the electrostatic charging of spacecraft, electrostatic detumble control formulations are developed for both axisymmetric and generic target geometries. A novel relative position vector and associated relative orbit control approach is created to manage the long-duration proximity operations. Through detailed numerical simulations, the proposed detumble and relative motion control formulations demonstrate detumble of several thousand kilogram spacecraft tumbling at several degrees per second in only several days. The availability, either through modeling or sensing, of the relative attitude, relative position, and electrostatic potential are among key concerns with implementation of electrostatic detumble control on-orbit. Leveraging an extended Kalman filter scheme, the relative position information is readily obtained. In order to touchlessly acquire the target electrostatic potential, a nested two-time scale Kalman filter is employed to provide real-time estimates of both relative position and electrostatic potential while on-orbit. The culmination of the presented control formulations for generic spacecraft geometries, the proximity and formation flying control capability, and the availability of necessary state information provide significant contributions towards the viability of electrostatic detumble mission concepts.

  7. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: methods and phantom experiments.

    PubMed

    Song, Shuang; Zhang, Changchun; Liu, Li; Meng, Max Q-H

    2018-02-01

    Flexible surgical robot can work in confined and complex environments, which makes it a good option for minimally invasive surgery. In order to utilize flexible manipulators in complicated and constrained surgical environments, it is of great significance to monitor the position and shape of the curvilinear manipulator in real time during the procedures. In this paper, we propose a magnetic tracking-based planar shape sensing and navigation system for flexible surgical robots in the transoral surgery. The system can provide the real-time tip position and shape information of the robot during the operation. We use wire-driven flexible robot to serve as the manipulator. It has three degrees of freedom. A permanent magnet is mounted at the distal end of the robot. Its magnetic field can be sensed with a magnetic sensor array. Therefore, position and orientation of the tip can be estimated utilizing a tracking method. A shape sensing algorithm is then carried out to estimate the real-time shape based on the tip pose. With the tip pose and shape display in the 3D reconstructed CT model, navigation can be achieved. Using the proposed system, we carried out planar navigation experiments on a skull phantom to touch three different target positions under the navigation of the skull display interface. During the experiments, the real-time shape has been well monitored and distance errors between the robot tip and the targets in the skull have been recorded. The mean navigation error is [Formula: see text] mm, while the maximum error is 3.2 mm. The proposed method provides the advantages that no sensors are needed to mount on the robot and no line-of-sight problem. Experimental results verified the feasibility of the proposed method.

  8. 5 CFR 300.103 - Basic requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... leading to a target position at a higher level; and (ii) New employees, within a reasonable period of time... performance in the position to be filled (or in the target position in the case of an entry position) and the... position the required relevance may be based upon the target position when— (i) The entry position is a...

  9. 5 CFR 300.103 - Basic requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... leading to a target position at a higher level; and (ii) New employees, within a reasonable period of time... performance in the position to be filled (or in the target position in the case of an entry position) and the... position the required relevance may be based upon the target position when— (i) The entry position is a...

  10. 5 CFR 300.103 - Basic requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... leading to a target position at a higher level; and (ii) New employees, within a reasonable period of time... performance in the position to be filled (or in the target position in the case of an entry position) and the... position the required relevance may be based upon the target position when— (i) The entry position is a...

  11. 5 CFR 300.103 - Basic requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... leading to a target position at a higher level; and (ii) New employees, within a reasonable period of time... performance in the position to be filled (or in the target position in the case of an entry position) and the... position the required relevance may be based upon the target position when— (i) The entry position is a...

  12. An Improved Aerial Target Localization Method with a Single Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2017-01-01

    This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956

  13. Dual linear structured support vector machine tracking method via scale correlation filter

    NASA Astrophysics Data System (ADS)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  14. Wildlife Loss Estimates and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume Three, Hungry Horse Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Daniel

    1984-10-01

    This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Hungry Horse Dam project on the South Fork of the Flathead River and previous mitigation of theses losses. In order to develop and focus mitigation efforts, it was first necessary to estimate wildlife and wildlife hatitat losses attributable to the construction and operation of the project. The purpose of this report was to document the best available information concerning the degree of impacts to target wildlife species. Indirect benefits to wildlife species not listed will be identified during the development of alternative mitigation measures. Wildlifemore » species incurring positive impacts attributable to the project were identified.« less

  15. Onset factors in cerebral palsy: A systematic review.

    PubMed

    van Lieshout, Pascal; Candundo, Hamilton; Martino, Rosemary; Shin, Sabina; Barakat-Haddad, Caroline

    2017-07-01

    Studies have noted several factors associated with the occurrence of Cerebral Palsy (CP), yet considerable uncertainty remains about modifiable factors related to disease onset. A systematic review was performed to identify existing systematic reviews and primary studies pertaining to targeted factors associated with the onset of CP. The following databases were searched: MEDLINE, MEDLINE In Process, EMBASE, PsycINFO, Scopus, Web of Science, Cochrane Database of Systematic Reviews, CINHAL, ProQuest Dissertations & Theses, Huge Navigator, AARP Ageline. Variations of MeSH and keyword search terms were used. Critical appraisal was conducted on selected articles. Data extraction targeted reported factors, risk estimates, and 95% confidence intervals (CI). Findings identified two systematic reviews and three meta- analyses, as well as 83 studies of case control, cohort, and cross-sectional methodological designs. Selected studies indicated that lower gestational age was associated with the onset of CP. Medical diagnoses for the mother, in particular chorioamnionitis, was found to be positively associated with onset of CP. Preeclampsia was reported to be either inconclusive or positively associated with CP onset. Low birth weight predominantly indicated a positive association with the onset of CP, while male gender showed mixed findings. The combination of male gender with pre-term or low birth weight was also found to be positively associated with CP. Evidence was identified in the literature pertaining to specific factors relating to the onset of CP, in particular showing positive associations with lower gestational age and low birth weight. Copyright © 2016. Published by Elsevier B.V.

  16. On-line estimations of delivered radiation doses in three-dimensional conformal radiotherapy treatments of carcinoma uterine cervix patients in linear accelerator

    PubMed Central

    Putha, Suman Kumar; Saxena, P. U.; Banerjee, S.; Srinivas, Challapalli; Vadhiraja, B. M.; Ravichandran, Ramamoorthy; Joan, Mary; Pai, K. Dinesh

    2016-01-01

    Transmission of radiation fluence through patient's body has a correlation to the planned target dose. A method to estimate the delivered dose to target volumes was standardized using a beam level 0.6 cc ionization chamber (IC) positioned at electronic portal imaging device (EPID) plane from the measured transit signal (St) in patients with cancer of uterine cervix treated with three-dimensional conformal radiotherapy (3DCRT). The IC with buildup cap was mounted on linear accelerator EPID frame with fixed source to chamber distance of 146.3 cm, using a locally fabricated mount. Sts were obtained for different water phantom thicknesses and radiation field sizes which were then used to generate a calibration table against calculated midplane doses at isocenter (Diso,TPS), derived from the treatment planning system. A code was developed using MATLAB software which was used to estimate the in vivo dose at isocenter (Diso,Transit) from the measured Sts. A locally fabricated pelvic phantom validated the estimations of Diso,Transit before implementing this method on actual patients. On-line dose estimations were made (3 times during treatment for each patient) in 24 patients. The Diso,Transit agreement with Diso,TPS in phantom was within 1.7% and the mean percentage deviation with standard deviation is −1.37% ±2.03% (n = 72) observed in patients. Estimated in vivo dose at isocenter with this method provides a good agreement with planned ones which can be implemented as part of quality assurance in pelvic sites treated with simple techniques, for example, 3DCRT where there is a need for documentation of planned dose delivery. PMID:28144114

  17. On-line estimations of delivered radiation doses in three-dimensional conformal radiotherapy treatments of carcinoma uterine cervix patients in linear accelerator.

    PubMed

    Putha, Suman Kumar; Saxena, P U; Banerjee, S; Srinivas, Challapalli; Vadhiraja, B M; Ravichandran, Ramamoorthy; Joan, Mary; Pai, K Dinesh

    2016-01-01

    Transmission of radiation fluence through patient's body has a correlation to the planned target dose. A method to estimate the delivered dose to target volumes was standardized using a beam level 0.6 cc ionization chamber (IC) positioned at electronic portal imaging device (EPID) plane from the measured transit signal (S t ) in patients with cancer of uterine cervix treated with three-dimensional conformal radiotherapy (3DCRT). The IC with buildup cap was mounted on linear accelerator EPID frame with fixed source to chamber distance of 146.3 cm, using a locally fabricated mount. S t s were obtained for different water phantom thicknesses and radiation field sizes which were then used to generate a calibration table against calculated midplane doses at isocenter (D iso,TPS ), derived from the treatment planning system. A code was developed using MATLAB software which was used to estimate the in vivo dose at isocenter (D iso,Transit ) from the measured S t s. A locally fabricated pelvic phantom validated the estimations of D iso,Transit before implementing this method on actual patients. On-line dose estimations were made (3 times during treatment for each patient) in 24 patients. The D iso,Transit agreement with D iso,TPS in phantom was within 1.7% and the mean percentage deviation with standard deviation is -1.37% ±2.03% ( n = 72) observed in patients. Estimated in vivo dose at isocenter with this method provides a good agreement with planned ones which can be implemented as part of quality assurance in pelvic sites treated with simple techniques, for example, 3DCRT where there is a need for documentation of planned dose delivery.

  18. Quantifying spatial variability of AgI cloud seeding benefits and Ag enrichments in snow

    NASA Astrophysics Data System (ADS)

    Fisher, J.; Benner, S. G.; Lytle, M. L.; Kunkel, M. L.; Blestrud, D.; Holbrook, V. P.; Parkinson, S.; Edwards, R.

    2016-12-01

    Glaciogenic cloud seeding is an important scientific technology for enhancing water resources across in the Western United States. Cloud seeding enriches super cooled liquid water layers with plumes of silver iodide (AgI), an artificial ice nuclei. Recent studies using target-control regression analysis and modeling estimate glaciogenic cloud seeding increases snow precipitation between 3-15% annually. However, the efficacy of cloud seeding programs is difficult to assess using weather models and statistics alone. This study will supplement precipitation enhancement statistics and Weather Research and Forecasting (WRF) model outputs with ultra-trace chemistry. Combining precipitation enhancement estimates with trace chemistry data (to estimate AgI plume targeting accuracy) may provide a more robust analysis. Precipitation enhancement from the 2016 water year will be modeled two ways. First, by using double-mass curve. Annual SNOTEL data of the cumulative SWE in unseeded areas and cumulative SWE in seeded areas will be compared before, and after, the cloud seeding program's initiation in 2003. Any change in the double-mass curve's slope after 2003 may be attributed to cloud seeding. Second, WRF model estimates of precipitation will be compared to the observed precipitation at SNOTEL sites. The difference between observed and modeled precipitation in AgI seeded regions may also be attributed to cloud seeding (assuming modeled and observed data are comparable at unseeded SNOTEL stations). Ultra-trace snow chemistry data from the 2016 winter season will be used to validate whether estimated precipitation increases are positively correlated with the mass of silver in the snowpack.

  19. Probability of success for phase III after exploratory biomarker analysis in phase II.

    PubMed

    Götte, Heiko; Kirchner, Marietta; Sailer, Martin Oliver

    2017-05-01

    The probability of success or average power describes the potential of a future trial by weighting the power with a probability distribution of the treatment effect. The treatment effect estimate from a previous trial can be used to define such a distribution. During the development of targeted therapies, it is common practice to look for predictive biomarkers. The consequence is that the trial population for phase III is often selected on the basis of the most extreme result from phase II biomarker subgroup analyses. In such a case, there is a tendency to overestimate the treatment effect. We investigate whether the overestimation of the treatment effect estimate from phase II is transformed into a positive bias for the probability of success for phase III. We simulate a phase II/III development program for targeted therapies. This simulation allows to investigate selection probabilities and allows to compare the estimated with the true probability of success. We consider the estimated probability of success with and without subgroup selection. Depending on the true treatment effects, there is a negative bias without selection because of the weighting by the phase II distribution. In comparison, selection increases the estimated probability of success. Thus, selection does not lead to a bias in probability of success if underestimation due to the phase II distribution and overestimation due to selection cancel each other out. We recommend to perform similar simulations in practice to get the necessary information about the risk and chances associated with such subgroup selection designs. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Methodological comparisons for antimicrobial resistance surveillance in feedlot cattle

    PubMed Central

    2013-01-01

    Background The purpose of this study was to objectively compare methodological approaches that might be utilized in designing an antimicrobial resistance (AMR) surveillance program in beef feedlot cattle. Specifically, four separate comparisons were made to investigate their potential impact on estimates for prevalence of AMR. These included investigating potential differences between 2 different susceptibility testing methods (broth microdilution and disc diffusion), between 2 different target bacteria (non-type-specific E. coli [NTSEC] and Mannheimia haemolytica), between 2 strategies for sampling feces (individual samples collected per rectum and pooled samples collected from the pen floor), and between 2 strategies for determining which cattle to sample (cattle that were culture-positive for Mannheimia haemolytica and those that were culture-negative). Results Comparing two susceptibility testing methods demonstrated differences in the likelihood of detecting resistance between automated disk diffusion (BioMIC®) and broth microdilution (Sensititre®) for both E. coli and M. haemolytica. Differences were also detected when comparing resistance between two bacterial organisms within the same cattle; there was a higher likelihood of detecting resistance in E. coli than in M. haemolytica. Differences in resistance prevalence were not detected when using individual animal or composite pen sampling strategies. No differences in resistance prevalences were detected in E. coli recovered from cattle that were culture-positive for M. haemolytica compared to those that were culture-negative, suggesting that sampling strategies which targeted recovery of E. coli from M. haemolytica-positive cattle would not provide biased results. Conclusions We found that for general purposes, the susceptibility test selected for AMR surveillance must be carefully chosen considering the purpose of the surveillance since the ability to detect resistance appears to vary between these tests depending upon the population where they are applied. Continued surveillance of AMR in M. haemolytica recovered by nasopharyngeal swab is recommended if monitoring an animal health pathogen is an objective of the surveillance program as results of surveillance using fecal E. coli cannot be extrapolated to this important respiratory pathogen. If surveillance of E. coli was pursued in the same population, study populations could target animals that were culture-positive for M. haemolytica without biasing estimates for AMR in E. coli. Composite pen-floor sampling or sampling of individuals per-rectum could possibly be used interchangeably for monitoring resistance in E. coli. PMID:24144185

  1. Multiparametric MRI followed by targeted prostate biopsy for men with suspected prostate cancer: a clinical decision analysis

    PubMed Central

    Willis, Sarah R; Ahmed, Hashim U; Moore, Caroline M; Donaldson, Ian; Emberton, Mark; Miners, Alec H; van der Meulen, Jan

    2014-01-01

    Objective To compare the diagnostic outcomes of the current approach of transrectal ultrasound (TRUS)-guided biopsy in men with suspected prostate cancer to an alternative approach using multiparametric MRI (mpMRI), followed by MRI-targeted biopsy if positive. Design Clinical decision analysis was used to synthesise data from recently emerging evidence in a format that is relevant for clinical decision making. Population A hypothetical cohort of 1000 men with suspected prostate cancer. Interventions mpMRI and, if positive, MRI-targeted biopsy compared with TRUS-guided biopsy in all men. Outcome measures We report the number of men expected to undergo a biopsy as well as the numbers of correctly identified patients with or without prostate cancer. A probabilistic sensitivity analysis was carried out using Monte Carlo simulation to explore the impact of statistical uncertainty in the diagnostic parameters. Results In 1000 men, mpMRI followed by MRI-targeted biopsy ‘clinically dominates’ TRUS-guided biopsy as it results in fewer expected biopsies (600 vs 1000), more men being correctly identified as having clinically significant cancer (320 vs 250), and fewer men being falsely identified (20 vs 50). The mpMRI-based strategy dominated TRUS-guided biopsy in 86% of the simulations in the probabilistic sensitivity analysis. Conclusions Our analysis suggests that mpMRI followed by MRI-targeted biopsy is likely to result in fewer and better biopsies than TRUS-guided biopsy. Future research in prostate cancer should focus on providing precise estimates of key diagnostic parameters. PMID:24934207

  2. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brainmore » were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.« less

  3. Range estimation of passive infrared targets through the atmosphere

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon

    2013-04-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.

  4. A Connection Model between the Positioning Mechanism and Ultrasonic Measurement System via a Web Browser to Assess Acoustic Target Strength

    NASA Astrophysics Data System (ADS)

    Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko

    This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.

  5. Human tracking in thermal images using adaptive particle filters with online random forest learning

    NASA Astrophysics Data System (ADS)

    Ko, Byoung Chul; Kwak, Joon-Young; Nam, Jae-Yeal

    2013-11-01

    This paper presents a fast and robust human tracking method to use in a moving long-wave infrared thermal camera under poor illumination with the existence of shadows and cluttered backgrounds. To improve the human tracking performance while minimizing the computation time, this study proposes an online learning of classifiers based on particle filters and combination of a local intensity distribution (LID) with oriented center-symmetric local binary patterns (OCS-LBP). Specifically, we design a real-time random forest (RF), which is the ensemble of decision trees for confidence estimation, and confidences of the RF are converted into a likelihood function of the target state. First, the target model is selected by the user and particles are sampled. Then, RFs are generated using the positive and negative examples with LID and OCS-LBP features by online learning. The learned RF classifiers are used to detect the most likely target position in the subsequent frame in the next stage. Then, the RFs are learned again by means of fast retraining with the tracked object and background appearance in the new frame. The proposed algorithm is successfully applied to various thermal videos as tests and its tracking performance is better than those of other methods.

  6. Real-time auto-adaptive margin generation for MLC-tracked radiotherapy

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; Fast, M. F.; de Senneville, B. Denis; Nill, S.; Oelfke, U.; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2017-01-01

    In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing {{V}90 %} in the underdosed area about 47 % and 41 % , respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.

  7. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: Quality-assurance implications for target volume and organ-at-risk margination using daily CT-on-rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.

    2016-01-01

    Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151

  8. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: quality assurance implications for target volume and organs‐at‐risk margination using daily CT on‐rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S.R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R.; Kocak‐Uzel, Esengul

    2014-01-01

    Larynx may alternatively serve as a target or organs at risk (OAR) in head and neck cancer (HNC) image‐guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population‐based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT on‐rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior‐anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other six points were calculated postisocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all six points for all scans over the course of treatment was calculated. Residual systematic and random error and the necessary compensatory CTV‐to‐PTV and OAR‐to‐PRV margins were calculated, using both observational cohort data and a bootstrap‐resampled population estimator. The grand mean displacements for all anatomical points was 5.07 mm, with mean systematic error of 1.1 mm and mean random setup error of 2.63 mm, while bootstrapped POIs grand mean displacement was 5.09 mm, with mean systematic error of 1.23 mm and mean random setup error of 2.61 mm. Required margin for CTV‐PTV expansion was 4.6 mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9 mm. The calculated OAR‐to‐PRV expansion for the observed residual setup error was 2.7 mm and bootstrap estimated expansion of 2.9 mm. We conclude that the interfractional larynx setup error is a significant source of RT setup/delivery error in HNC, both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5 mm to compensate for setup error if the larynx is a target, or 3 mm if the larynx is an OAR, when using a nonlaryngeal bony isocenter. PACS numbers: 87.55.D‐, 87.55.Qr

  9. Ground target recognition using rectangle estimation.

    PubMed

    Grönwall, Christina; Gustafsson, Fredrik; Millnert, Mille

    2006-11-01

    We propose a ground target recognition method based on 3-D laser radar data. The method handles general 3-D scattered data. It is based on the fact that man-made objects of complex shape can be decomposed to a set of rectangles. The ground target recognition method consists of four steps; 3-D size and orientation estimation, target segmentation into parts of approximately rectangular shape, identification of segments that represent the target's functional/main parts, and target matching with CAD models. The core in this approach is rectangle estimation. The performance of the rectangle estimation method is evaluated statistically using Monte Carlo simulations. A case study on tank recognition is shown, where 3-D data from four fundamentally different types of laser radar systems are used. Although the approach is tested on rather few examples, we believe that the approach is promising.

  10. Estimating the Probability of a Diffusing Target Encountering a Stationary Sensor.

    DTIC Science & Technology

    1985-07-01

    7 RD-R1577 6- 44 ESTIMATING THE PROBABILITY OF A DIFFUSING TARGET i/i ENCOUNTERING R STATIONARY SENSOR(U) NAVAL POSTGRADUATE U SCHOOL MONTEREY CA...8217,: *.:.; - -*.. ,’.-,:;;’.’.. ’,. ,. .*.’.- 4 6 6- ..- .-,,.. : .-.;.- -. NPS55-85-013 NAVAL POSTGRADUATE SCHOOL Monterey, California ESTIMATING THE PROBABILITY OF A DIFFUSING TARGET...PROBABILITY OF A DIFFUSING Technical TARGET ENCOUNTERING A STATIONARY SENSOR S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(@) S. CONTRACT OR GRANT NUMBER(a

  11. Mediators of Effects of a Selective Family-Focused Violence Prevention Approach for Middle School Students

    PubMed Central

    2013-01-01

    This study examined how parenting and family characteristics targeted in a selective prevention program mediated effects on key youth proximal outcomes related to violence perpetration. The selective intervention was evaluated within the context of a multi-site trial involving random assignment of 37 schools to four conditions: a universal intervention composed of a student social-cognitive curriculum and teacher training, a selective family-focused intervention with a subset of high-risk students, a condition combining these two interventions, and a no-intervention control condition. Two cohorts of sixth-grade students (total N=1,062) exhibiting high levels of aggression and social influence were the sample for this study. Analyses of pre-post change compared to controls using intent-to-treat analyses found no significant effects. However, estimates incorporating participation of those assigned to the intervention and predicted participation among those not assigned revealed significant positive effects on student aggression, use of aggressive strategies for conflict management, and parental estimation of student’s valuing of achievement. Findings also indicated intervention effects on two targeted family processes: discipline practices and family cohesion. Mediation analyses found evidence that change in these processes mediated effects on some outcomes, notably aggressive behavior and valuing of school achievement. Results support the notion that changing parenting practices and the quality of family relationships can prevent the escalation in aggression and maintain positive school engagement for high-risk youth. PMID:21932067

  12. SAR target recognition and posture estimation using spatial pyramid pooling within CNN

    NASA Astrophysics Data System (ADS)

    Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-01-01

    Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.

  13. Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics.

    PubMed

    Keich, Uri; Kertesz-Farkas, Attila; Noble, William Stafford

    2015-08-07

    Interpreting the potentially vast number of hypotheses generated by a shotgun proteomics experiment requires a valid and accurate procedure for assigning statistical confidence estimates to identified tandem mass spectra. Despite the crucial role such procedures play in most high-throughput proteomics experiments, the scientific literature has not reached a consensus about the best confidence estimation methodology. In this work, we evaluate, using theoretical and empirical analysis, four previously proposed protocols for estimating the false discovery rate (FDR) associated with a set of identified tandem mass spectra: two variants of the target-decoy competition protocol (TDC) of Elias and Gygi and two variants of the separate target-decoy search protocol of Käll et al. Our analysis reveals significant biases in the two separate target-decoy search protocols. Moreover, the one TDC protocol that provides an unbiased FDR estimate among the target PSMs does so at the cost of forfeiting a random subset of high-scoring spectrum identifications. We therefore propose the mix-max procedure to provide unbiased, accurate FDR estimates in the presence of well-calibrated scores. The method avoids biases associated with the two separate target-decoy search protocols and also avoids the propensity for target-decoy competition to discard a random subset of high-scoring target identifications.

  14. Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics

    PubMed Central

    2016-01-01

    Interpreting the potentially vast number of hypotheses generated by a shotgun proteomics experiment requires a valid and accurate procedure for assigning statistical confidence estimates to identified tandem mass spectra. Despite the crucial role such procedures play in most high-throughput proteomics experiments, the scientific literature has not reached a consensus about the best confidence estimation methodology. In this work, we evaluate, using theoretical and empirical analysis, four previously proposed protocols for estimating the false discovery rate (FDR) associated with a set of identified tandem mass spectra: two variants of the target-decoy competition protocol (TDC) of Elias and Gygi and two variants of the separate target-decoy search protocol of Käll et al. Our analysis reveals significant biases in the two separate target-decoy search protocols. Moreover, the one TDC protocol that provides an unbiased FDR estimate among the target PSMs does so at the cost of forfeiting a random subset of high-scoring spectrum identifications. We therefore propose the mix-max procedure to provide unbiased, accurate FDR estimates in the presence of well-calibrated scores. The method avoids biases associated with the two separate target-decoy search protocols and also avoids the propensity for target-decoy competition to discard a random subset of high-scoring target identifications. PMID:26152888

  15. High levels of postmigration HIV acquisition within nine European countries.

    PubMed

    Alvarez-Del Arco, Debora; Fakoya, Ibidun; Thomadakis, Christos; Pantazis, Nikos; Touloumi, Giota; Gennotte, Anne-Francoise; Zuure, Freke; Barros, Henrique; Staehelin, Cornelia; Göpel, Siri; Boesecke, Christoph; Prestileo, Tullio; Volny-Anne, Alain; Burns, Fiona; Del Amo, Julia

    2017-09-10

    We aimed to estimate the proportion of postmigration HIV acquisition among HIV-positive migrants in Europe. To reach HIV-positive migrants, we designed a cross-sectional study performed in HIV clinics. The study was conducted from July 2013 to July 2015 in 57 clinics (nine European countries), targeting individuals over 18 years diagnosed in the preceding 5 years and born abroad. Electronic questionnaires supplemented with clinical data were completed in any of 15 languages. Postmigration HIV acquisition was estimated through Bayesian approaches combining extensive information on migration and patients' characteristics. CD4 cell counts and HIV-RNA trajectories from seroconversion were estimated by bivariate linear mixed models fitted to natural history data. Postmigration acquisition risk factors were investigated with weighted logistic regression. Of 2009 participants, 46% were MSM and a third originated from sub-Saharan Africa and Latin America & Caribbean, respectively. Median time in host countries was 8 years. Postmigration HIV acquisition was 63% (95% confidence interval: 57-67%); 72% among MSM, 58 and 51% in heterosexual men and women, respectively. Postmigration HIV acquisition was 71% for Latin America and Caribbean migrants and 45% for people from sub-Saharan Africa. Factors associated with postmigration HIV acquisition among heterosexual women and MSM were age at migration, length of stay in host country and HIV diagnosis year and among heterosexual men, length of stay in host country and HIV diagnosis year. A substantial proportion of HIV-positive migrants living in Europe acquired HIV postmigration. This has important implications for European public health policies.

  16. Kepler False Positive Rate & Occurrence of Earth-size and Larger Planets

    NASA Astrophysics Data System (ADS)

    Fressin, Francois; Torres, G.; Charbonneau, D.; Kepler Team

    2013-01-01

    We model the Kepler exoplanet survey targets and their background stars to estimate the occurrence of astrophysical configurations which could mimic an exoplanetary transit. Using real noise level estimates, we compute the number and the characteristics of detectable eclipsing pairs involving stars or planets. We select the fraction of those that would pass the Kepler candidate vetting procedure, including the modeling of the centroid shift of their position on the Kepler camera. By comparing their distribution with that of the Kepler Object Interests from the first 6 quarters of Kepler data, we quantify the false positive rate of Kepler, as a function of candidate planet size and period. Most importantly, this approach allows quantifying and characterizing the distribution of planets, with no assumption of any prior, as the remaining population of the Kepler candidate list minus the simulated population of alternate astrophysical causes. We study the actual detection recovery rate for Kepler that allows reproducing both the KOI size and period distribution as well as their SNR distribution. We estimate the occurrence of planets down to Earth-size, and study if their frequency is correlated with their host star spectral type. This work is supported by the Spitzer General Observer Proposal #80117 - Validating the First Habitable-Zone Planet Candidates Identified by the NASA Kepler Mission, and by the Kepler Participating Scientist Contract led by David Charbonneau, to confirm the planetary nature of candidates identified by the Kepler mission

  17. Multiple resolution chirp reflectometry for fault localization and diagnosis in a high voltage cable in automotive electronics

    NASA Astrophysics Data System (ADS)

    Chang, Seung Jin; Lee, Chun Ku; Shin, Yong-June; Park, Jin Bae

    2016-12-01

    A multiple chirp reflectometry system with a fault estimation process is proposed to obtain multiple resolution and to measure the degree of fault in a target cable. A multiple resolution algorithm has the ability to localize faults, regardless of fault location. The time delay information, which is derived from the normalized cross-correlation between the incident signal and bandpass filtered reflected signals, is converted to a fault location and cable length. The in-phase and quadrature components are obtained by lowpass filtering of the mixed signal of the incident signal and the reflected signal. Based on in-phase and quadrature components, the reflection coefficient is estimated by the proposed fault estimation process including the mixing and filtering procedure. Also, the measurement uncertainty for this experiment is analyzed according to the Guide to the Expression of Uncertainty in Measurement. To verify the performance of the proposed method, we conduct comparative experiments to detect and measure faults under different conditions. Considering the installation environment of the high voltage cable used in an actual vehicle, target cable length and fault position are designed. To simulate the degree of fault, the variety of termination impedance (10 Ω , 30 Ω , 50 Ω , and 1 \\text{k} Ω ) are used and estimated by the proposed method in this experiment. The proposed method demonstrates advantages in that it has multiple resolution to overcome the blind spot problem, and can assess the state of the fault.

  18. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  19. Estimating tissue-specific discrimination factors and turnover rates of stable isotopes of nitrogen and carbon in the smallnose fanskate Sympterygia bonapartii (Rajidae).

    PubMed

    Galván, D E; Jañez, J; Irigoyen, A J

    2016-08-01

    This study aimed to estimate trophic discrimination factors (TDFs) and metabolic turnover rates of nitrogen and carbon stable isotopes in blood and muscle of the smallnose fanskate Sympterygia bonapartii by feeding six adult individuals, maintained in captivity, with a constant diet for 365 days. TDFs were estimated as the difference between δ(13) C or δ(15) N values of the food and the tissues of S. bonapartii after they had reached equilibrium with their diet. The duration of the experiment was enough to reach the equilibrium condition in blood for both elements (estimated time to reach 95% of turnover: C t95%blood  = 150 days, N t95%blood  = 290 days), whilst turnover rates could not be estimated for muscle because of variation among samples. Estimates of Δ(13) C and Δ(15) N values in blood and muscle using all individuals were Δ(13) Cblood = 1·7‰, Δ(13) Cmuscle = 1·3‰, Δ(15) Nblood = 2·5‰ and Δ(15) Nmuscle = 1·5‰, but there was evidence of differences of c.0·4‰ in the Δ(13) C values between sexes. The present values for TDFs and turnover rates constitute the first evidence for dietary switching in batoids based on long-term controlled feeding experiments. Overall, the results showed that S. bonapartii has relatively low turnover rates and isotopic measurements would not track seasonal movements adequately. The estimated Δ(13) C values in S. bonapartii blood and muscle were similar to previous estimations for elasmobranchs and to generally accepted values in bony fishes (Δ(13) C = 1·5‰). For Δ(15) N, the results were similar to published reports for blood but smaller than reports for muscle and notably smaller than the typical values used to estimate trophic position (Δ(15) N c. 3·4‰). Thus, trophic position estimations for elasmobranchs based on typical Δ(15) N values could lead to underestimates of actual trophic positions. Finally, the evidence of differences in TDFs between sexes reveals a need for more targeted research. © 2016 The Fisheries Society of the British Isles.

  20. Improvement of background solar wind predictions

    NASA Astrophysics Data System (ADS)

    Dálya, Zsuzsanna; Opitz, Andrea

    2016-04-01

    In order to estimate the solar wind properties at any heliospheric positions propagation tools use solar measurements as input data. The ballistic method extrapolates in-situ solar wind observations to the target position. This works well for undisturbed solar wind, while solar wind disturbances such as Corotating Interaction Regions (CIRs) and Coronal Mass Ejections (CMEs) need more consideration. We are working on dedicated ICME lists to clean these signatures from the input data in order to improve our prediction accuracy. These ICME lists are created from several heliospheric spacecraft measurements: ACE, WIND, STEREO, SOHO, MEX and VEX. As a result, we are able to filter out these events from the time series. Our corrected predictions contribute to the investigation of the quiet solar wind and space weather studies.

  1. Aging persons' estimates of vehicular motion.

    PubMed

    Schiff, W; Oldak, R; Shah, V

    1992-12-01

    Estimated arrival times of moving autos were examined in relation to viewer age, gender, motion trajectory, and velocity. Direct push-button judgments were compared with verbal estimates derived from velocity and distance, which were based on assumptions that perceivers compute arrival time from perceived distance and velocity. Experiment 1 showed that direct estimates of younger Ss were most accurate. Older women made the shortest (highly cautious) estimates of when cars would arrive. Verbal estimates were much lower than direct estimates, with little correlation between them. Experiment 2 extended target distances and velocities of targets, with the results replicating the main findings of Experiment 1. Judgment accuracy increased with target velocity, and verbal estimates were again poorer estimates of arrival time than direct ones, with different patterns of findings. Using verbal estimates to approximate judgments in traffic situations appears questionable.

  2. First-in-Human Human Epidermal Growth Factor Receptor 2-Targeted Imaging Using 89Zr-Pertuzumab PET/CT: Dosimetry and Clinical Application in Patients with Breast Cancer.

    PubMed

    Ulaner, Gary A; Lyashchenko, Serge K; Riedl, Christopher; Ruan, Shutian; Zanzonico, Pat B; Lake, Diana; Jhaveri, Komal; Zeglis, Brian; Lewis, Jason S; O'Donoghue, Joseph A

    2018-06-01

    In what we believe to be a first-in-human study, we evaluated the safety and dosimetry of 89 Zr-pertuzumab PET/CT for human epidermal growth factor receptor 2 (HER2)-targeted imaging in patients with HER2-positive breast cancer. Methods: Patients with HER2-positive breast cancer and evidence of distant metastases were enrolled in an institutional review board-approved prospective clinical trial. Pertuzumab was conjugated with deferoxamine and radiolabeled with 89 Zr. Patients underwent PET/CT with 74 MBq of 89 Zr-pertuzumab in a total antibody mass of 20-50 mg of pertuzumab. PET/CT, whole-body probe counts, and blood drawing were performed over 8 d to assess pharmacokinetics, biodistribution, and dosimetry. PET/CT images were evaluated for the ability to visualize HER2-positive metastases. Results: Six patients with HER2-positive metastatic breast cancer were enrolled and administered 89 Zr-pertuzumab. No toxicities occurred. Dosimetry estimates from OLINDA demonstrated that the organs receiving the highest doses (mean ± SD) were the liver (1.75 ± 0.21 mGy/MBq), the kidneys (1.27 ± 0.28 mGy/MBq), and the heart wall (1.22 ± 0.16 mGy/MBq), with an average effective dose of 0.54 ± 0.07 mSv/MBq. PET/CT demonstrated optimal imaging 5-8 d after administration. 89 Zr-pertuzumab was able to image multiple sites of malignancy and suggested that they were HER2-positive. In 2 patients with both known HER2-positive and HER2-negative primary breast cancers and brain metastases, 89 Zr-pertuzumab PET/CT suggested that the brain metastases were HER2-positive. In 1 of the 2 patients, subsequent resection of a brain metastasis proved HER2-positive disease, confirming that the 89 Zr-pertuzumab avidity was a true-positive result for HER2-positive malignancy. Conclusion: This first-in-human study demonstrated safety, dosimetry, biodistribution, and successful HER2-targeted imaging with 89 Zr-pertuzumab PET/CT. Potential clinical applications include assessment of the HER2 status of lesions that may not be accessible to biopsy and assessment of HER2 heterogeneity. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  3. Experimental investigation of observation error in anuran call surveys

    USGS Publications Warehouse

    McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.

    2010-01-01

    Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.

  4. Impact and economic evaluations of a combination prevention programme for men who have sex with men in Mexico.

    PubMed

    Colchero, M Arantxa; Bautista-Arredondo, Sergio; Cortés-Ortiz, María A; Romero-Martinez, Martín; Salas, Jessica; Sosa-Rubí, Sandra G; Uribe, Patricia

    2016-01-01

    Despite the high-profile support for combination prevention programmes (CPPs) since 2008, there is little rigorous evidence on their impact and cost-effectiveness. In 2010, Mexico received funds from the Global Fund to implement a series of behavioural, biomedical, and structural interventions over 3 years targeted to men who have sex with men. The aims of the study were to estimate the impact of the programme across a range of outcomes and cost-effectiveness. A quasi-experiment was designed before the implementation of the CPP, in which 24 cities were randomly selected for impact evaluation and 12 pairs of cities were matched. In practice, though, implementation of the programme was staggered over 1 year. Therefore, we used two different approaches to estimate impact: a difference-in-difference estimation comparing both groups and a dose-response approach using time exposure to the programme at the city level. Results from the difference-in-difference estimation showed modest impact on condom use. However, the dose-response findings revealed a 7.5% increase in HIV testing per additional year exposed to the programme, relative to baseline coverage; an increase in awareness of HIV status among HIV-positive individuals of 6.6%; a 6.4% increase in HIV-positive individuals on treatment; and an 8% reduction in the perception of stigma/discrimination from healthcare personnel. The cost per person not exposed to an untreated HIV-positive individual was gauged to be US$400. The study provides evidence of the effectiveness and cost of a CPP along the HIV treatment cascade: access to HIV tests, awareness of HIV status, and antiretroviral therapy initiation.

  5. Adaptive relative pose control for autonomous spacecraft rendezvous and proximity operations with thrust misalignment and model uncertainties

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zheng, Zewei

    2017-04-01

    An adaptive relative pose control strategy is proposed for a pursue spacecraft in proximity operations on a tumbling target. Relative position vector between two spacecraft is required to direct towards the docking port of the target while the attitude of them must be synchronized. With considering the thrust misalignment of pursuer, an integrated controller for relative translational and relative rotational dynamics is developed by using norm-wise adaptive estimations. Parametric uncertainties, unknown coupled dynamics, and bounded external disturbances are compensated online by adaptive update laws. It is proved via Lyapunov stability theory that the tracking errors of relative pose converge to zero asymptotically. Numerical simulations including six degrees-of-freedom rigid body dynamics are performed to demonstrate the effectiveness of the proposed controller.

  6. Prototyping sensor network system for automatic vital signs collection. Evaluation of a location based automated assignment of measured vital signs to patients.

    PubMed

    Kuroda, T; Noma, H; Naito, C; Tada, M; Yamanaka, H; Takemura, T; Nin, K; Yoshihara, H

    2013-01-01

    Development of a clinical sensor network system that automatically collects vital sign and its supplemental data, and evaluation the effect of automatic vital sensor value assignment to patients based on locations of sensors. The sensor network estimates the data-source, a target patient, from the position of a vital sign sensor obtained from a newly developed proximity sensing system. The proximity sensing system estimates the positions of the devices using a Bluetooth inquiry process. Using Bluetooth access points and the positioning system newly developed in this project, the sensor network collects vital sign and its 4W (who, where, what, and when) supplemental data from any Bluetooth ready vital sign sensors such as Continua-ready devices. The prototype was evaluated in a pseudo clinical setting at Kyoto University Hospital using a cyclic paired comparison and statistical analysis. The result of the cyclic paired analysis shows the subjects evaluated the proposed system is more effective and safer than POCS as well as paper-based operation. It halves the times for vital signs input and eliminates input errors. On the other hand, the prototype failed in its position estimation for 12.6% of all attempts, and the nurses overlooked half of the errors. A detailed investigation clears that an advanced interface to show the system's "confidence", i.e. the probability of estimation error, must be effective to reduce the oversights. This paper proposed a clinical sensor network system that relieves nurses from vital signs input tasks. The result clearly shows that the proposed system increases the efficiency and safety of the nursing process both subjectively and objectively. It is a step toward new generation of point of nursing care systems where sensors take over the tasks of data input from the nurses.

  7. Through-barrier electromagnetic imaging with an atomic magnetometer.

    PubMed

    Deans, Cameron; Marmugi, Luca; Renzoni, Ferruccio

    2017-07-24

    We demonstrate the penetration of thick metallic and ferromagnetic barriers for imaging of conductive targets underneath. Our system is based on an 85 Rb radio-frequency atomic magnetometer operating in electromagnetic induction imaging modality in an unshielded environment. Detrimental effects, including unpredictable magnetic signatures from ferromagnetic screens and variations in the magnetic background, are automatically compensated by active compensation coils controlled by servo loops. We exploit the tunability and low-frequency sensitivity of the atomic magnetometer to directly image multiple conductive targets concealed by a 2.5 mm ferromagnetic steel shield and/or a 2.0 mm aluminium shield, in a single scan. The performance of the atomic magnetometer allows imaging without any prior knowledge of the barriers or the targets, and without the need of background subtraction. A dedicated edge detection algorithm allows automatic estimation of the targets' size within 3.3 mm and of their position within 2.4 mm. Our results prove the feasibility of a compact, sensitive and automated sensing platform for imaging of concealed objects in a range of applications, from security screening to search and rescue.

  8. Neural Processing of Target Distance by Echolocating Bats: Functional Roles of the Auditory Midbrain

    PubMed Central

    Wenstrup, Jeffrey J.; Portfors, Christine V.

    2011-01-01

    Using their biological sonar, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. The mustached bat's auditory midbrain (inferior colliculus, IC) is crucial to the analysis of pulse-echo delay. IC neurons are selective for certain delays between frequency modulated (FM) elements of the pulse and echo. One role of the IC is to create these “delay-tuned”, “FM-FM” response properties through a series of spectro-temporal integrative interactions. A second major role of the midbrain is to project target distance information to many parts of the brain. Pathways through auditory thalamus undergo radical reorganization to create highly ordered maps of pulse-echo delay in auditory cortex, likely contributing to perceptual features of target distance analysis. FM-FM neurons in IC also project strongly to pre-motor centers including the pretectum and the pontine nuclei. These pathways may contribute to rapid adjustments in flight, body position, and sonar vocalizations that occur as a bat closes in on a target. PMID:21238485

  9. Accurate State Estimation and Tracking of a Non-Cooperative Target Vehicle

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2006-01-01

    Autonomous space rendezvous scenarios require knowledge of the target vehicle state in order to safely dock with the chaser vehicle. Ideally, the target vehicle state information is derived from telemetered data, or with the use of known tracking points on the target vehicle. However, if the target vehicle is non-cooperative and does not have the ability to maintain attitude control, or transmit attitude knowledge, the docking becomes more challenging. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a tracking control scheme. The approach is tested with the robotic servicing mission concept for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates, but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST.

  10. Real Time Corner Detection for Miniaturized Electro-Optical Sensors Onboard Small Unmanned Aerial Systems

    PubMed Central

    Forlenza, Lidia; Carton, Patrick; Accardo, Domenico; Fasano, Giancarmine; Moccia, Antonio

    2012-01-01

    This paper describes the target detection algorithm for the image processor of a vision-based system that is installed onboard an unmanned helicopter. It has been developed in the framework of a project of the French national aerospace research center Office National d’Etudes et de Recherches Aérospatiales (ONERA) which aims at developing an air-to-ground target tracking mission in an unknown urban environment. In particular, the image processor must detect targets and estimate ground motion in proximity of the detected target position. Concerning the target detection function, the analysis has dealt with realizing a corner detection algorithm and selecting the best choices in terms of edge detection methods, filtering size and type and the more suitable criterion of detection of the points of interest in order to obtain a very fast algorithm which fulfills the computation load requirements. The compared criteria are the Harris-Stephen and the Shi-Tomasi, ones, which are the most widely used in literature among those based on intensity. Experimental results which illustrate the performance of the developed algorithm and demonstrate that the detection time is fully compliant with the requirements of the real-time system are discussed. PMID:22368499

  11. Intelligent person identification system using stereo camera-based height and stride estimation

    NASA Astrophysics Data System (ADS)

    Ko, Jung-Hwan; Jang, Jae-Hun; Kim, Eun-Soo

    2005-05-01

    In this paper, a stereo camera-based intelligent person identification system is suggested. In the proposed method, face area of the moving target person is extracted from the left image of the input steros image pair by using a threshold value of YCbCr color model and by carrying out correlation between the face area segmented from this threshold value of YCbCr color model and the right input image, the location coordinates of the target face can be acquired, and then these values are used to control the pan/tilt system through the modified PID-based recursive controller. Also, by using the geometric parameters between the target face and the stereo camera system, the vertical distance between the target and stereo camera system can be calculated through a triangulation method. Using this calculated vertical distance and the angles of the pan and tilt, the target's real position data in the world space can be acquired and from them its height and stride values can be finally extracted. Some experiments with video images for 16 moving persons show that a person could be identified with these extracted height and stride parameters.

  12. Robotic intrafractional US guidance for liver SABR: System design, beam avoidance, and clinical imaging.

    PubMed

    Schlosser, Jeffrey; Gong, Ren Hui; Bruder, Ralf; Schweikard, Achim; Jang, Sungjune; Henrie, John; Kamaya, Aya; Koong, Albert; Chang, Daniel T; Hristov, Dimitre

    2016-11-01

    To present a system for robotic 4D ultrasound (US) imaging concurrent with radiotherapy beam delivery and estimate the proportion of liver stereotactic ablative body radiotherapy (SABR) cases in which robotic US image guidance can be deployed without interfering with clinically used VMAT beam configurations. The image guidance hardware comprises a 4D US machine, an optical tracking system for measuring US probe pose, and a custom-designed robot for acquiring hands-free US volumes. In software, a simulation environment incorporating the LINAC, couch, planning CT, and robotic US guidance hardware was developed. Placement of the robotic US hardware was guided by a target visibility map rendered on the CT surface by using the planning CT to simulate US propagation. The visibility map was validated in a prostate phantom and evaluated in patients by capturing live US from imaging positions suggested by the visibility map. In 20 liver SABR patients treated with VMAT, the simulation environment was used to virtually place the robotic hardware and US probe. Imaging targets were either planning target volumes (PTVs, range 5.9-679.5 ml) or gross tumor volumes (GTVs, range 0.9-343.4 ml). Presence or absence of mechanical interference with LINAC, couch, and patient body as well as interferences with treated beams was recorded. For PTV targets, robotic US guidance without mechanical interference was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85%, respectively. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of noninterfering imaging positions. The robotic US imaging system was deployed in two liver SABR patients during CT simulation with successful acquisition of 4D US sequences in different imaging positions. This study indicates that for VMAT liver SABR, robotic US imaging of a relevant internal target may be possible in 85% of the cases while using treatment plans currently deployed in the clinic. With beam replanning to account for the presence of robotic US guidance, intrafractional US may be an option for 95% of the liver SABR cases.

  13. Effect of audio instruction on tracking errors using a four-dimensional image-guided radiotherapy system.

    PubMed

    Nakamura, Mitsuhiro; Sawada, Akira; Mukumoto, Nobutaka; Takahashi, Kunio; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2013-09-06

    The Vero4DRT (MHI-TM2000) is capable of performing X-ray image-based tracking (X-ray Tracking) that directly tracks the target or fiducial markers under continuous kV X-ray imaging. Previously, we have shown that irregular respiratory patterns increased X-ray Tracking errors. Thus, we assumed that audio instruction, which generally improves the periodicity of respiration, should reduce tracking errors. The purpose of this study was to assess the effect of audio instruction on X-ray Tracking errors. Anterior-posterior abdominal skin-surface displacements obtained from ten lung cancer patients under free breathing and simple audio instruction were used as an alternative to tumor motion in the superior-inferior direction. First, a sequential predictive model based on the Levinson-Durbin algorithm was created to estimate the future three-dimensional (3D) target position under continuous kV X-ray imaging while moving a steel ball target of 9.5 mm in diameter. After creating the predictive model, the future 3D target position was sequentially calculated from the current and past 3D target positions based on the predictive model every 70 ms under continuous kV X-ray imaging. Simultaneously, the system controller of the Vero4DRT calculated the corresponding pan and tilt rotational angles of the gimbaled X-ray head, which then adjusted its orientation to the target. The calculated and current rotational angles of the gimbaled X-ray head were recorded every 5 ms. The target position measured by the laser displacement gauge was synchronously recorded every 10 msec. Total tracking system errors (ET) were compared between free breathing and audio instruction. Audio instruction significantly improved breathing regularity (p < 0.01). The mean ± standard deviation of the 95th percentile of ET (E95T ) was 1.7 ± 0.5 mm (range: 1.1-2.6mm) under free breathing (E95T,FB) and 1.9 ± 0.5 mm (range: 1.2-2.7 mm) under audio instruction (E95T,AI). E95T,AI was larger than E95T,FB for five patients; no significant difference was found between E95T,FB and E95T,AI (p = 0.21). Correlation analysis revealed that the rapid respiratory velocity significantly increased E95T. Although audio instruction improved breathing regularity, it also increased the respiratory velocity, which did not necessarily reduce tracking errors.

  14. Effect of audio instruction on tracking errors using a four‐dimensional image‐guided radiotherapy system

    PubMed Central

    Sawada, Akira; Mukumoto, Nobutaka; Takahashi, Kunio; Mizowaki, Takashi; Kokubo, Masaki; Hiraoka, Masahiro

    2013-01-01

    The Vero4DRT (MHI‐TM2000) is capable of performing X‐ray image‐based tracking (X‐ray Tracking) that directly tracks the target or fiducial markers under continuous kV X‐ray imaging. Previously, we have shown that irregular respiratory patterns increased X‐ray Tracking errors. Thus, we assumed that audio instruction, which generally improves the periodicity of respiration, should reduce tracking errors. The purpose of this study was to assess the effect of audio instruction on X‐ray Tracking errors. Anterior‐posterior abdominal skin‐surface displacements obtained from ten lung cancer patients under free breathing and simple audio instruction were used as an alternative to tumor motion in the superior‐inferior direction. First, a sequential predictive model based on the Levinson‐Durbin algorithm was created to estimate the future three‐dimensional (3D) target position under continuous kV X‐ray imaging while moving a steel ball target of 9.5 mm in diameter. After creating the predictive model, the future 3D target position was sequentially calculated from the current and past 3D target positions based on the predictive model every 70 ms under continuous kV X‐ray imaging. Simultaneously, the system controller of the Vero4DRT calculated the corresponding pan and tilt rotational angles of the gimbaled X‐ray head, which then adjusted its orientation to the target. The calculated and current rotational angles of the gimbaled X‐ray head were recorded every 5 ms. The target position measured by the laser displacement gauge was synchronously recorded every 10 msec. Total tracking system errors (ET) were compared between free breathing and audio instruction. Audio instruction significantly improved breathing regularity (p < 0.01). The mean ± standard deviation of the 95th percentile of ET (E95T) was 1.7 ± 0.5 mm (range: 1.1–2.6 mm) under free breathing (E95T,FB) and 1.9 ± 0.5 mm (range: 1.2–2.7 mm) under audio instruction (E95T,AI). E95T,AI was larger than E95T,FB for five patients; no significant difference was found between E95T,FB and ET,AI95(p = 0.21). Correlation analysis revealed that the rapid respiratory velocity significantly increased E95T. Although audio instruction improved breathing regularity, it also increased the respiratory velocity, which did not necessarily reduce tracking errors. PACS number: 87.55.ne, 87.57.N‐, 87.59.C‐, PMID:24036880

  15. Methods for targetted mutagenesis in gram-positive bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yunfeng

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  16. Method for matching customer and manufacturer positions for metal product parameters standardization

    NASA Astrophysics Data System (ADS)

    Polyakova, Marina; Rubin, Gennadij; Danilova, Yulija

    2018-04-01

    Decision making is the main stage of regulation the relations between customer and manufacturer during the design the demands of norms in standards. It is necessary to match the positions of the negotiating sides in order to gain the consensus. In order to take into consideration the differences of customer and manufacturer estimation of the object under standardization process it is obvious to use special methods of analysis. It is proposed to establish relationships between product properties and its functions using functional-target analysis. The special feature of this type of functional analysis is the consideration of the research object functions and properties. It is shown on the example of hexagonal head crew the possibility to establish links between its functions and properties. Such approach allows obtaining a quantitative assessment of the closeness the positions of customer and manufacturer at decision making during the standard norms establishment.

  17. Effectiveness of influenza vaccine against laboratory-confirmed influenza, in the late 2011–2012 season in Spain, among population targeted for vaccination

    PubMed Central

    2013-01-01

    Background In Spain, the influenza vaccine effectiveness (VE) was estimated in the last three seasons using the observational study cycEVA conducted in the frame of the existing Spanish Influenza Sentinel Surveillance System. The objective of the study was to estimate influenza vaccine effectiveness (VE) against medically attended, laboratory-confirmed influenza-like illness (ILI) among the target groups for vaccination in Spain in the 2011–2012 season. We also studied influenza VE in the early (weeks 52/2011-7/2012) and late (weeks 8-14/2012) phases of the epidemic and according to time since vaccination. Methods Medically attended patients with ILI were systematically swabbed to collect information on exposure, laboratory outcome and confounding factors. Patients belonging to target groups for vaccination and who were swabbed <8 days after symptom onset were included. Cases tested positive for influenza and controls tested negative for any influenza virus. To examine the effect of a late season, analyses were performed according to the phase of the season and according to the time between vaccination and symptoms onset. Results The overall adjusted influenza VE against A(H3N2) was 45% (95% CI, 0–69). The estimated influenza VE was 52% (95% CI, -3 to 78), 40% (95% CI, -40 to 74) and 22% (95% CI, -135 to 74) at 3.5 months, 3.5-4 months, and >4 months, respectively, since vaccination. A decrease in VE with time since vaccination was only observed in individuals aged ≥ 65 years. Regarding the phase of the season, decreasing point estimates were only observed in the early phase, whereas very low or null estimates were obtained in the late phase for the shortest time interval. Conclusions The 2011–2012 influenza vaccine showed a low-to-moderate protective effect against medically attended, laboratory-confirmed influenza in the target groups for vaccination, in a late season and with a limited match between the vaccine and circulating strains. The suggested decrease in influenza VE with time since vaccination was mostly observed in the elderly population. The decreasing protective effect of the vaccine in the late part of the season could be related to waning vaccine protection because no viral changes were identified throughout the season. PMID:24053661

  18. SU-F-J-34: Automatic Target-Based Patient Positioning Framework for Image-Guided Radiotherapy in Prostate Cancer Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasahara, M; Arimura, H; Hirose, T

    Purpose: Current image-guided radiotherapy (IGRT) procedure is bonebased patient positioning, followed by subjective manual correction using cone beam computed tomography (CBCT). This procedure might cause the misalignment of the patient positioning. Automatic target-based patient positioning systems achieve the better reproducibility of patient setup. Our aim of this study was to develop an automatic target-based patient positioning framework for IGRT with CBCT images in prostate cancer treatment. Methods: Seventy-three CBCT images of 10 patients and 24 planning CT images with digital imaging and communications in medicine for radiotherapy (DICOM-RT) structures were used for this study. Our proposed framework started from themore » generation of probabilistic atlases of bone and prostate from 24 planning CT images and prostate contours, which were made in the treatment planning. Next, the gray-scale histograms of CBCT values within CTV regions in the planning CT images were obtained as the occurrence probability of the CBCT values. Then, CBCT images were registered to the atlases using a rigid registration with mutual information. Finally, prostate regions were estimated by applying the Bayesian inference to CBCT images with the probabilistic atlases and CBCT value occurrence probability. The proposed framework was evaluated by calculating the Euclidean distance of errors between two centroids of prostate regions determined by our method and ground truths of manual delineations by a radiation oncologist and a medical physicist on CBCT images for 10 patients. Results: The average Euclidean distance between the centroids of extracted prostate regions determined by our proposed method and ground truths was 4.4 mm. The average errors for each direction were 1.8 mm in anteroposterior direction, 0.6 mm in lateral direction and 2.1 mm in craniocaudal direction. Conclusion: Our proposed framework based on probabilistic atlases and Bayesian inference might be feasible to automatically determine prostate regions on CBCT images.« less

  19. Local sensory control of a dexterous end effector

    NASA Technical Reports Server (NTRS)

    Pinto, Victor H.; Everett, Louis J.; Driels, Morris

    1990-01-01

    A numerical scheme was developed to solve the inverse kinematics for a user-defined manipulator. The scheme was based on a nonlinear least-squares technique which determines the joint variables by minimizing the difference between the target end effector pose and the actual end effector pose. The scheme was adapted to a dexterous hand in which the joints are either prismatic or revolute and the fingers are considered open kinematic chains. Feasible solutions were obtained using a three-fingered dexterous hand. An algorithm to estimate the position and orientation of a pre-grasped object was also developed. The algorithm was based on triangulation using an ideal sensor and a spherical object model. By choosing the object to be a sphere, only the position of the object frame was important. Based on these simplifications, a minimum of three sensors are needed to find the position of a sphere. A two dimensional example to determine the position of a circle coordinate frame using a two-fingered dexterous hand was presented.

  20. Short-period variability in terrestrial water storage from GNSS observations of Earth surface deformation

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Adusumilli, S.; Agnew, D. C.; Silverii, F.; Small, E. E.

    2017-12-01

    Modern geodetic observations of Earth surface deformation, initially targeted at processes such as tectonics and volcanism, also record the subtle signature of mass movements within Earth's atmosphere and hydrosphere. These observations, which track the elastic response of the solid earth to changing surface mass loads, are clearly evident in position time series from permanent Global Navigation Satellite System (GNSS) stations, which recent work has used to recover changes in terrestrial water storage (TWS) over seasonal and multi-annual time scales. Earth's elastic reponse is nearly instantaneous, which suggests the possibility of observing TWS changes at much shorter periods, limited only by the 24 hour resolution of standard GNSS data products and noise in the GNSS position estimates. We present results showing that TWS increases from individual storms can be recovered using the GNSS network in the United States, and that the water mass changes are similar to gridded precipitation estimates from the National Centers for Environmental Prediction (NCEP). The gradual decline we observe in TWS following each storm is diagnostic of runoff and local evapotranspiration, and varies by location. By greatly increasing the temporal resolution of GNSS-derived estimates of TWS, we hope to provide constraints on integrated water fluxes from hydrological models on all relevant timescales.

  1. Vision for action and perception elicit dissociable adherence to Weber's law across a range of 'graspable' target objects.

    PubMed

    Heath, Matthew; Manzone, Joseph; Khan, Michaela; Davarpanah Jazi, Shirin

    2017-10-01

    A number of studies have reported that grasps and manual estimations of differently sized target objects (e.g., 20 through 70 mm) violate and adhere to Weber's law, respectively (e.g., Ganel et al. 2008a, Curr Biol 18:R599-R601)-a result interpreted as evidence that separate visual codes support actions (i.e., absolute) and perceptions (i.e., relative). More recent work employing a broader range of target objects (i.e., 5 through 120 mm) has laid question to this claim and proposed that grasps for 'larger' target objects (i.e., >20 mm) elicit an inverse relationship to Weber's law and that manual estimations for target objects greater than 40 mm violate the law (Bruno et al. 2016, Neuropsychologia 91:327-334). In accounting for this finding, it was proposed that biomechanical limits in aperture shaping preclude the application of Weber's law for larger target objects. It is, however, important to note that the work supporting a biomechanical account may have employed target objects that approached -or were beyond-some participants' maximal aperture separation. The present investigation examined whether grasps and manual estimations differentially adhere to Weber's law across a continuous range of functionally 'graspable' target objects (i.e., 10,…,80% of participant-specific maximal aperture separation). In addition, we employed a method of adjustment task to examine whether manual estimation provides a valid proxy for a traditional measure of perceptual judgment. Manual estimation and method of adjustment tasks demonstrated adherence to Weber's law across the continuous range of target objects used here, whereas grasps violated the law. Thus, results evince that grasps and manual estimations of graspable target objects are, respectively, mediated via absolute and relative visual information.

  2. Real-Time Implementation of an Asynchronous Vision-Based Target Tracking System for an Unmanned Aerial Vehicle

    DTIC Science & Technology

    2007-06-01

    Chin Khoon Quek. “Vision Based Control and Target Range Estimation for Small Unmanned Aerial Vehicle.” Master’s Thesis, Naval Postgraduate School...December 2005. [6] Kwee Chye Yap. “Incorporating Target Mensuration System for Target Motion Estimation Along a Road Using Asynchronous Filter

  3. Adaptive early detection ML/PDA estimator for LO targets with EO sensors

    NASA Astrophysics Data System (ADS)

    Chummun, Muhammad R.; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov

    2000-07-01

    The batch Maximum Likelihood Estimator, combined with Probabilistic Data (ML-PDA), has been shown to be effective in acquiring low observable (LO) - low SNR - non-maneuvering targets in the presence of heavy clutter. The use of signal strength or amplitude information (AI) in the ML-PDA estimator with AI in a sliding-window fashion, to detect high- speed targets in heavy clutter using electro-optical (EO) sensors. The initial time and the length of the sliding-window are adjusted adaptively according to the information content of the received measurements. A track validation scheme via hypothesis testing is developed to confirm the estimated track, that is, the presence of a target, in each window. The sliding-window ML-PDA approach, together with track validation, enables early detection by rejecting noninformative scans, target reacquisition in case of temporary target disappearance and the handling of targets with speeds evolving over time. The proposed algorithm is shown to detect the target, which is hidden in as many as 600 false alarms per scan, 10 frames earlier than the Multiple Hypothesis Tracking (MHT) algorithm.

  4. Guided filter and convolutional network based tracking for infrared dim moving target

    NASA Astrophysics Data System (ADS)

    Qian, Kun; Zhou, Huixin; Qin, Hanlin; Rong, Shenghui; Zhao, Dong; Du, Juan

    2017-09-01

    The dim moving target usually submerges in strong noise, and its motion observability is debased by numerous false alarms for low signal-to-noise ratio. A tracking algorithm that integrates the Guided Image Filter (GIF) and the Convolutional neural network (CNN) into the particle filter framework is presented to cope with the uncertainty of dim targets. First, the initial target template is treated as a guidance to filter incoming templates depending on similarities between the guidance and candidate templates. The GIF algorithm utilizes the structure in the guidance and performs as an edge-preserving smoothing operator. Therefore, the guidance helps to preserve the detail of valuable templates and makes inaccurate ones blurry, alleviating the tracking deviation effectively. Besides, the two-layer CNN method is adopted to obtain a powerful appearance representation. Subsequently, a Bayesian classifier is trained with these discriminative yet strong features. Moreover, an adaptive learning factor is introduced to prevent the update of classifier's parameters when a target undergoes sever background. At last, classifier responses of particles are utilized to generate particle importance weights and a re-sample procedure preserves samples according to the weight. In the predication stage, a 2-order transition model considers the target velocity to estimate current position. Experimental results demonstrate that the presented algorithm outperforms several relative algorithms in the accuracy.

  5. Smart sensors II; Proceedings of the Seminar, San Diego, CA, July 31, August 1, 1980

    NASA Astrophysics Data System (ADS)

    Barbe, D. F.

    1980-01-01

    Topics discussed include technology for smart sensors, smart sensors for tracking and surveillance, and techniques and algorithms for smart sensors. Papers are presented on the application of very large scale integrated circuits to smart sensors, imaging charge-coupled devices for deep-space surveillance, ultra-precise star tracking using charge coupled devices, and automatic target identification of blurred images with super-resolution features. Attention is also given to smart sensors for terminal homing, algorithms for estimating image position, and the computational efficiency of multiple image registration algorithms.

  6. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079355 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (foreground), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  7. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079129 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (left), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  8. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079910 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (left), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  9. SPHERES Vertigo

    NASA Image and Video Library

    2014-07-25

    ISS040-E-079332 (25 July 2014) --- In the International Space Station?s Kibo laboratory, NASA astronaut Steve Swanson (foreground), Expedition 40 commander; and European Space Agency astronaut Alexander Gerst, flight engineer, conduct a session with a trio of soccer-ball-sized robots known as the Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. The free-flying robots were equipped with stereoscopic goggles called the Visual Estimation and Relative Tracking for Inspection of Generic Objects, or VERTIGO, to enable the SPHERES to perform relative navigation based on a 3D model of a target object.

  10. SU-G-JeP1-09: Evaluation of Transperineal Ultrasound Imaging as a Potential Solution for Target Tracking During Ablative Body Radiotherapy for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najafi, M; Han, B; Hancock, S

    Purpose: Prostate SABR is emerging as a clinically viable, potentially cost effective alternative to prostate IMRT but its adoption is contingent on providing solutions for accurate tracking during beam delivery. Our goal is to evaluate the performance of the Clarity Autoscan ultrasound monitoring system for inter-fractional prostate motion tracking in both phantoms and in-vivo. Methods: In-vivo evaluation was performed under IRB protocol to allow data collection in prostate patients treated with VMAT whereby prostate was imaged through the acoustic window of the perineum. The probe was placed before KV imaging and real-time tracking was started and continued until the endmore » of treatment. Initial absolute 3D positions of fiducials were estimated from KV images. Fiducial positions in MV images subsequently acquired during beam delivery were compared with predicted positions based on Clarity estimated motion. Results: Phantom studies with motion amplitudes of ±1.5, ±3, ±6 mm in lateral direction and ±2 mm in longitudinal direction resulted in tracking errors of −0.03 ± 0.3, −0.04 ± 0.6, −0.2 ± 0.9 mm, respectively, in lateral direction and −0.05 ± 0.30 mm in longitudinal direction. In phantom, measured and predicted fiducial positions in MV images were within 0.1 ± 0.6 mm. Four patients consented to participate in the study and data was acquired over a total of 140 fractions. MV imaging tracking was possible in about 75% of the time (due to occlusion of fiducials) compared to 100% with Clarity. Overall range of estimated motion by Clarity was 0 to 4.0 mm. In-vivo fiducial localization error was 1.2 ± 1.0 mm compared to 1.8 ± 1.9 mm if not taking Clarity estimated motion into account. Conclusion: Real-time transperineal ultrasound tracking reduces uncertainty in prostate position due to intrafractional motion. Research was supported by Elekta.« less

  11. A real-time spectral mapper as an emerging diagnostic technology in biomedical sciences.

    PubMed

    Epitropou, George; Kavvadias, Vassilis; Iliou, Dimitris; Stathopoulos, Efstathios; Balas, Costas

    2013-01-01

    Real time spectral imaging and mapping at video rates can have tremendous impact not only on diagnostic sciences but also on fundamental physiological problems. We report the first real-time spectral mapper based on the combination of snap-shot spectral imaging and spectral estimation algorithms. Performance evaluation revealed that six band imaging combined with the Wiener algorithm provided high estimation accuracy, with error levels lying within the experimental noise. High accuracy is accompanied with much faster, by 3 orders of magnitude, spectral mapping, as compared with scanning spectral systems. This new technology is intended to enable spectral mapping at nearly video rates in all kinds of dynamic bio-optical effects as well as in applications where the target-probe relative position is randomly and fast changing.

  12. Development of new exploration tools for seabed mineral resources - Result of R/V YOKOSUKA research cruise YK09-09 -

    NASA Astrophysics Data System (ADS)

    Harada, M.; Sayanagi, K.; Kasaya, T.; Sawa, T.; Goto, T.; Tada, N.; Ichihara, H.; Asada, M.; Nakajima, T.; Isezaki, N.

    2009-12-01

    Detailed information on subsurface structure under seafloor is necessary for the estimation of seabed resources such as the hydrothermal deposit and methane hydrate. Although advantages of geophysical exploration near seafloor are expected for the seabed resource survey, efficient method has not been well-established. The authors started a project to develop exploration tools for seabed resources under the financial support of MEXT-Japan. We carry out research and development mainly regarding measurement of the magnetic field with high-resolution and high-sampling rate electric exploration devices with accurately controlled active source signals. Developed tools will be mounted underwater platforms such as deep-tow system, ROV (remotely operated vehicle), and AUV (autonomous undersea vehicle). We carried out the research cruise (vessel: JAMSTEC R/V YOKOSUKA YK09-09, cruise period: 19-29 July 2009, area surveyed: Kumano-nada, off Kii Peninsula, Japan) to investigate the performance of developed equipments for magnetic exploration. We mounted an Overhauser and two flux-gate magnetometers on the deep-tow and the AUV URASHIMA. To inspect the efficiency of equipments, it is better to measure the magnetic anomaly which is caused by known magnetic source. Therefore, we made a magnetic target which is consisted of 50 neodymium magnets. Before the navigation, the magnetic target was put under water and its position was measured by the acoustic method. The depth of target is about 2,050 meters, and the measurement was performed in the circle of a radius of about 300 meters. The vehicles were navigated at heights of 25 meters for AUV, and about 15 meters for deep-tow. Each of underwater navigation was practiced for two times. Both performances were carried out successfully, which means that we detected the significant magnetic anomalies caused by the target. We will be able to estimate three-dimensional distribution of anomalous magnetic field, and the source property of magnetic target. However, we have to resolve a lot of problems; (1) elimination of noises caused by the vehicles themselves, and their attitude, and (2) precise estimation of the position of vehicles. We will introduce the results of the research cruise and data processing in the presentation. Acknowledgement: We are grateful to captain Mr. E. Ukekura, chief officer Mr. S. Kusaka, chief AUV/DT operator Mr. T. Sakurai, and operation team, who made our difficult trials in the navigation possible by their professional skill. We also thank to the YOKOSUKA marine crew for overall support, and the engineers who take part in the development of equipments. This study is financially supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  13. Development of position measurement unit for flying inertial fusion energy target

    NASA Astrophysics Data System (ADS)

    Tsuji, R.; Endo, T.; Yoshida, H.; Norimatsu, T.

    2016-03-01

    We have reported the present status in the development of a position measurement unit (PMU) for a flying inertial fusion energy (IFE) target. The PMU, which uses Arago spot phenomena, is designed to have a measurement accuracy smaller than 1 μm. By employing divergent, pulsed orthogonal laser beam illumination, we can measure the time and the target position at the pulsed illumination. The two-dimensional Arago spot image is compressed into one-dimensional image by a cylindrical lens for real-time processing. The PMU are set along the injection path of the flying target. The local positions of the target in each PMU are transferred to the controller and analysed to calculate the target trajectory. Two methods are presented to calculate the arrival time and the arrival position of the target at the reactor centre.

  14. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations.

    PubMed

    Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F

    2017-07-01

    Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.

  15. Estimating Basic Preliminary Design Performances of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Alexander, Reginald

    2004-01-01

    Aerodynamics and Performance Estimation Toolset is a collection of four software programs for rapidly estimating the preliminary design performance of aerospace vehicles represented by doing simplified calculations based on ballistic trajectories, the ideal rocket equation, and supersonic wedges through standard atmosphere. The program consists of a set of Microsoft Excel worksheet subprograms. The input and output data are presented in a user-friendly format, and calculations are performed rapidly enough that the user can iterate among different trajectories and/or shapes to perform "what-if" studies. Estimates that can be computed by these programs include: 1. Ballistic trajectories as a function of departure angles, initial velocities, initial positions, and target altitudes; assuming point masses and no atmosphere. The program plots the trajectory in two-dimensions and outputs the position, pitch, and velocity along the trajectory. 2. The "Rocket Equation" program calculates and plots the trade space for a vehicle s propellant mass fraction over a range of specific impulse and mission velocity values, propellant mass fractions as functions of specific impulses and velocities. 3. "Standard Atmosphere" will estimate the temperature, speed of sound, pressure, and air density as a function of altitude in a standard atmosphere, properties of a standard atmosphere as functions of altitude. 4. "Supersonic Wedges" will calculate the free-stream, normal-shock, oblique-shock, and isentropic flow properties for a wedge-shaped body flying supersonically through a standard atmosphere. It will also calculate the maximum angle for which a shock remains attached, and the minimum Mach number for which a shock becomes attached, all as functions of the wedge angle, altitude, and Mach number.

  16. Estimation of treatment effects in all-comers randomized clinical trials with a predictive marker.

    PubMed

    Choai, Yuki; Matsui, Shigeyuki

    2015-03-01

    Recent advances in genomics and biotechnologies have accelerated the development of molecularly targeted treatments and accompanying markers to predict treatment responsiveness. However, it is common at the initiation of a definitive phase III clinical trial that there is no compelling biological basis or early trial data for a candidate marker regarding its capability in predicting treatment effects. In this case, it is reasonable to include all patients as eligible for randomization, but to plan for prospective subgroup analysis based on the marker. One analysis plan in such all-comers designs is the so-called fallback approach that first tests for overall treatment efficacy and then proceeds to testing in a biomarker-positive subgroup if the first test is not significant. In this approach, owing to the adaptive nature of the analysis and a correlation between the two tests, a bias will arise in estimating the treatment effect in the biomarker-positive subgroup after a non-significant first overall test. In this article, we formulate the bias function and show a difficulty in obtaining unbiased estimators for a whole range of an associated parameter. To address this issue, we propose bias-corrected estimation methods, including those based on an approximation of the bias function under a bounded range of the parameter using polynomials. We also provide an interval estimation method based on a bivariate doubly truncated normal distribution. Simulation experiments demonstrated a success in bias reduction. Application to a phase III trial for lung cancer is provided. © 2014, The International Biometric Society.

  17. The Lifetime Economic Burden of Inaccurate HER2 Testing: Estimating the Costs of False-Positive and False-Negative HER2 Test Results in US Patients with Early-Stage Breast Cancer.

    PubMed

    Garrison, Louis P; Babigumira, Joseph B; Masaquel, Anthony; Wang, Bruce C M; Lalla, Deepa; Brammer, Melissa

    2015-06-01

    Patients with breast cancer whose tumors test positive for human epidermal growth factor receptor 2 (HER2) are treated with HER2-targeted therapies such as trastuzumab, but limitations with HER2 testing may lead to false-positive (FP) or false-negative (FN) results. To develop a US-level model to estimate the effect of tumor misclassification on health care costs and patient quality-adjusted life-years (QALYs). Decision analysis was used to estimate the number of patients with early-stage breast cancer (EBC) whose HER2 status was misclassified in 2012. FP results were assumed to generate unnecessary trastuzumab costs and unnecessary cases of trastuzumab-related cardiotoxicity. FN results were assumed to save money on trastuzumab, but with a loss of QALYs and greater risk of disease recurrence and its associated costs. QALYs were valued at $100,000 under a net monetary benefit approach. Among 226,870 women diagnosed with EBC in 2012, 3.12% (n = 7,070) and 2.18% (n = 4,955) were estimated to have had FP and FN test results, respectively. Approximately 8400 QALYs (discounted, lifetime) were lost among women not receiving trastuzumab because of FN results. The estimated incremental per-patient lifetime burden of FP or FN results was $58,900 and $116,000, respectively. The implied incremental losses to society were $417 million and $575 million, respectively. HER2 tests result in misclassification and nonoptimal treatment of approximately 12,025 US patients with EBC annually. The total economic societal loss of nearly $1 billion suggests that improvements in HER2 testing accuracy are needed and that further clinical and economic studies are warranted. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  18. Neural net target-tracking system using structured laser patterns

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Wan; Lee, Yong-Bum; Lee, Nam-Ho; Park, Soon-Yong; Lee, Jongmin; Choi, Gapchu; Baek, Sunghyun; Park, Dong-Sun

    1996-06-01

    In this paper, we describe a robot endeffector tracking system using sensory information from recently-announced structured pattern laser diodes, which can generate images with several different types of structured pattern. The neural network approach is employed to recognize the robot endeffector covering the situation of three types of motion: translation, scaling and rotation. Features for the neural network to detect the position of the endeffector are extracted from the preprocessed images. Artificial neural networks are used to store models and to match with unknown input features recognizing the position of the robot endeffector. Since a minimal number of samples are used for different directions of the robot endeffector in the system, an artificial neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network trained with the back propagation learning is used to detect the position of the robot endeffector. Another feedforward neural network module is used to estimate the motion from a sequence of images and to control movements of the robot endeffector. COmbining the tow neural networks for recognizing the robot endeffector and estimating the motion with the preprocessing stage, the whole system keeps tracking of the robot endeffector effectively.

  19. Precision disablement aiming system

    DOEpatents

    Monda, Mark J.; Hobart, Clinton G.; Gladwell, Thomas Scott

    2016-02-16

    A disrupter to a target may be precisely aimed by positioning a radiation source to direct radiation towards the target, and a detector is positioned to detect radiation that passes through the target. An aiming device is positioned between the radiation source and the target, wherein a mechanical feature of the aiming device is superimposed on the target in a captured radiographic image. The location of the aiming device in the radiographic image is used to aim a disrupter towards the target.

  20. Statistical theory of combinatorial libraries of folding proteins: energetic discrimination of a target structure.

    PubMed

    Zou, J; Saven, J G

    2000-02-11

    A self-consistent theory is presented that can be used to estimate the number and composition of sequences satisfying a predetermined set of constraints. The theory is formulated so as to examine the features of sequences having a particular value of Delta=E(f)-(u), where E(f) is the energy of sequences when in a target structure and (u) is an average energy of non-target structures. The theory yields the probabilities w(i)(alpha) that each position i in the sequence is occupied by a particular monomer type alpha. The theory is applied to a simple lattice model of proteins. Excellent agreement is observed between the theory and the results of exact enumerations. The theory provides a quantitative framework for the design and interpretation of combinatorial experiments involving proteins, where a library of amino acid sequences is searched for sequences that fold to a desired structure. Copyright 2000 Academic Press.

  1. TH-AB-202-12: The First Clinical Implementation of a Real-Time Six Degree of Freedom Tracking System During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, D; Kim, J; O’Brien, R

    2016-06-15

    Purpose: In current practice, imaging is typically performed prior to treatment; the cancer target motion during treatment is unknown. We present the first clinical implementation of real time Kilovoltage Intrafraction Monitoring (KIM) system which tracks the cancer target translational and rotational motions during treatment. Methods: KIM technology: KIM estimates the 3D position of the target tumour based on segmented 2D positions of the three implanted fiducials in each of the kV images (125 kV, 10 mA at 11 fps) taken continuously during the treatment arc. The 2D-3D target estimation is based on a probability distribution function, obtained during pre-treatment CBCT.more » Rotations about each axis with the centroid of the markers as the pivot were calculated using the iterative closest point algorithm in real time. Patient: A patient with prostate adenocarcinoma undergoing stereotactic body radiotherapy (SBRT) with 36.25 Gy delivered in 5 fractions (Varian TrueBeam, 6X, VMAT) was enrolled in the study. The trial complies with Australian ethical and regulatory standards. Results: Of the 5 fractions of treatment the patient received, KIM was utilised successfully in 4 fractions with 3 couch shifts due to large persistent prostate movements (>2mm for more than 5 seconds). KIM translational accuracy and precision in comparison with post treatment kV-MV triangulation are 0.28±0.59 mm, −0.19±0.25 mm and 0.23±0.69 mm in the Left-Right, Superior-Inferior and Anterior-Posterior directions, respectively. KIM rotational accuracy as compared with triangulation is: 0.429°±2.22°, −0.44°±4.7° and 0.06°±1.08° in the roll, pitch and yaw direction, respectively. Conclusion: The first six degree of freedom KIM system was successfully implemented clinically. The presented KIM system has sub-millimeters accuracy and precision in all three translational axes, and less than 1° of mean error in all three rotational axes. Acknowledgement: This work is supported by Cancer Australia grants APPXXX, APPYYY.« less

  2. Estimation of "needs" and "probable uptake" for HIV/AIDS preventive vaccines based on possible policies and likely acceptance (a WHO/UNAIDS/IAVI study).

    PubMed

    Esparza, José; Chang, Marie-Louise; Widdus, Roy; Madrid, Yvette; Walker, Neff; Ghys, Peter D

    2003-05-16

    Once an effective HIV vaccine is discovered, a major challenge will be to ensure its world wide access. A preventive vaccine with low or moderate efficacy (30-50%) could be a valuable prevention tool, especially if targeted to populations at higher risk of HIV infection. High efficacy vaccines (80-90%) could be used in larger segments of the population. Estimated "needs" for future HIV vaccines were based on anticipated policies regarding target populations. Estimated "needs" were adjusted for "accessibility" and "acceptability" in the target populations, to arrive at an estimate of "probable uptake", i.e. courses of vaccine likely to be delivered. With a high efficacy vaccine, global needs are in the order of 690 million full immunization courses, targeting 22 and 69%, respectively, of the 15-49 years old, world wide and in sub-Saharan Africa, respectively. With a low/moderate efficacy vaccine targeted to populations at higher risk of HIV infection, the global needs were estimated to be 260 million full immunization courses, targeting 8 and 41%, respectively, of the world and sub-Saharan African population aged 15-49 years. The current estimate of probable uptake for hypothetical HIV vaccines, using existing health services and delivery systems, was 38% of the estimated need for a high efficacy vaccine, and 19% for a low/moderate efficacy vaccine. Bridging the gap between the estimated needs and the probable uptake for HIV vaccines will represent a major public health challenge for the future. The potential advantages and disadvantages of targeted versus universal vaccination will have to be considered.

  3. Waveform Optimization for Target Estimation by Cognitive Radar with Multiple Antennas.

    PubMed

    Yao, Yu; Zhao, Junhui; Wu, Lenan

    2018-05-29

    A new scheme based on Kalman filtering to optimize the waveforms of an adaptive multi-antenna radar system for target impulse response (TIR) estimation is presented. This work aims to improve the performance of TIR estimation by making use of the temporal correlation between successive received signals, and minimize the mean square error (MSE) of TIR estimation. The waveform design approach is based upon constant learning from the target feature at the receiver. Under the multiple antennas scenario, a dynamic feedback loop control system is established to real-time monitor the change in the target features extracted form received signals. The transmitter adapts its transmitted waveform to suit the time-invariant environment. Finally, the simulation results show that, as compared with the waveform design method based on the MAP criterion, the proposed waveform design algorithm is able to improve the performance of TIR estimation for extended targets with multiple iterations, and has a relatively lower level of complexity.

  4. Understanding the effects of Doppler phenomena in white light Fabry-Perot interferometers for simultaneous position and velocity measurement.

    PubMed

    Moro, Erik A; Todd, Michael D; Puckett, Anthony D

    2012-09-20

    In static tests, low-power (<5 mW) white light extrinsic Fabry-Perot interferometric position sensors offer high-accuracy (μm) absolute measurements of a target's position over large (cm) axial-position ranges, and since position is demodulated directly from phase in the interferogram, these sensors are robust to fluctuations in measured power levels. However, target surface dynamics distort the interferogram via Doppler shifting, introducing a bias in the demodulation process. With typical commercial off-the-shelf hardware, a broadband source centered near 1550 nm, and an otherwise typical setup, the bias may be as large as 50-100 μm for target surface velocities as low as 0.1 mm/s. In this paper, the authors derive a model for this Doppler-induced position bias, relating its magnitude to three swept-filter tuning parameters. Target velocity (magnitude and direction) is calculated using this relationship in conjunction with a phase-diversity approach, and knowledge of the target's velocity is then used to compensate exactly for the position bias. The phase-diversity approach exploits side-by-side measurement signals, transmitted through separate swept filters with distinct tuning parameters, and permits simultaneous measurement of target velocity and target position, thereby mitigating the most fundamental performance limitation that exists on dynamic white light interferometric position sensors.

  5. Highly efficient computer algorithm for identifying layer thickness of atomically thin 2D materials

    NASA Astrophysics Data System (ADS)

    Lee, Jekwan; Cho, Seungwan; Park, Soohyun; Bae, Hyemin; Noh, Minji; Kim, Beom; In, Chihun; Yang, Seunghoon; Lee, Sooun; Seo, Seung Young; Kim, Jehyun; Lee, Chul-Ho; Shim, Woo-Young; Jo, Moon-Ho; Kim, Dohun; Choi, Hyunyong

    2018-03-01

    The fields of layered material research, such as transition-metal dichalcogenides (TMDs), have demonstrated that the optical, electrical and mechanical properties strongly depend on the layer number N. Thus, efficient and accurate determination of N is the most crucial step before the associated device fabrication. An existing experimental technique using an optical microscope is the most widely used one to identify N. However, a critical drawback of this approach is that it relies on extensive laboratory experiences to estimate N; it requires a very time-consuming image-searching task assisted by human eyes and secondary measurements such as atomic force microscopy and Raman spectroscopy, which are necessary to ensure N. In this work, we introduce a computer algorithm based on the image analysis of a quantized optical contrast. We show that our algorithm can apply to a wide variety of layered materials, including graphene, MoS2, and WS2 regardless of substrates. The algorithm largely consists of two parts. First, it sets up an appropriate boundary between target flakes and substrate. Second, to compute N, it automatically calculates the optical contrast using an adaptive RGB estimation process between each target, which results in a matrix with different integer Ns and returns a matrix map of Ns onto the target flake position. Using a conventional desktop computational power, the time taken to display the final N matrix was 1.8 s on average for the image size of 1280 pixels by 960 pixels and obtained a high accuracy of 90% (six estimation errors among 62 samples) when compared to the other methods. To show the effectiveness of our algorithm, we also apply it to TMD flakes transferred on optically transparent c-axis sapphire substrates and obtain a similar result of the accuracy of 94% (two estimation errors among 34 samples).

  6. Effect of retransmission and retrodiction on estimation and fusion in long-haul sensor networks

    DOE PAGES

    Liu, Qiang; Wang, Xin; Rao, Nageswara S. V.; ...

    2016-01-01

    In a long-haul sensor network, sensors are remotely deployed over a large geographical area to perform certain tasks, such as target tracking. In this work, we study the scenario where sensors take measurements of one or more dynamic targets and send state estimates of the targets to a fusion center via satellite links. The severe loss and delay inherent over the satellite channels reduce the number of estimates successfully arriving at the fusion center, thereby limiting the potential fusion gain and resulting in suboptimal accuracy performance of the fused estimates. In addition, the errors in target-sensor data association can alsomore » degrade the estimation performance. To mitigate the effect of imperfect communications on state estimation and fusion, we consider retransmission and retrodiction. The system adopts certain retransmission-based transport protocols so that lost messages can be recovered over time. Besides, retrodiction/smoothing techniques are applied so that the chances of incurring excess delay due to retransmission are greatly reduced. We analyze the extent to which retransmission and retrodiction can improve the performance of delay-sensitive target tracking tasks under variable communication loss and delay conditions. Lastly, simulation results of a ballistic target tracking application are shown in the end to demonstrate the validity of our analysis.« less

  7. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination

    PubMed Central

    2011-01-01

    Background The entomological inoculation rate (EIR) is an important indicator in estimating malaria transmission and the impact of vector control. To assess the EIR, the enzyme-linked immunosorbent assay (ELISA) to detect the circumsporozoite protein (CSP) is increasingly used. However, several studies have reported false positive results in this ELISA. The false positive results could lead to an overestimation of the EIR. The aim of present study was to estimate the level of false positivity among different anopheline species in Cambodia and Vietnam and to check for the presence of other parasites that might interact with the anti-CSP monoclonal antibodies. Methods Mosquitoes collected in Cambodia and Vietnam were identified and tested for the presence of sporozoites in head and thorax by using CSP-ELISA. ELISA positive samples were confirmed by a Plasmodium specific PCR. False positive mosquitoes were checked by PCR for the presence of parasites belonging to the Haemosporidia, Trypanosomatidae, Piroplasmida, and Haemogregarines. The heat-stability and the presence of the cross-reacting antigen in the abdomen of the mosquitoes were also checked. Results Specimens (N = 16,160) of seven anopheline species were tested by CSP-ELISA for Plasmodium falciparum and Plasmodium vivax (Pv210 and Pv247). Two new vector species were identified for the region: Anopheles pampanai (P. vivax) and Anopheles barbirostris (Plasmodium malariae). In 88% (155/176) of the mosquitoes found positive with the P. falciparum CSP-ELISA, the presence of Plasmodium sporozoites could not be confirmed by PCR. This percentage was much lower (28% or 5/18) for P. vivax CSP-ELISAs. False positive CSP-ELISA results were associated with zoophilic mosquito species. None of the targeted parasites could be detected in these CSP-ELISA false positive mosquitoes. The ELISA reacting antigen of P. falciparum was heat-stable in CSP-ELISA true positive specimens, but not in the false positives. The heat-unstable cross-reacting antigen is mainly present in head and thorax and almost absent in the abdomens (4 out of 147) of the false positive specimens. Conclusion The CSP-ELISA can considerably overestimate the EIR, particularly for P. falciparum and for zoophilic species. The heat-unstable cross-reacting antigen in false positives remains unknown. Therefore it is highly recommended to confirm all positive CSP-ELISA results, either by re-analysing the heated ELISA lysate (100°C, 10 min), or by performing Plasmodium specific PCR followed if possible by sequencing of the amplicons for Plasmodium species determination. PMID:21767376

  8. More efficient rejection of happy than of angry face distractors in visual search.

    PubMed

    Horstmann, Gernot; Scharlau, Ingrid; Ansorge, Ulrich

    2006-12-01

    In the present study, we examined whether the detection advantage for negative-face targets in crowds of positive-face distractors over positive-face targets in crowds of negative faces can be explained by differentially efficient distractor rejection. Search Condition A demonstrated more efficient distractor rejection with negative-face targets in positive-face crowds than vice versa. Search Condition B showed that target identity alone is not sufficient to account for this effect, because there was no difference in processing efficiency for positive- and negative-face targets within neutral crowds. Search Condition C showed differentially efficient processing with neutral-face targets among positive- or negative-face distractors. These results were obtained with both a within-participants (Experiment 1) and a between-participants (Experiment 2) design. The pattern of results is consistent with the assumption that efficient rejection of positive (more homogenous) distractors is an important determinant of performance in search among (face) distractors.

  9. Mismatch and G-Stack Modulated Probe Signals on SNP Microarrays

    PubMed Central

    Binder, Hans; Fasold, Mario; Glomb, Torsten

    2009-01-01

    Background Single nucleotide polymorphism (SNP) arrays are important tools widely used for genotyping and copy number estimation. This technology utilizes the specific affinity of fragmented DNA for binding to surface-attached oligonucleotide DNA probes. We analyze the variability of the probe signals of Affymetrix GeneChip SNP arrays as a function of the probe sequence to identify relevant sequence motifs which potentially cause systematic biases of genotyping and copy number estimates. Methodology/Principal Findings The probe design of GeneChip SNP arrays enables us to disentangle different sources of intensity modulations such as the number of mismatches per duplex, matched and mismatched base pairings including nearest and next-nearest neighbors and their position along the probe sequence. The effect of probe sequence was estimated in terms of triple-motifs with central matches and mismatches which include all 256 combinations of possible base pairings. The probe/target interactions on the chip can be decomposed into nearest neighbor contributions which correlate well with free energy terms of DNA/DNA-interactions in solution. The effect of mismatches is about twice as large as that of canonical pairings. Runs of guanines (G) and the particular type of mismatched pairings formed in cross-allelic probe/target duplexes constitute sources of systematic biases of the probe signals with consequences for genotyping and copy number estimates. The poly-G effect seems to be related to the crowded arrangement of probes which facilitates complex formation of neighboring probes with at minimum three adjacent G's in their sequence. Conclusions The applied method of “triple-averaging” represents a model-free approach to estimate the mean intensity contributions of different sequence motifs which can be applied in calibration algorithms to correct signal values for sequence effects. Rules for appropriate sequence corrections are suggested. PMID:19924253

  10. Estimation of Risk of Normal-tissue Toxicity Following Gastric Cancer Radiotherapy with Photon- or Scanned Proton-beams.

    PubMed

    Mondlane, Gracinda; Ureba, Ana; Gubanski, Michael; Lind, Pehr A; Siegbahn, Albert

    2018-05-01

    Gastric cancer (GC) radiotherapy involves irradiation of large tumour volumes located in the proximities of critical structures. The advantageous dose distributions produced by scanned-proton beams could reduce the irradiated volumes of the organs at risk (OARs). However, treatment-induced side-effects may still appear. The aim of this study was to estimate the normal tissue complication probability (NTCP) following proton therapy of GC, compared to photon radiotherapy. Eight GC patients, previously treated with volumetric-modulated arc therapy (VMAT), were retrospectively planned with scanned proton beams carried out with the single-field uniform-dose (SFUD) method. A beam-specific planning target volume was used for spot positioning and a clinical target volume (CTV) based robust optimisation was performed considering setup- and range-uncertainties. The dosimetric and NTCP values obtained with the VMAT and SFUD plans were compared. With SFUD, lower or similar dose-volume values were obtained for OARs, compared to VMAT. NTCP values of 0% were determined with the VMAT and SFUD plans for all OARs (p>0.05), except for the left kidney (p<0.05), for which lower toxicity was estimated with SFUD. The NTCP reduction, determined for the left kidney with SFUD, can be of clinical relevance for preserving renal function after radiotherapy of GC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies.

    PubMed

    Krall, Jenna R; Ladva, Chandresh N; Russell, Armistead G; Golan, Rachel; Peng, Xing; Shi, Guoliang; Greenwald, Roby; Raysoni, Amit U; Waller, Lance A; Sarnat, Jeremy A

    2018-06-01

    Concentrations of traffic-related air pollutants are frequently higher within commuting vehicles than in ambient air. Pollutants found within vehicles may include those generated by tailpipe exhaust, brake wear, and road dust sources, as well as pollutants from in-cabin sources. Source-specific pollution, compared to total pollution, may represent regulation targets that can better protect human health. We estimated source-specific pollution exposures and corresponding pulmonary response in a panel study of commuters. We used constrained positive matrix factorization to estimate source-specific pollution factors and, subsequently, mixed effects models to estimate associations between source-specific pollution and pulmonary response. We identified four pollution factors that we named: crustal, primary tailpipe traffic, non-tailpipe traffic, and secondary. Among asthmatic subjects (N = 48), interquartile range increases in crustal and secondary pollution were associated with changes in lung function of -1.33% (95% confidence interval (CI): -2.45, -0.22) and -2.19% (95% CI: -3.46, -0.92) relative to baseline, respectively. Among non-asthmatic subjects (N = 51), non-tailpipe pollution was associated with pulmonary response only at 2.5 h post-commute. We found no significant associations between pulmonary response and primary tailpipe pollution. Health effects associated with traffic-related pollution may vary by source, and therefore some traffic pollution sources may require targeted interventions to protect health.

  12. Estimating feedforward vs. feedback control of speech production through kinematic analyses of unperturbed articulatory movements.

    PubMed

    Kim, Kwang S; Max, Ludo

    2014-01-01

    To estimate the contributions of feedforward vs. feedback control systems in speech articulation, we analyzed the correspondence between initial and final kinematics in unperturbed tongue and jaw movements for consonant-vowel (CV) and vowel-consonant (VC) syllables. If movement extents and endpoints are highly predictable from early kinematic information, then the movements were most likely completed without substantial online corrections (feedforward control); if the correspondence between early kinematics and final amplitude or position is low, online adjustments may have altered the planned trajectory (feedback control) (Messier and Kalaska, 1999). Five adult speakers produced CV and VC syllables with high, mid, or low vowels while movements of the tongue and jaw were tracked electromagnetically. The correspondence between the kinematic parameters peak acceleration or peak velocity and movement extent as well as between the articulators' spatial coordinates at those kinematic landmarks and movement endpoint was examined both for movements across different target distances (i.e., across vowel height) and within target distances (i.e., within vowel height). Taken together, results suggest that jaw and tongue movements for these CV and VC syllables are mostly under feedforward control but with feedback-based contributions. One type of feedback-driven compensatory adjustment appears to regulate movement duration based on variation in peak acceleration. Results from a statistical model based on multiple regression are presented to illustrate how the relative strength of these feedback contributions can be estimated.

  13. Feature long axis size and local luminance contrast determine ship target acquisition performance: strong evidence for the TOD case

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; Toet, Alexander; Kooi, Frank L.

    2016-10-01

    Visual images of a civilian target ship on a sea background were produced using a CAD model. The total set consisted of 264 images and included 3 different color schemes, 2 ship viewing aspects, 5 sun illumination conditions, 2 sea reflection values, 2 ship positions with respect to the horizon and 3 values of atmospheric contrast reduction. In a perception experiment, the images were presented on a display in a long darkened corridor. Observers were asked to indicate the range at which they were able to detect the ship and classify the following 5 ship elements: accommodation, funnel, hull, mast, and hat above the bridge. This resulted in a total of 1584 Target Acquisition (TA) range estimates for two observers. Next, the ship contour, ship elements and corresponding TA ranges were analyzed applying several feature size and contrast measures. Most data coincide on a contrast versus angular size plot using (1) the long axis as characteristic ship/ship feature size and (2) local Weber contrast as characteristic ship/ship feature contrast. Finally, the data were compared with a variety of visual performance functions assumed to be representative for Target Acquisition: the TOD (Triangle Orientation Discrimination), MRC (Minimum Resolvable Contrast), CTF (Contrast Threshold Function), TTP (Targeting Task Performance) metric and circular disc detection data for the unaided eye (Blackwell). The results provide strong evidence for the TOD case: both position and slope of the TOD curve match the ship detection and classification data without any free parameter. In contrast, the MRC and CTF are too steep, the TTP and disc detection curves are too shallow and all these curves need an overall scaling factor in order to coincide with the ship and ship feature recognition data.

  14. A Real-Time Brain-Machine Interface Combining Motor Target and Trajectory Intent Using an Optimal Feedback Control Design

    PubMed Central

    Shanechi, Maryam M.; Williams, Ziv M.; Wornell, Gregory W.; Hu, Rollin C.; Powers, Marissa; Brown, Emery N.

    2013-01-01

    Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system. PMID:23593130

  15. Global Mapping of Traditional Chinese Medicine into Bioactivity Space and Pathways Annotation Improves Mechanistic Understanding and Discovers Relationships between Therapeutic Action (Sub)classes

    PubMed Central

    Mohamad Zobir, Siti Zuraidah; Mohd Fauzi, Fazlin; Liggi, Sonia; Drakakis, Georgios; Fu, Xianjun; Fan, Tai-Ping; Bender, Andreas

    2016-01-01

    Traditional Chinese medicine (TCM) still needs more scientific rationale to be proven for it to be accepted further in the West. We are now in the position to propose computational hypotheses for the mode-of-actions (MOAs) of 45 TCM therapeutic action (sub)classes from in silico target prediction algorithms, whose target was later annotated with Kyoto Encyclopedia of Genes and Genomes pathway, and to discover the relationship between them by generating a hierarchical clustering. The results of 10,749 TCM compounds showed 183 enriched targets and 99 enriched pathways from Estimation Score ≤ 0 and ≥ 5% of compounds/targets in a (sub)class. The MOA of a (sub)class was established from supporting literature. Overall, the most frequent top three enriched targets/pathways were immune-related targets such as tyrosine-protein phosphatase nonreceptor type 2 (PTPN2) and digestive system such as mineral absorption. We found two major protein families, G-protein coupled receptor (GPCR), and protein kinase family contributed to the diversity of the bioactivity space, while digestive system was consistently annotated pathway motif, which agreed with the important treatment principle of TCM, “the foundation of acquired constitution” that includes spleen and stomach. In short, the TCM (sub)classes, in many cases share similar targets/pathways despite having different indications. PMID:26989424

  16. Automated multiple target detection and tracking in UAV videos

    NASA Astrophysics Data System (ADS)

    Mao, Hongwei; Yang, Chenhui; Abousleman, Glen P.; Si, Jennie

    2010-04-01

    In this paper, a novel system is presented to detect and track multiple targets in Unmanned Air Vehicles (UAV) video sequences. Since the output of the system is based on target motion, we first segment foreground moving areas from the background in each video frame using background subtraction. To stabilize the video, a multi-point-descriptor-based image registration method is performed where a projective model is employed to describe the global transformation between frames. For each detected foreground blob, an object model is used to describe its appearance and motion information. Rather than immediately classifying the detected objects as targets, we track them for a certain period of time and only those with qualified motion patterns are labeled as targets. In the subsequent tracking process, a Kalman filter is assigned to each tracked target to dynamically estimate its position in each frame. Blobs detected at a later time are used as observations to update the state of the tracked targets to which they are associated. The proposed overlap-rate-based data association method considers the splitting and merging of the observations, and therefore is able to maintain tracks more consistently. Experimental results demonstrate that the system performs well on real-world UAV video sequences. Moreover, careful consideration given to each component in the system has made the proposed system feasible for real-time applications.

  17. Studies on Training Ground Observers to Estimate Range to Aerial Targets.

    ERIC Educational Resources Information Center

    McCluskey, Michael R.; And Others

    Six pilot studies were conducted to determine the effects of training on range estimation performance for aerial targets, and to identify some of the relevant variables. Observers were trained to estimate ranges of 350, 400, 800, 1,500, or 2,500 meters. Several variations of range estimation training methods were used, including immediate…

  18. A novel procedure for detecting and focusing moving objects with SAR based on the Wigner-Ville distribution

    NASA Astrophysics Data System (ADS)

    Barbarossa, S.; Farina, A.

    A novel scheme for detecting moving targets with synthetic aperture radar (SAR) is presented. The proposed approach is based on the use of the Wigner-Ville distribution (WVD) for simultaneously detecting moving targets and estimating their motion kinematic parameters. The estimation plays a key role for focusing the target and correctly locating it with respect to the stationary background. The method has a number of advantages: (i) the detection is efficiently performed on the samples in the time-frequency domain, provided the WVD, without resorting to the use of a bank of filters, each one matched to possible values of the unknown target motion parameters; (ii) the estimation of the target motion parameters can be done on the same time-frequency domain by locating the line where the maximum energy of the WVD is concentrated. A validation of the approach is given by both analytical and simulation means. In addition, the estimation of the target kinematic parameters and the corresponding image focusing are also demonstrated.

  19. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuemann, J; Grassberger, C; Paganetti, H

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50)more » were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend treatment plan verification using Monte Carlo simulations for patients with complex geometries.« less

  20. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.

    PubMed

    Gnadt, William; Grossberg, Stephen

    2008-06-01

    How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and size-invariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.

  1. The HIV care cascade: Japanese perspectives

    PubMed Central

    Taira, Rikizo; Yokomaku, Yoshiyuki; Koibuchi, Tomohiko; Rahman, Mahbubur; Izumi, Yoko; Tadokoro, Kenji

    2017-01-01

    Japan has been known as a low HIV-prevalence country with a concentrated epidemic among high-risk groups. However, it has not been determined whether Japan meets the 90-90-90 goals set by the Joint United Nations Programme on HIV/AIDS (UNAIDS)/World Health Organization (WHO). Moreover, to date, the HIV care cascade has not been examined. We estimated the total number of diagnosed people living with HIV/AIDS (PLWHA) (n = 22,840) based on legal reports to the Ministry of Health, Labour and Welfare by subtracting the number of foreigners who left Japan (n = 2,273) and deaths (n = 2,321) from the cumulative diagnosis report (n = 27,434). The number of total undiagnosed PLWHA was estimated by age and sex specific HIV-positive rates observed among first-time blood donors between 2011–2015 in Japan. Our estimates show that 14.4% (n = 3,830) of all PLWHA (n = 26,670) were undiagnosed in Japan at the end of 2015. The number of patients retained in care (n = 20,615: 77.3% of PLWHA), the percentage of those on antiretroviral therapy (n = 18,921: 70.9% of PLWHA) and those with suppressed viral loads (<200 copies/mL; n = 18,756: 70.3% of PLWHA) were obtained through a questionnaire survey conducted in the AIDS Core Hospitals throughout the country. According to these estimates, Japan failed to achieve the first two of the three UNAIDS/WHO targets (22,840/26,670 = 85.6% of HIV-positive cases were diagnosed; 18,921/22,840 = 82.8% of those diagnosed were treated; 18,756/18,921 = 99.1% of those treated experienced viral suppression). Although the antiretroviral treatment uptake and success after retention in medical care appears to be excellent in Japan, there are unmet needs, mainly at the surveillance level before patients are retained in care. The promotion of HIV testing and treatment programs among the key affected populations (especially men who have sex with men) may contribute to further decreasing the HIV epidemic and achieving the UNAIDS/WHO targets in Japan. PMID:28319197

  2. Budget impact analysis of everolimus for the treatment of hormone receptor positive, human epidermal growth factor receptor-2 negative (HER2-) advanced breast cancer in the United States.

    PubMed

    Xie, Jipan; Diener, Melissa; De, Gourab; Yang, Hongbo; Wu, Eric Q; Namjoshi, Madhav

    2013-01-01

    To estimate the budget impact of everolimus as the first and second treatment option after letrozole or anastrozole (L/A) failure for post-menopausal women with hormone receptor positive (HR+), human epidermal growth factor receptor-2 negative (HER2-) advanced breast cancer (ABC). Pharmacy and medical budget impacts (2011 USD) were estimated over the first year of everolimus use in HR+, HER2- ABC from a US payer perspective. Epidemiology data were used to estimate target population size. Pre-everolimus entry treatment options included exemestane, fulvestrant, and tamoxifen. Pre- and post-everolimus entry market shares were estimated based on market research and assumptions. Drug costs were based on wholesale acquisition cost. Patients were assumed to be on treatment until progression or death. Annual medical costs were calculated as the average of pre- and post-progression medical costs weighted by the time in each period, adjusted for survival. One-way and two-way sensitivity analyses were conducted to assess the model robustness. In a hypothetical 1,000,000 member plan, 72 and 159 patients were expected to be candidates for everolimus treatment as first and second treatment option, respectively, after L/A failure. The total budget impact for the first year post-everolimus entry was $0.044 per member per month [PMPM] (pharmacy budget: $0.058 PMPM; medical budget: -$0.014 PMPM), assuming 10% of the target population would receive everolimus. The total budget impacts for the first and second treatment options after L/A failure were $0.014 PMPM (pharmacy budget: $0.018; medical budget: -$0.004) and $0.030 PMPM (pharmacy budget: $0.040; medical budget: -$0.010), respectively. Results remained robust in sensitivity analyses. Assumptions about some model input parameters were necessary and may impact results. Increased pharmacy costs for HR+, HER2- ABC following everolimus entry are expected to be partially offset by reduced medical service costs. Pharmacy and total budget increases were modest.

  3. A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements

    PubMed Central

    Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J. Douglas

    2016-01-01

    In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks. PMID:27242452

  4. Using a constrained formulation based on probability summation to fit receiver operating characteristic (ROC) curves

    NASA Astrophysics Data System (ADS)

    Swensson, Richard G.; King, Jill L.; Good, Walter F.; Gur, David

    2000-04-01

    A constrained ROC formulation from probability summation is proposed for measuring observer performance in detecting abnormal findings on medical images. This assumes the observer's detection or rating decision on each image is determined by a latent variable that characterizes the specific finding (type and location) considered most likely to be a target abnormality. For positive cases, this 'maximum- suspicion' variable is assumed to be either the value for the actual target or for the most suspicious non-target finding, whichever is the greater (more suspicious). Unlike the usual ROC formulation, this constrained formulation guarantees a 'well-behaved' ROC curve that always equals or exceeds chance- level decisions and cannot exhibit an upward 'hook.' Its estimated parameters specify the accuracy for separating positive from negative cases, and they also predict accuracy in locating or identifying the actual abnormal findings. The present maximum-likelihood procedure (runs on PC with Windows 95 or NT) fits this constrained formulation to rating-ROC data using normal distributions with two free parameters. Fits of the conventional and constrained ROC formulations are compared for continuous and discrete-scale ratings of chest films in a variety of detection problems, both for localized lesions (nodules, rib fractures) and for diffuse abnormalities (interstitial disease, infiltrates or pnumothorax). The two fitted ROC curves are nearly identical unless the conventional ROC has an ill behaved 'hook,' below the constrained ROC.

  5. Spatial effects of shifting prisms on properties of posterior parietal cortex neurons

    PubMed Central

    Karkhanis, Anushree N; Heider, Barbara; Silva, Fabian Muñoz; Siegel, Ralph M

    2014-01-01

    The posterior parietal cortex contains neurons that respond to visual stimulation and motor behaviour. The objective of the current study was to test short-term adaptation in neurons in macaque area 7a and the dorsal prelunate during visually guided reaching using Fresnel prisms that displaced the visual field. The visual perturbation shifted the eye position and created a mismatch between perceived and actual reach location. Two non-human primates were trained to reach to visual targets before, during and after prism exposure while fixating the reach target in different locations. They were required to reach to the physical location of the reach target and not the perceived, displaced location. While behavioural adaptation to the prisms occurred within a few trials, the majority of neurons responded to the distortion either with substantial changes in spatial eye position tuning or changes in overall firing rate. These changes persisted even after prism removal. The spatial changes were not correlated with the direction of induced prism shift. The transformation of gain fields between conditions was estimated by calculating the translation and rotation in Euler angles. Rotations and translations of the horizontal and vertical spatial components occurred in a systematic manner for the population of neurons suggesting that the posterior parietal cortex retains a constant representation of the visual field remapping between experimental conditions. PMID:24928956

  6. Precision Pointing Control to and Accurate Target Estimation of a Non-Cooperative Vehicle

    NASA Technical Reports Server (NTRS)

    VanEepoel, John; Thienel, Julie; Sanner, Robert M.

    2006-01-01

    In 2004, NASA began investigating a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would not only require estimates of the HST attitude and rates in order to achieve capture by the proposed Hubble Robotic Vehicle (HRV), but also precision control to achieve the desired rate and maintain the orientation to successfully dock with HST. To generalize the situation, HST is the target vehicle and HRV is the chaser. This work presents a nonlinear approach for estimating the body rates of a non-cooperative target vehicle, and coupling this estimation to a control scheme. Non-cooperative in this context relates to the target vehicle no longer having the ability to maintain attitude control or transmit attitude knowledge.

  7. Real-time non-rigid target tracking for ultrasound-guided clinical interventions

    NASA Astrophysics Data System (ADS)

    Zachiu, C.; Ries, M.; Ramaekers, P.; Guey, J.-L.; Moonen, C. T. W.; de Senneville, B. Denis

    2017-10-01

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target anatomy during the intervention would be beneficial for such applications. Since the aforementioned interventions are often conducted under B-mode ultrasound (US) guidance, target tracking can be achieved via image registration, by comparing the acquired US images to a separate image established as positional reference. However, such US images are intrinsically altered by speckle noise, introducing incoherent gray-level intensity variations. This may prove problematic for existing intensity-based registration methods. In the current study we address US-based target tracking by employing the recently proposed EVolution registration algorithm. The method is, by construction, robust to transient gray-level intensities. Instead of directly matching image intensities, EVolution aligns similar contrast patterns in the images. Moreover, the displacement is computed by evaluating a matching criterion for image sub-regions rather than on a point-by-point basis, which typically provides more robust motion estimates. However, unlike similar previously published approaches, which assume rigid displacements in the image sub-regions, the EVolution algorithm integrates the matching criterion in a global functional, allowing the estimation of an elastic dense deformation. The approach was validated for soft tissue tracking under free-breathing conditions on the abdomen of seven healthy volunteers. Contact echography was performed on all volunteers, while three of the volunteers also underwent standoff echography. Each of the two modalities is predominantly specific to a particular type of non- or mini-invasive clinical intervention. The method demonstrated on average an accuracy of  ˜1.5 mm and submillimeter precision. This, together with a computational performance of 20 images per second make the proposed method an attractive solution for real-time target tracking during US-guided clinical interventions.

  8. Real-time non-rigid target tracking for ultrasound-guided clinical interventions.

    PubMed

    Zachiu, C; Ries, M; Ramaekers, P; Guey, J-L; Moonen, C T W; de Senneville, B Denis

    2017-10-04

    Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target anatomy during the intervention would be beneficial for such applications. Since the aforementioned interventions are often conducted under B-mode ultrasound (US) guidance, target tracking can be achieved via image registration, by comparing the acquired US images to a separate image established as positional reference. However, such US images are intrinsically altered by speckle noise, introducing incoherent gray-level intensity variations. This may prove problematic for existing intensity-based registration methods. In the current study we address US-based target tracking by employing the recently proposed EVolution registration algorithm. The method is, by construction, robust to transient gray-level intensities. Instead of directly matching image intensities, EVolution aligns similar contrast patterns in the images. Moreover, the displacement is computed by evaluating a matching criterion for image sub-regions rather than on a point-by-point basis, which typically provides more robust motion estimates. However, unlike similar previously published approaches, which assume rigid displacements in the image sub-regions, the EVolution algorithm integrates the matching criterion in a global functional, allowing the estimation of an elastic dense deformation. The approach was validated for soft tissue tracking under free-breathing conditions on the abdomen of seven healthy volunteers. Contact echography was performed on all volunteers, while three of the volunteers also underwent standoff echography. Each of the two modalities is predominantly specific to a particular type of non- or mini-invasive clinical intervention. The method demonstrated on average an accuracy of  ∼1.5 mm and submillimeter precision. This, together with a computational performance of 20 images per second make the proposed method an attractive solution for real-time target tracking during US-guided clinical interventions.

  9. Semantic wireless localization of WiFi terminals in smart buildings

    NASA Astrophysics Data System (ADS)

    Ahmadi, H.; Polo, A.; Moriyama, T.; Salucci, M.; Viani, F.

    2016-06-01

    The wireless localization of mobile terminals in indoor scenarios by means of a semantic interpretation of the environment is addressed in this work. A training-less approach based on the real-time calibration of a simple path loss model is proposed which combines (i) the received signal strength information measured by the wireless terminal and (ii) the topological features of the localization domain. A customized evolutionary optimization technique has been designed to estimate the optimal target position that fits the complex wireless indoor propagation and the semantic target-environment relation, as well. The proposed approach is experimentally validated in a real building area where the available WiFi network is opportunistically exploited for data collection. The presented results point out a reduction of the localization error obtained with the introduction of a very simple semantic interpretation of the considered scenario.

  10. A combined vision-inertial fusion approach for 6-DoF object pose estimation

    NASA Astrophysics Data System (ADS)

    Li, Juan; Bernardos, Ana M.; Tarrío, Paula; Casar, José R.

    2015-02-01

    The estimation of the 3D position and orientation of moving objects (`pose' estimation) is a critical process for many applications in robotics, computer vision or mobile services. Although major research efforts have been carried out to design accurate, fast and robust indoor pose estimation systems, it remains as an open challenge to provide a low-cost, easy to deploy and reliable solution. Addressing this issue, this paper describes a hybrid approach for 6 degrees of freedom (6-DoF) pose estimation that fuses acceleration data and stereo vision to overcome the respective weaknesses of single technology approaches. The system relies on COTS technologies (standard webcams, accelerometers) and printable colored markers. It uses a set of infrastructure cameras, located to have the object to be tracked visible most of the operation time; the target object has to include an embedded accelerometer and be tagged with a fiducial marker. This simple marker has been designed for easy detection and segmentation and it may be adapted to different service scenarios (in shape and colors). Experimental results show that the proposed system provides high accuracy, while satisfactorily dealing with the real-time constraints.

  11. MPN estimation of qPCR target sequence recoveries from whole cell calibrator samples

    EPA Science Inventory

    DNA extracts from enumerated target organism cells (calibrator samples) have been used for estimating Enterococcus cell equivalent densities in surface waters by a comparative cycle threshold (Ct) qPCR analysis method. To compare surface water Enterococcus density estimates from ...

  12. Single snapshot DOA estimation

    NASA Astrophysics Data System (ADS)

    Häcker, P.; Yang, B.

    2010-10-01

    In array signal processing, direction of arrival (DOA) estimation has been studied for decades. Many algorithms have been proposed and their performance has been studied thoroughly. Yet, most of these works are focused on the asymptotic case of a large number of snapshots. In automotive radar applications like driver assistance systems, however, only a small number of snapshots of the radar sensor array or, in the worst case, a single snapshot is available for DOA estimation. In this paper, we investigate and compare different DOA estimators with respect to their single snapshot performance. The main focus is on the estimation accuracy and the angular resolution in multi-target scenarios including difficult situations like correlated targets and large target power differences. We will show that some algorithms lose their ability to resolve targets or do not work properly at all. Other sophisticated algorithms do not show a superior performance as expected. It turns out that the deterministic maximum likelihood estimator is a good choice under these hard conditions.

  13. Internal Medicine residents use heuristics to estimate disease probability.

    PubMed

    Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin

    2015-01-01

    Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. We randomized 55 Internal Medicine residents to different versions of four clinical vignettes and asked them to estimate probabilities of target conditions. We manipulated the clinical data for each vignette to be consistent with either 1) using a representative heuristic, by adding non-discriminating prototypical clinical features of the target condition, or 2) using anchoring with adjustment heuristic, by providing a high or low anchor for the target condition. When presented with additional non-discriminating data the odds of diagnosing the target condition were increased (odds ratio (OR) 2.83, 95% confidence interval [1.30, 6.15], p = 0.009). Similarly, the odds of diagnosing the target condition were increased when a high anchor preceded the vignette (OR 2.04, [1.09, 3.81], p = 0.025). Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing.

  14. Estimating the cost-effectiveness of detecting cases of chronic hepatitis C infection on reception into prison

    PubMed Central

    Sutton, Andrew J; Edmunds, W John; Gill, O Noel

    2006-01-01

    Background In England and Wales where less than 1% of the population are Injecting drug users (IDUs), 97% of HCV reports are attributed to injecting drug use. As over 60% of the IDU population will have been imprisoned by the age of 30 years, prison may provide a good location in which to offer HCV screening and treatment. The aim of this work is to examine the cost effectiveness of a number of alternative HCV case-finding strategies on prison reception Methods A decision analysis model embedded in a model of the flow of IDUs through prison was used to estimate the cost effectiveness of a number of alternative case-finding strategies. The model estimates the average cost of identifying a new case of HCV from the perspective of the health care provider and how these estimates may evolve over time. Results The results suggest that administering verbal screening for a past positive HCV test and for ever having engaged in illicit drug use prior to the administering of ELISA and PCR tests can have a significant impact on the cost effectiveness of HCV case-finding strategies on prison reception; the discounted cost in 2017 being £2,102 per new HCV case detected compared to £3,107 when no verbal screening is employed. Conclusion The work here demonstrates the importance of targeting those individuals that have ever engaged in illicit drug use for HCV testing in prisons, these individuals can then be targeted for future intervention measures such as treatment or monitored to prevent future transmission. PMID:16803622

  15. COBALT: A GN&C Payload for Testing ALHAT Capabilities in Closed-Loop Terrestrial Rocket Flights

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Amzajerdian, Farzin; Hines, Glenn D.; O'Neal, Travis V.; Robertson, Edward A.; Seubert, Carl; Trawny, Nikolas

    2016-01-01

    The COBALT (CoOperative Blending of Autonomous Landing Technology) payload is being developed within NASA as a risk reduction activity to mature, integrate and test ALHAT (Autonomous precision Landing and Hazard Avoidance Technology) systems targeted for infusion into near-term robotic and future human space flight missions. The initial COBALT payload instantiation is integrating the third-generation ALHAT Navigation Doppler Lidar (NDL) sensor, for ultra high-precision velocity plus range measurements, with the passive-optical Lander Vision System (LVS) that provides Terrain Relative Navigation (TRN) global-position estimates. The COBALT payload will be integrated onboard a rocket-propulsive terrestrial testbed and will provide precise navigation estimates and guidance planning during two flight test campaigns in 2017 (one open-loop and closed- loop). The NDL is targeting performance capabilities desired for future Mars and Moon Entry, Descent and Landing (EDL). The LVS is already baselined for TRN on the Mars 2020 robotic lander mission. The COBALT platform will provide NASA with a new risk-reduction capability to test integrated EDL Guidance, Navigation and Control (GN&C) components in closed-loop flight demonstrations prior to the actual mission EDL.

  16. Can Early Intervention Improve Maternal Well-Being? Evidence from a Randomized Controlled Trial

    PubMed Central

    Doyle, Orla; Delaney, Liam; O’Farrelly, Christine; Fitzpatrick, Nick; Daly, Michael

    2017-01-01

    Objective This study estimates the effect of a targeted early childhood intervention program on global and experienced measures of maternal well-being utilizing a randomized controlled trial design. The primary aim of the intervention is to improve children’s school readiness skills by working directly with parents to improve their knowledge of child development and parenting behavior. One potential externality of the program is well-being benefits for parents given its direct focus on improving parental coping, self-efficacy, and problem solving skills, as well as generating an indirect effect on parental well-being by targeting child developmental problems. Methods Participants from a socio-economically disadvantaged community are randomly assigned during pregnancy to an intensive 5-year home visiting parenting program or a control group. We estimate and compare treatment effects on multiple measures of global and experienced well-being using permutation testing to account for small sample size and a stepdown procedure to account for multiple testing. Results The intervention has no impact on global well-being as measured by life satisfaction and parenting stress or experienced negative affect using episodic reports derived from the Day Reconstruction Method (DRM). Treatment effects are observed on measures of experienced positive affect derived from the DRM and a measure of mood yesterday. Conclusion The limited treatment effects suggest that early intervention programs may produce some improvements in experienced positive well-being, but no effects on negative aspects of well-being. Different findings across measures may result as experienced measures of well-being avoid the cognitive biases that impinge upon global assessments. PMID:28095505

  17. Enhanced anti-tumoral activity of methotrexate-human serum albumin conjugated nanoparticles by targeting with Luteinizing Hormone-Releasing Hormone (LHRH) peptide.

    PubMed

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120-138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX.

  18. Practical Performance Analysis for Multiple Information Fusion Based Scalable Localization System Using Wireless Sensor Networks.

    PubMed

    Zhao, Yubin; Li, Xiaofan; Zhang, Sha; Meng, Tianhui; Zhang, Yiwen

    2016-08-23

    In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér-Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for the indoor localization systems and serves as an indicator for practical system evaluation.

  19. Elastic registration of prostate MR images based on state estimation of dynamical systems

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Ghoul, Suha; Sirouspour, Shahin; Capson, David W.; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Magnetic resonance imaging (MRI) is being increasingly used for image-guided biopsy and focal therapy of prostate cancer. A combined rigid and deformable registration technique is proposed to register pre-treatment diagnostic 3T magnetic resonance (MR) images, with the identified target tumor(s), to the intra-treatment 1.5T MR images. The pre-treatment 3T images are acquired with patients in strictly supine position using an endorectal coil, while 1.5T images are obtained intra-operatively just before insertion of the ablation needle with patients in the lithotomy position. An intensity-based registration routine rigidly aligns two images in which the transformation parameters is initialized using three pairs of manually selected approximate corresponding points. The rigid registration is followed by a deformable registration algorithm employing a generic dynamic linear elastic deformation model discretized by the finite element method (FEM). The model is used in a classical state estimation framework to estimate the deformation of the prostate based on a similarity metric between pre- and intra-treatment images. Registration results using 10 sets of prostate MR images showed that the proposed method can significantly improve registration accuracy in terms of target registration error (TRE) for all prostate substructures. The root mean square (RMS) TRE of 46 manually identified fiducial points was found to be 2.40+/-1.20 mm, 2.51+/-1.20 mm, and 2.28+/-1.22mm for the whole gland (WG), central gland (CG), and peripheral zone (PZ), respectively after deformable registration. These values are improved from 3.15+/-1.60 mm, 3.09+/-1.50 mm, and 3.20+/-1.73mm in the WG, CG and PZ, respectively resulted from rigid registration. Registration results are also evaluated based on the Dice similarity coefficient (DSC), mean absolute surface distances (MAD) and maximum absolute surface distances (MAXD) of the WG and CG in the prostate images.

  20. Parsing Heterogeneity in the Brain Connectivity of Depressed and Healthy Adults During Positive Mood.

    PubMed

    Price, Rebecca B; Lane, Stephanie; Gates, Kathleen; Kraynak, Thomas E; Horner, Michelle S; Thase, Michael E; Siegle, Greg J

    2017-02-15

    There is well-known heterogeneity in affective mechanisms in depression that may extend to positive affect. We used data-driven parsing of neural connectivity to reveal subgroups present across depressed and healthy individuals during positive processing, informing targets for mechanistic intervention. Ninety-two individuals (68 depressed patients, 24 never-depressed control subjects) completed a sustained positive mood induction during functional magnetic resonance imaging. Directed functional connectivity paths within a depression-relevant network were characterized using Group Iterative Multiple Model Estimation (GIMME), a method shown to accurately recover the direction and presence of connectivity paths in individual participants. During model selection, individuals were clustered using community detection on neural connectivity estimates. Subgroups were externally tested across multiple levels of analysis. Two connectivity-based subgroups emerged: subgroup A, characterized by weaker connectivity overall, and subgroup B, exhibiting hyperconnectivity (relative to subgroup A), particularly among ventral affective regions. Subgroup predicted diagnostic status (subgroup B contained 81% of patients; 50% of control subjects; χ 2 = 8.6, p = .003) and default mode network connectivity during a separate resting-state task. Among patients, subgroup B members had higher self-reported symptoms, lower sustained positive mood during the induction, and higher negative bias on a reaction-time task. Symptom-based depression subgroups did not predict these external variables. Neural connectivity-based categorization travels with diagnostic category and is clinically predictive, but not clinically deterministic. Both patients and control subjects showed heterogeneous, and overlapping, profiles. The larger and more severely affected patient subgroup was characterized by ventrally driven hyperconnectivity during positive processing. Data-driven parsing suggests heterogeneous substrates of depression and possible resilience in control subjects in spite of biological overlap. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Individual Combatant’s Weapons Firing Algorithm

    DTIC Science & Technology

    2010-04-01

    target selection prioritization scheme, aim point, mode of fire, and estimates on Phit /Pmiss for a single SME. Also undertaken in this phase of the...5 APPENDIX A: SME FUZZY ESTIMATES ON FACTORS AND ESTIMATES ON PHIT /PMISS.....6...influencing the target selection prioritization scheme, aim point, mode of fire, and estimates on Phit /Pmiss for a single SME. Also undertaken in this

  2. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    PubMed Central

    Sun, Baoliang; Jiang, Chunlan; Li, Ming

    2016-01-01

    An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271

  3. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    PubMed

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  4. Bearings Only Air-to-Air Ranging

    DTIC Science & Technology

    1988-07-25

    directly in fiut of the observer whem first detected, more time will be needed for a good estimate. A sound uinp them is for the observer, having...altitude angle to provide an estimate of the z component. Moving targets commonly require some 60 seconds for good estimates of target location and...fixed target case, where a good strategy for the observer can be determined a priori, highly effective maneuvers for the observer in the case of a moving

  5. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac.

    PubMed

    Kontaxis, C; Bol, G H; Stemkens, B; Glitzner, M; Prins, F M; Kerkmeijer, L G W; Lagendijk, J J W; Raaymakers, B W

    2017-08-21

    The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system's capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.

  6. Towards fast online intrafraction replanning for free-breathing stereotactic body radiation therapy with the MR-linac

    NASA Astrophysics Data System (ADS)

    Kontaxis, C.; Bol, G. H.; Stemkens, B.; Glitzner, M.; Prins, F. M.; Kerkmeijer, L. G. W.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2017-09-01

    The hybrid MRI-radiotherapy machines, like the MR-linac (Elekta AB, Stockholm, Sweden) installed at the UMC Utrecht (Utrecht, The Netherlands), will be able to provide real-time patient imaging during treatment. In order to take advantage of the system’s capabilities and enable online adaptive treatments, a new generation of software should be developed, ranging from motion estimation to treatment plan adaptation. In this work we present a proof of principle adaptive pipeline designed for high precision stereotactic body radiation therapy (SBRT) suitable for sites affected by respiratory motion, like renal cell carcinoma (RCC). We utilized our research MRL treatment planning system (MRLTP) to simulate a single fraction 25 Gy free-breathing SBRT treatment for RCC by performing inter-beam replanning for two patients and one volunteer. The simulated pipeline included a combination of (pre-beam) 4D-MRI and (online) 2D cine-MR acquisitions. The 4DMRI was used to generate the mid-position reference volume, while the cine-MRI, via an in-house motion model, provided three-dimensional (3D) deformable vector fields (DVFs) describing the anatomical changes during treatment. During the treatment fraction, at an inter-beam interval, the mid-position volume of the patient was updated and the delivered dose was accurately reconstructed on the underlying motion calculated by the model. Fast online replanning, targeting the latest anatomy and incorporating the previously delivered dose was then simulated with MRLTP. The adaptive treatment was compared to a conventional mid-position SBRT plan with a 3 mm planning target volume margin reconstructed on the same motion trace. We demonstrate that our system produced tighter dose distributions and thus spared the healthy tissue, while delivering more dose to the target. The pipeline was able to account for baseline variations/drifts that occurred during treatment ensuring target coverage at the end of the treatment fraction.

  7. Care Cascade for targeted tuberculosis testing and linkage to Care in Homeless Populations in the United States: a meta-analysis.

    PubMed

    Parriott, Andrea; Malekinejad, Mohsen; Miller, Amanda P; Marks, Suzanne M; Horvath, Hacsi; Kahn, James G

    2018-04-12

    Homelessness increases the risk of tuberculosis (TB) disease and latent TB infection (LTBI), but persons experiencing homelessness often lack access to testing and treatment. We assessed the yield of TB testing and linkage to care for programs targeting homeless populations in the United States. We conducted a comprehensive search of peer-reviewed and grey literature, adapting Cochrane systematic review methods. Two reviewers independently assessed study eligibility and abstracted key data on the testing to care cascade: number of persons reached, recruited for testing, tested for LTBI, with valid test results, referred to follow-up care, and initiating care. We used random effects to calculate pooled proportions and 95% confidence intervals (CI) of persons retained in each step via inverse-variance weighted meta-analysis, and cumulative proportions as products of adjacent step proportions. We identified 23 studies published between 1986 and 2014, conducted in 12 states and 15 cities. Among studies using tuberculin skin tests (TST) we found that 93.7% (CI 72.4-100%) of persons reached were recruited, 97.9% (89.3-100%) of those recruited had tests placed, 85.5% (78.6-91.3%) of those with tests placed returned for reading, 99.9% (99.6-100%) of those with tests read had valid results, and 24.7% (21.0-28.5%) with valid results tested positive. All persons testing positive were referred to follow-up care, and 99.8% attended at least one session of follow-up care. Heterogeneity was high for most pooled proportions. For a hypothetical cohort of 1000 persons experiencing homelessness reached by a targeted testing program using TST, an estimated 917 were tested, 194 were positive, and all of these initiated follow-up care. Targeted TB testing of persons experiencing homelessness appears effective in detecting LTBI and connecting persons to care and potential treatment. Future evaluations should assess diagnostic use of interferon gamma release assays and completion of treatment, and costs of testing and treatment.

  8. Interacting multiple model forward filtering and backward smoothing for maneuvering target tracking

    NASA Astrophysics Data System (ADS)

    Nandakumaran, N.; Sutharsan, S.; Tharmarasa, R.; Lang, Tom; McDonald, Mike; Kirubarajan, T.

    2009-08-01

    The Interacting Multiple Model (IMM) estimator has been proven to be effective in tracking agile targets. Smoothing or retrodiction, which uses measurements beyond the current estimation time, provides better estimates of target states. Various methods have been proposed for multiple model smoothing in the literature. In this paper, a new smoothing method, which involves forward filtering followed by backward smoothing while maintaining the fundamental spirit of the IMM, is proposed. The forward filtering is performed using the standard IMM recursion, while the backward smoothing is performed using a novel interacting smoothing recursion. This backward recursion mimics the IMM estimator in the backward direction, where each mode conditioned smoother uses standard Kalman smoothing recursion. Resulting algorithm provides improved but delayed estimates of target states. Simulation studies are performed to demonstrate the improved performance with a maneuvering target scenario. The comparison with existing methods confirms the improved smoothing accuracy. This improvement results from avoiding the augmented state vector used by other algorithms. In addition, the new technique to account for model switching in smoothing is a key in improving the performance.

  9. Targeted estimation of nuisance parameters to obtain valid statistical inference.

    PubMed

    van der Laan, Mark J

    2014-01-01

    In order to obtain concrete results, we focus on estimation of the treatment specific mean, controlling for all measured baseline covariates, based on observing independent and identically distributed copies of a random variable consisting of baseline covariates, a subsequently assigned binary treatment, and a final outcome. The statistical model only assumes possible restrictions on the conditional distribution of treatment, given the covariates, the so-called propensity score. Estimators of the treatment specific mean involve estimation of the propensity score and/or estimation of the conditional mean of the outcome, given the treatment and covariates. In order to make these estimators asymptotically unbiased at any data distribution in the statistical model, it is essential to use data-adaptive estimators of these nuisance parameters such as ensemble learning, and specifically super-learning. Because such estimators involve optimal trade-off of bias and variance w.r.t. the infinite dimensional nuisance parameter itself, they result in a sub-optimal bias/variance trade-off for the resulting real-valued estimator of the estimand. We demonstrate that additional targeting of the estimators of these nuisance parameters guarantees that this bias for the estimand is second order and thereby allows us to prove theorems that establish asymptotic linearity of the estimator of the treatment specific mean under regularity conditions. These insights result in novel targeted minimum loss-based estimators (TMLEs) that use ensemble learning with additional targeted bias reduction to construct estimators of the nuisance parameters. In particular, we construct collaborative TMLEs (C-TMLEs) with known influence curve allowing for statistical inference, even though these C-TMLEs involve variable selection for the propensity score based on a criterion that measures how effective the resulting fit of the propensity score is in removing bias for the estimand. As a particular special case, we also demonstrate the required targeting of the propensity score for the inverse probability of treatment weighted estimator using super-learning to fit the propensity score.

  10. Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak.

    PubMed

    Hojo, Hidehiro; Dohmae, Takeshi; Hotta, Kenji; Kohno, Ryosuke; Motegi, Atsushi; Yagishita, Atsushi; Makinoshima, Hideki; Tsuchihara, Katsuya; Akimoto, Tetsuo

    2017-07-03

    Cellular responses to proton beam irradiation are not yet clearly understood, especially differences in the relative biological effectiveness (RBE) of high-energy proton beams depending on the position on the Spread-Out Bragg Peak (SOBP). Towards this end, we investigated the differences in the biological effect of a high-energy proton beam on the target cells placed at different positions on the SOBP, using two human esophageal cancer cell lines with differing radiosensitivities. Two human esophageal cancer cell lines (OE21, KYSE450) with different radiosensitivities were irradiated with a 235-MeV proton beam at 4 different positions on the SOBP (position #1: At entry; position #2: At the proximal end of the SOBP; position #3: Center of the SOBP; position #4: At the distal end of the SOBP), and the cell survivals were assessed by the clonogenic assay. The RBE 10 for each position of the target cell lines on the SOBP was determined based on the results of the cell survival assay conducted after photon beam irradiation. In addition, the number of DNA double-strand breaks was estimated by quantitating the number of phospho-histone H2AX (γH2AX) foci formed in the nuclei by immunofluorescence analysis. In regard to differences in the RBE of a proton beam according to the position on the SOBP, the RBE value tended to increase as the position on the SOBP moved distally. Comparison of the residual number of γH2AX foci at the end 24 h after the irradiation revealed, for both cell lines, a higher number of foci in the cells irradiated at the distal end of the SOPB than in those irradiated at the proximal end or center of the SOBP. The results of this study demonstrate that the RBE of a high-energy proton beam and the cellular responses, including the DNA damage repair processes, to high-energy proton beam irradiation, differ according to the position on the SOBP, irrespective of the radiosensitivity levels of the cell lines.

  11. Synthetic aperture radar target detection, feature extraction, and image formation techniques

    NASA Technical Reports Server (NTRS)

    Li, Jian

    1994-01-01

    This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.

  12. Does a person selectively recall the good or the bad from their personal past? It depends on the recall target and the person's favourability of self-views.

    PubMed

    Ritchie, Timothy D; Sedikides, Constantine; Skowronski, John J

    2017-09-01

    In three studies, participants remembered real-life behaviours at Time 1 and attempted to recall them at Time 2. When the recall target was the self, a positivity bias emerged: self-positivity. In Study 3, self-positivity extended to an individual (target) who was liked by the participant, but did it not extend to a disliked target. For this latter target, a negativity bias emerged. For recall targets that were participants' acquaintances, self-positivity in recall was also eliminated in Studies 1 and 3, and a negativity bias in recall emerged in Study 2. Finally, in Study 2 (but not Study 3), the favourability of participants' self-view predicted the magnitude of the self-positivity in self-recall, but it did not predict valence effects in other-recall. Taken together, the results indicate that the link between behaviour valence and recall is moderated by the recall target and the favourability of one's self-view.

  13. Navigation for the new millennium: Autonomous navigation for Deep Space 1

    NASA Technical Reports Server (NTRS)

    Reidel, J. E.; Bhaskaran, S.; Synnott, S. P.; Desai, S. D.; Bollman, W. E.; Dumont, P. J.; Halsell, C. A.; Han, D.; Kennedy, B. M.; Null, G. W.; hide

    1997-01-01

    The autonomous optical navigation system technology for the Deep Space 1 (DS1) mission is reported on. The DS1 navigation system will be the first to use autonomous navigation in deep space. The systems tasks are to: perform interplanetary cruise orbit determination using images of distant asteroids; control and maintain the orbit of the spacecraft with an ion propulsion system and conventional thrusters, and perform late knowledge updates of target position during close flybys in order to facilitate high quality data return from asteroid MaAuliffe and comet West-Kohoutek-Ikemura. To accomplish these tasks, the following functions are required: picture planning; image processing; dynamical modeling and integration; planetary ephemeris and star catalog handling; orbit determination; data filtering and estimation; maneuver estimation, and spacecraft ephemeris updating. These systems and functions are described and preliminary performance data are presented.

  14. State-Estimation Algorithm Based on Computer Vision

    NASA Technical Reports Server (NTRS)

    Bayard, David; Brugarolas, Paul

    2007-01-01

    An algorithm and software to implement the algorithm are being developed as means to estimate the state (that is, the position and velocity) of an autonomous vehicle, relative to a visible nearby target object, to provide guidance for maneuvering the vehicle. In the original intended application, the autonomous vehicle would be a spacecraft and the nearby object would be a small astronomical body (typically, a comet or asteroid) to be explored by the spacecraft. The algorithm could also be used on Earth in analogous applications -- for example, for guiding underwater robots near such objects of interest as sunken ships, mineral deposits, or submerged mines. It is assumed that the robot would be equipped with a vision system that would include one or more electronic cameras, image-digitizing circuitry, and an imagedata- processing computer that would generate feature-recognition data products.

  15. A hierarchical framework for air traffic control

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik

    Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation in NextGen will affect the overall performance of air traffic control. The dissertation also provides solutions to several key estimation problems that support corresponding control tasks. Throughout the development of these estimation algorithms, aircraft motion is modeled using hybrid systems, which encapsulate both the discrete flight mode of an aircraft and the evolution of continuous states such as position and velocity. The target-tracking problem is posed as one of hybrid state estimation, and two new algorithms are developed to exploit structure specific to aircraft motion, especially near airports. First, discrete mode evolution is modeled using state-dependent transitions, in which the likelihood of changing flight modes is dependent on aircraft state. Second, an estimator is designed for systems with limited mode changes, including arrival aircraft. Improved target tracking facilitates increased safety in collision avoidance and trajectory design problems. A multiple-target tracking and identity management algorithm is developed to improve situational awareness for controllers about multiple maneuvering targets in a congested region. Finally, tracking algorithms are extended to predict aircraft landing times; estimated time of arrival prediction is one example of important decision support information for air traffic control.

  16. Mapping under-5 and neonatal mortality in Africa, 2000-15: a baseline analysis for the Sustainable Development Goals.

    PubMed

    Golding, Nick; Burstein, Roy; Longbottom, Joshua; Browne, Annie J; Fullman, Nancy; Osgood-Zimmerman, Aaron; Earl, Lucas; Bhatt, Samir; Cameron, Ewan; Casey, Daniel C; Dwyer-Lindgren, Laura; Farag, Tamer H; Flaxman, Abraham D; Fraser, Maya S; Gething, Peter W; Gibson, Harry S; Graetz, Nicholas; Krause, L Kendall; Kulikoff, Xie Rachel; Lim, Stephen S; Mappin, Bonnie; Morozoff, Chloe; Reiner, Robert C; Sligar, Amber; Smith, David L; Wang, Haidong; Weiss, Daniel J; Murray, Christopher J L; Moyes, Catherine L; Hay, Simon I

    2017-11-11

    During the Millennium Development Goal (MDG) era, many countries in Africa achieved marked reductions in under-5 and neonatal mortality. Yet the pace of progress toward these goals substantially varied at the national level, demonstrating an essential need for tracking even more local trends in child mortality. With the adoption of the Sustainable Development Goals (SDGs) in 2015, which established ambitious targets for improving child survival by 2030, optimal intervention planning and targeting will require understanding of trends and rates of progress at a higher spatial resolution. In this study, we aimed to generate high-resolution estimates of under-5 and neonatal all-cause mortality across 46 countries in Africa. We assembled 235 geographically resolved household survey and census data sources on child deaths to produce estimates of under-5 and neonatal mortality at a resolution of 5 × 5 km grid cells across 46 African countries for 2000, 2005, 2010, and 2015. We used a Bayesian geostatistical analytical framework to generate these estimates, and implemented predictive validity tests. In addition to reporting 5 × 5 km estimates, we also aggregated results obtained from these estimates into three different levels-national, and subnational administrative levels 1 and 2-to provide the full range of geospatial resolution that local, national, and global decision makers might require. Amid improving child survival in Africa, there was substantial heterogeneity in absolute levels of under-5 and neonatal mortality in 2015, as well as the annualised rates of decline achieved from 2000 to 2015. Subnational areas in countries such as Botswana, Rwanda, and Ethiopia recorded some of the largest decreases in child mortality rates since 2000, positioning them well to achieve SDG targets by 2030 or earlier. Yet these places were the exception for Africa, since many areas, particularly in central and western Africa, must reduce under-5 mortality rates by at least 8·8% per year, between 2015 and 2030, to achieve the SDG 3.2 target for under-5 mortality by 2030. In the absence of unprecedented political commitment, financial support, and medical advances, the viability of SDG 3.2 achievement in Africa is precarious at best. By producing under-5 and neonatal mortality rates at multiple levels of geospatial resolution over time, this study provides key information for decision makers to target interventions at populations in the greatest need. In an era when precision public health increasingly has the potential to transform the design, implementation, and impact of health programmes, our 5 × 5 km estimates of child mortality in Africa provide a baseline against which local, national, and global stakeholders can map the pathways for ending preventable child deaths by 2030. Bill & Melinda Gates Foundation. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  17. Setting population targets for mammals using body mass as a predictor of population persistence.

    PubMed

    Hilbers, Jelle P; Santini, Luca; Visconti, Piero; Schipper, Aafke M; Pinto, Cecilia; Rondinini, Carlo; Huijbregts, Mark A J

    2017-04-01

    Conservation planning and biodiversity assessments need quantitative targets to optimize planning options and assess the adequacy of current species protection. However, targets aiming at persistence require population-specific data, which limit their use in favor of fixed and nonspecific targets, likely leading to unequal distribution of conservation efforts among species. We devised a method to derive equitable population targets; that is, quantitative targets of population size that ensure equal probabilities of persistence across a set of species and that can be easily inferred from species-specific traits. In our method, we used models of population dynamics across a range of life-history traits related to species' body mass to estimate minimum viable population targets. We applied our method to a range of body masses of mammals, from 2 g to 3825 kg. The minimum viable population targets decreased asymptotically with increasing body mass and were on the same order of magnitude as minimum viable population estimates from species- and context-specific studies. Our approach provides a compromise between pragmatic, nonspecific population targets and detailed context-specific estimates of population viability for which only limited data are available. It enables a first estimation of species-specific population targets based on a readily available trait and thus allows setting equitable targets for population persistence in large-scale and multispecies conservation assessments and planning. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  18. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Via, Riccardo, E-mail: riccardo.via@polimi.it; Fassi, Aurora; Fattori, Giovanni

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by twomore » calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.« less

  19. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.

    PubMed

    Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, Guido

    2015-05-01

    External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.

  20. The effect of visual context on manual localization of remembered targets

    NASA Technical Reports Server (NTRS)

    Barry, S. R.; Bloomberg, J. J.; Huebner, W. P.

    1997-01-01

    This paper examines the contribution of egocentric cues and visual context to manual localization of remembered targets. Subjects pointed in the dark to the remembered position of a target previously viewed without or within a structured visual scene. Without a remembered visual context, subjects pointed to within 2 degrees of the target. The presence of a visual context with cues of straight ahead enhanced pointing performance to the remembered location of central but not off-center targets. Thus, visual context provides strong visual cues of target position and the relationship of body position to target location. Without a visual context, egocentric cues provide sufficient input for accurate pointing to remembered targets.

  1. Robust Target Tracking with Multi-Static Sensors under Insufficient TDOA Information.

    PubMed

    Shin, Hyunhak; Ku, Bonhwa; Nelson, Jill K; Ko, Hanseok

    2018-05-08

    This paper focuses on underwater target tracking based on a multi-static sonar network composed of passive sonobuoys and an active ping. In the multi-static sonar network, the location of the target can be estimated using TDOA (Time Difference of Arrival) measurements. However, since the sensor network may obtain insufficient and inaccurate TDOA measurements due to ambient noise and other harsh underwater conditions, target tracking performance can be significantly degraded. We propose a robust target tracking algorithm designed to operate in such a scenario. First, track management with track splitting is applied to reduce performance degradation caused by insufficient measurements. Second, a target location is estimated by a fusion of multiple TDOA measurements using a Gaussian Mixture Model (GMM). In addition, the target trajectory is refined by conducting a stack-based data association method based on multiple-frames measurements in order to more accurately estimate target trajectory. The effectiveness of the proposed method is verified through simulations.

  2. Target position uncertainty during visually guided deep-inspiration breath-hold radiotherapy in locally advanced lung cancer.

    PubMed

    Scherman Rydhög, Jonas; Riisgaard de Blanck, Steen; Josipovic, Mirjana; Irming Jølck, Rasmus; Larsen, Klaus Richter; Clementsen, Paul; Lars Andersen, Thomas; Poulsen, Per Rugaard; Fredberg Persson, Gitte; Munck Af Rosenschold, Per

    2017-04-01

    The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath-hold (DIBH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients. Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm. A mean reduction of 2-6mm in marker excursion in DIBH versus FB was seen in the anterior-posterior (AP), left-right (LR) and cranio-caudal (CC) directions. Lymph node motion during DIBH originated from cardiac motion. The systematic- (standard deviation (SD) of all the mean marker positions) and random errors (root-mean-square of the intra-BH SD) during DIBH were 0.5 and 0.3mm (AP), 0.5 and 0.3mm (LR), 0.8 and 0.4mm (CC), respectively. The mean inter-breath-hold shifts were -0.3mm (AP), -0.2mm (LR), and -0.2mm (CC). Intra- and inter-breath-hold uncertainty of tumours and lymph nodes were small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The first clinical implementation of a real-time six degree of freedom target tracking system during radiation therapy based on Kilovoltage Intrafraction Monitoring (KIM).

    PubMed

    Nguyen, Doan Trang; O'Brien, Ricky; Kim, Jung-Ha; Huang, Chen-Yu; Wilton, Lee; Greer, Peter; Legge, Kimberley; Booth, Jeremy T; Poulsen, Per Rugaard; Martin, Jarad; Keall, Paul J

    2017-04-01

    We present the first clinical implementation of a real-time six-degree of freedom (6DoF) Kilovoltage Intrafraction Monitoring (KIM) system which tracks the cancer target translational and rotational motions during treatment. The method was applied to measure and correct for target motion during stereotactic body radiotherapy (SBRT) for prostate cancer. Patient: A patient with prostate adenocarcinoma undergoing SBRT with 36.25Gy, delivered in 5 fractions was enrolled in the study. 6DoF KIM technology: 2D positions of three implanted gold markers in each of the kV images (125kV, 10mA at 11Hz) were acquired continuously during treatment. The 2D→3D target position estimation was based on a probability distribution function. The 3D→6DoF target rotation was calculated using an iterative closest point algorithm. The accuracy and precision of the KIM method was measured by comparing the real-time results with kV-MV triangulation. Of the five treatment fractions, KIM was utilised successfully in four fractions. The intrafraction prostate motion resulted in three couch shifts in two fractions when the prostate motion exceeded the pre-set action threshold of 2mm for more than 5s. KIM translational accuracy and precision were 0.3±0.6mm, -0.2±0.3mm and 0.2±0.7mm in the Left-Right (LR), Superior-Inferior (SI) and Anterior-Posterior (AP) directions, respectively. The KIM rotational accuracy and precision were 0.8°±2.0°, -0.5°±3.3° and 0.3°±1.6° in the roll, pitch and yaw directions, respectively. This treatment represents, to the best of our knowledge, the first time a cancer patient's tumour position and rotation have been monitored in real-time during treatment. The 6 DoF KIM system has sub-millimetre accuracy and precision in all three translational axes, and less than 1° accuracy and 4° precision in all three rotational axes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Socio-economic and ecological impacts of global protected area expansion plans

    PubMed Central

    Visconti, Piero; Bakkenes, Michel; Smith, Robert J.; Joppa, Lucas; Sykes, Rachel E.

    2015-01-01

    Several global strategies for protected area (PA) expansion have been proposed to achieve the Convention on Biological Diversity's Aichi target 11 as a means to stem biodiversity loss, as required by the Aichi target 12. However, habitat loss outside PAs will continue to affect habitats and species, and PAs may displace human activities into areas that might be even more important for species persistence. Here we measure the expected contribution of PA expansion strategies to Aichi target 12 by estimating the extent of suitable habitat available for all terrestrial mammals, with and without additional protection (the latter giving the counterfactual outcome), under different socio-economic scenarios and consequent land-use change to 2020. We found that expanding PAs to achieve representation targets for ecoregions under a Business-as-usual socio-economic scenario will result in a worse prognosis than doing nothing for more than 50% of the world's terrestrial mammals. By contrast, targeting protection towards threatened species can increase the suitable habitat available to over 60% of terrestrial mammals. Even in the absence of additional protection, an alternative socio-economic scenario, adopting progressive changes in human consumption, leads to positive outcomes for mammals globally and to the largest improvements for wide-ranging species. PMID:26460136

  5. Socio-economic and ecological impacts of global protected area expansion plans.

    PubMed

    Visconti, Piero; Bakkenes, Michel; Smith, Robert J; Joppa, Lucas; Sykes, Rachel E

    2015-11-05

    Several global strategies for protected area (PA) expansion have been proposed to achieve the Convention on Biological Diversity's Aichi target 11 as a means to stem biodiversity loss, as required by the Aichi target 12. However, habitat loss outside PAs will continue to affect habitats and species, and PAs may displace human activities into areas that might be even more important for species persistence. Here we measure the expected contribution of PA expansion strategies to Aichi target 12 by estimating the extent of suitable habitat available for all terrestrial mammals, with and without additional protection (the latter giving the counterfactual outcome), under different socio-economic scenarios and consequent land-use change to 2020. We found that expanding PAs to achieve representation targets for ecoregions under a Business-as-usual socio-economic scenario will result in a worse prognosis than doing nothing for more than 50% of the world's terrestrial mammals. By contrast, targeting protection towards threatened species can increase the suitable habitat available to over 60% of terrestrial mammals. Even in the absence of additional protection, an alternative socio-economic scenario, adopting progressive changes in human consumption, leads to positive outcomes for mammals globally and to the largest improvements for wide-ranging species. © 2015 The Author(s).

  6. In Silico Screening Based on Predictive Algorithms as a Design Tool for Exon Skipping Oligonucleotides in Duchenne Muscular Dystrophy

    PubMed Central

    Echigoya, Yusuke; Mouly, Vincent; Garcia, Luis; Yokota, Toshifumi; Duddy, William

    2015-01-01

    The use of antisense ‘splice-switching’ oligonucleotides to induce exon skipping represents a potential therapeutic approach to various human genetic diseases. It has achieved greatest maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy (DMD), for which several clinical trials are completed or ongoing, and a large body of data exists describing tested oligonucleotides and their efficacy. The rational design of an exon skipping oligonucleotide involves the choice of an antisense sequence, usually between 15 and 32 nucleotides, targeting the exon that is to be skipped. Although parameters describing the target site can be computationally estimated and several have been identified to correlate with efficacy, methods to predict efficacy are limited. Here, an in silico pre-screening approach is proposed, based on predictive statistical modelling. Previous DMD data were compiled together and, for each oligonucleotide, some 60 descriptors were considered. Statistical modelling approaches were applied to derive algorithms that predict exon skipping for a given target site. We confirmed (1) the binding energetics of the oligonucleotide to the RNA, and (2) the distance in bases of the target site from the splice acceptor site, as the two most predictive parameters, and we included these and several other parameters (while discounting many) into an in silico screening process, based on their capacity to predict high or low efficacy in either phosphorodiamidate morpholino oligomers (89% correctly predicted) and/or 2’O Methyl RNA oligonucleotides (76% correctly predicted). Predictions correlated strongly with in vitro testing for sixteen de novo PMO sequences targeting various positions on DMD exons 44 (R2 0.89) and 53 (R2 0.89), one of which represents a potential novel candidate for clinical trials. We provide these algorithms together with a computational tool that facilitates screening to predict exon skipping efficacy at each position of a target exon. PMID:25816009

  7. Integration of sparse electrophysiological measurements with preoperative MRI using 3D surface estimation in deep brain stimulation surgery

    NASA Astrophysics Data System (ADS)

    Husch, Andreas; Gemmar, Peter; Thunberg, Johan; Hertel, Frank

    2017-03-01

    Intraoperative microelectrode recordings (MER) have been used for several decades to guide neurosurgeons during the implantation of Deep Brain Stimulation (DBS) electrodes, especially when targeting the subthalamic nucleus (STN) to suppress the symptoms of Parkinson's Disease. The standard approach is to use an array of up to five MER electrodes in a fixed configuration. Interpretation of the recorded signals yields a spatially very sparse set of information about the morphology of the respective brain structures in the targeted area. However, no aid is currently available for surgeons to intraoperatively integrate this information with other data available on the patient's individual morphology (e.g. MR imaging data used for surgical planning). This integration might allow surgeons to better determine the most probable position of the electrodes within the target structure during surgery. This paper suggests a method for reconstructing a surface patch from the sparse MER dataset utilizing additional a priori knowledge about the geometrical configuration of the measurement electrodes. The conventional representation of MER measurements as intervals of target region/non-target region is therefore transformed into an equivalent boundary set representation, allowing ecient point-based calculations. Subsequently, the problem is to integrate the resulting patch with a preoperative model of the target structure, which can be formulated as registration problem minimizing a distance measure between the two surfaces. When restricting this registration procedure to translations, which is reasonable given certain geometric considerations, the problem can be solved globally by employing an exhaustive search with arbitrary precision in polynomial time. The proposed method is demonstrated using bilateral STN/Substantia Nigra segmentation data from preoperative MRIs of 17 Patients with simulated MER electrode placement. When using simulated data of heavily perturbed electrodes and subsequent MER measurements, our optimization resulted in an improvement of the electrode position within 1 mm of the ground truth in 80.29% of the cases.

  8. Integration of SAR and AIS for ship detection and identification

    NASA Astrophysics Data System (ADS)

    Yang, Chan-Su; Kim, Tae-Ho

    2012-06-01

    This abstract describes the preliminary design concept for an integration system of SAR and AIS data. SAR sensors are used to acquire image data over large coverage area either through the space borne or airborne platforms in UTC. AIS reports should also obtained on the same date as of the SAR acquisition for the purpose to perform integration test. Once both data reports are obtained, one need to match the timings of AIS data acquisition over the SAR image acquisition time with consideration of local time & boundary to extract the closest time signal from AIS report in order to know the AIS based ship positions, but still one cannot be able to distinguish which ships have the AIS transponder after projection of AIS based position onto the SAR image acquisition boundary. As far as integration is concerned, the ship dead-reckoning concept is most important forecasted position which provides the AIS based ship position at the time of SAR image acquisition and also provides the hints for azimuth shift which occurred in SAR image for the case of moving ships which moves in the direction perpendicular to the direction of flight path. Unknown ship's DR estimation is to be carried out based on the initial positions, speed and course over ground, which has already been shorted out from AIS reports, during the step of time matching. This DR based ship's position will be the candidate element for searching the SAR based ship targets for the purpose of identification & matching within the certain boundary around DR. The searching method is performed by means of estimation of minimum distance from ship's DR to SAR based ship position, and once it determines, so the candidate element will look for matching like ship size match of DR based ship's dimension wrt SAR based ship's edge, there may be some error during the matching with SAR based ship edges with actual ship's hull design as per the longitudinal and transverse axis size information obtained from the AIS reports due to blurring effect in SAR based ship signatures, once the conditions are satisfied, candidate element will move & shift over the SAR based ship signature target with the minimum displacement and it is known to be the azimuth shift compensation and this overall methodology are known to be integration of AIS report data over the SAR image acquisition boundary with assessment of time matching. The expected result may provide the good accuracy of the SAR and AIS contact position along with dimension and classification of ships over SAR image. There may be possibilities of matching speed and course from candidate element with SAR based ship signature, but still the challenges are presents in front of us that to estimation of speed and course by means of SAR data, if it may be possible so the expected final result may be more accurate as due to extra matching effects and the results may be used for the near real time performance for ship identification with help of integrated system design based on SAR and AIS data reports.

  9. Confidence level estimation in multi-target classification problems

    NASA Astrophysics Data System (ADS)

    Chang, Shi; Isaacs, Jason; Fu, Bo; Shin, Jaejeong; Zhu, Pingping; Ferrari, Silvia

    2018-04-01

    This paper presents an approach for estimating the confidence level in automatic multi-target classification performed by an imaging sensor on an unmanned vehicle. An automatic target recognition algorithm comprised of a deep convolutional neural network in series with a support vector machine classifier detects and classifies targets based on the image matrix. The joint posterior probability mass function of target class, features, and classification estimates is learned from labeled data, and recursively updated as additional images become available. Based on the learned joint probability mass function, the approach presented in this paper predicts the expected confidence level of future target classifications, prior to obtaining new images. The proposed approach is tested with a set of simulated sonar image data. The numerical results show that the estimated confidence level provides a close approximation to the actual confidence level value determined a posteriori, i.e. after the new image is obtained by the on-board sensor. Therefore, the expected confidence level function presented in this paper can be used to adaptively plan the path of the unmanned vehicle so as to optimize the expected confidence levels and ensure that all targets are classified with satisfactory confidence after the path is executed.

  10. Radar Investigations of Asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.

  11. Enhanced Anti-Tumoral Activity of Methotrexate-Human Serum Albumin Conjugated Nanoparticles by Targeting with Luteinizing Hormone-Releasing Hormone (LHRH) Peptide

    PubMed Central

    Taheri, Azade; Dinarvand, Rassoul; Atyabi, Fatemeh; Ahadi, Fatemeh; Nouri, Farank Salman; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Borougeni, Atefeh Taheri; Mansoori, Pooria

    2011-01-01

    Active targeting could increase the efficacy of anticancer drugs. Methotrexate-human serum albumin (MTX-HSA) conjugates, functionalized by luteinizing hormone-releasing hormone (LHRH) as targeting moieties, with the aim of specifically targeting the cancer cells, were prepared. Owing to the high expression of LHRH receptors in many cancer cells as compared to normal cells, LHRH was used as the targeting ligand in this study. LHRH was conjugated to MTX-HSA nanoparticles via a cross-linker. Three types of LHRH targeted nanoparticles with a mean particle size between 120–138 nm were prepared. The cytotoxicity of LHRH targeted and non-targeted nanoparticles were determined on the LHRH positive and negative cell lines. The internalization of the targeted and non-targeted nanoparticles in LHRH receptor positive and negative cells was investigated using flow cytometry analysis and fluorescence microscopy. The cytotoxicity of the LHRH targeted nanoparticles on the LHRH receptor positive cells were significantly more than non-targeted nanoparticles. LHRH targeted nanoparticles were also internalized by LHRH receptor positive cells significantly more than non-targeted nanoparticles. There were no significant differences between the uptake of targeted and non-targeted nanoparticles to the LHRH receptor negative cells. The active targeting procedure using LHRH targeted MTX-HSA nanoparticles could increase the anti-tumoral activity of MTX. PMID:21845098

  12. Passive RFID Rotation Dimension Reduction via Aggregation

    NASA Astrophysics Data System (ADS)

    Matthews, Eric

    Radio Frequency IDentification (RFID) has applications in object identification, position, and orientation tracking. RFID technology can be applied in hospitals for patient and equipment tracking, stores and warehouses for product tracking, robots for self-localisation, tracking hazardous materials, or locating any other desired object. Efficient and accurate algorithms that perform localisation are required to extract meaningful data beyond simple identification. A Received Signal Strength Indicator (RSSI) is the strength of a received radio frequency signal used to localise passive and active RFID tags. Many factors affect RSSI such as reflections, tag rotation in 3D space, and obstacles blocking line-of-sight. LANDMARC is a statistical method for estimating tag location based on a target tag's similarity to surrounding reference tags. LANDMARC does not take into account the rotation of the target tag. By either aggregating multiple reference tag positions at various rotations, or by determining a rotation value for a newly read tag, we can perform an expected value calculation based on a comparison to the k-most similar training samples via an algorithm called K-Nearest Neighbours (KNN) more accurately. By choosing the average as the aggregation function, we improve the relative accuracy of single-rotation LANDMARC localisation by 10%, and any-rotation localisation by 20%.

  13. Postoperative PET/CT and target delineation before adjuvant radiotherapy in patients with oral cavity squamous cell carcinoma.

    PubMed

    Dutta, Pinaki R; Riaz, Nadeem; McBride, Sean; Morris, Luc G; Patel, Snehal; Ganly, Ian; Wong, Richard J; Palmer, Frank; Schöder, Heiko; Lee, Nancy

    2016-04-01

    The purpose of this study was for us to present our evaluation of the effectiveness of positron emission tomography (PET)/CT imaging in postoperative patients with oral cavity squamous cell carcinoma (SCC) before initiating adjuvant radiation therapy. Treatment planning PET/CT scans were obtained in 44 patients with oral cavity SCC receiving adjuvant radiation. We identified target areas harboring macroscopic disease requiring higher radiation doses or additional surgery. Fourteen PET/CT scans were abnormal. Thirteen patients underwent surgery and/or biopsy, increased radiation dose, and/or addition of chemotherapy. Eleven patients received higher radiation doses. Patients undergoing imaging >8 weeks were more likely to have abnormal results (p = .01). One-year distant metastases-free survival was significantly worse in patients with positive PET/CT scans (61.5% vs 92.7%; p = .01). The estimated positive predictive value (PPV) was 38% for postoperative PET/CT scanning. We demonstrated that 32% of patients have abnormal PET/CT scans resulting in management changes. Patients may benefit from postoperative PET/CT imaging to optimize adjuvant radiation treatment planning. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1285-E1293, 2016. © 2015 Wiley Periodicals, Inc.

  14. Nanostructure sensor of presence and concentration of a target molecule

    NASA Technical Reports Server (NTRS)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system (i) to determine when a selected target molecule is present or absent in a fluid, (2) to estimate concentration of the target molecule in the fluid and (3) estimate possible presence of a second (different) target molecule in the fluid, by analyzing differences in resonant frequencies of vibration of a thin beam suspended in the fluid, after the fluid has moved across the beam.

  15. Data-driven confounder selection via Markov and Bayesian networks.

    PubMed

    Häggström, Jenny

    2018-06-01

    To unbiasedly estimate a causal effect on an outcome unconfoundedness is often assumed. If there is sufficient knowledge on the underlying causal structure then existing confounder selection criteria can be used to select subsets of the observed pretreatment covariates, X, sufficient for unconfoundedness, if such subsets exist. Here, estimation of these target subsets is considered when the underlying causal structure is unknown. The proposed method is to model the causal structure by a probabilistic graphical model, for example, a Markov or Bayesian network, estimate this graph from observed data and select the target subsets given the estimated graph. The approach is evaluated by simulation both in a high-dimensional setting where unconfoundedness holds given X and in a setting where unconfoundedness only holds given subsets of X. Several common target subsets are investigated and the selected subsets are compared with respect to accuracy in estimating the average causal effect. The proposed method is implemented with existing software that can easily handle high-dimensional data, in terms of large samples and large number of covariates. The results from the simulation study show that, if unconfoundedness holds given X, this approach is very successful in selecting the target subsets, outperforming alternative approaches based on random forests and LASSO, and that the subset estimating the target subset containing all causes of outcome yields smallest MSE in the average causal effect estimation. © 2017, The International Biometric Society.

  16. Accuracy assessment of fluoroscopy-transesophageal echocardiography registration

    NASA Astrophysics Data System (ADS)

    Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.

    2011-03-01

    This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.

  17. Internal Medicine residents use heuristics to estimate disease probability

    PubMed Central

    Phang, Sen Han; Ravani, Pietro; Schaefer, Jeffrey; Wright, Bruce; McLaughlin, Kevin

    2015-01-01

    Background Training in Bayesian reasoning may have limited impact on accuracy of probability estimates. In this study, our goal was to explore whether residents previously exposed to Bayesian reasoning use heuristics rather than Bayesian reasoning to estimate disease probabilities. We predicted that if residents use heuristics then post-test probability estimates would be increased by non-discriminating clinical features or a high anchor for a target condition. Method We randomized 55 Internal Medicine residents to different versions of four clinical vignettes and asked them to estimate probabilities of target conditions. We manipulated the clinical data for each vignette to be consistent with either 1) using a representative heuristic, by adding non-discriminating prototypical clinical features of the target condition, or 2) using anchoring with adjustment heuristic, by providing a high or low anchor for the target condition. Results When presented with additional non-discriminating data the odds of diagnosing the target condition were increased (odds ratio (OR) 2.83, 95% confidence interval [1.30, 6.15], p = 0.009). Similarly, the odds of diagnosing the target condition were increased when a high anchor preceded the vignette (OR 2.04, [1.09, 3.81], p = 0.025). Conclusions Our findings suggest that despite previous exposure to the use of Bayesian reasoning, residents use heuristics, such as the representative heuristic and anchoring with adjustment, to estimate probabilities. Potential reasons for attribute substitution include the relative cognitive ease of heuristics vs. Bayesian reasoning or perhaps residents in their clinical practice use gist traces rather than precise probability estimates when diagnosing. PMID:27004080

  18. Motion prediction of a non-cooperative space target

    NASA Astrophysics Data System (ADS)

    Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan

    2018-01-01

    Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.

  19. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    PubMed

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Motion tracing system for ultrasound guided HIFU

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Jiang, Tingyi; Corner, George; Huang, Zhihong

    2017-03-01

    One main limitation in HIFU treatment is the abdominal movement in liver and kidney caused by respiration. The study has set up a tracking model which mainly compromises of a target carrying box and a motion driving balloon. A real-time B-mode ultrasound guidance method suitable for tracking of the abdominal organ motion in 2D was established and tested. For the setup, the phantoms mimicking moving organs are carefully prepared with agar surrounding round-shaped egg-white as the target of focused ultrasound ablation. Physiological phantoms and animal tissues are driven moving reciprocally along the main axial direction of the ultrasound image probe with slightly motion perpendicular to the axial direction. The moving speed and range could be adjusted by controlling the inflation and deflation speed and amount of the balloon driven by a medical ventilator. A 6-DOF robotic arm was used to position the focused ultrasound transducer. The overall system was trying to estimate to simulate the actual movement caused by human respiration. HIFU ablation experiments using phantoms and animal organs were conducted to test the tracking effect. Ultrasound strain elastography was used to post estimate the efficiency of the tracking algorithms and system. In moving state, the axial size of the lesion (perpendicular to the movement direction) are averagely 4mm, which is one third larger than the lesion got when the target was not moving. This presents the possibility of developing a low-cost real-time method of tracking organ motion during HIFU treatment in liver or kidney.

  1. A Novel Passive Tracking Scheme Exploiting Geometric and Intercept Theorems

    PubMed Central

    Zhou, Biao; Sun, Chao; Ahn, Deockhyeon; Kim, Youngok

    2018-01-01

    Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target’s trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes. PMID:29562621

  2. Imaging through atmospheric turbulence for laser based C-RAM systems: an analytical approach

    NASA Astrophysics Data System (ADS)

    Buske, Ivo; Riede, Wolfgang; Zoz, Jürgen

    2013-10-01

    High Energy Laser weapons (HEL) have unique attributes which distinguish them from limitations of kinetic energy weapons. HEL weapons engagement process typical starts with identifying the target and selecting the aim point on the target through a high magnification telescope. One scenario for such a HEL system is the countermeasure against rockets, artillery or mortar (RAM) objects to protect ships, camps or other infrastructure from terrorist attacks. For target identification and especially to resolve the aim point it is significant to ensure high resolution imaging of RAM objects. During the whole ballistic flight phase the knowledge about the expectable imaging quality is important to estimate and evaluate the countermeasure system performance. Hereby image quality is mainly influenced by unavoidable atmospheric turbulence. Analytical calculations have been taken to analyze and evaluate image quality parameters during an approaching RAM object. In general, Kolmogorov turbulence theory was implemented to determine atmospheric coherence length and isoplanatic angle. The image acquisition is distinguishing between long and short exposure times to characterize tip/tilt image shift and the impact of high order turbulence fluctuations. Two different observer positions are considered to show the influence of the selected sensor site. Furthermore two different turbulence strengths are investigated to point out the effect of climate or weather condition. It is well known that atmospheric turbulence degenerates image sharpness and creates blurred images. Investigations are done to estimate the effectiveness of simple tip/tilt systems or low order adaptive optics for laser based C-RAM systems.

  3. The Role of Experience in Location Estimation: Target Distributions Shift Location Memory Biases

    ERIC Educational Resources Information Center

    Lipinski, John; Simmering, Vanessa R.; Johnson, Jeffrey S.; Spencer, John P.

    2010-01-01

    Research based on the Category Adjustment model concluded that the spatial distribution of target locations does not influence location estimation responses [Huttenlocher, J., Hedges, L., Corrigan, B., & Crawford, L. E. (2004). Spatial categories and the estimation of location. "Cognition, 93", 75-97]. This conflicts with earlier results showing…

  4. Self-calibration method without joint iteration for distributed small satellite SAR systems

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan

    2013-12-01

    The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.

  5. In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment.

    PubMed

    Severgnini, Mara; de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo

    2014-01-08

    Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose-optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off-line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%.

  6. In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment

    PubMed Central

    de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo

    2014-01-01

    Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose‐optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off‐line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%. PACS number: 87.55.kh

  7. Impact of functional and structural social relationships on two year depression outcomes: A multivariate analysis.

    PubMed

    Davidson, Sandra K; Dowrick, Christopher F; Gunn, Jane M

    2016-03-15

    High rates of persistent depression highlight the need to identify the risk factors associated with poor depression outcomes and to provide targeted interventions to people at high risk. Although social relationships have been implicated in depression course, interventions targeting social relationships have been disappointing. Possibly, interventions have targeted the wrong elements of relationships. Alternatively, the statistical association between relationships and depression course is not causal, but due to shared variance with other factors. We investigated whether elements of social relationships predict major depressive episode (MDE) when multiple relevant variables are considered. Data is from a longitudinal study of primary care patients with depressive symptoms. 494 participants completed questionnaires at baseline and a depression measure (PHQ-9) two years later. Baseline measures included functional (i.e. quality) and structural (i.e. quantity) social relationships, depression, neuroticism, chronic illness, alcohol abuse, childhood abuse, partner violence and sociodemographic characteristics. Logistic regression with generalised estimating equations was used to estimate the association between social relationships and MDE. Both functional and structural social relationships predicted MDE in univariate analysis. Only functional social relationships remained significant in multivariate analysis (OR: 0.87; 95%CI: 0.79-0.97; p=0.01). Other unique predictors of MDE were baseline depression severity, neuroticism, childhood sexual abuse and intimate partner violence. We did not assess how a person's position in their depression trajectory influenced the association between social relationships and depression. Interventions targeting relationship quality may be part of a personalised treatment plan for people at high risk due of persistent depression due to poor social relationships. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The SAMI Galaxy Survey: the cluster redshift survey, target selection and cluster properties

    NASA Astrophysics Data System (ADS)

    Owers, M. S.; Allen, J. T.; Baldry, I.; Bryant, J. J.; Cecil, G. N.; Cortese, L.; Croom, S. M.; Driver, S. P.; Fogarty, L. M. R.; Green, A. W.; Helmich, E.; de Jong, J. T. A.; Kuijken, K.; Mahajan, S.; McFarland, J.; Pracy, M. B.; Robotham, A. G. S.; Sikkema, G.; Sweet, S.; Taylor, E. N.; Verdoes Kleijn, G.; Bauer, A. E.; Bland-Hawthorn, J.; Brough, S.; Colless, M.; Couch, W. J.; Davies, R. L.; Drinkwater, M. J.; Goodwin, M.; Hopkins, A. M.; Konstantopoulos, I. S.; Foster, C.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Metcalfe, N.; Richards, S. N.; van de Sande, J.; Scott, N.; Shanks, T.; Sharp, R.; Thomas, A. D.; Tonini, C.

    2017-06-01

    We describe the selection of galaxies targeted in eight low-redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; 0.029 < z < 0.058) as part of the Sydney-AAO Multi-Object Integral field spectrograph Galaxy Survey (SAMI-GS). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9-m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterize the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21 257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness (˜94 per cent) for rpetro ≤ 19.4 and cluster-centric distances R < 2R200. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, R200, virial and caustic masses, as well as cluster structure. The clusters have virial masses 14.25 ≤ log(M200/M⊙) ≤ 15.19. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and point spread function matched photometry are derived from Sloan Digital Sky Survey and VLT Survey Telescope/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have R

  9. A Methodology for Using Workforce Data to Decide Which Specialties and States to Target for Graduate Medical Education Expansion.

    PubMed

    Fraher, Erin P; Knapton, Andy; Holmes, George M

    2017-02-01

    To outline a methodology for allocating graduate medical education (GME) training positions based on data from a workforce projection model. Demand for visits is derived from the Medical Expenditure Panel Survey and Census data. Physician supply, retirements, and geographic mobility are estimated using concatenated AMA Masterfiles and ABMS certification data. The number and specialization behaviors of residents are derived from the AAMC's GMETrack survey. We show how the methodology could be used to allocate 3,000 new GME slots over 5 years-15,000 total positions-by state and specialty to address workforce shortages in 2026. We use the model to identify shortages for 19 types of health care services provided by 35 specialties in 50 states. The new GME slots are allocated to nearly all specialties, but nine states and the District of Columbia do not receive any new positions. This analysis illustrates an objective, evidence-based methodology for allocating GME positions that could be used as the starting point for discussions about GME expansion or redistribution. © Health Research and Educational Trust.

  10. Processing Distracting Non-face Emotional Images: No Evidence of an Age-Related Positivity Effect

    PubMed Central

    Madill, Mark; Murray, Janice E.

    2017-01-01

    Cognitive aging may be accompanied by increased prioritization of social and emotional goals that enhance positive experiences and emotional states. The socioemotional selectivity theory suggests this may be achieved by giving preference to positive information and avoiding or suppressing negative information. Although there is some evidence of a positivity bias in controlled attention tasks, it remains unclear whether a positivity bias extends to the processing of affective stimuli presented outside focused attention. In two experiments, we investigated age-related differences in the effects of to-be-ignored non-face affective images on target processing. In Experiment 1, 27 older (64–90 years) and 25 young adults (19–29 years) made speeded valence judgments about centrally presented positive or negative target images taken from the International Affective Picture System. To-be-ignored distractor images were presented above and below the target image and were either positive, negative, or neutral in valence. The distractors were considered task relevant because they shared emotional characteristics with the target stimuli. Both older and young adults responded slower to targets when distractor valence was incongruent with target valence relative to when distractors were neutral. Older adults responded faster to positive than to negative targets but did not show increased interference effects from positive distractors. In Experiment 2, affective distractors were task irrelevant as the target was a three-digit array and did not share emotional characteristics with the distractors. Twenty-six older (63–84 years) and 30 young adults (18–30 years) gave speeded responses on a digit disparity task while ignoring the affective distractors positioned in the periphery. Task performance in either age group was not influenced by the task-irrelevant affective images. In keeping with the socioemotional selectivity theory, these findings suggest that older adults preferentially process task-relevant positive non-face images but only when presented within the main focus of attention. PMID:28450848

  11. Processing Distracting Non-face Emotional Images: No Evidence of an Age-Related Positivity Effect.

    PubMed

    Madill, Mark; Murray, Janice E

    2017-01-01

    Cognitive aging may be accompanied by increased prioritization of social and emotional goals that enhance positive experiences and emotional states. The socioemotional selectivity theory suggests this may be achieved by giving preference to positive information and avoiding or suppressing negative information. Although there is some evidence of a positivity bias in controlled attention tasks, it remains unclear whether a positivity bias extends to the processing of affective stimuli presented outside focused attention. In two experiments, we investigated age-related differences in the effects of to-be-ignored non-face affective images on target processing. In Experiment 1, 27 older (64-90 years) and 25 young adults (19-29 years) made speeded valence judgments about centrally presented positive or negative target images taken from the International Affective Picture System. To-be-ignored distractor images were presented above and below the target image and were either positive, negative, or neutral in valence. The distractors were considered task relevant because they shared emotional characteristics with the target stimuli. Both older and young adults responded slower to targets when distractor valence was incongruent with target valence relative to when distractors were neutral. Older adults responded faster to positive than to negative targets but did not show increased interference effects from positive distractors. In Experiment 2, affective distractors were task irrelevant as the target was a three-digit array and did not share emotional characteristics with the distractors. Twenty-six older (63-84 years) and 30 young adults (18-30 years) gave speeded responses on a digit disparity task while ignoring the affective distractors positioned in the periphery. Task performance in either age group was not influenced by the task-irrelevant affective images. In keeping with the socioemotional selectivity theory, these findings suggest that older adults preferentially process task-relevant positive non-face images but only when presented within the main focus of attention.

  12. Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions

    USGS Publications Warehouse

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.

  13. 3D Rainbow Particle Tracking Velocimetry

    NASA Astrophysics Data System (ADS)

    Aguirre-Pablo, Andres A.; Xiong, Jinhui; Idoughi, Ramzi; Aljedaani, Abdulrahman B.; Dun, Xiong; Fu, Qiang; Thoroddsen, Sigurdur T.; Heidrich, Wolfgang

    2017-11-01

    A single color camera is used to reconstruct a 3D-3C velocity flow field. The camera is used to record the 2D (X,Y) position and colored scattered light intensity (Z) from white polyethylene tracer particles in a flow. The main advantage of using a color camera is the capability of combining different intensity levels for each color channel to obtain more depth levels. The illumination system consists of an LCD projector placed perpendicularly to the camera. Different intensity colored level gradients are projected onto the particles to encode the depth position (Z) information of each particle, benefiting from the possibility of varying the color profiles and projected frequencies up to 60 Hz. Chromatic aberrations and distortions are estimated and corrected using a 3D laser engraved calibration target. The camera-projector system characterization is presented considering size and depth position of the particles. The use of these components reduces dramatically the cost and complexity of traditional 3D-PTV systems.

  14. [Medical computer-aided detection method based on deep learning].

    PubMed

    Tao, Pan; Fu, Zhongliang; Zhu, Kai; Wang, Lili

    2018-03-01

    This paper performs a comprehensive study on the computer-aided detection for the medical diagnosis with deep learning. Based on the region convolution neural network and the prior knowledge of target, this algorithm uses the region proposal network, the region of interest pooling strategy, introduces the multi-task loss function: classification loss, bounding box localization loss and object rotation loss, and optimizes it by end-to-end. For medical image it locates the target automatically, and provides the localization result for the next stage task of segmentation. For the detection of left ventricular in echocardiography, proposed additional landmarks such as mitral annulus, endocardial pad and apical position, were used to estimate the left ventricular posture effectively. In order to verify the robustness and effectiveness of the algorithm, the experimental data of ultrasonic and nuclear magnetic resonance images are selected. Experimental results show that the algorithm is fast, accurate and effective.

  15. Analysis of a simulation algorithm for direct brain drug delivery

    PubMed Central

    Rosenbluth, Kathryn Hammond; Eschermann, Jan Felix; Mittermeyer, Gabriele; Thomson, Rowena; Mittermeyer, Stephan; Bankiewicz, Krystof S.

    2011-01-01

    Convection enhanced delivery (CED) achieves targeted delivery of drugs with a pressure-driven infusion through a cannula placed stereotactically in the brain. This technique bypasses the blood brain barrier and gives precise distributions of drugs, minimizing off-target effects of compounds such as viral vectors for gene therapy or toxic chemotherapy agents. The exact distribution is affected by the cannula positioning, flow rate and underlying tissue structure. This study presents an analysis of a simulation algorithm for predicting the distribution using baseline MRI images acquired prior to inserting the cannula. The MRI images included diffusion tensor imaging (DTI) to estimate the tissue properties. The algorithm was adapted for the devices and protocols identified for upcoming trials and validated with direct MRI visualization of Gadolinium in 20 infusions in non-human primates. We found strong agreement between the size and location of the simulated and gadolinium volumes, demonstrating the clinical utility of this surgical planning algorithm. PMID:21945468

  16. Propionibacterium acnes in the pathogenesis and immunotherapy of acne vulgaris.

    PubMed

    Liu, Pei-Feng; Hsieh, Yao-Dung; Lin, Ya-Ching; Two, Aimee; Shu, Chih-Wen; Huang, Chun-Ming

    2015-01-01

    Acne vulgaris, a multi-factorial disease, is one of the most common skin diseases, affecting an estimated 80% of Americans at some point during their lives. The gram-positive and anaerobic Propionibacterium acnes (P. acnes) bacterium has been implicated in acne inflammation and pathogenesis. Therapies for acne vulgaris using antibiotics generally lack bacterial specificity, promote the generation of antibiotic-resistant bacterial strains, and cause adverse effects. Immunotherapy against P. acnes or its antigens (sialidase and CAMP factor) has been demonstrated to be effective in mice, attenuating P. acnes-induced inflammation; thus, this method may be applied to develop a potential vaccine targeting P. acnes for acne vulgaris treatment. This review summarizes reports describing the role of P. acnes in the pathogenesis of acne and various immunotherapy-based approaches targeting P. acnes, suggesting the potential effectiveness of immunotherapy for acne vulgaris as well as P. acnes-associated diseases.

  17. A novel active disturbance rejection based tracking design for laser system with quadrant photodetector

    NASA Astrophysics Data System (ADS)

    Manojlović, Stojadin M.; Barbarić, Žarko P.; Mitrović, Srđan T.

    2015-06-01

    A new tracking design for laser systems with different arrangements of a quadrant photodetector, based on the principle of active disturbance rejection control is suggested. The detailed models of quadrant photodetector with standard add-subtract, difference-over-sum and diagonal-difference-over-sum algorithms for displacement signals are included in the control loop. Target moving, non-linearity of a photodetector, parameter perturbations and exterior disturbances are treated as a total disturbance. Active disturbance rejection controllers with linear extended state observers for total disturbance estimation and rejection are designed. Proposed methods are analysed in frequency domain to quantify their stability characteristics and disturbance rejection performances. It is shown through simulations, that tracking errors are effectively compensated, providing the laser spot positioning in the area near the centre of quadrant photodetector where the mentioned algorithms have the highest sensitivity, which provides tracking of the manoeuvring targets with high accuracy.

  18. Rapid formation of spatiotopic representations as revealed by inhibition of return.

    PubMed

    Pertzov, Yoni; Zohary, Ehud; Avidan, Galia

    2010-06-30

    Inhibition of return (IOR), a performance decrement for stimuli appearing at recently cued locations, occurs when the target and cue share the same screen position. This is in contrast to cue-based attention facilitation effects that were recently suggested to be mapped in a retinotopic reference frame, the prevailing representation throughout early visual processing stages. Here, we investigate the dynamics of IOR in both reference frames, using a modified cued-location saccadic reaction time task with an intervening saccade between cue and target presentation. Thus, on different trials, the target was present either at the same retinotopic location as the cue, or at the same screen position (e.g., spatiotopic location). IOR was primarily found for targets appearing at the same spatiotopic position as the initial cue, when the cue and target were presented at the same hemifield. This suggests that there is restricted information transfer of cue position across the two hemispheres. Moreover, the effect was maximal when the target was presented 10 ms after the intervening saccade ended and was attenuated in longer delays. In our case, therefore, the representation of previously attended locations (as revealed by IOR) is not remapped slowly after the execution of a saccade. Rather, either a retinotopic representation is remapped rapidly, adjacent to the end of the saccade (using a prospective motor command), or the positions of the cue and target are encoded in a spatiotopic reference frame, regardless of eye position. Spatial attention can therefore be allocated to target positions defined in extraretinal coordinates.

  19. Influence of Solid Target Reflectivity and Incident Angle on Depolarization Ratio and Reflected Energy from Polarized Lights: Experimental Results of the May 2008 Field Trial

    DTIC Science & Technology

    2009-11-01

    enviromental targets . . . . . . . . . . . . 45 Figure 25: Relative reectivity of environmental targets . . . . . . . . . . . . 46 Figure 26: Relationship...Environmental targets and position of the center . . . . . . . . . . 41 Table 11: Depolarization ratio of enviromental targets...42 Table 12: Relative reectivity results of enviromental targets . . . . . . . . . 42 Table 13: Sand papers and position of the center

  20. [Carotid intima-media thickness distribution according to the stratification of cardiovascular risk by means of Framingham-REGICOR and score function charts].

    PubMed

    Hermida-Ameijeiras, Á; López-Paz, J E; Riveiro-Cruz, M A; Calvo-Gómez, C

    2016-01-01

    Carotid intima-media thickness (cIMT) has been suggested as a further tool for risk function charts. The aim of this study was to describethe relationship between cIMT and cardiovascular risk (CVR) estimation according to Framingham-REGICOR and SCORE equations. Observational, cross-sectional cohort study from 362 hypertensive subjects. Demographic and clinical information were collected as well as laboratory, ultrasonographic and CVR estimation by the Framingham-REGICOR and SCORE functions. Statistical analysis was performed using SPSS software (version 20,0). To analyze the data, statistical tests such as Chi-square, T-test, ANOVA, and Pearson correlation coefficient were used. According to both functions, differences on mean cIMT were found between low CVR group and intermediate to high groups. No differences were found between intermediate and high risk groups (cIMT: 0,73mm low risk patients vs. 0,89 or 0,88mm respectively according to SCORE function and cIMT: 0,73 vs. 0,85 or 0,87mm respectively according to Framingham-REGICOR function). cIMT correlated positively with CVR estimation according to both SCORE (r=0,421; P<.01), and Framingham-REGICOR functions (r=0,363; P<.01). cIMT correlates positively with CVR estimated by SCORE and Framingham-REGICOR functions. cIMT in those subjects at intermediate risk is similar to those at high risk. Our findings highlight the importance of carotid ultrasound in identifying silent target-organ damage in those patients at intermediate CVR. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

Top